diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..168c68db837d08817e08e493efa81e7419ab9de9
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__init__.py
@@ -0,0 +1,179 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_sentencepiece_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"],
+}
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_albert"] = ["AlbertTokenizer"]
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_albert_fast"] = ["AlbertTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_albert"] = [
+ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "AlbertForMaskedLM",
+ "AlbertForMultipleChoice",
+ "AlbertForPreTraining",
+ "AlbertForQuestionAnswering",
+ "AlbertForSequenceClassification",
+ "AlbertForTokenClassification",
+ "AlbertModel",
+ "AlbertPreTrainedModel",
+ "load_tf_weights_in_albert",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_albert"] = [
+ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFAlbertForMaskedLM",
+ "TFAlbertForMultipleChoice",
+ "TFAlbertForPreTraining",
+ "TFAlbertForQuestionAnswering",
+ "TFAlbertForSequenceClassification",
+ "TFAlbertForTokenClassification",
+ "TFAlbertMainLayer",
+ "TFAlbertModel",
+ "TFAlbertPreTrainedModel",
+ ]
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_albert"] = [
+ "FlaxAlbertForMaskedLM",
+ "FlaxAlbertForMultipleChoice",
+ "FlaxAlbertForPreTraining",
+ "FlaxAlbertForQuestionAnswering",
+ "FlaxAlbertForSequenceClassification",
+ "FlaxAlbertForTokenClassification",
+ "FlaxAlbertModel",
+ "FlaxAlbertPreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig
+
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_albert import AlbertTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_albert_fast import AlbertTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_albert import (
+ ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ AlbertForMaskedLM,
+ AlbertForMultipleChoice,
+ AlbertForPreTraining,
+ AlbertForQuestionAnswering,
+ AlbertForSequenceClassification,
+ AlbertForTokenClassification,
+ AlbertModel,
+ AlbertPreTrainedModel,
+ load_tf_weights_in_albert,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_albert import (
+ TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFAlbertForMaskedLM,
+ TFAlbertForMultipleChoice,
+ TFAlbertForPreTraining,
+ TFAlbertForQuestionAnswering,
+ TFAlbertForSequenceClassification,
+ TFAlbertForTokenClassification,
+ TFAlbertMainLayer,
+ TFAlbertModel,
+ TFAlbertPreTrainedModel,
+ )
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_albert import (
+ FlaxAlbertForMaskedLM,
+ FlaxAlbertForMultipleChoice,
+ FlaxAlbertForPreTraining,
+ FlaxAlbertForQuestionAnswering,
+ FlaxAlbertForSequenceClassification,
+ FlaxAlbertForTokenClassification,
+ FlaxAlbertModel,
+ FlaxAlbertPreTrainedModel,
+ )
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..73568601389de2bd0cc3dfe86f2b19530e264162
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/convert_albert_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/convert_albert_original_tf_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..33fc038f0742f3f353e12f686e0939ccaaee99bd
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/convert_albert_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_albert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_albert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..db9b0255b6642e623bd495a0e6554b10c8517460
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_albert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_tf_albert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_tf_albert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6299cde641c76412858501c5871df28ad845b4ff
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_tf_albert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cb0b29e7ea2da8044b0a223c04fe9170500dd5df
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..69b3cdf28569197c28cb75345e75fb89c5a0b29c
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/configuration_albert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/configuration_albert.py
new file mode 100644
index 0000000000000000000000000000000000000000..c5ddded4833481fb1d1679f66b00e00b28ffa06d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/configuration_albert.py
@@ -0,0 +1,167 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" ALBERT model configuration"""
+from collections import OrderedDict
+from typing import Mapping
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ..deprecated._archive_maps import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class AlbertConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`AlbertModel`] or a [`TFAlbertModel`]. It is used
+ to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating
+ a configuration with the defaults will yield a similar configuration to that of the ALBERT
+ [albert/albert-xxlarge-v2](https://huggingface.co/albert/albert-xxlarge-v2) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30000):
+ Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
+ embedding_size (`int`, *optional*, defaults to 128):
+ Dimensionality of vocabulary embeddings.
+ hidden_size (`int`, *optional*, defaults to 4096):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_hidden_groups (`int`, *optional*, defaults to 1):
+ Number of groups for the hidden layers, parameters in the same group are shared.
+ num_attention_heads (`int`, *optional*, defaults to 64):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 16384):
+ The dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ inner_group_num (`int`, *optional*, defaults to 1):
+ The number of inner repetition of attention and ffn.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu_new"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for attached classifiers.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ pad_token_id (`int`, *optional*, defaults to 0):
+ Padding token id.
+ bos_token_id (`int`, *optional*, defaults to 2):
+ Beginning of stream token id.
+ eos_token_id (`int`, *optional*, defaults to 3):
+ End of stream token id.
+
+ Examples:
+
+ ```python
+ >>> from transformers import AlbertConfig, AlbertModel
+
+ >>> # Initializing an ALBERT-xxlarge style configuration
+ >>> albert_xxlarge_configuration = AlbertConfig()
+
+ >>> # Initializing an ALBERT-base style configuration
+ >>> albert_base_configuration = AlbertConfig(
+ ... hidden_size=768,
+ ... num_attention_heads=12,
+ ... intermediate_size=3072,
+ ... )
+
+ >>> # Initializing a model (with random weights) from the ALBERT-base style configuration
+ >>> model = AlbertModel(albert_xxlarge_configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "albert"
+
+ def __init__(
+ self,
+ vocab_size=30000,
+ embedding_size=128,
+ hidden_size=4096,
+ num_hidden_layers=12,
+ num_hidden_groups=1,
+ num_attention_heads=64,
+ intermediate_size=16384,
+ inner_group_num=1,
+ hidden_act="gelu_new",
+ hidden_dropout_prob=0,
+ attention_probs_dropout_prob=0,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ classifier_dropout_prob=0.1,
+ position_embedding_type="absolute",
+ pad_token_id=0,
+ bos_token_id=2,
+ eos_token_id=3,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.embedding_size = embedding_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_hidden_groups = num_hidden_groups
+ self.num_attention_heads = num_attention_heads
+ self.inner_group_num = inner_group_num
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.classifier_dropout_prob = classifier_dropout_prob
+ self.position_embedding_type = position_embedding_type
+
+
+# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Roberta->Albert
+class AlbertOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task == "multiple-choice":
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
+ else:
+ dynamic_axis = {0: "batch", 1: "sequence"}
+ return OrderedDict(
+ [
+ ("input_ids", dynamic_axis),
+ ("attention_mask", dynamic_axis),
+ ("token_type_ids", dynamic_axis),
+ ]
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..eecada8b432a2def95f71b1c613839647fc0ca6f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py
@@ -0,0 +1,63 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert ALBERT checkpoint."""
+
+
+import argparse
+
+import torch
+
+from ...utils import logging
+from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
+
+
+logging.set_verbosity_info()
+
+
+def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, albert_config_file, pytorch_dump_path):
+ # Initialise PyTorch model
+ config = AlbertConfig.from_json_file(albert_config_file)
+ print(f"Building PyTorch model from configuration: {config}")
+ model = AlbertForPreTraining(config)
+
+ # Load weights from tf checkpoint
+ load_tf_weights_in_albert(model, config, tf_checkpoint_path)
+
+ # Save pytorch-model
+ print(f"Save PyTorch model to {pytorch_dump_path}")
+ torch.save(model.state_dict(), pytorch_dump_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
+ )
+ parser.add_argument(
+ "--albert_config_file",
+ default=None,
+ type=str,
+ required=True,
+ help=(
+ "The config json file corresponding to the pre-trained ALBERT model. \n"
+ "This specifies the model architecture."
+ ),
+ )
+ parser.add_argument(
+ "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
+ )
+ args = parser.parse_args()
+ convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_albert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_albert.py
new file mode 100644
index 0000000000000000000000000000000000000000..87f5a9e30c8f542e266d610563329baf840e4bf5
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_albert.py
@@ -0,0 +1,1382 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch ALBERT model."""
+
+import math
+import os
+from dataclasses import dataclass
+from typing import Dict, List, Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPooling,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_albert import AlbertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "albert/albert-base-v2"
+_CONFIG_FOR_DOC = "AlbertConfig"
+
+
+from ..deprecated._archive_maps import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
+ """Load tf checkpoints in a pytorch model."""
+ try:
+ import re
+
+ import numpy as np
+ import tensorflow as tf
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_path = os.path.abspath(tf_checkpoint_path)
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
+ # Load weights from TF model
+ init_vars = tf.train.list_variables(tf_path)
+ names = []
+ arrays = []
+ for name, shape in init_vars:
+ logger.info(f"Loading TF weight {name} with shape {shape}")
+ array = tf.train.load_variable(tf_path, name)
+ names.append(name)
+ arrays.append(array)
+
+ for name, array in zip(names, arrays):
+ print(name)
+
+ for name, array in zip(names, arrays):
+ original_name = name
+
+ # If saved from the TF HUB module
+ name = name.replace("module/", "")
+
+ # Renaming and simplifying
+ name = name.replace("ffn_1", "ffn")
+ name = name.replace("bert/", "albert/")
+ name = name.replace("attention_1", "attention")
+ name = name.replace("transform/", "")
+ name = name.replace("LayerNorm_1", "full_layer_layer_norm")
+ name = name.replace("LayerNorm", "attention/LayerNorm")
+ name = name.replace("transformer/", "")
+
+ # The feed forward layer had an 'intermediate' step which has been abstracted away
+ name = name.replace("intermediate/dense/", "")
+ name = name.replace("ffn/intermediate/output/dense/", "ffn_output/")
+
+ # ALBERT attention was split between self and output which have been abstracted away
+ name = name.replace("/output/", "/")
+ name = name.replace("/self/", "/")
+
+ # The pooler is a linear layer
+ name = name.replace("pooler/dense", "pooler")
+
+ # The classifier was simplified to predictions from cls/predictions
+ name = name.replace("cls/predictions", "predictions")
+ name = name.replace("predictions/attention", "predictions")
+
+ # Naming was changed to be more explicit
+ name = name.replace("embeddings/attention", "embeddings")
+ name = name.replace("inner_group_", "albert_layers/")
+ name = name.replace("group_", "albert_layer_groups/")
+
+ # Classifier
+ if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name):
+ name = "classifier/" + name
+
+ # No ALBERT model currently handles the next sentence prediction task
+ if "seq_relationship" in name:
+ name = name.replace("seq_relationship/output_", "sop_classifier/classifier/")
+ name = name.replace("weights", "weight")
+
+ name = name.split("/")
+
+ # Ignore the gradients applied by the LAMB/ADAM optimizers.
+ if (
+ "adam_m" in name
+ or "adam_v" in name
+ or "AdamWeightDecayOptimizer" in name
+ or "AdamWeightDecayOptimizer_1" in name
+ or "global_step" in name
+ ):
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+
+ pointer = model
+ for m_name in name:
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
+ scope_names = re.split(r"_(\d+)", m_name)
+ else:
+ scope_names = [m_name]
+
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
+ pointer = getattr(pointer, "bias")
+ elif scope_names[0] == "output_weights":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "squad":
+ pointer = getattr(pointer, "classifier")
+ else:
+ try:
+ pointer = getattr(pointer, scope_names[0])
+ except AttributeError:
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+ if len(scope_names) >= 2:
+ num = int(scope_names[1])
+ pointer = pointer[num]
+
+ if m_name[-11:] == "_embeddings":
+ pointer = getattr(pointer, "weight")
+ elif m_name == "kernel":
+ array = np.transpose(array)
+ try:
+ if pointer.shape != array.shape:
+ raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
+ except ValueError as e:
+ e.args += (pointer.shape, array.shape)
+ raise
+ print(f"Initialize PyTorch weight {name} from {original_name}")
+ pointer.data = torch.from_numpy(array)
+
+ return model
+
+
+class AlbertEmbeddings(nn.Module):
+ """
+ Construct the embeddings from word, position and token_type embeddings.
+ """
+
+ def __init__(self, config: AlbertConfig):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ past_key_values_length: int = 0,
+ ) -> torch.Tensor:
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class AlbertAttention(nn.Module):
+ def __init__(self, config: AlbertConfig):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads}"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.hidden_size = config.hidden_size
+ self.attention_head_size = config.hidden_size // config.num_attention_heads
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.output_dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.pruned_heads = set()
+
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ # Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def prune_heads(self, heads: List[int]) -> None:
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.query = prune_linear_layer(self.query, index)
+ self.key = prune_linear_layer(self.key, index)
+ self.value = prune_linear_layer(self.value, index)
+ self.dense = prune_linear_layer(self.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.num_attention_heads = self.num_attention_heads - len(heads)
+ self.all_head_size = self.attention_head_size * self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
+ mixed_query_layer = self.query(hidden_states)
+ mixed_key_layer = self.key(hidden_states)
+ mixed_value_layer = self.value(hidden_states)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+ key_layer = self.transpose_for_scores(mixed_key_layer)
+ value_layer = self.transpose_for_scores(mixed_value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ seq_length = hidden_states.size()[1]
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.attention_dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+ context_layer = context_layer.transpose(2, 1).flatten(2)
+
+ projected_context_layer = self.dense(context_layer)
+ projected_context_layer_dropout = self.output_dropout(projected_context_layer)
+ layernormed_context_layer = self.LayerNorm(hidden_states + projected_context_layer_dropout)
+ return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,)
+
+
+class AlbertLayer(nn.Module):
+ def __init__(self, config: AlbertConfig):
+ super().__init__()
+
+ self.config = config
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.attention = AlbertAttention(config)
+ self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
+ self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.activation = ACT2FN[config.hidden_act]
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ attention_output = self.attention(hidden_states, attention_mask, head_mask, output_attentions)
+
+ ffn_output = apply_chunking_to_forward(
+ self.ff_chunk,
+ self.chunk_size_feed_forward,
+ self.seq_len_dim,
+ attention_output[0],
+ )
+ hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0])
+
+ return (hidden_states,) + attention_output[1:] # add attentions if we output them
+
+ def ff_chunk(self, attention_output: torch.Tensor) -> torch.Tensor:
+ ffn_output = self.ffn(attention_output)
+ ffn_output = self.activation(ffn_output)
+ ffn_output = self.ffn_output(ffn_output)
+ return ffn_output
+
+
+class AlbertLayerGroup(nn.Module):
+ def __init__(self, config: AlbertConfig):
+ super().__init__()
+
+ self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
+ layer_hidden_states = ()
+ layer_attentions = ()
+
+ for layer_index, albert_layer in enumerate(self.albert_layers):
+ layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index], output_attentions)
+ hidden_states = layer_output[0]
+
+ if output_attentions:
+ layer_attentions = layer_attentions + (layer_output[1],)
+
+ if output_hidden_states:
+ layer_hidden_states = layer_hidden_states + (hidden_states,)
+
+ outputs = (hidden_states,)
+ if output_hidden_states:
+ outputs = outputs + (layer_hidden_states,)
+ if output_attentions:
+ outputs = outputs + (layer_attentions,)
+ return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
+
+
+class AlbertTransformer(nn.Module):
+ def __init__(self, config: AlbertConfig):
+ super().__init__()
+
+ self.config = config
+ self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
+ self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)])
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ) -> Union[BaseModelOutput, Tuple]:
+ hidden_states = self.embedding_hidden_mapping_in(hidden_states)
+
+ all_hidden_states = (hidden_states,) if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ head_mask = [None] * self.config.num_hidden_layers if head_mask is None else head_mask
+
+ for i in range(self.config.num_hidden_layers):
+ # Number of layers in a hidden group
+ layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)
+
+ # Index of the hidden group
+ group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
+
+ layer_group_output = self.albert_layer_groups[group_idx](
+ hidden_states,
+ attention_mask,
+ head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group],
+ output_attentions,
+ output_hidden_states,
+ )
+ hidden_states = layer_group_output[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + layer_group_output[-1]
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+class AlbertPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = AlbertConfig
+ load_tf_weights = load_tf_weights_in_albert
+ base_model_prefix = "albert"
+
+ def _init_weights(self, module):
+ """Initialize the weights."""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+@dataclass
+class AlbertForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`AlbertForPreTraining`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
+ (classification) loss.
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ sop_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
+ before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ prediction_logits: torch.FloatTensor = None
+ sop_logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+ALBERT_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Args:
+ config ([`AlbertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ALBERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.",
+ ALBERT_START_DOCSTRING,
+)
+class AlbertModel(AlbertPreTrainedModel):
+ config_class = AlbertConfig
+ base_model_prefix = "albert"
+
+ def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True):
+ super().__init__(config)
+
+ self.config = config
+ self.embeddings = AlbertEmbeddings(config)
+ self.encoder = AlbertTransformer(config)
+ if add_pooling_layer:
+ self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
+ self.pooler_activation = nn.Tanh()
+ else:
+ self.pooler = None
+ self.pooler_activation = None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> nn.Embedding:
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value: nn.Embedding) -> None:
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has
+ a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT
+ model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers.
+
+ These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer,
+ while [2,3] correspond to the two inner groups of the second hidden layer.
+
+ Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more
+ information about head pruning
+ """
+ for layer, heads in heads_to_prune.items():
+ group_idx = int(layer / self.config.inner_group_num)
+ inner_group_idx = int(layer - group_idx * self.config.inner_group_num)
+ self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPooling,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[BaseModelOutputWithPooling, Tuple]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
+ extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = encoder_outputs[0]
+
+ pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
+ `sentence order prediction (classification)` head.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class AlbertForPreTraining(AlbertPreTrainedModel):
+ _tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
+
+ def __init__(self, config: AlbertConfig):
+ super().__init__(config)
+
+ self.albert = AlbertModel(config)
+ self.predictions = AlbertMLMHead(config)
+ self.sop_classifier = AlbertSOPHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self) -> nn.Linear:
+ return self.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
+ self.predictions.decoder = new_embeddings
+
+ def get_input_embeddings(self) -> nn.Embedding:
+ return self.albert.embeddings.word_embeddings
+
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=AlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ sentence_order_label: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[AlbertForPreTrainingOutput, Tuple]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ sentence_order_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
+ (see `input_ids` docstring) Indices should be in `[0, 1]`. `0` indicates original order (sequence A, then
+ sequence B), `1` indicates switched order (sequence B, then sequence A).
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, AlbertForPreTraining
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
+ >>> model = AlbertForPreTraining.from_pretrained("albert/albert-base-v2")
+
+ >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)
+ >>> # Batch size 1
+ >>> outputs = model(input_ids)
+
+ >>> prediction_logits = outputs.prediction_logits
+ >>> sop_logits = outputs.sop_logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.albert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output, pooled_output = outputs[:2]
+
+ prediction_scores = self.predictions(sequence_output)
+ sop_scores = self.sop_classifier(pooled_output)
+
+ total_loss = None
+ if labels is not None and sentence_order_label is not None:
+ loss_fct = CrossEntropyLoss()
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+ sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1))
+ total_loss = masked_lm_loss + sentence_order_loss
+
+ if not return_dict:
+ output = (prediction_scores, sop_scores) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return AlbertForPreTrainingOutput(
+ loss=total_loss,
+ prediction_logits=prediction_scores,
+ sop_logits=sop_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class AlbertMLMHead(nn.Module):
+ def __init__(self, config: AlbertConfig):
+ super().__init__()
+
+ self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+ self.dense = nn.Linear(config.hidden_size, config.embedding_size)
+ self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
+ self.activation = ACT2FN[config.hidden_act]
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ hidden_states = self.decoder(hidden_states)
+
+ prediction_scores = hidden_states
+
+ return prediction_scores
+
+ def _tie_weights(self) -> None:
+ # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
+ self.bias = self.decoder.bias
+
+
+class AlbertSOPHead(nn.Module):
+ def __init__(self, config: AlbertConfig):
+ super().__init__()
+
+ self.dropout = nn.Dropout(config.classifier_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
+ dropout_pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(dropout_pooled_output)
+ return logits
+
+
+@add_start_docstrings(
+ "Albert Model with a `language modeling` head on top.",
+ ALBERT_START_DOCSTRING,
+)
+class AlbertForMaskedLM(AlbertPreTrainedModel):
+ _tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.albert = AlbertModel(config, add_pooling_layer=False)
+ self.predictions = AlbertMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self) -> nn.Linear:
+ return self.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
+ self.predictions.decoder = new_embeddings
+
+ def get_input_embeddings(self) -> nn.Embedding:
+ return self.albert.embeddings.word_embeddings
+
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[MaskedLMOutput, Tuple]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, AlbertForMaskedLM
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
+ >>> model = AlbertForMaskedLM.from_pretrained("albert/albert-base-v2")
+
+ >>> # add mask_token
+ >>> inputs = tokenizer("The capital of [MASK] is Paris.", return_tensors="pt")
+ >>> with torch.no_grad():
+ ... logits = model(**inputs).logits
+
+ >>> # retrieve index of [MASK]
+ >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
+ >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
+ >>> tokenizer.decode(predicted_token_id)
+ 'france'
+ ```
+
+ ```python
+ >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
+ >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
+ >>> outputs = model(**inputs, labels=labels)
+ >>> round(outputs.loss.item(), 2)
+ 0.81
+ ```
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.albert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_outputs = outputs[0]
+
+ prediction_scores = self.predictions(sequence_outputs)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
+ output) e.g. for GLUE tasks.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class AlbertForSequenceClassification(AlbertPreTrainedModel):
+ def __init__(self, config: AlbertConfig):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.albert = AlbertModel(config)
+ self.dropout = nn.Dropout(config.classifier_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="textattack/albert-base-v2-imdb",
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="'LABEL_1'",
+ expected_loss=0.12,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[SequenceClassifierOutput, Tuple]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.albert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class AlbertForTokenClassification(AlbertPreTrainedModel):
+ def __init__(self, config: AlbertConfig):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.albert = AlbertModel(config, add_pooling_layer=False)
+ classifier_dropout_prob = (
+ config.classifier_dropout_prob
+ if config.classifier_dropout_prob is not None
+ else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[TokenClassifierOutput, Tuple]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.albert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class AlbertForQuestionAnswering(AlbertPreTrainedModel):
+ def __init__(self, config: AlbertConfig):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.albert = AlbertModel(config, add_pooling_layer=False)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="twmkn9/albert-base-v2-squad2",
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ qa_target_start_index=12,
+ qa_target_end_index=13,
+ expected_output="'a nice puppet'",
+ expected_loss=7.36,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[AlbertForPreTrainingOutput, Tuple]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.albert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits: torch.Tensor = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class AlbertForMultipleChoice(AlbertPreTrainedModel):
+ def __init__(self, config: AlbertConfig):
+ super().__init__(config)
+
+ self.albert = AlbertModel(config)
+ self.dropout = nn.Dropout(config.classifier_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[AlbertForPreTrainingOutput, Tuple]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see
+ *input_ids* above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+ outputs = self.albert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+
+ pooled_output = self.dropout(pooled_output)
+ logits: torch.Tensor = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_flax_albert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_flax_albert.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2c01ded3619ca913033980f72979ec77c0f76e0
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_flax_albert.py
@@ -0,0 +1,1121 @@
+# coding=utf-8
+# Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Callable, Optional, Tuple
+
+import flax
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+import numpy as np
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+
+from ...modeling_flax_outputs import (
+ FlaxBaseModelOutput,
+ FlaxBaseModelOutputWithPooling,
+ FlaxMaskedLMOutput,
+ FlaxMultipleChoiceModelOutput,
+ FlaxQuestionAnsweringModelOutput,
+ FlaxSequenceClassifierOutput,
+ FlaxTokenClassifierOutput,
+)
+from ...modeling_flax_utils import (
+ ACT2FN,
+ FlaxPreTrainedModel,
+ append_call_sample_docstring,
+ append_replace_return_docstrings,
+ overwrite_call_docstring,
+)
+from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_albert import AlbertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "albert/albert-base-v2"
+_CONFIG_FOR_DOC = "AlbertConfig"
+
+
+@flax.struct.dataclass
+class FlaxAlbertForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`FlaxAlbertForPreTraining`].
+
+ Args:
+ prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ sop_logits (`jnp.ndarray` of shape `(batch_size, 2)`):
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
+ before SoftMax).
+ hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ prediction_logits: jnp.ndarray = None
+ sop_logits: jnp.ndarray = None
+ hidden_states: Optional[Tuple[jnp.ndarray]] = None
+ attentions: Optional[Tuple[jnp.ndarray]] = None
+
+
+ALBERT_START_DOCSTRING = r"""
+
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
+
+ This model is also a
+ [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
+ a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
+ behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`AlbertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
+ `jax.numpy.bfloat16` (on TPUs).
+
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
+ specified all the computation will be performed with the given `dtype`.
+
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
+ parameters.**
+
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
+ [`~FlaxPreTrainedModel.to_bf16`].
