diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..168c68db837d08817e08e493efa81e7419ab9de9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__init__.py @@ -0,0 +1,179 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_sentencepiece_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], +} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_albert"] = ["AlbertTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_albert_fast"] = ["AlbertTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_albert"] = [ + "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "AlbertForMaskedLM", + "AlbertForMultipleChoice", + "AlbertForPreTraining", + "AlbertForQuestionAnswering", + "AlbertForSequenceClassification", + "AlbertForTokenClassification", + "AlbertModel", + "AlbertPreTrainedModel", + "load_tf_weights_in_albert", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_albert"] = [ + "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFAlbertForMaskedLM", + "TFAlbertForMultipleChoice", + "TFAlbertForPreTraining", + "TFAlbertForQuestionAnswering", + "TFAlbertForSequenceClassification", + "TFAlbertForTokenClassification", + "TFAlbertMainLayer", + "TFAlbertModel", + "TFAlbertPreTrainedModel", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_albert"] = [ + "FlaxAlbertForMaskedLM", + "FlaxAlbertForMultipleChoice", + "FlaxAlbertForPreTraining", + "FlaxAlbertForQuestionAnswering", + "FlaxAlbertForSequenceClassification", + "FlaxAlbertForTokenClassification", + "FlaxAlbertModel", + "FlaxAlbertPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_albert import AlbertTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_albert_fast import AlbertTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_albert import ( + ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + AlbertForMaskedLM, + AlbertForMultipleChoice, + AlbertForPreTraining, + AlbertForQuestionAnswering, + AlbertForSequenceClassification, + AlbertForTokenClassification, + AlbertModel, + AlbertPreTrainedModel, + load_tf_weights_in_albert, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_albert import ( + TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + TFAlbertForMaskedLM, + TFAlbertForMultipleChoice, + TFAlbertForPreTraining, + TFAlbertForQuestionAnswering, + TFAlbertForSequenceClassification, + TFAlbertForTokenClassification, + TFAlbertMainLayer, + TFAlbertModel, + TFAlbertPreTrainedModel, + ) + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_albert import ( + FlaxAlbertForMaskedLM, + FlaxAlbertForMultipleChoice, + FlaxAlbertForPreTraining, + FlaxAlbertForQuestionAnswering, + FlaxAlbertForSequenceClassification, + FlaxAlbertForTokenClassification, + FlaxAlbertModel, + FlaxAlbertPreTrainedModel, + ) +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..73568601389de2bd0cc3dfe86f2b19530e264162 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/convert_albert_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/convert_albert_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..33fc038f0742f3f353e12f686e0939ccaaee99bd Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/convert_albert_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_albert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_albert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..db9b0255b6642e623bd495a0e6554b10c8517460 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_albert.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_tf_albert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_tf_albert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6299cde641c76412858501c5871df28ad845b4ff Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_tf_albert.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cb0b29e7ea2da8044b0a223c04fe9170500dd5df Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..69b3cdf28569197c28cb75345e75fb89c5a0b29c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/configuration_albert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/configuration_albert.py new file mode 100644 index 0000000000000000000000000000000000000000..c5ddded4833481fb1d1679f66b00e00b28ffa06d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/configuration_albert.py @@ -0,0 +1,167 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" ALBERT model configuration""" +from collections import OrderedDict +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ..deprecated._archive_maps import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class AlbertConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`AlbertModel`] or a [`TFAlbertModel`]. It is used + to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating + a configuration with the defaults will yield a similar configuration to that of the ALBERT + [albert/albert-xxlarge-v2](https://huggingface.co/albert/albert-xxlarge-v2) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 30000): + Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`]. + embedding_size (`int`, *optional*, defaults to 128): + Dimensionality of vocabulary embeddings. + hidden_size (`int`, *optional*, defaults to 4096): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_hidden_groups (`int`, *optional*, defaults to 1): + Number of groups for the hidden layers, parameters in the same group are shared. + num_attention_heads (`int`, *optional*, defaults to 64): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 16384): + The dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + inner_group_num (`int`, *optional*, defaults to 1): + The number of inner repetition of attention and ffn. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu_new"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + classifier_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for attached classifiers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + pad_token_id (`int`, *optional*, defaults to 0): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 2): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 3): + End of stream token id. + + Examples: + + ```python + >>> from transformers import AlbertConfig, AlbertModel + + >>> # Initializing an ALBERT-xxlarge style configuration + >>> albert_xxlarge_configuration = AlbertConfig() + + >>> # Initializing an ALBERT-base style configuration + >>> albert_base_configuration = AlbertConfig( + ... hidden_size=768, + ... num_attention_heads=12, + ... intermediate_size=3072, + ... ) + + >>> # Initializing a model (with random weights) from the ALBERT-base style configuration + >>> model = AlbertModel(albert_xxlarge_configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "albert" + + def __init__( + self, + vocab_size=30000, + embedding_size=128, + hidden_size=4096, + num_hidden_layers=12, + num_hidden_groups=1, + num_attention_heads=64, + intermediate_size=16384, + inner_group_num=1, + hidden_act="gelu_new", + hidden_dropout_prob=0, + attention_probs_dropout_prob=0, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + classifier_dropout_prob=0.1, + position_embedding_type="absolute", + pad_token_id=0, + bos_token_id=2, + eos_token_id=3, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.embedding_size = embedding_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_hidden_groups = num_hidden_groups + self.num_attention_heads = num_attention_heads + self.inner_group_num = inner_group_num + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.classifier_dropout_prob = classifier_dropout_prob + self.position_embedding_type = position_embedding_type + + +# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Roberta->Albert +class AlbertOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ("token_type_ids", dynamic_axis), + ] + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..eecada8b432a2def95f71b1c613839647fc0ca6f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,63 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert ALBERT checkpoint.""" + + +import argparse + +import torch + +from ...utils import logging +from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert + + +logging.set_verbosity_info() + + +def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, albert_config_file, pytorch_dump_path): + # Initialise PyTorch model + config = AlbertConfig.from_json_file(albert_config_file) + print(f"Building PyTorch model from configuration: {config}") + model = AlbertForPreTraining(config) + + # Load weights from tf checkpoint + load_tf_weights_in_albert(model, config, tf_checkpoint_path) + + # Save pytorch-model + print(f"Save PyTorch model to {pytorch_dump_path}") + torch.save(model.state_dict(), pytorch_dump_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." + ) + parser.add_argument( + "--albert_config_file", + default=None, + type=str, + required=True, + help=( + "The config json file corresponding to the pre-trained ALBERT model. \n" + "This specifies the model architecture." + ), + ) + parser.add_argument( + "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_albert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_albert.py new file mode 100644 index 0000000000000000000000000000000000000000..87f5a9e30c8f542e266d610563329baf840e4bf5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_albert.py @@ -0,0 +1,1382 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch ALBERT model.""" + +import math +import os +from dataclasses import dataclass +from typing import Dict, List, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_albert import AlbertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "albert/albert-base-v2" +_CONFIG_FOR_DOC = "AlbertConfig" + + +from ..deprecated._archive_maps import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def load_tf_weights_in_albert(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + for name, array in zip(names, arrays): + print(name) + + for name, array in zip(names, arrays): + original_name = name + + # If saved from the TF HUB module + name = name.replace("module/", "") + + # Renaming and simplifying + name = name.replace("ffn_1", "ffn") + name = name.replace("bert/", "albert/") + name = name.replace("attention_1", "attention") + name = name.replace("transform/", "") + name = name.replace("LayerNorm_1", "full_layer_layer_norm") + name = name.replace("LayerNorm", "attention/LayerNorm") + name = name.replace("transformer/", "") + + # The feed forward layer had an 'intermediate' step which has been abstracted away + name = name.replace("intermediate/dense/", "") + name = name.replace("ffn/intermediate/output/dense/", "ffn_output/") + + # ALBERT attention was split between self and output which have been abstracted away + name = name.replace("/output/", "/") + name = name.replace("/self/", "/") + + # The pooler is a linear layer + name = name.replace("pooler/dense", "pooler") + + # The classifier was simplified to predictions from cls/predictions + name = name.replace("cls/predictions", "predictions") + name = name.replace("predictions/attention", "predictions") + + # Naming was changed to be more explicit + name = name.replace("embeddings/attention", "embeddings") + name = name.replace("inner_group_", "albert_layers/") + name = name.replace("group_", "albert_layer_groups/") + + # Classifier + if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name): + name = "classifier/" + name + + # No ALBERT model currently handles the next sentence prediction task + if "seq_relationship" in name: + name = name.replace("seq_relationship/output_", "sop_classifier/classifier/") + name = name.replace("weights", "weight") + + name = name.split("/") + + # Ignore the gradients applied by the LAMB/ADAM optimizers. + if ( + "adam_m" in name + or "adam_v" in name + or "AdamWeightDecayOptimizer" in name + or "AdamWeightDecayOptimizer_1" in name + or "global_step" in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + + if m_name[-11:] == "_embeddings": + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + try: + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + except ValueError as e: + e.args += (pointer.shape, array.shape) + raise + print(f"Initialize PyTorch weight {name} from {original_name}") + pointer.data = torch.from_numpy(array) + + return model + + +class AlbertEmbeddings(nn.Module): + """ + Construct the embeddings from word, position and token_type embeddings. + """ + + def __init__(self, config: AlbertConfig): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False + ) + + # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + past_key_values_length: int = 0, + ) -> torch.Tensor: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class AlbertAttention(nn.Module): + def __init__(self, config: AlbertConfig): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads}" + ) + + self.num_attention_heads = config.num_attention_heads + self.hidden_size = config.hidden_size + self.attention_head_size = config.hidden_size // config.num_attention_heads + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.output_dropout = nn.Dropout(config.hidden_dropout_prob) + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.pruned_heads = set() + + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + # Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def prune_heads(self, heads: List[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.query = prune_linear_layer(self.query, index) + self.key = prune_linear_layer(self.key, index) + self.value = prune_linear_layer(self.value, index) + self.dense = prune_linear_layer(self.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.num_attention_heads = self.num_attention_heads - len(heads) + self.all_head_size = self.attention_head_size * self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + mixed_key_layer = self.key(hidden_states) + mixed_value_layer = self.value(hidden_states) + + query_layer = self.transpose_for_scores(mixed_query_layer) + key_layer = self.transpose_for_scores(mixed_key_layer) + value_layer = self.transpose_for_scores(mixed_value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + attention_scores = attention_scores + attention_mask + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + seq_length = hidden_states.size()[1] + position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.attention_dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + context_layer = context_layer.transpose(2, 1).flatten(2) + + projected_context_layer = self.dense(context_layer) + projected_context_layer_dropout = self.output_dropout(projected_context_layer) + layernormed_context_layer = self.LayerNorm(hidden_states + projected_context_layer_dropout) + return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,) + + +class AlbertLayer(nn.Module): + def __init__(self, config: AlbertConfig): + super().__init__() + + self.config = config + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.attention = AlbertAttention(config) + self.ffn = nn.Linear(config.hidden_size, config.intermediate_size) + self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size) + self.activation = ACT2FN[config.hidden_act] + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor]: + attention_output = self.attention(hidden_states, attention_mask, head_mask, output_attentions) + + ffn_output = apply_chunking_to_forward( + self.ff_chunk, + self.chunk_size_feed_forward, + self.seq_len_dim, + attention_output[0], + ) + hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0]) + + return (hidden_states,) + attention_output[1:] # add attentions if we output them + + def ff_chunk(self, attention_output: torch.Tensor) -> torch.Tensor: + ffn_output = self.ffn(attention_output) + ffn_output = self.activation(ffn_output) + ffn_output = self.ffn_output(ffn_output) + return ffn_output + + +class AlbertLayerGroup(nn.Module): + def __init__(self, config: AlbertConfig): + super().__init__() + + self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)]) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: + layer_hidden_states = () + layer_attentions = () + + for layer_index, albert_layer in enumerate(self.albert_layers): + layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index], output_attentions) + hidden_states = layer_output[0] + + if output_attentions: + layer_attentions = layer_attentions + (layer_output[1],) + + if output_hidden_states: + layer_hidden_states = layer_hidden_states + (hidden_states,) + + outputs = (hidden_states,) + if output_hidden_states: + outputs = outputs + (layer_hidden_states,) + if output_attentions: + outputs = outputs + (layer_attentions,) + return outputs # last-layer hidden state, (layer hidden states), (layer attentions) + + +class AlbertTransformer(nn.Module): + def __init__(self, config: AlbertConfig): + super().__init__() + + self.config = config + self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size) + self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)]) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[BaseModelOutput, Tuple]: + hidden_states = self.embedding_hidden_mapping_in(hidden_states) + + all_hidden_states = (hidden_states,) if output_hidden_states else None + all_attentions = () if output_attentions else None + + head_mask = [None] * self.config.num_hidden_layers if head_mask is None else head_mask + + for i in range(self.config.num_hidden_layers): + # Number of layers in a hidden group + layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) + + # Index of the hidden group + group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) + + layer_group_output = self.albert_layer_groups[group_idx]( + hidden_states, + attention_mask, + head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group], + output_attentions, + output_hidden_states, + ) + hidden_states = layer_group_output[0] + + if output_attentions: + all_attentions = all_attentions + layer_group_output[-1] + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class AlbertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = AlbertConfig + load_tf_weights = load_tf_weights_in_albert + base_model_prefix = "albert" + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +@dataclass +class AlbertForPreTrainingOutput(ModelOutput): + """ + Output type of [`AlbertForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss. + prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + sop_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_logits: torch.FloatTensor = None + sop_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +ALBERT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Args: + config ([`AlbertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +ALBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.", + ALBERT_START_DOCSTRING, +) +class AlbertModel(AlbertPreTrainedModel): + config_class = AlbertConfig + base_model_prefix = "albert" + + def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True): + super().__init__(config) + + self.config = config + self.embeddings = AlbertEmbeddings(config) + self.encoder = AlbertTransformer(config) + if add_pooling_layer: + self.pooler = nn.Linear(config.hidden_size, config.hidden_size) + self.pooler_activation = nn.Tanh() + else: + self.pooler = None + self.pooler_activation = None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Embedding: + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value: nn.Embedding) -> None: + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has + a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT + model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers. + + These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer, + while [2,3] correspond to the two inner groups of the second hidden layer. + + Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more + information about head pruning + """ + for layer, heads in heads_to_prune.items(): + group_idx = int(layer / self.config.inner_group_num) + inner_group_idx = int(layer - group_idx * self.config.inner_group_num) + self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[BaseModelOutputWithPooling, Tuple]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) + extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility + extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds + ) + encoder_outputs = self.encoder( + embedding_output, + extended_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = encoder_outputs[0] + + pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """ + Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a + `sentence order prediction (classification)` head. + """, + ALBERT_START_DOCSTRING, +) +class AlbertForPreTraining(AlbertPreTrainedModel): + _tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"] + + def __init__(self, config: AlbertConfig): + super().__init__(config) + + self.albert = AlbertModel(config) + self.predictions = AlbertMLMHead(config) + self.sop_classifier = AlbertSOPHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self) -> nn.Linear: + return self.predictions.decoder + + def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: + self.predictions.decoder = new_embeddings + + def get_input_embeddings(self) -> nn.Embedding: + return self.albert.embeddings.word_embeddings + + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=AlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + sentence_order_label: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[AlbertForPreTrainingOutput, Tuple]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + sentence_order_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair + (see `input_ids` docstring) Indices should be in `[0, 1]`. `0` indicates original order (sequence A, then + sequence B), `1` indicates switched order (sequence B, then sequence A). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, AlbertForPreTraining + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2") + >>> model = AlbertForPreTraining.from_pretrained("albert/albert-base-v2") + + >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) + >>> # Batch size 1 + >>> outputs = model(input_ids) + + >>> prediction_logits = outputs.prediction_logits + >>> sop_logits = outputs.sop_logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.albert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output, pooled_output = outputs[:2] + + prediction_scores = self.predictions(sequence_output) + sop_scores = self.sop_classifier(pooled_output) + + total_loss = None + if labels is not None and sentence_order_label is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1)) + total_loss = masked_lm_loss + sentence_order_loss + + if not return_dict: + output = (prediction_scores, sop_scores) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return AlbertForPreTrainingOutput( + loss=total_loss, + prediction_logits=prediction_scores, + sop_logits=sop_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class AlbertMLMHead(nn.Module): + def __init__(self, config: AlbertConfig): + super().__init__() + + self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + self.dense = nn.Linear(config.hidden_size, config.embedding_size) + self.decoder = nn.Linear(config.embedding_size, config.vocab_size) + self.activation = ACT2FN[config.hidden_act] + self.decoder.bias = self.bias + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + hidden_states = self.decoder(hidden_states) + + prediction_scores = hidden_states + + return prediction_scores + + def _tie_weights(self) -> None: + # To tie those two weights if they get disconnected (on TPU or when the bias is resized) + self.bias = self.decoder.bias + + +class AlbertSOPHead(nn.Module): + def __init__(self, config: AlbertConfig): + super().__init__() + + self.dropout = nn.Dropout(config.classifier_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: + dropout_pooled_output = self.dropout(pooled_output) + logits = self.classifier(dropout_pooled_output) + return logits + + +@add_start_docstrings( + "Albert Model with a `language modeling` head on top.", + ALBERT_START_DOCSTRING, +) +class AlbertForMaskedLM(AlbertPreTrainedModel): + _tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"] + + def __init__(self, config): + super().__init__(config) + + self.albert = AlbertModel(config, add_pooling_layer=False) + self.predictions = AlbertMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self) -> nn.Linear: + return self.predictions.decoder + + def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: + self.predictions.decoder = new_embeddings + + def get_input_embeddings(self) -> nn.Embedding: + return self.albert.embeddings.word_embeddings + + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[MaskedLMOutput, Tuple]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + + Returns: + + Example: + + ```python + >>> import torch + >>> from transformers import AutoTokenizer, AlbertForMaskedLM + + >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2") + >>> model = AlbertForMaskedLM.from_pretrained("albert/albert-base-v2") + + >>> # add mask_token + >>> inputs = tokenizer("The capital of [MASK] is Paris.", return_tensors="pt") + >>> with torch.no_grad(): + ... logits = model(**inputs).logits + + >>> # retrieve index of [MASK] + >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] + >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) + >>> tokenizer.decode(predicted_token_id) + 'france' + ``` + + ```python + >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] + >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) + >>> outputs = model(**inputs, labels=labels) + >>> round(outputs.loss.item(), 2) + 0.81 + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.albert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_outputs = outputs[0] + + prediction_scores = self.predictions(sequence_outputs) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + ALBERT_START_DOCSTRING, +) +class AlbertForSequenceClassification(AlbertPreTrainedModel): + def __init__(self, config: AlbertConfig): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.albert = AlbertModel(config) + self.dropout = nn.Dropout(config.classifier_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="textattack/albert-base-v2-imdb", + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'LABEL_1'", + expected_loss=0.12, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[SequenceClassifierOutput, Tuple]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.albert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + ALBERT_START_DOCSTRING, +) +class AlbertForTokenClassification(AlbertPreTrainedModel): + def __init__(self, config: AlbertConfig): + super().__init__(config) + self.num_labels = config.num_labels + + self.albert = AlbertModel(config, add_pooling_layer=False) + classifier_dropout_prob = ( + config.classifier_dropout_prob + if config.classifier_dropout_prob is not None + else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[TokenClassifierOutput, Tuple]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.albert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + ALBERT_START_DOCSTRING, +) +class AlbertForQuestionAnswering(AlbertPreTrainedModel): + def __init__(self, config: AlbertConfig): + super().__init__(config) + self.num_labels = config.num_labels + + self.albert = AlbertModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="twmkn9/albert-base-v2-squad2", + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + qa_target_start_index=12, + qa_target_end_index=13, + expected_output="'a nice puppet'", + expected_loss=7.36, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[AlbertForPreTrainingOutput, Tuple]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.albert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits: torch.Tensor = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + ALBERT_START_DOCSTRING, +) +class AlbertForMultipleChoice(AlbertPreTrainedModel): + def __init__(self, config: AlbertConfig): + super().__init__(config) + + self.albert = AlbertModel(config) + self.dropout = nn.Dropout(config.classifier_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[AlbertForPreTrainingOutput, Tuple]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see + *input_ids* above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + outputs = self.albert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits: torch.Tensor = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_flax_albert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_flax_albert.py new file mode 100644 index 0000000000000000000000000000000000000000..b2c01ded3619ca913033980f72979ec77c0f76e0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_flax_albert.py @@ -0,0 +1,1121 @@ +# coding=utf-8 +# Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Callable, Optional, Tuple + +import flax +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPooling, + FlaxMaskedLMOutput, + FlaxMultipleChoiceModelOutput, + FlaxQuestionAnsweringModelOutput, + FlaxSequenceClassifierOutput, + FlaxTokenClassifierOutput, +) +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_call_sample_docstring, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_albert import AlbertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "albert/albert-base-v2" +_CONFIG_FOR_DOC = "AlbertConfig" + + +@flax.struct.dataclass +class FlaxAlbertForPreTrainingOutput(ModelOutput): + """ + Output type of [`FlaxAlbertForPreTraining`]. + + Args: + prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + sop_logits (`jnp.ndarray` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + prediction_logits: jnp.ndarray = None + sop_logits: jnp.ndarray = None + hidden_states: Optional[Tuple[jnp.ndarray]] = None + attentions: Optional[Tuple[jnp.ndarray]] = None + + +ALBERT_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading, saving and converting weights from PyTorch models) + + This model is also a + [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as + a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and + behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`AlbertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +ALBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`numpy.ndarray` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`numpy.ndarray` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + +""" + + +class FlaxAlbertEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.word_embeddings = nn.Embed( + self.config.vocab_size, + self.config.embedding_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.position_embeddings = nn.Embed( + self.config.max_position_embeddings, + self.config.embedding_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.token_type_embeddings = nn.Embed( + self.config.type_vocab_size, + self.config.embedding_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, input_ids, token_type_ids, position_ids, deterministic: bool = True): + # Embed + inputs_embeds = self.word_embeddings(input_ids.astype("i4")) + position_embeds = self.position_embeddings(position_ids.astype("i4")) + token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) + + # Sum all embeddings + hidden_states = inputs_embeds + token_type_embeddings + position_embeds + + # Layer Norm + hidden_states = self.LayerNorm(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + return hidden_states + + +class FlaxAlbertSelfAttention(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + if self.config.hidden_size % self.config.num_attention_heads != 0: + raise ValueError( + "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " + " : {self.config.num_attention_heads}" + ) + + self.query = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.key = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.value = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, attention_mask, deterministic=True, output_attentions: bool = False): + head_dim = self.config.hidden_size // self.config.num_attention_heads + + query_states = self.query(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + value_states = self.value(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + key_states = self.key(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.config.attention_probs_dropout_prob > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.config.attention_probs_dropout_prob, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) + + projected_attn_output = self.dense(attn_output) + projected_attn_output = self.dropout(projected_attn_output, deterministic=deterministic) + layernormed_attn_output = self.LayerNorm(projected_attn_output + hidden_states) + outputs = (layernormed_attn_output, attn_weights) if output_attentions else (layernormed_attn_output,) + return outputs + + +class FlaxAlbertLayer(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.attention = FlaxAlbertSelfAttention(self.config, dtype=self.dtype) + self.ffn = nn.Dense( + self.config.intermediate_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.activation = ACT2FN[self.config.hidden_act] + self.ffn_output = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.full_layer_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + ): + attention_outputs = self.attention( + hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions + ) + attention_output = attention_outputs[0] + ffn_output = self.ffn(attention_output) + ffn_output = self.activation(ffn_output) + ffn_output = self.ffn_output(ffn_output) + ffn_output = self.dropout(ffn_output, deterministic=deterministic) + hidden_states = self.full_layer_layer_norm(ffn_output + attention_output) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attention_outputs[1],) + return outputs + + +class FlaxAlbertLayerCollection(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxAlbertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.inner_group_num) + ] + + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + ): + layer_hidden_states = () + layer_attentions = () + + for layer_index, albert_layer in enumerate(self.layers): + layer_output = albert_layer( + hidden_states, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + ) + hidden_states = layer_output[0] + + if output_attentions: + layer_attentions = layer_attentions + (layer_output[1],) + + if output_hidden_states: + layer_hidden_states = layer_hidden_states + (hidden_states,) + + outputs = (hidden_states,) + if output_hidden_states: + outputs = outputs + (layer_hidden_states,) + if output_attentions: + outputs = outputs + (layer_attentions,) + return outputs # last-layer hidden state, (layer hidden states), (layer attentions) + + +class FlaxAlbertLayerCollections(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + layer_index: Optional[str] = None + + def setup(self): + self.albert_layers = FlaxAlbertLayerCollection(self.config, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + ): + outputs = self.albert_layers( + hidden_states, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + ) + return outputs + + +class FlaxAlbertLayerGroups(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxAlbertLayerCollections(self.config, name=str(i), layer_index=str(i), dtype=self.dtype) + for i in range(self.config.num_hidden_groups) + ] + + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = (hidden_states,) if output_hidden_states else None + + for i in range(self.config.num_hidden_layers): + # Index of the hidden group + group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) + layer_group_output = self.layers[group_idx]( + hidden_states, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + ) + hidden_states = layer_group_output[0] + + if output_attentions: + all_attentions = all_attentions + layer_group_output[-1] + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class FlaxAlbertEncoder(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.embedding_hidden_mapping_in = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.albert_layer_groups = FlaxAlbertLayerGroups(self.config, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + hidden_states = self.embedding_hidden_mapping_in(hidden_states) + return self.albert_layer_groups( + hidden_states, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + ) + + +class FlaxAlbertOnlyMLMHead(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 + bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros + + def setup(self): + self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype) + self.activation = ACT2FN[self.config.hidden_act] + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False) + self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) + + def __call__(self, hidden_states, shared_embedding=None): + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + + if shared_embedding is not None: + hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + hidden_states = self.decoder(hidden_states) + + hidden_states += self.bias + return hidden_states + + +class FlaxAlbertSOPHead(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.dropout = nn.Dropout(self.config.classifier_dropout_prob) + self.classifier = nn.Dense(2, dtype=self.dtype) + + def __call__(self, pooled_output, deterministic=True): + pooled_output = self.dropout(pooled_output, deterministic=deterministic) + logits = self.classifier(pooled_output) + return logits + + +class FlaxAlbertPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = AlbertConfig + base_model_prefix = "albert" + module_class: nn.Module = None + + def __init__( + self, + config: AlbertConfig, + input_shape: Tuple = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + token_type_ids = jnp.zeros_like(input_ids) + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) + attention_mask = jnp.ones_like(input_ids) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init( + rngs, input_ids, attention_mask, token_type_ids, position_ids, return_dict=False + )["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + params: dict = None, + dropout_rng: jax.random.PRNGKey = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # init input tensors if not passed + if token_type_ids is None: + token_type_ids = jnp.zeros_like(input_ids) + + if position_ids is None: + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + return self.module.apply( + {"params": params or self.params}, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + jnp.array(token_type_ids, dtype="i4"), + jnp.array(position_ids, dtype="i4"), + not train, + output_attentions, + output_hidden_states, + return_dict, + rngs=rngs, + ) + + +class FlaxAlbertModule(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + add_pooling_layer: bool = True + + def setup(self): + self.embeddings = FlaxAlbertEmbeddings(self.config, dtype=self.dtype) + self.encoder = FlaxAlbertEncoder(self.config, dtype=self.dtype) + if self.add_pooling_layer: + self.pooler = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + name="pooler", + ) + self.pooler_activation = nn.tanh + else: + self.pooler = None + self.pooler_activation = None + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids: Optional[np.ndarray] = None, + position_ids: Optional[np.ndarray] = None, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # make sure `token_type_ids` is correctly initialized when not passed + if token_type_ids is None: + token_type_ids = jnp.zeros_like(input_ids) + + # make sure `position_ids` is correctly initialized when not passed + if position_ids is None: + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + hidden_states = self.embeddings(input_ids, token_type_ids, position_ids, deterministic=deterministic) + + outputs = self.encoder( + hidden_states, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + if self.add_pooling_layer: + pooled = self.pooler(hidden_states[:, 0]) + pooled = self.pooler_activation(pooled) + else: + pooled = None + + if not return_dict: + # if pooled is None, don't return it + if pooled is None: + return (hidden_states,) + outputs[1:] + return (hidden_states, pooled) + outputs[1:] + + return FlaxBaseModelOutputWithPooling( + last_hidden_state=hidden_states, + pooler_output=pooled, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + "The bare Albert Model transformer outputting raw hidden-states without any specific head on top.", + ALBERT_START_DOCSTRING, +) +class FlaxAlbertModel(FlaxAlbertPreTrainedModel): + module_class = FlaxAlbertModule + + +append_call_sample_docstring(FlaxAlbertModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC) + + +class FlaxAlbertForPreTrainingModule(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype) + self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype) + self.sop_classifier = FlaxAlbertSOPHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.albert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if self.config.tie_word_embeddings: + shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] + else: + shared_embedding = None + + hidden_states = outputs[0] + pooled_output = outputs[1] + + prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding) + sop_scores = self.sop_classifier(pooled_output, deterministic=deterministic) + + if not return_dict: + return (prediction_scores, sop_scores) + outputs[2:] + + return FlaxAlbertForPreTrainingOutput( + prediction_logits=prediction_scores, + sop_logits=sop_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a + `sentence order prediction (classification)` head. + """, + ALBERT_START_DOCSTRING, +) +class FlaxAlbertForPreTraining(FlaxAlbertPreTrainedModel): + module_class = FlaxAlbertForPreTrainingModule + + +FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxAlbertForPreTraining + + >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2") + >>> model = FlaxAlbertForPreTraining.from_pretrained("albert/albert-base-v2") + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.prediction_logits + >>> seq_relationship_logits = outputs.sop_logits + ``` +""" + +overwrite_call_docstring( + FlaxAlbertForPreTraining, + ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING, +) +append_replace_return_docstrings( + FlaxAlbertForPreTraining, output_type=FlaxAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC +) + + +class FlaxAlbertForMaskedLMModule(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.albert = FlaxAlbertModule(config=self.config, add_pooling_layer=False, dtype=self.dtype) + self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.albert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + if self.config.tie_word_embeddings: + shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] + else: + shared_embedding = None + + # Compute the prediction scores + logits = self.predictions(hidden_states, shared_embedding=shared_embedding) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxMaskedLMOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings("""Albert Model with a `language modeling` head on top.""", ALBERT_START_DOCSTRING) +class FlaxAlbertForMaskedLM(FlaxAlbertPreTrainedModel): + module_class = FlaxAlbertForMaskedLMModule + + +append_call_sample_docstring( + FlaxAlbertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC, revision="refs/pr/11" +) + + +class FlaxAlbertForSequenceClassificationModule(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype) + classifier_dropout = ( + self.config.classifier_dropout_prob + if self.config.classifier_dropout_prob is not None + else self.config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(rate=classifier_dropout) + self.classifier = nn.Dense( + self.config.num_labels, + dtype=self.dtype, + ) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.albert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + pooled_output = self.dropout(pooled_output, deterministic=deterministic) + logits = self.classifier(pooled_output) + + if not return_dict: + return (logits,) + outputs[2:] + + return FlaxSequenceClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + ALBERT_START_DOCSTRING, +) +class FlaxAlbertForSequenceClassification(FlaxAlbertPreTrainedModel): + module_class = FlaxAlbertForSequenceClassificationModule + + +append_call_sample_docstring( + FlaxAlbertForSequenceClassification, + _CHECKPOINT_FOR_DOC, + FlaxSequenceClassifierOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxAlbertForMultipleChoiceModule(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + self.classifier = nn.Dense(1, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + num_choices = input_ids.shape[1] + input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None + attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None + token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None + position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None + + # Model + outputs = self.albert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + pooled_output = self.dropout(pooled_output, deterministic=deterministic) + logits = self.classifier(pooled_output) + + reshaped_logits = logits.reshape(-1, num_choices) + + if not return_dict: + return (reshaped_logits,) + outputs[2:] + + return FlaxMultipleChoiceModelOutput( + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + ALBERT_START_DOCSTRING, +) +class FlaxAlbertForMultipleChoice(FlaxAlbertPreTrainedModel): + module_class = FlaxAlbertForMultipleChoiceModule + + +overwrite_call_docstring( + FlaxAlbertForMultipleChoice, ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") +) +append_call_sample_docstring( + FlaxAlbertForMultipleChoice, + _CHECKPOINT_FOR_DOC, + FlaxMultipleChoiceModelOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxAlbertForTokenClassificationModule(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False) + classifier_dropout = ( + self.config.classifier_dropout_prob + if self.config.classifier_dropout_prob is not None + else self.config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(rate=classifier_dropout) + self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.albert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + logits = self.classifier(hidden_states) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxTokenClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + ALBERT_START_DOCSTRING, +) +class FlaxAlbertForTokenClassification(FlaxAlbertPreTrainedModel): + module_class = FlaxAlbertForTokenClassificationModule + + +append_call_sample_docstring( + FlaxAlbertForTokenClassification, + _CHECKPOINT_FOR_DOC, + FlaxTokenClassifierOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxAlbertForQuestionAnsweringModule(nn.Module): + config: AlbertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False) + self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.albert( + input_ids, + attention_mask, + token_type_ids, + position_ids, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + + logits = self.qa_outputs(hidden_states) + start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + if not return_dict: + return (start_logits, end_logits) + outputs[1:] + + return FlaxQuestionAnsweringModelOutput( + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + ALBERT_START_DOCSTRING, +) +class FlaxAlbertForQuestionAnswering(FlaxAlbertPreTrainedModel): + module_class = FlaxAlbertForQuestionAnsweringModule + + +append_call_sample_docstring( + FlaxAlbertForQuestionAnswering, + _CHECKPOINT_FOR_DOC, + FlaxQuestionAnsweringModelOutput, + _CONFIG_FOR_DOC, +) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_tf_albert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_tf_albert.py new file mode 100644 index 0000000000000000000000000000000000000000..5aa521bb73dea7681670416e1705497b1531700c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_tf_albert.py @@ -0,0 +1,1564 @@ +# coding=utf-8 +# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 ALBERT model.""" + + +from __future__ import annotations + +import math +from dataclasses import dataclass +from typing import Dict, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPooling, + TFMaskedLMOutput, + TFMultipleChoiceModelOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_albert import AlbertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "albert/albert-base-v2" +_CONFIG_FOR_DOC = "AlbertConfig" + + +from ..deprecated._archive_maps import TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class TFAlbertPreTrainingLoss: + """ + Loss function suitable for ALBERT pretraining, that is, the task of pretraining a language model by combining SOP + + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. + """ + + def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: + loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) + if self.config.tf_legacy_loss: + # make sure only labels that are not equal to -100 + # are taken into account as loss + masked_lm_active_loss = tf.not_equal(tf.reshape(tensor=labels["labels"], shape=(-1,)), -100) + masked_lm_reduced_logits = tf.boolean_mask( + tensor=tf.reshape(tensor=logits[0], shape=(-1, shape_list(logits[0])[2])), + mask=masked_lm_active_loss, + ) + masked_lm_labels = tf.boolean_mask( + tensor=tf.reshape(tensor=labels["labels"], shape=(-1,)), mask=masked_lm_active_loss + ) + sentence_order_active_loss = tf.not_equal( + tf.reshape(tensor=labels["sentence_order_label"], shape=(-1,)), -100 + ) + sentence_order_reduced_logits = tf.boolean_mask( + tensor=tf.reshape(tensor=logits[1], shape=(-1, 2)), mask=sentence_order_active_loss + ) + sentence_order_label = tf.boolean_mask( + tensor=tf.reshape(tensor=labels["sentence_order_label"], shape=(-1,)), mask=sentence_order_active_loss + ) + masked_lm_loss = loss_fn(y_true=masked_lm_labels, y_pred=masked_lm_reduced_logits) + sentence_order_loss = loss_fn(y_true=sentence_order_label, y_pred=sentence_order_reduced_logits) + masked_lm_loss = tf.reshape(tensor=masked_lm_loss, shape=(-1, shape_list(sentence_order_loss)[0])) + masked_lm_loss = tf.reduce_mean(input_tensor=masked_lm_loss, axis=0) + + return masked_lm_loss + sentence_order_loss + + # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway + unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0]) + # make sure only labels that are not equal to -100 + # are taken into account for the loss computation + lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype) + masked_lm_losses = unmasked_lm_losses * lm_loss_mask + reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask) + + sop_logits = tf.reshape(logits[1], (-1, 2)) + # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway + unmasked_sop_loss = loss_fn(y_true=tf.nn.relu(labels["sentence_order_label"]), y_pred=sop_logits) + sop_loss_mask = tf.cast(labels["sentence_order_label"] != -100, dtype=unmasked_sop_loss.dtype) + + masked_sop_loss = unmasked_sop_loss * sop_loss_mask + reduced_masked_sop_loss = tf.reduce_sum(masked_sop_loss) / tf.reduce_sum(sop_loss_mask) + + return tf.reshape(reduced_masked_lm_loss + reduced_masked_sop_loss, (1,)) + + +class TFAlbertEmbeddings(keras.layers.Layer): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config: AlbertConfig, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.embedding_size = config.embedding_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.embedding_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.embedding_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.embedding_size], + initializer=get_initializer(self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.embedding_size]) + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call + def call( + self, + input_ids: tf.Tensor = None, + position_ids: tf.Tensor = None, + token_type_ids: tf.Tensor = None, + inputs_embeds: tf.Tensor = None, + past_key_values_length=0, + training: bool = False, + ) -> tf.Tensor: + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + if input_ids is None and inputs_embeds is None: + raise ValueError("Need to provide either `input_ids` or `input_embeds`.") + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + if position_ids is None: + position_ids = tf.expand_dims( + tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 + ) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings = inputs_embeds + position_embeds + token_type_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +class TFAlbertAttention(keras.layers.Layer): + """Contains the complete attention sublayer, including both dropouts and layer norm.""" + + def __init__(self, config: AlbertConfig, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number " + f"of attention heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.sqrt_att_head_size = math.sqrt(self.attention_head_size) + self.output_attentions = config.output_attentions + + self.query = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + # Two different dropout probabilities; see https://github.com/google-research/albert/blob/master/modeling.py#L971-L993 + self.attention_dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) + self.output_dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + input_tensor: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + batch_size = shape_list(input_tensor)[0] + mixed_query_layer = self.query(inputs=input_tensor) + mixed_key_layer = self.key(inputs=input_tensor) + mixed_value_layer = self.value(inputs=input_tensor) + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) + value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) + + # Take the dot product between "query" and "key" to get the raw attention scores. + # (batch size, num_heads, seq_len_q, seq_len_k) + attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) + dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) + attention_scores = tf.divide(attention_scores, dk) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in TFAlbertModel call() function) + attention_scores = tf.add(attention_scores, attention_mask) + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(logits=attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.attention_dropout(inputs=attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = tf.multiply(attention_probs, head_mask) + + context_layer = tf.matmul(attention_probs, value_layer) + context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) + + # (batch_size, seq_len_q, all_head_size) + context_layer = tf.reshape(tensor=context_layer, shape=(batch_size, -1, self.all_head_size)) + self_outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + hidden_states = self_outputs[0] + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.output_dropout(inputs=hidden_states, training=training) + attention_output = self.LayerNorm(inputs=hidden_states + input_tensor) + + # add attentions if we output them + outputs = (attention_output,) + self_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +class TFAlbertLayer(keras.layers.Layer): + def __init__(self, config: AlbertConfig, **kwargs): + super().__init__(**kwargs) + + self.attention = TFAlbertAttention(config, name="attention") + self.ffn = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn" + ) + + if isinstance(config.hidden_act, str): + self.activation = get_tf_activation(config.hidden_act) + else: + self.activation = config.hidden_act + + self.ffn_output = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn_output" + ) + self.full_layer_layer_norm = keras.layers.LayerNormalization( + epsilon=config.layer_norm_eps, name="full_layer_layer_norm" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + attention_outputs = self.attention( + input_tensor=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + training=training, + ) + ffn_output = self.ffn(inputs=attention_outputs[0]) + ffn_output = self.activation(ffn_output) + ffn_output = self.ffn_output(inputs=ffn_output) + ffn_output = self.dropout(inputs=ffn_output, training=training) + hidden_states = self.full_layer_layer_norm(inputs=ffn_output + attention_outputs[0]) + + # add attentions if we output them + outputs = (hidden_states,) + attention_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "ffn", None) is not None: + with tf.name_scope(self.ffn.name): + self.ffn.build([None, None, self.config.hidden_size]) + if getattr(self, "ffn_output", None) is not None: + with tf.name_scope(self.ffn_output.name): + self.ffn_output.build([None, None, self.config.intermediate_size]) + if getattr(self, "full_layer_layer_norm", None) is not None: + with tf.name_scope(self.full_layer_layer_norm.name): + self.full_layer_layer_norm.build([None, None, self.config.hidden_size]) + + +class TFAlbertLayerGroup(keras.layers.Layer): + def __init__(self, config: AlbertConfig, **kwargs): + super().__init__(**kwargs) + + self.albert_layers = [ + TFAlbertLayer(config, name=f"albert_layers_._{i}") for i in range(config.inner_group_num) + ] + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + output_hidden_states: bool, + training: bool = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + layer_hidden_states = () if output_hidden_states else None + layer_attentions = () if output_attentions else None + + for layer_index, albert_layer in enumerate(self.albert_layers): + if output_hidden_states: + layer_hidden_states = layer_hidden_states + (hidden_states,) + + layer_output = albert_layer( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask[layer_index], + output_attentions=output_attentions, + training=training, + ) + hidden_states = layer_output[0] + + if output_attentions: + layer_attentions = layer_attentions + (layer_output[1],) + + # Add last layer + if output_hidden_states: + layer_hidden_states = layer_hidden_states + (hidden_states,) + + return tuple(v for v in [hidden_states, layer_hidden_states, layer_attentions] if v is not None) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "albert_layers", None) is not None: + for layer in self.albert_layers: + with tf.name_scope(layer.name): + layer.build(None) + + +class TFAlbertTransformer(keras.layers.Layer): + def __init__(self, config: AlbertConfig, **kwargs): + super().__init__(**kwargs) + + self.num_hidden_layers = config.num_hidden_layers + self.num_hidden_groups = config.num_hidden_groups + # Number of layers in a hidden group + self.layers_per_group = int(config.num_hidden_layers / config.num_hidden_groups) + self.embedding_hidden_mapping_in = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + name="embedding_hidden_mapping_in", + ) + self.albert_layer_groups = [ + TFAlbertLayerGroup(config, name=f"albert_layer_groups_._{i}") for i in range(config.num_hidden_groups) + ] + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + output_hidden_states: bool, + return_dict: bool, + training: bool = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + hidden_states = self.embedding_hidden_mapping_in(inputs=hidden_states) + all_attentions = () if output_attentions else None + all_hidden_states = (hidden_states,) if output_hidden_states else None + + for i in range(self.num_hidden_layers): + # Index of the hidden group + group_idx = int(i / (self.num_hidden_layers / self.num_hidden_groups)) + layer_group_output = self.albert_layer_groups[group_idx]( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask[group_idx * self.layers_per_group : (group_idx + 1) * self.layers_per_group], + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + training=training, + ) + hidden_states = layer_group_output[0] + + if output_attentions: + all_attentions = all_attentions + layer_group_output[-1] + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embedding_hidden_mapping_in", None) is not None: + with tf.name_scope(self.embedding_hidden_mapping_in.name): + self.embedding_hidden_mapping_in.build([None, None, self.config.embedding_size]) + if getattr(self, "albert_layer_groups", None) is not None: + for layer in self.albert_layer_groups: + with tf.name_scope(layer.name): + layer.build(None) + + +class TFAlbertPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = AlbertConfig + base_model_prefix = "albert" + + +class TFAlbertMLMHead(keras.layers.Layer): + def __init__(self, config: AlbertConfig, input_embeddings: keras.layers.Layer, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.embedding_size = config.embedding_size + self.dense = keras.layers.Dense( + config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + if isinstance(config.hidden_act, str): + self.activation = get_tf_activation(config.hidden_act) + else: + self.activation = config.hidden_act + + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = input_embeddings + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + self.decoder_bias = self.add_weight( + shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="decoder/bias" + ) + + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.embedding_size]) + + def get_output_embeddings(self) -> keras.layers.Layer: + return self.decoder + + def set_output_embeddings(self, value: tf.Variable): + self.decoder.weight = value + self.decoder.vocab_size = shape_list(value)[0] + + def get_bias(self) -> Dict[str, tf.Variable]: + return {"bias": self.bias, "decoder_bias": self.decoder_bias} + + def set_bias(self, value: tf.Variable): + self.bias = value["bias"] + self.decoder_bias = value["decoder_bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.activation(hidden_states) + hidden_states = self.LayerNorm(inputs=hidden_states) + seq_length = shape_list(tensor=hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.decoder_bias) + + return hidden_states + + +@keras_serializable +class TFAlbertMainLayer(keras.layers.Layer): + config_class = AlbertConfig + + def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True, **kwargs): + super().