+"""
+
+ALBERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`numpy.ndarray` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+
+"""
+
+
+class FlaxAlbertEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.word_embeddings = nn.Embed(
+ self.config.vocab_size,
+ self.config.embedding_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ )
+ self.position_embeddings = nn.Embed(
+ self.config.max_position_embeddings,
+ self.config.embedding_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ )
+ self.token_type_embeddings = nn.Embed(
+ self.config.type_vocab_size,
+ self.config.embedding_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ )
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, input_ids, token_type_ids, position_ids, deterministic: bool = True):
+ # Embed
+ inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
+ position_embeds = self.position_embeddings(position_ids.astype("i4"))
+ token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
+
+ # Sum all embeddings
+ hidden_states = inputs_embeds + token_type_embeddings + position_embeds
+
+ # Layer Norm
+ hidden_states = self.LayerNorm(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ return hidden_states
+
+
+class FlaxAlbertSelfAttention(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ if self.config.hidden_size % self.config.num_attention_heads != 0:
+ raise ValueError(
+ "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
+ " : {self.config.num_attention_heads}"
+ )
+
+ self.query = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.key = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.value = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, hidden_states, attention_mask, deterministic=True, output_attentions: bool = False):
+ head_dim = self.config.hidden_size // self.config.num_attention_heads
+
+ query_states = self.query(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+ value_states = self.value(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+ key_states = self.key(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+
+ # Convert the boolean attention mask to an attention bias.
+ if attention_mask is not None:
+ # attention mask in the form of attention bias
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
+ )
+ else:
+ attention_bias = None
+
+ dropout_rng = None
+ if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.config.attention_probs_dropout_prob,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
+
+ projected_attn_output = self.dense(attn_output)
+ projected_attn_output = self.dropout(projected_attn_output, deterministic=deterministic)
+ layernormed_attn_output = self.LayerNorm(projected_attn_output + hidden_states)
+ outputs = (layernormed_attn_output, attn_weights) if output_attentions else (layernormed_attn_output,)
+ return outputs
+
+
+class FlaxAlbertLayer(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.attention = FlaxAlbertSelfAttention(self.config, dtype=self.dtype)
+ self.ffn = nn.Dense(
+ self.config.intermediate_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.activation = ACT2FN[self.config.hidden_act]
+ self.ffn_output = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.full_layer_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ ):
+ attention_outputs = self.attention(
+ hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
+ )
+ attention_output = attention_outputs[0]
+ ffn_output = self.ffn(attention_output)
+ ffn_output = self.activation(ffn_output)
+ ffn_output = self.ffn_output(ffn_output)
+ ffn_output = self.dropout(ffn_output, deterministic=deterministic)
+ hidden_states = self.full_layer_layer_norm(ffn_output + attention_output)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attention_outputs[1],)
+ return outputs
+
+
+class FlaxAlbertLayerCollection(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxAlbertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.inner_group_num)
+ ]
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ ):
+ layer_hidden_states = ()
+ layer_attentions = ()
+
+ for layer_index, albert_layer in enumerate(self.layers):
+ layer_output = albert_layer(
+ hidden_states,
+ attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ hidden_states = layer_output[0]
+
+ if output_attentions:
+ layer_attentions = layer_attentions + (layer_output[1],)
+
+ if output_hidden_states:
+ layer_hidden_states = layer_hidden_states + (hidden_states,)
+
+ outputs = (hidden_states,)
+ if output_hidden_states:
+ outputs = outputs + (layer_hidden_states,)
+ if output_attentions:
+ outputs = outputs + (layer_attentions,)
+ return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
+
+
+class FlaxAlbertLayerCollections(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ layer_index: Optional[str] = None
+
+ def setup(self):
+ self.albert_layers = FlaxAlbertLayerCollection(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ ):
+ outputs = self.albert_layers(
+ hidden_states,
+ attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ )
+ return outputs
+
+
+class FlaxAlbertLayerGroups(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxAlbertLayerCollections(self.config, name=str(i), layer_index=str(i), dtype=self.dtype)
+ for i in range(self.config.num_hidden_groups)
+ ]
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = (hidden_states,) if output_hidden_states else None
+
+ for i in range(self.config.num_hidden_layers):
+ # Index of the hidden group
+ group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
+ layer_group_output = self.layers[group_idx](
+ hidden_states,
+ attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ )
+ hidden_states = layer_group_output[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + layer_group_output[-1]
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
+ return FlaxBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+class FlaxAlbertEncoder(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.embedding_hidden_mapping_in = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.albert_layer_groups = FlaxAlbertLayerGroups(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ hidden_states = self.embedding_hidden_mapping_in(hidden_states)
+ return self.albert_layer_groups(
+ hidden_states,
+ attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ )
+
+
+class FlaxAlbertOnlyMLMHead(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32
+ bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
+
+ def setup(self):
+ self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype)
+ self.activation = ACT2FN[self.config.hidden_act]
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
+ self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
+
+ def __call__(self, hidden_states, shared_embedding=None):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+
+ if shared_embedding is not None:
+ hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ hidden_states = self.decoder(hidden_states)
+
+ hidden_states += self.bias
+ return hidden_states
+
+
+class FlaxAlbertSOPHead(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.dropout = nn.Dropout(self.config.classifier_dropout_prob)
+ self.classifier = nn.Dense(2, dtype=self.dtype)
+
+ def __call__(self, pooled_output, deterministic=True):
+ pooled_output = self.dropout(pooled_output, deterministic=deterministic)
+ logits = self.classifier(pooled_output)
+ return logits
+
+
+class FlaxAlbertPreTrainedModel(FlaxPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = AlbertConfig
+ base_model_prefix = "albert"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: AlbertConfig,
+ input_shape: Tuple = (1, 1),
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ token_type_ids = jnp.zeros_like(input_ids)
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
+ attention_mask = jnp.ones_like(input_ids)
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(
+ rngs, input_ids, attention_mask, token_type_ids, position_ids, return_dict=False
+ )["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ # init input tensors if not passed
+ if token_type_ids is None:
+ token_type_ids = jnp.zeros_like(input_ids)
+
+ if position_ids is None:
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ return self.module.apply(
+ {"params": params or self.params},
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ jnp.array(token_type_ids, dtype="i4"),
+ jnp.array(position_ids, dtype="i4"),
+ not train,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ rngs=rngs,
+ )
+
+
+class FlaxAlbertModule(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ add_pooling_layer: bool = True
+
+ def setup(self):
+ self.embeddings = FlaxAlbertEmbeddings(self.config, dtype=self.dtype)
+ self.encoder = FlaxAlbertEncoder(self.config, dtype=self.dtype)
+ if self.add_pooling_layer:
+ self.pooler = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ name="pooler",
+ )
+ self.pooler_activation = nn.tanh
+ else:
+ self.pooler = None
+ self.pooler_activation = None
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids: Optional[np.ndarray] = None,
+ position_ids: Optional[np.ndarray] = None,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # make sure `token_type_ids` is correctly initialized when not passed
+ if token_type_ids is None:
+ token_type_ids = jnp.zeros_like(input_ids)
+
+ # make sure `position_ids` is correctly initialized when not passed
+ if position_ids is None:
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ hidden_states = self.embeddings(input_ids, token_type_ids, position_ids, deterministic=deterministic)
+
+ outputs = self.encoder(
+ hidden_states,
+ attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+ if self.add_pooling_layer:
+ pooled = self.pooler(hidden_states[:, 0])
+ pooled = self.pooler_activation(pooled)
+ else:
+ pooled = None
+
+ if not return_dict:
+ # if pooled is None, don't return it
+ if pooled is None:
+ return (hidden_states,) + outputs[1:]
+ return (hidden_states, pooled) + outputs[1:]
+
+ return FlaxBaseModelOutputWithPooling(
+ last_hidden_state=hidden_states,
+ pooler_output=pooled,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare Albert Model transformer outputting raw hidden-states without any specific head on top.",
+ ALBERT_START_DOCSTRING,
+)
+class FlaxAlbertModel(FlaxAlbertPreTrainedModel):
+ module_class = FlaxAlbertModule
+
+
+append_call_sample_docstring(FlaxAlbertModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)
+
+
+class FlaxAlbertForPreTrainingModule(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype)
+ self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype)
+ self.sop_classifier = FlaxAlbertSOPHead(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.albert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
+ else:
+ shared_embedding = None
+
+ hidden_states = outputs[0]
+ pooled_output = outputs[1]
+
+ prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding)
+ sop_scores = self.sop_classifier(pooled_output, deterministic=deterministic)
+
+ if not return_dict:
+ return (prediction_scores, sop_scores) + outputs[2:]
+
+ return FlaxAlbertForPreTrainingOutput(
+ prediction_logits=prediction_scores,
+ sop_logits=sop_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
+ `sentence order prediction (classification)` head.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class FlaxAlbertForPreTraining(FlaxAlbertPreTrainedModel):
+ module_class = FlaxAlbertForPreTrainingModule
+
+
+FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING = """
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, FlaxAlbertForPreTraining
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
+ >>> model = FlaxAlbertForPreTraining.from_pretrained("albert/albert-base-v2")
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.prediction_logits
+ >>> seq_relationship_logits = outputs.sop_logits
+ ```
+"""
+
+overwrite_call_docstring(
+ FlaxAlbertForPreTraining,
+ ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING,
+)
+append_replace_return_docstrings(
+ FlaxAlbertForPreTraining, output_type=FlaxAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
+)
+
+
+class FlaxAlbertForMaskedLMModule(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.albert = FlaxAlbertModule(config=self.config, add_pooling_layer=False, dtype=self.dtype)
+ self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.albert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
+ else:
+ shared_embedding = None
+
+ # Compute the prediction scores
+ logits = self.predictions(hidden_states, shared_embedding=shared_embedding)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxMaskedLMOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings("""Albert Model with a `language modeling` head on top.""", ALBERT_START_DOCSTRING)
+class FlaxAlbertForMaskedLM(FlaxAlbertPreTrainedModel):
+ module_class = FlaxAlbertForMaskedLMModule
+
+
+append_call_sample_docstring(
+ FlaxAlbertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC, revision="refs/pr/11"
+)
+
+
+class FlaxAlbertForSequenceClassificationModule(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype)
+ classifier_dropout = (
+ self.config.classifier_dropout_prob
+ if self.config.classifier_dropout_prob is not None
+ else self.config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(rate=classifier_dropout)
+ self.classifier = nn.Dense(
+ self.config.num_labels,
+ dtype=self.dtype,
+ )
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.albert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+ pooled_output = self.dropout(pooled_output, deterministic=deterministic)
+ logits = self.classifier(pooled_output)
+
+ if not return_dict:
+ return (logits,) + outputs[2:]
+
+ return FlaxSequenceClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
+ output) e.g. for GLUE tasks.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class FlaxAlbertForSequenceClassification(FlaxAlbertPreTrainedModel):
+ module_class = FlaxAlbertForSequenceClassificationModule
+
+
+append_call_sample_docstring(
+ FlaxAlbertForSequenceClassification,
+ _CHECKPOINT_FOR_DOC,
+ FlaxSequenceClassifierOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxAlbertForMultipleChoiceModule(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.classifier = nn.Dense(1, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ num_choices = input_ids.shape[1]
+ input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
+ attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
+ token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
+ position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
+
+ # Model
+ outputs = self.albert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+ pooled_output = self.dropout(pooled_output, deterministic=deterministic)
+ logits = self.classifier(pooled_output)
+
+ reshaped_logits = logits.reshape(-1, num_choices)
+
+ if not return_dict:
+ return (reshaped_logits,) + outputs[2:]
+
+ return FlaxMultipleChoiceModelOutput(
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class FlaxAlbertForMultipleChoice(FlaxAlbertPreTrainedModel):
+ module_class = FlaxAlbertForMultipleChoiceModule
+
+
+overwrite_call_docstring(
+ FlaxAlbertForMultipleChoice, ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+)
+append_call_sample_docstring(
+ FlaxAlbertForMultipleChoice,
+ _CHECKPOINT_FOR_DOC,
+ FlaxMultipleChoiceModelOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxAlbertForTokenClassificationModule(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False)
+ classifier_dropout = (
+ self.config.classifier_dropout_prob
+ if self.config.classifier_dropout_prob is not None
+ else self.config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(rate=classifier_dropout)
+ self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.albert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ logits = self.classifier(hidden_states)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxTokenClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class FlaxAlbertForTokenClassification(FlaxAlbertPreTrainedModel):
+ module_class = FlaxAlbertForTokenClassificationModule
+
+
+append_call_sample_docstring(
+ FlaxAlbertForTokenClassification,
+ _CHECKPOINT_FOR_DOC,
+ FlaxTokenClassifierOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxAlbertForQuestionAnsweringModule(nn.Module):
+ config: AlbertConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False)
+ self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.albert(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+
+ logits = self.qa_outputs(hidden_states)
+ start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
+ start_logits = start_logits.squeeze(-1)
+ end_logits = end_logits.squeeze(-1)
+
+ if not return_dict:
+ return (start_logits, end_logits) + outputs[1:]
+
+ return FlaxQuestionAnsweringModelOutput(
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class FlaxAlbertForQuestionAnswering(FlaxAlbertPreTrainedModel):
+ module_class = FlaxAlbertForQuestionAnsweringModule
+
+
+append_call_sample_docstring(
+ FlaxAlbertForQuestionAnswering,
+ _CHECKPOINT_FOR_DOC,
+ FlaxQuestionAnsweringModelOutput,
+ _CONFIG_FOR_DOC,
+)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_tf_albert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_tf_albert.py
new file mode 100644
index 0000000000000000000000000000000000000000..5aa521bb73dea7681670416e1705497b1531700c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_tf_albert.py
@@ -0,0 +1,1564 @@
+# coding=utf-8
+# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 ALBERT model."""
+
+
+from __future__ import annotations
+
+import math
+from dataclasses import dataclass
+from typing import Dict, Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutput,
+ TFBaseModelOutputWithPooling,
+ TFMaskedLMOutput,
+ TFMultipleChoiceModelOutput,
+ TFQuestionAnsweringModelOutput,
+ TFSequenceClassifierOutput,
+ TFTokenClassifierOutput,
+)
+from ...modeling_tf_utils import (
+ TFMaskedLanguageModelingLoss,
+ TFModelInputType,
+ TFMultipleChoiceLoss,
+ TFPreTrainedModel,
+ TFQuestionAnsweringLoss,
+ TFSequenceClassificationLoss,
+ TFTokenClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_albert import AlbertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "albert/albert-base-v2"
+_CONFIG_FOR_DOC = "AlbertConfig"
+
+
+from ..deprecated._archive_maps import TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class TFAlbertPreTrainingLoss:
+ """
+ Loss function suitable for ALBERT pretraining, that is, the task of pretraining a language model by combining SOP +
+ MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
+ """
+
+ def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor:
+ loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
+ if self.config.tf_legacy_loss:
+ # make sure only labels that are not equal to -100
+ # are taken into account as loss
+ masked_lm_active_loss = tf.not_equal(tf.reshape(tensor=labels["labels"], shape=(-1,)), -100)
+ masked_lm_reduced_logits = tf.boolean_mask(
+ tensor=tf.reshape(tensor=logits[0], shape=(-1, shape_list(logits[0])[2])),
+ mask=masked_lm_active_loss,
+ )
+ masked_lm_labels = tf.boolean_mask(
+ tensor=tf.reshape(tensor=labels["labels"], shape=(-1,)), mask=masked_lm_active_loss
+ )
+ sentence_order_active_loss = tf.not_equal(
+ tf.reshape(tensor=labels["sentence_order_label"], shape=(-1,)), -100
+ )
+ sentence_order_reduced_logits = tf.boolean_mask(
+ tensor=tf.reshape(tensor=logits[1], shape=(-1, 2)), mask=sentence_order_active_loss
+ )
+ sentence_order_label = tf.boolean_mask(
+ tensor=tf.reshape(tensor=labels["sentence_order_label"], shape=(-1,)), mask=sentence_order_active_loss
+ )
+ masked_lm_loss = loss_fn(y_true=masked_lm_labels, y_pred=masked_lm_reduced_logits)
+ sentence_order_loss = loss_fn(y_true=sentence_order_label, y_pred=sentence_order_reduced_logits)
+ masked_lm_loss = tf.reshape(tensor=masked_lm_loss, shape=(-1, shape_list(sentence_order_loss)[0]))
+ masked_lm_loss = tf.reduce_mean(input_tensor=masked_lm_loss, axis=0)
+
+ return masked_lm_loss + sentence_order_loss
+
+ # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
+ unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0])
+ # make sure only labels that are not equal to -100
+ # are taken into account for the loss computation
+ lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype)
+ masked_lm_losses = unmasked_lm_losses * lm_loss_mask
+ reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask)
+
+ sop_logits = tf.reshape(logits[1], (-1, 2))
+ # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
+ unmasked_sop_loss = loss_fn(y_true=tf.nn.relu(labels["sentence_order_label"]), y_pred=sop_logits)
+ sop_loss_mask = tf.cast(labels["sentence_order_label"] != -100, dtype=unmasked_sop_loss.dtype)
+
+ masked_sop_loss = unmasked_sop_loss * sop_loss_mask
+ reduced_masked_sop_loss = tf.reduce_sum(masked_sop_loss) / tf.reduce_sum(sop_loss_mask)
+
+ return tf.reshape(reduced_masked_lm_loss + reduced_masked_sop_loss, (1,))
+
+
+class TFAlbertEmbeddings(keras.layers.Layer):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config: AlbertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embedding_size = config.embedding_size
+ self.max_position_embeddings = config.max_position_embeddings
+ self.initializer_range = config.initializer_range
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+
+ def build(self, input_shape=None):
+ with tf.name_scope("word_embeddings"):
+ self.weight = self.add_weight(
+ name="weight",
+ shape=[self.config.vocab_size, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("token_type_embeddings"):
+ self.token_type_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.config.type_vocab_size, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("position_embeddings"):
+ self.position_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.max_position_embeddings, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.embedding_size])
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
+ def call(
+ self,
+ input_ids: tf.Tensor = None,
+ position_ids: tf.Tensor = None,
+ token_type_ids: tf.Tensor = None,
+ inputs_embeds: tf.Tensor = None,
+ past_key_values_length=0,
+ training: bool = False,
+ ) -> tf.Tensor:
+ """
+ Applies embedding based on inputs tensor.
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ if input_ids is None and inputs_embeds is None:
+ raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
+
+ if input_ids is not None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ if position_ids is None:
+ position_ids = tf.expand_dims(
+ tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
+ )
+
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
+ final_embeddings = inputs_embeds + position_embeds + token_type_embeds
+ final_embeddings = self.LayerNorm(inputs=final_embeddings)
+ final_embeddings = self.dropout(inputs=final_embeddings, training=training)
+
+ return final_embeddings
+
+
+class TFAlbertAttention(keras.layers.Layer):
+ """Contains the complete attention sublayer, including both dropouts and layer norm."""
+
+ def __init__(self, config: AlbertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number "
+ f"of attention heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
+ self.output_attentions = config.output_attentions
+
+ self.query = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
+ )
+ self.key = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
+ )
+ self.value = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
+ )
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ # Two different dropout probabilities; see https://github.com/google-research/albert/blob/master/modeling.py#L971-L993
+ self.attention_dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
+ self.output_dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
+
+ # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
+ return tf.transpose(tensor, perm=[0, 2, 1, 3])
+
+ def call(
+ self,
+ input_tensor: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ batch_size = shape_list(input_tensor)[0]
+ mixed_query_layer = self.query(inputs=input_tensor)
+ mixed_key_layer = self.key(inputs=input_tensor)
+ mixed_value_layer = self.value(inputs=input_tensor)
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
+ key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
+ value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ # (batch size, num_heads, seq_len_q, seq_len_k)
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
+ dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
+ attention_scores = tf.divide(attention_scores, dk)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in TFAlbertModel call() function)
+ attention_scores = tf.add(attention_scores, attention_mask)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = stable_softmax(logits=attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.attention_dropout(inputs=attention_probs, training=training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = tf.multiply(attention_probs, head_mask)
+
+ context_layer = tf.matmul(attention_probs, value_layer)
+ context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
+
+ # (batch_size, seq_len_q, all_head_size)
+ context_layer = tf.reshape(tensor=context_layer, shape=(batch_size, -1, self.all_head_size))
+ self_outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+ hidden_states = self_outputs[0]
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.output_dropout(inputs=hidden_states, training=training)
+ attention_output = self.LayerNorm(inputs=hidden_states + input_tensor)
+
+ # add attentions if we output them
+ outputs = (attention_output,) + self_outputs[1:]
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query", None) is not None:
+ with tf.name_scope(self.query.name):
+ self.query.build([None, None, self.config.hidden_size])
+ if getattr(self, "key", None) is not None:
+ with tf.name_scope(self.key.name):
+ self.key.build([None, None, self.config.hidden_size])
+ if getattr(self, "value", None) is not None:
+ with tf.name_scope(self.value.name):
+ self.value.build([None, None, self.config.hidden_size])
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFAlbertLayer(keras.layers.Layer):
+ def __init__(self, config: AlbertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.attention = TFAlbertAttention(config, name="attention")
+ self.ffn = keras.layers.Dense(
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn"
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.activation = get_tf_activation(config.hidden_act)
+ else:
+ self.activation = config.hidden_act
+
+ self.ffn_output = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn_output"
+ )
+ self.full_layer_layer_norm = keras.layers.LayerNormalization(
+ epsilon=config.layer_norm_eps, name="full_layer_layer_norm"
+ )
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ attention_outputs = self.attention(
+ input_tensor=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ ffn_output = self.ffn(inputs=attention_outputs[0])
+ ffn_output = self.activation(ffn_output)
+ ffn_output = self.ffn_output(inputs=ffn_output)
+ ffn_output = self.dropout(inputs=ffn_output, training=training)
+ hidden_states = self.full_layer_layer_norm(inputs=ffn_output + attention_outputs[0])
+
+ # add attentions if we output them
+ outputs = (hidden_states,) + attention_outputs[1:]
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "ffn", None) is not None:
+ with tf.name_scope(self.ffn.name):
+ self.ffn.build([None, None, self.config.hidden_size])
+ if getattr(self, "ffn_output", None) is not None:
+ with tf.name_scope(self.ffn_output.name):
+ self.ffn_output.build([None, None, self.config.intermediate_size])
+ if getattr(self, "full_layer_layer_norm", None) is not None:
+ with tf.name_scope(self.full_layer_layer_norm.name):
+ self.full_layer_layer_norm.build([None, None, self.config.hidden_size])
+
+
+class TFAlbertLayerGroup(keras.layers.Layer):
+ def __init__(self, config: AlbertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.albert_layers = [
+ TFAlbertLayer(config, name=f"albert_layers_._{i}") for i in range(config.inner_group_num)
+ ]
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ output_hidden_states: bool,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ layer_hidden_states = () if output_hidden_states else None
+ layer_attentions = () if output_attentions else None
+
+ for layer_index, albert_layer in enumerate(self.albert_layers):
+ if output_hidden_states:
+ layer_hidden_states = layer_hidden_states + (hidden_states,)
+
+ layer_output = albert_layer(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=head_mask[layer_index],
+ output_attentions=output_attentions,
+ training=training,
+ )
+ hidden_states = layer_output[0]
+
+ if output_attentions:
+ layer_attentions = layer_attentions + (layer_output[1],)
+
+ # Add last layer
+ if output_hidden_states:
+ layer_hidden_states = layer_hidden_states + (hidden_states,)
+
+ return tuple(v for v in [hidden_states, layer_hidden_states, layer_attentions] if v is not None)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "albert_layers", None) is not None:
+ for layer in self.albert_layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+class TFAlbertTransformer(keras.layers.Layer):
+ def __init__(self, config: AlbertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.num_hidden_layers = config.num_hidden_layers
+ self.num_hidden_groups = config.num_hidden_groups
+ # Number of layers in a hidden group
+ self.layers_per_group = int(config.num_hidden_layers / config.num_hidden_groups)
+ self.embedding_hidden_mapping_in = keras.layers.Dense(
+ units=config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="embedding_hidden_mapping_in",
+ )
+ self.albert_layer_groups = [
+ TFAlbertLayerGroup(config, name=f"albert_layer_groups_._{i}") for i in range(config.num_hidden_groups)
+ ]
+ self.config = config
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ output_hidden_states: bool,
+ return_dict: bool,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ hidden_states = self.embedding_hidden_mapping_in(inputs=hidden_states)
+ all_attentions = () if output_attentions else None
+ all_hidden_states = (hidden_states,) if output_hidden_states else None
+
+ for i in range(self.num_hidden_layers):
+ # Index of the hidden group
+ group_idx = int(i / (self.num_hidden_layers / self.num_hidden_groups))
+ layer_group_output = self.albert_layer_groups[group_idx](
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=head_mask[group_idx * self.layers_per_group : (group_idx + 1) * self.layers_per_group],
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ training=training,
+ )
+ hidden_states = layer_group_output[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + layer_group_output[-1]
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
+
+ return TFBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embedding_hidden_mapping_in", None) is not None:
+ with tf.name_scope(self.embedding_hidden_mapping_in.name):
+ self.embedding_hidden_mapping_in.build([None, None, self.config.embedding_size])
+ if getattr(self, "albert_layer_groups", None) is not None:
+ for layer in self.albert_layer_groups:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+class TFAlbertPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = AlbertConfig
+ base_model_prefix = "albert"
+
+
+class TFAlbertMLMHead(keras.layers.Layer):
+ def __init__(self, config: AlbertConfig, input_embeddings: keras.layers.Layer, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embedding_size = config.embedding_size
+ self.dense = keras.layers.Dense(
+ config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ if isinstance(config.hidden_act, str):
+ self.activation = get_tf_activation(config.hidden_act)
+ else:
+ self.activation = config.hidden_act
+
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = input_embeddings
+
+ def build(self, input_shape=None):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+ self.decoder_bias = self.add_weight(
+ shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="decoder/bias"
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.embedding_size])
+
+ def get_output_embeddings(self) -> keras.layers.Layer:
+ return self.decoder
+
+ def set_output_embeddings(self, value: tf.Variable):
+ self.decoder.weight = value
+ self.decoder.vocab_size = shape_list(value)[0]
+
+ def get_bias(self) -> Dict[str, tf.Variable]:
+ return {"bias": self.bias, "decoder_bias": self.decoder_bias}
+
+ def set_bias(self, value: tf.Variable):
+ self.bias = value["bias"]
+ self.decoder_bias = value["decoder_bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.activation(hidden_states)
+ hidden_states = self.LayerNorm(inputs=hidden_states)
+ seq_length = shape_list(tensor=hidden_states)[1]
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
+ hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.decoder_bias)
+
+ return hidden_states
+
+
+@keras_serializable
+class TFAlbertMainLayer(keras.layers.Layer):
+ config_class = AlbertConfig
+
+ def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+
+ self.embeddings = TFAlbertEmbeddings(config, name="embeddings")
+ self.encoder = TFAlbertTransformer(config, name="encoder")
+ self.pooler = (
+ keras.layers.Dense(
+ units=config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="pooler",
+ )
+ if add_pooling_layer
+ else None
+ )
+
+ def get_input_embeddings(self) -> keras.layers.Layer:
+ return self.embeddings
+
+ def set_input_embeddings(self, value: tf.Variable):
+ self.embeddings.weight = value
+ self.embeddings.vocab_size = shape_list(value)[0]
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ raise NotImplementedError
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=input_shape, value=1)
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ training=training,
+ )
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
+ one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
+ ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
+ extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ if head_mask is not None:
+ raise NotImplementedError
+ else:
+ head_mask = [None] * self.config.num_hidden_layers
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(inputs=sequence_output[:, 0]) if self.pooler is not None else None
+
+ if not return_dict:
+ return (
+ sequence_output,
+ pooled_output,
+ ) + encoder_outputs[1:]
+
+ return TFBaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "pooler", None) is not None:
+ with tf.name_scope(self.pooler.name):
+ self.pooler.build([None, None, self.config.hidden_size])
+
+
+@dataclass
+class TFAlbertForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`TFAlbertForPreTraining`].
+
+ Args:
+ prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ sop_logits (`tf.Tensor` of shape `(batch_size, 2)`):
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
+ before SoftMax).
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: tf.Tensor = None
+ prediction_logits: tf.Tensor = None
+ sop_logits: tf.Tensor = None
+ hidden_states: Tuple[tf.Tensor] | None = None
+ attentions: Tuple[tf.Tensor] | None = None
+
+
+ALBERT_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Args:
+ config ([`AlbertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ALBERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@add_start_docstrings(
+ "The bare Albert Model transformer outputting raw hidden-states without any specific head on top.",
+ ALBERT_START_DOCSTRING,
+)
+class TFAlbertModel(TFAlbertPreTrainedModel):
+ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.albert = TFAlbertMainLayer(config, name="albert")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutputWithPooling,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ outputs = self.albert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "albert", None) is not None:
+ with tf.name_scope(self.albert.name):
+ self.albert.build(None)
+
+
+@add_start_docstrings(
+ """
+ Albert Model with two heads on top for pretraining: a `masked language modeling` head and a `sentence order
+ prediction` (classification) head.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"predictions.decoder.weight"]
+
+ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+
+ self.albert = TFAlbertMainLayer(config, name="albert")
+ self.predictions = TFAlbertMLMHead(config, input_embeddings=self.albert.embeddings, name="predictions")
+ self.sop_classifier = TFAlbertSOPHead(config, name="sop_classifier")
+
+ def get_lm_head(self) -> keras.layers.Layer:
+ return self.predictions
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TFAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ sentence_order_label: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFAlbertForPreTrainingOutput, Tuple[tf.Tensor]]:
+ r"""
+ Return:
+
+ Example:
+
+ ```python
+ >>> import tensorflow as tf
+ >>> from transformers import AutoTokenizer, TFAlbertForPreTraining
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
+ >>> model = TFAlbertForPreTraining.from_pretrained("albert/albert-base-v2")
+
+ >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]
+ >>> # Batch size 1
+ >>> outputs = model(input_ids)
+
+ >>> prediction_logits = outputs.prediction_logits
+ >>> sop_logits = outputs.sop_logits
+ ```"""
+
+ outputs = self.albert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output, pooled_output = outputs[:2]
+ prediction_scores = self.predictions(hidden_states=sequence_output)
+ sop_scores = self.sop_classifier(pooled_output=pooled_output, training=training)
+ total_loss = None
+
+ if labels is not None and sentence_order_label is not None:
+ d_labels = {"labels": labels}
+ d_labels["sentence_order_label"] = sentence_order_label
+ total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, sop_scores))
+
+ if not return_dict:
+ output = (prediction_scores, sop_scores) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return TFAlbertForPreTrainingOutput(
+ loss=total_loss,
+ prediction_logits=prediction_scores,
+ sop_logits=sop_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "albert", None) is not None:
+ with tf.name_scope(self.albert.name):
+ self.albert.build(None)
+ if getattr(self, "predictions", None) is not None:
+ with tf.name_scope(self.predictions.name):
+ self.predictions.build(None)
+ if getattr(self, "sop_classifier", None) is not None:
+ with tf.name_scope(self.sop_classifier.name):
+ self.sop_classifier.build(None)
+
+
+class TFAlbertSOPHead(keras.layers.Layer):
+ def __init__(self, config: AlbertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dropout = keras.layers.Dropout(rate=config.classifier_dropout_prob)
+ self.classifier = keras.layers.Dense(
+ units=config.num_labels,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="classifier",
+ )
+ self.config = config
+
+ def call(self, pooled_output: tf.Tensor, training: bool) -> tf.Tensor:
+ dropout_pooled_output = self.dropout(inputs=pooled_output, training=training)
+ logits = self.classifier(inputs=dropout_pooled_output)
+
+ return logits
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings("""Albert Model with a `language modeling` head on top.""", ALBERT_START_DOCSTRING)
+class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions.decoder.weight"]
+
+ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert")
+ self.predictions = TFAlbertMLMHead(config, input_embeddings=self.albert.embeddings, name="predictions")
+
+ def get_lm_head(self) -> keras.layers.Layer:
+ return self.predictions
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import tensorflow as tf
+ >>> from transformers import AutoTokenizer, TFAlbertForMaskedLM
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
+ >>> model = TFAlbertForMaskedLM.from_pretrained("albert/albert-base-v2")
+
+ >>> # add mask_token
+ >>> inputs = tokenizer(f"The capital of [MASK] is Paris.", return_tensors="tf")
+ >>> logits = model(**inputs).logits
+
+ >>> # retrieve index of [MASK]
+ >>> mask_token_index = tf.where(inputs.input_ids == tokenizer.mask_token_id)[0][1]
+ >>> predicted_token_id = tf.math.argmax(logits[0, mask_token_index], axis=-1)
+ >>> tokenizer.decode(predicted_token_id)
+ 'france'
+ ```
+
+ ```python
+ >>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
+ >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
+ >>> outputs = model(**inputs, labels=labels)
+ >>> round(float(outputs.loss), 2)
+ 0.81
+ ```
+ """
+ outputs = self.albert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ prediction_scores = self.predictions(hidden_states=sequence_output, training=training)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMaskedLMOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "albert", None) is not None:
+ with tf.name_scope(self.albert.name):
+ self.albert.build(None)
+ if getattr(self, "predictions", None) is not None:
+ with tf.name_scope(self.predictions.name):
+ self.predictions.build(None)
+
+
+@add_start_docstrings(
+ """
+ Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
+ output) e.g. for GLUE tasks.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClassificationLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"predictions"]
+ _keys_to_ignore_on_load_missing = [r"dropout"]
+
+ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+
+ self.albert = TFAlbertMainLayer(config, name="albert")
+ self.dropout = keras.layers.Dropout(rate=config.classifier_dropout_prob)
+ self.classifier = keras.layers.Dense(
+ units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="vumichien/albert-base-v2-imdb",
+ output_type=TFSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="'LABEL_1'",
+ expected_loss=0.12,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ outputs = self.albert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ pooled_output = outputs[1]
+ pooled_output = self.dropout(inputs=pooled_output, training=training)
+ logits = self.classifier(inputs=pooled_output)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "albert", None) is not None:
+ with tf.name_scope(self.albert.name):
+ self.albert.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificationLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"]
+ _keys_to_ignore_on_load_missing = [r"dropout"]
+
+ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+
+ self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert")
+ classifier_dropout_prob = (
+ config.classifier_dropout_prob
+ if config.classifier_dropout_prob is not None
+ else config.hidden_dropout_prob
+ )
+ self.dropout = keras.layers.Dropout(rate=classifier_dropout_prob)
+ self.classifier = keras.layers.Dense(
+ units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFTokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ outputs = self.albert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ sequence_output = self.dropout(inputs=sequence_output, training=training)
+ logits = self.classifier(inputs=sequence_output)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFTokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "albert", None) is not None:
+ with tf.name_scope(self.albert.name):
+ self.albert.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"]
+
+ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+
+ self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert")
+ self.qa_outputs = keras.layers.Dense(
+ units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="vumichien/albert-base-v2-squad2",
+ output_type=TFQuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ qa_target_start_index=12,
+ qa_target_end_index=13,
+ expected_output="'a nice puppet'",
+ expected_loss=7.36,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ start_positions: np.ndarray | tf.Tensor | None = None,
+ end_positions: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ outputs = self.albert(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ logits = self.qa_outputs(inputs=sequence_output)
+ start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
+ start_logits = tf.squeeze(input=start_logits, axis=-1)
+ end_logits = tf.squeeze(input=end_logits, axis=-1)
+ loss = None
+
+ if start_positions is not None and end_positions is not None:
+ labels = {"start_position": start_positions}
+ labels["end_position"] = end_positions
+ loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFQuestionAnsweringModelOutput(
+ loss=loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "albert", None) is not None:
+ with tf.name_scope(self.albert.name):
+ self.albert.build(None)
+ if getattr(self, "qa_outputs", None) is not None:
+ with tf.name_scope(self.qa_outputs.name):
+ self.qa_outputs.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ALBERT_START_DOCSTRING,
+)
+class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"]
+ _keys_to_ignore_on_load_missing = [r"dropout"]
+
+ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.albert = TFAlbertMainLayer(config, name="albert")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.classifier = keras.layers.Dense(
+ units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
+ """
+
+ if input_ids is not None:
+ num_choices = shape_list(input_ids)[1]
+ seq_length = shape_list(input_ids)[2]
+ else:
+ num_choices = shape_list(inputs_embeds)[1]
+ seq_length = shape_list(inputs_embeds)[2]
+
+ flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
+ flat_attention_mask = (
+ tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None
+ )
+ flat_token_type_ids = (
+ tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None
+ )
+ flat_position_ids = (
+ tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None
+ )
+ flat_inputs_embeds = (
+ tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]))
+ if inputs_embeds is not None
+ else None
+ )
+ outputs = self.albert(
+ input_ids=flat_input_ids,
+ attention_mask=flat_attention_mask,
+ token_type_ids=flat_token_type_ids,
+ position_ids=flat_position_ids,
+ head_mask=head_mask,
+ inputs_embeds=flat_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ pooled_output = outputs[1]
+ pooled_output = self.dropout(inputs=pooled_output, training=training)
+ logits = self.classifier(inputs=pooled_output)
+ reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices))
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "albert", None) is not None:
+ with tf.name_scope(self.albert.name):
+ self.albert.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert.py
new file mode 100644
index 0000000000000000000000000000000000000000..786f9eeafc513c3d09cfe3300d7ac8c3911caf4a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert.py
@@ -0,0 +1,346 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization classes for ALBERT model."""
+
+
+import os
+import unicodedata
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
+
+
+SPIECE_UNDERLINE = "▁"
+
+
+class AlbertTokenizer(PreTrainedTokenizer):
+ """
+ Construct an ALBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ remove_space (`bool`, *optional*, defaults to `True`):
+ Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
+ keep_accents (`bool`, *optional*, defaults to `False`):
+ Whether or not to keep accents when tokenizing.
+ bos_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+
+ Attributes:
+ sp_model (`SentencePieceProcessor`):
+ The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=True,
+ remove_space=True,
+ keep_accents=False,
+ bos_token="[CLS]",
+ eos_token="[SEP]",
+ unk_token="",
+ sep_token="[SEP]",
+ pad_token="",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ # Mask token behave like a normal word, i.e. include the space before it and
+ # is included in the raw text, there should be a match in a non-normalized sentence.
+ mask_token = (
+ AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
+ if isinstance(mask_token, str)
+ else mask_token
+ )
+
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ self.do_lower_case = do_lower_case
+ self.remove_space = remove_space
+ self.keep_accents = keep_accents
+ self.vocab_file = vocab_file
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(vocab_file)
+
+ super().__init__(
+ do_lower_case=do_lower_case,
+ remove_space=remove_space,
+ keep_accents=keep_accents,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self) -> int:
+ return len(self.sp_model)
+
+ def get_vocab(self) -> Dict[str, int]:
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ def preprocess_text(self, inputs):
+ if self.remove_space:
+ outputs = " ".join(inputs.strip().split())
+ else:
+ outputs = inputs
+ outputs = outputs.replace("``", '"').replace("''", '"')
+
+ if not self.keep_accents:
+ outputs = unicodedata.normalize("NFKD", outputs)
+ outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
+ if self.do_lower_case:
+ outputs = outputs.lower()
+
+ return outputs
+
+ def _tokenize(self, text: str) -> List[str]:
+ """Tokenize a string."""
+ text = self.preprocess_text(text)
+ pieces = self.sp_model.encode(text, out_type=str)
+ new_pieces = []
+ for piece in pieces:
+ if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
+ # Logic to handle special cases see https://github.com/google-research/bert/blob/master/README.md#tokenization
+ # `9,9` -> ['▁9', ',', '9'] instead of [`_9,`, '9']
+ cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
+ if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
+ if len(cur_pieces[0]) == 1:
+ cur_pieces = cur_pieces[1:]
+ else:
+ cur_pieces[0] = cur_pieces[0][1:]
+ cur_pieces.append(piece[-1])
+ new_pieces.extend(cur_pieces)
+ else:
+ new_pieces.append(piece)
+
+ return new_pieces
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.sp_model.PieceToId(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.sp_model.IdToPiece(index)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ current_sub_tokens = []
+ out_string = ""
+ prev_is_special = False
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ if not prev_is_special:
+ out_string += " "
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ prev_is_special = True
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ prev_is_special = False
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string.strip()
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An ALBERT sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return cls + token_ids_0 + sep
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
+ sequence pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..e0b09a73560ac19bc9cb71510b4e24d4e77cf8be
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert_fast.py
@@ -0,0 +1,210 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization classes for ALBERT model."""
+
+
+import os
+from shutil import copyfile
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import AddedToken
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import is_sentencepiece_available, logging
+
+
+if is_sentencepiece_available():
+ from .tokenization_albert import AlbertTokenizer
+else:
+ AlbertTokenizer = None
+
+logger = logging.get_logger(__name__)
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
+
+
+SPIECE_UNDERLINE = "▁"
+
+
+class AlbertTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" ALBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on
+ [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
+ tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ remove_space (`bool`, *optional*, defaults to `True`):
+ Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
+ keep_accents (`bool`, *optional*, defaults to `False`):
+ Whether or not to keep accents when tokenizing.
+ bos_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token
+ that is used for the end of sequence. The token used is the `sep_token`.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = AlbertTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=True,
+ remove_space=True,
+ keep_accents=False,
+ bos_token="[CLS]",
+ eos_token="[SEP]",
+ unk_token="",
+ sep_token="[SEP]",
+ pad_token="",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ **kwargs,
+ ):
+ # Mask token behave like a normal word, i.e. include the space before it and
+ # is included in the raw text, there should be a match in a non-normalized sentence.
+ mask_token = (
+ AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
+ if isinstance(mask_token, str)
+ else mask_token
+ )
+
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ remove_space=remove_space,
+ keep_accents=keep_accents,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ **kwargs,
+ )
+
+ self.do_lower_case = do_lower_case
+ self.remove_space = remove_space
+ self.keep_accents = keep_accents
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An ALBERT sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return cls + token_ids_0 + sep
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
+ sequence pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of ids.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6fbfd53b3703fd73cf937026344cda9387ab2fcc
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__init__.py
@@ -0,0 +1,71 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {
+ "configuration_blip_2": [
+ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "Blip2Config",
+ "Blip2QFormerConfig",
+ "Blip2VisionConfig",
+ ],
+ "processing_blip_2": ["Blip2Processor"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_blip_2"] = [
+ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "Blip2Model",
+ "Blip2QFormerModel",
+ "Blip2PreTrainedModel",
+ "Blip2ForConditionalGeneration",
+ "Blip2VisionModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_blip_2 import (
+ BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ Blip2Config,
+ Blip2QFormerConfig,
+ Blip2VisionConfig,
+ )
+ from .processing_blip_2 import Blip2Processor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_blip_2 import (
+ BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
+ Blip2ForConditionalGeneration,
+ Blip2Model,
+ Blip2PreTrainedModel,
+ Blip2QFormerModel,
+ Blip2VisionModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b3aad4fb29de9b20a35e12c60bbcb38f47ec45ed
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/configuration_blip_2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/configuration_blip_2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..67dae8e54556242222f3c1be268caf12342cd4fc
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/configuration_blip_2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/convert_blip_2_original_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/convert_blip_2_original_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5f61126b2957ee86ed10d8fafa99995db43b146c
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/convert_blip_2_original_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/modeling_blip_2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/modeling_blip_2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9de9d21a9cb5f5e0ab7ba7ee59fdc76f0aba93b1
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/modeling_blip_2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/processing_blip_2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/processing_blip_2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..211f200a45f2271405745977dbfda01c2e31d344
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/processing_blip_2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/configuration_blip_2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/configuration_blip_2.py
new file mode 100644
index 0000000000000000000000000000000000000000..f5645f5deed57c4bc2b59d1b5a2c5fcf93b805e4
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/configuration_blip_2.py
@@ -0,0 +1,355 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" BLIP-2 model configuration"""
+
+import os
+from typing import Union
+
+from ...configuration_utils import PretrainedConfig
+from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
+from ...utils import logging
+from ..auto import CONFIG_MAPPING
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class Blip2VisionConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Blip2VisionModel`]. It is used to instantiate a
+ BLIP-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
+ configuration defaults will yield a similar configuration to that of the BLIP-2
+ [Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 1408):
+ Dimensionality of the encoder layers and the pooler layer.
+ intermediate_size (`int`, *optional*, defaults to 6144):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ num_hidden_layers (`int`, *optional*, defaults to 39):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image.
+ patch_size (`int`, *optional*, defaults to 14):
+ The size (resolution) of each patch.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults
+ to 1e-5): The epsilon used by the layer normalization layers.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether to add a bias to the queries and values in the self-attention layers.
+
+ Example:
+
+ ```python
+ >>> from transformers import Blip2VisionConfig, Blip2VisionModel
+
+ >>> # Initializing a Blip2VisionConfig with Salesforce/blip2-opt-2.7b style configuration
+ >>> configuration = Blip2VisionConfig()
+
+ >>> # Initializing a Blip2VisionModel (with random weights) from the Salesforce/blip2-opt-2.7b style configuration
+ >>> model = Blip2VisionModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "blip_2_vision_model"
+
+ def __init__(
+ self,
+ hidden_size=1408,
+ intermediate_size=6144,
+ num_hidden_layers=39,
+ num_attention_heads=16,
+ image_size=224,
+ patch_size=14,
+ hidden_act="gelu",
+ layer_norm_eps=1e-6,
+ attention_dropout=0.0,
+ initializer_range=1e-10,
+ qkv_bias=True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.patch_size = patch_size
+ self.image_size = image_size
+ self.initializer_range = initializer_range
+ self.attention_dropout = attention_dropout
+ self.layer_norm_eps = layer_norm_eps
+ self.hidden_act = hidden_act
+ self.qkv_bias = qkv_bias
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the vision config dict if we are loading from Blip2Config
+ if config_dict.get("model_type") == "blip-2":
+ config_dict = config_dict["vision_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class Blip2QFormerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Blip2QFormerModel`]. It is used to instantiate a
+ BLIP-2 Querying Transformer (Q-Former) model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the BLIP-2
+ [Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) architecture. Configuration objects
+ inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from
+ [`PretrainedConfig`] for more information.
+
+ Note that [`Blip2QFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by
+ the `inputs_ids` passed when calling the model.
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ cross_attention_frequency (`int`, *optional*, defaults to 2):
+ The frequency of adding cross-attention to the Transformer layers.
+ encoder_hidden_size (`int`, *optional*, defaults to 1408):
+ The hidden size of the hidden states for cross-attention.
+
+ Examples:
+
+ ```python
+ >>> from transformers import Blip2QFormerConfig, Blip2QFormerModel
+
+ >>> # Initializing a BLIP-2 Salesforce/blip2-opt-2.7b style configuration
+ >>> configuration = Blip2QFormerConfig()
+
+ >>> # Initializing a model (with random weights) from the Salesforce/blip2-opt-2.7b style configuration
+ >>> model = Blip2QFormerModel(configuration)
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "blip_2_qformer"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=0,
+ position_embedding_type="absolute",
+ cross_attention_frequency=2,
+ encoder_hidden_size=1408,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.cross_attention_frequency = cross_attention_frequency
+ self.encoder_hidden_size = encoder_hidden_size
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the qformer config dict if we are loading from Blip2Config
+ if config_dict.get("model_type") == "blip-2":
+ config_dict = config_dict["qformer_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class Blip2Config(PretrainedConfig):
+ r"""
+ [`Blip2Config`] is the configuration class to store the configuration of a [`Blip2ForConditionalGeneration`]. It is
+ used to instantiate a BLIP-2 model according to the specified arguments, defining the vision model, Q-Former model
+ and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to
+ that of the BLIP-2 [Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vision_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`Blip2VisionConfig`].
+ qformer_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`Blip2QFormerConfig`].
+ text_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize any [`PretrainedConfig`].
+ num_query_tokens (`int`, *optional*, defaults to 32):
+ The number of query tokens passed through the Transformer.
+
+ kwargs (*optional*):
+ Dictionary of keyword arguments.
+
+ Example:
+
+ ```python
+ >>> from transformers import (
+ ... Blip2VisionConfig,
+ ... Blip2QFormerConfig,
+ ... OPTConfig,
+ ... Blip2Config,
+ ... Blip2ForConditionalGeneration,
+ ... )
+
+ >>> # Initializing a Blip2Config with Salesforce/blip2-opt-2.7b style configuration
+ >>> configuration = Blip2Config()
+
+ >>> # Initializing a Blip2ForConditionalGeneration (with random weights) from the Salesforce/blip2-opt-2.7b style configuration
+ >>> model = Blip2ForConditionalGeneration(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+
+ >>> # We can also initialize a Blip2Config from a Blip2VisionConfig, Blip2QFormerConfig and any PretrainedConfig
+
+ >>> # Initializing BLIP-2 vision, BLIP-2 Q-Former and language model configurations
+ >>> vision_config = Blip2VisionConfig()
+ >>> qformer_config = Blip2QFormerConfig()
+ >>> text_config = OPTConfig()
+
+ >>> config = Blip2Config.from_text_vision_configs(vision_config, qformer_config, text_config)
+ ```"""
+
+ model_type = "blip-2"
+
+ def __init__(self, vision_config=None, qformer_config=None, text_config=None, num_query_tokens=32, **kwargs):
+ super().__init__(**kwargs)
+
+ if vision_config is None:
+ vision_config = {}
+ logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.")
+
+ if qformer_config is None:
+ qformer_config = {}
+ logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.")
+
+ if text_config is None:
+ text_config = {}
+ logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).")
+
+ self.vision_config = Blip2VisionConfig(**vision_config)
+ self.qformer_config = Blip2QFormerConfig(**qformer_config)
+ text_model_type = text_config["model_type"] if "model_type" in text_config else "opt"
+ self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
+
+ self.tie_word_embeddings = self.text_config.tie_word_embeddings
+ self.is_encoder_decoder = self.text_config.is_encoder_decoder
+
+ self.num_query_tokens = num_query_tokens
+ self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size
+ self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
+ self.initializer_factor = 1.0
+ self.initializer_range = 0.02
+
+ @classmethod
+ def from_vision_qformer_text_configs(
+ cls,
+ vision_config: Blip2VisionConfig,
+ qformer_config: Blip2QFormerConfig,
+ text_config: PretrainedConfig,
+ **kwargs,
+ ):
+ r"""
+ Instantiate a [`Blip2Config`] (or a derived class) from a BLIP-2 vision model, Q-Former and language model
+ configurations.