__init__(**kwargs) + + self.config = config + + self.embeddings = TFAlbertEmbeddings(config, name="embeddings") + self.encoder = TFAlbertTransformer(config, name="encoder") + self.pooler = ( + keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="pooler", + ) + if add_pooling_layer + else None + ) + + def get_input_embeddings(self) -> keras.layers.Layer: + return self.embeddings + + def set_input_embeddings(self, value: tf.Variable): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(dims=input_shape, value=1) + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + training=training, + ) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) + one_cst = tf.constant(1.0, dtype=embedding_output.dtype) + ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) + extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.config.num_hidden_layers + + encoder_outputs = self.encoder( + hidden_states=embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(inputs=sequence_output[:, 0]) if self.pooler is not None else None + + if not return_dict: + return ( + sequence_output, + pooled_output, + ) + encoder_outputs[1:] + + return TFBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build([None, None, self.config.hidden_size]) + + +@dataclass +class TFAlbertForPreTrainingOutput(ModelOutput): + """ + Output type of [`TFAlbertForPreTraining`]. + + Args: + prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + sop_logits (`tf.Tensor` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: tf.Tensor = None + prediction_logits: tf.Tensor = None + sop_logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +ALBERT_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`AlbertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +ALBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare Albert Model transformer outputting raw hidden-states without any specific head on top.", + ALBERT_START_DOCSTRING, +) +class TFAlbertModel(TFAlbertPreTrainedModel): + def __init__(self, config: AlbertConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.albert = TFAlbertMainLayer(config, name="albert") + + @unpack_inputs + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + outputs = self.albert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "albert", None) is not None: + with tf.name_scope(self.albert.name): + self.albert.build(None) + + +@add_start_docstrings( + """ + Albert Model with two heads on top for pretraining: a `masked language modeling` head and a `sentence order + prediction` (classification) head. + """, + ALBERT_START_DOCSTRING, +) +class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"predictions.decoder.weight"] + + def __init__(self, config: AlbertConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.albert = TFAlbertMainLayer(config, name="albert") + self.predictions = TFAlbertMLMHead(config, input_embeddings=self.albert.embeddings, name="predictions") + self.sop_classifier = TFAlbertSOPHead(config, name="sop_classifier") + + def get_lm_head(self) -> keras.layers.Layer: + return self.predictions + + @unpack_inputs + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + sentence_order_label: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFAlbertForPreTrainingOutput, Tuple[tf.Tensor]]: + r""" + Return: + + Example: + + ```python + >>> import tensorflow as tf + >>> from transformers import AutoTokenizer, TFAlbertForPreTraining + + >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2") + >>> model = TFAlbertForPreTraining.from_pretrained("albert/albert-base-v2") + + >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] + >>> # Batch size 1 + >>> outputs = model(input_ids) + + >>> prediction_logits = outputs.prediction_logits + >>> sop_logits = outputs.sop_logits + ```""" + + outputs = self.albert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output, pooled_output = outputs[:2] + prediction_scores = self.predictions(hidden_states=sequence_output) + sop_scores = self.sop_classifier(pooled_output=pooled_output, training=training) + total_loss = None + + if labels is not None and sentence_order_label is not None: + d_labels = {"labels": labels} + d_labels["sentence_order_label"] = sentence_order_label + total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, sop_scores)) + + if not return_dict: + output = (prediction_scores, sop_scores) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return TFAlbertForPreTrainingOutput( + loss=total_loss, + prediction_logits=prediction_scores, + sop_logits=sop_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "albert", None) is not None: + with tf.name_scope(self.albert.name): + self.albert.build(None) + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + if getattr(self, "sop_classifier", None) is not None: + with tf.name_scope(self.sop_classifier.name): + self.sop_classifier.build(None) + + +class TFAlbertSOPHead(keras.layers.Layer): + def __init__(self, config: AlbertConfig, **kwargs): + super().__init__(**kwargs) + + self.dropout = keras.layers.Dropout(rate=config.classifier_dropout_prob) + self.classifier = keras.layers.Dense( + units=config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="classifier", + ) + self.config = config + + def call(self, pooled_output: tf.Tensor, training: bool) -> tf.Tensor: + dropout_pooled_output = self.dropout(inputs=pooled_output, training=training) + logits = self.classifier(inputs=dropout_pooled_output) + + return logits + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings("""Albert Model with a `language modeling` head on top.""", ALBERT_START_DOCSTRING) +class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions.decoder.weight"] + + def __init__(self, config: AlbertConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert") + self.predictions = TFAlbertMLMHead(config, input_embeddings=self.albert.embeddings, name="predictions") + + def get_lm_head(self) -> keras.layers.Layer: + return self.predictions + + @unpack_inputs + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + + Returns: + + Example: + + ```python + >>> import tensorflow as tf + >>> from transformers import AutoTokenizer, TFAlbertForMaskedLM + + >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2") + >>> model = TFAlbertForMaskedLM.from_pretrained("albert/albert-base-v2") + + >>> # add mask_token + >>> inputs = tokenizer(f"The capital of [MASK] is Paris.", return_tensors="tf") + >>> logits = model(**inputs).logits + + >>> # retrieve index of [MASK] + >>> mask_token_index = tf.where(inputs.input_ids == tokenizer.mask_token_id)[0][1] + >>> predicted_token_id = tf.math.argmax(logits[0, mask_token_index], axis=-1) + >>> tokenizer.decode(predicted_token_id) + 'france' + ``` + + ```python + >>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] + >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) + >>> outputs = model(**inputs, labels=labels) + >>> round(float(outputs.loss), 2) + 0.81 + ``` + """ + outputs = self.albert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + prediction_scores = self.predictions(hidden_states=sequence_output, training=training) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "albert", None) is not None: + with tf.name_scope(self.albert.name): + self.albert.build(None) + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + + +@add_start_docstrings( + """ + Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + ALBERT_START_DOCSTRING, +) +class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"predictions"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config: AlbertConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.albert = TFAlbertMainLayer(config, name="albert") + self.dropout = keras.layers.Dropout(rate=config.classifier_dropout_prob) + self.classifier = keras.layers.Dense( + units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="vumichien/albert-base-v2-imdb", + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'LABEL_1'", + expected_loss=0.12, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + outputs = self.albert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + pooled_output = self.dropout(inputs=pooled_output, training=training) + logits = self.classifier(inputs=pooled_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[2:] + + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "albert", None) is not None: + with tf.name_scope(self.albert.name): + self.albert.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + ALBERT_START_DOCSTRING, +) +class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config: AlbertConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert") + classifier_dropout_prob = ( + config.classifier_dropout_prob + if config.classifier_dropout_prob is not None + else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(rate=classifier_dropout_prob) + self.classifier = keras.layers.Dense( + units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + outputs = self.albert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + sequence_output = self.dropout(inputs=sequence_output, training=training) + logits = self.classifier(inputs=sequence_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[2:] + + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "albert", None) is not None: + with tf.name_scope(self.albert.name): + self.albert.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + ALBERT_START_DOCSTRING, +) +class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"] + + def __init__(self, config: AlbertConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert") + self.qa_outputs = keras.layers.Dense( + units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="vumichien/albert-base-v2-squad2", + output_type=TFQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + qa_target_start_index=12, + qa_target_end_index=13, + expected_output="'a nice puppet'", + expected_loss=7.36, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + outputs = self.albert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + logits = self.qa_outputs(inputs=sequence_output) + start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) + start_logits = tf.squeeze(input=start_logits, axis=-1) + end_logits = tf.squeeze(input=end_logits, axis=-1) + loss = None + + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions} + labels["end_position"] = end_positions + loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "albert", None) is not None: + with tf.name_scope(self.albert.name): + self.albert.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + ALBERT_START_DOCSTRING, +) +class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config: AlbertConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.albert = TFAlbertMainLayer(config, name="albert") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = ( + tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None + ) + flat_token_type_ids = ( + tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None + ) + flat_position_ids = ( + tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None + ) + flat_inputs_embeds = ( + tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3])) + if inputs_embeds is not None + else None + ) + outputs = self.albert( + input_ids=flat_input_ids, + attention_mask=flat_attention_mask, + token_type_ids=flat_token_type_ids, + position_ids=flat_position_ids, + head_mask=head_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + pooled_output = self.dropout(inputs=pooled_output, training=training) + logits = self.classifier(inputs=pooled_output) + reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "albert", None) is not None: + with tf.name_scope(self.albert.name): + self.albert.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert.py new file mode 100644 index 0000000000000000000000000000000000000000..786f9eeafc513c3d09cfe3300d7ac8c3911caf4a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert.py @@ -0,0 +1,346 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization classes for ALBERT model.""" + + +import os +import unicodedata +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} + + +SPIECE_UNDERLINE = "▁" + + +class AlbertTokenizer(PreTrainedTokenizer): + """ + Construct an ALBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + remove_space (`bool`, *optional*, defaults to `True`): + Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). + keep_accents (`bool`, *optional*, defaults to `False`): + Whether or not to keep accents when tokenizing. + bos_token (`str`, *optional*, defaults to `"[CLS]"`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `"[SEP]"`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + + def __init__( + self, + vocab_file, + do_lower_case=True, + remove_space=True, + keep_accents=False, + bos_token="[CLS]", + eos_token="[SEP]", + unk_token="", + sep_token="[SEP]", + pad_token="", + cls_token="[CLS]", + mask_token="[MASK]", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + # Mask token behave like a normal word, i.e. include the space before it and + # is included in the raw text, there should be a match in a non-normalized sentence. + mask_token = ( + AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) + if isinstance(mask_token, str) + else mask_token + ) + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.do_lower_case = do_lower_case + self.remove_space = remove_space + self.keep_accents = keep_accents + self.vocab_file = vocab_file + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + + super().__init__( + do_lower_case=do_lower_case, + remove_space=remove_space, + keep_accents=keep_accents, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + @property + def vocab_size(self) -> int: + return len(self.sp_model) + + def get_vocab(self) -> Dict[str, int]: + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + def preprocess_text(self, inputs): + if self.remove_space: + outputs = " ".join(inputs.strip().split()) + else: + outputs = inputs + outputs = outputs.replace("``", '"').replace("''", '"') + + if not self.keep_accents: + outputs = unicodedata.normalize("NFKD", outputs) + outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) + if self.do_lower_case: + outputs = outputs.lower() + + return outputs + + def _tokenize(self, text: str) -> List[str]: + """Tokenize a string.""" + text = self.preprocess_text(text) + pieces = self.sp_model.encode(text, out_type=str) + new_pieces = [] + for piece in pieces: + if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): + # Logic to handle special cases see https://github.com/google-research/bert/blob/master/README.md#tokenization + # `9,9` -> ['▁9', ',', '9'] instead of [`_9,`, '9'] + cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) + if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: + if len(cur_pieces[0]) == 1: + cur_pieces = cur_pieces[1:] + else: + cur_pieces[0] = cur_pieces[0][1:] + cur_pieces.append(piece[-1]) + new_pieces.extend(cur_pieces) + else: + new_pieces.append(piece) + + return new_pieces + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.PieceToId(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.sp_model.IdToPiece(index) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + if not prev_is_special: + out_string += " " + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + return out_string.strip() + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An ALBERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return cls + token_ids_0 + sep + return cls + token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT + sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..e0b09a73560ac19bc9cb71510b4e24d4e77cf8be --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert_fast.py @@ -0,0 +1,210 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization classes for ALBERT model.""" + + +import os +from shutil import copyfile +from typing import List, Optional, Tuple + +from ...tokenization_utils import AddedToken +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_albert import AlbertTokenizer +else: + AlbertTokenizer = None + +logger = logging.get_logger(__name__) +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} + + +SPIECE_UNDERLINE = "▁" + + +class AlbertTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" ALBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on + [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This + tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + remove_space (`bool`, *optional*, defaults to `True`): + Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). + keep_accents (`bool`, *optional*, defaults to `False`): + Whether or not to keep accents when tokenizing. + bos_token (`str`, *optional*, defaults to `"[CLS]"`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `"[SEP]"`): + The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token + that is used for the end of sequence. The token used is the `sep_token`. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + """ + + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = AlbertTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + remove_space=True, + keep_accents=False, + bos_token="[CLS]", + eos_token="[SEP]", + unk_token="", + sep_token="[SEP]", + pad_token="", + cls_token="[CLS]", + mask_token="[MASK]", + **kwargs, + ): + # Mask token behave like a normal word, i.e. include the space before it and + # is included in the raw text, there should be a match in a non-normalized sentence. + mask_token = ( + AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) + if isinstance(mask_token, str) + else mask_token + ) + + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + remove_space=remove_space, + keep_accents=keep_accents, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + **kwargs, + ) + + self.do_lower_case = do_lower_case + self.remove_space = remove_space + self.keep_accents = keep_accents + self.vocab_file = vocab_file + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An ALBERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return cls + token_ids_0 + sep + return cls + token_ids_0 + sep + token_ids_1 + sep + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT + sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + if token_ids_1 is None, only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of ids. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6fbfd53b3703fd73cf937026344cda9387ab2fcc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__init__.py @@ -0,0 +1,71 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_blip_2": [ + "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", + "Blip2Config", + "Blip2QFormerConfig", + "Blip2VisionConfig", + ], + "processing_blip_2": ["Blip2Processor"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_blip_2"] = [ + "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", + "Blip2Model", + "Blip2QFormerModel", + "Blip2PreTrainedModel", + "Blip2ForConditionalGeneration", + "Blip2VisionModel", + ] + +if TYPE_CHECKING: + from .configuration_blip_2 import ( + BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, + Blip2Config, + Blip2QFormerConfig, + Blip2VisionConfig, + ) + from .processing_blip_2 import Blip2Processor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_blip_2 import ( + BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, + Blip2ForConditionalGeneration, + Blip2Model, + Blip2PreTrainedModel, + Blip2QFormerModel, + Blip2VisionModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b3aad4fb29de9b20a35e12c60bbcb38f47ec45ed Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/configuration_blip_2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/configuration_blip_2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..67dae8e54556242222f3c1be268caf12342cd4fc Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/configuration_blip_2.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/convert_blip_2_original_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/convert_blip_2_original_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f61126b2957ee86ed10d8fafa99995db43b146c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/convert_blip_2_original_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/modeling_blip_2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/modeling_blip_2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9de9d21a9cb5f5e0ab7ba7ee59fdc76f0aba93b1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/modeling_blip_2.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/processing_blip_2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/processing_blip_2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..211f200a45f2271405745977dbfda01c2e31d344 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/processing_blip_2.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/configuration_blip_2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/configuration_blip_2.py new file mode 100644 index 0000000000000000000000000000000000000000..f5645f5deed57c4bc2b59d1b5a2c5fcf93b805e4 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/configuration_blip_2.py @@ -0,0 +1,355 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" BLIP-2 model configuration""" + +import os +from typing import Union + +from ...configuration_utils import PretrainedConfig +from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES +from ...utils import logging +from ..auto import CONFIG_MAPPING + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class Blip2VisionConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Blip2VisionModel`]. It is used to instantiate a + BLIP-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a + configuration defaults will yield a similar configuration to that of the BLIP-2 + [Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 1408): + Dimensionality of the encoder layers and the pooler layer. + intermediate_size (`int`, *optional*, defaults to 6144): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + num_hidden_layers (`int`, *optional*, defaults to 39): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 14): + The size (resolution) of each patch. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults + to 1e-5): The epsilon used by the layer normalization layers. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to the queries and values in the self-attention layers. + + Example: + + ```python + >>> from transformers import Blip2VisionConfig, Blip2VisionModel + + >>> # Initializing a Blip2VisionConfig with Salesforce/blip2-opt-2.7b style configuration + >>> configuration = Blip2VisionConfig() + + >>> # Initializing a Blip2VisionModel (with random weights) from the Salesforce/blip2-opt-2.7b style configuration + >>> model = Blip2VisionModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "blip_2_vision_model" + + def __init__( + self, + hidden_size=1408, + intermediate_size=6144, + num_hidden_layers=39, + num_attention_heads=16, + image_size=224, + patch_size=14, + hidden_act="gelu", + layer_norm_eps=1e-6, + attention_dropout=0.0, + initializer_range=1e-10, + qkv_bias=True, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.patch_size = patch_size + self.image_size = image_size + self.initializer_range = initializer_range + self.attention_dropout = attention_dropout + self.layer_norm_eps = layer_norm_eps + self.hidden_act = hidden_act + self.qkv_bias = qkv_bias + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) + + # get the vision config dict if we are loading from Blip2Config + if config_dict.get("model_type") == "blip-2": + config_dict = config_dict["vision_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class Blip2QFormerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Blip2QFormerModel`]. It is used to instantiate a + BLIP-2 Querying Transformer (Q-Former) model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the BLIP-2 + [Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) architecture. Configuration objects + inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from + [`PretrainedConfig`] for more information. + + Note that [`Blip2QFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention. + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling the model. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + cross_attention_frequency (`int`, *optional*, defaults to 2): + The frequency of adding cross-attention to the Transformer layers. + encoder_hidden_size (`int`, *optional*, defaults to 1408): + The hidden size of the hidden states for cross-attention. + + Examples: + + ```python + >>> from transformers import Blip2QFormerConfig, Blip2QFormerModel + + >>> # Initializing a BLIP-2 Salesforce/blip2-opt-2.7b style configuration + >>> configuration = Blip2QFormerConfig() + + >>> # Initializing a model (with random weights) from the Salesforce/blip2-opt-2.7b style configuration + >>> model = Blip2QFormerModel(configuration) + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "blip_2_qformer" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=0, + position_embedding_type="absolute", + cross_attention_frequency=2, + encoder_hidden_size=1408, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.cross_attention_frequency = cross_attention_frequency + self.encoder_hidden_size = encoder_hidden_size + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) + + # get the qformer config dict if we are loading from Blip2Config + if config_dict.get("model_type") == "blip-2": + config_dict = config_dict["qformer_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class Blip2Config(PretrainedConfig): + r""" + [`Blip2Config`] is the configuration class to store the configuration of a [`Blip2ForConditionalGeneration`]. It is + used to instantiate a BLIP-2 model according to the specified arguments, defining the vision model, Q-Former model + and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to + that of the BLIP-2 [Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vision_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`Blip2VisionConfig`]. + qformer_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`Blip2QFormerConfig`]. + text_config (`dict`, *optional*): + Dictionary of configuration options used to initialize any [`PretrainedConfig`]. + num_query_tokens (`int`, *optional*, defaults to 32): + The number of query tokens passed through the Transformer. + + kwargs (*optional*): + Dictionary of keyword arguments. + + Example: + + ```python + >>> from transformers import ( + ... Blip2VisionConfig, + ... Blip2QFormerConfig, + ... OPTConfig, + ... Blip2Config, + ... Blip2ForConditionalGeneration, + ... ) + + >>> # Initializing a Blip2Config with Salesforce/blip2-opt-2.7b style configuration + >>> configuration = Blip2Config() + + >>> # Initializing a Blip2ForConditionalGeneration (with random weights) from the Salesforce/blip2-opt-2.7b style configuration + >>> model = Blip2ForConditionalGeneration(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + + >>> # We can also initialize a Blip2Config from a Blip2VisionConfig, Blip2QFormerConfig and any PretrainedConfig + + >>> # Initializing BLIP-2 vision, BLIP-2 Q-Former and language model configurations + >>> vision_config = Blip2VisionConfig() + >>> qformer_config = Blip2QFormerConfig() + >>> text_config = OPTConfig() + + >>> config = Blip2Config.from_text_vision_configs(vision_config, qformer_config, text_config) + ```""" + + model_type = "blip-2" + + def __init__(self, vision_config=None, qformer_config=None, text_config=None, num_query_tokens=32, **kwargs): + super().__init__(**kwargs) + + if vision_config is None: + vision_config = {} + logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.") + + if qformer_config is None: + qformer_config = {} + logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.") + + if text_config is None: + text_config = {} + logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") + + self.vision_config = Blip2VisionConfig(**vision_config) + self.qformer_config = Blip2QFormerConfig(**qformer_config) + text_model_type = text_config["model_type"] if "model_type" in text_config else "opt" + self.text_config = CONFIG_MAPPING[text_model_type](**text_config) + + self.tie_word_embeddings = self.text_config.tie_word_embeddings + self.is_encoder_decoder = self.text_config.is_encoder_decoder + + self.num_query_tokens = num_query_tokens + self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size + self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES + self.initializer_factor = 1.0 + self.initializer_range = 0.02 + + @classmethod + def from_vision_qformer_text_configs( + cls, + vision_config: Blip2VisionConfig, + qformer_config: Blip2QFormerConfig, + text_config: PretrainedConfig, + **kwargs, + ): + r""" + Instantiate a [`Blip2Config`] (or a derived class) from a BLIP-2 vision model, Q-Former and language model + configurations. + + Returns: + [`Blip2Config`]: An instance of a configuration object + """ + + return cls( + vision_config=vision_config.to_dict(), + qformer_config=qformer_config.to_dict(), + text_config=text_config.to_dict(), + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..c2e6eceae53273ee91959028d62442f6d738b81e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py @@ -0,0 +1,291 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Convert BLIP-2 checkpoints from the original repository. + +URL: https://github.com/salesforce/LAVIS/tree/main/projects/blip2 +""" + +import argparse + +import requests +import torch + +# pip3 install salesforce-lavis +# I'm actually installing a slightly modified version: pip3 install -U git+https://github.com/nielsrogge/LAVIS.git@blip2_float32 +# to make sure we can compare both original and HF implementation in float32 +from lavis.models import load_model_and_preprocess +from PIL import Image + +from transformers import ( + AutoTokenizer, + Blip2Config, + Blip2ForConditionalGeneration, + Blip2Processor, + Blip2VisionConfig, + BlipImageProcessor, + OPTConfig, + T5Config, + set_seed, +) +from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD + + +def load_demo_image(): + url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" + image = Image.open(requests.get(url, stream=True).raw).convert("RGB") + + return image + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config): + rename_keys = [] + # fmt: off + + # vision encoder + rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding")) + rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding")) + rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight")) + rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias")) + rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight")) + rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias")) + + for i in range(config.vision_config.num_hidden_layers): + rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight")) + rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias")) + rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight")) + rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias")) + rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight")) + rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",)) + rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias")) + rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight")) + rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias")) + rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight")) + rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias")) + + # QFormer + rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight")) + rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias")) + + # fmt: on + return rename_keys + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +def read_in_q_v_bias(state_dict, config): + for i in range(config.vision_config.num_hidden_layers): + # read in original q and v biases + q_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias") + v_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias") + + # next, set bias in the state dict + qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias)) + state_dict[f"vision_model.encoder.layers.{i}.self_attn.qkv.bias"] = qkv_bias + + +def get_blip2_config(model_name, eos_token_id): + image_size = 364 if "coco" in model_name else 224 + vision_config = Blip2VisionConfig(image_size=image_size).to_dict() + + # make sure the models have proper bos_token_id and eos_token_id set (important for generation) + # seems like flan-T5 models don't have bos_token_id properly set? + if "opt-2.7b" in model_name: + text_config = OPTConfig.from_pretrained("facebook/opt-2.7b", eos_token_id=eos_token_id).to_dict() + elif "opt-6.7b" in model_name: + text_config = OPTConfig.from_pretrained("facebook/opt-6.7b", eos_token_id=eos_token_id).to_dict() + elif "t5-xl" in model_name: + text_config = T5Config.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1).to_dict() + elif "t5-xxl" in model_name: + text_config = T5Config.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1).to_dict() + + config = Blip2Config(vision_config=vision_config, text_config=text_config) + + return config, image_size + + +@torch.no_grad() +def convert_blip2_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False): + """ + Copy/paste/tweak model's weights to Transformers design. + """ + tokenizer = ( + AutoTokenizer.from_pretrained("facebook/opt-2.7b") + if "opt" in model_name + else AutoTokenizer.from_pretrained("google/flan-t5-xl") + ) + eos_token_id = tokenizer("\n", add_special_tokens=False).input_ids[0] + config, image_size = get_blip2_config(model_name, eos_token_id=eos_token_id) + + hf_model = Blip2ForConditionalGeneration(config).eval() + + model_name_to_original = { + "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), + "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), + "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), + "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), + "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), + "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), + "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), + } + + name, type = model_name_to_original[model_name] + + # note: this script is tested on 2 GPUs, as models are compared in float32, + # which requires quite some memory. Hence loading both on a + # separate device is the easiest to compare + hf_model_device = "cuda:0" if torch.cuda.is_available() else "cpu" + lavis_device = "cuda:1" if torch.cuda.is_available() else "cpu" + + # load original model + print("Loading original model...") + original_model, vis_processors, _ = load_model_and_preprocess( + name=name, model_type=type, is_eval=True, device=lavis_device + ) + original_model.eval() + print("Done!") + + # update state dict keys + state_dict = original_model.state_dict() + rename_keys = create_rename_keys(config) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + + # some keys can be renamed efficiently + for key, val in state_dict.copy().items(): + val = state_dict.pop(key) + if key.startswith("Qformer.bert"): + key = key.replace("Qformer.bert", "qformer") + if "attention.self" in key: + key = key.replace("self", "attention") + if "opt_proj" in key: + key = key.replace("opt_proj", "language_projection") + if "t5_proj" in key: + key = key.replace("t5_proj", "language_projection") + if key.startswith("opt"): + key = key.replace("opt", "language") + if key.startswith("t5"): + key = key.replace("t5", "language") + state_dict[key] = val + + # read in qv biases + read_in_q_v_bias(state_dict, config) + + missing_keys, unexpected_keys = hf_model.load_state_dict(state_dict, strict=False) + assert len(missing_keys) == 0 + assert unexpected_keys == ["qformer.embeddings.position_ids"] + + image = load_demo_image() + original_pixel_values = vis_processors["eval"](image).unsqueeze(0).to(lavis_device) + input_ids = tokenizer(["\n"], return_tensors="pt").input_ids.to(hf_model_device) + + # create processor + image_processor = BlipImageProcessor( + size={"height": image_size, "width": image_size}, image_mean=OPENAI_CLIP_MEAN, image_std=OPENAI_CLIP_STD + ) + processor = Blip2Processor(image_processor=image_processor, tokenizer=tokenizer) + pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(hf_model_device) + + # make sure processor creates exact same pixel values + assert torch.allclose(pixel_values, original_pixel_values.to(pixel_values.device)) + + original_model.to(lavis_device) + hf_model.to(hf_model_device) + with torch.no_grad(): + if "opt" in model_name: + original_logits = original_model({"image": original_pixel_values, "text_input": [""]}).logits + logits = hf_model(pixel_values, input_ids).logits + else: + original_logits = original_model( + {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} + ).logits + labels = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100) + logits = hf_model(pixel_values, input_ids, labels=labels).logits + + assert original_logits.shape == logits.shape + print("First values of original logits:", original_logits[0, :3, :3]) + print("First values of HF logits:", logits[0, :3, :3]) + + # assert values + assert torch.allclose(original_logits.to(logits.device), logits, atol=1e-4) + print("Looks ok!") + + print("Generating a caption...") + prompt = "Question: what object is in this image? Answer:" + input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(hf_model_device) + + set_seed(42) + + original_outputs = original_model.generate( + {"image": original_pixel_values, "prompt": prompt}, use_nucleus_sampling=True + ) + outputs = hf_model.generate( + pixel_values, + input_ids, + do_sample=True, + num_beams=5, + max_length=30, + min_length=1, + top_p=0.9, + repetition_penalty=1.0, + length_penalty=1.0, + temperature=1, + ) + output_text = processor.batch_decode(outputs, skip_special_tokens=True) + output_text = [text.strip() for text in output_text] + print("Original generation:", original_outputs) + print("HF generation:", output_text) + + if pytorch_dump_folder_path is not None: + processor.save_pretrained(pytorch_dump_folder_path) + hf_model.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + processor.push_to_hub(f"nielsr/{model_name}") + hf_model.push_to_hub(f"nielsr/{model_name}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + choices = [ + "blip2-opt-2.7b", + "blip2-opt-6.7b", + "blip2-opt-2.7b-coco", + "blip2-opt-6.7b-coco", + "blip2-flan-t5-xl", + "blip2-flan-t5-xl-coco", + "blip2-flan-t5-xxl", + ] + parser.add_argument( + "--model_name", + default="blip2-opt-2.7b", + choices=choices, + type=str, + help="Path to hf config.json of model to convert", + ) + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument( + "--push_to_hub", + action="store_true", + help="Whether to push the model and processor to the hub after converting", + ) + + args = parser.parse_args() + + convert_blip2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/modeling_blip_2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/modeling_blip_2.py new file mode 100644 index 0000000000000000000000000000000000000000..935e041eb8360d8e06987c9342d6394c637e4aa5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/modeling_blip_2.py @@ -0,0 +1,1853 @@ +# coding=utf-8 +# Copyright 2023 The Salesforce Authors and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch BLIP-2 model.""" + +import math +from dataclasses import dataclass +from typing import Any, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPooling, + BaseModelOutputWithPoolingAndCrossAttentions, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ..auto import AutoModelForCausalLM, AutoModelForSeq2SeqLM +from .configuration_blip_2 import Blip2Config, Blip2QFormerConfig, Blip2VisionConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "Salesforce/blip2-opt-2.7b" + + +from ..deprecated._archive_maps import BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class Blip2ForConditionalGenerationModelOutput(ModelOutput): + """ + Class defining the outputs of [`Blip2ForConditionalGeneration`]. + + Args: + loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Language modeling loss from the language model. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head of the language model. + vision_outputs (`BaseModelOutputWithPooling`): + Outputs of the vision encoder. + qformer_outputs (`BaseModelOutputWithPoolingAndCrossAttentions`): + Outputs of the Q-Former (Querying Transformer). + language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`): + Outputs of the language model. + """ + + loss: Optional[Tuple[torch.FloatTensor]] = None + logits: Optional[Tuple[torch.FloatTensor]] = None + vision_outputs: Optional[torch.FloatTensor] = None + qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None + language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None + + def to_tuple(self) -> Tuple[Any]: + return tuple( + self[k] + if k not in ["vision_outputs", "qformer_outputs", "language_model_outputs"] + else getattr(self, k).to_tuple() + for k in self.keys() + ) + + +# Copied from transformers.models.blip.modeling_blip.BlipVisionEmbeddings with Blip->Blip2 +class Blip2VisionEmbeddings(nn.Module): + def __init__(self, config: Blip2VisionConfig): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.image_size = config.image_size + self.patch_size = config.patch_size + + self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) + + self.patch_embedding = nn.Conv2d( + in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size + ) + + self.num_patches = (self.image_size // self.patch_size) ** 2 + self.num_positions = self.num_patches + 1 + + self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) + + def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: + batch_size = pixel_values.shape[0] + target_dtype = self.patch_embedding.weight.dtype + patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] + patch_embeds = patch_embeds.flatten(2).transpose(1, 2) + + class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) + embeddings = torch.cat([class_embeds, patch_embeds], dim=1) + embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) + return embeddings + + +class Blip2Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {self.num_heads})." + ) + self.scale = self.head_dim**-0.5 + self.dropout = nn.Dropout(config.attention_dropout) + + # small tweak here compared to CLIP, no bias here + self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=False) + + if config.qkv_bias: + q_bias = nn.Parameter(torch.zeros(self.embed_dim)) + v_bias = nn.Parameter(torch.zeros(self.embed_dim)) + else: + q_bias = None + v_bias = None + + if q_bias is not None: + qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias)) + self.qkv.bias = nn.Parameter(qkv_bias) + + self.projection = nn.Linear(self.embed_dim, self.embed_dim) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + bsz, tgt_len, embed_dim = hidden_states.size() + + mixed_qkv = self.qkv(hidden_states) + + mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute( + 2, 0, 3, 1, 4 + ) + query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) + + attention_scores = attention_scores * self.scale + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) + + new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) + context_layer = context_layer.reshape(new_context_layer_shape) + + output = self.projection(context_layer) + + outputs = (output, attention_probs) if output_attentions else (output, None) + + return outputs + + +# Copied from transformers.models.blip.modeling_blip.BlipMLP +class Blip2MLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) + self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +# Copied from transformers.models.blip.modeling_blip.BlipEncoderLayer with Blip->Blip2 +class Blip2EncoderLayer(nn.Module): + def __init__(self, config: Blip2Config): + super().__init__() + self.embed_dim = config.hidden_size + self.self_attn = Blip2Attention(config) + self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + self.mlp = Blip2MLP(config) + self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + `(config.encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + hidden_states = self.layer_norm1(hidden_states) + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + head_mask=attention_mask, + output_attentions=output_attentions, + ) + hidden_states = hidden_states + residual + residual = hidden_states + hidden_states = self.layer_norm2(hidden_states) + hidden_states = self.mlp(hidden_states) + + hidden_states = hidden_states + residual + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class Blip2PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = Blip2Config + base_model_prefix = "blip" + supports_gradient_checkpointing = True + _no_split_modules = ["Blip2Attention", "T5Block", "OPTDecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _keep_in_fp32_modules = ["wo"] + + def _init_weights(self, module): + """Initialize the weights""" + factor = self.config.initializer_range + if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=factor) + if hasattr(module, "bias") and module.bias is not None: + module.bias.data.zero_() + + if isinstance(module, Blip2VisionEmbeddings): + if hasattr(self.config, "vision_config"): + factor = self.config.vision_config.initializer_range + nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor) + nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor) + + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + + +BLIP_2_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Blip2Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BLIP_2_VISION_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for + details. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +BLIP_2_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` + is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). + + To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 + Training](./t5#training). + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +BLIP_2_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for + details. + + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of input sequence tokens in the vocabulary of the language model. Input tokens can optionally be + provided to serve as text prompt, which the language model can continue. + + Indices can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary of the language model. Only relevant in case an + encoder-decoder language model (like T5) is used. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) + + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + Only relevant in case an encoder-decoder language model (like T5) is used. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.blip.modeling_blip.BlipEncoder with Blip->Blip2 +class Blip2Encoder(nn.Module): + """ + Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a + [`Blip2EncoderLayer`]. + + Args: + config (`Blip2Config`): + The corresponding vision configuration for the `Blip2Encoder`. + """ + + def __init__(self, config: Blip2Config): + super().__init__() + self.config = config + self.layers = nn.ModuleList([Blip2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + inputs_embeds, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Embedded representation of the inputs. Should be float, not int tokens. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + hidden_states = inputs_embeds + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +# Copied from transformers.models.blip.modeling_blip.BlipVisionModel with Blip->Blip2, BLIP->BLIP_2 +class Blip2VisionModel(Blip2PreTrainedModel): + main_input_name = "pixel_values" + config_class = Blip2VisionConfig + + def __init__(self, config: Blip2VisionConfig): + super().__init__(config) + self.config = config + embed_dim = config.hidden_size + + self.embeddings = Blip2VisionEmbeddings(config) + self.encoder = Blip2Encoder(config) + self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + + self.post_init() + + @add_start_docstrings_to_model_forward(BLIP_2_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Blip2VisionConfig) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + hidden_states = self.embeddings(pixel_values) + + encoder_outputs = self.encoder( + inputs_embeds=hidden_states, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + last_hidden_state = self.post_layernorm(last_hidden_state) + + pooled_output = last_hidden_state[:, 0, :] + pooled_output = self.post_layernorm(pooled_output) + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def get_input_embeddings(self): + return self.embeddings + + +class Blip2QFormerMultiHeadAttention(nn.Module): + def __init__(self, config, is_cross_attention=False): + super().__init__() + self.config = config + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + "The hidden size (%d) is not a multiple of the number of attention heads (%d)" + % (config.hidden_size, config.num_attention_heads) + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + if is_cross_attention: + self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) + self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) + else: + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + self.save_attention = False + + def save_attn_gradients(self, attn_gradients): + self.attn_gradients = attn_gradients + + def get_attn_gradients(self): + return self.attn_gradients + + def save_attention_map(self, attention_map): + self.attention_map = attention_map + + def get_attention_map(self): + return self.attention_map + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + mixed_query_layer = self.query(hidden_states) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + seq_length = hidden_states.size()[1] + position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + if is_cross_attention and self.save_attention: + self.save_attention_map(attention_probs) + attention_probs.register_hook(self.save_attn_gradients) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs_dropped = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs_dropped = attention_probs_dropped * head_mask + + context_layer = torch.matmul(attention_probs_dropped, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Blip2QFormer +class Blip2QFormerSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class Blip2QFormerAttention(nn.Module): + def __init__(self, config, is_cross_attention=False): + super().__init__() + self.attention = Blip2QFormerMultiHeadAttention(config, is_cross_attention) + self.output = Blip2QFormerSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Blip2QFormer +class Blip2QFormerIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Blip2QFormer +class Blip2QFormerOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class Blip2QFormerLayer(nn.Module): + def __init__(self, config, layer_idx): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = Blip2QFormerAttention(config) + + self.layer_idx = layer_idx + + if layer_idx % config.cross_attention_frequency == 0: + self.crossattention = Blip2QFormerAttention(config, is_cross_attention=True) + self.has_cross_attention = True + else: + self.has_cross_attention = False + + self.intermediate_query = Blip2QFormerIntermediate(config) + self.output_query = Blip2QFormerOutput(config) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + query_length=0, + ): + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:-1] + + present_key_value = self_attention_outputs[-1] + + if query_length > 0: + query_attention_output = attention_output[:, :query_length, :] + + if self.has_cross_attention: + if encoder_hidden_states is None: + raise ValueError("encoder_hidden_states must be given for cross-attention layers") + cross_attention_outputs = self.crossattention( + query_attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + output_attentions=output_attentions, + ) + query_attention_output = cross_attention_outputs[0] + # add cross attentions if we output attention weights + outputs = outputs + cross_attention_outputs[1:-1] + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk_query, + self.chunk_size_feed_forward, + self.seq_len_dim, + query_attention_output, + ) + + if attention_output.shape[1] > query_length: + layer_output_text = apply_chunking_to_forward( + self.feed_forward_chunk, + self.chunk_size_feed_forward, + self.seq_len_dim, + attention_output[:, query_length:, :], + ) + layer_output = torch.cat([layer_output, layer_output_text], dim=1) + else: + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, + self.chunk_size_feed_forward, + self.seq_len_dim, + attention_output, + ) + outputs = (layer_output,) + outputs + + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + def feed_forward_chunk_query(self, attention_output): + intermediate_output = self.intermediate_query(attention_output) + layer_output = self.output_query(intermediate_output, attention_output) + return layer_output + + +class Blip2QFormerEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList( + [Blip2QFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + query_length=0, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions else None + + next_decoder_cache = () if use_cache else None + + for i in range(self.config.num_hidden_layers): + layer_module = self.layer[i] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if getattr(self.config, "gradient_checkpointing", False) and self.training: + if use_cache: + logger.warning( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + query_length, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if layer_module.has_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class Blip2QFormerModel(Blip2PreTrainedModel): + """ + Querying Transformer (Q-Former), used in BLIP-2. + """ + + def __init__(self, config: Blip2QFormerConfig): + super().__init__(config) + self.config = config + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + self.encoder = Blip2QFormerEncoder(config) + + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def get_extended_attention_mask( + self, + attention_mask: torch.Tensor, + input_shape: Tuple[int], + device: torch.device, + has_query: bool = False, + ) -> torch.Tensor: + """ + Makes broadcastable attention and causal masks so that future and masked tokens are ignored. + + Arguments: + attention_mask (`torch.Tensor`): + Mask with ones indicating tokens to attend to, zeros for tokens to ignore. + input_shape (`Tuple[int]`): + The shape of the input to the model. + device (`torch.device`): + The device of the input to the model. + + Returns: + `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. + """ + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + if attention_mask.dim() == 3: + extended_attention_mask = attention_mask[:, None, :, :] + elif attention_mask.dim() == 2: + # Provided a padding mask of dimensions [batch_size, seq_length] + # - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] + extended_attention_mask = attention_mask[:, None, None, :] + else: + raise ValueError( + "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( + input_shape, attention_mask.shape + ) + ) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility + extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 + return extended_attention_mask + + def forward( + self, + query_embeds: torch.FloatTensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: + shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and + value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are + used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key + value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape + `(batch_size, sequence_length)`. + use_cache (`bool`, `optional`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # past_key_values_length + past_key_values_length = ( + past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 + ) + + query_length = query_embeds.shape[1] if query_embeds is not None else 0 + + embedding_output = self.layernorm(query_embeds) + embedding_output = self.dropout(embedding_output) + + input_shape = embedding_output.size()[:-1] + batch_size, seq_length = input_shape + device = embedding_output.device + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if encoder_hidden_states is not None: + if isinstance(encoder_hidden_states, list): + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() + else: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + + if isinstance(encoder_attention_mask, list): + encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] + elif encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + query_length=query_length, + ) + sequence_output = encoder_outputs[0] + pooled_output = sequence_output[:, 0, :] + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ + BLIP-2 Model for generating text and image features. The model consists of a vision encoder, Querying Transformer + (Q-Former) and a language model. + """, + BLIP_2_START_DOCSTRING, +) +class Blip2Model(Blip2PreTrainedModel): + config_class = Blip2Config + main_input_name = "pixel_values" + + def __init__(self, config: Blip2Config): + super().__init__(config) + + self.vision_model = Blip2VisionModel(config.vision_config) + + self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) + self.qformer = Blip2QFormerModel(config.qformer_config) + + self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size) + if config.use_decoder_only_language_model: + language_model = AutoModelForCausalLM.from_config(config.text_config) + else: + language_model = AutoModelForSeq2SeqLM.from_config(config.text_config) + + # Update _tied_weights_keys using the base model used. + if language_model._tied_weights_keys is not None: + self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys] + + self.language_model = language_model + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.language_model.get_input_embeddings() + + def set_input_embeddings(self, value): + self.language_model.set_input_embeddings(value) + + def set_output_embeddings(self, new_embeddings): + self.language_model.set_output_embeddings(new_embeddings) + + def get_output_embeddings(self) -> nn.Module: + return self.language_model.get_output_embeddings() + + def get_encoder(self): + return self.language_model.get_encoder() + + def get_decoder(self): + return self.language_model.get_decoder() + + def _tie_weights(self): + if not self.config.use_decoder_only_language_model: + self.language_model.encoder.embed_tokens = self.language_model.shared + self.language_model.decoder.embed_tokens = self.language_model.shared + + @add_start_docstrings_to_model_forward(BLIP_2_TEXT_INPUTS_DOCSTRING) + def get_text_features( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.Tensor] = None, + decoder_attention_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + r""" + Returns: + text_outputs (`CausalLMOutputWithPast`, or `tuple(torch.FloatTensor)` if `return_dict=False`): + The language model outputs. If `return_dict=True`, the output is a [`CausalLMOutputWithPast`] that + contains the language model logits, the past key values and the hidden states if + `output_hidden_states=True`. + Examples: + ```python + >>> import torch + >>> from transformers import AutoTokenizer, Blip2Model + + >>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b") + + >>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/blip2-opt-2.7b") + >>> inputs = tokenizer(["a photo of a cat"], padding=True, return_tensors="pt") + >>> text_features = model.get_text_features(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.use_decoder_only_language_model: + text_outputs = self.language_model( + input_ids=input_ids, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + else: + inputs_embeds = self.language_model.get_input_embeddings()(input_ids) + + text_outputs = self.language_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + labels=labels, + ) + + return text_outputs + + @add_start_docstrings_to_model_forward(BLIP_2_VISION_INPUTS_DOCSTRING) + def get_image_features( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + r""" + Returns: + vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`): + The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that + contains the image features, the pooled image features and the hidden states if + `output_hidden_states=True`. + Examples: + ```python + >>> import torch + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, Blip2Model + + >>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b") + + >>> processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + >>> inputs = processor(images=image, return_tensors="pt") + >>> image_outputs = model.get_image_features(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return vision_outputs + + @add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING) + def get_qformer_features( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + r""" + Returns: + vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`): + The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that + contains the image features, the pooled image features and the hidden states if + `output_hidden_states=True`. + Examples: + ```python + >>> import torch + >>> from PIL import Image + >>> import requests + >>> from transformers import Blip2Processor, Blip2Model + + >>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") + >>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + >>> inputs = processor(images=image, return_tensors="pt") + >>> qformer_outputs = model.get_qformer_features(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + image_embeds = vision_outputs[0] + + # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention + image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) + + query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) + query_outputs = self.qformer( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return query_outputs + + @add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Blip2ForConditionalGenerationModelOutput, config_class=Blip2VisionConfig) + def forward( + self, + pixel_values: torch.FloatTensor, + input_ids: torch.FloatTensor, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.LongTensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import Blip2Processor, Blip2Model + >>> import torch + + >>> device = "cuda" if torch.cuda.is_available() else "cpu" + + >>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") + >>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) + >>> model.to(device) # doctest: +IGNORE_RESULT + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> prompt = "Question: how many cats are there? Answer:" + >>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16) + + >>> outputs = model(**inputs) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # step 1: forward the images through the vision encoder, + # to get image embeddings of shape (batch_size, seq_len, hidden_size) + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + image_embeds = vision_outputs[0] + + # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention + image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) + + query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) + query_outputs = self.qformer( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + query_output = query_outputs[0] + + # step 3: use the language model, conditioned on the query outputs and the prompt + language_model_inputs = self.language_projection(query_output) + language_model_attention_mask = torch.ones( + language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device + ) + inputs_embeds = self.language_model.get_input_embeddings()(input_ids) + inputs_embeds = torch.cat([language_model_inputs, inputs_embeds], dim=1) + + if attention_mask is None: + attention_mask = torch.ones_like(input_ids) + expected_device = language_model_attention_mask.device + attention_mask = torch.cat([language_model_attention_mask, attention_mask.to(expected_device)], dim=1) + + if self.config.use_decoder_only_language_model: + outputs = self.language_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + logits = outputs.logits if return_dict else outputs[0] + loss = None + # we compute the loss here since we need to take into account the sequence length of the query embeds + if labels is not None: + labels = labels.to(logits.device) + logits = logits[:, -labels.size(1) :, :] + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous().to(logits.device) + + # Flatten the tokens + loss_fct = CrossEntropyLoss(reduction="mean") + + loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1)) + else: + outputs = self.language_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + labels=labels, + ) + loss = outputs.loss if return_dict else outputs[0] + logits = outputs.logits if return_dict else outputs[1] + + if not return_dict: + output = (logits, vision_outputs, query_outputs, outputs) + return ((loss,) + output) if loss is not None else output + + return Blip2ForConditionalGenerationModelOutput( + loss=loss, + logits=logits, + vision_outputs=vision_outputs, + qformer_outputs=query_outputs, + language_model_outputs=outputs, + ) + + +@add_start_docstrings( + """ + BLIP-2 Model for generating text given an image and an optional text prompt. The model consists of a vision + encoder, Querying Transformer (Q-Former) and a language model. + + One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the language model continue + the prompt. Otherwise, the language model starts generating text from the [BOS] (beginning-of-sequence) token. + + + + Note that Flan-T5 checkpoints cannot be cast to float16. They are pre-trained using bfloat16. + + + """, + BLIP_2_START_DOCSTRING, +) +class Blip2ForConditionalGeneration(Blip2PreTrainedModel): + config_class = Blip2Config + main_input_name = "pixel_values" + + def __init__(self, config: Blip2Config): + super().__init__(config) + + self.vision_model = Blip2VisionModel(config.vision_config) + + self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) + self.qformer = Blip2QFormerModel(config.qformer_config) + + self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size) + if config.use_decoder_only_language_model: + language_model = AutoModelForCausalLM.from_config(config.text_config) + else: + language_model = AutoModelForSeq2SeqLM.from_config(config.text_config) + + # Update _tied_weights_keys using the base model used. + if language_model._tied_weights_keys is not None: + self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys] + + self.language_model = language_model + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.language_model.get_input_embeddings() + + def set_input_embeddings(self, value): + self.language_model.set_input_embeddings(value) + + def set_output_embeddings(self, new_embeddings): + self.language_model.set_output_embeddings(new_embeddings) + + def get_output_embeddings(self) -> nn.Module: + return self.language_model.get_output_embeddings() + + def get_encoder(self): + return self.language_model.get_encoder() + + def get_decoder(self): + return self.language_model.get_decoder() + + def _tie_weights(self): + if not self.config.use_decoder_only_language_model: + self.language_model.encoder.embed_tokens = self.language_model.shared + self.language_model.decoder.embed_tokens = self.language_model.shared + + def _preprocess_accelerate(self): + r""" + Some pre-processing hacks to make the model `accelerate` compatible. Check + https://github.com/huggingface/transformers/pull/21707 for more details. + """ + hf_device_map = self.hf_device_map + + if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1: + # warn users about unexpected behavior when using multi-GPU + BLIP-2 + `accelerate`. + logger.warning( + "The `language_model` is not in the `hf_device_map` dictionary and you are running your script" + " in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`." + " Please pass a `device_map` that contains `language_model` to remove this warning." + " Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for" + " more details on creating a `device_map` for large models.", + ) + + if hasattr(self.language_model, "_hf_hook"): + self.language_model._hf_hook.io_same_device = True # For `generate` compatibility + + @add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Blip2ForConditionalGenerationModelOutput, config_class=Blip2VisionConfig) + def forward( + self, + pixel_values: torch.FloatTensor, + input_ids: torch.FloatTensor, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.LongTensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]: + r""" + Returns: + + Examples: + + Prepare processor, model and image input + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import Blip2Processor, Blip2ForConditionalGeneration + >>> import torch + + >>> device = "cuda" if torch.cuda.is_available() else "cpu" + + >>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") + >>> model = Blip2ForConditionalGeneration.from_pretrained( + ... "Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16 + ... ) # doctest: +IGNORE_RESULT + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + ``` + + Image captioning (without providing a text prompt): + + ```python + >>> inputs = processor(images=image, return_tensors="pt").to(device, torch.float16) + + >>> generated_ids = model.generate(**inputs) + >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() + >>> print(generated_text) + two cats laying on a couch + ``` + + Visual question answering (prompt = question): + + ```python + >>> prompt = "Question: how many cats are there? Answer:" + >>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device="cuda", dtype=torch.float16) + + >>> generated_ids = model.generate(**inputs) + >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() + >>> print(generated_text) + two + ``` + + Note that int8 inference is also supported through [bitsandbytes](https://github.com/TimDettmers/bitsandbytes). + This greatly reduces the amount of memory used by the model while maintaining the same performance. + + ```python + >>> model = Blip2ForConditionalGeneration.from_pretrained( + ... "Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.bfloat16 + ... ) # doctest: +IGNORE_RESULT + + >>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device="cuda", dtype=torch.bfloat16) + + >>> generated_ids = model.generate(**inputs) + >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() + >>> print(generated_text) + two + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # step 1: forward the images through the vision encoder, + # to get image embeddings of shape (batch_size, seq_len, hidden_size) + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + image_embeds = vision_outputs[0] + + # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention + image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) + + query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) + query_outputs = self.qformer( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + query_output = query_outputs[0] + + # step 3: use the language model, conditioned on the query outputs and the prompt + language_model_inputs = self.language_projection(query_output) + language_model_attention_mask = torch.ones( + language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device + ) + inputs_embeds = self.language_model.get_input_embeddings()(input_ids) + inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) + + if attention_mask is None: + attention_mask = torch.ones_like(input_ids) + expected_device = language_model_attention_mask.device + attention_mask = torch.cat([language_model_attention_mask, attention_mask.to(expected_device)], dim=1) + + if self.config.use_decoder_only_language_model: + outputs = self.language_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + logits = outputs.logits if return_dict else outputs[0] + loss = None + # we compute the loss here since we need to take into account the sequence length of the query embeds + if labels is not None: + labels = labels.to(logits.device) + logits = logits[:, -labels.size(1) :, :] + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous().to(logits.device) + + # Flatten the tokens + loss_fct = CrossEntropyLoss(reduction="mean") + + loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1)) + else: + outputs = self.language_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + labels=labels, + ) + loss = outputs.loss if return_dict else outputs[0] + logits = outputs.logits if return_dict else outputs[1] + + if not return_dict: + output = (logits, vision_outputs, query_outputs, outputs) + return ((loss,) + output) if loss is not None else output + + return Blip2ForConditionalGenerationModelOutput( + loss=loss, + logits=logits, + vision_outputs=vision_outputs, + qformer_outputs=query_outputs, + language_model_outputs=outputs, + ) + + @torch.no_grad() + def generate( + self, + pixel_values: torch.FloatTensor, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + **generate_kwargs, + ) -> torch.LongTensor: + """ + Overrides `generate` function to be able to use the model as a conditional generator. + + Args: + pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)): + Input images to be processed. + input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): + The sequence used as a prompt for the generation. + attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): + Mask to avoid performing attention on padding token indices + + Returns: + captions (list): A list of strings of length batch_size * num_captions. + """ + if hasattr(self, "hf_device_map"): + # preprocess for `accelerate` + self._preprocess_accelerate() + + batch_size = pixel_values.shape[0] + image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state + image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) + + query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) + query_outputs = self.qformer( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_attention_mask, + return_dict=True, + ) + query_output = query_outputs.last_hidden_state + + language_model_inputs = self.language_projection(query_output) + language_attention_mask = torch.ones( + language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device + ) + if input_ids is None: + input_ids = ( + torch.LongTensor([[self.config.text_config.bos_token_id]]) + .repeat(batch_size, 1) + .to(image_embeds.device) + ) + if attention_mask is None: + attention_mask = torch.ones_like(input_ids) + attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1) + + # concatenate query embeddings with prompt embeddings + inputs_embeds = self.get_input_embeddings()(input_ids) + inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) + + # add image_embeds length to max_length, so that the final max_length in counted only on token embeds + # -1 is to account for the prepended BOS after `generate.` + # TODO (joao, raushan): refactor `generate` to avoid these operations with VLMs + if not self.language_model.config.is_encoder_decoder: + generate_kwargs["max_length"] = generate_kwargs.get("max_length", 20) + language_model_inputs.shape[1] - 1 + generate_kwargs["min_length"] = generate_kwargs.get("min_length", 0) + language_model_inputs.shape[1] + + outputs = self.language_model.generate( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + **generate_kwargs, + ) + + # this is a temporary workaround to be consistent with other generation models and + # have BOS as the first token, even though under the hood we are calling LM with embeds + if not self.language_model.config.is_encoder_decoder: + bos_tokens = ( + torch.LongTensor([[self.config.text_config.bos_token_id]]) + .repeat(batch_size, 1) + .to(image_embeds.device) + ) + if not isinstance(outputs, torch.Tensor): + outputs.sequences = torch.cat([bos_tokens, outputs.sequences], dim=-1) + else: + outputs = torch.cat([bos_tokens, outputs], dim=-1) + return outputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/processing_blip_2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/processing_blip_2.py new file mode 100644 index 0000000000000000000000000000000000000000..ff7044c82aedb65ad1fad3e083ba2e208c29ed1e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/processing_blip_2.py @@ -0,0 +1,155 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Processor class for BLIP-2. +""" + +from typing import List, Optional, Union + +from ...image_utils import ImageInput +from ...processing_utils import ProcessorMixin +from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy +from ...utils import TensorType + + +class Blip2Processor(ProcessorMixin): + r""" + Constructs a BLIP-2 processor which wraps a BLIP image processor and an OPT/T5 tokenizer into a single processor. + + [`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`AutoTokenizer`]. See the docstring + of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information. + + Args: + image_processor (`BlipImageProcessor`): + An instance of [`BlipImageProcessor`]. The image processor is a required input. + tokenizer (`AutoTokenizer`): + An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input. + """ + + attributes = ["image_processor", "tokenizer"] + image_processor_class = "BlipImageProcessor" + tokenizer_class = "AutoTokenizer" + + # Copied from transformers.models.blip.processing_blip.BlipProcessor.__init__ + def __init__(self, image_processor, tokenizer): + tokenizer.return_token_type_ids = False + super().__init__(image_processor, tokenizer) + self.current_processor = self.image_processor + + # Copied from transformers.models.blip.processing_blip.BlipProcessor.__call__ + def __call__( + self, + images: ImageInput = None, + text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_token_type_ids: bool = False, + return_length: bool = False, + verbose: bool = True, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> BatchEncoding: + """ + This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and + [`BertTokenizerFast.__call__`] to prepare text for the model. + + Please refer to the docstring of the above two methods for more information. + """ + if images is None and text is None: + raise ValueError("You have to specify either images or text.") + + # Get only text + if images is None: + self.current_processor = self.tokenizer + text_encoding = self.tokenizer( + text=text, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_token_type_ids=return_token_type_ids, + return_length=return_length, + verbose=verbose, + return_tensors=return_tensors, + **kwargs, + ) + return text_encoding + + # add pixel_values + encoding_image_processor = self.image_processor(images, return_tensors=return_tensors) + + if text is not None: + text_encoding = self.tokenizer( + text=text, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_token_type_ids=return_token_type_ids, + return_length=return_length, + verbose=verbose, + return_tensors=return_tensors, + **kwargs, + ) + else: + text_encoding = None + + if text_encoding is not None: + encoding_image_processor.update(text_encoding) + + return encoding_image_processor + + # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please + refer to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to + the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @property + # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names + def model_input_names(self): + tokenizer_input_names = self.tokenizer.model_input_names + image_processor_input_names = self.image_processor.model_input_names + return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/configuration_jukebox.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/configuration_jukebox.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..741fe9a131e57e8f2532f0b8cdf7b368375dba61 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/configuration_jukebox.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/modeling_jukebox.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/modeling_jukebox.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0fb6863ed67b18b42af75eaaf9baf6774f1cb741 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/modeling_jukebox.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..8b395b31d8be19c169cf0f535b0aabc9798dbd6b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__init__.py @@ -0,0 +1,86 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = { + "configuration_pix2struct": [ + "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "Pix2StructConfig", + "Pix2StructTextConfig", + "Pix2StructVisionConfig", + ], + "processing_pix2struct": ["Pix2StructProcessor"], +} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["image_processing_pix2struct"] = ["Pix2StructImageProcessor"] + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_pix2struct"] = [ + "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", + "Pix2StructPreTrainedModel", + "Pix2StructForConditionalGeneration", + "Pix2StructVisionModel", + "Pix2StructTextModel", + ] + +if TYPE_CHECKING: + from .configuration_pix2struct import ( + PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, + Pix2StructConfig, + Pix2StructTextConfig, + Pix2StructVisionConfig, + ) + from .processing_pix2struct import Pix2StructProcessor + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .image_processing_pix2struct import Pix2StructImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_pix2struct import ( + PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, + Pix2StructForConditionalGeneration, + Pix2StructPreTrainedModel, + Pix2StructTextModel, + Pix2StructVisionModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..67d762adba711b7055b594a6e57471c0a2795364 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/configuration_pix2struct.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/configuration_pix2struct.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1a3881011036f75ee7dcb7e42be8af4b5ae5fc8b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/configuration_pix2struct.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/image_processing_pix2struct.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/image_processing_pix2struct.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..018bfc3ec1a00cb6b51be1a62a812097caa47550 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/image_processing_pix2struct.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/modeling_pix2struct.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/modeling_pix2struct.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c927e08c5387e997608cad6ae26b4b9b61eddca Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/modeling_pix2struct.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/processing_pix2struct.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/processing_pix2struct.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..85561029e692529b59207d4828c58f985182be2c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/processing_pix2struct.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/configuration_pix2struct.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/configuration_pix2struct.py new file mode 100644 index 0000000000000000000000000000000000000000..12bf998d58c00a46a651e5ff5b06d19364253ecf --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/configuration_pix2struct.py @@ -0,0 +1,387 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Pix2Struct model configuration""" + +import os +from typing import Union + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class Pix2StructTextConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate + a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by + the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 50244): + Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be + represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + d_kv (`int`, *optional*, defaults to 64): + Dimensionality of the key, query, value projections in each attention head. + d_ff (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + num_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + relative_attention_num_buckets (`int`, *optional*, defaults to 32): + The number of buckets to use for each attention layer. + relative_attention_max_distance (`int`, *optional*, defaults to 128): + The maximum distance of the longer sequences for the bucket separation. + dropout_rate (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + layer_norm_epsilon (`float`, *optional*, defaults to 1e-6): + The epsilon used by the layer normalization layers. + initializer_factor (`float`, *optional*, defaults to 1.0): + A factor for initializing all weight matrices (should be kept to 1, used internally for initialization + testing). + dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`): + The non-linear activation function (function or string). + decoder_start_token_id (`int`, *optional*, defaults to 0): + The id of the `decoder_start_token_id` token. + use_cache (`bool`, *optional*, defaults to `False`): + Whether or not the model should return the last key/values attentions (not used by all models). + pad_token_id (`int`, *optional*, defaults to 0): + The id of the `padding` token. + eos_token_id (`int`, *optional*, defaults to 1): + The id of the `end-of-sequence` token. + + Example: + + ```python + >>> from transformers import Pix2StructTextConfig, Pix2StructTextModel + + >>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration + >>> configuration = Pix2StructTextConfig() + + >>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration + >>> model = Pix2StructTextModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "pix2struct_text_model" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = { + "hidden_size": "hidden_size", + "num_attention_heads": "num_heads", + "num_hidden_layers": "num_layers", + } + + def __init__( + self, + vocab_size=50244, + hidden_size=768, + d_kv=64, + d_ff=2048, + num_layers=12, + num_heads=12, + relative_attention_num_buckets=32, + relative_attention_max_distance=128, + dropout_rate=0.1, + layer_norm_epsilon=1e-6, + initializer_factor=1.0, + dense_act_fn="gelu_new", + decoder_start_token_id=0, + use_cache=False, + pad_token_id=0, + eos_token_id=1, + tie_word_embeddings=False, + is_decoder=True, + **kwargs, + ): + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.d_kv = d_kv + self.d_ff = d_ff + self.num_layers = num_layers + self.num_heads = num_heads + self.relative_attention_num_buckets = relative_attention_num_buckets + self.relative_attention_max_distance = relative_attention_max_distance + self.dropout_rate = dropout_rate + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_factor = initializer_factor + self.use_cache = use_cache + + self.eos_token_id = eos_token_id + self.decoder_start_token_id = decoder_start_token_id + + # for backwards compatibility + self.dense_act_fn = dense_act_fn + + super().__init__( + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + decoder_start_token_id=decoder_start_token_id, + tie_word_embeddings=tie_word_embeddings, + is_decoder=is_decoder, + **kwargs, + ) + + @classmethod + def from_pretrained( + cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs + ) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs) + + # get the text config dict if we are loading from Pix2StructConfig + if config_dict.get("model_type") == "pix2struct": + config_dict = config_dict["text_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class Pix2StructVisionConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to + instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture. + Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base + [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + patch_embed_hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the input patch_embedding layer in the Transformer encoder. + d_ff (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + d_kv (`int`, *optional*, defaults to 64): + Dimensionality of the key, query, value projections per attention head. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + dropout_rate (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 1e-10): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + initializer_factor (`float`, *optional*, defaults to 1.0): + A factor for initializing all weight matrices (should be kept to 1, used internally for initialization + testing). + seq_len (`int`, *optional*, defaults to 4096): + Maximum sequence length (here number of patches) supported by the model. + relative_attention_num_buckets (`int`, *optional*, defaults to 32): + The number of buckets to use for each attention layer. + relative_attention_max_distance (`int`, *optional*, defaults to 128): + The maximum distance (in tokens) to use for each attention layer. + + Example: + + ```python + >>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel + + >>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration + >>> configuration = Pix2StructVisionConfig() + + >>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration + >>> model = Pix2StructVisionModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "pix2struct_vision_model" + + def __init__( + self, + hidden_size=768, + patch_embed_hidden_size=768, + d_ff=2048, + d_kv=64, + num_hidden_layers=12, + num_attention_heads=12, + dense_act_fn="gelu_new", + layer_norm_eps=1e-6, + dropout_rate=0.0, + attention_dropout=0.0, + initializer_range=1e-10, + initializer_factor=1.0, + seq_len=4096, + relative_attention_num_buckets=32, + relative_attention_max_distance=128, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.patch_embed_hidden_size = patch_embed_hidden_size + self.d_ff = d_ff + self.dropout_rate = dropout_rate + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.initializer_range = initializer_range + self.initializer_factor = initializer_factor + self.attention_dropout = attention_dropout + self.layer_norm_eps = layer_norm_eps + self.dense_act_fn = dense_act_fn + self.seq_len = seq_len + self.relative_attention_num_buckets = relative_attention_num_buckets + self.relative_attention_max_distance = relative_attention_max_distance + self.d_kv = d_kv + + @classmethod + def from_pretrained( + cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs + ) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs) + + # get the vision config dict if we are loading from Pix2StructConfig + if config_dict.get("model_type") == "pix2struct": + config_dict = config_dict["vision_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class Pix2StructConfig(PretrainedConfig): + r""" + [`Pix2StructConfig`] is the configuration class to store the configuration of a + [`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified + arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will + yield a similar configuration to that of the Pix2Struct-base + [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + text_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`Pix2StructTextConfig`]. + vision_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`]. + initializer_factor (`float`, *optional*, defaults to 1.0): + Factor to multiply the initialization range with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + is_vqa (`bool`, *optional*, defaults to `False`): + Whether the model has been fine-tuned for VQA or not. + kwargs (*optional*): + Dictionary of keyword arguments. + + Example: + + ```python + >>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration + + >>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration + >>> configuration = Pix2StructConfig() + + >>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration + >>> model = Pix2StructForConditionalGeneration(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + + >>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig + + >>> # Initializing a Pix2Struct text and Pix2Struct vision configuration + >>> config_text = Pix2StructTextConfig() + >>> config_vision = Pix2StructVisionConfig() + + >>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision) + ```""" + + model_type = "pix2struct" + + def __init__( + self, + text_config=None, + vision_config=None, + initializer_factor=1.0, + initializer_range=0.02, + is_vqa=False, + tie_word_embeddings=False, + is_encoder_decoder=True, + **kwargs, + ): + super().__init__(tie_word_embeddings=tie_word_embeddings, is_encoder_decoder=is_encoder_decoder, **kwargs) + + if text_config is None: + text_config = {} + logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values.") + + if vision_config is None: + vision_config = {} + logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.") + + self.text_config = Pix2StructTextConfig(**text_config) + self.vision_config = Pix2StructVisionConfig(**vision_config) + + self.decoder_start_token_id = self.text_config.decoder_start_token_id + self.pad_token_id = self.text_config.pad_token_id + self.eos_token_id = self.text_config.eos_token_id + + self.initializer_factor = initializer_factor + self.initializer_range = initializer_range + + self.text_config.initializer_range = self.initializer_range + self.vision_config.initializer_range = self.initializer_range + + self.is_vqa = is_vqa + + @classmethod + def from_text_vision_configs( + cls, text_config: Pix2StructTextConfig, vision_config: Pix2StructVisionConfig, **kwargs + ): + r""" + Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct + vision model configuration. + + Returns: + [`Pix2StructConfig`]: An instance of a configuration object + """ + + return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..457c2236694ad1367fada658a10905400e537da1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py @@ -0,0 +1,155 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +import os +import re + +import torch +from flax.traverse_util import flatten_dict +from t5x import checkpoints + +from transformers import ( + AutoTokenizer, + Pix2StructConfig, + Pix2StructForConditionalGeneration, + Pix2StructImageProcessor, + Pix2StructProcessor, + Pix2StructTextConfig, + Pix2StructVisionConfig, +) + + +def get_flax_param(t5x_checkpoint_path): + flax_params = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path) + flax_params = flatten_dict(flax_params) + return flax_params + + +def rename_and_convert_flax_params(flax_dict): + converted_dict = {} + + CONVERSION_MAPPING = { + "token_embedder": "embeddings", + "encoder_norm": "layernorm", + "kernel": "weight", + ".out": ".output", + "scale": "weight", + "embedders_0.pos_embedding": "row_embedder.weight", + "embedders_1.pos_embedding": "column_embedder.weight", + } + + DECODER_CONVERSION_MAPPING = { + "query": "attention.query", + "key": "attention.key", + "value": "attention.value", + "output.dense": "output", + "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", + "pre_self_attention_layer_norm": "self_attention.layer_norm", + "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", + "mlp.": "mlp.DenseReluDense.", + "pre_mlp_layer_norm": "mlp.layer_norm", + "self_attention.o": "self_attention.attention.o", + "decoder.embeddings.embedding": "decoder.embed_tokens.weight", + "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", + "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", + "decoder.logits_dense.weight": "decoder.lm_head.weight", + } + + for key in flax_dict.keys(): + if "target" in key: + # remove the first prefix from the key + new_key = ".".join(key[1:]) + + # rename the key + for old, new in CONVERSION_MAPPING.items(): + new_key = new_key.replace(old, new) + + if "decoder" in new_key: + for old, new in DECODER_CONVERSION_MAPPING.items(): + new_key = new_key.replace(old, new) + + if "layers" in new_key and "decoder" not in new_key: + # use regex to replace the layer number + new_key = re.sub(r"layers_(\d+)", r"layer.\1", new_key) + new_key = new_key.replace("encoder", "encoder.encoder") + + elif "layers" in new_key and "decoder" in new_key: + # use regex to replace the layer number + new_key = re.sub(r"layers_(\d+)", r"layer.\1", new_key) + + converted_dict[new_key] = flax_dict[key] + + converted_torch_dict = {} + # convert converted_dict into torch format + for key in converted_dict.keys(): + if ("embed_tokens" not in key) and ("embedder" not in key): + converted_torch_dict[key] = torch.from_numpy(converted_dict[key].T) + else: + converted_torch_dict[key] = torch.from_numpy(converted_dict[key]) + + return converted_torch_dict + + +def convert_pix2struct_original_pytorch_checkpoint_to_hf( + t5x_checkpoint_path, pytorch_dump_folder_path, use_large=False, is_vqa=False +): + flax_params = get_flax_param(t5x_checkpoint_path) + + if not use_large: + encoder_config = Pix2StructVisionConfig() + decoder_config = Pix2StructTextConfig() + else: + encoder_config = Pix2StructVisionConfig( + hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18 + ) + decoder_config = Pix2StructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18) + config = Pix2StructConfig( + vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=is_vqa + ) + + model = Pix2StructForConditionalGeneration(config) + + torch_params = rename_and_convert_flax_params(flax_params) + model.load_state_dict(torch_params) + + tok = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer") + image_processor = Pix2StructImageProcessor() + processor = Pix2StructProcessor(image_processor=image_processor, tokenizer=tok) + + if use_large: + processor.image_processor.max_patches = 4096 + + processor.image_processor.is_vqa = True + + # mkdir if needed + os.makedirs(pytorch_dump_folder_path, exist_ok=True) + + model.save_pretrained(pytorch_dump_folder_path) + processor.save_pretrained(pytorch_dump_folder_path) + + print("Model saved in {}".format(pytorch_dump_folder_path)) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument("--use_large", action="store_true", help="Use large model.") + parser.add_argument("--is_vqa", action="store_true", help="Use large model.") + args = parser.parse_args() + + convert_pix2struct_original_pytorch_checkpoint_to_hf( + args.t5x_checkpoint_path, args.pytorch_dump_folder_path, args.use_large + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/image_processing_pix2struct.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/image_processing_pix2struct.py new file mode 100644 index 0000000000000000000000000000000000000000..945708d69a8a5077a19e6bcccdf407dca73b4c48 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/image_processing_pix2struct.py @@ -0,0 +1,460 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for Pix2Struct.""" +import io +import math +from typing import Dict, Optional, Union + +import numpy as np +from huggingface_hub import hf_hub_download + +from ...image_processing_utils import BaseImageProcessor, BatchFeature +from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image +from ...image_utils import ( + ChannelDimension, + ImageInput, + get_image_size, + infer_channel_dimension_format, + make_list_of_images, + to_numpy_array, + valid_images, +) +from ...utils import TensorType, is_torch_available, is_vision_available, logging +from ...utils.import_utils import requires_backends + + +if is_vision_available(): + import textwrap + + from PIL import Image, ImageDraw, ImageFont + +if is_torch_available(): + import torch + +logger = logging.get_logger(__name__) +DEFAULT_FONT_PATH = "ybelkada/fonts" + + +# adapted from: https://discuss.pytorch.org/t/tf-image-extract-patches-in-pytorch/171409/2 +def torch_extract_patches(image_tensor, patch_height, patch_width): + """ + Utiliy function to extract patches from a given image tensor. Returns a tensor of shape (1, `patch_height`, + `patch_width`, `num_channels`x `patch_height` x `patch_width`) + + Args: + image_tensor (torch.Tensor): + The image tensor to extract patches from. + patch_height (int): + The height of the patches to extract. + patch_width (int): + The width of the patches to extract. + """ + requires_backends(torch_extract_patches, ["torch"]) + + image_tensor = image_tensor.unsqueeze(0) + patches = torch.nn.functional.unfold(image_tensor, (patch_height, patch_width), stride=(patch_height, patch_width)) + patches = patches.reshape(image_tensor.size(0), image_tensor.size(1), patch_height, patch_width, -1) + patches = patches.permute(0, 4, 2, 3, 1).reshape( + image_tensor.size(2) // patch_height, + image_tensor.size(3) // patch_width, + image_tensor.size(1) * patch_height * patch_width, + ) + return patches.unsqueeze(0) + + +# Adapted from https://github.com/google-research/pix2struct/blob/0e1779af0f4db4b652c1d92b3bbd2550a7399123/pix2struct/preprocessing/preprocessing_utils.py#L106 +def render_text( + text: str, + text_size: int = 36, + text_color: str = "black", + background_color: str = "white", + left_padding: int = 5, + right_padding: int = 5, + top_padding: int = 5, + bottom_padding: int = 5, + font_bytes: Optional[bytes] = None, + font_path: Optional[str] = None, +) -> Image.Image: + """ + Render text. This script is entirely adapted from the original script that can be found here: + https://github.com/google-research/pix2struct/blob/main/pix2struct/preprocessing/preprocessing_utils.py + + Args: + text (`str`, *optional*, defaults to ): + Text to render. + text_size (`int`, *optional*, defaults to 36): + Size of the text. + text_color (`str`, *optional*, defaults to `"black"`): + Color of the text. + background_color (`str`, *optional*, defaults to `"white"`): + Color of the background. + left_padding (`int`, *optional*, defaults to 5): + Padding on the left. + right_padding (`int`, *optional*, defaults to 5): + Padding on the right. + top_padding (`int`, *optional*, defaults to 5): + Padding on the top. + bottom_padding (`int`, *optional*, defaults to 5): + Padding on the bottom. + font_bytes (`bytes`, *optional*): + Bytes of the font to use. If `None`, the default font will be used. + font_path (`str`, *optional*): + Path to the font to use. If `None`, the default font will be used. + """ + requires_backends(render_text, "vision") + # Add new lines so that each line is no more than 80 characters. + + wrapper = textwrap.TextWrapper(width=80) + lines = wrapper.wrap(text=text) + wrapped_text = "\n".join(lines) + + if font_bytes is not None and font_path is None: + font = io.BytesIO(font_bytes) + elif font_path is not None: + font = font_path + else: + font = hf_hub_download(DEFAULT_FONT_PATH, "Arial.TTF") + font = ImageFont.truetype(font, encoding="UTF-8", size=text_size) + + # Use a temporary canvas to determine the width and height in pixels when + # rendering the text. + temp_draw = ImageDraw.Draw(Image.new("RGB", (1, 1), background_color)) + _, _, text_width, text_height = temp_draw.textbbox((0, 0), wrapped_text, font) + + # Create the actual image with a bit of padding around the text. + image_width = text_width + left_padding + right_padding + image_height = text_height + top_padding + bottom_padding + image = Image.new("RGB", (image_width, image_height), background_color) + draw = ImageDraw.Draw(image) + draw.text(xy=(left_padding, top_padding), text=wrapped_text, fill=text_color, font=font) + return image + + +# Adapted from https://github.com/google-research/pix2struct/blob/0e1779af0f4db4b652c1d92b3bbd2550a7399123/pix2struct/preprocessing/preprocessing_utils.py#L87 +def render_header( + image: np.ndarray, header: str, input_data_format: Optional[Union[str, ChildProcessError]] = None, **kwargs +): + """ + Renders the input text as a header on the input image. + + Args: + image (`np.ndarray`): + The image to render the header on. + header (`str`): + The header text. + data_format (`Union[ChannelDimension, str]`, *optional*): + The data format of the image. Can be either "ChannelDimension.channels_first" or + "ChannelDimension.channels_last". + + Returns: + `np.ndarray`: The image with the header rendered. + """ + requires_backends(render_header, "vision") + + # Convert to PIL image if necessary + image = to_pil_image(image, input_data_format=input_data_format) + + header_image = render_text(header, **kwargs) + new_width = max(header_image.width, image.width) + + new_height = int(image.height * (new_width / image.width)) + new_header_height = int(header_image.height * (new_width / header_image.width)) + + new_image = Image.new("RGB", (new_width, new_height + new_header_height), "white") + new_image.paste(header_image.resize((new_width, new_header_height)), (0, 0)) + new_image.paste(image.resize((new_width, new_height)), (0, new_header_height)) + + # Convert back to the original framework if necessary + new_image = to_numpy_array(new_image) + + if infer_channel_dimension_format(new_image) == ChannelDimension.LAST: + new_image = to_channel_dimension_format(new_image, ChannelDimension.LAST) + + return new_image + + +class Pix2StructImageProcessor(BaseImageProcessor): + r""" + Constructs a Pix2Struct image processor. + + Args: + do_convert_rgb (`bool`, *optional*, defaults to `True`): + Whether to convert the image to RGB. + do_normalize (`bool`, *optional*, defaults to `True`): + Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` + method. According to Pix2Struct paper and code, the image is normalized with its own mean and standard + deviation. + patch_size (`Dict[str, int]`, *optional*, defaults to `{"height": 16, "width": 16}`): + The patch size to use for the image. According to Pix2Struct paper and code, the patch size is 16x16. + max_patches (`int`, *optional*, defaults to 2048): + The maximum number of patches to extract from the image as per the [Pix2Struct + paper](https://arxiv.org/pdf/2210.03347.pdf). + is_vqa (`bool`, *optional*, defaults to `False`): + Whether or not the image processor is for the VQA task. If `True` and `header_text` is passed in, text is + rendered onto the input images. + """ + + model_input_names = ["flattened_patches"] + + def __init__( + self, + do_convert_rgb: bool = True, + do_normalize: bool = True, + patch_size: Dict[str, int] = None, + max_patches: int = 2048, + is_vqa: bool = False, + **kwargs, + ) -> None: + super().__init__(**kwargs) + self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16} + self.do_normalize = do_normalize + self.do_convert_rgb = do_convert_rgb + self.max_patches = max_patches + self.is_vqa = is_vqa + + def extract_flattened_patches( + self, + image: np.ndarray, + max_patches: int, + patch_size: dict, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Extract flattened patches from an image. + + Args: + image (`np.ndarray`): + Image to extract flattened patches from. + max_patches (`int`): + Maximum number of patches to extract. + patch_size (`dict`): + Dictionary containing the patch height and width. + + Returns: + result (`np.ndarray`): + A sequence of `max_patches` flattened patches. + """ + requires_backends(self.extract_flattened_patches, "torch") + + # convert to torch + image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format) + image = torch.from_numpy(image) + + patch_height, patch_width = patch_size["height"], patch_size["width"] + image_height, image_width = get_image_size(image, ChannelDimension.FIRST) + + # maximize scale s.t. + scale = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) + num_feasible_rows = max(min(math.floor(scale * image_height / patch_height), max_patches), 1) + num_feasible_cols = max(min(math.floor(scale * image_width / patch_width), max_patches), 1) + resized_height = max(num_feasible_rows * patch_height, 1) + resized_width = max(num_feasible_cols * patch_width, 1) + + image = torch.nn.functional.interpolate( + image.unsqueeze(0), + size=(resized_height, resized_width), + mode="bilinear", + align_corners=False, + antialias=True, + ).squeeze(0) + + # [1, rows, columns, patch_height * patch_width * image_channels] + patches = torch_extract_patches(image, patch_height, patch_width) + + patches_shape = patches.shape + rows = patches_shape[1] + columns = patches_shape[2] + depth = patches_shape[3] + + # [rows * columns, patch_height * patch_width * image_channels] + patches = patches.reshape([rows * columns, depth]) + + # [rows * columns, 1] + row_ids = torch.arange(rows).reshape([rows, 1]).repeat(1, columns).reshape([rows * columns, 1]) + col_ids = torch.arange(columns).reshape([1, columns]).repeat(rows, 1).reshape([rows * columns, 1]) + + # Offset by 1 so the ids do not contain zeros, which represent padding. + row_ids += 1 + col_ids += 1 + + # Prepare additional patch features. + # [rows * columns, 1] + row_ids = row_ids.to(torch.float32) + col_ids = col_ids.to(torch.float32) + + # [rows * columns, 2 + patch_height * patch_width * image_channels] + result = torch.cat([row_ids, col_ids, patches], -1) + + # [max_patches, 2 + patch_height * patch_width * image_channels] + result = torch.nn.functional.pad(result, [0, 0, 0, max_patches - (rows * columns)]).float() + + result = to_numpy_array(result) + + return result + + def normalize( + self, + image: np.ndarray, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Normalize an image. image = (image - image_mean) / image_std. + + The image std is to mimic the tensorflow implementation of the `per_image_standardization`: + https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization + + Args: + image (`np.ndarray`): + Image to normalize. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + if image.dtype == np.uint8: + image = image.astype(np.float32) + + # take mean across the whole `image` + mean = np.mean(image) + std = np.std(image) + adjusted_stddev = max(std, 1.0 / math.sqrt(np.prod(image.shape))) + + return normalize( + image, + mean=mean, + std=adjusted_stddev, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def preprocess( + self, + images: ImageInput, + header_text: Optional[str] = None, + do_convert_rgb: bool = None, + do_normalize: Optional[bool] = None, + max_patches: Optional[int] = None, + patch_size: Optional[Dict[str, int]] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: ChannelDimension = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> ImageInput: + """ + Preprocess an image or batch of images. The processor first computes the maximum possible number of + aspect-ratio preserving patches of size `patch_size` that can be extracted from the image. It then pads the + image with zeros to make the image respect the constraint of `max_patches`. Before extracting the patches the + images are standardized following the tensorflow implementation of `per_image_standardization` + (https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization). + + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images. + header_text (`Union[List[str], str]`, *optional*): + Text to render as a header. Only has an effect if `image_processor.is_vqa` is `True`. + do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): + Whether to convert the image to RGB. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + max_patches (`int`, *optional*, defaults to `self.max_patches`): + Maximum number of patches to extract. + patch_size (`dict`, *optional*, defaults to `self.patch_size`): + Dictionary containing the patch height and width. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb + patch_size = patch_size if patch_size is not None else self.patch_size + max_patches = max_patches if max_patches is not None else self.max_patches + is_vqa = self.is_vqa + + if kwargs.get("data_format", None) is not None: + raise ValueError("data_format is not an accepted input as the outputs are ") + + images = make_list_of_images(images) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + # PIL RGBA images are converted to RGB + if do_convert_rgb: + images = [convert_to_rgb(image) for image in images] + + # All transformations expect numpy arrays. + images = [to_numpy_array(image) for image in images] + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + if is_vqa: + if header_text is None: + raise ValueError("A header text must be provided for VQA models.") + font_bytes = kwargs.pop("font_bytes", None) + font_path = kwargs.pop("font_path", None) + + if isinstance(header_text, str): + header_text = [header_text] * len(images) + + images = [ + render_header(image, header_text[i], font_bytes=font_bytes, font_path=font_path) + for i, image in enumerate(images) + ] + + if do_normalize: + images = [self.normalize(image=image, input_data_format=input_data_format) for image in images] + + # convert to torch tensor and permute + images = [ + self.extract_flattened_patches( + image=image, max_patches=max_patches, patch_size=patch_size, input_data_format=input_data_format + ) + for image in images + ] + + # create attention mask in numpy + attention_masks = [(image.sum(axis=-1) != 0).astype(np.float32) for image in images] + + encoded_outputs = BatchFeature( + data={"flattened_patches": images, "attention_mask": attention_masks}, tensor_type=return_tensors + ) + + return encoded_outputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/modeling_pix2struct.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/modeling_pix2struct.py new file mode 100644 index 0000000000000000000000000000000000000000..e8032fcef6690b4be517561e933f1cb3cf4db60d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/modeling_pix2struct.py @@ -0,0 +1,1786 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. & Google team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Pix2Struct modeling file""" + +import math +from typing import Dict, List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + CausalLMOutputWithCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import ALL_LAYERNORM_LAYERS +from ...utils import ( + DUMMY_INPUTS, + DUMMY_MASK, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_torch_fx_proxy, + logging, + replace_return_docstrings, +) +from .configuration_pix2struct import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "Pix2StructConfig" + + +from ..deprecated._archive_maps import PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Adapted from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pix2Struct +class Pix2StructLayerNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Construct a layernorm module in the T5 style. No bias and no subtraction of mean. + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean + # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated + # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for + # half-precision inputs is done in fp32 + + variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + + # convert into half-precision if necessary + if self.weight.dtype in [torch.float16, torch.bfloat16]: + hidden_states = hidden_states.to(self.weight.dtype) + + return self.weight * hidden_states + + +try: + from apex.normalization import FusedRMSNorm + + Pix2StructLayerNorm = FusedRMSNorm # noqa + + logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pix2StructLayerNorm") +except ImportError: + # using the normal Pix2StructLayerNorm + pass +except Exception: + logger.warning("Discovered apex but it failed to load, falling back to Pix2StructLayerNorm") + pass + +ALL_LAYERNORM_LAYERS.append(Pix2StructLayerNorm) + + +class Pix2StructVisionEmbeddings(nn.Module): + r""" + Construct the embeddings from patch. In `Pix2Struct` the input is different from classic Vision-transformer models. + Here the input is a sequence of `seq_len` flattened patches that also combines padding patches (tokens). Each patch + is represented by a vector of `hidden_size` values. + """ + + def __init__(self, config: Pix2StructConfig) -> None: + super().__init__() + self.patch_projection = nn.Linear(config.patch_embed_hidden_size, config.hidden_size) + + self.row_embedder = nn.Embedding(config.seq_len, config.hidden_size) + self.column_embedder = nn.Embedding(config.seq_len, config.hidden_size) + + self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, flattened_patches: torch.Tensor) -> torch.Tensor: + # the row and column indices are stored in the first and second position of the flattened_patches + # flattened_patches: `batch_size`, `seq_len`, `hidden_size` + 2 + row_indices = flattened_patches[:, :, 0].long() + col_indices = flattened_patches[:, :, 1].long() + + flattened_patches = flattened_patches[:, :, 2:] + + embeddings = self.patch_projection(flattened_patches) + row_embeddings = self.row_embedder(row_indices) + col_embeddings = self.column_embedder(col_indices) + + # sum all embeddings together + embeddings = embeddings + row_embeddings + col_embeddings + + embeddings = self.dropout(embeddings) + + return embeddings + + +class Pix2StructVisionAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.hidden_size = config.hidden_size + self.key_value_proj_dim = config.d_kv + self.n_heads = config.num_attention_heads + self.dropout = config.attention_dropout + self.inner_dim = self.n_heads * self.key_value_proj_dim + + # Mesh TensorFlow initialization to avoid scaling before softmax + self.query = nn.Linear(self.hidden_size, self.inner_dim, bias=False) + self.key = nn.Linear(self.hidden_size, self.inner_dim, bias=False) + self.value = nn.Linear(self.hidden_size, self.inner_dim, bias=False) + self.output = nn.Linear(self.inner_dim, self.hidden_size, bias=False) + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + output_attentions=False, + ): + """ + Self-attention block + """ + # Input is (batch_size, seq_length, dim) + # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) + # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) + batch_size, seq_length = hidden_states.shape[:2] + + def to_projection_shape(states): + """projection""" + return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) + + # get query states + # (batch_size, n_heads, seq_length, dim_per_head) + query_states = to_projection_shape(self.query(hidden_states)) + + # get key/value states + key_states = to_projection_shape(self.key(hidden_states)) + value_states = to_projection_shape(self.value(hidden_states)) + + # compute scores + # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 + scores = torch.matmul(query_states, key_states.transpose(3, 2)) + + if position_bias is None: + position_bias = torch.zeros( + (1, self.n_heads, seq_length, seq_length), device=scores.device, dtype=scores.dtype + ) + if self.gradient_checkpointing and self.training: + position_bias.requires_grad = True + + if attention_mask is None: + attention_mask = torch.ones((batch_size, seq_length), device=scores.device, dtype=scores.dtype) + + if attention_mask.dim() == 2: + position_bias = position_bias + attention_mask[:, None, None, :].to(position_bias.device) + else: + # (batch_size, n_heads, seq_length, key_length) + position_bias = position_bias + attention_mask.to(position_bias.device) + position_bias = 1 - position_bias + + position_bias_masked = position_bias.masked_fill(position_bias == 1, torch.finfo(scores.dtype).min) + scores += position_bias_masked + scores = torch.max(scores, torch.tensor(torch.finfo(scores.dtype).min)) + + # (batch_size, n_heads, seq_length, key_length) + attn_weights = nn.functional.softmax(scores, dim=-1, dtype=torch.float32).type_as(scores) + + # (batch_size, n_heads, seq_length, key_length) + attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + # Mask heads if we want to + if layer_head_mask is not None: + attn_weights = attn_weights * layer_head_mask + + attn_output = torch.matmul(attn_weights, value_states) + + # (batch_size, seq_length, dim) + attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) + + attn_output = self.output(attn_output) + + outputs = (attn_output,) + (position_bias,) + + if output_attentions: + outputs = outputs + (attn_weights,) + return outputs + + +# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5DenseGatedActDense->Pix2StructVisionMlp,T5Config->Pix2StructVisionConfig,config.d_model->config.hidden_size,dropout_rate->dropout_rate +class Pix2StructVisionMlp(nn.Module): + def __init__(self, config: Pix2StructVisionConfig): + super().__init__() + self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False) + self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False) + self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False) + self.dropout = nn.Dropout(config.dropout_rate) + self.act = ACT2FN[config.dense_act_fn] + + def forward(self, hidden_states): + hidden_gelu = self.act(self.wi_0(hidden_states)) + hidden_linear = self.wi_1(hidden_states) + hidden_states = hidden_gelu * hidden_linear + hidden_states = self.dropout(hidden_states) + + # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. + # See https://github.com/huggingface/transformers/issues/20287 + # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` + if ( + isinstance(self.wo.weight, torch.Tensor) + and hidden_states.dtype != self.wo.weight.dtype + and self.wo.weight.dtype != torch.int8 + ): + hidden_states = hidden_states.to(self.wo.weight.dtype) + + hidden_states = self.wo(hidden_states) + return hidden_states + + +class Pix2StructVisionLayer(nn.Module): + def __init__(self, config: Pix2StructConfig) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = Pix2StructVisionAttention(config) + self.mlp = Pix2StructVisionMlp(config) + self.pre_mlp_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.pre_attention_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + residual = hidden_states + + # in Pix2StructVision, layernorm is applied before self-attention + hidden_states = self.pre_attention_layer_norm(hidden_states) + + self_attention_outputs = self.attention( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = attention_output + residual + + # in Pix2StructVision, layernorm is also applied after self-attention + layer_output = self.pre_mlp_layer_norm(hidden_states) + layer_output = self.mlp(layer_output) + hidden_states # second residual connection + + outputs = (layer_output,) + outputs + + return outputs + + +class Pix2StructVisionEncoder(nn.Module): + def __init__(self, config: Pix2StructConfig) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([Pix2StructVisionLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class Pix2StructPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = Pix2StructConfig + + @property + def dummy_inputs(self): + input_ids = torch.tensor(DUMMY_INPUTS) + input_mask = torch.tensor(DUMMY_MASK) + dummy_inputs = { + "decoder_input_ids": input_ids, + "input_ids": input_ids, + "decoder_attention_mask": input_mask, + } + return dummy_inputs + + def _init_weights(self, module): + """Initialize the weights""" + factor = self.config.initializer_factor # Used for testing weights initialization + if isinstance(module, Pix2StructLayerNorm): + module.weight.data.fill_(factor * 1.0) + elif isinstance(module, Pix2StructTextDenseGatedActDense): + hidden_size = ( + self.config.text_config.hidden_size + if isinstance(self.config, Pix2StructConfig) + else self.config.hidden_size + ) + d_ff = self.config.text_config.d_ff if isinstance(self.config, Pix2StructConfig) else self.config.d_ff + + module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) + if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: + module.wi_0.bias.data.zero_() + module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) + if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: + module.wi_1.bias.data.zero_() + module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5)) + if hasattr(module.wo, "bias") and module.wo.bias is not None: + module.wo.bias.data.zero_() + elif isinstance(module, Pix2StructTextAttention): + # Mesh TensorFlow attention initialization to avoid scaling before softmax + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 + hidden_size = ( + self.config.text_config.hidden_size + if isinstance(self.config, Pix2StructConfig) + else self.config.hidden_size + ) + key_value_proj_dim = ( + self.config.text_config.d_kv if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size + ) + n_heads = ( + self.config.text_config.num_heads + if isinstance(self.config, Pix2StructConfig) + else self.config.num_heads + ) + + module.query.