+
+ Returns:
+ [`Blip2Config`]: An instance of a configuration object
+ """
+
+ return cls(
+ vision_config=vision_config.to_dict(),
+ qformer_config=qformer_config.to_dict(),
+ text_config=text_config.to_dict(),
+ **kwargs,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2e6eceae53273ee91959028d62442f6d738b81e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py
@@ -0,0 +1,291 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Convert BLIP-2 checkpoints from the original repository.
+
+URL: https://github.com/salesforce/LAVIS/tree/main/projects/blip2
+"""
+
+import argparse
+
+import requests
+import torch
+
+# pip3 install salesforce-lavis
+# I'm actually installing a slightly modified version: pip3 install -U git+https://github.com/nielsrogge/LAVIS.git@blip2_float32
+# to make sure we can compare both original and HF implementation in float32
+from lavis.models import load_model_and_preprocess
+from PIL import Image
+
+from transformers import (
+ AutoTokenizer,
+ Blip2Config,
+ Blip2ForConditionalGeneration,
+ Blip2Processor,
+ Blip2VisionConfig,
+ BlipImageProcessor,
+ OPTConfig,
+ T5Config,
+ set_seed,
+)
+from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
+
+
+def load_demo_image():
+ url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png"
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
+
+ return image
+
+
+# here we list all keys to be renamed (original name on the left, our name on the right)
+def create_rename_keys(config):
+ rename_keys = []
+ # fmt: off
+
+ # vision encoder
+ rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding"))
+ rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding"))
+ rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight"))
+ rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias"))
+ rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight"))
+ rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias"))
+
+ for i in range(config.vision_config.num_hidden_layers):
+ rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight"))
+ rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias"))
+ rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight"))
+ rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias"))
+ rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight"))
+ rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",))
+ rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias"))
+ rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight"))
+ rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias"))
+ rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight"))
+ rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias"))
+
+ # QFormer
+ rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight"))
+ rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias"))
+
+ # fmt: on
+ return rename_keys
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+def read_in_q_v_bias(state_dict, config):
+ for i in range(config.vision_config.num_hidden_layers):
+ # read in original q and v biases
+ q_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias")
+ v_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias")
+
+ # next, set bias in the state dict
+ qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias))
+ state_dict[f"vision_model.encoder.layers.{i}.self_attn.qkv.bias"] = qkv_bias
+
+
+def get_blip2_config(model_name, eos_token_id):
+ image_size = 364 if "coco" in model_name else 224
+ vision_config = Blip2VisionConfig(image_size=image_size).to_dict()
+
+ # make sure the models have proper bos_token_id and eos_token_id set (important for generation)
+ # seems like flan-T5 models don't have bos_token_id properly set?
+ if "opt-2.7b" in model_name:
+ text_config = OPTConfig.from_pretrained("facebook/opt-2.7b", eos_token_id=eos_token_id).to_dict()
+ elif "opt-6.7b" in model_name:
+ text_config = OPTConfig.from_pretrained("facebook/opt-6.7b", eos_token_id=eos_token_id).to_dict()
+ elif "t5-xl" in model_name:
+ text_config = T5Config.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1).to_dict()
+ elif "t5-xxl" in model_name:
+ text_config = T5Config.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1).to_dict()
+
+ config = Blip2Config(vision_config=vision_config, text_config=text_config)
+
+ return config, image_size
+
+
+@torch.no_grad()
+def convert_blip2_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False):
+ """
+ Copy/paste/tweak model's weights to Transformers design.
+ """
+ tokenizer = (
+ AutoTokenizer.from_pretrained("facebook/opt-2.7b")
+ if "opt" in model_name
+ else AutoTokenizer.from_pretrained("google/flan-t5-xl")
+ )
+ eos_token_id = tokenizer("\n", add_special_tokens=False).input_ids[0]
+ config, image_size = get_blip2_config(model_name, eos_token_id=eos_token_id)
+
+ hf_model = Blip2ForConditionalGeneration(config).eval()
+
+ model_name_to_original = {
+ "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"),
+ "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"),
+ "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"),
+ "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"),
+ "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"),
+ "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"),
+ "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"),
+ }
+
+ name, type = model_name_to_original[model_name]
+
+ # note: this script is tested on 2 GPUs, as models are compared in float32,
+ # which requires quite some memory. Hence loading both on a
+ # separate device is the easiest to compare
+ hf_model_device = "cuda:0" if torch.cuda.is_available() else "cpu"
+ lavis_device = "cuda:1" if torch.cuda.is_available() else "cpu"
+
+ # load original model
+ print("Loading original model...")
+ original_model, vis_processors, _ = load_model_and_preprocess(
+ name=name, model_type=type, is_eval=True, device=lavis_device
+ )
+ original_model.eval()
+ print("Done!")
+
+ # update state dict keys
+ state_dict = original_model.state_dict()
+ rename_keys = create_rename_keys(config)
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+
+ # some keys can be renamed efficiently
+ for key, val in state_dict.copy().items():
+ val = state_dict.pop(key)
+ if key.startswith("Qformer.bert"):
+ key = key.replace("Qformer.bert", "qformer")
+ if "attention.self" in key:
+ key = key.replace("self", "attention")
+ if "opt_proj" in key:
+ key = key.replace("opt_proj", "language_projection")
+ if "t5_proj" in key:
+ key = key.replace("t5_proj", "language_projection")
+ if key.startswith("opt"):
+ key = key.replace("opt", "language")
+ if key.startswith("t5"):
+ key = key.replace("t5", "language")
+ state_dict[key] = val
+
+ # read in qv biases
+ read_in_q_v_bias(state_dict, config)
+
+ missing_keys, unexpected_keys = hf_model.load_state_dict(state_dict, strict=False)
+ assert len(missing_keys) == 0
+ assert unexpected_keys == ["qformer.embeddings.position_ids"]
+
+ image = load_demo_image()
+ original_pixel_values = vis_processors["eval"](image).unsqueeze(0).to(lavis_device)
+ input_ids = tokenizer(["\n"], return_tensors="pt").input_ids.to(hf_model_device)
+
+ # create processor
+ image_processor = BlipImageProcessor(
+ size={"height": image_size, "width": image_size}, image_mean=OPENAI_CLIP_MEAN, image_std=OPENAI_CLIP_STD
+ )
+ processor = Blip2Processor(image_processor=image_processor, tokenizer=tokenizer)
+ pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(hf_model_device)
+
+ # make sure processor creates exact same pixel values
+ assert torch.allclose(pixel_values, original_pixel_values.to(pixel_values.device))
+
+ original_model.to(lavis_device)
+ hf_model.to(hf_model_device)
+ with torch.no_grad():
+ if "opt" in model_name:
+ original_logits = original_model({"image": original_pixel_values, "text_input": [""]}).logits
+ logits = hf_model(pixel_values, input_ids).logits
+ else:
+ original_logits = original_model(
+ {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]}
+ ).logits
+ labels = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100)
+ logits = hf_model(pixel_values, input_ids, labels=labels).logits
+
+ assert original_logits.shape == logits.shape
+ print("First values of original logits:", original_logits[0, :3, :3])
+ print("First values of HF logits:", logits[0, :3, :3])
+
+ # assert values
+ assert torch.allclose(original_logits.to(logits.device), logits, atol=1e-4)
+ print("Looks ok!")
+
+ print("Generating a caption...")
+ prompt = "Question: what object is in this image? Answer:"
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(hf_model_device)
+
+ set_seed(42)
+
+ original_outputs = original_model.generate(
+ {"image": original_pixel_values, "prompt": prompt}, use_nucleus_sampling=True
+ )
+ outputs = hf_model.generate(
+ pixel_values,
+ input_ids,
+ do_sample=True,
+ num_beams=5,
+ max_length=30,
+ min_length=1,
+ top_p=0.9,
+ repetition_penalty=1.0,
+ length_penalty=1.0,
+ temperature=1,
+ )
+ output_text = processor.batch_decode(outputs, skip_special_tokens=True)
+ output_text = [text.strip() for text in output_text]
+ print("Original generation:", original_outputs)
+ print("HF generation:", output_text)
+
+ if pytorch_dump_folder_path is not None:
+ processor.save_pretrained(pytorch_dump_folder_path)
+ hf_model.save_pretrained(pytorch_dump_folder_path)
+
+ if push_to_hub:
+ processor.push_to_hub(f"nielsr/{model_name}")
+ hf_model.push_to_hub(f"nielsr/{model_name}")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ choices = [
+ "blip2-opt-2.7b",
+ "blip2-opt-6.7b",
+ "blip2-opt-2.7b-coco",
+ "blip2-opt-6.7b-coco",
+ "blip2-flan-t5-xl",
+ "blip2-flan-t5-xl-coco",
+ "blip2-flan-t5-xxl",
+ ]
+ parser.add_argument(
+ "--model_name",
+ default="blip2-opt-2.7b",
+ choices=choices,
+ type=str,
+ help="Path to hf config.json of model to convert",
+ )
+ parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
+ parser.add_argument(
+ "--push_to_hub",
+ action="store_true",
+ help="Whether to push the model and processor to the hub after converting",
+ )
+
+ args = parser.parse_args()
+
+ convert_blip2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/modeling_blip_2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/modeling_blip_2.py
new file mode 100644
index 0000000000000000000000000000000000000000..935e041eb8360d8e06987c9342d6394c637e4aa5
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/modeling_blip_2.py
@@ -0,0 +1,1853 @@
+# coding=utf-8
+# Copyright 2023 The Salesforce Authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch BLIP-2 model."""
+
+import math
+from dataclasses import dataclass
+from typing import Any, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPooling,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from ..auto import AutoModelForCausalLM, AutoModelForSeq2SeqLM
+from .configuration_blip_2 import Blip2Config, Blip2QFormerConfig, Blip2VisionConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "Salesforce/blip2-opt-2.7b"
+
+
+from ..deprecated._archive_maps import BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+class Blip2ForConditionalGenerationModelOutput(ModelOutput):
+ """
+ Class defining the outputs of [`Blip2ForConditionalGeneration`].
+
+ Args:
+ loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+ Language modeling loss from the language model.
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head of the language model.
+ vision_outputs (`BaseModelOutputWithPooling`):
+ Outputs of the vision encoder.
+ qformer_outputs (`BaseModelOutputWithPoolingAndCrossAttentions`):
+ Outputs of the Q-Former (Querying Transformer).
+ language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`):
+ Outputs of the language model.
+ """
+
+ loss: Optional[Tuple[torch.FloatTensor]] = None
+ logits: Optional[Tuple[torch.FloatTensor]] = None
+ vision_outputs: Optional[torch.FloatTensor] = None
+ qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None
+ language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None
+
+ def to_tuple(self) -> Tuple[Any]:
+ return tuple(
+ self[k]
+ if k not in ["vision_outputs", "qformer_outputs", "language_model_outputs"]
+ else getattr(self, k).to_tuple()
+ for k in self.keys()
+ )
+
+
+# Copied from transformers.models.blip.modeling_blip.BlipVisionEmbeddings with Blip->Blip2
+class Blip2VisionEmbeddings(nn.Module):
+ def __init__(self, config: Blip2VisionConfig):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.image_size = config.image_size
+ self.patch_size = config.patch_size
+
+ self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
+
+ self.patch_embedding = nn.Conv2d(
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
+ )
+
+ self.num_patches = (self.image_size // self.patch_size) ** 2
+ self.num_positions = self.num_patches + 1
+
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
+
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
+ batch_size = pixel_values.shape[0]
+ target_dtype = self.patch_embedding.weight.dtype
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
+
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
+ embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype)
+ return embeddings
+
+
+class Blip2Attention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {self.num_heads})."
+ )
+ self.scale = self.head_dim**-0.5
+ self.dropout = nn.Dropout(config.attention_dropout)
+
+ # small tweak here compared to CLIP, no bias here
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=False)
+
+ if config.qkv_bias:
+ q_bias = nn.Parameter(torch.zeros(self.embed_dim))
+ v_bias = nn.Parameter(torch.zeros(self.embed_dim))
+ else:
+ q_bias = None
+ v_bias = None
+
+ if q_bias is not None:
+ qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias))
+ self.qkv.bias = nn.Parameter(qkv_bias)
+
+ self.projection = nn.Linear(self.embed_dim, self.embed_dim)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ bsz, tgt_len, embed_dim = hidden_states.size()
+
+ mixed_qkv = self.qkv(hidden_states)
+
+ mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute(
+ 2, 0, 3, 1, 4
+ )
+ query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
+
+ attention_scores = attention_scores * self.scale
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
+
+ new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
+ context_layer = context_layer.reshape(new_context_layer_shape)
+
+ output = self.projection(context_layer)
+
+ outputs = (output, attention_probs) if output_attentions else (output, None)
+
+ return outputs
+
+
+# Copied from transformers.models.blip.modeling_blip.BlipMLP
+class Blip2MLP(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.activation_fn = ACT2FN[config.hidden_act]
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.activation_fn(hidden_states)
+ hidden_states = self.fc2(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.blip.modeling_blip.BlipEncoderLayer with Blip->Blip2
+class Blip2EncoderLayer(nn.Module):
+ def __init__(self, config: Blip2Config):
+ super().__init__()
+ self.embed_dim = config.hidden_size
+ self.self_attn = Blip2Attention(config)
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
+ self.mlp = Blip2MLP(config)
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: torch.Tensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ `(config.encoder_attention_heads,)`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+
+ hidden_states = self.layer_norm1(hidden_states)
+ hidden_states, attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ head_mask=attention_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = hidden_states + residual
+ residual = hidden_states
+ hidden_states = self.layer_norm2(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+
+ hidden_states = hidden_states + residual
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+class Blip2PreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = Blip2Config
+ base_model_prefix = "blip"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["Blip2Attention", "T5Block", "OPTDecoderLayer"]
+ _skip_keys_device_placement = "past_key_values"
+ _keep_in_fp32_modules = ["wo"]
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ factor = self.config.initializer_range
+ if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=factor)
+ if hasattr(module, "bias") and module.bias is not None:
+ module.bias.data.zero_()
+
+ if isinstance(module, Blip2VisionEmbeddings):
+ if hasattr(self.config, "vision_config"):
+ factor = self.config.vision_config.initializer_range
+ nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor)
+ nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor)
+
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, nn.Linear) and module.bias is not None:
+ module.bias.data.zero_()
+
+
+BLIP_2_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`Blip2Config`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BLIP_2_VISION_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for
+ details.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+BLIP_2_TEXT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
+ is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
+
+ To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
+ Training](./t5#training).
+ decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+BLIP_2_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for
+ details.
+
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of input sequence tokens in the vocabulary of the language model. Input tokens can optionally be
+ provided to serve as text prompt, which the language model can continue.
+
+ Indices can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary of the language model. Only relevant in case an
+ encoder-decoder language model (like T5) is used.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+
+ Only relevant in case an encoder-decoder language model (like T5) is used.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.blip.modeling_blip.BlipEncoder with Blip->Blip2
+class Blip2Encoder(nn.Module):
+ """
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
+ [`Blip2EncoderLayer`].
+
+ Args:
+ config (`Blip2Config`):
+ The corresponding vision configuration for the `Blip2Encoder`.
+ """
+
+ def __init__(self, config: Blip2Config):
+ super().__init__()
+ self.config = config
+ self.layers = nn.ModuleList([Blip2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ inputs_embeds,
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ r"""
+ Args:
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Embedded representation of the inputs. Should be float, not int tokens.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ hidden_states = inputs_embeds
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+# Copied from transformers.models.blip.modeling_blip.BlipVisionModel with Blip->Blip2, BLIP->BLIP_2
+class Blip2VisionModel(Blip2PreTrainedModel):
+ main_input_name = "pixel_values"
+ config_class = Blip2VisionConfig
+
+ def __init__(self, config: Blip2VisionConfig):
+ super().__init__(config)
+ self.config = config
+ embed_dim = config.hidden_size
+
+ self.embeddings = Blip2VisionEmbeddings(config)
+ self.encoder = Blip2Encoder(config)
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(BLIP_2_VISION_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Blip2VisionConfig)
+ def forward(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Returns:
+
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ hidden_states = self.embeddings(pixel_values)
+
+ encoder_outputs = self.encoder(
+ inputs_embeds=hidden_states,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_state = encoder_outputs[0]
+ last_hidden_state = self.post_layernorm(last_hidden_state)
+
+ pooled_output = last_hidden_state[:, 0, :]
+ pooled_output = self.post_layernorm(pooled_output)
+
+ if not return_dict:
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=last_hidden_state,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+ def get_input_embeddings(self):
+ return self.embeddings
+
+
+class Blip2QFormerMultiHeadAttention(nn.Module):
+ def __init__(self, config, is_cross_attention=False):
+ super().__init__()
+ self.config = config
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ "The hidden size (%d) is not a multiple of the number of attention heads (%d)"
+ % (config.hidden_size, config.num_attention_heads)
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ if is_cross_attention:
+ self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
+ else:
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+ self.save_attention = False
+
+ def save_attn_gradients(self, attn_gradients):
+ self.attn_gradients = attn_gradients
+
+ def get_attn_gradients(self):
+ return self.attn_gradients
+
+ def save_attention_map(self, attention_map):
+ self.attention_map = attention_map
+
+ def get_attention_map(self):
+ return self.attention_map
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ ):
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ mixed_query_layer = self.query(hidden_states)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ seq_length = hidden_states.size()[1]
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
+
+ if is_cross_attention and self.save_attention:
+ self.save_attention_map(attention_probs)
+ attention_probs.register_hook(self.save_attn_gradients)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs_dropped = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs_dropped = attention_probs_dropped * head_mask
+
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Blip2QFormer
+class Blip2QFormerSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class Blip2QFormerAttention(nn.Module):
+ def __init__(self, config, is_cross_attention=False):
+ super().__init__()
+ self.attention = Blip2QFormerMultiHeadAttention(config, is_cross_attention)
+ self.output = Blip2QFormerSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.attention.query = prune_linear_layer(self.attention.query, index)
+ self.attention.key = prune_linear_layer(self.attention.key, index)
+ self.attention.value = prune_linear_layer(self.attention.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Blip2QFormer
+class Blip2QFormerIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Blip2QFormer
+class Blip2QFormerOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class Blip2QFormerLayer(nn.Module):
+ def __init__(self, config, layer_idx):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = Blip2QFormerAttention(config)
+
+ self.layer_idx = layer_idx
+
+ if layer_idx % config.cross_attention_frequency == 0:
+ self.crossattention = Blip2QFormerAttention(config, is_cross_attention=True)
+ self.has_cross_attention = True
+ else:
+ self.has_cross_attention = False
+
+ self.intermediate_query = Blip2QFormerIntermediate(config)
+ self.output_query = Blip2QFormerOutput(config)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ query_length=0,
+ ):
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:-1]
+
+ present_key_value = self_attention_outputs[-1]
+
+ if query_length > 0:
+ query_attention_output = attention_output[:, :query_length, :]
+
+ if self.has_cross_attention:
+ if encoder_hidden_states is None:
+ raise ValueError("encoder_hidden_states must be given for cross-attention layers")
+ cross_attention_outputs = self.crossattention(
+ query_attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ output_attentions=output_attentions,
+ )
+ query_attention_output = cross_attention_outputs[0]
+ # add cross attentions if we output attention weights
+ outputs = outputs + cross_attention_outputs[1:-1]
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk_query,
+ self.chunk_size_feed_forward,
+ self.seq_len_dim,
+ query_attention_output,
+ )
+
+ if attention_output.shape[1] > query_length:
+ layer_output_text = apply_chunking_to_forward(
+ self.feed_forward_chunk,
+ self.chunk_size_feed_forward,
+ self.seq_len_dim,
+ attention_output[:, query_length:, :],
+ )
+ layer_output = torch.cat([layer_output, layer_output_text], dim=1)
+ else:
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk,
+ self.chunk_size_feed_forward,
+ self.seq_len_dim,
+ attention_output,
+ )
+ outputs = (layer_output,) + outputs
+
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+ def feed_forward_chunk_query(self, attention_output):
+ intermediate_output = self.intermediate_query(attention_output)
+ layer_output = self.output_query(intermediate_output, attention_output)
+ return layer_output
+
+
+class Blip2QFormerEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList(
+ [Blip2QFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
+ )
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_values=None,
+ use_cache=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ query_length=0,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions else None
+
+ next_decoder_cache = () if use_cache else None
+
+ for i in range(self.config.num_hidden_layers):
+ layer_module = self.layer[i]
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if getattr(self.config, "gradient_checkpointing", False) and self.training:
+ if use_cache:
+ logger.warning(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ query_length,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if layer_module.has_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class Blip2QFormerModel(Blip2PreTrainedModel):
+ """
+ Querying Transformer (Q-Former), used in BLIP-2.
+ """
+
+ def __init__(self, config: Blip2QFormerConfig):
+ super().__init__(config)
+ self.config = config
+
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ self.encoder = Blip2QFormerEncoder(config)
+
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ def get_extended_attention_mask(
+ self,
+ attention_mask: torch.Tensor,
+ input_shape: Tuple[int],
+ device: torch.device,
+ has_query: bool = False,
+ ) -> torch.Tensor:
+ """
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
+
+ Arguments:
+ attention_mask (`torch.Tensor`):
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
+ input_shape (`Tuple[int]`):
+ The shape of the input to the model.
+ device (`torch.device`):
+ The device of the input to the model.
+
+ Returns:
+ `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
+ """
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ if attention_mask.dim() == 3:
+ extended_attention_mask = attention_mask[:, None, :, :]
+ elif attention_mask.dim() == 2:
+ # Provided a padding mask of dimensions [batch_size, seq_length]
+ # - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ extended_attention_mask = attention_mask[:, None, None, :]
+ else:
+ raise ValueError(
+ "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
+ input_shape, attention_mask.shape
+ )
+ )
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
+ return extended_attention_mask
+
+ def forward(
+ self,
+ query_embeds: torch.FloatTensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of:
+ shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and
+ value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are
+ used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key
+ value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape
+ `(batch_size, sequence_length)`.
+ use_cache (`bool`, `optional`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # past_key_values_length
+ past_key_values_length = (
+ past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0
+ )
+
+ query_length = query_embeds.shape[1] if query_embeds is not None else 0
+
+ embedding_output = self.layernorm(query_embeds)
+ embedding_output = self.dropout(embedding_output)
+
+ input_shape = embedding_output.size()[:-1]
+ batch_size, seq_length = input_shape
+ device = embedding_output.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if encoder_hidden_states is not None:
+ if isinstance(encoder_hidden_states, list):
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
+ else:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+
+ if isinstance(encoder_attention_mask, list):
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
+ elif encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ query_length=query_length,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = sequence_output[:, 0, :]
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ BLIP-2 Model for generating text and image features. The model consists of a vision encoder, Querying Transformer
+ (Q-Former) and a language model.
+ """,
+ BLIP_2_START_DOCSTRING,
+)
+class Blip2Model(Blip2PreTrainedModel):
+ config_class = Blip2Config
+ main_input_name = "pixel_values"
+
+ def __init__(self, config: Blip2Config):
+ super().__init__(config)
+
+ self.vision_model = Blip2VisionModel(config.vision_config)
+
+ self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size))
+ self.qformer = Blip2QFormerModel(config.qformer_config)
+
+ self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size)
+ if config.use_decoder_only_language_model:
+ language_model = AutoModelForCausalLM.from_config(config.text_config)
+ else:
+ language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
+
+ # Update _tied_weights_keys using the base model used.
+ if language_model._tied_weights_keys is not None:
+ self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
+
+ self.language_model = language_model
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.language_model.get_input_embeddings()
+
+ def set_input_embeddings(self, value):
+ self.language_model.set_input_embeddings(value)
+
+ def set_output_embeddings(self, new_embeddings):
+ self.language_model.set_output_embeddings(new_embeddings)
+
+ def get_output_embeddings(self) -> nn.Module:
+ return self.language_model.get_output_embeddings()
+
+ def get_encoder(self):
+ return self.language_model.get_encoder()
+
+ def get_decoder(self):
+ return self.language_model.get_decoder()
+
+ def _tie_weights(self):
+ if not self.config.use_decoder_only_language_model:
+ self.language_model.encoder.embed_tokens = self.language_model.shared
+ self.language_model.decoder.embed_tokens = self.language_model.shared
+
+ @add_start_docstrings_to_model_forward(BLIP_2_TEXT_INPUTS_DOCSTRING)
+ def get_text_features(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.Tensor] = None,
+ decoder_attention_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ r"""
+ Returns:
+ text_outputs (`CausalLMOutputWithPast`, or `tuple(torch.FloatTensor)` if `return_dict=False`):
+ The language model outputs. If `return_dict=True`, the output is a [`CausalLMOutputWithPast`] that
+ contains the language model logits, the past key values and the hidden states if
+ `output_hidden_states=True`.
+ Examples:
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, Blip2Model
+
+ >>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b")
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/blip2-opt-2.7b")
+ >>> inputs = tokenizer(["a photo of a cat"], padding=True, return_tensors="pt")
+ >>> text_features = model.get_text_features(**inputs)
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.use_decoder_only_language_model:
+ text_outputs = self.language_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ else:
+ inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
+
+ text_outputs = self.language_model(
+ inputs_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ labels=labels,
+ )
+
+ return text_outputs
+
+ @add_start_docstrings_to_model_forward(BLIP_2_VISION_INPUTS_DOCSTRING)
+ def get_image_features(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ r"""
+ Returns:
+ vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`):
+ The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that
+ contains the image features, the pooled image features and the hidden states if
+ `output_hidden_states=True`.
+ Examples:
+ ```python
+ >>> import torch
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, Blip2Model
+
+ >>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b")
+
+ >>> processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ >>> inputs = processor(images=image, return_tensors="pt")
+ >>> image_outputs = model.get_image_features(**inputs)
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ return vision_outputs
+
+ @add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING)
+ def get_qformer_features(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ r"""
+ Returns:
+ vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`):
+ The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that
+ contains the image features, the pooled image features and the hidden states if
+ `output_hidden_states=True`.
+ Examples:
+ ```python
+ >>> import torch
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import Blip2Processor, Blip2Model
+
+ >>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
+ >>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ >>> inputs = processor(images=image, return_tensors="pt")
+ >>> qformer_outputs = model.get_qformer_features(**inputs)
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ image_embeds = vision_outputs[0]
+
+ # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
+ image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
+
+ query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
+ query_outputs = self.qformer(
+ query_embeds=query_tokens,
+ encoder_hidden_states=image_embeds,
+ encoder_attention_mask=image_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ return query_outputs
+
+ @add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Blip2ForConditionalGenerationModelOutput, config_class=Blip2VisionConfig)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ input_ids: torch.FloatTensor,
+ attention_mask: Optional[torch.LongTensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ labels: Optional[torch.LongTensor] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import Blip2Processor, Blip2Model
+ >>> import torch
+
+ >>> device = "cuda" if torch.cuda.is_available() else "cpu"
+
+ >>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
+ >>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
+ >>> model.to(device) # doctest: +IGNORE_RESULT
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> prompt = "Question: how many cats are there? Answer:"
+ >>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
+
+ >>> outputs = model(**inputs)
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # step 1: forward the images through the vision encoder,
+ # to get image embeddings of shape (batch_size, seq_len, hidden_size)
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ image_embeds = vision_outputs[0]
+
+ # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
+ image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
+
+ query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
+ query_outputs = self.qformer(
+ query_embeds=query_tokens,
+ encoder_hidden_states=image_embeds,
+ encoder_attention_mask=image_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ query_output = query_outputs[0]
+
+ # step 3: use the language model, conditioned on the query outputs and the prompt
+ language_model_inputs = self.language_projection(query_output)
+ language_model_attention_mask = torch.ones(
+ language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
+ )
+ inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
+ inputs_embeds = torch.cat([language_model_inputs, inputs_embeds], dim=1)
+
+ if attention_mask is None:
+ attention_mask = torch.ones_like(input_ids)
+ expected_device = language_model_attention_mask.device
+ attention_mask = torch.cat([language_model_attention_mask, attention_mask.to(expected_device)], dim=1)
+
+ if self.config.use_decoder_only_language_model:
+ outputs = self.language_model(
+ inputs_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ logits = outputs.logits if return_dict else outputs[0]
+ loss = None
+ # we compute the loss here since we need to take into account the sequence length of the query embeds
+ if labels is not None:
+ labels = labels.to(logits.device)
+ logits = logits[:, -labels.size(1) :, :]
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous().to(logits.device)
+
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss(reduction="mean")
+
+ loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1))
+ else:
+ outputs = self.language_model(
+ inputs_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ labels=labels,
+ )
+ loss = outputs.loss if return_dict else outputs[0]
+ logits = outputs.logits if return_dict else outputs[1]
+
+ if not return_dict:
+ output = (logits, vision_outputs, query_outputs, outputs)
+ return ((loss,) + output) if loss is not None else output
+
+ return Blip2ForConditionalGenerationModelOutput(
+ loss=loss,
+ logits=logits,
+ vision_outputs=vision_outputs,
+ qformer_outputs=query_outputs,
+ language_model_outputs=outputs,
+ )
+
+
+@add_start_docstrings(
+ """
+ BLIP-2 Model for generating text given an image and an optional text prompt. The model consists of a vision
+ encoder, Querying Transformer (Q-Former) and a language model.
+
+ One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the language model continue
+ the prompt. Otherwise, the language model starts generating text from the [BOS] (beginning-of-sequence) token.
+
+
+
+ Note that Flan-T5 checkpoints cannot be cast to float16. They are pre-trained using bfloat16.
+
+
+ """,
+ BLIP_2_START_DOCSTRING,
+)
+class Blip2ForConditionalGeneration(Blip2PreTrainedModel):
+ config_class = Blip2Config
+ main_input_name = "pixel_values"
+
+ def __init__(self, config: Blip2Config):
+ super().__init__(config)
+
+ self.vision_model = Blip2VisionModel(config.vision_config)
+
+ self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size))
+ self.qformer = Blip2QFormerModel(config.qformer_config)
+
+ self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size)
+ if config.use_decoder_only_language_model:
+ language_model = AutoModelForCausalLM.from_config(config.text_config)
+ else:
+ language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
+
+ # Update _tied_weights_keys using the base model used.
+ if language_model._tied_weights_keys is not None:
+ self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
+
+ self.language_model = language_model
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.language_model.get_input_embeddings()
+
+ def set_input_embeddings(self, value):
+ self.language_model.set_input_embeddings(value)
+
+ def set_output_embeddings(self, new_embeddings):
+ self.language_model.set_output_embeddings(new_embeddings)
+
+ def get_output_embeddings(self) -> nn.Module:
+ return self.language_model.get_output_embeddings()
+
+ def get_encoder(self):
+ return self.language_model.get_encoder()
+
+ def get_decoder(self):
+ return self.language_model.get_decoder()
+
+ def _tie_weights(self):
+ if not self.config.use_decoder_only_language_model:
+ self.language_model.encoder.embed_tokens = self.language_model.shared
+ self.language_model.decoder.embed_tokens = self.language_model.shared
+
+ def _preprocess_accelerate(self):
+ r"""
+ Some pre-processing hacks to make the model `accelerate` compatible. Check
+ https://github.com/huggingface/transformers/pull/21707 for more details.
+ """
+ hf_device_map = self.hf_device_map
+
+ if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1:
+ # warn users about unexpected behavior when using multi-GPU + BLIP-2 + `accelerate`.
+ logger.warning(
+ "The `language_model` is not in the `hf_device_map` dictionary and you are running your script"
+ " in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`."
+ " Please pass a `device_map` that contains `language_model` to remove this warning."
+ " Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for"
+ " more details on creating a `device_map` for large models.",
+ )
+
+ if hasattr(self.language_model, "_hf_hook"):
+ self.language_model._hf_hook.io_same_device = True # For `generate` compatibility
+
+ @add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Blip2ForConditionalGenerationModelOutput, config_class=Blip2VisionConfig)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ input_ids: torch.FloatTensor,
+ attention_mask: Optional[torch.LongTensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ labels: Optional[torch.LongTensor] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ Prepare processor, model and image input
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import Blip2Processor, Blip2ForConditionalGeneration
+ >>> import torch
+
+ >>> device = "cuda" if torch.cuda.is_available() else "cpu"
+
+ >>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
+ >>> model = Blip2ForConditionalGeneration.from_pretrained(
+ ... "Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16
+ ... ) # doctest: +IGNORE_RESULT
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ ```
+
+ Image captioning (without providing a text prompt):
+
+ ```python
+ >>> inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
+
+ >>> generated_ids = model.generate(**inputs)
+ >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
+ >>> print(generated_text)
+ two cats laying on a couch
+ ```
+
+ Visual question answering (prompt = question):
+
+ ```python
+ >>> prompt = "Question: how many cats are there? Answer:"
+ >>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device="cuda", dtype=torch.float16)
+
+ >>> generated_ids = model.generate(**inputs)
+ >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
+ >>> print(generated_text)
+ two
+ ```
+
+ Note that int8 inference is also supported through [bitsandbytes](https://github.com/TimDettmers/bitsandbytes).
+ This greatly reduces the amount of memory used by the model while maintaining the same performance.
+
+ ```python
+ >>> model = Blip2ForConditionalGeneration.from_pretrained(
+ ... "Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.bfloat16
+ ... ) # doctest: +IGNORE_RESULT
+
+ >>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device="cuda", dtype=torch.bfloat16)
+
+ >>> generated_ids = model.generate(**inputs)
+ >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
+ >>> print(generated_text)
+ two
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # step 1: forward the images through the vision encoder,
+ # to get image embeddings of shape (batch_size, seq_len, hidden_size)
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ image_embeds = vision_outputs[0]
+
+ # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
+ image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
+
+ query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
+ query_outputs = self.qformer(
+ query_embeds=query_tokens,
+ encoder_hidden_states=image_embeds,
+ encoder_attention_mask=image_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ query_output = query_outputs[0]
+
+ # step 3: use the language model, conditioned on the query outputs and the prompt
+ language_model_inputs = self.language_projection(query_output)
+ language_model_attention_mask = torch.ones(
+ language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
+ )
+ inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
+ inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)
+
+ if attention_mask is None:
+ attention_mask = torch.ones_like(input_ids)
+ expected_device = language_model_attention_mask.device
+ attention_mask = torch.cat([language_model_attention_mask, attention_mask.to(expected_device)], dim=1)
+
+ if self.config.use_decoder_only_language_model:
+ outputs = self.language_model(
+ inputs_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ logits = outputs.logits if return_dict else outputs[0]
+ loss = None
+ # we compute the loss here since we need to take into account the sequence length of the query embeds
+ if labels is not None:
+ labels = labels.to(logits.device)
+ logits = logits[:, -labels.size(1) :, :]
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous().to(logits.device)
+
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss(reduction="mean")
+
+ loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1))
+ else:
+ outputs = self.language_model(
+ inputs_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ labels=labels,
+ )
+ loss = outputs.loss if return_dict else outputs[0]
+ logits = outputs.logits if return_dict else outputs[1]
+
+ if not return_dict:
+ output = (logits, vision_outputs, query_outputs, outputs)
+ return ((loss,) + output) if loss is not None else output
+
+ return Blip2ForConditionalGenerationModelOutput(
+ loss=loss,
+ logits=logits,
+ vision_outputs=vision_outputs,
+ qformer_outputs=query_outputs,
+ language_model_outputs=outputs,
+ )
+
+ @torch.no_grad()
+ def generate(
+ self,
+ pixel_values: torch.FloatTensor,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ **generate_kwargs,
+ ) -> torch.LongTensor:
+ """
+ Overrides `generate` function to be able to use the model as a conditional generator.
+
+ Args:
+ pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)):
+ Input images to be processed.
+ input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
+ The sequence used as a prompt for the generation.
+ attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
+ Mask to avoid performing attention on padding token indices
+
+ Returns:
+ captions (list): A list of strings of length batch_size * num_captions.
+ """
+ if hasattr(self, "hf_device_map"):
+ # preprocess for `accelerate`
+ self._preprocess_accelerate()
+
+ batch_size = pixel_values.shape[0]
+ image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state
+ image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
+
+ query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
+ query_outputs = self.qformer(
+ query_embeds=query_tokens,
+ encoder_hidden_states=image_embeds,
+ encoder_attention_mask=image_attention_mask,
+ return_dict=True,
+ )
+ query_output = query_outputs.last_hidden_state
+
+ language_model_inputs = self.language_projection(query_output)
+ language_attention_mask = torch.ones(
+ language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
+ )
+ if input_ids is None:
+ input_ids = (
+ torch.LongTensor([[self.config.text_config.bos_token_id]])
+ .repeat(batch_size, 1)
+ .to(image_embeds.device)
+ )
+ if attention_mask is None:
+ attention_mask = torch.ones_like(input_ids)
+ attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1)
+
+ # concatenate query embeddings with prompt embeddings
+ inputs_embeds = self.get_input_embeddings()(input_ids)
+ inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)
+
+ # add image_embeds length to max_length, so that the final max_length in counted only on token embeds
+ # -1 is to account for the prepended BOS after `generate.`
+ # TODO (joao, raushan): refactor `generate` to avoid these operations with VLMs
+ if not self.language_model.config.is_encoder_decoder:
+ generate_kwargs["max_length"] = generate_kwargs.get("max_length", 20) + language_model_inputs.shape[1] - 1
+ generate_kwargs["min_length"] = generate_kwargs.get("min_length", 0) + language_model_inputs.shape[1]
+
+ outputs = self.language_model.generate(
+ inputs_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ **generate_kwargs,
+ )
+
+ # this is a temporary workaround to be consistent with other generation models and
+ # have BOS as the first token, even though under the hood we are calling LM with embeds
+ if not self.language_model.config.is_encoder_decoder:
+ bos_tokens = (
+ torch.LongTensor([[self.config.text_config.bos_token_id]])
+ .repeat(batch_size, 1)
+ .to(image_embeds.device)
+ )
+ if not isinstance(outputs, torch.Tensor):
+ outputs.sequences = torch.cat([bos_tokens, outputs.sequences], dim=-1)
+ else:
+ outputs = torch.cat([bos_tokens, outputs], dim=-1)
+ return outputs
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/processing_blip_2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/processing_blip_2.py
new file mode 100644
index 0000000000000000000000000000000000000000..ff7044c82aedb65ad1fad3e083ba2e208c29ed1e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/processing_blip_2.py
@@ -0,0 +1,155 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Processor class for BLIP-2.
+"""
+
+from typing import List, Optional, Union
+
+from ...image_utils import ImageInput
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
+from ...utils import TensorType
+
+
+class Blip2Processor(ProcessorMixin):
+ r"""
+ Constructs a BLIP-2 processor which wraps a BLIP image processor and an OPT/T5 tokenizer into a single processor.
+
+ [`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`AutoTokenizer`]. See the docstring
+ of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.
+
+ Args:
+ image_processor (`BlipImageProcessor`):
+ An instance of [`BlipImageProcessor`]. The image processor is a required input.
+ tokenizer (`AutoTokenizer`):
+ An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
+ """
+
+ attributes = ["image_processor", "tokenizer"]
+ image_processor_class = "BlipImageProcessor"
+ tokenizer_class = "AutoTokenizer"
+
+ # Copied from transformers.models.blip.processing_blip.BlipProcessor.__init__
+ def __init__(self, image_processor, tokenizer):
+ tokenizer.return_token_type_ids = False
+ super().__init__(image_processor, tokenizer)
+ self.current_processor = self.image_processor
+
+ # Copied from transformers.models.blip.processing_blip.BlipProcessor.__call__
+ def __call__(
+ self,
+ images: ImageInput = None,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_token_type_ids: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
+ [`BertTokenizerFast.__call__`] to prepare text for the model.
+
+ Please refer to the docstring of the above two methods for more information.
+ """
+ if images is None and text is None:
+ raise ValueError("You have to specify either images or text.")
+
+ # Get only text
+ if images is None:
+ self.current_processor = self.tokenizer
+ text_encoding = self.tokenizer(
+ text=text,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_token_type_ids=return_token_type_ids,
+ return_length=return_length,
+ verbose=verbose,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+ return text_encoding
+
+ # add pixel_values
+ encoding_image_processor = self.image_processor(images, return_tensors=return_tensors)
+
+ if text is not None:
+ text_encoding = self.tokenizer(
+ text=text,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_token_type_ids=return_token_type_ids,
+ return_length=return_length,
+ verbose=verbose,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+ else:
+ text_encoding = None
+
+ if text_encoding is not None:
+ encoding_image_processor.update(text_encoding)
+
+ return encoding_image_processor
+
+ # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
+ the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ image_processor_input_names = self.image_processor.model_input_names
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/configuration_jukebox.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/configuration_jukebox.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..741fe9a131e57e8f2532f0b8cdf7b368375dba61
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/configuration_jukebox.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/modeling_jukebox.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/modeling_jukebox.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0fb6863ed67b18b42af75eaaf9baf6774f1cb741
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/modeling_jukebox.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8b395b31d8be19c169cf0f535b0aabc9798dbd6b
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__init__.py
@@ -0,0 +1,86 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
+
+
+_import_structure = {
+ "configuration_pix2struct": [
+ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "Pix2StructConfig",
+ "Pix2StructTextConfig",
+ "Pix2StructVisionConfig",
+ ],
+ "processing_pix2struct": ["Pix2StructProcessor"],
+}
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["image_processing_pix2struct"] = ["Pix2StructImageProcessor"]
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_pix2struct"] = [
+ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "Pix2StructPreTrainedModel",
+ "Pix2StructForConditionalGeneration",
+ "Pix2StructVisionModel",
+ "Pix2StructTextModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_pix2struct import (
+ PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ Pix2StructConfig,
+ Pix2StructTextConfig,
+ Pix2StructVisionConfig,
+ )
+ from .processing_pix2struct import Pix2StructProcessor
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .image_processing_pix2struct import Pix2StructImageProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_pix2struct import (
+ PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ Pix2StructForConditionalGeneration,
+ Pix2StructPreTrainedModel,
+ Pix2StructTextModel,
+ Pix2StructVisionModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..67d762adba711b7055b594a6e57471c0a2795364
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/configuration_pix2struct.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/configuration_pix2struct.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1a3881011036f75ee7dcb7e42be8af4b5ae5fc8b
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/configuration_pix2struct.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/image_processing_pix2struct.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/image_processing_pix2struct.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..018bfc3ec1a00cb6b51be1a62a812097caa47550
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/image_processing_pix2struct.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/modeling_pix2struct.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/modeling_pix2struct.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6c927e08c5387e997608cad6ae26b4b9b61eddca
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/modeling_pix2struct.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/processing_pix2struct.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/processing_pix2struct.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..85561029e692529b59207d4828c58f985182be2c
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/processing_pix2struct.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/configuration_pix2struct.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/configuration_pix2struct.py
new file mode 100644
index 0000000000000000000000000000000000000000..12bf998d58c00a46a651e5ff5b06d19364253ecf
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/configuration_pix2struct.py
@@ -0,0 +1,387 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Pix2Struct model configuration"""
+
+import os
+from typing import Union
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class Pix2StructTextConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate
+ a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by
+ the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50244):
+ Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be
+ represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ d_kv (`int`, *optional*, defaults to 64):
+ Dimensionality of the key, query, value projections in each attention head.
+ d_ff (`int`, *optional*, defaults to 2048):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ num_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ relative_attention_num_buckets (`int`, *optional*, defaults to 32):
+ The number of buckets to use for each attention layer.
+ relative_attention_max_distance (`int`, *optional*, defaults to 128):
+ The maximum distance of the longer sequences for the bucket separation.
+ dropout_rate (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
+ The epsilon used by the layer normalization layers.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
+ testing).
+ dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`):
+ The non-linear activation function (function or string).
+ decoder_start_token_id (`int`, *optional*, defaults to 0):
+ The id of the `decoder_start_token_id` token.
+ use_cache (`bool`, *optional*, defaults to `False`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ pad_token_id (`int`, *optional*, defaults to 0):
+ The id of the `padding` token.
+ eos_token_id (`int`, *optional*, defaults to 1):
+ The id of the `end-of-sequence` token.
+
+ Example:
+
+ ```python
+ >>> from transformers import Pix2StructTextConfig, Pix2StructTextModel
+
+ >>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration
+ >>> configuration = Pix2StructTextConfig()
+
+ >>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration
+ >>> model = Pix2StructTextModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "pix2struct_text_model"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ attribute_map = {
+ "hidden_size": "hidden_size",
+ "num_attention_heads": "num_heads",
+ "num_hidden_layers": "num_layers",
+ }
+
+ def __init__(
+ self,
+ vocab_size=50244,
+ hidden_size=768,
+ d_kv=64,
+ d_ff=2048,
+ num_layers=12,
+ num_heads=12,
+ relative_attention_num_buckets=32,
+ relative_attention_max_distance=128,
+ dropout_rate=0.1,
+ layer_norm_epsilon=1e-6,
+ initializer_factor=1.0,
+ dense_act_fn="gelu_new",
+ decoder_start_token_id=0,
+ use_cache=False,
+ pad_token_id=0,
+ eos_token_id=1,
+ tie_word_embeddings=False,
+ is_decoder=True,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.d_kv = d_kv
+ self.d_ff = d_ff
+ self.num_layers = num_layers
+ self.num_heads = num_heads
+ self.relative_attention_num_buckets = relative_attention_num_buckets
+ self.relative_attention_max_distance = relative_attention_max_distance
+ self.dropout_rate = dropout_rate
+ self.layer_norm_epsilon = layer_norm_epsilon
+ self.initializer_factor = initializer_factor
+ self.use_cache = use_cache
+
+ self.eos_token_id = eos_token_id
+ self.decoder_start_token_id = decoder_start_token_id
+
+ # for backwards compatibility
+ self.dense_act_fn = dense_act_fn
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ eos_token_id=eos_token_id,
+ decoder_start_token_id=decoder_start_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ is_decoder=is_decoder,
+ **kwargs,
+ )
+
+ @classmethod
+ def from_pretrained(
+ cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs
+ ) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs)
+
+ # get the text config dict if we are loading from Pix2StructConfig
+ if config_dict.get("model_type") == "pix2struct":
+ config_dict = config_dict["text_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class Pix2StructVisionConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to
+ instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base
+ [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ patch_embed_hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the input patch_embedding layer in the Transformer encoder.
+ d_ff (`int`, *optional*, defaults to 2048):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ d_kv (`int`, *optional*, defaults to 64):
+ Dimensionality of the key, query, value projections per attention head.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the layer normalization layers.
+ dropout_rate (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 1e-10):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
+ testing).
+ seq_len (`int`, *optional*, defaults to 4096):
+ Maximum sequence length (here number of patches) supported by the model.
+ relative_attention_num_buckets (`int`, *optional*, defaults to 32):
+ The number of buckets to use for each attention layer.
+ relative_attention_max_distance (`int`, *optional*, defaults to 128):
+ The maximum distance (in tokens) to use for each attention layer.
+
+ Example:
+
+ ```python
+ >>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel
+
+ >>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration
+ >>> configuration = Pix2StructVisionConfig()
+
+ >>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration
+ >>> model = Pix2StructVisionModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "pix2struct_vision_model"
+
+ def __init__(
+ self,
+ hidden_size=768,
+ patch_embed_hidden_size=768,
+ d_ff=2048,
+ d_kv=64,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ dense_act_fn="gelu_new",
+ layer_norm_eps=1e-6,
+ dropout_rate=0.0,
+ attention_dropout=0.0,
+ initializer_range=1e-10,
+ initializer_factor=1.0,
+ seq_len=4096,
+ relative_attention_num_buckets=32,
+ relative_attention_max_distance=128,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.hidden_size = hidden_size
+ self.patch_embed_hidden_size = patch_embed_hidden_size
+ self.d_ff = d_ff
+ self.dropout_rate = dropout_rate
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.initializer_range = initializer_range
+ self.initializer_factor = initializer_factor
+ self.attention_dropout = attention_dropout
+ self.layer_norm_eps = layer_norm_eps
+ self.dense_act_fn = dense_act_fn
+ self.seq_len = seq_len
+ self.relative_attention_num_buckets = relative_attention_num_buckets
+ self.relative_attention_max_distance = relative_attention_max_distance
+ self.d_kv = d_kv
+
+ @classmethod
+ def from_pretrained(
+ cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs
+ ) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs)
+
+ # get the vision config dict if we are loading from Pix2StructConfig
+ if config_dict.get("model_type") == "pix2struct":
+ config_dict = config_dict["vision_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class Pix2StructConfig(PretrainedConfig):
+ r"""
+ [`Pix2StructConfig`] is the configuration class to store the configuration of a
+ [`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified
+ arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will
+ yield a similar configuration to that of the Pix2Struct-base
+ [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ text_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`Pix2StructTextConfig`].
+ vision_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`].
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ Factor to multiply the initialization range with.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ is_vqa (`bool`, *optional*, defaults to `False`):
+ Whether the model has been fine-tuned for VQA or not.
+ kwargs (*optional*):
+ Dictionary of keyword arguments.