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * key_value_proj_dim) ** -0.5)) + module.key.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5)) + module.value.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5)) + module.output.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) + if module.has_relative_attention_bias: + module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) + elif isinstance(module, nn.Embedding): + hidden_size = ( + self.config.text_config.hidden_size + if isinstance(self.config, Pix2StructConfig) + else self.config.hidden_size + ) + + module.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, Pix2StructTextModel): + hidden_size = ( + self.config.text_config.hidden_size + if isinstance(self.config, Pix2StructConfig) + else self.config.hidden_size + ) + + module.lm_head.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) + elif isinstance(module, (nn.Linear, nn.Conv2d)): + # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid + # `trunc_normal_cpu` not implemented in `half` issues + module.weight.data = nn.init.trunc_normal_( + module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range + ).to(module.weight.dtype) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, Pix2StructLayerNorm): + if module.weight is not None: + module.weight.data.fill_(1.0) + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->Pix2Struct + def _shift_right(self, input_ids): + decoder_start_token_id = self.config.decoder_start_token_id + pad_token_id = self.config.pad_token_id + + if decoder_start_token_id is None: + raise ValueError( + "self.model.config.decoder_start_token_id has to be defined. In Pix2Struct it is usually set to the pad_token_id. " + "See Pix2Struct docs for more information." + ) + + # shift inputs to the right + if is_torch_fx_proxy(input_ids): + # Item assignment is not supported natively for proxies. + shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) + shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) + else: + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() + shifted_input_ids[..., 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +PIX2STRUCT_VISION_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`Pix2StructConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +PIX2STRUCT_VISION_INPUTS_DOCSTRING = r""" + Args: + flattened_patches (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_channels x patch_height x patch_width)`): + Flattened and padded pixel values. These values can be obtained using [`AutoImageProcessor`]. See + [`Pix2StructVisionImageProcessor.__call__`] for details. Check the [original + paper](https://arxiv.org/abs/2210.03347) (figure 5) for more details. + + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Pix2StructVision Model transformer outputting raw hidden-states without any specific head on top.", + PIX2STRUCT_VISION_START_DOCSTRING, +) +class Pix2StructVisionModel(Pix2StructPreTrainedModel): + config_class = Pix2StructVisionConfig + main_input_name = "flattened_patches" + supports_gradient_checkpointing = True + _no_split_modules = ["Pix2StructVisionLayer"] + + def __init__(self, config: Pix2StructConfig): + super().__init__(config) + self.config = config + + self.embeddings = Pix2StructVisionEmbeddings(config) + self.encoder = Pix2StructVisionEncoder(config) + + self.layernorm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.patch_projection + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(PIX2STRUCT_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) + def forward( + self, + flattened_patches: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Example: + + ```python + >>> import requests + >>> from PIL import Image + >>> from transformers import AutoProcessor, Pix2StructVisionModel + + >>> image_processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") + >>> model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base") + + >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> with torch.no_grad(): + ... outputs = model(**inputs) + + >>> last_hidden_states = outputs.last_hidden_state + >>> list(last_hidden_states.shape) + [1, 2048, 768] + ``` + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if flattened_patches is None: + raise ValueError("You have to specify flattened_patches") + + if attention_mask is None: + # check where `flattened_patches` is not 0 + attention_mask = (flattened_patches.sum(dim=-1) != 0).float() + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings(flattened_patches) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + + if not return_dict: + head_outputs = (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return BaseModelOutput( + last_hidden_state=sequence_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pix2StructText,d_model->hidden_size +class Pix2StructTextDenseGatedActDense(nn.Module): + def __init__(self, config: Pix2StructTextConfig): + super().__init__() + self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False) + self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False) + self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False) + self.dropout = nn.Dropout(config.dropout_rate) + self.act = ACT2FN[config.dense_act_fn] + + def forward(self, hidden_states): + hidden_gelu = self.act(self.wi_0(hidden_states)) + hidden_linear = self.wi_1(hidden_states) + hidden_states = hidden_gelu * hidden_linear + hidden_states = self.dropout(hidden_states) + + # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. + # See https://github.com/huggingface/transformers/issues/20287 + # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` + if ( + isinstance(self.wo.weight, torch.Tensor) + and hidden_states.dtype != self.wo.weight.dtype + and self.wo.weight.dtype != torch.int8 + ): + hidden_states = hidden_states.to(self.wo.weight.dtype) + + hidden_states = self.wo(hidden_states) + return hidden_states + + +class Pix2StructTextLayerFF(nn.Module): + def __init__(self, config: Pix2StructTextConfig): + super().__init__() + self.DenseReluDense = Pix2StructTextDenseGatedActDense(config) + + self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + # Copied from transformers.models.t5.modeling_t5.T5LayerFF.forward + def forward(self, hidden_states): + forwarded_states = self.layer_norm(hidden_states) + forwarded_states = self.DenseReluDense(forwarded_states) + hidden_states = hidden_states + self.dropout(forwarded_states) + return hidden_states + + +class Pix2StructTextAttention(nn.Module): + def __init__(self, config: Pix2StructTextConfig, has_relative_attention_bias=False): + super().__init__() + self.has_relative_attention_bias = has_relative_attention_bias + self.relative_attention_num_buckets = config.relative_attention_num_buckets + self.relative_attention_max_distance = config.relative_attention_max_distance + self.hidden_size = config.hidden_size + self.key_value_proj_dim = config.d_kv + self.n_heads = config.num_heads + self.dropout = config.dropout_rate + self.inner_dim = self.n_heads * self.key_value_proj_dim + + # Mesh TensorFlow initialization to avoid scaling before softmax + self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False) + self.key = nn.Linear(self.hidden_size, self.hidden_size, bias=False) + self.value = nn.Linear(self.hidden_size, self.hidden_size, bias=False) + self.output = nn.Linear(self.hidden_size, self.hidden_size, bias=False) + + if self.has_relative_attention_bias: + self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) + self.pruned_heads = set() + self.gradient_checkpointing = False + + @staticmethod + # Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """ + Adapted from Mesh Tensorflow: + https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + + Args: + relative_position: an int32 Tensor + bidirectional: a boolean - whether the attention is bidirectional + num_buckets: an integer + max_distance: an integer + + Returns: + a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) + """ + relative_buckets = 0 + if bidirectional: + num_buckets //= 2 + relative_buckets += (relative_position > 0).to(torch.long) * num_buckets + relative_position = torch.abs(relative_position) + else: + relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) + # now relative_position is in the range [0, inf) + + # half of the buckets are for exact increments in positions + max_exact = num_buckets // 2 + is_small = relative_position < max_exact + + # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance + relative_position_if_large = max_exact + ( + torch.log(relative_position.float() / max_exact) + / math.log(max_distance / max_exact) + * (num_buckets - max_exact) + ).to(torch.long) + relative_position_if_large = torch.min( + relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) + ) + + relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) + return relative_buckets + + # Adapted from transformers.models.t5.modeling_t5.T5Attention.compute_bias + def compute_bias(self, query_length, key_length, device=None): + """Compute binned relative position bias""" + if device is None: + device = self.relative_attention_bias.weight.device + context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] + memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] + relative_position = memory_position - context_position # shape (query_length, key_length) + relative_position_bucket = self._relative_position_bucket( + relative_position, # shape (query_length, key_length) + bidirectional=False, + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) + values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) + return values + + def forward( + self, + hidden_states, + mask=None, + key_value_states=None, + position_bias=None, + past_key_value=None, + layer_head_mask=None, + query_length=None, + use_cache=False, + output_attentions=False, + ): + """ + Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). + """ + # Input is (batch_size, seq_length, dim) + # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) + # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) + batch_size, seq_length = hidden_states.shape[:2] + + real_seq_length = seq_length + + if past_key_value is not None: + if len(past_key_value) != 2: + raise ValueError( + f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" + ) + real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length + + key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] + + def to_projection_shape(states): + """projection""" + return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) + + def project(hidden_states, proj_layer, key_value_states, past_key_value): + """projects hidden states correctly to key/query states""" + if key_value_states is None: + # self-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = to_projection_shape(proj_layer(hidden_states)) + elif past_key_value is None: + # cross-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = to_projection_shape(proj_layer(key_value_states)) + + if past_key_value is not None: + if key_value_states is None: + # self-attn + # (batch_size, n_heads, key_length, dim_per_head) + hidden_states = torch.cat([past_key_value, hidden_states], dim=2) + elif past_key_value.shape[2] != key_value_states.shape[1]: + # checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + # cross-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = to_projection_shape(proj_layer(key_value_states)) + else: + # cross-attn + hidden_states = past_key_value + return hidden_states + + # get query states + # (batch_size, n_heads, seq_length, dim_per_head) + query_states = to_projection_shape(self.query(hidden_states)) + + # get key/value states + key_states = project( + hidden_states, self.key, key_value_states, past_key_value[0] if past_key_value is not None else None + ) + value_states = project( + hidden_states, self.value, key_value_states, past_key_value[1] if past_key_value is not None else None + ) + + # compute scores + scores = torch.matmul( + query_states, key_states.transpose(3, 2) + ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 + + if position_bias is None: + if not self.has_relative_attention_bias: + position_bias = torch.zeros( + (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype + ) + if self.gradient_checkpointing and self.training: + position_bias.requires_grad = True + else: + position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) + + # if key and values are already calculated + # we want only the last query position bias + if past_key_value is not None: + position_bias = position_bias[:, :, -hidden_states.size(1) :, :] + + if mask is not None: + position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) + + if self.pruned_heads: + mask = torch.ones(position_bias.shape[1]) + mask[list(self.pruned_heads)] = 0 + position_bias_masked = position_bias[:, mask.bool()] + else: + position_bias_masked = position_bias + + scores += position_bias_masked + # (batch_size, n_heads, seq_length, key_length) + attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) + + # (batch_size, n_heads, seq_length, key_length) + attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + # Mask heads if we want to + if layer_head_mask is not None: + attn_weights = attn_weights * layer_head_mask + + attn_output = torch.matmul(attn_weights, value_states) + # (batch_size, seq_length, dim) + attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) + + attn_output = self.output(attn_output) + + present_key_value_state = (key_states, value_states) if use_cache else None + outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + + if output_attentions: + outputs = outputs + (attn_weights,) + return outputs + + +# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.SelfAttention->self.attention,config.d_model->config.hidden_size +class Pix2StructTextLayerSelfAttention(nn.Module): + def __init__(self, config, has_relative_attention_bias=False): + super().__init__() + self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=has_relative_attention_bias) + self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward( + self, + hidden_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + past_key_value=None, + use_cache=False, + output_attentions=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.attention( + normed_hidden_states, + mask=attention_mask, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states = hidden_states + self.dropout(attention_output[0]) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.EncDecAttention->self.attention,config.d_model->config.hidden_size +class Pix2StructTextLayerCrossAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=False) + self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward( + self, + hidden_states, + key_value_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + past_key_value=None, + use_cache=False, + query_length=None, + output_attentions=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.attention( + normed_hidden_states, + mask=attention_mask, + key_value_states=key_value_states, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + query_length=query_length, + output_attentions=output_attentions, + ) + layer_output = hidden_states + self.dropout(attention_output[0]) + outputs = (layer_output,) + attention_output[1:] # add attentions if we output them + return outputs + + +class Pix2StructTextBlock(nn.Module): + def __init__(self, config, has_relative_attention_bias=False): + super().__init__() + + self.self_attention = Pix2StructTextLayerSelfAttention( + config, has_relative_attention_bias=has_relative_attention_bias + ) + + self.encoder_decoder_attention = Pix2StructTextLayerCrossAttention(config) + + self.mlp = Pix2StructTextLayerFF(config) + + def forward( + self, + hidden_states, + attention_mask=None, + position_bias=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + encoder_decoder_position_bias=None, + layer_head_mask=None, + cross_attn_layer_head_mask=None, + past_key_value=None, + use_cache=False, + output_attentions=False, + return_dict=True, + ): + if past_key_value is not None: + expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 + + if len(past_key_value) != expected_num_past_key_values: + raise ValueError( + f"There should be {expected_num_past_key_values} past states. " + f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" + f"Got {len(past_key_value)} past key / value states" + ) + + self_attn_past_key_value = past_key_value[:2] + cross_attn_past_key_value = past_key_value[2:] + else: + self_attn_past_key_value, cross_attn_past_key_value = None, None + + self_attention_outputs = self.self_attention( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=self_attn_past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states, present_key_value_state = self_attention_outputs[:2] + attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + do_cross_attention = encoder_hidden_states is not None + if do_cross_attention: + # the actual query length is unknown for cross attention + # if using past key value states. Need to inject it here + if present_key_value_state is not None: + query_length = present_key_value_state[0].shape[2] + else: + query_length = None + + cross_attention_outputs = self.encoder_decoder_attention( + hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + position_bias=encoder_decoder_position_bias, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + query_length=query_length, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states = cross_attention_outputs[0] + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + # Combine self attn and cross attn key value states + if present_key_value_state is not None: + present_key_value_state = present_key_value_state + cross_attention_outputs[1] + + # Keep cross-attention outputs and relative position weights + attention_outputs = attention_outputs + cross_attention_outputs[2:] + + # Apply Feed Forward layer + hidden_states = self.mlp(hidden_states) + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if use_cache: + outputs = outputs + (present_key_value_state,) + attention_outputs + else: + outputs = outputs + attention_outputs + + return outputs + + +PIX2STRUCT_START_DOCSTRING = r""" + + The Pix2Struct model was proposed in [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language + Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, + Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. It's an encoder decoder + transformer pre-trained in a image-to-text setting. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config (Union[`Pix2StructConfig`, `Pix2StructTextConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +PIX2STRUCT_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Pix2StructText is a model with relative position + embeddings so you should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + [What are input IDs?](../glossary#input-ids) + + To know more on how to prepare `input_ids` for pretraining take a look a [Pix2StructText + Training](./t5#training). + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText + Training](./t5#training). + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in + `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at + the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +PIX2STRUCT_INPUTS_DOCSTRING = r""" + Args: + flattened_patches (`torch.FloatTensor` of shape `(batch_size, seq_length, hidden_size)`): + Flattened pixel patches. the `hidden_size` is obtained by the following formula: `hidden_size` = + `num_channels` * `patch_size` * `patch_size` + + The process of flattening the pixel patches is done by `Pix2StructProcessor`. + + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText + Training](./t5#training). + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in + `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at + the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss for the decoder. + + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The standalone text decoder of Pix2Struct", + PIX2STRUCT_START_DOCSTRING, +) +class Pix2StructTextModel(Pix2StructPreTrainedModel): + config_class = Pix2StructTextConfig + _no_split_modules = ["Pix2StructTextBlock"] + _tied_weights_keys = ["lm_head.weight"] + supports_gradient_checkpointing = True + + def __init__(self, config): + super().__init__(config) + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) + + self.layer = nn.ModuleList( + [Pix2StructTextBlock(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] + ) + self.final_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + self.gradient_checkpointing = False + + # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._reorder_cache + def _reorder_cache(self, past_key_values, beam_idx): + # if decoder past is not included in output + # speedy decoding is disabled and no need to reorder + if past_key_values is None: + logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") + return past_key_values + + reordered_decoder_past = () + for layer_past_states in past_key_values: + # get the correct batch idx from layer past batch dim + # batch dim of `past` is at 2nd position + reordered_layer_past_states = () + for layer_past_state in layer_past_states: + # need to set correct `past` for each of the four key / value states + reordered_layer_past_states = reordered_layer_past_states + ( + layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), + ) + + if reordered_layer_past_states[0].shape != layer_past_states[0].shape: + raise ValueError( + f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" + ) + if len(reordered_layer_past_states) != len(layer_past_states): + raise ValueError( + f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" + ) + + reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) + return reordered_decoder_past + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, new_embeddings): + self.embed_tokens = new_embeddings + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(PIX2STRUCT_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.LongTensor] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[Tuple[torch.FloatTensor, ...], CausalLMOutputWithCrossAttentions]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoProcessor, Pix2StructTextModel + + >>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") + >>> model = Pix2StructTextModel.from_pretrained("google/pix2struct-textcaps-base") + + >>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + >>> loss = outputs.loss + ``` + """ + use_cache = use_cache if use_cache is not None else self.config.use_cache + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + if inputs_embeds is None: + assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" + inputs_embeds = self.embed_tokens(input_ids) + + batch_size, seq_length = input_shape + + # required mask seq length can be calculated via length of past + mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length + + if attention_mask is None: + attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) + if encoder_attention_mask is None and encoder_hidden_states is not None: + encoder_seq_length = encoder_hidden_states.shape[1] + encoder_attention_mask = torch.ones( + batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long + ) + + # initialize past_key_values with `None` if past does not exist + if past_key_values is None: + past_key_values = [None] * len(self.layer) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + head_mask = self.get_head_mask(head_mask, self.config.num_layers) + cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) + present_key_value_states = () if use_cache else None + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if (output_attentions) else None + position_bias = None + encoder_decoder_position_bias = None + + hidden_states = self.dropout(inputs_embeds) + + for i, (layer_module, past_key_value) in enumerate(zip(self.layer, past_key_values)): + layer_head_mask = head_mask[i] + cross_attn_layer_head_mask = cross_attn_head_mask[i] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + layer_outputs = self._gradient_checkpointing_func( + layer_module.forward, + hidden_states, + extended_attention_mask, + position_bias, + encoder_hidden_states, + encoder_extended_attention_mask, + encoder_decoder_position_bias, + layer_head_mask, + cross_attn_layer_head_mask, + None, # past_key_value is always None with gradient checkpointing + use_cache, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask=extended_attention_mask, + position_bias=position_bias, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + encoder_decoder_position_bias=encoder_decoder_position_bias, + layer_head_mask=layer_head_mask, + cross_attn_layer_head_mask=cross_attn_layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + + # layer_outputs is a tuple with: + # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) + if use_cache is False: + layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] + + hidden_states, present_key_value_state = layer_outputs[:2] + + # We share the position biases between the layers - the first layer store them + # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), + # (cross-attention position bias), (cross-attention weights) + position_bias = layer_outputs[2] + if encoder_hidden_states is not None: + encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] + # append next layer key value states + if use_cache: + present_key_value_states = present_key_value_states + (present_key_value_state,) + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[3],) + if encoder_hidden_states is not None: + all_cross_attentions = all_cross_attentions + (layer_outputs[5],) + + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states) + + logits = self.lm_head(hidden_states) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + loss_fct = nn.CrossEntropyLoss(ignore_index=-100, reduction="mean") + + loss = loss_fct(logits.contiguous().view(-1, logits.size(-1)), labels.contiguous().view(-1)) + + if not return_dict: + return tuple( + v + for v in [ + loss, + logits, + present_key_value_states, + all_hidden_states, + all_attentions, + all_cross_attentions, + ] + if v is not None + ) + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=logits, + past_key_values=present_key_value_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + "A conditional generation model with a language modeling head. Can be used for sequence generation tasks.", + PIX2STRUCT_START_DOCSTRING, +) +class Pix2StructForConditionalGeneration(Pix2StructPreTrainedModel): + config_class = Pix2StructConfig + main_input_name = "flattened_patches" + _tied_weights_keys = ["decoder.lm_head.weight"] + + def __init__(self, config: Pix2StructConfig): + super().__init__(config) + + self.encoder = Pix2StructVisionModel(config.vision_config) + self.decoder = Pix2StructTextModel(config.text_config) + + self.is_vqa = config.is_vqa + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.decoder.get_input_embeddings() + + def set_input_embeddings(self, new_embeddings): + self.decoder.set_input_embeddings(new_embeddings) + + def get_output_embeddings(self) -> nn.Module: + return self.decoder.get_output_embeddings() + + def set_output_embeddings(self, new_embeddings): + self.decoder.set_output_embeddings(new_embeddings) + + def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: + model_embeds = self.decoder.resize_token_embeddings(new_num_tokens) + + # update vocab size + self.config.text_config.vocab_size = new_num_tokens + + return model_embeds + + def get_decoder(self): + return self.decoder + + def get_encoder(self): + return self.encoder + + @add_start_docstrings_to_model_forward(PIX2STRUCT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + flattened_patches: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + labels: Optional[torch.LongTensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: + r""" + Returns: + + Example: + + Inference: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration + + >>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") + >>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base") + + >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor(images=image, return_tensors="pt") + + >>> # autoregressive generation + >>> generated_ids = model.generate(**inputs, max_new_tokens=50) + >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + >>> print(generated_text) + A stop sign is on a street corner. + + >>> # conditional generation + >>> text = "A picture of" + >>> inputs = processor(text=text, images=image, return_tensors="pt", add_special_tokens=False) + + >>> generated_ids = model.generate(**inputs, max_new_tokens=50) + >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + >>> print(generated_text) + A picture of a stop sign with a red stop sign + ``` + + Training: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration + + >>> processor = AutoProcessor.from_pretrained("google/pix2struct-base") + >>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-base") + + >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + >>> text = "A stop sign is on the street corner." + + >>> inputs = processor(images=image, return_tensors="pt") + >>> labels = processor(text=text, return_tensors="pt").input_ids + + >>> # forward pass + >>> outputs = model(**inputs, labels=labels) + >>> loss = outputs.loss + >>> print(f"{loss.item():.5f}") + 5.94282 + ```""" + use_cache = use_cache if use_cache is not None else self.config.text_config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + encoder_outputs = self.encoder( + flattened_patches=flattened_patches, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + hidden_states = encoder_outputs[0] + + if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: + # get decoder inputs from shifting lm labels to the right + decoder_input_ids = self._shift_right(labels) + decoder_attention_mask = ( + decoder_attention_mask + if decoder_attention_mask is not None + else decoder_input_ids.ne(self.config.pad_token_id).float() + ) + # Always attend to the first token + decoder_attention_mask[:, 0] = 1 + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + inputs_embeds=decoder_inputs_embeds, + past_key_values=past_key_values, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + labels=labels, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqLMOutput( + loss=decoder_outputs.loss, + logits=decoder_outputs.logits, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + flattened_patches: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + past_key_values=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + if decoder_attention_mask is None: + decoder_attention_mask = torch.ones_like(input_ids).to(input_ids.device) + + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return { + "flattened_patches": flattened_patches, + "decoder_input_ids": input_ids, + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "attention_mask": attention_mask, + "decoder_attention_mask": decoder_attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, + } diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/processing_pix2struct.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/processing_pix2struct.py new file mode 100644 index 0000000000000000000000000000000000000000..269fa8c62fb205f6e1bfe3e1e528a3f35fc742bd --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/processing_pix2struct.py @@ -0,0 +1,163 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Processor class for Pix2Struct. +""" + +from typing import List, Optional, Union + +from ...processing_utils import ProcessorMixin +from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy +from ...utils import TensorType + + +class Pix2StructProcessor(ProcessorMixin): + r""" + Constructs a PIX2STRUCT processor which wraps a BERT tokenizer and PIX2STRUCT image processor into a single + processor. + + [`Pix2StructProcessor`] offers all the functionalities of [`Pix2StructImageProcessor`] and [`T5TokenizerFast`]. See + the docstring of [`~Pix2StructProcessor.__call__`] and [`~Pix2StructProcessor.decode`] for more information. + + Args: + image_processor (`Pix2StructImageProcessor`): + An instance of [`Pix2StructImageProcessor`]. The image processor is a required input. + tokenizer (Union[`T5TokenizerFast`, `T5Tokenizer`]): + An instance of ['T5TokenizerFast`] or ['T5Tokenizer`]. The tokenizer is a required input. + """ + + attributes = ["image_processor", "tokenizer"] + image_processor_class = "Pix2StructImageProcessor" + tokenizer_class = ("T5Tokenizer", "T5TokenizerFast") + + def __init__(self, image_processor, tokenizer): + tokenizer.return_token_type_ids = False + super().__init__(image_processor, tokenizer) + + def __call__( + self, + images=None, + text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + max_patches: Optional[int] = 2048, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_token_type_ids: bool = False, + return_length: bool = False, + verbose: bool = True, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> BatchEncoding: + """ + This method uses [`Pix2StructImageProcessor.preprocess`] method to prepare image(s) for the model, and + [`T5TokenizerFast.__call__`] to prepare text for the model. + + Please refer to the docstring of the above two methods for more information. + """ + if images is None and text is None: + raise ValueError("You have to specify either images or text.") + + # Get only text + if images is None and not self.image_processor.is_vqa: + self.current_processor = self.tokenizer + text_encoding = self.tokenizer( + text=text, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_token_type_ids=return_token_type_ids, + return_length=return_length, + verbose=verbose, + return_tensors=return_tensors, + **kwargs, + ) + return text_encoding + + if not self.image_processor.is_vqa: + # add pixel_values + encoding_image_processor = self.image_processor( + images, return_tensors=return_tensors, max_patches=max_patches, **kwargs + ) + else: + # add pixel_values and bbox + encoding_image_processor = self.image_processor( + images, return_tensors=return_tensors, max_patches=max_patches, header_text=text, **kwargs + ) + + if text is not None and not self.image_processor.is_vqa: + text_encoding = self.tokenizer( + text=text, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_token_type_ids=return_token_type_ids, + return_length=return_length, + verbose=verbose, + return_tensors=return_tensors, + **kwargs, + ) + + if "attention_mask" in text_encoding: + text_encoding["decoder_attention_mask"] = text_encoding.pop("attention_mask") + if "input_ids" in text_encoding: + text_encoding["decoder_input_ids"] = text_encoding.pop("input_ids") + else: + text_encoding = None + + if text_encoding is not None: + encoding_image_processor.update(text_encoding) + + return encoding_image_processor + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. + Please refer to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please + refer to the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @property + def model_input_names(self): + tokenizer_input_names = self.tokenizer.model_input_names + image_processor_input_names = self.image_processor.model_input_names + return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e8006e89e0f11d0c737697649adf654314612ec5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__init__.py @@ -0,0 +1,105 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_torch_available, + is_vision_available, +) + + +_import_structure = { + "configuration_sam": [ + "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP", + "SamConfig", + "SamMaskDecoderConfig", + "SamPromptEncoderConfig", + "SamVisionConfig", + ], + "processing_sam": ["SamProcessor"], +} + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_sam"] = [ + "SAM_PRETRAINED_MODEL_ARCHIVE_LIST", + "SamModel", + "SamPreTrainedModel", + ] +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_sam"] = [ + "TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFSamModel", + "TFSamPreTrainedModel", + ] +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["image_processing_sam"] = ["SamImageProcessor"] + + +if TYPE_CHECKING: + from .configuration_sam import ( + SAM_PRETRAINED_CONFIG_ARCHIVE_MAP, + SamConfig, + SamMaskDecoderConfig, + SamPromptEncoderConfig, + SamVisionConfig, + ) + from .processing_sam import SamProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_sam import SAM_PRETRAINED_MODEL_ARCHIVE_LIST, SamModel, SamPreTrainedModel + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_sam import TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST, TFSamModel, TFSamPreTrainedModel + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .image_processing_sam import SamImageProcessor + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9a3480edbda348ff205f14345087f88ec1408769 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/configuration_sam.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/configuration_sam.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..32e4eac94ce72a63bfd742a19ee2af49316722c1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/configuration_sam.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/convert_sam_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/convert_sam_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7ebd2f17c9d0884887f279f4bbf56c0e840e9996 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/convert_sam_to_hf.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/image_processing_sam.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/image_processing_sam.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8f4e327e55f03d86df91d3f3b49fa2c38606bc46 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/image_processing_sam.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_sam.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_sam.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..01c3b0f2c3e9345d3a16d713fdf0d0cf1993871c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_sam.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_tf_sam.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_tf_sam.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..75edba326e1254c9b56630e12d2ab3672295ca26 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_tf_sam.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/processing_sam.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/processing_sam.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a242a5a005368df74fbea1c1a81d92b4087354f9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/processing_sam.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/configuration_sam.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/configuration_sam.py new file mode 100644 index 0000000000000000000000000000000000000000..5afe75eb8eae4352dd0bd0100d04eee7b4dd994f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/configuration_sam.py @@ -0,0 +1,309 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" SAM model configuration""" + + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import SAM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class SamPromptEncoderConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SamPromptEncoder`]. The [`SamPromptEncoder`] + module is used to encode the input 2D points and bounding boxes. Instantiating a configuration defaults will yield + a similar configuration to that of the SAM-vit-h + [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 256): + Dimensionality of the hidden states. + image_size (`int`, *optional*, defaults to 1024): + The expected output resolution of the image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + mask_input_channels (`int`, *optional*, defaults to 16): + The number of channels to be fed to the `MaskDecoder` module. + num_point_embeddings (`int`, *optional*, defaults to 4): + The number of point embeddings to be used. + hidden_act (`str`, *optional*, defaults to `"gelu"`): + The non-linear activation function in the encoder and pooler. + """ + + def __init__( + self, + hidden_size=256, + image_size=1024, + patch_size=16, + mask_input_channels=16, + num_point_embeddings=4, + hidden_act="gelu", + layer_norm_eps=1e-6, + **kwargs, + ): + super().__init__(**kwargs) + self.hidden_size = hidden_size + self.image_size = image_size + self.patch_size = patch_size + self.image_embedding_size = image_size // patch_size + self.mask_input_channels = mask_input_channels + self.num_point_embeddings = num_point_embeddings + self.hidden_act = hidden_act + self.layer_norm_eps = layer_norm_eps + + +class SamMaskDecoderConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SamMaskDecoder`]. It is used to instantiate a SAM + mask decoder to the specified arguments, defining the model architecture. Instantiating a configuration defaults + will yield a similar configuration to that of the SAM-vit-h + [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 256): + Dimensionality of the hidden states. + hidden_act (`str`, *optional*, defaults to `"relu"`): + The non-linear activation function used inside the `SamMaskDecoder` module. + mlp_dim (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + num_hidden_layers (`int`, *optional*, defaults to 2): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 8): + Number of attention heads for each attention layer in the Transformer encoder. + attention_downsample_rate (`int`, *optional*, defaults to 2): + The downsampling rate of the attention layer. + num_multimask_outputs (`int`, *optional*, defaults to 3): + The number of outputs from the `SamMaskDecoder` module. In the Segment Anything paper, this is set to 3. + iou_head_depth (`int`, *optional*, defaults to 3): + The number of layers in the IoU head module. + iou_head_hidden_dim (`int`, *optional*, defaults to 256): + The dimensionality of the hidden states in the IoU head module. + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + + """ + + def __init__( + self, + hidden_size=256, + hidden_act="relu", + mlp_dim=2048, + num_hidden_layers=2, + num_attention_heads=8, + attention_downsample_rate=2, + num_multimask_outputs=3, + iou_head_depth=3, + iou_head_hidden_dim=256, + layer_norm_eps=1e-6, + **kwargs, + ): + super().__init__(**kwargs) + self.hidden_size = hidden_size + self.hidden_act = hidden_act + self.mlp_dim = mlp_dim + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.attention_downsample_rate = attention_downsample_rate + self.num_multimask_outputs = num_multimask_outputs + self.iou_head_depth = iou_head_depth + self.iou_head_hidden_dim = iou_head_hidden_dim + self.layer_norm_eps = layer_norm_eps + + +class SamVisionConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SamVisionModel`]. It is used to instantiate a SAM + vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration + defaults will yield a similar configuration to that of the SAM ViT-h + [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + output_channels (`int`, *optional*, defaults to 256): + Dimensionality of the output channels in the Patch Encoder. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + num_channels (`int`, *optional*, defaults to 3): + Number of channels in the input image. + image_size (`int`, *optional*, defaults to 1024): + Expected resolution. Target size of the resized input image. + patch_size (`int`, *optional*, defaults to 16): + Size of the patches to be extracted from the input image. + hidden_act (`str`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 1e-10): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to query, key, value projections. + mlp_ratio (`float`, *optional*, defaults to 4.0): + Ratio of mlp hidden dim to embedding dim. + use_abs_pos (`bool`, *optional*, defaults to `True`): + Whether to use absolute position embedding. + use_rel_pos (`bool`, *optional*, defaults to `True`): + Whether to use relative position embedding. + window_size (`int`, *optional*, defaults to 14): + Window size for relative position. + global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`): + The indexes of the global attention layers. + num_pos_feats (`int`, *optional*, defaults to 128): + The dimensionality of the position embedding. + mlp_dim (`int`, *optional*): + The dimensionality of the MLP layer in the Transformer encoder. If `None`, defaults to `mlp_ratio * + hidden_size`. + """ + + def __init__( + self, + hidden_size=768, + output_channels=256, + num_hidden_layers=12, + num_attention_heads=12, + num_channels=3, + image_size=1024, + patch_size=16, + hidden_act="gelu", + layer_norm_eps=1e-06, + attention_dropout=0.0, + initializer_range=1e-10, + qkv_bias=True, + mlp_ratio=4.0, + use_abs_pos=True, + use_rel_pos=True, + window_size=14, + global_attn_indexes=[2, 5, 8, 11], + num_pos_feats=128, + mlp_dim=None, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.output_channels = output_channels + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.num_channels = num_channels + self.image_size = image_size + self.patch_size = patch_size + self.hidden_act = hidden_act + self.layer_norm_eps = layer_norm_eps + self.attention_dropout = attention_dropout + self.initializer_range = initializer_range + self.qkv_bias = qkv_bias + self.mlp_ratio = mlp_ratio + self.use_abs_pos = use_abs_pos + self.use_rel_pos = use_rel_pos + self.window_size = window_size + self.global_attn_indexes = global_attn_indexes + self.num_pos_feats = num_pos_feats + self.mlp_dim = int(hidden_size * mlp_ratio) if mlp_dim is None else mlp_dim + + +class SamConfig(PretrainedConfig): + r""" + [`SamConfig`] is the configuration class to store the configuration of a [`SamModel`]. It is used to instantiate a + SAM model according to the specified arguments, defining the vision model, prompt-encoder model and mask decoder + configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the + SAM-ViT-H [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vision_config (Union[`dict`, `SamVisionConfig`], *optional*): + Dictionary of configuration options used to initialize [`SamVisionConfig`]. + prompt_encoder_config (Union[`dict`, `SamPromptEncoderConfig`], *optional*): + Dictionary of configuration options used to initialize [`SamPromptEncoderConfig`]. + mask_decoder_config (Union[`dict`, `SamMaskDecoderConfig`], *optional*): + Dictionary of configuration options used to initialize [`SamMaskDecoderConfig`]. + + kwargs (*optional*): + Dictionary of keyword arguments. + + Example: + + ```python + >>> from transformers import ( + ... SamVisionConfig, + ... SamPromptEncoderConfig, + ... SamMaskDecoderConfig, + ... SamModel, + ... ) + + >>> # Initializing a SamConfig with `"facebook/sam-vit-huge"` style configuration + >>> configuration = SamConfig() + + >>> # Initializing a SamModel (with random weights) from the `"facebook/sam-vit-huge"` style configuration + >>> model = SamModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + + >>> # We can also initialize a SamConfig from a SamVisionConfig, SamPromptEncoderConfig, and SamMaskDecoderConfig + + >>> # Initializing SAM vision, SAM Q-Former and language model configurations + >>> vision_config = SamVisionConfig() + >>> prompt_encoder_config = SamPromptEncoderConfig() + >>> mask_decoder_config = SamMaskDecoderConfig() + + >>> config = SamConfig(vision_config, prompt_encoder_config, mask_decoder_config) + ```""" + + model_type = "sam" + + def __init__( + self, + vision_config=None, + prompt_encoder_config=None, + mask_decoder_config=None, + initializer_range=0.02, + **kwargs, + ): + super().__init__(**kwargs) + vision_config = vision_config if vision_config is not None else {} + prompt_encoder_config = prompt_encoder_config if prompt_encoder_config is not None else {} + mask_decoder_config = mask_decoder_config if mask_decoder_config is not None else {} + + if isinstance(vision_config, SamVisionConfig): + vision_config = vision_config.to_dict() + if isinstance(prompt_encoder_config, SamPromptEncoderConfig): + prompt_encoder_config = prompt_encoder_config.to_dict() + if isinstance(mask_decoder_config, SamMaskDecoderConfig): + mask_decoder_config = mask_decoder_config.to_dict() + + self.vision_config = SamVisionConfig(**vision_config) + self.prompt_encoder_config = SamPromptEncoderConfig(**prompt_encoder_config) + self.mask_decoder_config = SamMaskDecoderConfig(**mask_decoder_config) + self.initializer_range = initializer_range diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/convert_sam_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/convert_sam_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..be375494f059d0a2c5065ab59375997b8a8c4798 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/convert_sam_to_hf.py @@ -0,0 +1,250 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Convert SAM checkpoints from the original repository. + +URL: https://github.com/facebookresearch/segment-anything. + +Also supports converting the SlimSAM checkpoints from https://github.com/czg1225/SlimSAM/tree/master. +""" +import argparse +import re + +import numpy as np +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import ( + SamConfig, + SamImageProcessor, + SamModel, + SamProcessor, + SamVisionConfig, +) + + +def get_config(model_name): + if "slimsam-50" in model_name: + vision_config = SamVisionConfig( + hidden_size=384, + mlp_dim=1536, + num_hidden_layers=12, + num_attention_heads=12, + global_attn_indexes=[2, 5, 8, 11], + ) + elif "slimsam-77" in model_name: + vision_config = SamVisionConfig( + hidden_size=168, + mlp_dim=696, + num_hidden_layers=12, + num_attention_heads=12, + global_attn_indexes=[2, 5, 8, 11], + ) + elif "sam_vit_b" in model_name: + vision_config = SamVisionConfig() + elif "sam_vit_l" in model_name: + vision_config = SamVisionConfig( + hidden_size=1024, + num_hidden_layers=24, + num_attention_heads=16, + global_attn_indexes=[5, 11, 17, 23], + ) + elif "sam_vit_h" in model_name: + vision_config = SamVisionConfig( + hidden_size=1280, + num_hidden_layers=32, + num_attention_heads=16, + global_attn_indexes=[7, 15, 23, 31], + ) + + config = SamConfig( + vision_config=vision_config, + ) + + return config + + +KEYS_TO_MODIFY_MAPPING = { + "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", + "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", + "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", + "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", + "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", + "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", + "mask_downscaling.0": "mask_embed.conv1", + "mask_downscaling.1": "mask_embed.layer_norm1", + "mask_downscaling.3": "mask_embed.conv2", + "mask_downscaling.4": "mask_embed.layer_norm2", + "mask_downscaling.6": "mask_embed.conv3", + "point_embeddings": "point_embed", + "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", + "image_encoder": "vision_encoder", + "neck.0": "neck.conv1", + "neck.1": "neck.layer_norm1", + "neck.2": "neck.conv2", + "neck.3": "neck.layer_norm2", + "patch_embed.proj": "patch_embed.projection", + ".norm": ".layer_norm", + "blocks": "layers", +} + + +def replace_keys(state_dict): + model_state_dict = {} + state_dict.pop("pixel_mean", None) + state_dict.pop("pixel_std", None) + + output_hypernetworks_mlps_pattern = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" + + for key, value in state_dict.items(): + for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): + if key_to_modify in key: + key = key.replace(key_to_modify, new_key) + + if re.match(output_hypernetworks_mlps_pattern, key): + layer_nb = int(re.match(output_hypernetworks_mlps_pattern, key).group(2)) + if layer_nb == 0: + key = key.replace("layers.0", "proj_in") + elif layer_nb == 1: + key = key.replace("layers.1", "layers.0") + elif layer_nb == 2: + key = key.replace("layers.2", "proj_out") + + model_state_dict[key] = value + + model_state_dict["shared_image_embedding.positional_embedding"] = model_state_dict[ + "prompt_encoder.shared_embedding.positional_embedding" + ] + + return model_state_dict + + +def convert_sam_checkpoint(model_name, checkpoint_path, pytorch_dump_folder, push_to_hub): + config = get_config(model_name) + + state_dict = torch.load(checkpoint_path, map_location="cpu") + state_dict = replace_keys(state_dict) + + image_processor = SamImageProcessor() + processor = SamProcessor(image_processor=image_processor) + hf_model = SamModel(config) + hf_model.eval() + + device = "cuda" if torch.cuda.is_available() else "cpu" + + hf_model.load_state_dict(state_dict) + hf_model = hf_model.to(device) + + img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" + raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") + + input_points = [[[500, 375]]] + input_labels = [[1]] + + inputs = processor(images=np.array(raw_image), return_tensors="pt").to(device) + + with torch.no_grad(): + output = hf_model(**inputs) + scores = output.iou_scores.squeeze() + + if model_name == "sam_vit_b_01ec64": + inputs = processor( + images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt" + ).to(device) + + with torch.no_grad(): + output = hf_model(**inputs) + scores = output.iou_scores.squeeze() + + elif model_name == "sam_vit_h_4b8939": + inputs = processor( + images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt" + ).to(device) + + with torch.no_grad(): + output = hf_model(**inputs) + scores = output.iou_scores.squeeze() + + assert scores[-1].item() == 0.9712603092193604 + + input_boxes = ((75, 275, 1725, 850),) + + inputs = processor(images=np.array(raw_image), input_boxes=input_boxes, return_tensors="pt").to(device) + + with torch.no_grad(): + output = hf_model(**inputs) + scores = output.iou_scores.squeeze() + + assert scores[-1].item() == 0.8686015605926514 + + # Test with 2 points and 1 image. + input_points = [[[400, 650], [800, 650]]] + input_labels = [[1, 1]] + + inputs = processor( + images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt" + ).to(device) + + with torch.no_grad(): + output = hf_model(**inputs) + scores = output.iou_scores.squeeze() + + assert scores[-1].item() == 0.9936047792434692 + + if pytorch_dump_folder is not None: + processor.save_pretrained(pytorch_dump_folder) + hf_model.save_pretrained(pytorch_dump_folder) + + if push_to_hub: + repo_id = f"nielsr/{model_name}" if "slimsam" in model_name else f"meta/{model_name}" + processor.push_to_hub(repo_id) + hf_model.push_to_hub(repo_id) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + choices = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195", "slimsam-50-uniform", "slimsam-77-uniform"] + parser.add_argument( + "--model_name", + default="sam_vit_h_4b8939", + choices=choices, + type=str, + help="Name of the original model to convert", + ) + parser.add_argument( + "--checkpoint_path", + type=str, + required=False, + help="Path to the original checkpoint", + ) + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument( + "--push_to_hub", + action="store_true", + help="Whether to push the model and processor to the hub after converting", + ) + + args = parser.parse_args() + + if "slimsam" in args.model_name: + checkpoint_path = args.checkpoint_path + if checkpoint_path is None: + raise ValueError("You need to provide a checkpoint path for SlimSAM models.") + else: + checkpoint_path = hf_hub_download("ybelkada/segment-anything", f"checkpoints/{args.model_name}.pth") + + convert_sam_checkpoint(args.model_name, checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/image_processing_sam.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/image_processing_sam.py new file mode 100644 index 0000000000000000000000000000000000000000..ccdc72fc7baadb24f420e1d556eb96159c5c4b72 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/image_processing_sam.py @@ -0,0 +1,1496 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for SAM.""" +import math +from copy import deepcopy +from itertools import product +from typing import Any, Dict, List, Optional, Tuple, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format +from ...image_utils import ( + IMAGENET_DEFAULT_MEAN, + IMAGENET_DEFAULT_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + get_image_size, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import ( + TensorType, + is_tf_available, + is_torch_available, + is_torchvision_available, + logging, + requires_backends, +) + + +if is_torch_available(): + import torch + import torch.nn.functional as F + +if is_torchvision_available(): + from torchvision.ops.boxes import batched_nms + +if is_tf_available(): + import tensorflow as tf + from tensorflow.experimental import numpy as tnp + + from ...tf_utils import flatten, shape_list + +logger = logging.get_logger(__name__) + + +class SamImageProcessor(BaseImageProcessor): + r""" + Constructs a SAM image processor. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the + `do_resize` parameter in the `preprocess` method. + size (`dict`, *optional*, defaults to `{"longest_edge": 1024}`): + Size of the output image after resizing. Resizes the longest edge of the image to match + `size["longest_edge"]` while maintaining the aspect ratio. Can be overridden by the `size` parameter in the + `preprocess` method. + mask_size (`dict`, *optional*, defaults to `{"longest_edge": 256}`): + Size of the output segmentation map after resizing. Resizes the longest edge of the image to match + `size["longest_edge"]` while maintaining the aspect ratio. Can be overridden by the `mask_size` parameter + in the `preprocess` method. + resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): + Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the + `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the + `do_rescale` parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be + overridden by the `rescale_factor` parameter in the `preprocess` method. + do_normalize (`bool`, *optional*, defaults to `True`): + Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` + method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be + overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + Can be overridden by the `image_std` parameter in the `preprocess` method. + do_pad (`bool`, *optional*, defaults to `True`): + Whether to pad the image to the specified `pad_size`. Can be overridden by the `do_pad` parameter in the + `preprocess` method. + pad_size (`dict`, *optional*, defaults to `{"height": 1024, "width": 1024}`): + Size of the output image after padding. Can be overridden by the `pad_size` parameter in the `preprocess` + method. + mask_pad_size (`dict`, *optional*, defaults to `{"height": 256, "width": 256}`): + Size of the output segmentation map after padding. Can be overridden by the `mask_pad_size` parameter in + the `preprocess` method. + do_convert_rgb (`bool`, *optional*, defaults to `True`): + Whether to convert the image to RGB. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + size: Dict[str, int] = None, + mask_size: Dict[str, int] = None, + resample: PILImageResampling = PILImageResampling.BILINEAR, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_pad: bool = True, + pad_size: int = None, + mask_pad_size: int = None, + do_convert_rgb: bool = True, + **kwargs, + ) -> None: + super().__init__(**kwargs) + size = size if size is not None else {"longest_edge": 1024} + size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size + + pad_size = pad_size if pad_size is not None else {"height": 1024, "width": 1024} + pad_size = get_size_dict(pad_size, default_to_square=True) + + mask_size = mask_size if mask_size is not None else {"longest_edge": 256} + mask_size = ( + get_size_dict(max_size=mask_size, default_to_square=False) + if not isinstance(mask_size, dict) + else mask_size + ) + + mask_pad_size = mask_pad_size if mask_pad_size is not None else {"height": 256, "width": 256} + mask_pad_size = get_size_dict(mask_pad_size, default_to_square=True) + + self.do_resize = do_resize + self.size = size + self.mask_size = mask_size + self.resample = resample + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD + self.do_pad = do_pad + self.pad_size = pad_size + self.mask_pad_size = mask_pad_size + self.do_convert_rgb = do_convert_rgb + self._valid_processor_keys = [ + "images", + "segmentation_maps", + "do_resize", + "size", + "mask_size", + "resample", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "do_pad", + "pad_size", + "mask_pad_size", + "do_convert_rgb", + "return_tensors", + "data_format", + "input_data_format", + ] + + def pad_image( + self, + image: np.ndarray, + pad_size: Dict[str, int], + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Pad an image to `(pad_size["height"], pad_size["width"])` with zeros to the right and bottom. + + Args: + image (`np.ndarray`): + Image to pad. + pad_size (`Dict[str, int]`): + Size of the output image after padding. + data_format (`str` or `ChannelDimension`, *optional*): + The data format of the image. Can be either "channels_first" or "channels_last". If `None`, the + `data_format` of the `image` will be used. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + output_height, output_width = pad_size["height"], pad_size["width"] + input_height, input_width = get_image_size(image, channel_dim=input_data_format) + + pad_width = output_width - input_width + pad_height = output_height - input_height + + padded_image = pad( + image, + ((0, pad_height), (0, pad_width)), + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + return padded_image + + def _get_preprocess_shape(self, old_shape: Tuple[int, int], longest_edge: int): + """ + Compute the output size given input size and target long side length. + """ + oldh, oldw = old_shape + scale = longest_edge * 1.0 / max(oldh, oldw) + newh, neww = oldh * scale, oldw * scale + newh = int(newh + 0.5) + neww = int(neww + 0.5) + return (newh, neww) + + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BICUBIC, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize an image to `(size["height"], size["width"])`. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Dictionary in the format `{"longest_edge": int}` specifying the size of the output image. The longest + edge of the image will be resized to the specified size, while the other edge will be resized to + maintain the aspect ratio. + resample: + `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. + data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + + Returns: + `np.ndarray`: The resized image. + """ + size = get_size_dict(size) + if "longest_edge" not in size: + raise ValueError(f"The `size` dictionary must contain the key `longest_edge`. Got {size.keys()}") + input_size = get_image_size(image, channel_dim=input_data_format) + output_height, output_width = self._get_preprocess_shape(input_size, size["longest_edge"]) + return resize( + image, + size=(output_height, output_width), + resample=resample, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def _preprocess( + self, + image: ImageInput, + do_resize: bool, + do_rescale: bool, + do_normalize: bool, + size: Optional[Dict[str, int]] = None, + resample: PILImageResampling = None, + rescale_factor: Optional[float] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_pad: Optional[bool] = None, + pad_size: Optional[Dict[str, int]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ): + if do_resize: + image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) + reshaped_input_size = get_image_size(image, channel_dim=input_data_format) + + if do_rescale: + image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + + if do_normalize: + image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) + + if do_pad: + image = self.pad_image(image=image, pad_size=pad_size, input_data_format=input_data_format) + + return image, reshaped_input_size + + def _preprocess_image( + self, + image: ImageInput, + do_resize: Optional[bool] = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_rescale: bool = None, + rescale_factor: Optional[float] = None, + do_normalize: Optional[bool] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_pad: Optional[bool] = None, + pad_size: Optional[Dict[str, int]] = None, + do_convert_rgb: Optional[bool] = None, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> Tuple[np.ndarray, Tuple[int, int], Tuple[int, int]]: + image = to_numpy_array(image) + + # PIL RGBA images are converted to RGB + if do_convert_rgb: + image = convert_to_rgb(image) + + # All transformations expect numpy arrays. + image = to_numpy_array(image) + + if is_scaled_image(image) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + input_data_format = infer_channel_dimension_format(image) + + original_size = get_image_size(image, channel_dim=input_data_format) + + image, reshaped_input_size = self._preprocess( + image=image, + do_resize=do_resize, + size=size, + resample=resample, + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_pad=do_pad, + pad_size=pad_size, + input_data_format=input_data_format, + ) + + if data_format is not None: + image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) + + return image, original_size, reshaped_input_size + + def _preprocess_mask( + self, + segmentation_map: ImageInput, + do_resize: Optional[bool] = None, + mask_size: Dict[str, int] = None, + do_pad: Optional[bool] = None, + mask_pad_size: Optional[Dict[str, int]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.ndarray: + segmentation_map = to_numpy_array(segmentation_map) + + # Add channel dimension if missing - needed for certain transformations + if segmentation_map.ndim == 2: + added_channel_dim = True + segmentation_map = segmentation_map[None, ...] + input_data_format = ChannelDimension.FIRST + else: + added_channel_dim = False + if input_data_format is None: + input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1) + + original_size = get_image_size(segmentation_map, channel_dim=input_data_format) + + segmentation_map, _ = self._preprocess( + image=segmentation_map, + do_resize=do_resize, + size=mask_size, + resample=PILImageResampling.NEAREST, + do_rescale=False, + do_normalize=False, + do_pad=do_pad, + pad_size=mask_pad_size, + input_data_format=input_data_format, + ) + + # Remove extra channel dimension if added for processing + if added_channel_dim: + segmentation_map = segmentation_map.squeeze(0) + segmentation_map = segmentation_map.astype(np.int64) + + return segmentation_map, original_size + + def preprocess( + self, + images: ImageInput, + segmentation_maps: Optional[ImageInput] = None, + do_resize: Optional[bool] = None, + size: Optional[Dict[str, int]] = None, + mask_size: Optional[Dict[str, int]] = None, + resample: Optional["PILImageResampling"] = None, + do_rescale: Optional[bool] = None, + rescale_factor: Optional[Union[int, float]] = None, + do_normalize: Optional[bool] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_pad: Optional[bool] = None, + pad_size: Optional[Dict[str, int]] = None, + mask_pad_size: Optional[Dict[str, int]] = None, + do_convert_rgb: Optional[bool] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: ChannelDimension = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ): + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + segmentation_maps (`ImageInput`, *optional*): + Segmentation map to preprocess. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Controls the size of the image after `resize`. The longest edge of the image is resized to + `size["longest_edge"]` whilst preserving the aspect ratio. + mask_size (`Dict[str, int]`, *optional*, defaults to `self.mask_size`): + Controls the size of the segmentation map after `resize`. The longest edge of the image is resized to + `size["longest_edge"]` whilst preserving the aspect ratio. + resample (`PILImageResampling`, *optional*, defaults to `self.resample`): + `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image pixel values by rescaling factor. + rescale_factor (`int` or `float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to apply to the image pixel values. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean to normalize the image by if `do_normalize` is set to `True`. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation to normalize the image by if `do_normalize` is set to `True`. + do_pad (`bool`, *optional*, defaults to `self.do_pad`): + Whether to pad the image. + pad_size (`Dict[str, int]`, *optional*, defaults to `self.pad_size`): + Controls the size of the padding applied to the image. The image is padded to `pad_size["height"]` and + `pad_size["width"]` if `do_pad` is set to `True`. + mask_pad_size (`Dict[str, int]`, *optional*, defaults to `self.mask_pad_size`): + Controls the size of the padding applied to the segmentation map. The image is padded to + `mask_pad_size["height"]` and `mask_pad_size["width"]` if `do_pad` is set to `True`. + do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): + Whether to convert the image to RGB. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_resize = do_resize if do_resize is not None else self.do_resize + size = size if size is not None else self.size + size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size + mask_size = mask_size if mask_size is not None else self.mask_size + mask_size = ( + get_size_dict(max_size=mask_size, default_to_square=False) + if not isinstance(mask_size, dict) + else mask_size + ) + resample = resample if resample is not None else self.resample + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + do_pad = do_pad if do_pad is not None else self.do_pad + pad_size = pad_size if pad_size is not None else self.pad_size + pad_size = get_size_dict(pad_size, default_to_square=True) + mask_pad_size = mask_pad_size if mask_pad_size is not None else self.mask_pad_size + mask_pad_size = get_size_dict(mask_pad_size, default_to_square=True) + do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb + + images = make_list_of_images(images) + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + if segmentation_maps is not None: + segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) + + if not valid_images(segmentation_maps): + raise ValueError( + "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_pad=do_pad, + size_divisibility=pad_size, # Here _preprocess needs do_pad and pad_size. + do_resize=do_resize, + size=size, + resample=resample, + ) + + images, original_sizes, reshaped_input_sizes = zip( + *( + self._preprocess_image( + image=img, + do_resize=do_resize, + size=size, + resample=resample, + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_pad=do_pad, + pad_size=pad_size, + do_convert_rgb=do_convert_rgb, + data_format=data_format, + input_data_format=input_data_format, + ) + for img in images + ) + ) + + data = { + "pixel_values": images, + "original_sizes": original_sizes, + "reshaped_input_sizes": reshaped_input_sizes, + } + + if segmentation_maps is not None: + segmentation_maps, original_mask_sizes = zip( + *( + self._preprocess_mask( + segmentation_map=mask, + do_resize=do_resize, + mask_size=mask_size, + do_pad=do_pad, + mask_pad_size=mask_pad_size, + input_data_format=input_data_format, + ) + for mask in segmentation_maps + ) + ) + + # masks should start out the same size as input images + assert all( + original_im_size == original_mask_size + for original_im_size, original_mask_size in zip(original_sizes, original_mask_sizes) + ), "Segmentation maps should be the same size as input images." + + data["labels"] = segmentation_maps + + return BatchFeature(data=data, tensor_type=return_tensors) + + def post_process_masks( + self, + masks, + original_sizes, + reshaped_input_sizes, + mask_threshold=0.0, + binarize=True, + pad_size=None, + return_tensors="pt", + ): + """ + Remove padding and upscale masks to the original image size. + + Args: + masks (`Union[List[torch.Tensor], List[np.ndarray], List[tf.Tensor]]`): + Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format. + original_sizes (`Union[torch.Tensor, tf.Tensor, List[Tuple[int,int]]]`): + The original sizes of each image before it was resized to the model's expected input shape, in (height, + width) format. + reshaped_input_sizes (`Union[torch.Tensor, tf.Tensor, List[Tuple[int,int]]]`): + The size of each image as it is fed to the model, in (height, width) format. Used to remove padding. + mask_threshold (`float`, *optional*, defaults to 0.0): + The threshold to use for binarizing the masks. + binarize (`bool`, *optional*, defaults to `True`): + Whether to binarize the masks. + pad_size (`int`, *optional*, defaults to `self.pad_size`): + The target size the images were padded to before being passed to the model. If None, the target size is + assumed to be the processor's `pad_size`. + return_tensors (`str`, *optional*, defaults to `"pt"`): + If `"pt"`, return PyTorch tensors. If `"tf"`, return TensorFlow tensors. + Returns: + (`Union[torch.Tensor, tf.Tensor]`): Batched masks in batch_size, num_channels, height, width) format, where + (height, width) is given by original_size. + """ + if return_tensors == "pt": + return self._post_process_masks_pt( + masks=masks, + original_sizes=original_sizes, + reshaped_input_sizes=reshaped_input_sizes, + mask_threshold=mask_threshold, + binarize=binarize, + pad_size=pad_size, + ) + elif return_tensors == "tf": + return self._post_process_masks_tf( + masks=masks, + original_sizes=original_sizes, + reshaped_input_sizes=reshaped_input_sizes, + mask_threshold=mask_threshold, + binarize=binarize, + pad_size=pad_size, + ) + else: + raise ValueError("return_tensors must be either 'pt' or 'tf'") + + def _post_process_masks_pt( + self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None + ): + """ + Remove padding and upscale masks to the original image size. + + Args: + masks (`Union[List[torch.Tensor], List[np.ndarray]]`): + Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format. + original_sizes (`Union[torch.Tensor, List[Tuple[int,int]]]`): + The original sizes of each image before it was resized to the model's expected input shape, in (height, + width) format. + reshaped_input_sizes (`Union[torch.Tensor, List[Tuple[int,int]]]`): + The size of each image as it is fed to the model, in (height, width) format. Used to remove padding. + mask_threshold (`float`, *optional*, defaults to 0.0): + The threshold to use for binarizing the masks. + binarize (`bool`, *optional*, defaults to `True`): + Whether to binarize the masks. + pad_size (`int`, *optional*, defaults to `self.pad_size`): + The target size the images were padded to before being passed to the model. If None, the target size is + assumed to be the processor's `pad_size`. + Returns: + (`torch.Tensor`): Batched masks in batch_size, num_channels, height, width) format, where (height, width) + is given by original_size. + """ + requires_backends(self, ["torch"]) + pad_size = self.pad_size if pad_size is None else pad_size + target_image_size = (pad_size["height"], pad_size["width"]) + if isinstance(original_sizes, (torch.Tensor, np.ndarray)): + original_sizes = original_sizes.tolist() + if isinstance(reshaped_input_sizes, (torch.Tensor, np.ndarray)): + reshaped_input_sizes = reshaped_input_sizes.tolist() + output_masks = [] + for i, original_size in enumerate(original_sizes): + if isinstance(masks[i], np.ndarray): + masks[i] = torch.from_numpy(masks[i]) + elif not isinstance(masks[i], torch.Tensor): + raise ValueError("Input masks should be a list of `torch.tensors` or a list of `np.ndarray`") + interpolated_mask = F.interpolate(masks[i], target_image_size, mode="bilinear", align_corners=False) + interpolated_mask = interpolated_mask[..., : reshaped_input_sizes[i][0], : reshaped_input_sizes[i][1]] + interpolated_mask = F.interpolate(interpolated_mask, original_size, mode="bilinear", align_corners=False) + if binarize: + interpolated_mask = interpolated_mask > mask_threshold + output_masks.append(interpolated_mask) + + return output_masks + + def _post_process_masks_tf( + self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None + ): + """ + Remove padding and upscale masks to the original image size. + + Args: + masks (`tf.Tensor`): + Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format. + original_sizes (`tf.Tensor`): + The original size of the images before resizing for input to the model, in (height, width) format. + reshaped_input_sizes (`tf.Tensor`): + The size of the image input to the model, in (height, width) format. Used to remove padding. + mask_threshold (`float`, *optional*, defaults to 0.0): + The threshold to use for binarizing the masks. + binarize (`bool`, *optional*, defaults to `True`): + Whether to binarize the masks. + pad_size (`int`, *optional*, defaults to `self.pad_size`): + The target size the images were padded to before being passed to the model. If None, the target size is + assumed to be the processor's `pad_size`. + Returns: + (`tf.Tensor`): Batched masks in batch_size, num_channels, height, width) format, where (height, width) is + given by original_size. + """ + requires_backends(self, ["tf"]) + pad_size = self.pad_size if pad_size is None else pad_size + target_image_size = (pad_size["height"], pad_size["width"]) + + output_masks = [] + for i, original_size in enumerate(original_sizes): + # tf.image expects NHWC, we transpose the NCHW inputs for it + mask = tf.transpose(masks[i], perm=[0, 2, 3, 1]) + interpolated_mask = tf.image.resize(mask, target_image_size, method="bilinear") + interpolated_mask = interpolated_mask[:, : reshaped_input_sizes[i][0], : reshaped_input_sizes[i][1], :] + interpolated_mask = tf.image.resize(interpolated_mask, original_size, method="bilinear") + if binarize: + interpolated_mask = interpolated_mask > mask_threshold + # And then we transpose them back at the end + output_masks.append(tf.transpose(interpolated_mask, perm=[0, 3, 1, 2])) + + return output_masks + + def post_process_for_mask_generation( + self, all_masks, all_scores, all_boxes, crops_nms_thresh, return_tensors="pt" + ): + """ + Post processes mask that are generated by calling the Non Maximum Suppression algorithm on the predicted masks. + + Args: + all_masks (`Union[List[torch.Tensor], List[tf.Tensor]]`): + List of all predicted segmentation masks + all_scores (`Union[List[torch.Tensor], List[tf.Tensor]]`): + List of all predicted iou scores + all_boxes (`Union[List[torch.Tensor], List[tf.Tensor]]`): + List of all bounding boxes of the predicted masks + crops_nms_thresh (`float`): + Threshold for NMS (Non Maximum Suppression) algorithm. + return_tensors (`str`, *optional*, defaults to `pt`): + If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`. + """ + if return_tensors == "pt": + return _postprocess_for_mg(all_masks, all_scores, all_boxes, crops_nms_thresh) + elif return_tensors == "tf": + return _postprocess_for_mg_tf(all_masks, all_scores, all_boxes, crops_nms_thresh) + + def generate_crop_boxes( + self, + image, + target_size, + crop_n_layers: int = 0, + overlap_ratio: float = 512 / 1500, + points_per_crop: Optional[int] = 32, + crop_n_points_downscale_factor: Optional[List[int]] = 1, + device: Optional["torch.device"] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + return_tensors: str = "pt", + ): + """ + Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer. + + Args: + image (`np.array`): + Input original image + target_size (`int`): + Target size of the resized image + crop_n_layers (`int`, *optional*, defaults to 0): + If >0, mask prediction will be run again on crops of the image. Sets the number of layers to run, where + each layer has 2**i_layer number of image crops. + overlap_ratio (`float`, *optional*, defaults to 512/1500): + Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of + the image length. Later layers with more crops scale down this overlap. + points_per_crop (`int`, *optional*, defaults to 32): + Number of points to sample from each crop. + crop_n_points_downscale_factor (`List[int]`, *optional*, defaults to 1): + The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n. + device (`torch.device`, *optional*, defaults to None): + Device to use for the computation. If None, cpu will be used. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + return_tensors (`str`, *optional*, defaults to `pt`): + If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`. + """ + crop_boxes, points_per_crop, cropped_images, input_labels = _generate_crop_boxes( + image, + target_size, + crop_n_layers, + overlap_ratio, + points_per_crop, + crop_n_points_downscale_factor, + input_data_format, + ) + if return_tensors == "pt": + if device is None: + device = torch.device("cpu") + crop_boxes = torch.tensor(crop_boxes, device=device) + points_per_crop = torch.tensor(points_per_crop, device=device) + # cropped_images stays as np + input_labels = torch.tensor(input_labels, device=device) + + elif return_tensors == "tf": + if device is not None: + raise ValueError("device is not a supported argument when return_tensors is tf!") + crop_boxes = tf.convert_to_tensor(crop_boxes) + points_per_crop = tf.convert_to_tensor(points_per_crop) + # cropped_images stays as np + input_labels = tf.convert_to_tensor(input_labels) + else: + raise ValueError("return_tensors must be either 'pt' or 'tf'.") + return crop_boxes, points_per_crop, cropped_images, input_labels + + def filter_masks( + self, + masks, + iou_scores, + original_size, + cropped_box_image, + pred_iou_thresh=0.88, + stability_score_thresh=0.95, + mask_threshold=0, + stability_score_offset=1, + return_tensors="pt", + ): + """ + Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being + that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability + score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to + bounding boxes and pad the predicted masks if necessary. + + Args: + masks (`Union[torch.Tensor, tf.Tensor]`): + Input masks. + iou_scores (`Union[torch.Tensor, tf.Tensor]`): + List of IoU scores. + original_size (`Tuple[int,int]`): + Size of the orginal image. + cropped_box_image (`np.array`): + The cropped image. + pred_iou_thresh (`float`, *optional*, defaults to 0.88): + The threshold for the iou scores. + stability_score_thresh (`float`, *optional*, defaults to 0.95): + The threshold for the stability score. + mask_threshold (`float`, *optional*, defaults to 0): + The threshold for the predicted masks. + stability_score_offset (`float`, *optional*, defaults to 1): + The offset for the stability score used in the `_compute_stability_score` method. + return_tensors (`str`, *optional*, defaults to `pt`): + If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`. + """ + if return_tensors == "pt": + return self._filter_masks_pt( + masks=masks, + iou_scores=iou_scores, + original_size=original_size, + cropped_box_image=cropped_box_image, + pred_iou_thresh=pred_iou_thresh, + stability_score_thresh=stability_score_thresh, + mask_threshold=mask_threshold, + stability_score_offset=stability_score_offset, + ) + elif return_tensors == "tf": + return self._filter_masks_tf( + masks=masks, + iou_scores=iou_scores, + original_size=original_size, + cropped_box_image=cropped_box_image, + pred_iou_thresh=pred_iou_thresh, + stability_score_thresh=stability_score_thresh, + mask_threshold=mask_threshold, + stability_score_offset=stability_score_offset, + ) + + def _filter_masks_pt( + self, + masks, + iou_scores, + original_size, + cropped_box_image, + pred_iou_thresh=0.88, + stability_score_thresh=0.95, + mask_threshold=0, + stability_score_offset=1, + ): + """ + Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being + that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability + score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to + bounding boxes and pad the predicted masks if necessary. + + Args: + masks (`torch.Tensor`): + Input masks. + iou_scores (`torch.Tensor`): + List of IoU scores. + original_size (`Tuple[int,int]`): + Size of the orginal image. + cropped_box_image (`np.array`): + The cropped image. + pred_iou_thresh (`float`, *optional*, defaults to 0.88): + The threshold for the iou scores. + stability_score_thresh (`float`, *optional*, defaults to 0.95): + The threshold for the stability score. + mask_threshold (`float`, *optional*, defaults to 0): + The threshold for the predicted masks. + stability_score_offset (`float`, *optional*, defaults to 1): + The offset for the stability score used in the `_compute_stability_score` method. + + """ + requires_backends(self, ["torch"]) + original_height, original_width = original_size + iou_scores = iou_scores.flatten(0, 1) + masks = masks.flatten(0, 1) + + if masks.shape[0] != iou_scores.shape[0]: + raise ValueError("masks and iou_scores must have the same batch size.") + + if masks.device != iou_scores.device: + iou_scores = iou_scores.to(masks.device) + + batch_size = masks.shape[0] + + keep_mask = torch.ones(batch_size, dtype=torch.bool, device=masks.device) + + if pred_iou_thresh > 0.0: + keep_mask = keep_mask & (iou_scores > pred_iou_thresh) + + # compute stability score + if stability_score_thresh > 0.0: + stability_scores = _compute_stability_score_pt(masks, mask_threshold, stability_score_offset) + keep_mask = keep_mask & (stability_scores > stability_score_thresh) + + scores = iou_scores[keep_mask] + masks = masks[keep_mask] + + # binarize masks + masks = masks > mask_threshold + converted_boxes = _batched_mask_to_box(masks) + + keep_mask = ~_is_box_near_crop_edge( + converted_boxes, cropped_box_image, [0, 0, original_width, original_height] + ) + + scores = scores[keep_mask] + masks = masks[keep_mask] + converted_boxes = converted_boxes[keep_mask] + + masks = _pad_masks(masks, cropped_box_image, original_height, original_width) + # conversion to rle is necessary to run non-maximum suppresion + masks = _mask_to_rle_pytorch(masks) + + return masks, scores, converted_boxes + + def _filter_masks_tf( + self, + masks, + iou_scores, + original_size, + cropped_box_image, + pred_iou_thresh=0.88, + stability_score_thresh=0.95, + mask_threshold=0, + stability_score_offset=1, + ): + """ + Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being + that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability + score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to + bounding boxes and pad the predicted masks if necessary. + + Args: + masks (`tf.Tensor`): + Input masks. + iou_scores (`tf.Tensor`): + List of IoU scores. + original_size (`Tuple[int,int]`): + Size of the orginal image. + cropped_box_image (`np.array`): + The cropped image. + pred_iou_thresh (`float`, *optional*, defaults to 0.88): + The threshold for the iou scores. + stability_score_thresh (`float`, *optional*, defaults to 0.95): + The threshold for the stability score. + mask_threshold (`float`, *optional*, defaults to 0): + The threshold for the predicted masks. + stability_score_offset (`float`, *optional*, defaults to 1): + The offset for the stability score used in the `_compute_stability_score` method. + + """ + requires_backends(self, ["tf"]) + original_height, original_width = original_size + iou_scores = tf.reshape(iou_scores, [iou_scores.shape[0] * iou_scores.shape[1], iou_scores.shape[2:]]) + masks = tf.reshape(masks, [masks.shape[0] * masks.shape[1], masks.shape[2:]]) + + if masks.shape[0] != iou_scores.shape[0]: + raise ValueError("masks and iou_scores must have the same batch size.") + + batch_size = masks.shape[0] + + keep_mask = tf.ones(batch_size, dtype=tf.bool) + + if pred_iou_thresh > 0.0: + keep_mask = keep_mask & (iou_scores > pred_iou_thresh) + + # compute stability score + if stability_score_thresh > 0.0: + stability_scores = _compute_stability_score_tf(masks, mask_threshold, stability_score_offset) + keep_mask = keep_mask & (stability_scores > stability_score_thresh) + + scores = iou_scores[keep_mask] + masks = masks[keep_mask] + + # binarize masks + masks = masks > mask_threshold + converted_boxes = _batched_mask_to_box_tf(masks) + + keep_mask = ~_is_box_near_crop_edge_tf( + converted_boxes, cropped_box_image, [0, 0, original_width, original_height] + ) + + scores = scores[keep_mask] + masks = masks[keep_mask] + converted_boxes = converted_boxes[keep_mask] + + masks = _pad_masks_tf(masks, cropped_box_image, original_height, original_width) + # conversion to rle is necessary to run non-maximum suppresion + masks = _mask_to_rle_tf(masks) + + return masks, scores, converted_boxes + + +def _compute_stability_score_pt(masks: "torch.Tensor", mask_threshold: float, stability_score_offset: int): + # One mask is always contained inside the other. + # Save memory by preventing unnecesary cast to torch.int64 + intersections = ( + (masks > (mask_threshold + stability_score_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32) + ) + unions = (masks > (mask_threshold - stability_score_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32) + stability_scores = intersections / unions + return stability_scores + + +def _compute_stability_score_tf(masks: "tf.Tensor", mask_threshold: float, stability_score_offset: int): + # Torch does Py3-style division but TF does floor division with ints. We cast to float32 in TF to make sure + # we get the right division results. + intersections = tf.count_nonzero( + masks > (mask_threshold + stability_score_offset), axis=[-1, -2], dtype=tf.float32 + ) + unions = tf.count_nonzero(masks > (mask_threshold - stability_score_offset), axis=[-1, -2], dtype=tf.float32) + stability_scores = intersections / unions + return stability_scores + + +def _build_point_grid(n_per_side: int) -> np.ndarray: + """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" + offset = 1 / (2 * n_per_side) + points_one_side = np.linspace(offset, 1 - offset, n_per_side) + points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) + points_y = np.tile(points_one_side[:, None], (1, n_per_side)) + points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) + return points + + +def _normalize_coordinates( + target_size: int, coords: np.ndarray, original_size: Tuple[int, int], is_bounding_box=False +) -> np.ndarray: + """ + Expects a numpy array of length 2 in the final dimension. Requires the original image size in (height, width) + format. + """ + old_height, old_width = original_size + + scale = target_size * 1.0 / max(old_height, old_width) + new_height, new_width = old_height * scale, old_width * scale + new_width = int(new_width + 0.5) + new_height = int(new_height + 0.5) + + coords = deepcopy(coords).astype(float) + + if is_bounding_box: + coords = coords.reshape(-1, 2, 2) + + coords[..., 0] = coords[..., 0] * (new_width / old_width) + coords[..., 1] = coords[..., 1] * (new_height / old_height) + + if is_bounding_box: + coords = coords.reshape(-1, 4) + + return coords + + +def _generate_crop_boxes( + image, + target_size: int, # Is it tuple here? + crop_n_layers: int = 0, + overlap_ratio: float = 512 / 1500, + points_per_crop: Optional[int] = 32, + crop_n_points_downscale_factor: Optional[List[int]] = 1, + input_data_format: Optional[Union[str, ChannelDimension]] = None, +) -> Tuple[List[List[int]], List[int]]: + """ + Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer. + + Args: + image (Union[`numpy.ndarray`, `PIL.Image`, `torch.Tensor`]): + Image to generate crops for. + target_size (`int`): + Size of the smallest crop. + crop_n_layers (`int`, *optional*): + If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of layers + to run, where each layer has 2**i_layer number of image crops. + overlap_ratio (`int`, *optional*): + Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of the + image length. Later layers with more crops scale down this overlap. + points_per_crop (`int`, *optional*): + Number of points to sample per crop. + crop_n_points_downscale_factor (`int`, *optional*): + The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + + if isinstance(image, list): + raise ValueError("Only one image is allowed for crop generation.") + image = to_numpy_array(image) + original_size = get_image_size(image, input_data_format) + + points_grid = [] + for i in range(crop_n_layers + 1): + n_points = int(points_per_crop / (crop_n_points_downscale_factor**i)) + points_grid.append(_build_point_grid(n_points)) + + crop_boxes, layer_idxs = _generate_per_layer_crops(crop_n_layers, overlap_ratio, original_size) + + cropped_images, point_grid_per_crop = _generate_crop_images( + crop_boxes, image, points_grid, layer_idxs, target_size, original_size, input_data_format + ) + crop_boxes = np.array(crop_boxes) + crop_boxes = crop_boxes.astype(np.float32) + points_per_crop = np.array([point_grid_per_crop]) + points_per_crop = np.transpose(points_per_crop, axes=(0, 2, 1, 3)) + + input_labels = np.ones_like(points_per_crop[:, :, :, 0], dtype=np.int64) + + return crop_boxes, points_per_crop, cropped_images, input_labels + + +def _generate_per_layer_crops(crop_n_layers, overlap_ratio, original_size): + """ + Generates 2 ** (layers idx + 1) crops for each crop_n_layers. Crops are in the XYWH format : The XYWH format + consists of the following required indices: + - X: X coordinate of the top left of the bounding box + - Y: Y coordinate of the top left of the bounding box + - W: width of the bounding box + - H: height of the bounding box + """ + crop_boxes, layer_idxs = [], [] + im_height, im_width = original_size + short_side = min(im_height, im_width) + + # Original image + crop_boxes.append([0, 0, im_width, im_height]) + layer_idxs.append(0) + for i_layer in range(crop_n_layers): + n_crops_per_side = 2 ** (i_layer + 1) + overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) + + crop_width = int(math.ceil((overlap * (n_crops_per_side - 1) + im_width) / n_crops_per_side)) + crop_height = int(math.ceil((overlap * (n_crops_per_side - 1) + im_height) / n_crops_per_side)) + + crop_box_x0 = [int((crop_width - overlap) * i) for i in range(n_crops_per_side)] + crop_box_y0 = [int((crop_height - overlap) * i) for i in range(n_crops_per_side)] + + for left, top in product(crop_box_x0, crop_box_y0): + box = [left, top, min(left + crop_width, im_width), min(top + crop_height, im_height)] + crop_boxes.append(box) + layer_idxs.append(i_layer + 1) + + return crop_boxes, layer_idxs + + +def _generate_crop_images( + crop_boxes, image, points_grid, layer_idxs, target_size, original_size, input_data_format=None +): + """ + Takes as an input bounding boxes that are used to crop the image. Based in the crops, the corresponding points are + also passed. + """ + cropped_images = [] + total_points_per_crop = [] + for i, crop_box in enumerate(crop_boxes): + left, top, right, bottom = crop_box + + channel_dim = infer_channel_dimension_format(image, input_data_format) + if channel_dim == ChannelDimension.LAST: + cropped_im = image[top:bottom, left:right, :] + else: + cropped_im = image[:, top:bottom, left:right] + + cropped_images.append(cropped_im) + + cropped_im_size = get_image_size(cropped_im, channel_dim) + points_scale = np.array(cropped_im_size)[None, ::-1] + + points = points_grid[layer_idxs[i]] * points_scale + normalized_points = _normalize_coordinates(target_size, points, original_size) + total_points_per_crop.append(normalized_points) + + return cropped_images, total_points_per_crop + + +def _pad_masks(masks, crop_box: List[int], orig_height: int, orig_width: int): + left, top, right, bottom = crop_box + if left == 0 and top == 0 and right == orig_width and bottom == orig_height: + return masks + # Coordinate transform masks + pad_x, pad_y = orig_width - (right - left), orig_height - (bottom - top) + pad = (left, pad_x - left, top, pad_y - top) + return torch.nn.functional.pad(masks, pad, value=0) + + +def _pad_masks_tf(masks, crop_box: List[int], orig_height: int, orig_width: int): + left, top, right, bottom = crop_box + if left == 0 and top == 0 and right == orig_width and bottom == orig_height: + return masks + # Coordinate transform masks + pad_x, pad_y = orig_width - (right - left), orig_height - (bottom - top) + pad = (left, pad_x - left, top, pad_y - top) + return tf.pad(masks, pad, constant_values=0) + + +def _is_box_near_crop_edge(boxes, crop_box, orig_box, atol=20.0): + """Filter masks at the edge of a crop, but not at the edge of the original image.""" + crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) + orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) + + left, top, _, _ = crop_box + offset = torch.tensor([[left, top, left, top]], device=boxes.device) + # Check if boxes has a channel dimension + if len(boxes.shape) == 3: + offset = offset.unsqueeze(1) + boxes = (boxes + offset).float() + + near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) + near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) + near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) + return torch.any(near_crop_edge, dim=1) + + +def _is_box_near_crop_edge_tf(boxes, crop_box, orig_box, atol=20.0): + """Filter masks at the edge of a crop, but not at the edge of the original image.""" + crop_box_tf = tf.convert_to_tensor(crop_box, dtype=tf.float32) + orig_box_tf = tf.convert_to_tensor(orig_box, dtype=tf.float32) + + left, top, _, _ = crop_box + offset = tf.convert_to_tensor([[left, top, left, top]]) + # Check if boxes has a channel dimension + if len(boxes.shape) == 3: + offset = tf.expand_dims(offset, 1) + boxes = tf.cast(boxes + offset, tf.float32) + + near_crop_edge = tnp.isclose(boxes, crop_box_tf[None, :], atol=atol, rtol=0) + near_image_edge = tnp.isclose(boxes, orig_box_tf[None, :], atol=atol, rtol=0) + near_crop_edge = tf.math.logical_and(near_crop_edge, ~near_image_edge) + return tf.reduce_any(near_crop_edge, axis=1) + + +def _batched_mask_to_box(masks: "torch.Tensor"): + """ + Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which + corresponds the following required indices: + - LEFT: left hand side of the bounding box + - TOP: top of the bounding box + - RIGHT: right of the bounding box + - BOTTOM: bottom of the bounding box + + Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape + is channel_1 x channel_2 x ... x 4. + + Args: + - masks (`torch.Tensor` of shape `(batch, nb_mask, height, width)`) + """ + # torch.max below raises an error on empty inputs, just skip in this case + + if torch.numel(masks) == 0: + return torch.zeros(*masks.shape[:-2], 4, device=masks.device) + + # Normalize shape to Cxheightxwidth + shape = masks.shape + height, width = shape[-2:] + + # Get top and bottom edges + in_height, _ = torch.max(masks, dim=-1) + in_height_coords = in_height * torch.arange(height, device=in_height.device)[None, :] + bottom_edges, _ = torch.max(in_height_coords, dim=-1) + in_height_coords = in_height_coords + height * (~in_height) + top_edges, _ = torch.min(in_height_coords, dim=-1) + + # Get left and right edges + in_width, _ = torch.max(masks, dim=-2) + in_width_coords = in_width * torch.arange(width, device=in_width.device)[None, :] + right_edges, _ = torch.max(in_width_coords, dim=-1) + in_width_coords = in_width_coords + width * (~in_width) + left_edges, _ = torch.min(in_width_coords, dim=-1) + + # If the mask is empty the right edge will be to the left of the left edge. + # Replace these boxes with [0, 0, 0, 0] + empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) + out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) + out = out * (~empty_filter).unsqueeze(-1) + + # Return to original shape + out = out.reshape(*shape[:-2], 4) + return out + + +def _batched_mask_to_box_tf(masks: "tf.Tensor"): + """ + Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which + corresponds the following required indices: + - LEFT: left hand side of the bounding box + - TOP: top of the bounding box + - RIGHT: right of the bounding box + - BOTTOM: bottom of the bounding box + + Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape + is channel_1 x channel_2 x ... x 4. + + Args: + - masks (`tf.Tensor` of shape `(batch, nb_mask, height, width)`) + """ + + if tf.size(masks) == 0: + return tf.zeros([*masks.shape[:-2], 4]) + + # Normalize shape to Cxheightxwidth + shape = shape_list(masks) + height, width = shape[-2:] + + # Get top and bottom edges + in_height = tf.reduce_max(masks, axis=-1) + in_height_coords = in_height * tf.range(height)[None, :] + bottom_edges = tf.reduce_max(in_height_coords, axis=-1) + in_height_coords = in_height_coords + height * (~in_height) + top_edges = tf.reduce_min(in_height_coords, axis=-1) + + # Get left and right edges + in_width, _ = tf.reduce_max(masks, axis=-2) + in_width_coords = in_width * tf.range(width)[None, :] + right_edges, _ = tf.reduce_max(in_width_coords, axis=-1) + in_width_coords = in_width_coords + width * (~in_width) + left_edges, _ = tf.reduce_min(in_width_coords, axis=-1) + + # If the mask is empty the right edge will be to the left of the left edge. + # Replace these boxes with [0, 0, 0, 0] + empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) + out = tf.stack([left_edges, top_edges, right_edges, bottom_edges], axis=-1) + out = out * tf.expand_dims(~empty_filter, -1) + + # Return to original shape + out = tf.reshape(out, *shape[:-2], 4) + return out + + +def _mask_to_rle_pytorch(input_mask: "torch.Tensor"): + """ + Encodes masks the run-length encoding (RLE), in the format expected by pycoco tools. + """ + # Put in fortran order and flatten height and width + batch_size, height, width = input_mask.shape + input_mask = input_mask.permute(0, 2, 1).flatten(1) + + # Compute change indices + diff = input_mask[:, 1:] ^ input_mask[:, :-1] + change_indices = diff.nonzero() + + # Encode run length + out = [] + for i in range(batch_size): + cur_idxs = change_indices[change_indices[:, 0] == i, 1] + 1 + btw_idxs = cur_idxs[1:] - cur_idxs[:-1] + counts = [] if input_mask[i, 0] == 0 else [0] + counts += [cur_idxs[0].item()] + btw_idxs.tolist() + [height * width - cur_idxs[-1]] + out.append({"size": [height, width], "counts": counts}) + return out + + +def _mask_to_rle_tf(input_mask: "tf.Tensor"): + """ + Encodes masks the run-length encoding (RLE), in the format expected by pycoco tools. + """ + # Put in fortran order and flatten height and width + batch_size, height, width = input_mask.shape + input_mask = flatten(tf.transpose(input_mask, perm=(0, 2, 1)), 1) + + # Compute change indices + diff = input_mask[:, 1:] ^ input_mask[:, :-1] + change_indices = tf.where(diff) + + # Encode run length + out = [] + for i in range(batch_size): + cur_idxs = change_indices[change_indices[:, 0] == i, 1] + 1 + btw_idxs = cur_idxs[1:] - cur_idxs[:-1] + counts = [] if input_mask[i, 0] == 0 else [0] + counts += [cur_idxs[0].item()] + btw_idxs.tolist() + [height * width - cur_idxs[-1]] + out.append({"size": [height, width], "counts": counts}) + return out + + +def _rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: + """Compute a binary mask from an uncompressed RLE.""" + height, width = rle["size"] + mask = np.empty(height * width, dtype=bool) + idx = 0 + parity = False + for count in rle["counts"]: + mask[idx : idx + count] = parity + idx += count + parity = not parity + mask = mask.reshape(width, height) + return mask.transpose() # Reshape to original shape + + +def _postprocess_for_mg(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7): + """ + Perform NMS (Non Maximum Suppression) on the outputs. + + Args: + rle_masks (`torch.Tensor`): + binary masks in the RLE format + iou_scores (`torch.Tensor` of shape (nb_masks, 1)): + iou_scores predicted by the model + mask_boxes (`torch.Tensor`): + The bounding boxes corresponding to segmentation masks + amg_crops_nms_thresh (`float`, *optional*, defaults to 0.7): + NMS threshold. + """ + keep_by_nms = batched_nms( + boxes=mask_boxes.float(), + scores=iou_scores, + idxs=torch.zeros(mask_boxes.shape[0]), + iou_threshold=amg_crops_nms_thresh, + ) + + iou_scores = iou_scores[keep_by_nms] + rle_masks = [rle_masks[i] for i in keep_by_nms] + mask_boxes = mask_boxes[keep_by_nms] + masks = [_rle_to_mask(rle) for rle in rle_masks] + + return masks, iou_scores, rle_masks, mask_boxes + + +def _postprocess_for_mg_tf(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7): + """ + Perform NMS (Non Maximum Suppression) on the outputs. + + Args: + rle_masks (`tf.Tensor`): + binary masks in the RLE format + iou_scores (`tf.Tensor` of shape (nb_masks, 1)): + iou_scores predicted by the model + mask_boxes (`tf.Tensor`): + The bounding boxes corresponding to segmentation masks + amg_crops_nms_thresh (`float`, *optional*, defaults to 0.7): + NMS threshold. + """ + keep_by_nms = tf.image.combined_non_max_suppression( + boxes=mask_boxes.float(), + scores=iou_scores, + idxs=torch.zeros(mask_boxes.shape[0]), + iou_threshold=amg_crops_nms_thresh, + ) + + iou_scores = iou_scores[keep_by_nms] + rle_masks = [rle_masks[i] for i in keep_by_nms] + mask_boxes = mask_boxes[keep_by_nms] + masks = [_rle_to_mask(rle) for rle in rle_masks] + + return masks, iou_scores, rle_masks, mask_boxes diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_sam.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_sam.py new file mode 100644 index 0000000000000000000000000000000000000000..385fb9c00aea4f4df7c6ea062159ab8de08df7d9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_sam.py @@ -0,0 +1,1415 @@ +# coding=utf-8 +# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch SAM model.""" + +import collections +import math +from dataclasses import dataclass +from typing import Dict, List, Optional, Tuple, Union + +import numpy as np +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import Tensor, nn + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutput +from ...modeling_utils import PreTrainedModel +from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "SamConfig" +_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge" + + +from ..deprecated._archive_maps import SAM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class SamVisionEncoderOutput(ModelOutput): + """ + Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection + layer to the pooler_output. + + Args: + image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): + The image embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + image_embeds: Optional[torch.FloatTensor] = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class SamImageSegmentationOutput(ModelOutput): + """ + Base class for Segment-Anything model's output + + Args: + iou_scores (`torch.FloatTensor` of shape `(batch_size, num_masks)`): + The iou scores of the predicted masks. + pred_masks (`torch.FloatTensor` of shape `(batch_size, num_masks, height, width)`): + The predicted low resolutions masks. Needs to be post-processed by the processor + vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs. + vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + mask_decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + iou_scores: torch.FloatTensor = None + pred_masks: torch.FloatTensor = None + vision_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + vision_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + mask_decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +class SamPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values): + batch_size, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." + ) + embeddings = self.projection(pixel_values).permute(0, 2, 3, 1) + return embeddings + + +class SamMLPBlock(nn.Module): + def __init__(self, config): + super().__init__() + self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim) + self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size) + self.act = ACT2FN[config.hidden_act] + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.lin1(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.lin2(hidden_states) + return hidden_states + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->Sam +class SamLayerNorm(nn.Module): + r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. + The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, + width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). + """ + + def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): + super().__init__() + self.weight = nn.Parameter(torch.ones(normalized_shape)) + self.bias = nn.Parameter(torch.zeros(normalized_shape)) + self.eps = eps + self.data_format = data_format + if self.data_format not in ["channels_last", "channels_first"]: + raise NotImplementedError(f"Unsupported data format: {self.data_format}") + self.normalized_shape = (normalized_shape,) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.data_format == "channels_last": + x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + elif self.data_format == "channels_first": + input_dtype = x.dtype + x = x.float() + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = x.to(dtype=input_dtype) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x + + +class SamAttention(nn.Module): + """ + SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and + values. + """ + + def __init__(self, config, downsample_rate=None): + super().__init__() + self.hidden_size = config.hidden_size + + downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate + + self.internal_dim = config.hidden_size // downsample_rate + self.num_attention_heads = config.num_attention_heads + if self.internal_dim % config.num_attention_heads != 0: + raise ValueError("num_attention_heads must divide hidden_size.") + + self.q_proj = nn.Linear(self.hidden_size, self.internal_dim) + self.k_proj = nn.Linear(self.hidden_size, self.internal_dim) + self.v_proj = nn.Linear(self.hidden_size, self.internal_dim) + self.out_proj = nn.Linear(self.internal_dim, self.hidden_size) + + def _separate_heads(self, hidden_states: Tensor, num_attention_heads: int) -> Tensor: + batch, point_batch_size, n_tokens, channel = hidden_states.shape + c_per_head = channel // num_attention_heads + hidden_states = hidden_states.reshape(batch * point_batch_size, n_tokens, num_attention_heads, c_per_head) + return hidden_states.transpose(1, 2) + + def _recombine_heads(self, hidden_states: Tensor, point_batch_size: int) -> Tensor: + batch, n_heads, n_tokens, c_per_head = hidden_states.shape + hidden_states = hidden_states.transpose(1, 2) + return hidden_states.reshape(batch // point_batch_size, point_batch_size, n_tokens, n_heads * c_per_head) + + def forward(self, query: Tensor, key: Tensor, value: Tensor, attention_similarity: Tensor = None) -> Tensor: + # Input projections + query = self.q_proj(query) + key = self.k_proj(key) + value = self.v_proj(value) + + point_batch_size = query.shape[1] + # Separate into heads + query = self._separate_heads(query, self.num_attention_heads) + key = self._separate_heads(key, self.num_attention_heads) + value = self._separate_heads(value, self.num_attention_heads) + + # SamAttention + _, _, _, c_per_head = query.shape + attn = query @ key.permute(0, 1, 3, 2) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens + attn = attn / math.sqrt(c_per_head) + attn = torch.softmax(attn, dim=-1) + + if attention_similarity is not None: + attn = attn + attention_similarity + attn = torch.softmax(attn, dim=-1) + + # Get output + out = attn @ value + out = self._recombine_heads(out, point_batch_size) + out = self.out_proj(out) + + return out + + +class SamTwoWayAttentionBlock(nn.Module): + def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False): + """ + A transformer block with four layers: + (1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on + sparse inputs (4) cross attention of dense inputs -> sparse inputs + + Arguments: + config (`SamMaskDecoderConfig`): + The configuration file used to instantiate the block + attention_downsample_rate (*optionalk*, int, defaults to 2): + The downsample ratio of the block used to reduce the inner dim of the attention. + skip_first_layer_pe (*optional*, bool, defaults to `False`): + Whether or not to skip the addition of the query_point_embedding on the first layer. + """ + super().__init__() + + self.hidden_size = config.hidden_size + self.layer_norm_eps = config.layer_norm_eps + + self.self_attn = SamAttention(config, downsample_rate=1) + self.layer_norm1 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) + + self.cross_attn_token_to_image = SamAttention(config, downsample_rate=attention_downsample_rate) + self.layer_norm2 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) + + self.mlp = SamMLPBlock(config) + self.layer_norm3 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) + + self.layer_norm4 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) + self.cross_attn_image_to_token = SamAttention(config, downsample_rate=attention_downsample_rate) + + self.skip_first_layer_pe = skip_first_layer_pe + + def forward( + self, + queries: Tensor, + keys: Tensor, + query_point_embedding: Tensor, + key_point_embedding: Tensor, + attention_similarity: Tensor, + output_attentions: bool = False, + ): + # Self attention block + if self.skip_first_layer_pe: + queries = self.self_attn(query=queries, key=queries, value=queries) + else: + query = queries + query_point_embedding + attn_out = self.self_attn(query=query, key=query, value=queries) + queries = queries + attn_out + queries = self.layer_norm1(queries) + + # Cross attention block, tokens attending to image embedding + query = queries + query_point_embedding + key = keys + key_point_embedding + + attn_out = self.cross_attn_token_to_image( + query=query, key=key, value=keys, attention_similarity=attention_similarity + ) + queries = queries + attn_out + + queries = self.layer_norm2(queries) + + # MLP block + mlp_out = self.mlp(queries) + queries = queries + mlp_out + queries = self.layer_norm3(queries) + + # Cross attention block, image embedding attending to tokens + query = queries + query_point_embedding + key = keys + key_point_embedding + + attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries) + keys = keys + attn_out + + keys = self.layer_norm4(keys) + + outputs = (queries, keys) + + if output_attentions: + outputs = outputs + (attn_out,) + else: + outputs = outputs + (None,) + + return outputs + + +class SamTwoWayTransformer(nn.Module): + def __init__(self, config: SamMaskDecoderConfig): + super().__init__() + self.config = config + + self.num_hidden_layers = config.num_hidden_layers + self.layers = nn.ModuleList() + + for i in range(self.num_hidden_layers): + self.layers.append(SamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0))) + + self.final_attn_token_to_image = SamAttention(config) + self.layer_norm_final_attn = nn.LayerNorm(config.hidden_size) + + def forward( + self, + point_embeddings: Tensor, + image_embeddings: Tensor, + image_positional_embeddings: Tensor, + attention_similarity: Tensor, + target_embedding=None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + all_attentions = () + + if image_embeddings is None: + raise ValueError("You have to specify an image_embedding") + + image_embeddings = image_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1) + image_positional_embeddings = image_positional_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1) + + # Prepare queries + queries = point_embeddings + keys = image_embeddings + + # Apply transformer blocks and final layernorm + for layer in self.layers: + if target_embedding is not None: + queries += target_embedding + + queries, keys, attention_outputs = layer( + queries=queries, + keys=keys, + query_point_embedding=point_embeddings, + key_point_embedding=image_positional_embeddings, + attention_similarity=attention_similarity, + output_attentions=output_attentions, + ) + + if output_attentions: + all_attentions = all_attentions + (attention_outputs,) + + # Apply the final attenion layer from the points to the image + query = queries + point_embeddings + key = keys + image_positional_embeddings + + attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys) + + queries = queries + attn_out + queries = self.layer_norm_final_attn(queries) + return queries, keys, all_attentions + + +class SamFeedForward(nn.Module): + def __init__( + self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False + ): + super().__init__() + self.num_layers = num_layers + self.activation = nn.ReLU() + self.proj_in = nn.Linear(input_dim, hidden_dim) + self.proj_out = nn.Linear(hidden_dim, output_dim) + self.layers = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for _ in range(num_layers - 2)]) + self.sigmoid_output = sigmoid_output + + def forward(self, hidden_states): + hidden_states = self.proj_in(hidden_states) + hidden_states = self.activation(hidden_states) + for layer in self.layers: + hidden_states = self.activation(layer(hidden_states)) + + hidden_states = self.proj_out(hidden_states) + if self.sigmoid_output: + hidden_states = F.sigmoid(hidden_states) + return hidden_states + + +class SamMaskDecoder(nn.Module): + def __init__(self, config: SamMaskDecoderConfig): + super().__init__() + + self.hidden_size = config.hidden_size + + self.num_multimask_outputs = config.num_multimask_outputs + self.num_mask_tokens = config.num_multimask_outputs + 1 + + self.iou_token = nn.Embedding(1, self.hidden_size) + self.mask_tokens = nn.Embedding(self.num_mask_tokens, self.hidden_size) + + self.transformer = SamTwoWayTransformer(config) + + # should we create a new class for this? + self.upscale_conv1 = nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2) + self.upscale_conv2 = nn.ConvTranspose2d(self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2) + self.upscale_layer_norm = SamLayerNorm(self.hidden_size // 4, data_format="channels_first") + self.activation = nn.GELU() + + mlps_list = [] + for _ in range(self.num_mask_tokens): + mlps_list += [SamFeedForward(self.hidden_size, self.hidden_size, self.hidden_size // 8, 3)] + self.output_hypernetworks_mlps = nn.ModuleList(mlps_list) + + self.iou_prediction_head = SamFeedForward( + self.hidden_size, config.iou_head_hidden_dim, self.num_mask_tokens, config.iou_head_depth + ) + + def forward( + self, + image_embeddings: torch.Tensor, + image_positional_embeddings: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + multimask_output: bool, + output_attentions: Optional[bool] = None, + attention_similarity: torch.Tensor = None, + target_embedding: torch.Tensor = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Predict masks given image and prompt embeddings. + + Args: + image_embeddings (`torch.Tensor`): + the embeddings from the image encoder + image_positional_embedding (`torch.Tensor`): + positional encoding with the shape of image_embeddings + sparse_prompt_embeddings (`torch.Tensor`): + The embeddings of the points and boxes + dense_prompt_embeddings (`torch.Tensor`): + the embeddings of the mask inputs + multimask_output (bool): + Whether to return multiple masks or a single mask. + output_attentions (bool, *optional*): + Whether or not to return the attentions tensors of all attention layers. + """ + batch_size, num_channels, height, width = image_embeddings.shape + point_batch_size = sparse_prompt_embeddings.shape[1] + # Concatenate output tokens + output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) + output_tokens = output_tokens.repeat(batch_size, point_batch_size, 1, 1) + + if sparse_prompt_embeddings.sum().item() != 0: + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=2) + else: + tokens = output_tokens + point_embeddings = tokens.to(self.iou_token.weight.dtype) + + # Expand per-image data in batch direction to be per-point + image_embeddings = image_embeddings + dense_prompt_embeddings + image_embeddings = image_embeddings.repeat_interleave(point_batch_size, 0) + image_positional_embeddings = image_positional_embeddings.repeat_interleave(point_batch_size, 0) + + # Run the transformer, image_positional_embedding are consumed + point_embedding, image_embeddings, attentions = self.transformer( + point_embeddings=point_embeddings, + image_embeddings=image_embeddings, + image_positional_embeddings=image_positional_embeddings, + attention_similarity=attention_similarity, + target_embedding=target_embedding, + output_attentions=output_attentions, + ) + iou_token_out = point_embedding[:, :, 0, :] + mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :] + + # Upscale mask embeddings and predict masks using the mask tokens + image_embeddings = image_embeddings.transpose(2, 3).reshape( + batch_size * point_batch_size, num_channels, height, width + ) + + upscaled_embedding = self.upscale_conv1(image_embeddings) + upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding)) + upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding)) + + hyper_in_list = [] + for i in range(self.num_mask_tokens): + current_mlp = self.output_hypernetworks_mlps[i] + hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])] + hyper_in = torch.stack(hyper_in_list, dim=2) + + _, num_channels, height, width = upscaled_embedding.shape + upscaled_embedding = upscaled_embedding.reshape(batch_size, point_batch_size, num_channels, height * width) + masks = (hyper_in @ upscaled_embedding).reshape(batch_size, point_batch_size, -1, height, width) + + # Generate mask quality predictions + iou_pred = self.iou_prediction_head(iou_token_out) + + # Select the correct mask or masks for output + if multimask_output: + mask_slice = slice(1, None) + else: + mask_slice = slice(0, 1) + masks = masks[:, :, mask_slice, :, :] + iou_pred = iou_pred[:, :, mask_slice] + + outputs = (masks, iou_pred) + + if output_attentions: + outputs = outputs + (attentions,) + else: + outputs = outputs + (None,) + + return outputs + + +class SamPositionalEmbedding(nn.Module): + def __init__(self, config): + super().__init__() + self.scale = config.hidden_size // 2 + self.register_buffer("positional_embedding", self.scale * torch.randn((2, config.num_pos_feats))) + + def forward(self, input_coords, input_shape=None): + """Positionally encode points that are normalized to [0,1].""" + coordinates = input_coords.clone() + + if input_shape is not None: + coordinates[:, :, :, 0] = coordinates[:, :, :, 0] / input_shape[1] + coordinates[:, :, :, 1] = coordinates[:, :, :, 1] / input_shape[0] + + # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape + coordinates = 2 * coordinates - 1 + coordinates = coordinates.to(self.positional_embedding.dtype) + coordinates = coordinates @ self.positional_embedding + coordinates = 2 * np.pi * coordinates + # outputs d_1 x ... x d_n x channel shape + return torch.cat([torch.sin(coordinates), torch.cos(coordinates)], dim=-1) + + +class SamMaskEmbedding(nn.Module): + def __init__(self, config: SamPromptEncoderConfig): + super().