+
+ Example:
+
+ ```python
+ >>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration
+
+ >>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration
+ >>> configuration = Pix2StructConfig()
+
+ >>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration
+ >>> model = Pix2StructForConditionalGeneration(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+
+ >>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig
+
+ >>> # Initializing a Pix2Struct text and Pix2Struct vision configuration
+ >>> config_text = Pix2StructTextConfig()
+ >>> config_vision = Pix2StructVisionConfig()
+
+ >>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision)
+ ```"""
+
+ model_type = "pix2struct"
+
+ def __init__(
+ self,
+ text_config=None,
+ vision_config=None,
+ initializer_factor=1.0,
+ initializer_range=0.02,
+ is_vqa=False,
+ tie_word_embeddings=False,
+ is_encoder_decoder=True,
+ **kwargs,
+ ):
+ super().__init__(tie_word_embeddings=tie_word_embeddings, is_encoder_decoder=is_encoder_decoder, **kwargs)
+
+ if text_config is None:
+ text_config = {}
+ logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values.")
+
+ if vision_config is None:
+ vision_config = {}
+ logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.")
+
+ self.text_config = Pix2StructTextConfig(**text_config)
+ self.vision_config = Pix2StructVisionConfig(**vision_config)
+
+ self.decoder_start_token_id = self.text_config.decoder_start_token_id
+ self.pad_token_id = self.text_config.pad_token_id
+ self.eos_token_id = self.text_config.eos_token_id
+
+ self.initializer_factor = initializer_factor
+ self.initializer_range = initializer_range
+
+ self.text_config.initializer_range = self.initializer_range
+ self.vision_config.initializer_range = self.initializer_range
+
+ self.is_vqa = is_vqa
+
+ @classmethod
+ def from_text_vision_configs(
+ cls, text_config: Pix2StructTextConfig, vision_config: Pix2StructVisionConfig, **kwargs
+ ):
+ r"""
+ Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct
+ vision model configuration.
+
+ Returns:
+ [`Pix2StructConfig`]: An instance of a configuration object
+ """
+
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..457c2236694ad1367fada658a10905400e537da1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py
@@ -0,0 +1,155 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import argparse
+import os
+import re
+
+import torch
+from flax.traverse_util import flatten_dict
+from t5x import checkpoints
+
+from transformers import (
+ AutoTokenizer,
+ Pix2StructConfig,
+ Pix2StructForConditionalGeneration,
+ Pix2StructImageProcessor,
+ Pix2StructProcessor,
+ Pix2StructTextConfig,
+ Pix2StructVisionConfig,
+)
+
+
+def get_flax_param(t5x_checkpoint_path):
+ flax_params = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
+ flax_params = flatten_dict(flax_params)
+ return flax_params
+
+
+def rename_and_convert_flax_params(flax_dict):
+ converted_dict = {}
+
+ CONVERSION_MAPPING = {
+ "token_embedder": "embeddings",
+ "encoder_norm": "layernorm",
+ "kernel": "weight",
+ ".out": ".output",
+ "scale": "weight",
+ "embedders_0.pos_embedding": "row_embedder.weight",
+ "embedders_1.pos_embedding": "column_embedder.weight",
+ }
+
+ DECODER_CONVERSION_MAPPING = {
+ "query": "attention.query",
+ "key": "attention.key",
+ "value": "attention.value",
+ "output.dense": "output",
+ "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o",
+ "pre_self_attention_layer_norm": "self_attention.layer_norm",
+ "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm",
+ "mlp.": "mlp.DenseReluDense.",
+ "pre_mlp_layer_norm": "mlp.layer_norm",
+ "self_attention.o": "self_attention.attention.o",
+ "decoder.embeddings.embedding": "decoder.embed_tokens.weight",
+ "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight",
+ "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight",
+ "decoder.logits_dense.weight": "decoder.lm_head.weight",
+ }
+
+ for key in flax_dict.keys():
+ if "target" in key:
+ # remove the first prefix from the key
+ new_key = ".".join(key[1:])
+
+ # rename the key
+ for old, new in CONVERSION_MAPPING.items():
+ new_key = new_key.replace(old, new)
+
+ if "decoder" in new_key:
+ for old, new in DECODER_CONVERSION_MAPPING.items():
+ new_key = new_key.replace(old, new)
+
+ if "layers" in new_key and "decoder" not in new_key:
+ # use regex to replace the layer number
+ new_key = re.sub(r"layers_(\d+)", r"layer.\1", new_key)
+ new_key = new_key.replace("encoder", "encoder.encoder")
+
+ elif "layers" in new_key and "decoder" in new_key:
+ # use regex to replace the layer number
+ new_key = re.sub(r"layers_(\d+)", r"layer.\1", new_key)
+
+ converted_dict[new_key] = flax_dict[key]
+
+ converted_torch_dict = {}
+ # convert converted_dict into torch format
+ for key in converted_dict.keys():
+ if ("embed_tokens" not in key) and ("embedder" not in key):
+ converted_torch_dict[key] = torch.from_numpy(converted_dict[key].T)
+ else:
+ converted_torch_dict[key] = torch.from_numpy(converted_dict[key])
+
+ return converted_torch_dict
+
+
+def convert_pix2struct_original_pytorch_checkpoint_to_hf(
+ t5x_checkpoint_path, pytorch_dump_folder_path, use_large=False, is_vqa=False
+):
+ flax_params = get_flax_param(t5x_checkpoint_path)
+
+ if not use_large:
+ encoder_config = Pix2StructVisionConfig()
+ decoder_config = Pix2StructTextConfig()
+ else:
+ encoder_config = Pix2StructVisionConfig(
+ hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18
+ )
+ decoder_config = Pix2StructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18)
+ config = Pix2StructConfig(
+ vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=is_vqa
+ )
+
+ model = Pix2StructForConditionalGeneration(config)
+
+ torch_params = rename_and_convert_flax_params(flax_params)
+ model.load_state_dict(torch_params)
+
+ tok = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer")
+ image_processor = Pix2StructImageProcessor()
+ processor = Pix2StructProcessor(image_processor=image_processor, tokenizer=tok)
+
+ if use_large:
+ processor.image_processor.max_patches = 4096
+
+ processor.image_processor.is_vqa = True
+
+ # mkdir if needed
+ os.makedirs(pytorch_dump_folder_path, exist_ok=True)
+
+ model.save_pretrained(pytorch_dump_folder_path)
+ processor.save_pretrained(pytorch_dump_folder_path)
+
+ print("Model saved in {}".format(pytorch_dump_folder_path))
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.")
+ parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
+ parser.add_argument("--use_large", action="store_true", help="Use large model.")
+ parser.add_argument("--is_vqa", action="store_true", help="Use large model.")
+ args = parser.parse_args()
+
+ convert_pix2struct_original_pytorch_checkpoint_to_hf(
+ args.t5x_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/image_processing_pix2struct.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/image_processing_pix2struct.py
new file mode 100644
index 0000000000000000000000000000000000000000..945708d69a8a5077a19e6bcccdf407dca73b4c48
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/image_processing_pix2struct.py
@@ -0,0 +1,460 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for Pix2Struct."""
+import io
+import math
+from typing import Dict, Optional, Union
+
+import numpy as np
+from huggingface_hub import hf_hub_download
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature
+from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
+from ...image_utils import (
+ ChannelDimension,
+ ImageInput,
+ get_image_size,
+ infer_channel_dimension_format,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+)
+from ...utils import TensorType, is_torch_available, is_vision_available, logging
+from ...utils.import_utils import requires_backends
+
+
+if is_vision_available():
+ import textwrap
+
+ from PIL import Image, ImageDraw, ImageFont
+
+if is_torch_available():
+ import torch
+
+logger = logging.get_logger(__name__)
+DEFAULT_FONT_PATH = "ybelkada/fonts"
+
+
+# adapted from: https://discuss.pytorch.org/t/tf-image-extract-patches-in-pytorch/171409/2
+def torch_extract_patches(image_tensor, patch_height, patch_width):
+ """
+ Utiliy function to extract patches from a given image tensor. Returns a tensor of shape (1, `patch_height`,
+ `patch_width`, `num_channels`x `patch_height` x `patch_width`)
+
+ Args:
+ image_tensor (torch.Tensor):
+ The image tensor to extract patches from.
+ patch_height (int):
+ The height of the patches to extract.
+ patch_width (int):
+ The width of the patches to extract.
+ """
+ requires_backends(torch_extract_patches, ["torch"])
+
+ image_tensor = image_tensor.unsqueeze(0)
+ patches = torch.nn.functional.unfold(image_tensor, (patch_height, patch_width), stride=(patch_height, patch_width))
+ patches = patches.reshape(image_tensor.size(0), image_tensor.size(1), patch_height, patch_width, -1)
+ patches = patches.permute(0, 4, 2, 3, 1).reshape(
+ image_tensor.size(2) // patch_height,
+ image_tensor.size(3) // patch_width,
+ image_tensor.size(1) * patch_height * patch_width,
+ )
+ return patches.unsqueeze(0)
+
+
+# Adapted from https://github.com/google-research/pix2struct/blob/0e1779af0f4db4b652c1d92b3bbd2550a7399123/pix2struct/preprocessing/preprocessing_utils.py#L106
+def render_text(
+ text: str,
+ text_size: int = 36,
+ text_color: str = "black",
+ background_color: str = "white",
+ left_padding: int = 5,
+ right_padding: int = 5,
+ top_padding: int = 5,
+ bottom_padding: int = 5,
+ font_bytes: Optional[bytes] = None,
+ font_path: Optional[str] = None,
+) -> Image.Image:
+ """
+ Render text. This script is entirely adapted from the original script that can be found here:
+ https://github.com/google-research/pix2struct/blob/main/pix2struct/preprocessing/preprocessing_utils.py
+
+ Args:
+ text (`str`, *optional*, defaults to ):
+ Text to render.
+ text_size (`int`, *optional*, defaults to 36):
+ Size of the text.
+ text_color (`str`, *optional*, defaults to `"black"`):
+ Color of the text.
+ background_color (`str`, *optional*, defaults to `"white"`):
+ Color of the background.
+ left_padding (`int`, *optional*, defaults to 5):
+ Padding on the left.
+ right_padding (`int`, *optional*, defaults to 5):
+ Padding on the right.
+ top_padding (`int`, *optional*, defaults to 5):
+ Padding on the top.
+ bottom_padding (`int`, *optional*, defaults to 5):
+ Padding on the bottom.
+ font_bytes (`bytes`, *optional*):
+ Bytes of the font to use. If `None`, the default font will be used.
+ font_path (`str`, *optional*):
+ Path to the font to use. If `None`, the default font will be used.
+ """
+ requires_backends(render_text, "vision")
+ # Add new lines so that each line is no more than 80 characters.
+
+ wrapper = textwrap.TextWrapper(width=80)
+ lines = wrapper.wrap(text=text)
+ wrapped_text = "\n".join(lines)
+
+ if font_bytes is not None and font_path is None:
+ font = io.BytesIO(font_bytes)
+ elif font_path is not None:
+ font = font_path
+ else:
+ font = hf_hub_download(DEFAULT_FONT_PATH, "Arial.TTF")
+ font = ImageFont.truetype(font, encoding="UTF-8", size=text_size)
+
+ # Use a temporary canvas to determine the width and height in pixels when
+ # rendering the text.
+ temp_draw = ImageDraw.Draw(Image.new("RGB", (1, 1), background_color))
+ _, _, text_width, text_height = temp_draw.textbbox((0, 0), wrapped_text, font)
+
+ # Create the actual image with a bit of padding around the text.
+ image_width = text_width + left_padding + right_padding
+ image_height = text_height + top_padding + bottom_padding
+ image = Image.new("RGB", (image_width, image_height), background_color)
+ draw = ImageDraw.Draw(image)
+ draw.text(xy=(left_padding, top_padding), text=wrapped_text, fill=text_color, font=font)
+ return image
+
+
+# Adapted from https://github.com/google-research/pix2struct/blob/0e1779af0f4db4b652c1d92b3bbd2550a7399123/pix2struct/preprocessing/preprocessing_utils.py#L87
+def render_header(
+ image: np.ndarray, header: str, input_data_format: Optional[Union[str, ChildProcessError]] = None, **kwargs
+):
+ """
+ Renders the input text as a header on the input image.
+
+ Args:
+ image (`np.ndarray`):
+ The image to render the header on.
+ header (`str`):
+ The header text.
+ data_format (`Union[ChannelDimension, str]`, *optional*):
+ The data format of the image. Can be either "ChannelDimension.channels_first" or
+ "ChannelDimension.channels_last".
+
+ Returns:
+ `np.ndarray`: The image with the header rendered.
+ """
+ requires_backends(render_header, "vision")
+
+ # Convert to PIL image if necessary
+ image = to_pil_image(image, input_data_format=input_data_format)
+
+ header_image = render_text(header, **kwargs)
+ new_width = max(header_image.width, image.width)
+
+ new_height = int(image.height * (new_width / image.width))
+ new_header_height = int(header_image.height * (new_width / header_image.width))
+
+ new_image = Image.new("RGB", (new_width, new_height + new_header_height), "white")
+ new_image.paste(header_image.resize((new_width, new_header_height)), (0, 0))
+ new_image.paste(image.resize((new_width, new_height)), (0, new_header_height))
+
+ # Convert back to the original framework if necessary
+ new_image = to_numpy_array(new_image)
+
+ if infer_channel_dimension_format(new_image) == ChannelDimension.LAST:
+ new_image = to_channel_dimension_format(new_image, ChannelDimension.LAST)
+
+ return new_image
+
+
+class Pix2StructImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a Pix2Struct image processor.
+
+ Args:
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
+ Whether to convert the image to RGB.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
+ method. According to Pix2Struct paper and code, the image is normalized with its own mean and standard
+ deviation.
+ patch_size (`Dict[str, int]`, *optional*, defaults to `{"height": 16, "width": 16}`):
+ The patch size to use for the image. According to Pix2Struct paper and code, the patch size is 16x16.
+ max_patches (`int`, *optional*, defaults to 2048):
+ The maximum number of patches to extract from the image as per the [Pix2Struct
+ paper](https://arxiv.org/pdf/2210.03347.pdf).
+ is_vqa (`bool`, *optional*, defaults to `False`):
+ Whether or not the image processor is for the VQA task. If `True` and `header_text` is passed in, text is
+ rendered onto the input images.
+ """
+
+ model_input_names = ["flattened_patches"]
+
+ def __init__(
+ self,
+ do_convert_rgb: bool = True,
+ do_normalize: bool = True,
+ patch_size: Dict[str, int] = None,
+ max_patches: int = 2048,
+ is_vqa: bool = False,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16}
+ self.do_normalize = do_normalize
+ self.do_convert_rgb = do_convert_rgb
+ self.max_patches = max_patches
+ self.is_vqa = is_vqa
+
+ def extract_flattened_patches(
+ self,
+ image: np.ndarray,
+ max_patches: int,
+ patch_size: dict,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Extract flattened patches from an image.
+
+ Args:
+ image (`np.ndarray`):
+ Image to extract flattened patches from.
+ max_patches (`int`):
+ Maximum number of patches to extract.
+ patch_size (`dict`):
+ Dictionary containing the patch height and width.
+
+ Returns:
+ result (`np.ndarray`):
+ A sequence of `max_patches` flattened patches.
+ """
+ requires_backends(self.extract_flattened_patches, "torch")
+
+ # convert to torch
+ image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format)
+ image = torch.from_numpy(image)
+
+ patch_height, patch_width = patch_size["height"], patch_size["width"]
+ image_height, image_width = get_image_size(image, ChannelDimension.FIRST)
+
+ # maximize scale s.t.
+ scale = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width))
+ num_feasible_rows = max(min(math.floor(scale * image_height / patch_height), max_patches), 1)
+ num_feasible_cols = max(min(math.floor(scale * image_width / patch_width), max_patches), 1)
+ resized_height = max(num_feasible_rows * patch_height, 1)
+ resized_width = max(num_feasible_cols * patch_width, 1)
+
+ image = torch.nn.functional.interpolate(
+ image.unsqueeze(0),
+ size=(resized_height, resized_width),
+ mode="bilinear",
+ align_corners=False,
+ antialias=True,
+ ).squeeze(0)
+
+ # [1, rows, columns, patch_height * patch_width * image_channels]
+ patches = torch_extract_patches(image, patch_height, patch_width)
+
+ patches_shape = patches.shape
+ rows = patches_shape[1]
+ columns = patches_shape[2]
+ depth = patches_shape[3]
+
+ # [rows * columns, patch_height * patch_width * image_channels]
+ patches = patches.reshape([rows * columns, depth])
+
+ # [rows * columns, 1]
+ row_ids = torch.arange(rows).reshape([rows, 1]).repeat(1, columns).reshape([rows * columns, 1])
+ col_ids = torch.arange(columns).reshape([1, columns]).repeat(rows, 1).reshape([rows * columns, 1])
+
+ # Offset by 1 so the ids do not contain zeros, which represent padding.
+ row_ids += 1
+ col_ids += 1
+
+ # Prepare additional patch features.
+ # [rows * columns, 1]
+ row_ids = row_ids.to(torch.float32)
+ col_ids = col_ids.to(torch.float32)
+
+ # [rows * columns, 2 + patch_height * patch_width * image_channels]
+ result = torch.cat([row_ids, col_ids, patches], -1)
+
+ # [max_patches, 2 + patch_height * patch_width * image_channels]
+ result = torch.nn.functional.pad(result, [0, 0, 0, max_patches - (rows * columns)]).float()
+
+ result = to_numpy_array(result)
+
+ return result
+
+ def normalize(
+ self,
+ image: np.ndarray,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Normalize an image. image = (image - image_mean) / image_std.
+
+ The image std is to mimic the tensorflow implementation of the `per_image_standardization`:
+ https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization
+
+ Args:
+ image (`np.ndarray`):
+ Image to normalize.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
+ image is used.
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ if image.dtype == np.uint8:
+ image = image.astype(np.float32)
+
+ # take mean across the whole `image`
+ mean = np.mean(image)
+ std = np.std(image)
+ adjusted_stddev = max(std, 1.0 / math.sqrt(np.prod(image.shape)))
+
+ return normalize(
+ image,
+ mean=mean,
+ std=adjusted_stddev,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ header_text: Optional[str] = None,
+ do_convert_rgb: bool = None,
+ do_normalize: Optional[bool] = None,
+ max_patches: Optional[int] = None,
+ patch_size: Optional[Dict[str, int]] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: ChannelDimension = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> ImageInput:
+ """
+ Preprocess an image or batch of images. The processor first computes the maximum possible number of
+ aspect-ratio preserving patches of size `patch_size` that can be extracted from the image. It then pads the
+ image with zeros to make the image respect the constraint of `max_patches`. Before extracting the patches the
+ images are standardized following the tensorflow implementation of `per_image_standardization`
+ (https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization).
+
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images.
+ header_text (`Union[List[str], str]`, *optional*):
+ Text to render as a header. Only has an effect if `image_processor.is_vqa` is `True`.
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
+ Whether to convert the image to RGB.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ max_patches (`int`, *optional*, defaults to `self.max_patches`):
+ Maximum number of patches to extract.
+ patch_size (`dict`, *optional*, defaults to `self.patch_size`):
+ Dictionary containing the patch height and width.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
+ patch_size = patch_size if patch_size is not None else self.patch_size
+ max_patches = max_patches if max_patches is not None else self.max_patches
+ is_vqa = self.is_vqa
+
+ if kwargs.get("data_format", None) is not None:
+ raise ValueError("data_format is not an accepted input as the outputs are ")
+
+ images = make_list_of_images(images)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ # PIL RGBA images are converted to RGB
+ if do_convert_rgb:
+ images = [convert_to_rgb(image) for image in images]
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if is_vqa:
+ if header_text is None:
+ raise ValueError("A header text must be provided for VQA models.")
+ font_bytes = kwargs.pop("font_bytes", None)
+ font_path = kwargs.pop("font_path", None)
+
+ if isinstance(header_text, str):
+ header_text = [header_text] * len(images)
+
+ images = [
+ render_header(image, header_text[i], font_bytes=font_bytes, font_path=font_path)
+ for i, image in enumerate(images)
+ ]
+
+ if do_normalize:
+ images = [self.normalize(image=image, input_data_format=input_data_format) for image in images]
+
+ # convert to torch tensor and permute
+ images = [
+ self.extract_flattened_patches(
+ image=image, max_patches=max_patches, patch_size=patch_size, input_data_format=input_data_format
+ )
+ for image in images
+ ]
+
+ # create attention mask in numpy
+ attention_masks = [(image.sum(axis=-1) != 0).astype(np.float32) for image in images]
+
+ encoded_outputs = BatchFeature(
+ data={"flattened_patches": images, "attention_mask": attention_masks}, tensor_type=return_tensors
+ )
+
+ return encoded_outputs
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/modeling_pix2struct.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/modeling_pix2struct.py
new file mode 100644
index 0000000000000000000000000000000000000000..e8032fcef6690b4be517561e933f1cb3cf4db60d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/modeling_pix2struct.py
@@ -0,0 +1,1786 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. & Google team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Pix2Struct modeling file"""
+
+import math
+from typing import Dict, List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPooling,
+ CausalLMOutputWithCrossAttentions,
+ Seq2SeqLMOutput,
+ Seq2SeqModelOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import ALL_LAYERNORM_LAYERS
+from ...utils import (
+ DUMMY_INPUTS,
+ DUMMY_MASK,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_torch_fx_proxy,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_pix2struct import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig
+
+
+logger = logging.get_logger(__name__)
+
+# General docstring
+_CONFIG_FOR_DOC = "Pix2StructConfig"
+
+
+from ..deprecated._archive_maps import PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# Adapted from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pix2Struct
+class Pix2StructLayerNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
+ # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
+ # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
+ # half-precision inputs is done in fp32
+
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+
+ # convert into half-precision if necessary
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
+ hidden_states = hidden_states.to(self.weight.dtype)
+
+ return self.weight * hidden_states
+
+
+try:
+ from apex.normalization import FusedRMSNorm
+
+ Pix2StructLayerNorm = FusedRMSNorm # noqa
+
+ logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pix2StructLayerNorm")
+except ImportError:
+ # using the normal Pix2StructLayerNorm
+ pass
+except Exception:
+ logger.warning("Discovered apex but it failed to load, falling back to Pix2StructLayerNorm")
+ pass
+
+ALL_LAYERNORM_LAYERS.append(Pix2StructLayerNorm)
+
+
+class Pix2StructVisionEmbeddings(nn.Module):
+ r"""
+ Construct the embeddings from patch. In `Pix2Struct` the input is different from classic Vision-transformer models.
+ Here the input is a sequence of `seq_len` flattened patches that also combines padding patches (tokens). Each patch
+ is represented by a vector of `hidden_size` values.
+ """
+
+ def __init__(self, config: Pix2StructConfig) -> None:
+ super().__init__()
+ self.patch_projection = nn.Linear(config.patch_embed_hidden_size, config.hidden_size)
+
+ self.row_embedder = nn.Embedding(config.seq_len, config.hidden_size)
+ self.column_embedder = nn.Embedding(config.seq_len, config.hidden_size)
+
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ def forward(self, flattened_patches: torch.Tensor) -> torch.Tensor:
+ # the row and column indices are stored in the first and second position of the flattened_patches
+ # flattened_patches: `batch_size`, `seq_len`, `hidden_size` + 2
+ row_indices = flattened_patches[:, :, 0].long()
+ col_indices = flattened_patches[:, :, 1].long()
+
+ flattened_patches = flattened_patches[:, :, 2:]
+
+ embeddings = self.patch_projection(flattened_patches)
+ row_embeddings = self.row_embedder(row_indices)
+ col_embeddings = self.column_embedder(col_indices)
+
+ # sum all embeddings together
+ embeddings = embeddings + row_embeddings + col_embeddings
+
+ embeddings = self.dropout(embeddings)
+
+ return embeddings
+
+
+class Pix2StructVisionAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+ self.key_value_proj_dim = config.d_kv
+ self.n_heads = config.num_attention_heads
+ self.dropout = config.attention_dropout
+ self.inner_dim = self.n_heads * self.key_value_proj_dim
+
+ # Mesh TensorFlow initialization to avoid scaling before softmax
+ self.query = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
+ self.key = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
+ self.value = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
+ self.output = nn.Linear(self.inner_dim, self.hidden_size, bias=False)
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ position_bias=None,
+ layer_head_mask=None,
+ output_attentions=False,
+ ):
+ """
+ Self-attention block
+ """
+ # Input is (batch_size, seq_length, dim)
+ # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
+ # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
+ batch_size, seq_length = hidden_states.shape[:2]
+
+ def to_projection_shape(states):
+ """projection"""
+ return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
+
+ # get query states
+ # (batch_size, n_heads, seq_length, dim_per_head)
+ query_states = to_projection_shape(self.query(hidden_states))
+
+ # get key/value states
+ key_states = to_projection_shape(self.key(hidden_states))
+ value_states = to_projection_shape(self.value(hidden_states))
+
+ # compute scores
+ # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
+ scores = torch.matmul(query_states, key_states.transpose(3, 2))
+
+ if position_bias is None:
+ position_bias = torch.zeros(
+ (1, self.n_heads, seq_length, seq_length), device=scores.device, dtype=scores.dtype
+ )
+ if self.gradient_checkpointing and self.training:
+ position_bias.requires_grad = True
+
+ if attention_mask is None:
+ attention_mask = torch.ones((batch_size, seq_length), device=scores.device, dtype=scores.dtype)
+
+ if attention_mask.dim() == 2:
+ position_bias = position_bias + attention_mask[:, None, None, :].to(position_bias.device)
+ else:
+ # (batch_size, n_heads, seq_length, key_length)
+ position_bias = position_bias + attention_mask.to(position_bias.device)
+ position_bias = 1 - position_bias
+
+ position_bias_masked = position_bias.masked_fill(position_bias == 1, torch.finfo(scores.dtype).min)
+ scores += position_bias_masked
+ scores = torch.max(scores, torch.tensor(torch.finfo(scores.dtype).min))
+
+ # (batch_size, n_heads, seq_length, key_length)
+ attn_weights = nn.functional.softmax(scores, dim=-1, dtype=torch.float32).type_as(scores)
+
+ # (batch_size, n_heads, seq_length, key_length)
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ # Mask heads if we want to
+ if layer_head_mask is not None:
+ attn_weights = attn_weights * layer_head_mask
+
+ attn_output = torch.matmul(attn_weights, value_states)
+
+ # (batch_size, seq_length, dim)
+ attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
+
+ attn_output = self.output(attn_output)
+
+ outputs = (attn_output,) + (position_bias,)
+
+ if output_attentions:
+ outputs = outputs + (attn_weights,)
+ return outputs
+
+
+# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5DenseGatedActDense->Pix2StructVisionMlp,T5Config->Pix2StructVisionConfig,config.d_model->config.hidden_size,dropout_rate->dropout_rate
+class Pix2StructVisionMlp(nn.Module):
+ def __init__(self, config: Pix2StructVisionConfig):
+ super().__init__()
+ self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
+ self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
+ self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False)
+ self.dropout = nn.Dropout(config.dropout_rate)
+ self.act = ACT2FN[config.dense_act_fn]
+
+ def forward(self, hidden_states):
+ hidden_gelu = self.act(self.wi_0(hidden_states))
+ hidden_linear = self.wi_1(hidden_states)
+ hidden_states = hidden_gelu * hidden_linear
+ hidden_states = self.dropout(hidden_states)
+
+ # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
+ # See https://github.com/huggingface/transformers/issues/20287
+ # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
+ if (
+ isinstance(self.wo.weight, torch.Tensor)
+ and hidden_states.dtype != self.wo.weight.dtype
+ and self.wo.weight.dtype != torch.int8
+ ):
+ hidden_states = hidden_states.to(self.wo.weight.dtype)
+
+ hidden_states = self.wo(hidden_states)
+ return hidden_states
+
+
+class Pix2StructVisionLayer(nn.Module):
+ def __init__(self, config: Pix2StructConfig) -> None:
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = Pix2StructVisionAttention(config)
+ self.mlp = Pix2StructVisionMlp(config)
+ self.pre_mlp_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.pre_attention_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ residual = hidden_states
+
+ # in Pix2StructVision, layernorm is applied before self-attention
+ hidden_states = self.pre_attention_layer_norm(hidden_states)
+
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ # first residual connection
+ hidden_states = attention_output + residual
+
+ # in Pix2StructVision, layernorm is also applied after self-attention
+ layer_output = self.pre_mlp_layer_norm(hidden_states)
+ layer_output = self.mlp(layer_output) + hidden_states # second residual connection
+
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+
+class Pix2StructVisionEncoder(nn.Module):
+ def __init__(self, config: Pix2StructConfig) -> None:
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([Pix2StructVisionLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ) -> Union[tuple, BaseModelOutput]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class Pix2StructPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = Pix2StructConfig
+
+ @property
+ def dummy_inputs(self):
+ input_ids = torch.tensor(DUMMY_INPUTS)
+ input_mask = torch.tensor(DUMMY_MASK)
+ dummy_inputs = {
+ "decoder_input_ids": input_ids,
+ "input_ids": input_ids,
+ "decoder_attention_mask": input_mask,
+ }
+ return dummy_inputs
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ factor = self.config.initializer_factor # Used for testing weights initialization
+ if isinstance(module, Pix2StructLayerNorm):
+ module.weight.data.fill_(factor * 1.0)
+ elif isinstance(module, Pix2StructTextDenseGatedActDense):
+ hidden_size = (
+ self.config.text_config.hidden_size
+ if isinstance(self.config, Pix2StructConfig)
+ else self.config.hidden_size
+ )
+ d_ff = self.config.text_config.d_ff if isinstance(self.config, Pix2StructConfig) else self.config.d_ff
+
+ module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
+ if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
+ module.wi_0.bias.data.zero_()
+ module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
+ if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
+ module.wi_1.bias.data.zero_()
+ module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5))
+ if hasattr(module.wo, "bias") and module.wo.bias is not None:
+ module.wo.bias.data.zero_()
+ elif isinstance(module, Pix2StructTextAttention):
+ # Mesh TensorFlow attention initialization to avoid scaling before softmax
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
+ hidden_size = (
+ self.config.text_config.hidden_size
+ if isinstance(self.config, Pix2StructConfig)
+ else self.config.hidden_size
+ )
+ key_value_proj_dim = (
+ self.config.text_config.d_kv if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size
+ )
+ n_heads = (
+ self.config.text_config.num_heads
+ if isinstance(self.config, Pix2StructConfig)
+ else self.config.num_heads
+ )
+
+ module.query.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * key_value_proj_dim) ** -0.5))
+ module.key.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5))
+ module.value.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5))
+ module.output.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
+ if module.has_relative_attention_bias:
+ module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
+ elif isinstance(module, nn.Embedding):
+ hidden_size = (
+ self.config.text_config.hidden_size
+ if isinstance(self.config, Pix2StructConfig)
+ else self.config.hidden_size
+ )
+
+ module.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, Pix2StructTextModel):
+ hidden_size = (
+ self.config.text_config.hidden_size
+ if isinstance(self.config, Pix2StructConfig)
+ else self.config.hidden_size
+ )
+
+ module.lm_head.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
+ elif isinstance(module, (nn.Linear, nn.Conv2d)):
+ # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
+ # `trunc_normal_cpu` not implemented in `half` issues
+ module.weight.data = nn.init.trunc_normal_(
+ module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
+ ).to(module.weight.dtype)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, Pix2StructLayerNorm):
+ if module.weight is not None:
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+ # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->Pix2Struct
+ def _shift_right(self, input_ids):
+ decoder_start_token_id = self.config.decoder_start_token_id
+ pad_token_id = self.config.pad_token_id
+
+ if decoder_start_token_id is None:
+ raise ValueError(
+ "self.model.config.decoder_start_token_id has to be defined. In Pix2Struct it is usually set to the pad_token_id. "
+ "See Pix2Struct docs for more information."
+ )
+
+ # shift inputs to the right
+ if is_torch_fx_proxy(input_ids):
+ # Item assignment is not supported natively for proxies.
+ shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
+ shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
+ else:
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
+ shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
+ shifted_input_ids[..., 0] = decoder_start_token_id
+
+ if pad_token_id is None:
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
+
+ return shifted_input_ids
+
+
+PIX2STRUCT_VISION_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`Pix2StructConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+PIX2STRUCT_VISION_INPUTS_DOCSTRING = r"""
+ Args:
+ flattened_patches (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_channels x patch_height x patch_width)`):
+ Flattened and padded pixel values. These values can be obtained using [`AutoImageProcessor`]. See
+ [`Pix2StructVisionImageProcessor.__call__`] for details. Check the [original
+ paper](https://arxiv.org/abs/2210.03347) (figure 5) for more details.
+
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Pix2StructVision Model transformer outputting raw hidden-states without any specific head on top.",
+ PIX2STRUCT_VISION_START_DOCSTRING,
+)
+class Pix2StructVisionModel(Pix2StructPreTrainedModel):
+ config_class = Pix2StructVisionConfig
+ main_input_name = "flattened_patches"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["Pix2StructVisionLayer"]
+
+ def __init__(self, config: Pix2StructConfig):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = Pix2StructVisionEmbeddings(config)
+ self.encoder = Pix2StructVisionEncoder(config)
+
+ self.layernorm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.patch_projection
+
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(PIX2STRUCT_VISION_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ flattened_patches: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import requests
+ >>> from PIL import Image
+ >>> from transformers import AutoProcessor, Pix2StructVisionModel
+
+ >>> image_processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
+ >>> model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base")
+
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = image_processor(images=image, return_tensors="pt")
+ >>> with torch.no_grad():
+ ... outputs = model(**inputs)
+
+ >>> last_hidden_states = outputs.last_hidden_state
+ >>> list(last_hidden_states.shape)
+ [1, 2048, 768]
+ ```
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if flattened_patches is None:
+ raise ValueError("You have to specify flattened_patches")
+
+ if attention_mask is None:
+ # check where `flattened_patches` is not 0
+ attention_mask = (flattened_patches.sum(dim=-1) != 0).float()
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(flattened_patches)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.layernorm(sequence_output)
+
+ if not return_dict:
+ head_outputs = (sequence_output,)
+ return head_outputs + encoder_outputs[1:]
+
+ return BaseModelOutput(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pix2StructText,d_model->hidden_size
+class Pix2StructTextDenseGatedActDense(nn.Module):
+ def __init__(self, config: Pix2StructTextConfig):
+ super().__init__()
+ self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
+ self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
+ self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False)
+ self.dropout = nn.Dropout(config.dropout_rate)
+ self.act = ACT2FN[config.dense_act_fn]
+
+ def forward(self, hidden_states):
+ hidden_gelu = self.act(self.wi_0(hidden_states))
+ hidden_linear = self.wi_1(hidden_states)
+ hidden_states = hidden_gelu * hidden_linear
+ hidden_states = self.dropout(hidden_states)
+
+ # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
+ # See https://github.com/huggingface/transformers/issues/20287
+ # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
+ if (
+ isinstance(self.wo.weight, torch.Tensor)
+ and hidden_states.dtype != self.wo.weight.dtype
+ and self.wo.weight.dtype != torch.int8
+ ):
+ hidden_states = hidden_states.to(self.wo.weight.dtype)
+
+ hidden_states = self.wo(hidden_states)
+ return hidden_states
+
+
+class Pix2StructTextLayerFF(nn.Module):
+ def __init__(self, config: Pix2StructTextConfig):
+ super().__init__()
+ self.DenseReluDense = Pix2StructTextDenseGatedActDense(config)
+
+ self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ # Copied from transformers.models.t5.modeling_t5.T5LayerFF.forward
+ def forward(self, hidden_states):
+ forwarded_states = self.layer_norm(hidden_states)
+ forwarded_states = self.DenseReluDense(forwarded_states)
+ hidden_states = hidden_states + self.dropout(forwarded_states)
+ return hidden_states
+
+
+class Pix2StructTextAttention(nn.Module):
+ def __init__(self, config: Pix2StructTextConfig, has_relative_attention_bias=False):
+ super().__init__()
+ self.has_relative_attention_bias = has_relative_attention_bias
+ self.relative_attention_num_buckets = config.relative_attention_num_buckets
+ self.relative_attention_max_distance = config.relative_attention_max_distance
+ self.hidden_size = config.hidden_size
+ self.key_value_proj_dim = config.d_kv
+ self.n_heads = config.num_heads
+ self.dropout = config.dropout_rate
+ self.inner_dim = self.n_heads * self.key_value_proj_dim
+
+ # Mesh TensorFlow initialization to avoid scaling before softmax
+ self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
+ self.key = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
+ self.value = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
+ self.output = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
+
+ if self.has_relative_attention_bias:
+ self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
+ self.pruned_heads = set()
+ self.gradient_checkpointing = False
+
+ @staticmethod
+ # Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
+ def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
+ """
+ Adapted from Mesh Tensorflow:
+ https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
+
+ Translate relative position to a bucket number for relative attention. The relative position is defined as
+ memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
+ position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
+ small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
+ positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
+ This should allow for more graceful generalization to longer sequences than the model has been trained on
+
+ Args:
+ relative_position: an int32 Tensor
+ bidirectional: a boolean - whether the attention is bidirectional
+ num_buckets: an integer
+ max_distance: an integer
+
+ Returns:
+ a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
+ """
+ relative_buckets = 0
+ if bidirectional:
+ num_buckets //= 2
+ relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
+ relative_position = torch.abs(relative_position)
+ else:
+ relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
+ # now relative_position is in the range [0, inf)
+
+ # half of the buckets are for exact increments in positions
+ max_exact = num_buckets // 2
+ is_small = relative_position < max_exact
+
+ # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
+ relative_position_if_large = max_exact + (
+ torch.log(relative_position.float() / max_exact)
+ / math.log(max_distance / max_exact)
+ * (num_buckets - max_exact)
+ ).to(torch.long)
+ relative_position_if_large = torch.min(
+ relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
+ )
+
+ relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
+ return relative_buckets
+
+ # Adapted from transformers.models.t5.modeling_t5.T5Attention.compute_bias
+ def compute_bias(self, query_length, key_length, device=None):
+ """Compute binned relative position bias"""
+ if device is None:
+ device = self.relative_attention_bias.weight.device
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
+ relative_position = memory_position - context_position # shape (query_length, key_length)
+ relative_position_bucket = self._relative_position_bucket(
+ relative_position, # shape (query_length, key_length)
+ bidirectional=False,
+ num_buckets=self.relative_attention_num_buckets,
+ max_distance=self.relative_attention_max_distance,
+ )
+ values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
+ values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
+ return values
+
+ def forward(
+ self,
+ hidden_states,
+ mask=None,
+ key_value_states=None,
+ position_bias=None,
+ past_key_value=None,
+ layer_head_mask=None,
+ query_length=None,
+ use_cache=False,
+ output_attentions=False,
+ ):
+ """
+ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
+ """
+ # Input is (batch_size, seq_length, dim)
+ # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
+ # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
+ batch_size, seq_length = hidden_states.shape[:2]
+
+ real_seq_length = seq_length
+
+ if past_key_value is not None:
+ if len(past_key_value) != 2:
+ raise ValueError(
+ f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
+ )
+ real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
+
+ key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
+
+ def to_projection_shape(states):
+ """projection"""
+ return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
+
+ def project(hidden_states, proj_layer, key_value_states, past_key_value):
+ """projects hidden states correctly to key/query states"""
+ if key_value_states is None:
+ # self-attn
+ # (batch_size, n_heads, seq_length, dim_per_head)
+ hidden_states = to_projection_shape(proj_layer(hidden_states))
+ elif past_key_value is None:
+ # cross-attn
+ # (batch_size, n_heads, seq_length, dim_per_head)
+ hidden_states = to_projection_shape(proj_layer(key_value_states))
+
+ if past_key_value is not None:
+ if key_value_states is None:
+ # self-attn
+ # (batch_size, n_heads, key_length, dim_per_head)
+ hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
+ elif past_key_value.shape[2] != key_value_states.shape[1]:
+ # checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ # cross-attn
+ # (batch_size, n_heads, seq_length, dim_per_head)
+ hidden_states = to_projection_shape(proj_layer(key_value_states))
+ else:
+ # cross-attn
+ hidden_states = past_key_value
+ return hidden_states
+
+ # get query states
+ # (batch_size, n_heads, seq_length, dim_per_head)
+ query_states = to_projection_shape(self.query(hidden_states))
+
+ # get key/value states
+ key_states = project(
+ hidden_states, self.key, key_value_states, past_key_value[0] if past_key_value is not None else None
+ )
+ value_states = project(
+ hidden_states, self.value, key_value_states, past_key_value[1] if past_key_value is not None else None
+ )
+
+ # compute scores
+ scores = torch.matmul(
+ query_states, key_states.transpose(3, 2)
+ ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
+
+ if position_bias is None:
+ if not self.has_relative_attention_bias:
+ position_bias = torch.zeros(
+ (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
+ )
+ if self.gradient_checkpointing and self.training:
+ position_bias.requires_grad = True
+ else:
+ position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
+
+ # if key and values are already calculated
+ # we want only the last query position bias
+ if past_key_value is not None:
+ position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
+
+ if mask is not None:
+ position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
+
+ if self.pruned_heads:
+ mask = torch.ones(position_bias.shape[1])
+ mask[list(self.pruned_heads)] = 0
+ position_bias_masked = position_bias[:, mask.bool()]
+ else:
+ position_bias_masked = position_bias
+
+ scores += position_bias_masked
+ # (batch_size, n_heads, seq_length, key_length)
+ attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
+
+ # (batch_size, n_heads, seq_length, key_length)
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ # Mask heads if we want to
+ if layer_head_mask is not None:
+ attn_weights = attn_weights * layer_head_mask
+
+ attn_output = torch.matmul(attn_weights, value_states)
+ # (batch_size, seq_length, dim)
+ attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
+
+ attn_output = self.output(attn_output)
+
+ present_key_value_state = (key_states, value_states) if use_cache else None
+ outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
+
+ if output_attentions:
+ outputs = outputs + (attn_weights,)
+ return outputs
+
+
+# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.SelfAttention->self.attention,config.d_model->config.hidden_size
+class Pix2StructTextLayerSelfAttention(nn.Module):
+ def __init__(self, config, has_relative_attention_bias=False):
+ super().__init__()
+ self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=has_relative_attention_bias)
+ self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ position_bias=None,
+ layer_head_mask=None,
+ past_key_value=None,
+ use_cache=False,
+ output_attentions=False,
+ ):
+ normed_hidden_states = self.layer_norm(hidden_states)
+ attention_output = self.attention(
+ normed_hidden_states,
+ mask=attention_mask,
+ position_bias=position_bias,
+ layer_head_mask=layer_head_mask,
+ past_key_value=past_key_value,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+ hidden_states = hidden_states + self.dropout(attention_output[0])
+ outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.EncDecAttention->self.attention,config.d_model->config.hidden_size
+class Pix2StructTextLayerCrossAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=False)
+ self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ def forward(
+ self,
+ hidden_states,
+ key_value_states,
+ attention_mask=None,
+ position_bias=None,
+ layer_head_mask=None,
+ past_key_value=None,
+ use_cache=False,
+ query_length=None,
+ output_attentions=False,
+ ):
+ normed_hidden_states = self.layer_norm(hidden_states)
+ attention_output = self.attention(
+ normed_hidden_states,
+ mask=attention_mask,
+ key_value_states=key_value_states,
+ position_bias=position_bias,
+ layer_head_mask=layer_head_mask,
+ past_key_value=past_key_value,
+ use_cache=use_cache,
+ query_length=query_length,
+ output_attentions=output_attentions,
+ )
+ layer_output = hidden_states + self.dropout(attention_output[0])
+ outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
+ return outputs
+
+
+class Pix2StructTextBlock(nn.Module):
+ def __init__(self, config, has_relative_attention_bias=False):
+ super().__init__()
+
+ self.self_attention = Pix2StructTextLayerSelfAttention(
+ config, has_relative_attention_bias=has_relative_attention_bias
+ )
+
+ self.encoder_decoder_attention = Pix2StructTextLayerCrossAttention(config)
+
+ self.mlp = Pix2StructTextLayerFF(config)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ position_bias=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ encoder_decoder_position_bias=None,
+ layer_head_mask=None,
+ cross_attn_layer_head_mask=None,
+ past_key_value=None,
+ use_cache=False,
+ output_attentions=False,
+ return_dict=True,
+ ):
+ if past_key_value is not None:
+ expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
+
+ if len(past_key_value) != expected_num_past_key_values:
+ raise ValueError(
+ f"There should be {expected_num_past_key_values} past states. "
+ f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
+ f"Got {len(past_key_value)} past key / value states"
+ )
+
+ self_attn_past_key_value = past_key_value[:2]
+ cross_attn_past_key_value = past_key_value[2:]
+ else:
+ self_attn_past_key_value, cross_attn_past_key_value = None, None
+
+ self_attention_outputs = self.self_attention(
+ hidden_states,
+ attention_mask=attention_mask,
+ position_bias=position_bias,
+ layer_head_mask=layer_head_mask,
+ past_key_value=self_attn_past_key_value,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+ hidden_states, present_key_value_state = self_attention_outputs[:2]
+ attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
+
+ # clamp inf values to enable fp16 training
+ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ do_cross_attention = encoder_hidden_states is not None
+ if do_cross_attention:
+ # the actual query length is unknown for cross attention
+ # if using past key value states. Need to inject it here
+ if present_key_value_state is not None:
+ query_length = present_key_value_state[0].shape[2]
+ else:
+ query_length = None
+
+ cross_attention_outputs = self.encoder_decoder_attention(
+ hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ position_bias=encoder_decoder_position_bias,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ query_length=query_length,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+ hidden_states = cross_attention_outputs[0]
+
+ # clamp inf values to enable fp16 training
+ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ # Combine self attn and cross attn key value states
+ if present_key_value_state is not None:
+ present_key_value_state = present_key_value_state + cross_attention_outputs[1]
+
+ # Keep cross-attention outputs and relative position weights
+ attention_outputs = attention_outputs + cross_attention_outputs[2:]
+
+ # Apply Feed Forward layer
+ hidden_states = self.mlp(hidden_states)
+
+ # clamp inf values to enable fp16 training
+ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if use_cache:
+ outputs = outputs + (present_key_value_state,) + attention_outputs
+ else:
+ outputs = outputs + attention_outputs
+
+ return outputs
+
+
+PIX2STRUCT_START_DOCSTRING = r"""
+
+ The Pix2Struct model was proposed in [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language
+ Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu,
+ Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. It's an encoder decoder
+ transformer pre-trained in a image-to-text setting.
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config (Union[`Pix2StructConfig`, `Pix2StructTextConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+PIX2STRUCT_TEXT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Pix2StructText is a model with relative position
+ embeddings so you should be able to pad the inputs on both the right and the left.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for detail.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ To know more on how to prepare `input_ids` for pretraining take a look a [Pix2StructText
+ Training](./t5#training).
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+
+ To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText
+ Training](./t5#training).
+ decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
+ 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
+ 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
+ `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
+ the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
+ input (see `past_key_values`). This is useful if you want more control over how to convert
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
+
+ If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
+ of `inputs_embeds`.
+
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+PIX2STRUCT_INPUTS_DOCSTRING = r"""
+ Args:
+ flattened_patches (`torch.FloatTensor` of shape `(batch_size, seq_length, hidden_size)`):
+ Flattened pixel patches. the `hidden_size` is obtained by the following formula: `hidden_size` =
+ `num_channels` * `patch_size` * `patch_size`
+
+ The process of flattening the pixel patches is done by `Pix2StructProcessor`.
+
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+
+ To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText
+ Training](./t5#training).
+ decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
+ 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
+ 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
+ `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
+ the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
+ input (see `past_key_values`). This is useful if you want more control over how to convert
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
+
+ If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
+ of `inputs_embeds`.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss for the decoder.