__init__() + self.mask_input_channels = config.mask_input_channels // 4 + self.activation = ACT2FN[config.hidden_act] + self.conv1 = nn.Conv2d(1, self.mask_input_channels, kernel_size=2, stride=2) + self.conv2 = nn.Conv2d(self.mask_input_channels, config.mask_input_channels, kernel_size=2, stride=2) + self.conv3 = nn.Conv2d(config.mask_input_channels, config.hidden_size, kernel_size=1) + self.layer_norm1 = SamLayerNorm( + self.mask_input_channels, eps=config.layer_norm_eps, data_format="channels_first" + ) + self.layer_norm2 = SamLayerNorm( + self.mask_input_channels * 4, eps=config.layer_norm_eps, data_format="channels_first" + ) + + def forward(self, masks): + hidden_states = self.conv1(masks) + hidden_states = self.layer_norm1(hidden_states) + hidden_states = self.activation(hidden_states) + + hidden_states = self.conv2(hidden_states) + hidden_states = self.layer_norm2(hidden_states) + hidden_states = self.activation(hidden_states) + dense_embeddings = self.conv3(hidden_states) + return dense_embeddings + + +class SamPromptEncoder(nn.Module): + def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding): + super().__init__() + self.shared_embedding = shared_patch_embedding + self.mask_embed = SamMaskEmbedding(config) + self.no_mask_embed = nn.Embedding(1, config.hidden_size) + + self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size) + self.input_image_size = config.image_size + + self.point_embed = nn.ModuleList( + [nn.Embedding(1, config.hidden_size) for i in range(config.num_point_embeddings)] + ) + self.hidden_size = config.hidden_size + self.not_a_point_embed = nn.Embedding(1, config.hidden_size) + + def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor: + """Embeds point prompts.""" + points = points + 0.5 # Shift to center of pixel + if pad: + target_point_shape = (points.shape[0], points.shape[1], 1, points.shape[-1]) + target_labels_shape = (points.shape[0], points.shape[1], 1) + padding_point = torch.zeros(target_point_shape, device=points.device) + padding_label = -torch.ones(target_labels_shape, device=labels.device) + points = torch.cat([points, padding_point], dim=2) + labels = torch.cat([labels, padding_label], dim=2) + input_shape = (self.input_image_size, self.input_image_size) + point_embedding = self.shared_embedding(points, input_shape) + + # torch.where and expanding the labels tensor is required by the ONNX export + point_embedding = torch.where(labels[..., None] == -1, self.not_a_point_embed.weight, point_embedding) + + # This is required for the ONNX export. The dtype, device need to be explicitely + # specificed as otherwise torch.onnx.export interprets as double + point_embedding = torch.where( + labels[..., None] != -10, + point_embedding, + torch.tensor(0.0, dtype=point_embedding.dtype, device=point_embedding.device), + ) + + point_embedding = torch.where( + (labels == 0)[:, :, :, None], + point_embedding + self.point_embed[0].weight[None, None, :, :], + point_embedding, + ) + + point_embedding = torch.where( + (labels == 1)[:, :, :, None], + point_embedding + self.point_embed[1].weight[None, None, :, :], + point_embedding, + ) + + return point_embedding + + def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: + """Embeds box prompts.""" + boxes = boxes + 0.5 # Shift to center of pixel + batch_size, nb_boxes = boxes.shape[:2] + coords = boxes.reshape(batch_size, nb_boxes, 2, 2) + input_shape = (self.input_image_size, self.input_image_size) + corner_embedding = self.shared_embedding(coords, input_shape) + corner_embedding[:, :, 0, :] += self.point_embed[2].weight + corner_embedding[:, :, 1, :] += self.point_embed[3].weight + return corner_embedding + + def forward( + self, + input_points: Optional[Tuple[torch.Tensor, torch.Tensor]], + input_labels: Optional[torch.Tensor], + input_boxes: Optional[torch.Tensor], + input_masks: Optional[torch.Tensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Embeds different types of prompts, returning both sparse and dense embeddings. + + Args: + points (`torch.Tensor`, *optional*): + point coordinates and labels to embed. + boxes (`torch.Tensor`, *optional*): + boxes to embed + masks (`torch.Tensor`, *optional*): + masks to embed + """ + sparse_embeddings = None + batch_size = 1 + target_device = self.shared_embedding.positional_embedding.device + if input_points is not None: + batch_size, point_batch_size = input_points.shape[:2] + if input_labels is None: + raise ValueError("If points are provided, labels must also be provided.") + point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None)) + sparse_embeddings = point_embeddings + if input_boxes is not None: + batch_size = input_boxes.shape[0] + box_embeddings = self._embed_boxes(input_boxes) + if sparse_embeddings is None: + sparse_embeddings = box_embeddings + else: + sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=2) + if input_masks is not None: + dense_embeddings = self.mask_embed(input_masks) + else: + dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( + batch_size, -1, self.image_embedding_size[0], self.image_embedding_size[1] + ) + + if sparse_embeddings is None: + sparse_embeddings = torch.zeros((batch_size, 1, 1, self.hidden_size), device=target_device) + + return sparse_embeddings, dense_embeddings + + +class SamVisionAttention(nn.Module): + """Multi-head Attention block with relative position embeddings.""" + + def __init__(self, config, window_size): + super().__init__() + input_size = ( + (config.image_size // config.patch_size, config.image_size // config.patch_size) + if window_size == 0 + else (window_size, window_size) + ) + + self.num_attention_heads = config.num_attention_heads + head_dim = config.hidden_size // config.num_attention_heads + self.scale = head_dim**-0.5 + self.dropout = config.attention_dropout + + self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias) + self.proj = nn.Linear(config.hidden_size, config.hidden_size) + + self.use_rel_pos = config.use_rel_pos + if self.use_rel_pos: + if input_size is None: + raise ValueError("Input size must be provided if using relative positional encoding.") + + # initialize relative positional embeddings + self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) + + def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: + """ + Get relative positional embeddings according to the relative positions of + query and key sizes. + + Args: + q_size (int): + size of the query. + k_size (int): + size of key k. + rel_pos (`torch.Tensor`): + relative position embeddings (L, channel). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos. + rel_pos_resized = F.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=max_rel_dist, + mode="linear", + ) + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + + # Scale the coords with short length if shapes for q and k are different. + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return rel_pos_resized[relative_coords.long()] + + def add_decomposed_rel_pos( + self, + attn: torch.Tensor, + query: torch.Tensor, + rel_pos_h: torch.Tensor, + rel_pos_w: torch.Tensor, + q_size: Tuple[int, int], + k_size: Tuple[int, int], + ) -> torch.Tensor: + """ + Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. + https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py + + Args: + attn (`torch.Tensor`): + attention map. + query (`torch.Tensor`): + query q in the attention layer with shape (batch_size, query_height * query_width, channel). + rel_pos_h (`torch.Tensor`): + relative position embeddings (Lh, channel) for height axis. + rel_pos_w (`torch.Tensor`): + relative position embeddings (Lw, channel) for width axis. + q_size (tuple): + spatial sequence size of query q with (query_height, query_width). + k_size (tuple): + spatial sequence size of key k with (key_height, key_width). + + Returns: + attn (`torch.Tensor`): + attention map with added relative positional embeddings. + """ + query_height, query_width = q_size + key_height, key_width = k_size + relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h) + relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w) + + batch_size, _, dim = query.shape + reshaped_query = query.reshape(batch_size, query_height, query_width, dim) + rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height) + rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width) + attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width) + attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] + attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width) + return attn + + def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor: + batch_size, height, width, _ = hidden_states.shape + # qkv with shape (3, batch_size, nHead, height * width, channel) + qkv = ( + self.qkv(hidden_states) + .reshape(batch_size, height * width, 3, self.num_attention_heads, -1) + .permute(2, 0, 3, 1, 4) + ) + # q, k, v with shape (batch_size * nHead, height * width, channel) + query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0) + + attn_weights = (query * self.scale) @ key.transpose(-2, -1) + + if self.use_rel_pos: + attn_weights = self.add_decomposed_rel_pos( + attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width) + ) + + attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype) + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1) + attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1) + + attn_output = self.proj(attn_output) + + if output_attentions: + outputs = (attn_output, attn_weights) + else: + outputs = (attn_output, None) + + return outputs + + +class SamVisionLayer(nn.Module): + def __init__(self, config, window_size): + super().__init__() + self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.attn = SamVisionAttention(config, window_size) + self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.mlp = SamMLPBlock(config) + self.window_size = window_size + + def window_partition(self, hidden_states: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: + """ + Args: + Partition into non-overlapping windows with padding if needed. + hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window + size. + + Returns: + windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel]. + (pad_height, pad_width): padded height and width before partition + """ + batch_size, height, width, channel = hidden_states.shape + + pad_h = (window_size - height % window_size) % window_size + pad_w = (window_size - width % window_size) % window_size + hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h)) + pad_height, pad_width = height + pad_h, width + pad_w + + hidden_states = hidden_states.reshape( + batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel + ) + windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(-1, window_size, window_size, channel) + return windows, (pad_height, pad_width) + + def window_unpartition( + self, windows: torch.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int] + ) -> torch.Tensor: + """ + Args: + Window unpartition into original sequences and removing padding. + hidden_states (tensor): + input tokens with [batch_size * num_windows, window_size, window_size, channel]. + window_size (int): + window size. + padding_shape (Tuple): + padded height and width (pad_height, pad_width). + original_shape (Tuple): original height and width (height, width) before padding. + + Returns: + hidden_states: unpartitioned sequences with [batch_size, height, width, channel]. + """ + pad_height, pad_width = padding_shape + height, width = original_shape + batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size) + hidden_states = windows.reshape( + batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1 + ) + hidden_states = ( + hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(batch_size, pad_height, pad_width, -1) + ) + + hidden_states = hidden_states[:, :height, :width, :].contiguous() + return hidden_states + + def forward( + self, + hidden_states: torch.Tensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor]: + residual = hidden_states + + hidden_states = self.layer_norm1(hidden_states) + # Window partition + if self.window_size > 0: + height, width = hidden_states.shape[1], hidden_states.shape[2] + hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size) + + hidden_states, attn_weights = self.attn( + hidden_states=hidden_states, + output_attentions=output_attentions, + ) + # Reverse window partition + if self.window_size > 0: + hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width)) + + hidden_states = residual + hidden_states + layernorm_output = self.layer_norm2(hidden_states) + hidden_states = hidden_states + self.mlp(layernorm_output) + + outputs = (hidden_states,) + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class SamVisionNeck(nn.Module): + def __init__(self, config: SamVisionConfig): + super().__init__() + self.config = config + + self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False) + self.layer_norm1 = SamLayerNorm(config.output_channels, data_format="channels_first") + self.conv2 = nn.Conv2d(config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False) + self.layer_norm2 = SamLayerNorm(config.output_channels, data_format="channels_first") + + def forward(self, hidden_states): + hidden_states = hidden_states.permute(0, 3, 1, 2) + hidden_states = self.conv1(hidden_states) + hidden_states = self.layer_norm1(hidden_states) + + hidden_states = self.conv2(hidden_states) + hidden_states = self.layer_norm2(hidden_states) + return hidden_states + + +class SamVisionEncoder(nn.Module): + def __init__(self, config: SamVisionConfig): + super().__init__() + self.config = config + self.image_size = config.image_size + + self.patch_embed = SamPatchEmbeddings(config) + + self.pos_embed = None + if config.use_abs_pos: + # Initialize absolute positional embedding with pretrain image size. + self.pos_embed = nn.Parameter( + torch.zeros( + 1, + config.image_size // config.patch_size, + config.image_size // config.patch_size, + config.hidden_size, + ) + ) + + self.layers = nn.ModuleList() + for i in range(config.num_hidden_layers): + layer = SamVisionLayer( + config, + window_size=config.window_size if i not in config.global_attn_indexes else 0, + ) + self.layers.append(layer) + + self.neck = SamVisionNeck(config) + + self.gradient_checkpointing = False + + def get_input_embeddings(self): + return self.patch_embed + + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SamVisionEncoderOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + hidden_states = self.patch_embed(pixel_values) + if self.pos_embed is not None: + hidden_states = hidden_states + self.pos_embed + + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + ) + else: + layer_outputs = layer_module(hidden_states, output_attentions=output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + hidden_states = self.neck(hidden_states) + + if not return_dict: + outputs = (hidden_states,) + if output_hidden_states: + outputs = outputs + (all_hidden_states,) + if output_attentions: + outputs = outputs + (all_self_attentions,) + return outputs + + return SamVisionEncoderOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class SamPreTrainedModel(PreTrainedModel): + config_class = SamConfig + base_model_prefix = "sam" + main_input_name = "pixel_values" + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +SAM_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`SamConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +SAM_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for + details. + input_points (`torch.FloatTensor` of shape `(batch_size, num_points, 2)`): + Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much + better results. The points can be obtained by passing a list of list of list to the processor that will + create corresponding `torch` tensors of dimension 4. The first dimension is the image batch size, the + second dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict + per input point), the third dimension is the number of points per segmentation mask (it is possible to pass + multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal) + coordinates of the point. If a different number of points is passed either for each image, or for each + mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the + computation of the embedding will be skipped for these points using the labels. + input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points)`): + Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the + official implementation, there are 3 types of labels + + - `1`: the point is a point that contains the object of interest + - `0`: the point is a point that does not contain the object of interest + - `-1`: the point corresponds to the background + + We added the label: + + - `-10`: the point is a padding point, thus should be ignored by the prompt encoder + + The padding labels should be automatically done by the processor. + input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes, 4)`): + Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to + much better generated masks. The boxes can be obtained by passing a list of list of list to the processor, + that will generate a `torch` tensor, with each dimension corresponding respectively to the image batch + size, the number of boxes per image and the coordinates of the top left and botton right point of the box. + In the order (`x1`, `y1`, `x2`, `y2`): + + - `x1`: the x coordinate of the top left point of the input box + - `y1`: the y coordinate of the top left point of the input box + - `x2`: the x coordinate of the bottom right point of the input box + - `y2`: the y coordinate of the bottom right point of the input box + + input_masks (`torch.FloatTensor` of shape `(batch_size, image_size, image_size)`): + SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to + generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be + manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`). + + image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_channels, window_size, window_size)`): + Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory + efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings` + method, and then feed them to the `forward` method instead of feeding the `pixel_values`. + multimask_output (`bool`, *optional*): + In the original implementation and paper, the model always outputs 3 masks per image (or per point / per + bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the + "best" mask, by specifying `multimask_output=False`. + attention_similarity (`torch.FloatTensor`, *optional*): + Attention similarity tensor, to be provided to the mask decoder for target-guided attention in case the + model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048). + target_embedding (`torch.FloatTensor`, *optional*): + Embedding of the target concept, to be provided to the mask decoder for target-semantic prompting in case + the model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "Segment Anything Model (SAM) for generating segmentation masks, given an input image and ", + " optional 2D location and bounding boxes.", + SAM_START_DOCSTRING, +) +class SamModel(SamPreTrainedModel): + _tied_weights_keys = ["prompt_encoder.shared_embedding.positional_embedding"] + + def __init__(self, config): + super().__init__(config) + self.shared_image_embedding = SamPositionalEmbedding(config.vision_config) + + self.vision_encoder = SamVisionEncoder(config.vision_config) + self.prompt_encoder = SamPromptEncoder(config.prompt_encoder_config, self.shared_image_embedding) + self.mask_decoder = SamMaskDecoder(config.mask_decoder_config) + + self.post_init() + + def get_input_embeddings(self): + return self.vision_encoder.get_input_embeddings() + + def get_image_wide_positional_embeddings(self): + size = self.config.prompt_encoder_config.image_embedding_size + target_device = self.shared_image_embedding.positional_embedding.device + target_dtype = self.shared_image_embedding.positional_embedding.dtype + grid = torch.ones((size, size), device=target_device, dtype=target_dtype) + y_embed = grid.cumsum(dim=0) - 0.5 + x_embed = grid.cumsum(dim=1) - 0.5 + y_embed = y_embed / size + x_embed = x_embed / size + + positional_embedding = self.shared_image_embedding(torch.stack([x_embed, y_embed], dim=-1)) + return positional_embedding.permute(2, 0, 1).unsqueeze(0) # channel x height x width + + @torch.no_grad() + def get_image_embeddings( + self, + pixel_values, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + r""" + Returns the image embeddings by passing the pixel values through the vision encoder. + + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Input pixel values + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + + """ + vision_output = self.vision_encoder( + pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + image_embeddings = vision_output[0] + return image_embeddings + + @torch.no_grad() + def get_prompt_embeddings( + self, + input_points: Optional[torch.FloatTensor] = None, + input_labels: Optional[torch.LongTensor] = None, + input_boxes: Optional[torch.FloatTensor] = None, + input_masks: Optional[torch.LongTensor] = None, + ): + r""" + Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder. + + Args: + input_points (`torch.FloatTensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`): + Optional input points for the prompt encoder. The padding of the point is automatically done by the + processor. `point_batch_size` refers to the number of masks that we want the model to predict per + point. The model will output `point_batch_size` times 3 masks in total. + input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points_per_image)`): + Optional input labels for the prompt encoder. The padding of the labels is automatically done by the + processor, or can be fed by the user. + input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes_per_image, 4)`): + Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the + processor. users can also pass manually the input boxes. + input_masks (`torch.LongTensor` of shape `(batch_size, image_size, image_size)`): + Optional input masks for the prompt encoder. + """ + prompt_output = self.prompt_encoder( + input_points=input_points, + input_labels=input_labels, + input_boxes=input_boxes, + input_masks=input_masks, + ) + return prompt_output + + @add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + input_points: Optional[torch.FloatTensor] = None, + input_labels: Optional[torch.LongTensor] = None, + input_boxes: Optional[torch.FloatTensor] = None, + input_masks: Optional[torch.LongTensor] = None, + image_embeddings: Optional[torch.FloatTensor] = None, + multimask_output: bool = True, + attention_similarity: Optional[torch.FloatTensor] = None, + target_embedding: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> List[Dict[str, torch.Tensor]]: + r""" + Example: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoModel, AutoProcessor + + >>> model = AutoModel.from_pretrained("facebook/sam-vit-base") + >>> processor = AutoProcessor.from_pretrained("facebook/sam-vit-base") + + >>> img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car.png" + >>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") + >>> input_points = [[[400, 650]]] # 2D location of a window on the car + >>> inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt") + + >>> # Get segmentation mask + >>> outputs = model(**inputs) + + >>> # Postprocess masks + >>> masks = processor.post_process_masks( + ... outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"] + ... ) + ``` + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None and image_embeddings is None: + raise ValueError("Either pixel_values or image_embeddings must be provided.") + + if pixel_values is not None and image_embeddings is not None: + raise ValueError("Only one of pixel_values and image_embeddings can be provided.") + + if input_points is not None and len(input_points.shape) != 4: + raise ValueError( + "The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.", + " got {}.".format(input_points.shape), + ) + if input_boxes is not None and len(input_boxes.shape) != 3: + raise ValueError( + "The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.", + " got {}.".format(input_boxes.shape), + ) + if input_points is not None and input_boxes is not None: + point_batch_size = input_points.shape[1] + box_batch_size = input_boxes.shape[1] + if point_batch_size != box_batch_size: + raise ValueError( + "You should provide as many bounding boxes as input points per box. Got {} and {}.".format( + point_batch_size, box_batch_size + ) + ) + + image_positional_embeddings = self.get_image_wide_positional_embeddings() + # repeat with batch size + batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeddings.shape[0] + image_positional_embeddings = image_positional_embeddings.repeat(batch_size, 1, 1, 1) + + vision_attentions = None + vision_hidden_states = None + + if pixel_values is not None: + vision_outputs = self.vision_encoder( + pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + image_embeddings = vision_outputs[0] + + if output_hidden_states: + vision_hidden_states = vision_outputs[1] + if output_attentions: + vision_attentions = vision_outputs[-1] + + if input_points is not None and input_labels is None: + input_labels = torch.ones_like(input_points[:, :, :, 0], dtype=torch.int, device=input_points.device) + + if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]: + raise ValueError( + "The batch size of the image embeddings and the input points must be the same. ", + "Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]), + " if you want to pass multiple points for the same image, make sure that you passed ", + " input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ", + " input_labels of shape (batch_size, point_batch_size, num_points_per_image)", + ) + + sparse_embeddings, dense_embeddings = self.prompt_encoder( + input_points=input_points, + input_labels=input_labels, + input_boxes=input_boxes, + input_masks=input_masks, + ) + + low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder( + image_embeddings=image_embeddings, + image_positional_embeddings=image_positional_embeddings, + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + attention_similarity=attention_similarity, + target_embedding=target_embedding, + output_attentions=output_attentions, + ) + + if not return_dict: + output = (iou_predictions, low_res_masks) + if output_hidden_states: + output = output + (vision_hidden_states,) + + if output_attentions: + output = output + (vision_attentions, mask_decoder_attentions) + return output + + return SamImageSegmentationOutput( + iou_scores=iou_predictions, + pred_masks=low_res_masks, + vision_hidden_states=vision_hidden_states, + vision_attentions=vision_attentions, + mask_decoder_attentions=mask_decoder_attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_tf_sam.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_tf_sam.py new file mode 100644 index 0000000000000000000000000000000000000000..f527337cd6cdaa8c653272795ae98fe4deadaa0f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_tf_sam.py @@ -0,0 +1,1656 @@ +# coding=utf-8 +# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +TensorFlow SAM model. This file was mostly generated by auto-translation from the PyTorch original. In the event of a +discrepancy, the original file should be regarded as the 'reference' version. +""" + + +from __future__ import annotations + +import collections +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import ACT2FN +from ...modeling_tf_outputs import TFBaseModelOutput +from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, keras, shape_list, unpack_inputs +from ...tf_utils import flatten, functional_layernorm +from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "SamConfig" +_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge" + + +from ..deprecated._archive_maps import TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class TFSamVisionEncoderOutput(ModelOutput): + """ + Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection + layer to the pooler_output. + + Args: + image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): + The image embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for + the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + image_embeds: tf.Tensor | None = None + last_hidden_state: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFSamImageSegmentationOutput(ModelOutput): + """ + Base class for Segment-Anything model's output + + Args: + iou_scores (`tf.Tensor` of shape `(batch_size, num_masks)`): + The iou scores of the predicted masks. + pred_masks (`tf.Tensor` of shape `(batch_size, num_masks, height, width)`): + The predicted low resolutions masks. Needs to be post-processed by the processor + vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for + the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs. + vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + mask_decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + iou_scores: tf.Tensor = None + pred_masks: tf.Tensor = None + vision_hidden_states: Tuple[tf.Tensor, ...] | None = None + vision_attentions: Tuple[tf.Tensor, ...] | None = None + mask_decoder_attentions: Tuple[tf.Tensor, ...] | None = None + + +class TFSamPatchEmbeddings(keras.layers.Layer): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = keras.layers.Conv2D( + hidden_size, kernel_size=patch_size, strides=patch_size, name="projection" + ) + + def call(self, pixel_values): + batch_size, num_channels, height, width = shape_list(pixel_values) + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." + ) + embeddings = self.projection(tf.transpose(pixel_values, perm=[0, 2, 3, 1])) + return embeddings + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "projection", None) is not None: + with tf.name_scope(self.projection.name): + self.projection.build([None, None, None, self.num_channels]) + + +class TFSamMLPBlock(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.lin1 = keras.layers.Dense(config.mlp_dim, name="lin1") + self.lin2 = keras.layers.Dense(config.hidden_size, name="lin2") + self.act = ACT2FN[config.hidden_act] + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.lin1(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.lin2(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "lin1", None) is not None: + with tf.name_scope(self.lin1.name): + self.lin1.build([None, None, self.config.hidden_size]) + if getattr(self, "lin2", None) is not None: + with tf.name_scope(self.lin2.name): + self.lin2.build([None, None, self.config.mlp_dim]) + + +class TFSamLayerNorm(keras.layers.Layer): + r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. + The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, + width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). + """ + + def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", **kwargs): + super().__init__(**kwargs) + self.eps = eps + self.data_format = data_format + self.normalized_shape = normalized_shape + if self.data_format not in ["channels_last", "channels_first"]: + raise NotImplementedError(f"Unsupported data format: {self.data_format}") + + def build(self, input_shape): + self.weight = self.add_weight(shape=self.normalized_shape, initializer="ones", name="weight") + self.bias = self.add_weight(shape=self.normalized_shape, initializer="zeros", name="bias") + super().build(input_shape) + + def call(self, x: tf.Tensor) -> tf.Tensor: + if self.data_format == "channels_last": + x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=-1) + elif self.data_format == "channels_first": + x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=1) + return x + + +class TFSamAttention(keras.layers.Layer): + """ + SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and + values. + """ + + def __init__(self, config, downsample_rate=None, **kwargs): + super().__init__(**kwargs) + self.hidden_size = config.hidden_size + + downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate + + self.internal_dim = config.hidden_size // downsample_rate + self.num_attention_heads = config.num_attention_heads + if self.internal_dim % config.num_attention_heads != 0: + raise ValueError("num_attention_heads must divide hidden_size.") + + self.q_proj = keras.layers.Dense(self.internal_dim, name="q_proj") + self.k_proj = keras.layers.Dense(self.internal_dim, name="k_proj") + self.v_proj = keras.layers.Dense(self.internal_dim, name="v_proj") + self.out_proj = keras.layers.Dense(self.hidden_size, name="out_proj") + + def _separate_heads(self, hidden_states: tf.Tensor, num_attention_heads: int) -> tf.Tensor: + batch, point_batch_size, n_tokens, channel = shape_list(hidden_states) + c_per_head = channel // num_attention_heads + hidden_states = tf.reshape( + hidden_states, (batch * point_batch_size, n_tokens, num_attention_heads, c_per_head) + ) + return tf.transpose(hidden_states, perm=[0, 2, 1, 3]) + + def _recombine_heads(self, hidden_states: tf.Tensor, point_batch_size: int) -> tf.Tensor: + batch, n_heads, n_tokens, c_per_head = shape_list(hidden_states) + hidden_states = tf.transpose(hidden_states, perm=[0, 2, 1, 3]) + return tf.reshape( + hidden_states, + (batch // tf.reduce_max([1, point_batch_size]), point_batch_size, n_tokens, n_heads * c_per_head), + ) + + def call(self, query: tf.Tensor, key: tf.Tensor, value: tf.Tensor) -> tf.Tensor: + # Input projections + query = self.q_proj(query) + key = self.k_proj(key) + value = self.v_proj(value) + + point_batch_size = shape_list(query)[1] + # Separate into heads + query = self._separate_heads(query, self.num_attention_heads) + key = self._separate_heads(key, self.num_attention_heads) + value = self._separate_heads(value, self.num_attention_heads) + + # SamAttention + _, _, _, c_per_head = shape_list(query) + attn = tf.matmul( + query, tf.transpose(key, perm=[0, 1, 3, 2]) + ) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens + attn = attn / tf.math.sqrt(float(c_per_head)) + attn = tf.nn.softmax(attn, axis=-1) + + # Get output + out = tf.matmul(attn, value) + out = self._recombine_heads(out, point_batch_size) + out = self.out_proj(out) + + return out + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.hidden_size]) + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.hidden_size]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.hidden_size]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.internal_dim]) + + +class TFSamTwoWayAttentionBlock(keras.layers.Layer): + def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, **kwargs): + """ + A transformer block with four layers: + (1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on + sparse inputs (4) cross attention of dense inputs -> sparse inputs + + Arguments: + config (`SamMaskDecoderConfig`): + The configuration file used to instantiate the block + attention_downsample_rate (*optionalk*, int, defaults to 2): + The downsample ratio of the block used to reduce the inner dim of the attention. + skip_first_layer_pe (*optional*, bool, defaults to `False`): + Whether or not to skip the addition of the query_point_embedding on the first layer. + """ + super().__init__(**kwargs) + + self.hidden_size = config.hidden_size + self.layer_norm_eps = config.layer_norm_eps + + self.self_attn = TFSamAttention(config, downsample_rate=1, name="self_attn") + self.layer_norm1 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm1") + + self.cross_attn_token_to_image = TFSamAttention( + config, downsample_rate=attention_downsample_rate, name="cross_attn_token_to_image" + ) + self.layer_norm2 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm2") + + self.mlp = TFSamMLPBlock(config, name="mlp") + self.layer_norm3 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm3") + + self.layer_norm4 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm4") + self.cross_attn_image_to_token = TFSamAttention( + config, downsample_rate=attention_downsample_rate, name="cross_attn_image_to_token" + ) + + self.skip_first_layer_pe = skip_first_layer_pe + + def call( + self, + queries: tf.Tensor, + keys: tf.Tensor, + query_point_embedding: tf.Tensor, + key_point_embedding: tf.Tensor, + output_attentions: bool = False, + ): + # Self attention block + if self.skip_first_layer_pe: + queries = self.self_attn(query=queries, key=queries, value=queries) + else: + query = queries + query_point_embedding + attn_out = self.self_attn(query=query, key=query, value=queries) + queries = queries + attn_out + queries = self.layer_norm1(queries) + + # Cross attention block, tokens attending to image embedding + query = queries + query_point_embedding + key = keys + key_point_embedding + + attn_out = self.cross_attn_token_to_image(query=query, key=key, value=keys) + queries = queries + attn_out + + queries = self.layer_norm2(queries) + + # MLP block + mlp_out = self.mlp(queries) + queries = queries + mlp_out + queries = self.layer_norm3(queries) + + # Cross attention block, image embedding attending to tokens + query = queries + query_point_embedding + key = keys + key_point_embedding + + attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries) + keys = keys + attn_out + + keys = self.layer_norm4(keys) + + outputs = (queries, keys) + + if output_attentions: + outputs = outputs + (attn_out,) + else: + outputs = outputs + (None,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "layer_norm1", None) is not None: + with tf.name_scope(self.layer_norm1.name): + self.layer_norm1.build([None, None, None, self.hidden_size]) + if getattr(self, "cross_attn_token_to_image", None) is not None: + with tf.name_scope(self.cross_attn_token_to_image.name): + self.cross_attn_token_to_image.build(None) + if getattr(self, "layer_norm2", None) is not None: + with tf.name_scope(self.layer_norm2.name): + self.layer_norm2.build([None, None, None, self.hidden_size]) + if getattr(self, "mlp", None) is not None: + with tf.name_scope(self.mlp.name): + self.mlp.build(None) + if getattr(self, "layer_norm3", None) is not None: + with tf.name_scope(self.layer_norm3.name): + self.layer_norm3.build([None, None, None, self.hidden_size]) + if getattr(self, "layer_norm4", None) is not None: + with tf.name_scope(self.layer_norm4.name): + self.layer_norm4.build([None, None, None, self.hidden_size]) + if getattr(self, "cross_attn_image_to_token", None) is not None: + with tf.name_scope(self.cross_attn_image_to_token.name): + self.cross_attn_image_to_token.build(None) + + +class TFSamTwoWayTransformer(keras.layers.Layer): + def __init__(self, config: SamMaskDecoderConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + + self.num_hidden_layers = config.num_hidden_layers + self.layers = [] + + for i in range(self.num_hidden_layers): + self.layers.append(TFSamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0), name=f"layers_._{i}")) + + self.final_attn_token_to_image = TFSamAttention(config, name="final_attn_token_to_image") + self.layer_norm_final_attn = keras.layers.LayerNormalization( + epsilon=config.layer_norm_eps, name="layer_norm_final_attn" + ) + + def call( + self, + point_embeddings: tf.Tensor, + image_embeddings: tf.Tensor, + image_positional_embeddings: tf.Tensor, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TFBaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + all_attentions = () + + if image_embeddings is None: + raise ValueError("You have to specify an image_embedding") + + image_embeddings = tf.transpose(flatten(image_embeddings, 2), perm=(0, 2, 1))[:, None] + image_positional_embeddings = tf.transpose(flatten(image_positional_embeddings, 2), (0, 2, 1))[:, None] + + # Prepare queries + queries = point_embeddings + keys = image_embeddings + + # Apply transformer blocks and final layernorm + for layer in self.layers: + queries, keys, attention_outputs = layer( + queries=queries, + keys=keys, + query_point_embedding=point_embeddings, + key_point_embedding=image_positional_embeddings, + output_attentions=output_attentions, + ) + + if output_attentions: + all_attentions = all_attentions + (attention_outputs,) + + # Apply the final attenion layer from the points to the image + query = queries + point_embeddings + key = keys + image_positional_embeddings + + attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys) + + queries = queries + attn_out + queries = self.layer_norm_final_attn(queries) + return queries, keys, all_attentions + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "final_attn_token_to_image", None) is not None: + with tf.name_scope(self.final_attn_token_to_image.name): + self.final_attn_token_to_image.build(None) + if getattr(self, "layer_norm_final_attn", None) is not None: + with tf.name_scope(self.layer_norm_final_attn.name): + self.layer_norm_final_attn.build([None, None, None, self.config.hidden_size]) + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +class TFSamFeedForward(keras.layers.Layer): + def __init__( + self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, **kwargs + ): + super().__init__(**kwargs) + self.num_layers = num_layers + self.activation = keras.layers.ReLU() + self.proj_in = keras.layers.Dense(hidden_dim, input_shape=(input_dim,), name="proj_in") + self.proj_out = keras.layers.Dense(output_dim, input_shape=(hidden_dim,), name="proj_out") + self.layers = [ + keras.layers.Dense(hidden_dim, input_shape=(hidden_dim,), name=f"layers_._{i}") + for i in range(num_layers - 2) + ] + self.sigmoid_output = sigmoid_output + self.hidden_dim = hidden_dim + self.input_dim = input_dim + + def call(self, hidden_states): + hidden_states = self.proj_in(hidden_states) + hidden_states = self.activation(hidden_states) + for layer in self.layers: + hidden_states = self.activation(layer(hidden_states)) + + hidden_states = self.proj_out(hidden_states) + if self.sigmoid_output: + hidden_states = tf.sigmoid(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "proj_in", None) is not None: + with tf.name_scope(self.proj_in.name): + self.proj_in.build([None, None, self.input_dim]) + if getattr(self, "proj_out", None) is not None: + with tf.name_scope(self.proj_out.name): + self.proj_out.build([None, None, self.hidden_dim]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build([None, None, self.hidden_dim]) + + +class TFSamMaskDecoder(keras.layers.Layer): + def __init__(self, config: SamMaskDecoderConfig, **kwargs): + super().__init__(**kwargs) + + self.hidden_size = config.hidden_size + + self.num_multimask_outputs = config.num_multimask_outputs + self.num_mask_tokens = config.num_multimask_outputs + 1 + + self.transformer = TFSamTwoWayTransformer(config, name="transformer") + + self.upscale_conv1 = keras.layers.Conv2DTranspose( + self.hidden_size // 4, kernel_size=2, strides=2, name="upscale_conv1", data_format="channels_first" + ) + self.upscale_conv2 = keras.layers.Conv2DTranspose( + self.hidden_size // 8, kernel_size=2, strides=2, name="upscale_conv2", data_format="channels_first" + ) + self.upscale_layer_norm = TFSamLayerNorm( + self.hidden_size // 4, data_format="channels_first", name="upscale_layer_norm" + ) + self.activation = tf.nn.gelu + + mlps_list = [] + for i in range(self.num_mask_tokens): + mlps_list += [ + TFSamFeedForward( + self.hidden_size, + self.hidden_size, + self.hidden_size // 8, + 3, + name=f"output_hypernetworks_mlps_._{i}", + ) + ] + self.output_hypernetworks_mlps = mlps_list + + self.iou_prediction_head = TFSamFeedForward( + self.hidden_size, + config.iou_head_hidden_dim, + self.num_mask_tokens, + config.iou_head_depth, + name="iou_prediction_head", + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + self.iou_token = self.add_weight(shape=(1, self.hidden_size), name="iou_token.weight", trainable=True) + self.mask_tokens = self.add_weight( + shape=(self.num_mask_tokens, self.hidden_size), name="mask_tokens.weight", trainable=True + ) + + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + if getattr(self, "upscale_conv1", None) is not None: + with tf.name_scope(self.upscale_conv1.name): + self.upscale_conv1.build([None, self.hidden_size, None, None]) + if getattr(self, "upscale_conv2", None) is not None: + with tf.name_scope(self.upscale_conv2.name): + self.upscale_conv2.build([None, self.hidden_size // 4, None, None]) + if getattr(self, "upscale_layer_norm", None) is not None: + with tf.name_scope(self.upscale_layer_norm.name): + self.upscale_layer_norm.build(None) + if getattr(self, "iou_prediction_head", None) is not None: + with tf.name_scope(self.iou_prediction_head.name): + self.iou_prediction_head.build(None) + for mlp in self.output_hypernetworks_mlps: + with tf.name_scope(mlp.name): + mlp.build(None) + + def call( + self, + image_embeddings: tf.Tensor, + image_positional_embeddings: tf.Tensor, + sparse_prompt_embeddings: tf.Tensor, + dense_prompt_embeddings: tf.Tensor, + multimask_output: bool, + output_attentions: Optional[bool] = None, + ) -> Tuple[tf.Tensor, tf.Tensor]: + batch_size, num_channels, height, width = shape_list(image_embeddings) + point_batch_size = tf.math.maximum(1, tf.shape(sparse_prompt_embeddings)[1]) + + output_tokens = tf.concat([self.iou_token, self.mask_tokens], axis=0) # Should be (1, 32) + (4, 32) = (5, 32) + output_tokens = tf.tile( + output_tokens[None, None, :], [batch_size, point_batch_size, 1, 1] + ) # Should be (batch_size, point_size, 5, 32) + + # Matt: The original Torch code checked that the sum of sparse_prompt_embeddings equalled 0. However, this only + # happens when the sparse prompt embeddings are an empty tensor with shape[1] == 0. I replaced + # it with an explicit shape check to avoid data-dependent control flow which breaks XLA. + if shape_list(sparse_prompt_embeddings)[1] != 0: + tokens = tf.concat((output_tokens, sparse_prompt_embeddings), axis=2) + else: + tokens = output_tokens + point_embeddings = tf.cast(tokens, self.iou_token.dtype) + + image_embeddings = image_embeddings + dense_prompt_embeddings + image_embeddings = tf.repeat(image_embeddings, point_batch_size, axis=0) + image_positional_embeddings = tf.repeat(image_positional_embeddings, point_batch_size, axis=0) + + point_embedding, image_embeddings, attentions = self.transformer( + point_embeddings=point_embeddings, + image_embeddings=image_embeddings, + image_positional_embeddings=image_positional_embeddings, + output_attentions=output_attentions, + ) + iou_token_out = point_embedding[:, :, 0, :] + mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :] + + image_embeddings = tf.transpose(image_embeddings, perm=(0, 1, 3, 2)) + image_embeddings = tf.reshape(image_embeddings, [batch_size * point_batch_size, num_channels, height, width]) + + upscaled_embedding = self.upscale_conv1(image_embeddings) + upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding)) + upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding)) + + hyper_in_list = [] + for i in range(self.num_mask_tokens): + current_mlp = self.output_hypernetworks_mlps[i] + hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])] + hyper_in = tf.stack(hyper_in_list, axis=2) + + _, num_channels, height, width = shape_list(upscaled_embedding) + upscaled_embedding = tf.reshape( + upscaled_embedding, [batch_size, point_batch_size, num_channels, height * width] + ) + masks = tf.reshape(hyper_in @ upscaled_embedding, [batch_size, point_batch_size, -1, height, width]) + + iou_pred = self.iou_prediction_head(iou_token_out) + + if multimask_output: + mask_slice = slice(1, None) + else: + mask_slice = slice(0, 1) + masks = masks[:, :, mask_slice, :, :] + iou_pred = iou_pred[:, :, mask_slice] + + outputs = (masks, iou_pred) + + if output_attentions: + outputs = outputs + (attentions,) + else: + outputs = outputs + (None,) + + return outputs + + +class TFSamPositionalEmbedding(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.scale = config.hidden_size // 2 + self.config = config + + def build(self, input_shape): + # TODO Matt: What is going on here? Why is a non-trainable weight randomly initialized? + self.positional_embedding = self.add_weight( + name="positional_embedding", + shape=(2, self.config.num_pos_feats), + initializer=keras.initializers.RandomNormal(mean=0.0, stddev=self.scale), + trainable=False, + ) + super().build(input_shape) + + def call(self, input_coords, input_shape=None): + """Positionally encode points that are normalized to [0,1].""" + coordinates = tf.identity(input_coords) + + if input_shape is not None: + coordinates = tf.stack( + [ + tf.cast(coordinates[:, :, :, 0], tf.float32) / input_shape[1], + tf.cast(coordinates[:, :, :, 1], tf.float32) / input_shape[0], + ], + axis=-1, + ) + + # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape + coordinates = 2 * coordinates - 1 + coordinates = tf.cast(coordinates, self.positional_embedding.dtype) + coordinates = tf.matmul(coordinates, self.positional_embedding) + coordinates = 2 * np.pi * coordinates + # outputs d_1 x ... x d_n x channel shape + return tf.concat([tf.sin(coordinates), tf.cos(coordinates)], axis=-1) + + +class TFSamMaskEmbedding(keras.layers.Layer): + def __init__(self, config: SamPromptEncoderConfig, **kwargs): + super().__init__(**kwargs) + self.mask_input_channels = config.mask_input_channels // 4 + self.activation = ACT2FN[config.hidden_act] + self.conv1 = keras.layers.Conv2D(self.mask_input_channels, kernel_size=2, strides=2, name="conv1") + self.conv2 = keras.layers.Conv2D(config.mask_input_channels, kernel_size=2, strides=2, name="conv2") + self.conv3 = keras.layers.Conv2D(config.hidden_size, kernel_size=1, name="conv3") + self.layer_norm1 = TFSamLayerNorm(self.mask_input_channels, config.layer_norm_eps, name="layer_norm1") + self.layer_norm2 = TFSamLayerNorm(self.mask_input_channels * 4, config.layer_norm_eps, name="layer_norm2") + self.config = config + + def call(self, masks): + masks = tf.transpose(masks, perm=(0, 2, 3, 1)) # Convert to channels-last + hidden_states = self.conv1(masks) + hidden_states = self.layer_norm1(hidden_states) + hidden_states = self.activation(hidden_states) + + hidden_states = self.conv2(hidden_states) + hidden_states = self.layer_norm2(hidden_states) + hidden_states = self.activation(hidden_states) + dense_embeddings = self.conv3(hidden_states) + dense_embeddings = tf.transpose(dense_embeddings, perm=(0, 3, 1, 2)) # Convert back to channels-first + return dense_embeddings + + def build(self, input_shape=None): + # This class needs an explicit build method because it isn't called with the standard dummy inputs + if self.built: + return + self.built = True + with tf.name_scope("conv1"): + self.conv1.build([None, None, None, 1]) + with tf.name_scope("conv2"): + self.conv2.build([None, None, None, self.mask_input_channels]) + with tf.name_scope("conv3"): + self.conv3.build([None, None, None, self.mask_input_channels * 4]) + with tf.name_scope("layer_norm1"): + self.layer_norm1.build([None, None, None, self.mask_input_channels]) + with tf.name_scope("layer_norm2"): + self.layer_norm2.build([None, None, None, self.mask_input_channels * 4]) + + +class TFSamPromptEncoder(keras.layers.Layer): + def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding, **kwargs): + super().__init__(**kwargs) + self.shared_embedding = shared_patch_embedding + self.mask_embed = TFSamMaskEmbedding(config, name="mask_embed") + self.no_mask_embed = None + + self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size) + self.input_image_size = config.image_size + + self.point_embed = [] + self.hidden_size = config.hidden_size + self.not_a_point_embed = None + self.config = config + + def build(self, input_shape=None): + self.no_mask_embed = self.add_weight( + name="no_mask_embed.weight", + shape=(1, self.hidden_size), + initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02), + trainable=True, + ) + self.point_embed = [ + self.add_weight( + name=f"point_embed_._{i}.weight", + shape=(1, self.hidden_size), + initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02), + trainable=True, + ) + for i in range(self.config.num_point_embeddings) + ] + self.not_a_point_embed = self.add_weight( + name="not_a_point_embed.weight", + shape=(1, self.hidden_size), + initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02), + trainable=True, + ) + with tf.name_scope("mask_embed"): + # We must explicitly build the mask embed because it isn't touched by the standard dummy inputs + self.mask_embed.build( + (None, self.config.mask_input_channels, self.config.image_size, self.config.image_size) + ) + + if self.built: + return + self.built = True + if getattr(self, "mask_embed", None) is not None: + with tf.name_scope(self.mask_embed.name): + self.mask_embed.build(None) + + def _embed_points(self, points: tf.Tensor, labels: tf.Tensor, pad: bool) -> tf.Tensor: + """Embeds point prompts.""" + points = points + 0.5 # Shift to center of pixel + if pad: + target_point_shape = (shape_list(points)[0], shape_list(points)[1], 1, shape_list(points)[-1]) + target_labels_shape = (shape_list(points)[0], shape_list(points)[1], 1) + padding_point = tf.zeros(target_point_shape, dtype=points.dtype) + padding_label = -tf.ones(target_labels_shape, dtype=labels.dtype) + points = tf.concat([points, padding_point], axis=2) + labels = tf.concat([labels, padding_label], axis=2) + input_shape = (self.input_image_size, self.input_image_size) + point_embedding = self.shared_embedding(points, input_shape) + + point_embedding = tf.where(labels[..., None] == -1, self.not_a_point_embed[0], point_embedding) + + point_embedding = tf.where( + labels[..., None] != -10, + point_embedding, + tf.zeros_like(point_embedding), + ) + point_embedding = tf.where( + (labels == 0)[:, :, :, None], point_embedding + self.point_embed[0], point_embedding + ) + point_embedding = tf.where( + (labels == 1)[:, :, :, None], point_embedding + self.point_embed[1], point_embedding + ) + return point_embedding + + def _embed_boxes(self, boxes: tf.Tensor) -> tf.Tensor: + """Embeds box prompts.""" + boxes = boxes + 0.5 # Shift to center of pixel + batch_size, nb_boxes = shape_list(boxes)[:2] + coords = tf.reshape(boxes, (batch_size, nb_boxes, 2, 2)) + input_shape = (self.input_image_size, self.input_image_size) + corner_embedding = self.shared_embedding(coords, input_shape) + corner_embedding += tf.where( + tf.range(shape_list(corner_embedding)[2])[None, None, :, None] == 0, + self.point_embed[2][0], + self.point_embed[3][0], + ) + return corner_embedding + + def call( + self, + batch_size: Optional[int], + input_points: Optional[Tuple[tf.Tensor, tf.Tensor]], + input_labels: tf.Tensor | None, + input_boxes: tf.Tensor | None, + input_masks: tf.Tensor | None, + ) -> Tuple[tf.Tensor, tf.Tensor]: + """ + Embeds different types of prompts, returning both sparse and dense embeddings. + + Args: + points (`tf.Tensor`, *optional*): + point coordinates and labels to embed. + boxes (`tf.Tensor`, *optional*): + boxes to embed + masks (`tf.Tensor`, *optional*): + masks to embed + """ + sparse_embeddings = None + if input_points is not None: + batch_size, point_batch_size = shape_list(input_points)[:2] + if input_labels is None: + raise ValueError("If points are provided, labels must also be provided.") + point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None)) + sparse_embeddings = tf.zeros( + (batch_size, point_batch_size, 0, self.hidden_size), dtype=point_embeddings.dtype + ) + sparse_embeddings = tf.concat([sparse_embeddings, point_embeddings], axis=2) + if input_boxes is not None: + batch_size = shape_list(input_boxes)[0] + box_embeddings = self._embed_boxes(input_boxes) + if sparse_embeddings is None: + sparse_embeddings = box_embeddings + else: + sparse_embeddings = tf.concat([sparse_embeddings, box_embeddings], axis=2) + if input_masks is not None: + dense_embeddings = self.mask_embed(input_masks) + else: + dense_embeddings = self.no_mask_embed[0] + dense_embeddings = tf.reshape(dense_embeddings, (1, -1, 1, 1)) + dense_embeddings = tf.tile( + dense_embeddings, (batch_size, 1, self.image_embedding_size[0], self.image_embedding_size[1]) + ) + if sparse_embeddings is None: + sparse_embeddings = tf.zeros((batch_size, 0, 1, self.hidden_size), dtype=dense_embeddings.dtype) + + return sparse_embeddings, dense_embeddings + + +class TFSamVisionAttention(keras.layers.Layer): + """Multi-head Attention block with relative position embeddings.""" + + def __init__(self, config, window_size, **kwargs): + super().__init__(**kwargs) + input_size = ( + (config.image_size // config.patch_size, config.image_size // config.patch_size) + if window_size == 0 + else (window_size, window_size) + ) + self.input_size = input_size + + self.num_attention_heads = config.num_attention_heads + head_dim = config.hidden_size // config.num_attention_heads + self.head_dim = head_dim + self.scale = head_dim**-0.5 + self.dropout = config.attention_dropout + + self.qkv = keras.layers.Dense(config.hidden_size * 3, use_bias=config.qkv_bias, name="qkv") + self.proj = keras.layers.Dense(config.hidden_size, name="proj") + + self.use_rel_pos = config.use_rel_pos + if self.use_rel_pos: + if input_size is None: + raise ValueError("Input size must be provided if using relative positional encoding.") + self.config = config + + def build(self, input_shape=None): + if self.input_size is not None: + # initialize relative positional embeddings + self.rel_pos_h = self.add_weight( + shape=(2 * self.input_size[0] - 1, self.head_dim), initializer="zeros", name="rel_pos_h" + ) + self.rel_pos_w = self.add_weight( + shape=(2 * self.input_size[1] - 1, self.head_dim), initializer="zeros", name="rel_pos_w" + ) + + if self.built: + return + self.built = True + if getattr(self, "qkv", None) is not None: + with tf.name_scope(self.qkv.name): + self.qkv.build([None, None, self.config.hidden_size]) + if getattr(self, "proj", None) is not None: + with tf.name_scope(self.proj.name): + self.proj.build([None, None, self.config.hidden_size]) + + def get_rel_pos(self, q_size: int, k_size: int, rel_pos: tf.Tensor) -> tf.Tensor: + """ + Get relative positional embeddings according to the relative positions of + query and key sizes. + + Args: + q_size (int): + size of the query. + k_size (int): + size of key k. + rel_pos (`tf.Tensor`): + relative position embeddings (L, channel). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos if needed. + if rel_pos.shape[0] != max_rel_dist: + # Interpolate rel pos. + rel_pos_resized = tf.image.resize( + tf.reshape(rel_pos, (1, rel_pos.shape[0], -1)), + size=(max_rel_dist, rel_pos.shape[1]), + method="bilinear", + ) + rel_pos_resized = tf.reshape(rel_pos_resized, (-1, max_rel_dist)) + else: + rel_pos_resized = rel_pos + + # Scale the coords with short length if shapes for q and k are different. + q_coords = tf.expand_dims(tf.range(q_size, dtype=tf.float32), 1) * max(k_size / q_size, 1.0) + k_coords = tf.expand_dims(tf.range(k_size, dtype=tf.float32), 0) * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return tf.gather(rel_pos_resized, tf.cast(relative_coords, tf.int32)) + + def add_decomposed_rel_pos( + self, + attn: tf.Tensor, + query: tf.Tensor, + rel_pos_h: tf.Tensor, + rel_pos_w: tf.Tensor, + q_size: Tuple[int, int], + k_size: Tuple[int, int], + ) -> tf.Tensor: + """ + Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. + https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py + + Args: + attn (`tf.Tensor`): + attention map. + query (`tf.Tensor`): + query q in the attention layer with shape (batch_size, query_height * query_width, channel). + rel_pos_h (`tf.Tensor`): + relative position embeddings (Lh, channel) for height axis. + rel_pos_w (`tf.Tensor`): + relative position embeddings (Lw, channel) for width axis. + q_size (tuple): + spatial sequence size of query q with (query_height, query_width). + k_size (tuple): + spatial sequence size of key k with (key_height, key_width). + + Returns: + attn (`tf.Tensor`): + attention map with added relative positional embeddings. + """ + query_height, query_width = q_size + key_height, key_width = k_size + relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h) + relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w) + + batch_size, _, dim = shape_list(query) + reshaped_query = tf.reshape(query, (batch_size, query_height, query_width, dim)) + rel_h = tf.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height) + rel_w = tf.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width) + attn = tf.reshape(attn, (batch_size, query_height, query_width, key_height, key_width)) + attn = attn + tf.expand_dims(rel_h, axis=-1) + tf.expand_dims(rel_w, axis=-2) + attn = tf.reshape(attn, (batch_size, query_height * query_width, key_height * key_width)) + return attn + + def call(self, hidden_states: tf.Tensor, output_attentions=False, training=False) -> tf.Tensor: + batch_size, height, width, _ = shape_list(hidden_states) + # qkv with shape (3, batch_size, nHead, height * width, channel) + qkv = tf.reshape(self.qkv(hidden_states), (batch_size, height * width, 3, self.num_attention_heads, -1)) + qkv = tf.transpose(qkv, perm=(2, 0, 3, 1, 4)) + # q, k, v with shape (batch_size * nHead, height * width, channel) + query, key, value = tf.unstack( + tf.reshape(qkv, (3, batch_size * self.num_attention_heads, height * width, -1)), axis=0 + ) + attn_weights = tf.matmul(query * self.scale, key, transpose_b=True) + + if self.use_rel_pos: + attn_weights = self.add_decomposed_rel_pos( + attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width) + ) + + attn_weights = tf.nn.softmax(attn_weights, axis=-1) + + if training: + attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout) + else: + attn_probs = attn_weights + + attn_output = tf.reshape(attn_probs @ value, (batch_size, self.num_attention_heads, height, width, -1)) + attn_output = tf.transpose(attn_output, perm=(0, 2, 3, 1, 4)) + attn_output = tf.reshape(attn_output, (batch_size, height, width, self.config.hidden_size)) + + attn_output = self.proj(attn_output) + + if output_attentions: + outputs = (attn_output, attn_weights) + else: + outputs = (attn_output, None) + + return outputs + + +class TFSamVisionLayer(keras.layers.Layer): + def __init__(self, config, window_size, **kwargs): + super().__init__(**kwargs) + self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1") + self.attn = TFSamVisionAttention(config, window_size, name="attn") + self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2") + self.mlp = TFSamMLPBlock(config, name="mlp") + self.window_size = window_size + self.config = config + + def window_partition(self, hidden_states: tf.Tensor, window_size: int) -> Tuple[tf.Tensor, Tuple[int, int]]: + batch_size, height, width, channel = shape_list(hidden_states) + + pad_h = (window_size - height % window_size) % window_size + pad_w = (window_size - width % window_size) % window_size + if pad_h > 0 or pad_w > 0: + hidden_states = tf.pad(hidden_states, [[0, 0], [0, pad_h], [0, pad_w], [0, 0]]) + pad_height, pad_width = height + pad_h, width + pad_w + + hidden_states = tf.reshape( + hidden_states, + [batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel], + ) + windows = tf.reshape( + tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [-1, window_size, window_size, channel] + ) + return windows, (pad_height, pad_width) + + def window_unpartition( + self, windows: tf.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int] + ) -> tf.Tensor: + pad_height, pad_width = padding_shape + height, width = original_shape + batch_size = shape_list(windows)[0] // (pad_height * pad_width // window_size // window_size) + hidden_states = tf.reshape( + windows, [batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1] + ) + hidden_states = tf.reshape( + tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [batch_size, pad_height, pad_width, -1] + ) + + if pad_height > height or pad_width > width: + hidden_states = hidden_states[:, :height, :width, :] + return hidden_states + + def call( + self, + hidden_states: tf.Tensor, + output_attentions: Optional[bool] = False, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor]: + residual = hidden_states + + hidden_states = self.layer_norm1(hidden_states) + if self.window_size > 0: + height, width = hidden_states.shape[1], hidden_states.shape[2] + hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size) + + hidden_states, attn_weights = self.attn( + hidden_states=hidden_states, + output_attentions=output_attentions, + training=training, + ) + if self.window_size > 0: + hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width)) + + hidden_states = residual + hidden_states + layernorm_output = self.layer_norm2(hidden_states) + hidden_states = hidden_states + self.mlp(layernorm_output) + + outputs = (hidden_states,) + if output_attentions: + outputs += (attn_weights,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer_norm1", None) is not None: + with tf.name_scope(self.layer_norm1.name): + self.layer_norm1.build([None, None, None, self.config.hidden_size]) + if getattr(self, "attn", None) is not None: + with tf.name_scope(self.attn.name): + self.attn.build(None) + if getattr(self, "layer_norm2", None) is not None: + with tf.name_scope(self.layer_norm2.name): + self.layer_norm2.build([None, None, None, self.config.hidden_size]) + if getattr(self, "mlp", None) is not None: + with tf.name_scope(self.mlp.name): + self.mlp.build(None) + + +class TFSamVisionNeck(keras.layers.Layer): + def __init__(self, config: SamVisionConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + + self.conv1 = keras.layers.Conv2D( + config.output_channels, + kernel_size=1, + use_bias=False, + name="conv1", + ) + self.layer_norm1 = TFSamLayerNorm(config.output_channels, name="layer_norm1") + self.conv2 = keras.layers.Conv2D( + config.output_channels, + kernel_size=3, + padding="same", + use_bias=False, + name="conv2", + ) + self.layer_norm2 = TFSamLayerNorm(config.output_channels, name="layer_norm2") + + def call(self, hidden_states): + hidden_states = self.conv1(hidden_states) + hidden_states = self.layer_norm1(hidden_states) + + hidden_states = self.conv2(hidden_states) + hidden_states = self.layer_norm2(hidden_states) + hidden_states = tf.transpose(hidden_states, perm=[0, 3, 1, 2]) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "conv1", None) is not None: + with tf.name_scope(self.conv1.name): + self.conv1.build([None, None, None, self.config.hidden_size]) + if getattr(self, "layer_norm1", None) is not None: + with tf.name_scope(self.layer_norm1.name): + self.layer_norm1.build(None) + if getattr(self, "conv2", None) is not None: + with tf.name_scope(self.conv2.name): + self.conv2.build([None, None, None, self.config.output_channels]) + if getattr(self, "layer_norm2", None) is not None: + with tf.name_scope(self.layer_norm2.name): + self.layer_norm2.build(None) + + +class TFSamVisionEncoder(keras.layers.Layer): + def __init__(self, config: SamVisionConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.image_size = config.image_size + + self.patch_embed = TFSamPatchEmbeddings(config, name="patch_embed") + + self.pos_embed = None + + self.layers = [] + for i in range(config.num_hidden_layers): + layer = TFSamVisionLayer( + config, + window_size=config.window_size if i not in config.global_attn_indexes else 0, + name=f"layers_._{i}", + ) + self.layers.append(layer) + + self.neck = TFSamVisionNeck(config, name="neck") + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if self.config.use_abs_pos: + # Initialize absolute positional embedding with pretrain image size. + self.pos_embed = self.add_weight( + shape=[ + 1, + self.config.image_size // self.config.patch_size, + self.config.image_size // self.config.patch_size, + self.config.hidden_size, + ], + initializer="zeros", + trainable=True, + name="pos_embed", + ) + + if getattr(self, "patch_embed", None) is not None: + with tf.name_scope(self.patch_embed.name): + self.patch_embed.build(None) + if getattr(self, "neck", None) is not None: + with tf.name_scope(self.neck.name): + self.neck.build(None) + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + def get_input_embeddings(self): + return self.patch_embed + + def call( + self, + pixel_values: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFSamVisionEncoderOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + hidden_states = self.patch_embed(pixel_values) + if self.pos_embed is not None: + hidden_states = hidden_states + self.pos_embed + + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module(hidden_states, output_attentions=output_attentions, training=training) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + hidden_states = self.neck(hidden_states) + + if not return_dict: + outputs = (hidden_states,) + if output_hidden_states: + outputs = outputs + (all_hidden_states,) + if output_attentions: + outputs = outputs + (all_self_attentions,) + return outputs + + return TFSamVisionEncoderOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class TFSamPreTrainedModel(TFPreTrainedModel): + config_class = SamConfig + base_model_prefix = "sam" + main_input_name = "pixel_values" + + +SAM_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a TensorFlow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) + subclass. Use it as a regular TensorFlow Model and refer to the TensorFlow documentation for all matter related to + general usage and behavior. + + Parameters: + config ([`SamConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +SAM_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for + details. + input_points (`tf.Tensor` of shape `(batch_size, num_points, 2)`): + Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much + better results. The points can be obtained by passing a list of list of list to the processor that will + create corresponding `tf` tensors of dimension 4. The first dimension is the image batch size, the second + dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict per + input point), the third dimension is the number of points per segmentation mask (it is possible to pass + multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal) + coordinates of the point. If a different number of points is passed either for each image, or for each + mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the + computation of the embedding will be skipped for these points using the labels. + input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points)`): + Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the + official implementation, there are 3 types of labels + + - `1`: the point is a point that contains the object of interest + - `0`: the point is a point that does not contain the object of interest + - `-1`: the point corresponds to the background + + We added the label: + + - `-10`: the point is a padding point, thus should be ignored by the prompt encoder + + The padding labels should be automatically done by the processor. + input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes, 4)`): + Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to + much better generated masks. The boxes can be obtained by passing a list of list of list to the processor, + that will generate a `tf` tensor, with each dimension corresponding respectively to the image batch size, + the number of boxes per image and the coordinates of the top left and botton right point of the box. In the + order (`x1`, `y1`, `x2`, `y2`): + + - `x1`: the x coordinate of the top left point of the input box + - `y1`: the y coordinate of the top left point of the input box + - `x2`: the x coordinate of the bottom right point of the input box + - `y2`: the y coordinate of the bottom right point of the input box + + input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`): + SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to + generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be + manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`). + + image_embeddings (`tf.Tensor` of shape `(batch_size, output_channels, window_size, window_size)`): + Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory + efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings` + method, and then feed them to the `call` method instead of feeding the `pixel_values`. + multimask_output (`bool`, *optional*): + In the original implementation and paper, the model always outputs 3 masks per image (or per point / per + bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the + "best" mask, by specifying `multimask_output=False`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "Segment Anything Model (SAM) for generating segmentation masks, given an input image and ", + " optional 2D location and bounding boxes.", + SAM_START_DOCSTRING, +) +class TFSamModel(TFSamPreTrainedModel): + _keys_to_ignore_on_load_missing = [r"prompt_encoder.shared_embedding.positional_embedding"] + + def __init__(self, config, **kwargs): + super().__init__(config, **kwargs) + self.shared_image_embedding = TFSamPositionalEmbedding(config.vision_config, name="shared_image_embedding") + + self.vision_encoder = TFSamVisionEncoder(config.vision_config, name="vision_encoder") + self.prompt_encoder = TFSamPromptEncoder( + config.prompt_encoder_config, self.shared_image_embedding, name="prompt_encoder" + ) + self.mask_decoder = TFSamMaskDecoder(config.mask_decoder_config, name="mask_decoder") + self.config = config + + def get_input_embeddings(self): + return self.vision_encoder.get_input_embeddings() + + def get_image_wide_positional_embeddings(self): + size = self.config.prompt_encoder_config.image_embedding_size + grid = tf.ones((size, size)) + y_embed = tf.math.cumsum(grid, axis=0) - 0.5 + x_embed = tf.math.cumsum(grid, axis=1) - 0.5 + y_embed = y_embed / size + x_embed = x_embed / size + + positional_embedding = self.shared_image_embedding(tf.stack([x_embed, y_embed], axis=-1)) + return tf.expand_dims(tf.transpose(positional_embedding, perm=[2, 0, 1]), axis=0) # channel x height x width + + def get_image_embeddings( + self, + pixel_values, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + r""" + Returns the image embeddings by passing the pixel values through the vision encoder. + + Args: + pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): + Input pixel values + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.TFModelOutput`] instead of a plain tuple. + + """ + vision_output = self.vision_encoder( + pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + image_embeddings = vision_output[0] + return image_embeddings + + def get_prompt_embeddings( + self, + input_points: tf.Tensor | None = None, + input_labels: tf.Tensor | None = None, + input_boxes: tf.Tensor | None = None, + input_masks: tf.Tensor | None = None, + ): + r""" + Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder. + + Args: + input_points (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`): + Optional input points for the prompt encoder. The padding of the point is automatically done by the + processor. `point_batch_size` refers to the number of masks that we want the model to predict per + point. The model will output `point_batch_size` times 3 masks in total. + input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image)`): + Optional input labels for the prompt encoder. The padding of the labels is automatically done by the + processor, or can be fed by the user. + input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes_per_image, 4)`): + Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the + processor. users can also pass manually the input boxes. + input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`): + Optional input masks for the prompt encoder. + """ + prompt_output = self.prompt_encoder( + input_points=input_points, + input_labels=input_labels, + input_boxes=input_boxes, + input_masks=input_masks, + ) + return prompt_output + + @unpack_inputs + @add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING) + def call( + self, + pixel_values: TFModelInputType | None = None, + input_points: tf.Tensor | None = None, + input_labels: tf.Tensor | None = None, + input_boxes: tf.Tensor | None = None, + input_masks: tf.Tensor | None = None, + image_embeddings: tf.Tensor | None = None, + multimask_output: bool = True, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + training: bool = False, + **kwargs, + ) -> TFSamImageSegmentationOutput | Tuple[tf.Tensor]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None and image_embeddings is None: + raise ValueError("Either pixel_values or image_embeddings must be provided.") + + if pixel_values is not None and image_embeddings is not None: + raise ValueError("Only one of pixel_values and image_embeddings can be provided.") + + if input_points is not None and len(input_points.shape) != 4: + raise ValueError( + "The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.", + " got {}.".format(input_points.shape), + ) + if input_boxes is not None and len(input_boxes.shape) != 3: + raise ValueError( + "The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.", + " got {}.".format(input_boxes.shape), + ) + if input_points is not None and input_boxes is not None: + point_batch_size = shape_list(input_points)[1] + box_batch_size = shape_list(input_boxes)[1] + if point_batch_size != box_batch_size: + raise ValueError( + "You should provide as many bounding boxes as input points per box. Got {} and {}.".format( + point_batch_size, box_batch_size + ) + ) + if pixel_values is not None: + # Ensures that later checks pass even with an all-None shape from the serving signature + pixel_values = tf.ensure_shape( + pixel_values, + [ + None, + self.config.vision_config.num_channels, + self.config.vision_config.image_size, + self.config.vision_config.image_size, + ], + ) + image_positional_embeddings = self.get_image_wide_positional_embeddings() + # repeat with batch size + batch_size = shape_list(pixel_values)[0] if pixel_values is not None else shape_list(image_embeddings)[0] + image_positional_embeddings = tf.repeat(image_positional_embeddings, batch_size, axis=0) + + vision_attentions = None + vision_hidden_states = None + + if pixel_values is not None: + vision_outputs = self.vision_encoder( + pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + training=training, + ) + image_embeddings = vision_outputs["last_hidden_state"] + + if output_hidden_states: + vision_hidden_states = vision_outputs["hidden_states"] + if output_attentions: + vision_attentions = vision_outputs["attentions"] + + if input_points is not None and input_labels is None: + input_labels = tf.ones_like(input_points[:, :, :, 0], dtype=tf.int32) + + if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]: + raise ValueError( + "The batch size of the image embeddings and the input points must be the same. ", + "Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]), + " if you want to pass multiple points for the same image, make sure that you passed ", + " input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ", + " input_labels of shape (batch_size, point_batch_size, num_points_per_image)", + ) + + sparse_embeddings, dense_embeddings = self.prompt_encoder( + batch_size=shape_list(image_embeddings)[0], + input_points=input_points, + input_labels=input_labels, + input_boxes=input_boxes, + input_masks=input_masks, + ) + + low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder( + image_embeddings=image_embeddings, + image_positional_embeddings=image_positional_embeddings, + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + output_attentions=output_attentions, + ) + + if not return_dict: + output = (iou_predictions, low_res_masks) + if output_hidden_states: + output = output + (vision_hidden_states,) + + if output_attentions: + output = output + (vision_attentions, mask_decoder_attentions) + return output + + return TFSamImageSegmentationOutput( + iou_scores=iou_predictions, + pred_masks=low_res_masks, + vision_hidden_states=vision_hidden_states, + vision_attentions=vision_attentions, + mask_decoder_attentions=mask_decoder_attentions, + ) + + def serving_output(self, output: TFSamImageSegmentationOutput) -> TFSamImageSegmentationOutput: + hs = tf.convert_to_tensor(output.vision_hidden_states) if self.config.output_hidden_states else None + attns = tf.convert_to_tensor(output.vision_attentions) if self.config.output_attentions else None + + return TFSamImageSegmentationOutput( + iou_scores=output.iou_scores, + pred_masks=output.pred_masks, + vision_hidden_states=hs if self.config.output_hidden_states else None, + vision_attentions=attns if self.config.output_attentions else None, + mask_decoder_attentions=output.mask_decoder_attentions if self.config.output_attentions else None, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "shared_image_embedding", None) is not None: + with tf.name_scope(self.shared_image_embedding.name): + self.shared_image_embedding.build(None) + if getattr(self, "vision_encoder", None) is not None: + with tf.name_scope(self.vision_encoder.name): + self.vision_encoder.build(None) + if getattr(self, "prompt_encoder", None) is not None: + with tf.name_scope(self.prompt_encoder.name): + self.prompt_encoder.build(None) + if getattr(self, "mask_decoder", None) is not None: + with tf.name_scope(self.mask_decoder.name): + self.mask_decoder.build(None) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/processing_sam.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/processing_sam.py new file mode 100644 index 0000000000000000000000000000000000000000..ed89ebeb3a035bdedfe0b1a50d6b564d346d4707 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/processing_sam.py @@ -0,0 +1,266 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Processor class for SAM. +""" +from copy import deepcopy +from typing import Optional, Union + +import numpy as np + +from ...processing_utils import ProcessorMixin +from ...tokenization_utils_base import BatchEncoding +from ...utils import TensorType, is_tf_available, is_torch_available + + +if is_torch_available(): + import torch + +if is_tf_available(): + import tensorflow as tf + + +class SamProcessor(ProcessorMixin): + r""" + Constructs a SAM processor which wraps a SAM image processor and an 2D points & Bounding boxes processor into a + single processor. + + [`SamProcessor`] offers all the functionalities of [`SamImageProcessor`]. See the docstring of + [`~SamImageProcessor.__call__`] for more information. + + Args: + image_processor (`SamImageProcessor`): + An instance of [`SamImageProcessor`]. The image processor is a required input. + """ + + attributes = ["image_processor"] + image_processor_class = "SamImageProcessor" + + def __init__(self, image_processor): + super().__init__(image_processor) + self.current_processor = self.image_processor + self.point_pad_value = -10 + self.target_size = self.image_processor.size["longest_edge"] + + def __call__( + self, + images=None, + segmentation_maps=None, + input_points=None, + input_labels=None, + input_boxes=None, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> BatchEncoding: + """ + This method uses [`SamImageProcessor.__call__`] method to prepare image(s) for the model. It also prepares 2D + points and bounding boxes for the model if they are provided. + """ + encoding_image_processor = self.image_processor( + images, + segmentation_maps=segmentation_maps, + return_tensors=return_tensors, + **kwargs, + ) + + # pop arguments that are not used in the foward but used nevertheless + original_sizes = encoding_image_processor["original_sizes"] + + if hasattr(original_sizes, "numpy"): # Checks if Torch or TF tensor + original_sizes = original_sizes.numpy() + + input_points, input_labels, input_boxes = self._check_and_preprocess_points( + input_points=input_points, + input_labels=input_labels, + input_boxes=input_boxes, + ) + + encoding_image_processor = self._normalize_and_convert( + encoding_image_processor, + original_sizes, + input_points=input_points, + input_labels=input_labels, + input_boxes=input_boxes, + return_tensors=return_tensors, + ) + + return encoding_image_processor + + def _normalize_and_convert( + self, + encoding_image_processor, + original_sizes, + input_points=None, + input_labels=None, + input_boxes=None, + return_tensors="pt", + ): + if input_points is not None: + if len(original_sizes) != len(input_points): + input_points = [ + self._normalize_coordinates(self.target_size, point, original_sizes[0]) for point in input_points + ] + else: + input_points = [ + self._normalize_coordinates(self.target_size, point, original_size) + for point, original_size in zip(input_points, original_sizes) + ] + # check that all arrays have the same shape + if not all(point.shape == input_points[0].shape for point in input_points): + if input_labels is not None: + input_points, input_labels = self._pad_points_and_labels(input_points, input_labels) + + input_points = np.array(input_points) + + if input_labels is not None: + input_labels = np.array(input_labels) + + if input_boxes is not None: + if len(original_sizes) != len(input_boxes): + input_boxes = [ + self._normalize_coordinates(self.target_size, box, original_sizes[0], is_bounding_box=True) + for box in input_boxes + ] + else: + input_boxes = [ + self._normalize_coordinates(self.target_size, box, original_size, is_bounding_box=True) + for box, original_size in zip(input_boxes, original_sizes) + ] + input_boxes = np.array(input_boxes) + + if input_boxes is not None: + if return_tensors == "pt": + input_boxes = torch.from_numpy(input_boxes) + # boxes batch size of 1 by default + input_boxes = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes + elif return_tensors == "tf": + input_boxes = tf.convert_to_tensor(input_boxes) + # boxes batch size of 1 by default + input_boxes = tf.expand_dims(input_boxes, 1) if len(input_boxes.shape) != 3 else input_boxes + encoding_image_processor.update({"input_boxes": input_boxes}) + if input_points is not None: + if return_tensors == "pt": + input_points = torch.from_numpy(input_points) + # point batch size of 1 by default + input_points = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points + elif return_tensors == "tf": + input_points = tf.convert_to_tensor(input_points) + # point batch size of 1 by default + input_points = tf.expand_dims(input_points, 1) if len(input_points.shape) != 4 else input_points + encoding_image_processor.update({"input_points": input_points}) + if input_labels is not None: + if return_tensors == "pt": + input_labels = torch.from_numpy(input_labels) + # point batch size of 1 by default + input_labels = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels + elif return_tensors == "tf": + input_labels = tf.convert_to_tensor(input_labels) + # point batch size of 1 by default + input_labels = tf.expand_dims(input_labels, 1) if len(input_labels.shape) != 3 else input_labels + encoding_image_processor.update({"input_labels": input_labels}) + + return encoding_image_processor + + def _pad_points_and_labels(self, input_points, input_labels): + r""" + The method pads the 2D points and labels to the maximum number of points in the batch. + """ + expected_nb_points = max([point.shape[0] for point in input_points]) + processed_input_points = [] + for i, point in enumerate(input_points): + if point.shape[0] != expected_nb_points: + point = np.concatenate( + [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value], axis=0 + ) + input_labels[i] = np.append(input_labels[i], [self.point_pad_value]) + processed_input_points.append(point) + input_points = processed_input_points + return input_points, input_labels + + def _normalize_coordinates( + self, target_size: int, coords: np.ndarray, original_size, is_bounding_box=False + ) -> np.ndarray: + """ + Expects a numpy array of length 2 in the final dimension. Requires the original image size in (H, W) format. + """ + old_h, old_w = original_size + new_h, new_w = self.image_processor._get_preprocess_shape(original_size, longest_edge=target_size) + coords = deepcopy(coords).astype(float) + + if is_bounding_box: + coords = coords.reshape(-1, 2, 2) + + coords[..., 0] = coords[..., 0] * (new_w / old_w) + coords[..., 1] = coords[..., 1] * (new_h / old_h) + + if is_bounding_box: + coords = coords.reshape(-1, 4) + + return coords + + def _check_and_preprocess_points( + self, + input_points=None, + input_labels=None, + input_boxes=None, + ): + r""" + Check and preprocesses the 2D points, labels and bounding boxes. It checks if the input is valid and if they + are, it converts the coordinates of the points and bounding boxes. If a user passes directly a `torch.Tensor`, + it is converted to a `numpy.ndarray` and then to a `list`. + """ + if input_points is not None: + if hasattr(input_points, "numpy"): # Checks for TF or Torch tensor + input_points = input_points.numpy().tolist() + + if not isinstance(input_points, list) or not isinstance(input_points[0], list): + raise ValueError("Input points must be a list of list of floating points.") + input_points = [np.array(input_point) for input_point in input_points] + else: + input_points = None + + if input_labels is not None: + if hasattr(input_labels, "numpy"): + input_labels = input_labels.numpy().tolist() + + if not isinstance(input_labels, list) or not isinstance(input_labels[0], list): + raise ValueError("Input labels must be a list of list integers.") + input_labels = [np.array(label) for label in input_labels] + else: + input_labels = None + + if input_boxes is not None: + if hasattr(input_boxes, "numpy"): + input_boxes = input_boxes.numpy().tolist() + + if ( + not isinstance(input_boxes, list) + or not isinstance(input_boxes[0], list) + or not isinstance(input_boxes[0][0], list) + ): + raise ValueError("Input boxes must be a list of list of list of floating points.") + input_boxes = [np.array(box).astype(np.float32) for box in input_boxes] + else: + input_boxes = None + + return input_points, input_labels, input_boxes + + @property + def model_input_names(self): + image_processor_input_names = self.image_processor.model_input_names + return list(dict.fromkeys(image_processor_input_names)) + + def post_process_masks(self, *args, **kwargs): + return self.image_processor.post_process_masks(*args, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..24355c01add73bfeb1c6aefb97c1d742d79e983c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__init__.py @@ -0,0 +1,79 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = { + "configuration_splinter": ["SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SplinterConfig"], + "tokenization_splinter": ["SplinterTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_splinter_fast"] = ["SplinterTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_splinter"] = [ + "SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST", + "SplinterForQuestionAnswering", + "SplinterForPreTraining", + "SplinterLayer", + "SplinterModel", + "SplinterPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_splinter import SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP, SplinterConfig + from .tokenization_splinter import SplinterTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_splinter_fast import SplinterTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_splinter import ( + SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST, + SplinterForPreTraining, + SplinterForQuestionAnswering, + SplinterLayer, + SplinterModel, + SplinterPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bfb4ce7b8de70f95d2b5b9befef99998e16f0756 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/configuration_splinter.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/configuration_splinter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cf77240231ac5b6c423fdf93c475e215d481c5b7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/configuration_splinter.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/modeling_splinter.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/modeling_splinter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8881183b4c8a995e4db0e98b09c7bb4a7f5e6c0a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/modeling_splinter.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..15c096ec77da7fdc3e36da31522ae30ec9ff2ce0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d38cdadcea35f5806a2279b313296e612460ff97 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/configuration_splinter.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/configuration_splinter.py new file mode 100644 index 0000000000000000000000000000000000000000..5248c74c1a3efc5a26b03ad17d81c022f750880a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/configuration_splinter.py @@ -0,0 +1,123 @@ +# coding=utf-8 +# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Splinter model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class SplinterConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SplinterModel`]. It is used to instantiate an + Splinter model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Splinter + [tau/splinter-base](https://huggingface.co/tau/splinter-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the Splinter model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`SplinterModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimension of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`SplinterModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + question_token_id (`int`, *optional*, defaults to 104): + The id of the `[QUESTION]` token. + + Example: + + ```python + >>> from transformers import SplinterModel, SplinterConfig + + >>> # Initializing a Splinter tau/splinter-base style configuration + >>> configuration = SplinterConfig() + + >>> # Initializing a model from the tau/splinter-base style configuration + >>> model = SplinterModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "splinter" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + use_cache=True, + pad_token_id=0, + question_token_id=104, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.type_vocab_size = type_vocab_size + self.layer_norm_eps = layer_norm_eps + self.use_cache = use_cache + self.question_token_id = question_token_id diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/modeling_splinter.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/modeling_splinter.py new file mode 100644 index 0000000000000000000000000000000000000000..b643601d0ebd49f3dd909df1db63e70da7e7627e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/modeling_splinter.py @@ -0,0 +1,1104 @@ +# coding=utf-8 +# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Splinter model.""" + + +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, ModelOutput, QuestionAnsweringModelOutput +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_splinter import SplinterConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "tau/splinter-base" +_CONFIG_FOR_DOC = "SplinterConfig" + + +from ..deprecated._archive_maps import SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class SplinterEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + past_key_values_length: Optional[int] = 0, + ) -> Tuple: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Splinter +class SplinterSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in SplinterModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Splinter +class SplinterSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Splinter +class SplinterAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = SplinterSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = SplinterSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Splinter +class SplinterIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Splinter +class SplinterOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Splinter +class SplinterLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = SplinterAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = SplinterAttention(config, position_embedding_type="absolute") + self.intermediate = SplinterIntermediate(config) + self.output = SplinterOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Splinter +class SplinterEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([SplinterLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class SplinterPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SplinterConfig + base_model_prefix = "splinter" + supports_gradient_checkpointing = True + + # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +SPLINTER_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`SplinterConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +SPLINTER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `{0}`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Splinter Model transformer outputting raw hidden-states without any specific head on top.", + SPLINTER_START_DOCSTRING, +) +class SplinterModel(SplinterPreTrainedModel): + """ + The model is an encoder (with only self-attention) following the architecture described in [Attention is all you + need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, + Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + """ + + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embeddings = SplinterEmbeddings(config) + self.encoder = SplinterEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(SPLINTER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + + if not return_dict: + return (sequence_output,) + encoder_outputs[1:] + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=sequence_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +class SplinterFullyConnectedLayer(nn.Module): + def __init__(self, input_dim, output_dim, hidden_act="gelu"): + super().__init__() + + self.input_dim = input_dim + self.output_dim = output_dim + + self.dense = nn.Linear(self.input_dim, self.output_dim) + self.act_fn = ACT2FN[hidden_act] + self.LayerNorm = nn.LayerNorm(self.output_dim) + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(inputs) + hidden_states = self.act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class QuestionAwareSpanSelectionHead(nn.Module): + """ + Implementation of Question-Aware Span Selection (QASS) head, described in Splinter's paper: + + """ + + def __init__(self, config): + super().__init__() + + self.query_start_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) + self.query_end_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) + self.start_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) + self.end_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) + + self.start_classifier = nn.Linear(config.hidden_size, config.hidden_size, bias=False) + self.end_classifier = nn.Linear(config.hidden_size, config.hidden_size, bias=False) + + def forward(self, inputs, positions): + _, _, dim = inputs.size() + index = positions.unsqueeze(-1).repeat(1, 1, dim) # [batch_size, num_positions, dim] + gathered_reps = torch.gather(inputs, dim=1, index=index) # [batch_size, num_positions, dim] + + query_start_reps = self.query_start_transform(gathered_reps) # [batch_size, num_positions, dim] + query_end_reps = self.query_end_transform(gathered_reps) # [batch_size, num_positions, dim] + start_reps = self.start_transform(inputs) # [batch_size, seq_length, dim] + end_reps = self.end_transform(inputs) # [batch_size, seq_length, dim] + + hidden_states = self.start_classifier(query_start_reps) # [batch_size, num_positions, dim] + start_reps = start_reps.permute(0, 2, 1) # [batch_size, dim, seq_length] + start_logits = torch.matmul(hidden_states, start_reps) + + hidden_states = self.end_classifier(query_end_reps) + end_reps = end_reps.permute(0, 2, 1) + end_logits = torch.matmul(hidden_states, end_reps) + + return start_logits, end_logits + + +@add_start_docstrings( + """ + Splinter Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + SPLINTER_START_DOCSTRING, +) +class SplinterForQuestionAnswering(SplinterPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.splinter = SplinterModel(config) + self.splinter_qass = QuestionAwareSpanSelectionHead(config) + self.question_token_id = config.question_token_id + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(SPLINTER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + question_positions: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): + The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size, + num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be + the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size, + sequence_length)`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + question_positions_were_none = False + if question_positions is None: + if input_ids is not None: + question_position_for_each_example = torch.argmax( + (torch.eq(input_ids, self.question_token_id)).int(), dim=-1 + ) + else: + question_position_for_each_example = torch.zeros( + inputs_embeds.size(0), dtype=torch.long, layout=inputs_embeds.layout, device=inputs_embeds.device + ) + question_positions = question_position_for_each_example.unsqueeze(-1) + question_positions_were_none = True + + outputs = self.splinter( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + start_logits, end_logits = self.splinter_qass(sequence_output, question_positions) + + if question_positions_were_none: + start_logits, end_logits = start_logits.squeeze(1), end_logits.squeeze(1) + + if attention_mask is not None: + start_logits = start_logits + (1 - attention_mask) * torch.finfo(start_logits.dtype).min + end_logits = end_logits + (1 - attention_mask) * torch.finfo(end_logits.dtype).min + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions.clamp_(0, ignored_index) + end_positions.clamp_(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@dataclass +class SplinterForPreTrainingOutput(ModelOutput): + """ + Class for outputs of Splinter as a span selection model. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when start and end positions are provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`): + Span-start scores (before SoftMax). + end_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`): + Span-end scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + start_logits: torch.FloatTensor = None + end_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@add_start_docstrings( + """ + Splinter Model for the recurring span selection task as done during the pretraining. The difference to the QA task + is that we do not have a question, but multiple question tokens that replace the occurrences of recurring spans + instead. + """, + SPLINTER_START_DOCSTRING, +) +class SplinterForPreTraining(SplinterPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.splinter = SplinterModel(config) + self.splinter_qass = QuestionAwareSpanSelectionHead(config) + self.question_token_id = config.question_token_id + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + SPLINTER_INPUTS_DOCSTRING.format("batch_size, num_questions, sequence_length") + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + question_positions: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, SplinterForPreTrainingOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): + The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size, + num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be + the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size, + sequence_length)`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if question_positions is None and start_positions is not None and end_positions is not None: + raise TypeError("question_positions must be specified in order to calculate the loss") + + elif question_positions is None and input_ids is None: + raise TypeError("question_positions must be specified when input_embeds is used") + + elif question_positions is None: + question_positions = self._prepare_question_positions(input_ids) + + outputs = self.splinter( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + batch_size, sequence_length, dim = sequence_output.size() + # [batch_size, num_questions, sequence_length] + start_logits, end_logits = self.splinter_qass(sequence_output, question_positions) + + num_questions = question_positions.size(1) + if attention_mask is not None: + attention_mask_for_each_question = attention_mask.unsqueeze(1).expand( + batch_size, num_questions, sequence_length + ) + start_logits = start_logits + (1 - attention_mask_for_each_question) * torch.finfo(start_logits.dtype).min + end_logits = end_logits + (1 - attention_mask_for_each_question) * torch.finfo(end_logits.dtype).min + + total_loss = None + # [batch_size, num_questions, sequence_length] + if start_positions is not None and end_positions is not None: + # sometimes the start/end positions are outside our model inputs, we ignore these terms + start_positions.clamp_(0, max(0, sequence_length - 1)) + end_positions.clamp_(0, max(0, sequence_length - 1)) + + # Ignore zero positions in the loss. Splinter never predicts zero + # during pretraining and zero is used for padding question + # tokens as well as for start and end positions of padded + # question tokens. + loss_fct = CrossEntropyLoss(ignore_index=self.config.pad_token_id) + start_loss = loss_fct( + start_logits.view(batch_size * num_questions, sequence_length), + start_positions.view(batch_size * num_questions), + ) + end_loss = loss_fct( + end_logits.view(batch_size * num_questions, sequence_length), + end_positions.view(batch_size * num_questions), + ) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return SplinterForPreTrainingOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def _prepare_question_positions(self, input_ids: torch.Tensor) -> torch.Tensor: + rows, flat_positions = torch.where(input_ids == self.config.question_token_id) + num_questions = torch.bincount(rows) + positions = torch.full( + (input_ids.size(0), num_questions.max()), + self.config.pad_token_id, + dtype=torch.long, + device=input_ids.device, + ) + cols = torch.cat([torch.arange(n) for n in num_questions]) + positions[rows, cols] = flat_positions + return positions diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter.py new file mode 100644 index 0000000000000000000000000000000000000000..ee82e19c6cb9b316bb9c7681cd2561a0dac7b4ff --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter.py @@ -0,0 +1,503 @@ +# coding=utf-8 +# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. +# All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for Splinter.""" + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + + +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +class SplinterTokenizer(PreTrainedTokenizer): + r""" + Construct a Splinter tokenizer. Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + question_token (`str`, *optional*, defaults to `"[QUESTION]"`): + The token used for constructing question representations. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + """ + + vocab_files_names = VOCAB_FILES_NAMES + + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + question_token="[QUESTION]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + self.question_token = question_token + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + def question_token_id(self): + """ + `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question + representation. + """ + return self.convert_tokens_to_ids(self.question_token) + + @property + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + def vocab_size(self): + return len(self.vocab) + + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + def _tokenize(self, text): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special + tokens. A Splinter sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]` + + Args: + token_ids_0 (`List[int]`): + The question token IDs if pad_on_right, else context tokens IDs + token_ids_1 (`List[int]`, *optional*): + The context token IDs if pad_on_right, else question token IDs + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + cls = [self.cls_token_id] + sep = [self.sep_token_id] + question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] + if self.padding_side == "right": + # Input is question-then-context + return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep + else: + # Input is context-then-question + return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create the token type IDs corresponding to the sequences passed. [What are token type + IDs?](../glossary#token-type-ids) + + Should be overridden in a subclass if the model has a special way of building those. + + Args: + token_ids_0 (`List[int]`): The first tokenized sequence. + token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. + + Returns: + `List[int]`: The token type ids. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + + if self.padding_side == "right": + # Input is question-then-context + return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1] + else: + # Input is context-then-question + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + """ + + def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see + WordPieceTokenizer. + + Args: + **never_split**: (*optional*) list of str + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + orig_tokens = whitespace_tokenize(text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if never_split is not None and text in never_split: + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..0371fdf2828eb289350ce1b69e13110d8b8c8b22 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter_fast.py @@ -0,0 +1,190 @@ +# coding=utf-8 +# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Fast Tokenization classes for Splinter.""" + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_splinter import SplinterTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + + +class SplinterTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" Splinter tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + question_token (`str`, *optional*, defaults to `"[QUESTION]"`): + The token used for constructing question representations. + clean_text (`bool`, *optional*, defaults to `True`): + Whether or not to clean the text before tokenization by removing any control characters and replacing all + whitespaces by the classic one. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + wordpieces_prefix (`str`, *optional*, defaults to `"##"`): + The prefix for subwords. + """ + + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = SplinterTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + question_token="[QUESTION]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + additional_special_tokens=(question_token,), + **kwargs, + ) + + pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + pre_tok_state.get("lowercase", do_lower_case) != do_lower_case + or pre_tok_state.get("strip_accents", strip_accents) != strip_accents + ): + pre_tok_class = getattr(normalizers, pre_tok_state.pop("type")) + pre_tok_state["lowercase"] = do_lower_case + pre_tok_state["strip_accents"] = strip_accents + self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state) + + self.do_lower_case = do_lower_case + + @property + def question_token_id(self): + """ + `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question + representation. + """ + return self.convert_tokens_to_ids(self.question_token) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special + tokens. A Splinter sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]` + + Args: + token_ids_0 (`List[int]`): + The question token IDs if pad_on_right, else context tokens IDs + token_ids_1 (`List[int]`, *optional*): + The context token IDs if pad_on_right, else question token IDs + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + cls = [self.cls_token_id] + sep = [self.sep_token_id] + question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] + if self.padding_side == "right": + # Input is question-then-context + return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep + else: + # Input is context-then-question + return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create the token type IDs corresponding to the sequences passed. [What are token type + IDs?](../glossary#token-type-ids) + + Should be overridden in a subclass if the model has a special way of building those. + + Args: + token_ids_0 (`List[int]`): The first tokenized sequence. + token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. + + Returns: + `List[int]`: The token type ids. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + + if self.padding_side == "right": + # Input is question-then-context + return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1] + else: + # Input is context-then-question + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f99c6e724c439a3eecaff234a48537a655dfe3c6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/configuration_swiftformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/configuration_swiftformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..69c7c521db3d9e7403fb7ffc46da162901d78d7b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/configuration_swiftformer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/convert_swiftformer_original_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/convert_swiftformer_original_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..99e5c0c9e09da237d0dea60643c5562f7b8c0f74 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/convert_swiftformer_original_to_hf.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/time_series_transformer/configuration_time_series_transformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/time_series_transformer/configuration_time_series_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..f53f3aad1ec9473f55848df8d7ff1357f704c921 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/time_series_transformer/configuration_time_series_transformer.py @@ -0,0 +1,229 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Time Series Transformer model configuration""" + +from typing import List, Optional, Union + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class TimeSeriesTransformerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`TimeSeriesTransformerModel`]. It is used to + instantiate a Time Series Transformer model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the Time Series + Transformer + [huggingface/time-series-transformer-tourism-monthly](https://huggingface.co/huggingface/time-series-transformer-tourism-monthly) + architecture. + + Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + prediction_length (`int`): + The prediction length for the decoder. In other words, the prediction horizon of the model. This value is + typically dictated by the dataset and we recommend to set it appropriately. + context_length (`int`, *optional*, defaults to `prediction_length`): + The context length for the encoder. If `None`, the context length will be the same as the + `prediction_length`. + distribution_output (`string`, *optional*, defaults to `"student_t"`): + The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial". + loss (`string`, *optional*, defaults to `"nll"`): + The loss function for the model corresponding to the `distribution_output` head. For parametric + distributions it is the negative log likelihood (nll) - which currently is the only supported one. + input_size (`int`, *optional*, defaults to 1): + The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of + multivariate targets. + scaling (`string` or `bool`, *optional* defaults to `"mean"`): + Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the + scaler is set to "mean". + lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`): + The lags of the input time series as covariates often dictated by the frequency of the data. Default is + `[1, 2, 3, 4, 5, 6, 7]` but we recommend to change it based on the dataset appropriately. + num_time_features (`int`, *optional*, defaults to 0): + The number of time features in the input time series. + num_dynamic_real_features (`int`, *optional*, defaults to 0): + The number of dynamic real valued features. + num_static_categorical_features (`int`, *optional*, defaults to 0): + The number of static categorical features. + num_static_real_features (`int`, *optional*, defaults to 0): + The number of static real valued features. + cardinality (`list[int]`, *optional*): + The cardinality (number of different values) for each of the static categorical features. Should be a list + of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if + `num_static_categorical_features` is > 0. + embedding_dimension (`list[int]`, *optional*): + The dimension of the embedding for each of the static categorical features. Should be a list of integers, + having the same length as `num_static_categorical_features`. Cannot be `None` if + `num_static_categorical_features` is > 0. + d_model (`int`, *optional*, defaults to 64): + Dimensionality of the transformer layers. + encoder_layers (`int`, *optional*, defaults to 2): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 2): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 2): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 2): + Number of attention heads for each attention layer in the Transformer decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 32): + Dimension of the "intermediate" (often named feed-forward) layer in encoder. + decoder_ffn_dim (`int`, *optional*, defaults to 32): + Dimension of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and + `"relu"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the encoder, and decoder. + encoder_layerdrop (`float`, *optional*, defaults to 0.1): + The dropout probability for the attention and fully connected layers for each encoder layer. + decoder_layerdrop (`float`, *optional*, defaults to 0.1): + The dropout probability for the attention and fully connected layers for each decoder layer. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability used between the two layers of the feed-forward networks. + num_parallel_samples (`int`, *optional*, defaults to 100): + The number of samples to generate in parallel for each time step of inference. + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated normal weight initialization distribution. + use_cache (`bool`, *optional*, defaults to `True`): + Whether to use the past key/values attentions (if applicable to the model) to speed up decoding. + + Example: + + ```python + >>> from transformers import TimeSeriesTransformerConfig, TimeSeriesTransformerModel + + >>> # Initializing a Time Series Transformer configuration with 12 time steps for prediction + >>> configuration = TimeSeriesTransformerConfig(prediction_length=12) + + >>> # Randomly initializing a model (with random weights) from the configuration + >>> model = TimeSeriesTransformerModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "time_series_transformer" + attribute_map = { + "hidden_size": "d_model", + "num_attention_heads": "encoder_attention_heads", + "num_hidden_layers": "encoder_layers", + } + + def __init__( + self, + prediction_length: Optional[int] = None, + context_length: Optional[int] = None, + distribution_output: str = "student_t", + loss: str = "nll", + input_size: int = 1, + lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7], + scaling: Optional[Union[str, bool]] = "mean", + num_dynamic_real_features: int = 0, + num_static_categorical_features: int = 0, + num_static_real_features: int = 0, + num_time_features: int = 0, + cardinality: Optional[List[int]] = None, + embedding_dimension: Optional[List[int]] = None, + encoder_ffn_dim: int = 32, + decoder_ffn_dim: int = 32, + encoder_attention_heads: int = 2, + decoder_attention_heads: int = 2, + encoder_layers: int = 2, + decoder_layers: int = 2, + is_encoder_decoder: bool = True, + activation_function: str = "gelu", + d_model: int = 64, + dropout: float = 0.1, + encoder_layerdrop: float = 0.1, + decoder_layerdrop: float = 0.1, + attention_dropout: float = 0.1, + activation_dropout: float = 0.1, + num_parallel_samples: int = 100, + init_std: float = 0.02, + use_cache=True, + **kwargs, + ): + # time series specific configuration + self.prediction_length = prediction_length + self.context_length = context_length or prediction_length + self.distribution_output = distribution_output + self.loss = loss + self.input_size = input_size + self.num_time_features = num_time_features + self.lags_sequence = lags_sequence + self.scaling = scaling + self.num_dynamic_real_features = num_dynamic_real_features + self.num_static_real_features = num_static_real_features + self.num_static_categorical_features = num_static_categorical_features + if cardinality and num_static_categorical_features > 0: + if len(cardinality) != num_static_categorical_features: + raise ValueError( + "The cardinality should be a list of the same length as `num_static_categorical_features`" + ) + self.cardinality = cardinality + else: + self.cardinality = [0] + if embedding_dimension and num_static_categorical_features > 0: + if len(embedding_dimension) != num_static_categorical_features: + raise ValueError( + "The embedding dimension should be a list of the same length as `num_static_categorical_features`" + ) + self.embedding_dimension = embedding_dimension + else: + self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality] + self.num_parallel_samples = num_parallel_samples + + # Transformer architecture configuration + self.feature_size = input_size * len(lags_sequence) + self._number_of_features + self.d_model = d_model + self.encoder_attention_heads = encoder_attention_heads + self.decoder_attention_heads = decoder_attention_heads + self.encoder_ffn_dim = encoder_ffn_dim + self.decoder_ffn_dim = decoder_ffn_dim + self.encoder_layers = encoder_layers + self.decoder_layers = decoder_layers + + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + + self.activation_function = activation_function + self.init_std = init_std + + self.use_cache = use_cache + + super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) + + @property + def _number_of_features(self) -> int: + return ( + sum(self.embedding_dimension) + + self.num_dynamic_real_features + + self.num_time_features + + self.num_static_real_features + + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..86c0f7c1c0b99d1bfaff6d2b644d7b7c7b67441a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__init__.py @@ -0,0 +1,88 @@ +# flake8: noqa +# There's no way to ignore "F401 '...' imported but unused" warnings in this +# module, but to preserve other warnings. So, don't check this module at all. + +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, + is_vision_available, +) + + +_import_structure = { + "configuration_tvlt": ["TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP", "TvltConfig"], + "feature_extraction_tvlt": ["TvltFeatureExtractor"], + "processing_tvlt": ["TvltProcessor"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tvlt"] = [ + "TVLT_PRETRAINED_MODEL_ARCHIVE_LIST", + "TvltModel", + "TvltForPreTraining", + "TvltForAudioVisualClassification", + "TvltPreTrainedModel", + ] + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["image_processing_tvlt"] = ["TvltImageProcessor"] + + +if TYPE_CHECKING: + from .configuration_tvlt import TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP, TvltConfig + from .processing_tvlt import TvltProcessor + from .feature_extraction_tvlt import TvltFeatureExtractor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tvlt import ( + TVLT_PRETRAINED_MODEL_ARCHIVE_LIST, + TvltForAudioVisualClassification, + TvltForPreTraining, + TvltModel, + TvltPreTrainedModel, + ) + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .image_processing_tvlt import TvltImageProcessor + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/configuration_tvlt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/configuration_tvlt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eba5f63375263d0270592803351f5747ce99734e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/configuration_tvlt.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/feature_extraction_tvlt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/feature_extraction_tvlt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ac6657d6ca9f8089a344bf401ff5f66fbf72908 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/feature_extraction_tvlt.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/image_processing_tvlt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/image_processing_tvlt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c9c8252706cad7f9f63f6457d24eb9bb1c077abb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/image_processing_tvlt.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/processing_tvlt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/processing_tvlt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e338c1054f2b827785e2c91f867fcea077db183 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/processing_tvlt.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/configuration_tvlt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/configuration_tvlt.py new file mode 100644 index 0000000000000000000000000000000000000000..063befc9d77f92d97c034928a85cd638b7c1d5bc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/configuration_tvlt.py @@ -0,0 +1,187 @@ +# coding=utf-8 +# Copyright 2023 MURGe-Lab and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TVLT model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class TvltConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`TvltModel`]. It is used to instantiate a TVLT + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the TVLT + [ZinengTang/tvlt-base](https://huggingface.co/ZinengTang/tvlt-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + spectrogram_length (`int`, *optional*, defaults to 2048): + The time length of each audio spectrogram. + frequency_length (`int`, *optional*, defaults to 128): + The frequency length of audio spectrogram. + image_patch_size (`List[int]`, *optional*, defaults to `[16, 16]`): + The size (resolution) of each image patch. + audio_patch_size (`List[int]`, *optional*, defaults to `[16, 16]`): + The size (resolution) of each audio patch. + num_image_channels (`int`, *optional*, defaults to 3): + The number of input image channels. + num_audio_channels (`int`, *optional*, defaults to 1): + The number of input audio channels. + num_frames (`int`, *optional*, defaults to 8): + The maximum number of frames for an input video. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to the queries, keys and values. + use_mean_pooling (`bool`, *optional*, defaults to `False`): + Whether to mean pool the final hidden states instead of using the final hidden state of the [CLS] token. + decoder_num_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the decoder. + decoder_hidden_size (`int`, *optional*, defaults to 512): + Dimensionality of the decoder. + decoder_num_hidden_layers (`int`, *optional*, defaults to 8): + Number of hidden layers in the decoder. + decoder_intermediate_size (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder. + pixel_mask_ratio (`float`, *optional*, defaults to 0.75): + Image patch masking ratio. + audio_mask_ratio (`float`, *optional*, defaults to 0.15): + Audio patch masking ratio. + audio_mask_type (`str`, *optional*, defaults to `"frame-level"`): + Audio patch masking type, choose between "frame-level" and "patch-level". + task_matching (`bool`, *optional*, defaults to `True`): + Whether to use vision audio matching task in pretraining. + task_mae (`bool`, *optional*, defaults to `True`): + Whether to use the masked auto-encoder (MAE) in pretraining. + loss_type (`str`, *optional*, defaults to `"classification"`): + Loss types including regression and classification. + + Example: + + ```python + >>> from transformers import TvltConfig, TvltModel + + >>> # # Initializing a TVLT ZinengTang/tvlt-base style configuration + >>> configuration = TvltConfig() + + >>> # # Initializing a model (with random weights) from the ZinengTang/tvlt-base style configuration + >>> model = TvltModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "tvlt" + + def __init__( + self, + image_size=224, + spectrogram_length=2048, + frequency_length=128, + image_patch_size=[16, 16], + audio_patch_size=[16, 16], + num_image_channels=3, + num_audio_channels=1, + num_frames=8, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-6, + qkv_bias=True, + use_mean_pooling=False, + decoder_num_attention_heads=16, + decoder_hidden_size=512, + decoder_num_hidden_layers=8, + decoder_intermediate_size=2048, + pixel_mask_ratio=0.75, + audio_mask_ratio=0.15, + audio_mask_type="frame-level", + task_matching=True, + task_mae=True, + loss_type="classification", + **kwargs, + ): + super().__init__(**kwargs) + + if audio_mask_type not in ("frame-level", "patch_level"): + raise ValueError( + "audio_mask_type must be one of two acceptable strategies - {'frame_level', 'patch-level') " + f"got {audio_mask_type}" + ) + + self.image_size = image_size + self.spectrogram_length = spectrogram_length + self.frequency_length = frequency_length + self.image_patch_size = image_patch_size + self.audio_patch_size = audio_patch_size + self.num_image_channels = num_image_channels + self.num_audio_channels = num_audio_channels + self.num_frames = num_frames + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.qkv_bias = qkv_bias + self.use_mean_pooling = use_mean_pooling + + self.decoder_num_attention_heads = decoder_num_attention_heads + self.decoder_hidden_size = decoder_hidden_size + self.decoder_num_hidden_layers = decoder_num_hidden_layers + self.decoder_intermediate_size = decoder_intermediate_size + self.pixel_mask_ratio = pixel_mask_ratio + self.audio_mask_ratio = audio_mask_ratio + self.audio_mask_type = audio_mask_type + + self.task_matching = task_matching + self.task_mae = task_mae + self.loss_type = loss_type diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/feature_extraction_tvlt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/feature_extraction_tvlt.py new file mode 100644 index 0000000000000000000000000000000000000000..7dc5e0463138c526b3d2d1ab1d922315d7d4c792 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/feature_extraction_tvlt.py @@ -0,0 +1,230 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for TVLT.""" + +from math import ceil +from typing import List, Optional, Union + +import numpy as np + +from ...audio_utils import mel_filter_bank, spectrogram, window_function +from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor +from ...utils import TensorType, logging + + +logger = logging.get_logger(__name__) + + +class TvltFeatureExtractor(SequenceFeatureExtractor): + r""" + Constructs a TVLT audio feature extractor. This feature extractor can be used to prepare audios for the model. + + This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users + should refer to this superclass for more information regarding those methods. + + Args: + spectrogram_length (`Dict[str, int]` *optional*, defaults to 2048): + The time length of each audio spectrogram. + num_channels (`int` *optional*, defaults to 1): + Number of audio channels. + patch_size (`List[int]` *optional*, defaults to `[16, 16]`): + The patch size of audio patch embedding. + feature_size (`int`, *optional*, defaults to 128): + The frequency length of audio spectrogram. + sampling_rate (`int`, *optional*, defaults to 44100): + The sampling rate at which the audio files should be digitalized expressed in Hertz (Hz). + hop_length_to_sampling_rate (`int`, *optional*, defaults to 86): + Hop length is length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients. + For example, with sampling rate 44100, the hop length is 512, with 44100 / 512 = 86 + n_fft (`int`, *optional*, defaults to 2048): + Size of the Fourier transform. + padding_value (`float`, *optional*, defaults to 0.0): + Padding value used to pad the audio. Should correspond to silences. + """ + + model_input_names = ["audio_values", "audio_mask"] + + def __init__( + self, + spectrogram_length=2048, + num_channels=1, + patch_size=[16, 16], + feature_size=128, + sampling_rate=44100, + hop_length_to_sampling_rate=86, + n_fft=2048, + padding_value=0.0, + **kwargs, + ): + super().__init__( + feature_size=feature_size, + sampling_rate=sampling_rate, + padding_value=padding_value, + **kwargs, + ) + + self.spectrogram_length = spectrogram_length + self.num_channels = num_channels + self.patch_size = patch_size + self.freq_len = feature_size // self.patch_size[1] + self.n_fft = n_fft + self.hop_length = sampling_rate // hop_length_to_sampling_rate + self.sampling_rate = sampling_rate + self.padding_value = padding_value + self.mel_filters = mel_filter_bank( + num_frequency_bins=1 + n_fft // 2, + num_mel_filters=feature_size, + min_frequency=0.0, + max_frequency=22050.0, + sampling_rate=sampling_rate, + norm="slaney", + mel_scale="slaney", + ).T + + def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: + """ + Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch + implementation with 1e-5 tolerance. + """ + log_spec = spectrogram( + waveform, + window_function(self.n_fft, "hann"), + frame_length=self.n_fft, + hop_length=self.hop_length, + power=2.0, + mel_filters=self.mel_filters.T, + log_mel="dB", + db_range=80.0, + ) + log_spec = log_spec[:, :-1] + log_spec = log_spec - 20.0 + log_spec = np.clip(log_spec / 40.0, -2.0, 0.0) + 1.0 + return log_spec + + def __call__( + self, + raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], + return_tensors: Optional[Union[str, TensorType]] = None, + return_attention_mask: Optional[bool] = True, + sampling_rate: Optional[int] = None, + resample: bool = False, + mask_audio: bool = False, + **kwargs, + ) -> BatchFeature: + """ + Main method to prepare one or several audio(s) for the model. + + Args: + raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): + The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float + values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not + stereo, i.e. single float per timestep. + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return Numpy `np.ndarray` objects. + return_attention_mask (`bool`, *optional*, default to `True`): + Whether to return the attention mask. If left to the default, will return the attention mask according + to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) + + + + For TvltTransformer models, `attention_mask` should alwys be passed for batched inference, to avoid + subtle bugs. + + + + sampling_rate (`int`, *optional*): + The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass + `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition + pipeline. Current model supports sampling rate 16000 and 44100. + resample (`bool`, *optional*, defaults to `False`): + If the sampling rate is not matched, resample the input audio to match. + mask_audio (`bool`, *optional*, defaults to `False`): + Whether or not to mask input audio for MAE task. + + Returns: + [`BatchFeature`]: A [`BatchFeature`] with the following fields: + + - **audio_values** -- Audio values to be fed to a model, of shape (batch_size, num_channels, height, + width). + + - **audio_mask** -- Audio masks to be fed to a model, of shape (batch_size, num_audio_patches). + """ + + if sampling_rate is not None: + if sampling_rate != self.sampling_rate: + raise ValueError( + "This feature extractor is set to support sampling rate" + f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" + f" with {self.sampling_rate} and not {sampling_rate}." + ) + else: + logger.warning( + "It is strongly recommended to pass the `sampling_rate` argument to this function. " + "Failing to do so can result in silent errors that might be hard to debug." + ) + + is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 + if is_batched_numpy and len(raw_speech.shape) > 2: + raise ValueError(f"Only mono-channel audio is supported for input to {self}") + is_batched = is_batched_numpy or ( + isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) + ) + if is_batched: + raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech] + elif not is_batched and not isinstance(raw_speech, np.ndarray): + raw_speech = np.asarray(raw_speech, dtype=np.float32) + elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): + raw_speech = raw_speech.astype(np.float32) + # always return batch + if not is_batched: + raw_speech = [np.asarray([raw_speech]).T] + + # Convert audio signals to log mel spectrograms, truncate by time axis + audio_features = [ + self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech + ] + if isinstance(audio_features[0], List): + audio_features = [np.asarray(feature, dtype=np.float32) for feature in audio_features] + + # Create audio attention mask + max_patch_len = max( + [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features] + ) # The maximum number of audio patches in a batch + if return_attention_mask: + audio_mask = [ + (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] + for feature in audio_features + ] + audio_mask = np.array(audio_mask).astype(np.float32) + + # convert into correct format for padding + max_time_len = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch + padded_audio_features = np.ones([len(audio_features), 1, max_time_len, self.feature_size]).astype(np.float32) + padded_audio_features = padded_audio_features * self.padding_value + for i in range(len(audio_features)): + feature = audio_features[i] + padded_audio_features[i, :, : feature.shape[0], :] = feature + + # return as BatchFeature + if return_attention_mask: + data = {"audio_values": padded_audio_features, "audio_mask": audio_mask} + else: + data = {"audio_values": padded_audio_features} + + encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) + return encoded_inputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/image_processing_tvlt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/image_processing_tvlt.py new file mode 100644 index 0000000000000000000000000000000000000000..f13101c15a96152c6dc35f179009e760437300e0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/image_processing_tvlt.py @@ -0,0 +1,434 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for TVLT.""" +from typing import Dict, List, Optional, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import ( + get_resize_output_image_size, + resize, + to_channel_dimension_format, +) +from ...image_utils import ( + IMAGENET_STANDARD_MEAN, + IMAGENET_STANDARD_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + infer_channel_dimension_format, + is_scaled_image, + is_valid_image, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import TensorType, logging + + +logger = logging.get_logger(__name__) + + +def make_batched(videos) -> List[List[ImageInput]]: + if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)): + return videos + + elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]): + videos_dim = np.array(videos[0]).ndim + if videos_dim == 3: + return [videos] + elif videos_dim == 4: + return videos + + elif is_valid_image(videos): + videos_dim = np.array(videos).ndim + if videos_dim == 3: + return [[videos]] + elif videos_dim == 4: + return [videos] + elif videos_dim == 5: + return videos + + raise ValueError(f"Could not make batched video from {videos}") + + +class TvltImageProcessor(BaseImageProcessor): + r""" + Constructs a TVLT image processor. + + This processor can be used to prepare either videos or images for the model by converting images to 1-frame videos. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the + `do_resize` parameter in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): + Size of the output image after resizing. The shortest edge of the image will be resized to + `size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by + `size` in the `preprocess` method. + patch_size (`List[int]` *optional*, defaults to [16,16]): + The patch size of image patch embedding. + num_frames (`int` *optional*, defaults to 8): + The maximum number of video frames. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): + Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the + `preprocess` method. + do_center_crop (`bool`, *optional*, defaults to `True`): + Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop` + parameter in the `preprocess` method. + crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): + Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the + `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` + parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to 1/255): + Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter + in the `preprocess` method. + do_normalize (`bool`, *optional*, defaults to `True`): + Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` + method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + """ + + model_input_names = [ + "pixel_values", + "pixel_mask", + "pixel_values_mixed", + "pixel_mask_mixed", + ] + + def __init__( + self, + do_resize: bool = True, + size: Dict[str, int] = None, + patch_size: List[int] = [16, 16], + num_frames: int = 8, + resample: PILImageResampling = PILImageResampling.BILINEAR, + do_center_crop: bool = True, + crop_size: Dict[str, int] = None, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = IMAGENET_STANDARD_MEAN, + image_std: Optional[Union[float, List[float]]] = IMAGENET_STANDARD_STD, + init_mask_generator=False, + **kwargs, + ) -> None: + super().__init__(**kwargs) + size = size if size is not None else {"shortest_edge": 224} + size = get_size_dict(size, default_to_square=False) + crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} + crop_size = get_size_dict(crop_size, param_name="crop_size") + + self.do_resize = do_resize + self.size = size + self.patch_size = patch_size + self.num_frames = num_frames + self.do_center_crop = do_center_crop + self.crop_size = crop_size + self.resample = resample + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean + self.image_std = image_std + self._valid_processor_keys = [ + "videos", + "do_resize", + "size", + "patch_size", + "num_frames", + "resample", + "do_center_crop", + "crop_size", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "is_mixed", + "return_tensors", + "data_format", + "input_data_format", + ] + + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BILINEAR, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize an image. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will + have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its + shortest edge of length `s` while keeping the aspect ratio of the original image. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): + Resampling filter to use when resiizing the image. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + size = get_size_dict(size, default_to_square=False) + if "shortest_edge" in size: + output_size = get_resize_output_image_size( + image, size["shortest_edge"], default_to_square=False, input_data_format=input_data_format + ) + elif "height" in size and "width" in size: + output_size = (size["height"], size["width"]) + else: + raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") + return resize( + image, + size=output_size, + resample=resample, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def _preprocess_image( + self, + image: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.ndarray: + """Preprocesses a single image.""" + + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_resize=do_resize, + size=size, + resample=resample, + ) + + # All transformations expect numpy arrays. + image = to_numpy_array(image) + + if is_scaled_image(image) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + input_data_format = infer_channel_dimension_format(image) + + if do_resize: + image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) + + if do_center_crop: + image = self.center_crop(image, size=crop_size, input_data_format=input_data_format) + + if do_rescale: + image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + + if do_normalize: + image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) + image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) + return image + + def preprocess( + self, + videos: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + patch_size: List[int] = None, + num_frames: int = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + is_mixed: bool = False, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: ChannelDimension = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> BatchFeature: + """ + Preprocess an videos or image or batch of videos or images. + + Args: + videos (`ImageInput`): + Images or videos to preprocess. Expects a single or batch of frames with pixel values ranging from 0 to + 255. If passing in frames with pixel values between 0 and 1, set `do_rescale=False`. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the image after applying resize. + patch_size (`List[int]` *optional*, defaults to self.patch_size): + The patch size of image patch embedding. + num_frames (`int` *optional*, defaults to self.num_frames): + The maximum number of video frames. + resample (`PILImageResampling`, *optional*, defaults to `self.resample`): + Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only + has an effect if `do_resize` is set to `True`. + do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`): + Whether to centre crop the image. + crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): + Size of the image after applying the centre crop. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image values between [0 - 1]. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation. + is_mixed (`bool`, *optional*): + If the input video has negative samples. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the inferred channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + + Returns: + [`BatchFeature`]: A [`BatchFeature`] with the following fields: + + - **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height, + width). + + - **pixel_mask** -- Pixel masks to be fed to a model, of shape (batch_size, num_pixel_patches). + + - **pixel_values_mixed** -- Pixel values with both postive or negative to be fed to a model, of shape + (batch_size, num_channels, height, width). + + - **pixel_mask_mixed** -- Pixel masks with both postive or negative to be fed to a model, of shape + (batch_size, num_pixel_patches). + """ + do_resize = do_resize if do_resize is not None else self.do_resize + resample = resample if resample is not None else self.resample + do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + + size = size if size is not None else self.size + size = get_size_dict(size, default_to_square=False) + crop_size = crop_size if crop_size is not None else self.crop_size + crop_size = get_size_dict(crop_size, param_name="crop_size") + patch_size = patch_size if patch_size is not None else self.patch_size + num_frames = num_frames if patch_size is not None else self.num_frames + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + if not valid_images(videos): + raise ValueError( + "Invalid image or video type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + videos = make_batched(videos) + + # Check number of frames is fewer than maximum frames + for video in videos: + if len(video) > self.num_frames: + raise ValueError( + f"number of frames must not be greater than the maximum frames of the model {self.num_frames}." + ) + + max_num_frames = max([len(video) for video in videos]) + num_patches_per_image = (size["shortest_edge"] // patch_size[0]) ** 2 + video_masks = np.array( + [ + len(video) * num_patches_per_image * [1] + (max_num_frames - len(video)) * num_patches_per_image * [0] + for video in videos + ] + ) + + videos = [ + [ + self._preprocess_image( + image=img, + do_resize=do_resize, + size=size, + resample=resample, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + data_format=data_format, + input_data_format=input_data_format, + ) + for img in video + ] + for video in videos + ] + + # If videos contain both positive/negative, use mixed key for video-audio matching task + if is_mixed: + data = {"pixel_values_mixed": videos, "pixel_mask_mixed": video_masks} + else: + data = {"pixel_values": videos, "pixel_mask": video_masks} + + return BatchFeature(data=data, tensor_type=return_tensors) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/modeling_tvlt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/modeling_tvlt.py new file mode 100644 index 0000000000000000000000000000000000000000..f841c47ea4bc568fc00464a5cdd36720ae1fd8d4 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/modeling_tvlt.py @@ -0,0 +1,1299 @@ +# coding=utf-8 +# Copyright 2023 MURGe-Lab and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch TVLT model.""" + + +import collections.abc +import math +from copy import deepcopy +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutput, SequenceClassifierOutput +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_tvlt import TvltConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "TvltConfig" +_CHECKPOINT_FOR_DOC = "ZinengTang/tvlt-base" + + +from ..deprecated._archive_maps import TVLT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class TvltModelOutput(ModelOutput): + """ + Class for TvltModel's outputs, with potential hidden states and attentions. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + last_pixel_hidden_state (`torch.FloatTensor` of shape `(batch_size, pixel_sequence_length, hidden_size)`): + Pixel sequence of hidden-states at the output of the last layer of the model. + last_audio_hidden_state (`torch.FloatTensor` of shape `(batch_size, audio_sequence_length, hidden_size)`): + Audio sequence of hidden-states at the output of the last layer of the model. + pixel_label_masks (`torch.FloatTensor` of shape `(batch_size, pixel_patch_length)`): + Tensor indicating which pixel patches are masked (1) and which are not (0). + audio_label_masks (`torch.FloatTensor` of shape `(batch_size, audio_patch_length)`): + Tensor indicating which audio patches are masked (1) and which are not (0). + pixel_ids_restore (`torch.LongTensor` of shape `(batch_size, pixel_patch_length)`): + Tensor containing the ids permutation of pixel masking. + audio_ids_restore (`torch.LongTensor` of shape `(batch_size, audio_patch_length)`): + Tensor containing the ids permutation of audio masking. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + last_hidden_state: torch.FloatTensor = None + last_pixel_hidden_state: torch.FloatTensor = None + last_audio_hidden_state: torch.FloatTensor = None + pixel_label_masks: torch.LongTensor = None + audio_label_masks: torch.LongTensor = None + pixel_ids_restore: torch.LongTensor = None + audio_ids_restore: torch.LongTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class TvltDecoderOutput(ModelOutput): + """ + Class for TvltDecoder's outputs, with potential hidden states and attentions. + + Args: + logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`): + Pixel reconstruction logits. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class TvltForPreTrainingOutput(ModelOutput): + """ + Class for TvltForPreTraining's outputs, with potential hidden states and attentions. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`): + Pixel reconstruction loss. + matching_logits (`torch.FloatTensor` of shape `(batch_size, 1)`): + Matching objective logits. + pixel_logits (`torch.FloatTensor` of shape + `(batch_size, pixel_patch_length, image_patch_size ** 3 * pixel_num_channels)`): Pixel reconstruction + logits. + audio_logits (`torch.FloatTensor` of shape + `(batch_size, audio_patch_length, image_patch_size[0] * image_patch_size[1])`): Audio reconstruction + logits. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + matching_logits: torch.FloatTensor = None + pixel_logits: torch.FloatTensor = None + audio_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +def generate_pixel_mask_noise(pixel_values, pixel_mask=None, mask_ratio=0.75): + """Generate noise for audio masking.""" + + batch_size, seq_len = pixel_values.shape[:2] + noise = torch.rand((batch_size, seq_len), device=pixel_values.device) # noise in [0, 1] + len_keep = int(seq_len * (1 - mask_ratio)) + return noise, len_keep + + +def generate_audio_mask_noise(audio_values, audio_mask=None, mask_ratio=0.75, mask_type="patch-level", freq_len=8): + """Generate noise for audio masking.""" + + batch_size, seq_len = audio_values.shape[:2] + if mask_type == "frame-level": + num_time_patches = seq_len // freq_len + noise = ( + torch.rand(batch_size, num_time_patches, device=audio_values.device) + .unsqueeze(-1) + .repeat(1, 1, freq_len) + .view(batch_size, seq_len) + ) # noise in [0, 1] + elif mask_type == "patch-level": + noise = torch.rand(batch_size, seq_len, device=audio_values.device) # noise in [0, 1] + len_keep = int(seq_len * (1 - mask_ratio)) + return noise, len_keep + + +def random_masking(sequence, noise, len_keep, attention_masks=None): + """ + Perform random masking by per-sample shuffling on frame-level. Per-sample shuffling is done by argsort random + noise. sequence: [batch_size, seq_len, hidden_dim], sequence + """ + + batch_size, seq_len, hidden_dim = sequence.shape + + # sort noise for each sample + ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove + ids_restore = torch.argsort(ids_shuffle, dim=1) + + # keep the first subset + ids_keep = ids_shuffle[:, :len_keep] + sequence_masked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, hidden_dim)) + + # generate the binary mask: 0 is keep, 1 is remove + label_masks = torch.ones([batch_size, seq_len], device=sequence.device) + label_masks[:, :len_keep] = 0 + # unshuffle to get the binary mask + label_masks = torch.gather(label_masks, dim=1, index=ids_restore) + + if attention_masks is not None: + label_masks *= attention_masks + attention_masks = torch.gather(attention_masks, dim=1, index=ids_keep) + + return sequence_masked, attention_masks, label_masks, ids_restore + + +class TvltPixelEmbeddings(nn.Module): + """Construct the patch and position embeddings.""" + + def __init__(self, config): + super().__init__() + + self.patch_embeddings = TvltPixelPatchEmbeddings(config) + self.num_patches_per_image = self.patch_embeddings.num_patches_per_image + + self.type_embed_v = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + self.temporal_embed = nn.Parameter(torch.zeros(1, config.num_frames, config.hidden_size)) + self.pos_embed_v = nn.Parameter(torch.zeros(1, self.num_patches_per_image, config.hidden_size)) + + self.config = config + + def forward(self, pixel_values, attention_masks=None): + # create patch embeddings + batch_size, num_frames, num_channels, height, width = pixel_values.shape + + embeddings = self.patch_embeddings(pixel_values) + embeddings += self.pos_embed_v.repeat(1, num_frames, 1) + embeddings += torch.repeat_interleave(self.temporal_embed[:, :num_frames], self.num_patches_per_image, dim=1) + embeddings += self.type_embed_v + + return embeddings, attention_masks + + +class TvltAudioEmbeddings(nn.Module): + """Construct the patch and position embeddings.""" + + def __init__(self, config): + super().__init__() + + self.patch_embeddings = TvltAudioPatchEmbeddings(config) + self.num_patches = self.patch_embeddings.num_patches + + self.type_embed_a = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + self.num_freq_patches = config.frequency_length // config.audio_patch_size[1] + self.pos_embed_a = nn.Parameter(torch.zeros(1, self.num_patches // self.num_freq_patches, config.hidden_size)) + self.freq_embed = nn.Parameter(torch.zeros(1, self.num_freq_patches, config.hidden_size)) + + self.num_freq_patches = config.frequency_length // config.audio_patch_size[1] + self.config = config + + def forward(self, audio_values, attention_masks=None): + # create patch embeddings + embeddings = self.patch_embeddings(audio_values) + + num_time_patches = embeddings.size(1) // self.num_freq_patches + embeddings += self.freq_embed.repeat(1, num_time_patches, 1) + embeddings += torch.repeat_interleave(self.pos_embed_a[:, :num_time_patches], self.num_freq_patches, dim=1) + embeddings += self.type_embed_a + + return embeddings, attention_masks + + +class TvltPixelPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.image_patch_size + num_channels, hidden_size = config.num_image_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches_per_image = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches_per_image = num_patches_per_image + self.hidden_size = hidden_size + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: + batch_size, num_frames, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." + ) + + pixel_values = pixel_values.reshape(batch_size * num_frames, num_channels, height, width) + embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) + embeddings = embeddings.reshape(batch_size, num_frames * self.num_patches_per_image, self.hidden_size) + + return embeddings + + +class TvltAudioPatchEmbeddings(nn.Module): + """ + This class turns `audio_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + spectrogram_length, frequency_length, patch_size = ( + config.spectrogram_length, + config.frequency_length, + config.audio_patch_size, + ) + num_channels, hidden_size = config.num_audio_channels, config.hidden_size + + spectrogram_size = (spectrogram_length, frequency_length) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (spectrogram_size[1] // patch_size[1]) * (spectrogram_size[0] // patch_size[0]) + patch_shape = (spectrogram_size[0] // patch_size[0], spectrogram_size[1] // patch_size[1]) + self.spectrogram_size = spectrogram_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + self.patch_shape = patch_shape + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, audio_values: torch.Tensor) -> torch.Tensor: + batch_size, num_channels, height, width = audio_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + if height > self.spectrogram_size[0] or width != self.spectrogram_size[1]: + raise ValueError( + f"Input audio size ({height}*{width}) doesn't match model" + f" ({self.spectrogram_size[0]}*{self.spectrogram_size[1]})." + ) + embeddings = self.projection(audio_values).flatten(2).transpose(1, 2) + + return embeddings + + +# Copied from transformers.models.vilt.modeling_vilt.ViltSelfAttention with Vilt->Tvlt +class TvltSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.vilt.modeling_vilt.ViltSelfOutput with Vilt->Tvlt +class TvltSelfOutput(nn.Module): + """ + The residual connection is defined in TvltLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: TvltConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vilt.modeling_vilt.ViltAttention with Vilt->Tvlt +class TvltAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.attention = TvltSelfAttention(config) + self.output = TvltSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): + self_outputs = self.attention(hidden_states, attention_mask, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.vilt.modeling_vilt.ViltIntermediate with Vilt->Tvlt +class TvltIntermediate(nn.Module): + def __init__(self, config: TvltConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vilt.modeling_vilt.ViltOutput with Vilt->Tvlt +class TvltOutput(nn.Module): + def __init__(self, config: TvltConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + hidden_states = hidden_states + input_tensor + + return hidden_states + + +# Copied from transformers.models.vilt.modeling_vilt.ViltLayer with Vilt->Tvlt +class TvltLayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = TvltAttention(config) + self.intermediate = TvltIntermediate(config) + self.output = TvltOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): + self_attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in ViLT, layernorm is applied before self-attention + attention_mask, + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = attention_output + hidden_states.to(attention_output.device) + + # in ViLT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + layer_output = self.intermediate(layer_output) + + # second residual connection is done here + layer_output = self.output(layer_output, hidden_states) + + outputs = (layer_output,) + outputs + + return outputs + + +# Copied from transformers.models.vilt.modeling_vilt.ViltEncoder with Vilt->Tvlt +class TvltEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([TvltLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class TvltPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = TvltConfig + base_model_prefix = "tvlt" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +TVLT_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`TvltConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +TVLT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for + details. + + audio_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Audio values. Audio values can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for + details. + + pixel_mask (`torch.FloatTensor` of shape `(batch_size, num_pixel_patches)`): + Pixel masks. Pixel masks can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for + details. + + audio_mask (`torch.FloatTensor` of shape `(batch_size, num_audio_patches)`): + Audio masks. Audio masks can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for + details. + + pixel_values_mixed (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): + Pixel values that mix positive and negative samples in Tvlt vision-audio matching. Pixel values mixed can + be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details. + + pixel_mask_mixed (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel masks of pixel_values_mixed. Pixel masks mixed can be obtained using [`TvltProcessor`]. See + [`TvltProcessor.__call__`] for details. + + mask_pixel (`bool`, *optional*): + Whether to mask pixel for MAE tasks. Only set to True in TvltForPreTraining. + + mask_audio (`bool`, *optional*): + Whether to mask audio for MAE tasks. Only set to True in TvltForPreTraining. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare TVLT Model transformer outputting raw hidden-states without any specific head on top.", + TVLT_START_DOCSTRING, +) +class TvltModel(TvltPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.pixel_embeddings = TvltPixelEmbeddings(config) + self.audio_embeddings = TvltAudioEmbeddings(config) + self.encoder = TvltEncoder(config) + + self.cls_embedding = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + + if config.use_mean_pooling: + self.layernorm = None + else: + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.pixel_embeddings.patch_embeddings, self.audio_embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TvltModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + audio_values: torch.FloatTensor, + pixel_mask: Optional[torch.FloatTensor] = None, + audio_mask: Optional[torch.FloatTensor] = None, + mask_pixel: bool = False, + mask_audio: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], TvltModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import TvltProcessor, TvltModel + >>> import numpy as np + >>> import torch + + >>> num_frames = 8 + >>> images = list(np.random.randn(num_frames, 3, 224, 224)) + >>> audio = list(np.random.randn(10000)) + + >>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base") + >>> model = TvltModel.from_pretrained("ZinengTang/tvlt-base") + + >>> input_dict = processor(images, audio, sampling_rate=44100, return_tensors="pt") + + >>> outputs = model(**input_dict) + >>> loss = outputs.loss + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + pixel_embedding_output, pixel_mask = self.pixel_embeddings(pixel_values, pixel_mask) + + audio_embedding_output, audio_mask = self.audio_embeddings(audio_values, audio_mask) + + # Mask pixel if mask_pixel is True + pixel_label_masks = None + pixel_ids_restore = None + if mask_pixel: + pixel_mask_noise, pixel_len_keep = generate_pixel_mask_noise( + pixel_embedding_output, pixel_mask=pixel_mask, mask_ratio=self.config.pixel_mask_ratio + ) + pixel_embedding_output, pixel_mask, pixel_label_masks, pixel_ids_restore = random_masking( + pixel_embedding_output, + pixel_mask_noise, + pixel_len_keep, + attention_masks=pixel_mask, + ) + + # Mask audio if mask_audio is True + audio_label_masks = None + audio_ids_restore = None + if mask_audio: + num_freq_patches = self.config.frequency_length // self.config.audio_patch_size[1] + audio_mask_noise, audio_len_keep = generate_audio_mask_noise( + audio_embedding_output, + audio_mask=audio_mask, + mask_ratio=self.config.audio_mask_ratio, + mask_type=self.config.audio_mask_type, + freq_len=num_freq_patches, + ) + audio_embedding_output, audio_mask, audio_label_masks, audio_ids_restore = random_masking( + audio_embedding_output, + audio_mask_noise, + audio_len_keep, + attention_masks=audio_mask, + ) + + # Prepare for encoder inputs and attention masks + batch_size = pixel_values.size(0) + embedding_output = torch.cat( + [self.cls_embedding.repeat(batch_size, 1, 1), pixel_embedding_output, audio_embedding_output], 1 + ) + masked_pixel_len = pixel_embedding_output.size(1) + + attention_mask = None + if pixel_mask is not None and audio_mask is not None: + attention_mask = torch.cat([pixel_mask[:, :1], pixel_mask, audio_mask], 1) + + input_shape = embedding_output.size() + extended_attention_mask = None + if attention_mask is not None: + extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + if self.layernorm is not None: + sequence_output = self.layernorm(sequence_output) + + pixel_sequence_output = sequence_output[:, 1 : 1 + masked_pixel_len] + audio_sequence_output = sequence_output[:, 1 + masked_pixel_len :] + if not return_dict: + return ( + sequence_output, + pixel_sequence_output, + audio_sequence_output, + pixel_label_masks, + audio_label_masks, + pixel_ids_restore, + audio_ids_restore, + ) + encoder_outputs[1:] + + return TvltModelOutput( + last_hidden_state=sequence_output, + last_pixel_hidden_state=pixel_sequence_output, + last_audio_hidden_state=audio_sequence_output, + pixel_label_masks=pixel_label_masks, + audio_label_masks=audio_label_masks, + pixel_ids_restore=pixel_ids_restore, + audio_ids_restore=audio_ids_restore, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class TvltDecoder(nn.Module): + def __init__(self, config): + super().__init__() + + decoder_config = deepcopy(config) + decoder_config.hidden_size = config.decoder_hidden_size + decoder_config.num_hidden_layers = config.decoder_num_hidden_layers + decoder_config.num_attention_heads = config.decoder_num_attention_heads + decoder_config.intermediate_size = config.decoder_intermediate_size + self.decoder_layers = nn.ModuleList( + [TvltLayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)] + ) + + self.layernorm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps) + + self.gradient_checkpointing = False + self.config = config + + def forward( + self, + hidden_states, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + # apply Transformer layers (blocks) + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + for i, layer_module in enumerate(self.decoder_layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + None, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, output_attentions=output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # predictor projection + logits = self.layernorm(hidden_states) + + if not return_dict: + return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None) + return TvltDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions) + + +@add_start_docstrings( + "The TVLT Model transformer with the decoder on top for self-supervised pre-training.", + TVLT_START_DOCSTRING, +) +class TvltForPreTraining(TvltPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.task_matching = config.task_matching + self.task_mae = config.task_mae + if not (self.task_matching or self.task_mae): + raise ValueError("Must set at least one of matching task and MAE task to true") + + self.tvlt = TvltModel(config) + + if self.task_matching: + self.matching_head = TvltMatchingHead(config) + + if self.task_mae: + self.encoder_to_decoder = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=True) + + self.pixel_mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size)) + self.audio_mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size)) + + self.decoder = TvltDecoder(config) + + decoder_hidden_size = config.decoder_hidden_size + + num_frames = config.num_frames + num_patches_per_image = self.tvlt.pixel_embeddings.num_patches_per_image + self.decoder_pixel_pos_embed = nn.Parameter(torch.zeros(1, num_patches_per_image, decoder_hidden_size)) + self.decoder_temporal_embed = nn.Parameter(torch.zeros(1, config.num_frames, decoder_hidden_size)) + self.decoder_pixel_type_embed = nn.Parameter(torch.zeros(1, 1, decoder_hidden_size)) + + num_audio_patches = self.tvlt.audio_embeddings.num_patches + num_freq_patches = config.frequency_length // config.audio_patch_size[1] + self.decoder_audio_pos_embed = nn.Parameter( + torch.zeros(1, num_audio_patches // num_freq_patches, decoder_hidden_size) + ) + self.decoder_freq_embed = nn.Parameter(torch.zeros(1, num_freq_patches, decoder_hidden_size)) + self.decoder_audio_type_embed = nn.Parameter(torch.zeros(1, 1, decoder_hidden_size)) + + pixel_mae_output_dim = self.config.image_patch_size[0] ** 2 * self.config.num_image_channels + self.pixel_mae_head = TvltMAEHead(config, pixel_mae_output_dim) + audio_mae_output_dim = ( + self.config.audio_patch_size[0] * self.config.audio_patch_size[1] * self.config.num_audio_channels + ) + self.audio_mae_head = TvltMAEHead(config, audio_mae_output_dim) + + self.num_frames = num_frames + self.num_patches_per_image = num_patches_per_image + self.num_freq_patches = num_freq_patches + self.image_patch_size = config.image_patch_size + self.audio_patch_size = config.audio_patch_size + + # Initialize weights and apply final processing + self.post_init() + + def patchify_pixel(self, pixel_values): + """ + pixel_values: [batch_size, num_frames, 3, height, width] + """ + batch_size, num_frames, num_channels, height, width = pixel_values.shape + num_patches_height = pixel_values.shape[3] // self.image_patch_size[0] + num_patches_width = pixel_values.shape[4] // self.image_patch_size[1] + patchified_pixel_values = pixel_values.reshape( + shape=( + batch_size, + num_frames, + num_channels, + num_patches_height, + self.image_patch_size[0], + num_patches_width, + self.image_patch_size[1], + ) + ) + patchified_pixel_values = torch.einsum("ntchpwq->nthwpqc", patchified_pixel_values) + patchified_pixel_values = patchified_pixel_values.reshape( + shape=( + batch_size, + num_patches_height * num_patches_width * num_frames, + self.image_patch_size[0] * self.image_patch_size[1] * num_channels, + ) + ) + return patchified_pixel_values + + def patchify_audio(self, audio_values): + """ + audio_values: [batch_size, 1, height, width] + """ + batch_size, num_channels, height, width = audio_values.shape + num_patches_height = height // self.audio_patch_size[0] + num_patches_width = width // self.audio_patch_size[1] + patchified_audio_values = audio_values.reshape( + shape=( + batch_size, + num_channels, + num_patches_height, + self.audio_patch_size[0], + num_patches_width, + self.audio_patch_size[1], + ) + ) + patchified_audio_values = torch.einsum("nchpwq->nhwpqc", patchified_audio_values) + patchified_audio_values = patchified_audio_values.reshape( + shape=( + batch_size, + num_patches_height * num_patches_width, + self.audio_patch_size[0] * self.audio_patch_size[1] * num_channels, + ) + ) + return patchified_audio_values + + def pixel_mae_loss(self, pixel_values, pixel_predictions, mask): + patchified_pixel_values = self.patchify_pixel(pixel_values) + loss = (pixel_predictions - patchified_pixel_values) ** 2 + loss = loss.mean(dim=-1) # [batch_size, pixel_pixel_length], mean loss per patch + loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches + return loss + + def audio_mae_loss(self, audio_values, audio_predictions, mask): + patchified_audio_values = self.patchify_audio(audio_values) + loss = (audio_predictions - patchified_audio_values) ** 2 + loss = loss.mean(dim=-1) # [batch_size, audio_pixel_length], mean loss per patch + loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches + return loss + + def concatenate_mask(self, mask_token, sequence, ids_restore): + batch_size, seq_length, dim = sequence.shape + mask_tokens = mask_token.repeat(batch_size, ids_restore.shape[1] - seq_length, 1) + padded_sequence = torch.cat([sequence, mask_tokens], dim=1) + padded_sequence = torch.gather( + padded_sequence, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, dim) + ) # unshuffle + return padded_sequence + + @add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TvltForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + audio_values: torch.FloatTensor, + pixel_mask: Optional[torch.FloatTensor] = None, + audio_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + pixel_values_mixed: Optional[torch.FloatTensor] = None, + pixel_mask_mixed: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], TvltForPreTrainingOutput]: + r""" + pixel_values_mixed (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): + Pixel values that mix positive and negative samples in Tvlt vision-audio matching. Audio values can be + obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details. + + pixel_mask_mixed (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel masks of pixel_values_mixed. Pixel values mixed can be obtained using [`TvltProcessor`]. See + [`TvltProcessor.__call__`] for details. + + labels (`torch.LongTensor` of shape `(batch_size, num_labels)`, *optional*): + Labels for computing the vision audio matching loss. Indices should be in `[0, 1]`. num_labels has to be 1. + + Return: + + Examples: + + ```python + >>> from transformers import TvltProcessor, TvltForPreTraining + >>> import numpy as np + >>> import torch + + >>> num_frames = 8 + >>> images = list(np.random.randn(num_frames, 3, 224, 224)) + >>> images_mixed = list(np.random.randn(num_frames, 3, 224, 224)) + >>> audio = list(np.random.randn(10000)) + >>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base") + >>> model = TvltForPreTraining.from_pretrained("ZinengTang/tvlt-base") + >>> input_dict = processor( + ... images, audio, images_mixed, sampling_rate=44100, mask_pixel=True, mask_audio=True, return_tensors="pt" + ... ) + + >>> outputs = model(**input_dict) + >>> loss = outputs.loss + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + total_loss = 0.0 + + if self.task_matching: + if labels is None: + raise ValueError("Matching task requires labels") + if pixel_values_mixed is None: + raise ValueError("Matching task requires pixel_values_mixed") + + outputs = self.tvlt( + pixel_values_mixed, + audio_values, + pixel_mask=pixel_mask_mixed, + audio_mask=audio_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + matching_logits = self.matching_head(sequence_output) + + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(matching_logits.view(-1), labels.view(-1)) + total_loss += loss + + pixel_logits = None + audio_logits = None + if self.task_mae and self.training: + outputs = self.tvlt( + pixel_values, + audio_values, + pixel_mask=pixel_mask, + audio_mask=audio_mask, + mask_pixel=True, + mask_audio=True, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + pixel_sequence_output = outputs.last_pixel_hidden_state if return_dict else outputs[1] + audio_sequence_output = outputs.last_audio_hidden_state if return_dict else outputs[2] + pixel_label_masks = outputs.pixel_label_masks if return_dict else outputs[3] + audio_label_masks = outputs.audio_label_masks if return_dict else outputs[4] + pixel_ids_restore = outputs.pixel_ids_restore if return_dict else outputs[5] + audio_ids_restore = outputs.audio_ids_restore if return_dict else outputs[6] + + pixel_decoder_input = self.encoder_to_decoder( + pixel_sequence_output + ) # [batch_size, num_masked_pixel_patches, decoder_hidden_size] + audio_decoder_input = self.encoder_to_decoder( + audio_sequence_output + ) # [batch_size, num_masked_audio_patches, decoder_hidden_size] + num_frames = pixel_values.size(1) + pixel_decoder_input = self.concatenate_mask(self.pixel_mask_token, pixel_decoder_input, pixel_ids_restore) + pixel_decoder_input = pixel_decoder_input + self.decoder_pixel_pos_embed.repeat(1, num_frames, 1) + pixel_decoder_input = pixel_decoder_input + torch.repeat_interleave( + self.decoder_temporal_embed[:, :num_frames], self.num_patches_per_image, dim=1 + ) + pixel_decoder_input = pixel_decoder_input + self.decoder_pixel_type_embed + pixel_decoder_outputs = self.decoder(pixel_decoder_input) + pixel_logits = self.pixel_mae_head(pixel_decoder_outputs.logits) + + audio_decoder_input = self.concatenate_mask(self.audio_mask_token, audio_decoder_input, audio_ids_restore) + num_time_patches = audio_decoder_input.size(1) // self.num_freq_patches + audio_decoder_input = audio_decoder_input + self.decoder_freq_embed.repeat(1, num_time_patches, 1) + audio_decoder_input = audio_decoder_input + torch.repeat_interleave( + self.decoder_audio_pos_embed[:, :num_time_patches], self.num_freq_patches, dim=1 + ) + audio_decoder_input = audio_decoder_input + self.decoder_audio_type_embed + audio_decoder_outputs = self.decoder(audio_decoder_input) + audio_logits = self.audio_mae_head(audio_decoder_outputs.logits) + + loss = self.pixel_mae_loss(pixel_values, pixel_logits, pixel_label_masks) + self.audio_mae_loss( + audio_values, audio_logits, audio_label_masks + ) + total_loss += loss + + if not return_dict: + output = (matching_logits, pixel_logits, audio_logits) + outputs[7:] + return ((total_loss,) + output) if loss is not None else output + + return TvltForPreTrainingOutput( + loss=total_loss, + matching_logits=matching_logits, + pixel_logits=pixel_logits, + audio_logits=audio_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class TvltPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class TvltMatchingHead(nn.Module): + def __init__(self, config): + super().__init__() + self.pooler = TvltPooler(config) + self.fc = nn.Linear(config.hidden_size, 1) + + def forward(self, hidden_states): + hidden_states = self.fc(self.pooler(hidden_states)) + return hidden_states + + +class TvltMAEHead(nn.Module): + def __init__(self, config, output_dim=None): + super().__init__() + self.config = config + self.decoder = nn.Linear(config.decoder_hidden_size, output_dim) + + def forward(self, hidden_states): + hidden_states = self.decoder(hidden_states) + return hidden_states + + +@add_start_docstrings( + """ + Tvlt Model transformer with a classifier head on top (an MLP on top of the final hidden state of the [CLS] token) + for audiovisual classification tasks, e.g. CMU-MOSEI Sentiment Analysis and Audio to Video Retrieval. + """, + TVLT_START_DOCSTRING, +) +class TvltForAudioVisualClassification(TvltPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.tvlt = TvltModel(config) + + # Classifier head + self.classifier = nn.Sequential( + nn.Linear(config.hidden_size, config.hidden_size * 2), + nn.LayerNorm(config.hidden_size * 2, eps=config.layer_norm_eps), + nn.GELU(), + nn.Linear(config.hidden_size * 2, config.num_labels), + ) + self.config = config + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + audio_values: torch.FloatTensor, + pixel_mask: Optional[torch.FloatTensor] = None, + audio_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.LongTensor] = None, + ) -> Union[Tuple[torch.FloatTensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, num_labels)`, *optional*): + Labels for computing the audiovisual loss. Indices should be in `[0, ..., num_classes-1]` where num_classes + refers to the number of classes in audiovisual tasks. + + Return: + + Examples: + ```python + >>> from transformers import TvltProcessor, TvltForAudioVisualClassification + >>> import numpy as np + >>> import torch + + >>> num_frames = 8 + >>> images = list(np.random.randn(num_frames, 3, 224, 224)) + >>> audio = list(np.random.randn(10000)) + >>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base") + >>> model = TvltForAudioVisualClassification.from_pretrained("ZinengTang/tvlt-base") + >>> input_dict = processor(images, audio, sampling_rate=44100, return_tensors="pt") + + >>> outputs = model(**input_dict) + >>> loss = outputs.loss + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.tvlt( + pixel_values, + audio_values, + pixel_mask=pixel_mask, + audio_mask=audio_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0][:, 0] + logits = self.classifier(sequence_output) # rank value + + loss = None + if labels is not None: + if self.config.loss_type == "regression": + loss_fct = MSELoss() + loss = loss_fct(logits, labels) + elif self.config.loss_type == "classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[4:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/processing_tvlt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/processing_tvlt.py new file mode 100644 index 0000000000000000000000000000000000000000..c67a3a8c6d6df01080479a44a2de343695c0f42a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/processing_tvlt.py @@ -0,0 +1,89 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Processor class for TVLT. +""" + +from ...processing_utils import ProcessorMixin + + +class TvltProcessor(ProcessorMixin): + r""" + Constructs a TVLT processor which wraps a TVLT image processor and TVLT feature extractor into a single processor. + + [`TvltProcessor`] offers all the functionalities of [`TvltImageProcessor`] and [`TvltFeatureExtractor`]. See the + docstring of [`~TvltProcessor.__call__`] for more information. + + Args: + image_processor (`TvltImageProcessor`): + An instance of [`TvltImageProcessor`]. The image processor is a required input. + feature_extractor (`TvltFeatureExtractor`): + An instance of [`TvltFeatureExtractor`]. The feature extractor is a required input. + """ + + attributes = ["image_processor", "feature_extractor"] + image_processor_class = "TvltImageProcessor" + feature_extractor_class = "TvltFeatureExtractor" + + def __init__(self, image_processor, feature_extractor): + super().__init__(image_processor=image_processor, feature_extractor=feature_extractor) + + self.image_processor = image_processor + self.feature_extractor = feature_extractor + + def __call__( + self, + images=None, + audio=None, + images_mixed=None, + sampling_rate=None, + mask_audio=False, + mask_pixel=False, + *args, + **kwargs, + ): + """ + Forwards the `images` argument to TvltImageProcessor's [`~TvltImageProcessor.preprocess`] and the `audio` + argument to TvltFeatureExtractor's [`~TvltFeatureExtractor.__call__`]. Please refer to the docstring of the + above two methods for more information. + """ + + if images is None and audio is None: + raise ValueError("You need to specify either an `images` or `audio` input to process.") + + images_mixed_dict = None + if images is not None: + images_dict = self.image_processor(images, mask_pixel=mask_pixel, *args, **kwargs) + if images_mixed is not None: + images_mixed_dict = self.image_processor(images_mixed, is_mixed=True, *args, **kwargs) + if audio is not None: + audio_dict = self.feature_extractor( + audio, *args, sampling_rate=sampling_rate, mask_audio=mask_audio, **kwargs + ) + + output_dict = {} + if audio is not None: + output_dict.update(audio_dict) + if images is not None: + output_dict.update(images_dict) + if images_mixed_dict is not None: + output_dict.update(images_mixed_dict) + return output_dict + + @property + def model_input_names(self): + image_processor_input_names = self.image_processor.model_input_names + feature_extractor_input_names = self.feature_extractor.model_input_names + return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))