+
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The standalone text decoder of Pix2Struct",
+ PIX2STRUCT_START_DOCSTRING,
+)
+class Pix2StructTextModel(Pix2StructPreTrainedModel):
+ config_class = Pix2StructTextConfig
+ _no_split_modules = ["Pix2StructTextBlock"]
+ _tied_weights_keys = ["lm_head.weight"]
+ supports_gradient_checkpointing = True
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
+
+ self.layer = nn.ModuleList(
+ [Pix2StructTextBlock(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
+ )
+ self.final_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+ self.gradient_checkpointing = False
+
+ # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._reorder_cache
+ def _reorder_cache(self, past_key_values, beam_idx):
+ # if decoder past is not included in output
+ # speedy decoding is disabled and no need to reorder
+ if past_key_values is None:
+ logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
+ return past_key_values
+
+ reordered_decoder_past = ()
+ for layer_past_states in past_key_values:
+ # get the correct batch idx from layer past batch dim
+ # batch dim of `past` is at 2nd position
+ reordered_layer_past_states = ()
+ for layer_past_state in layer_past_states:
+ # need to set correct `past` for each of the four key / value states
+ reordered_layer_past_states = reordered_layer_past_states + (
+ layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
+ )
+
+ if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
+ raise ValueError(
+ f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
+ )
+ if len(reordered_layer_past_states) != len(layer_past_states):
+ raise ValueError(
+ f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
+ )
+
+ reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
+ return reordered_decoder_past
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, new_embeddings):
+ self.embed_tokens = new_embeddings
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ @add_start_docstrings_to_model_forward(PIX2STRUCT_TEXT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ labels: Optional[torch.LongTensor] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[Tuple[torch.FloatTensor, ...], CausalLMOutputWithCrossAttentions]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoProcessor, Pix2StructTextModel
+
+ >>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
+ >>> model = Pix2StructTextModel.from_pretrained("google/pix2struct-textcaps-base")
+
+ >>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt")
+ >>> outputs = model(**inputs)
+ >>> loss = outputs.loss
+ ```
+ """
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ if inputs_embeds is None:
+ assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ batch_size, seq_length = input_shape
+
+ # required mask seq length can be calculated via length of past
+ mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
+
+ if attention_mask is None:
+ attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
+ if encoder_attention_mask is None and encoder_hidden_states is not None:
+ encoder_seq_length = encoder_hidden_states.shape[1]
+ encoder_attention_mask = torch.ones(
+ batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
+ )
+
+ # initialize past_key_values with `None` if past does not exist
+ if past_key_values is None:
+ past_key_values = [None] * len(self.layer)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ head_mask = self.get_head_mask(head_mask, self.config.num_layers)
+ cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
+ present_key_value_states = () if use_cache else None
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions) else None
+ position_bias = None
+ encoder_decoder_position_bias = None
+
+ hidden_states = self.dropout(inputs_embeds)
+
+ for i, (layer_module, past_key_value) in enumerate(zip(self.layer, past_key_values)):
+ layer_head_mask = head_mask[i]
+ cross_attn_layer_head_mask = cross_attn_head_mask[i]
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.forward,
+ hidden_states,
+ extended_attention_mask,
+ position_bias,
+ encoder_hidden_states,
+ encoder_extended_attention_mask,
+ encoder_decoder_position_bias,
+ layer_head_mask,
+ cross_attn_layer_head_mask,
+ None, # past_key_value is always None with gradient checkpointing
+ use_cache,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask=extended_attention_mask,
+ position_bias=position_bias,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ encoder_decoder_position_bias=encoder_decoder_position_bias,
+ layer_head_mask=layer_head_mask,
+ cross_attn_layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=past_key_value,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+
+ # layer_outputs is a tuple with:
+ # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
+ if use_cache is False:
+ layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
+
+ hidden_states, present_key_value_state = layer_outputs[:2]
+
+ # We share the position biases between the layers - the first layer store them
+ # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
+ # (cross-attention position bias), (cross-attention weights)
+ position_bias = layer_outputs[2]
+ if encoder_hidden_states is not None:
+ encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
+ # append next layer key value states
+ if use_cache:
+ present_key_value_states = present_key_value_states + (present_key_value_state,)
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[3],)
+ if encoder_hidden_states is not None:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
+
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ logits = self.lm_head(hidden_states)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ loss_fct = nn.CrossEntropyLoss(ignore_index=-100, reduction="mean")
+
+ loss = loss_fct(logits.contiguous().view(-1, logits.size(-1)), labels.contiguous().view(-1))
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ loss,
+ logits,
+ present_key_value_states,
+ all_hidden_states,
+ all_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return CausalLMOutputWithCrossAttentions(
+ loss=loss,
+ logits=logits,
+ past_key_values=present_key_value_states,
+ hidden_states=all_hidden_states,
+ attentions=all_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "A conditional generation model with a language modeling head. Can be used for sequence generation tasks.",
+ PIX2STRUCT_START_DOCSTRING,
+)
+class Pix2StructForConditionalGeneration(Pix2StructPreTrainedModel):
+ config_class = Pix2StructConfig
+ main_input_name = "flattened_patches"
+ _tied_weights_keys = ["decoder.lm_head.weight"]
+
+ def __init__(self, config: Pix2StructConfig):
+ super().__init__(config)
+
+ self.encoder = Pix2StructVisionModel(config.vision_config)
+ self.decoder = Pix2StructTextModel(config.text_config)
+
+ self.is_vqa = config.is_vqa
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.decoder.get_input_embeddings()
+
+ def set_input_embeddings(self, new_embeddings):
+ self.decoder.set_input_embeddings(new_embeddings)
+
+ def get_output_embeddings(self) -> nn.Module:
+ return self.decoder.get_output_embeddings()
+
+ def set_output_embeddings(self, new_embeddings):
+ self.decoder.set_output_embeddings(new_embeddings)
+
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
+ model_embeds = self.decoder.resize_token_embeddings(new_num_tokens)
+
+ # update vocab size
+ self.config.text_config.vocab_size = new_num_tokens
+
+ return model_embeds
+
+ def get_decoder(self):
+ return self.decoder
+
+ def get_encoder(self):
+ return self.encoder
+
+ @add_start_docstrings_to_model_forward(PIX2STRUCT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ flattened_patches: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ decoder_head_mask: Optional[torch.FloatTensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ labels: Optional[torch.LongTensor] = None,
+ decoder_inputs_embeds: Optional[torch.Tensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
+ r"""
+ Returns:
+
+ Example:
+
+ Inference:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration
+
+ >>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
+ >>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base")
+
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="pt")
+
+ >>> # autoregressive generation
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=50)
+ >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
+ >>> print(generated_text)
+ A stop sign is on a street corner.
+
+ >>> # conditional generation
+ >>> text = "A picture of"
+ >>> inputs = processor(text=text, images=image, return_tensors="pt", add_special_tokens=False)
+
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=50)
+ >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
+ >>> print(generated_text)
+ A picture of a stop sign with a red stop sign
+ ```
+
+ Training:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration
+
+ >>> processor = AutoProcessor.from_pretrained("google/pix2struct-base")
+ >>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-base")
+
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ >>> text = "A stop sign is on the street corner."
+
+ >>> inputs = processor(images=image, return_tensors="pt")
+ >>> labels = processor(text=text, return_tensors="pt").input_ids
+
+ >>> # forward pass
+ >>> outputs = model(**inputs, labels=labels)
+ >>> loss = outputs.loss
+ >>> print(f"{loss.item():.5f}")
+ 5.94282
+ ```"""
+ use_cache = use_cache if use_cache is not None else self.config.text_config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # Encode if needed (training, first prediction pass)
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ flattened_patches=flattened_patches,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ hidden_states = encoder_outputs[0]
+
+ if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
+ # get decoder inputs from shifting lm labels to the right
+ decoder_input_ids = self._shift_right(labels)
+ decoder_attention_mask = (
+ decoder_attention_mask
+ if decoder_attention_mask is not None
+ else decoder_input_ids.ne(self.config.pad_token_id).float()
+ )
+ # Always attend to the first token
+ decoder_attention_mask[:, 0] = 1
+
+ # Decode
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ inputs_embeds=decoder_inputs_embeds,
+ past_key_values=past_key_values,
+ encoder_hidden_states=hidden_states,
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ labels=labels,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return Seq2SeqLMOutput(
+ loss=decoder_outputs.loss,
+ logits=decoder_outputs.logits,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ input_ids,
+ flattened_patches: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
+ past_key_values=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ if decoder_attention_mask is None:
+ decoder_attention_mask = torch.ones_like(input_ids).to(input_ids.device)
+
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ return {
+ "flattened_patches": flattened_patches,
+ "decoder_input_ids": input_ids,
+ "past_key_values": past_key_values,
+ "encoder_outputs": encoder_outputs,
+ "attention_mask": attention_mask,
+ "decoder_attention_mask": decoder_attention_mask,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache,
+ }
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/processing_pix2struct.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/processing_pix2struct.py
new file mode 100644
index 0000000000000000000000000000000000000000..269fa8c62fb205f6e1bfe3e1e528a3f35fc742bd
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/processing_pix2struct.py
@@ -0,0 +1,163 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Processor class for Pix2Struct.
+"""
+
+from typing import List, Optional, Union
+
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
+from ...utils import TensorType
+
+
+class Pix2StructProcessor(ProcessorMixin):
+ r"""
+ Constructs a PIX2STRUCT processor which wraps a BERT tokenizer and PIX2STRUCT image processor into a single
+ processor.
+
+ [`Pix2StructProcessor`] offers all the functionalities of [`Pix2StructImageProcessor`] and [`T5TokenizerFast`]. See
+ the docstring of [`~Pix2StructProcessor.__call__`] and [`~Pix2StructProcessor.decode`] for more information.
+
+ Args:
+ image_processor (`Pix2StructImageProcessor`):
+ An instance of [`Pix2StructImageProcessor`]. The image processor is a required input.
+ tokenizer (Union[`T5TokenizerFast`, `T5Tokenizer`]):
+ An instance of ['T5TokenizerFast`] or ['T5Tokenizer`]. The tokenizer is a required input.
+ """
+
+ attributes = ["image_processor", "tokenizer"]
+ image_processor_class = "Pix2StructImageProcessor"
+ tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
+
+ def __init__(self, image_processor, tokenizer):
+ tokenizer.return_token_type_ids = False
+ super().__init__(image_processor, tokenizer)
+
+ def __call__(
+ self,
+ images=None,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ max_patches: Optional[int] = 2048,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_token_type_ids: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ This method uses [`Pix2StructImageProcessor.preprocess`] method to prepare image(s) for the model, and
+ [`T5TokenizerFast.__call__`] to prepare text for the model.
+
+ Please refer to the docstring of the above two methods for more information.
+ """
+ if images is None and text is None:
+ raise ValueError("You have to specify either images or text.")
+
+ # Get only text
+ if images is None and not self.image_processor.is_vqa:
+ self.current_processor = self.tokenizer
+ text_encoding = self.tokenizer(
+ text=text,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_token_type_ids=return_token_type_ids,
+ return_length=return_length,
+ verbose=verbose,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+ return text_encoding
+
+ if not self.image_processor.is_vqa:
+ # add pixel_values
+ encoding_image_processor = self.image_processor(
+ images, return_tensors=return_tensors, max_patches=max_patches, **kwargs
+ )
+ else:
+ # add pixel_values and bbox
+ encoding_image_processor = self.image_processor(
+ images, return_tensors=return_tensors, max_patches=max_patches, header_text=text, **kwargs
+ )
+
+ if text is not None and not self.image_processor.is_vqa:
+ text_encoding = self.tokenizer(
+ text=text,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_token_type_ids=return_token_type_ids,
+ return_length=return_length,
+ verbose=verbose,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+
+ if "attention_mask" in text_encoding:
+ text_encoding["decoder_attention_mask"] = text_encoding.pop("attention_mask")
+ if "input_ids" in text_encoding:
+ text_encoding["decoder_input_ids"] = text_encoding.pop("input_ids")
+ else:
+ text_encoding = None
+
+ if text_encoding is not None:
+ encoding_image_processor.update(text_encoding)
+
+ return encoding_image_processor
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
+ Please refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ image_processor_input_names = self.image_processor.model_input_names
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e8006e89e0f11d0c737697649adf654314612ec5
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__init__.py
@@ -0,0 +1,105 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_tf_available,
+ is_torch_available,
+ is_vision_available,
+)
+
+
+_import_structure = {
+ "configuration_sam": [
+ "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "SamConfig",
+ "SamMaskDecoderConfig",
+ "SamPromptEncoderConfig",
+ "SamVisionConfig",
+ ],
+ "processing_sam": ["SamProcessor"],
+}
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_sam"] = [
+ "SAM_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "SamModel",
+ "SamPreTrainedModel",
+ ]
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_sam"] = [
+ "TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFSamModel",
+ "TFSamPreTrainedModel",
+ ]
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["image_processing_sam"] = ["SamImageProcessor"]
+
+
+if TYPE_CHECKING:
+ from .configuration_sam import (
+ SAM_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ SamConfig,
+ SamMaskDecoderConfig,
+ SamPromptEncoderConfig,
+ SamVisionConfig,
+ )
+ from .processing_sam import SamProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_sam import SAM_PRETRAINED_MODEL_ARCHIVE_LIST, SamModel, SamPreTrainedModel
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_sam import TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST, TFSamModel, TFSamPreTrainedModel
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .image_processing_sam import SamImageProcessor
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9a3480edbda348ff205f14345087f88ec1408769
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/configuration_sam.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/configuration_sam.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..32e4eac94ce72a63bfd742a19ee2af49316722c1
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/configuration_sam.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/convert_sam_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/convert_sam_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7ebd2f17c9d0884887f279f4bbf56c0e840e9996
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/convert_sam_to_hf.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/image_processing_sam.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/image_processing_sam.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8f4e327e55f03d86df91d3f3b49fa2c38606bc46
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/image_processing_sam.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_sam.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_sam.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..01c3b0f2c3e9345d3a16d713fdf0d0cf1993871c
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_sam.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_tf_sam.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_tf_sam.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..75edba326e1254c9b56630e12d2ab3672295ca26
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_tf_sam.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/processing_sam.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/processing_sam.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a242a5a005368df74fbea1c1a81d92b4087354f9
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/processing_sam.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/configuration_sam.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/configuration_sam.py
new file mode 100644
index 0000000000000000000000000000000000000000..5afe75eb8eae4352dd0bd0100d04eee7b4dd994f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/configuration_sam.py
@@ -0,0 +1,309 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" SAM model configuration"""
+
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import SAM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class SamPromptEncoderConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`SamPromptEncoder`]. The [`SamPromptEncoder`]
+ module is used to encode the input 2D points and bounding boxes. Instantiating a configuration defaults will yield
+ a similar configuration to that of the SAM-vit-h
+ [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 256):
+ Dimensionality of the hidden states.
+ image_size (`int`, *optional*, defaults to 1024):
+ The expected output resolution of the image.
+ patch_size (`int`, *optional*, defaults to 16):
+ The size (resolution) of each patch.
+ mask_input_channels (`int`, *optional*, defaults to 16):
+ The number of channels to be fed to the `MaskDecoder` module.
+ num_point_embeddings (`int`, *optional*, defaults to 4):
+ The number of point embeddings to be used.
+ hidden_act (`str`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function in the encoder and pooler.
+ """
+
+ def __init__(
+ self,
+ hidden_size=256,
+ image_size=1024,
+ patch_size=16,
+ mask_input_channels=16,
+ num_point_embeddings=4,
+ hidden_act="gelu",
+ layer_norm_eps=1e-6,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.hidden_size = hidden_size
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.image_embedding_size = image_size // patch_size
+ self.mask_input_channels = mask_input_channels
+ self.num_point_embeddings = num_point_embeddings
+ self.hidden_act = hidden_act
+ self.layer_norm_eps = layer_norm_eps
+
+
+class SamMaskDecoderConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`SamMaskDecoder`]. It is used to instantiate a SAM
+ mask decoder to the specified arguments, defining the model architecture. Instantiating a configuration defaults
+ will yield a similar configuration to that of the SAM-vit-h
+ [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 256):
+ Dimensionality of the hidden states.
+ hidden_act (`str`, *optional*, defaults to `"relu"`):
+ The non-linear activation function used inside the `SamMaskDecoder` module.
+ mlp_dim (`int`, *optional*, defaults to 2048):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ num_hidden_layers (`int`, *optional*, defaults to 2):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 8):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ attention_downsample_rate (`int`, *optional*, defaults to 2):
+ The downsampling rate of the attention layer.
+ num_multimask_outputs (`int`, *optional*, defaults to 3):
+ The number of outputs from the `SamMaskDecoder` module. In the Segment Anything paper, this is set to 3.
+ iou_head_depth (`int`, *optional*, defaults to 3):
+ The number of layers in the IoU head module.
+ iou_head_hidden_dim (`int`, *optional*, defaults to 256):
+ The dimensionality of the hidden states in the IoU head module.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the layer normalization layers.
+
+ """
+
+ def __init__(
+ self,
+ hidden_size=256,
+ hidden_act="relu",
+ mlp_dim=2048,
+ num_hidden_layers=2,
+ num_attention_heads=8,
+ attention_downsample_rate=2,
+ num_multimask_outputs=3,
+ iou_head_depth=3,
+ iou_head_hidden_dim=256,
+ layer_norm_eps=1e-6,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.hidden_size = hidden_size
+ self.hidden_act = hidden_act
+ self.mlp_dim = mlp_dim
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.attention_downsample_rate = attention_downsample_rate
+ self.num_multimask_outputs = num_multimask_outputs
+ self.iou_head_depth = iou_head_depth
+ self.iou_head_hidden_dim = iou_head_hidden_dim
+ self.layer_norm_eps = layer_norm_eps
+
+
+class SamVisionConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`SamVisionModel`]. It is used to instantiate a SAM
+ vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
+ defaults will yield a similar configuration to that of the SAM ViT-h
+ [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ output_channels (`int`, *optional*, defaults to 256):
+ Dimensionality of the output channels in the Patch Encoder.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_channels (`int`, *optional*, defaults to 3):
+ Number of channels in the input image.
+ image_size (`int`, *optional*, defaults to 1024):
+ Expected resolution. Target size of the resized input image.
+ patch_size (`int`, *optional*, defaults to 16):
+ Size of the patches to be extracted from the input image.
+ hidden_act (`str`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string)
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the layer normalization layers.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 1e-10):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether to add a bias to query, key, value projections.
+ mlp_ratio (`float`, *optional*, defaults to 4.0):
+ Ratio of mlp hidden dim to embedding dim.
+ use_abs_pos (`bool`, *optional*, defaults to `True`):
+ Whether to use absolute position embedding.
+ use_rel_pos (`bool`, *optional*, defaults to `True`):
+ Whether to use relative position embedding.
+ window_size (`int`, *optional*, defaults to 14):
+ Window size for relative position.
+ global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`):
+ The indexes of the global attention layers.
+ num_pos_feats (`int`, *optional*, defaults to 128):
+ The dimensionality of the position embedding.
+ mlp_dim (`int`, *optional*):
+ The dimensionality of the MLP layer in the Transformer encoder. If `None`, defaults to `mlp_ratio *
+ hidden_size`.
+ """
+
+ def __init__(
+ self,
+ hidden_size=768,
+ output_channels=256,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ num_channels=3,
+ image_size=1024,
+ patch_size=16,
+ hidden_act="gelu",
+ layer_norm_eps=1e-06,
+ attention_dropout=0.0,
+ initializer_range=1e-10,
+ qkv_bias=True,
+ mlp_ratio=4.0,
+ use_abs_pos=True,
+ use_rel_pos=True,
+ window_size=14,
+ global_attn_indexes=[2, 5, 8, 11],
+ num_pos_feats=128,
+ mlp_dim=None,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.hidden_size = hidden_size
+ self.output_channels = output_channels
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.num_channels = num_channels
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.hidden_act = hidden_act
+ self.layer_norm_eps = layer_norm_eps
+ self.attention_dropout = attention_dropout
+ self.initializer_range = initializer_range
+ self.qkv_bias = qkv_bias
+ self.mlp_ratio = mlp_ratio
+ self.use_abs_pos = use_abs_pos
+ self.use_rel_pos = use_rel_pos
+ self.window_size = window_size
+ self.global_attn_indexes = global_attn_indexes
+ self.num_pos_feats = num_pos_feats
+ self.mlp_dim = int(hidden_size * mlp_ratio) if mlp_dim is None else mlp_dim
+
+
+class SamConfig(PretrainedConfig):
+ r"""
+ [`SamConfig`] is the configuration class to store the configuration of a [`SamModel`]. It is used to instantiate a
+ SAM model according to the specified arguments, defining the vision model, prompt-encoder model and mask decoder
+ configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
+ SAM-ViT-H [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vision_config (Union[`dict`, `SamVisionConfig`], *optional*):
+ Dictionary of configuration options used to initialize [`SamVisionConfig`].
+ prompt_encoder_config (Union[`dict`, `SamPromptEncoderConfig`], *optional*):
+ Dictionary of configuration options used to initialize [`SamPromptEncoderConfig`].
+ mask_decoder_config (Union[`dict`, `SamMaskDecoderConfig`], *optional*):
+ Dictionary of configuration options used to initialize [`SamMaskDecoderConfig`].
+
+ kwargs (*optional*):
+ Dictionary of keyword arguments.
+
+ Example:
+
+ ```python
+ >>> from transformers import (
+ ... SamVisionConfig,
+ ... SamPromptEncoderConfig,
+ ... SamMaskDecoderConfig,
+ ... SamModel,
+ ... )
+
+ >>> # Initializing a SamConfig with `"facebook/sam-vit-huge"` style configuration
+ >>> configuration = SamConfig()
+
+ >>> # Initializing a SamModel (with random weights) from the `"facebook/sam-vit-huge"` style configuration
+ >>> model = SamModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+
+ >>> # We can also initialize a SamConfig from a SamVisionConfig, SamPromptEncoderConfig, and SamMaskDecoderConfig
+
+ >>> # Initializing SAM vision, SAM Q-Former and language model configurations
+ >>> vision_config = SamVisionConfig()
+ >>> prompt_encoder_config = SamPromptEncoderConfig()
+ >>> mask_decoder_config = SamMaskDecoderConfig()
+
+ >>> config = SamConfig(vision_config, prompt_encoder_config, mask_decoder_config)
+ ```"""
+
+ model_type = "sam"
+
+ def __init__(
+ self,
+ vision_config=None,
+ prompt_encoder_config=None,
+ mask_decoder_config=None,
+ initializer_range=0.02,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ vision_config = vision_config if vision_config is not None else {}
+ prompt_encoder_config = prompt_encoder_config if prompt_encoder_config is not None else {}
+ mask_decoder_config = mask_decoder_config if mask_decoder_config is not None else {}
+
+ if isinstance(vision_config, SamVisionConfig):
+ vision_config = vision_config.to_dict()
+ if isinstance(prompt_encoder_config, SamPromptEncoderConfig):
+ prompt_encoder_config = prompt_encoder_config.to_dict()
+ if isinstance(mask_decoder_config, SamMaskDecoderConfig):
+ mask_decoder_config = mask_decoder_config.to_dict()
+
+ self.vision_config = SamVisionConfig(**vision_config)
+ self.prompt_encoder_config = SamPromptEncoderConfig(**prompt_encoder_config)
+ self.mask_decoder_config = SamMaskDecoderConfig(**mask_decoder_config)
+ self.initializer_range = initializer_range
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/convert_sam_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/convert_sam_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..be375494f059d0a2c5065ab59375997b8a8c4798
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/convert_sam_to_hf.py
@@ -0,0 +1,250 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Convert SAM checkpoints from the original repository.
+
+URL: https://github.com/facebookresearch/segment-anything.
+
+Also supports converting the SlimSAM checkpoints from https://github.com/czg1225/SlimSAM/tree/master.
+"""
+import argparse
+import re
+
+import numpy as np
+import requests
+import torch
+from huggingface_hub import hf_hub_download
+from PIL import Image
+
+from transformers import (
+ SamConfig,
+ SamImageProcessor,
+ SamModel,
+ SamProcessor,
+ SamVisionConfig,
+)
+
+
+def get_config(model_name):
+ if "slimsam-50" in model_name:
+ vision_config = SamVisionConfig(
+ hidden_size=384,
+ mlp_dim=1536,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ global_attn_indexes=[2, 5, 8, 11],
+ )
+ elif "slimsam-77" in model_name:
+ vision_config = SamVisionConfig(
+ hidden_size=168,
+ mlp_dim=696,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ global_attn_indexes=[2, 5, 8, 11],
+ )
+ elif "sam_vit_b" in model_name:
+ vision_config = SamVisionConfig()
+ elif "sam_vit_l" in model_name:
+ vision_config = SamVisionConfig(
+ hidden_size=1024,
+ num_hidden_layers=24,
+ num_attention_heads=16,
+ global_attn_indexes=[5, 11, 17, 23],
+ )
+ elif "sam_vit_h" in model_name:
+ vision_config = SamVisionConfig(
+ hidden_size=1280,
+ num_hidden_layers=32,
+ num_attention_heads=16,
+ global_attn_indexes=[7, 15, 23, 31],
+ )
+
+ config = SamConfig(
+ vision_config=vision_config,
+ )
+
+ return config
+
+
+KEYS_TO_MODIFY_MAPPING = {
+ "iou_prediction_head.layers.0": "iou_prediction_head.proj_in",
+ "iou_prediction_head.layers.1": "iou_prediction_head.layers.0",
+ "iou_prediction_head.layers.2": "iou_prediction_head.proj_out",
+ "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1",
+ "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm",
+ "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2",
+ "mask_downscaling.0": "mask_embed.conv1",
+ "mask_downscaling.1": "mask_embed.layer_norm1",
+ "mask_downscaling.3": "mask_embed.conv2",
+ "mask_downscaling.4": "mask_embed.layer_norm2",
+ "mask_downscaling.6": "mask_embed.conv3",
+ "point_embeddings": "point_embed",
+ "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding",
+ "image_encoder": "vision_encoder",
+ "neck.0": "neck.conv1",
+ "neck.1": "neck.layer_norm1",
+ "neck.2": "neck.conv2",
+ "neck.3": "neck.layer_norm2",
+ "patch_embed.proj": "patch_embed.projection",
+ ".norm": ".layer_norm",
+ "blocks": "layers",
+}
+
+
+def replace_keys(state_dict):
+ model_state_dict = {}
+ state_dict.pop("pixel_mean", None)
+ state_dict.pop("pixel_std", None)
+
+ output_hypernetworks_mlps_pattern = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"
+
+ for key, value in state_dict.items():
+ for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
+ if key_to_modify in key:
+ key = key.replace(key_to_modify, new_key)
+
+ if re.match(output_hypernetworks_mlps_pattern, key):
+ layer_nb = int(re.match(output_hypernetworks_mlps_pattern, key).group(2))
+ if layer_nb == 0:
+ key = key.replace("layers.0", "proj_in")
+ elif layer_nb == 1:
+ key = key.replace("layers.1", "layers.0")
+ elif layer_nb == 2:
+ key = key.replace("layers.2", "proj_out")
+
+ model_state_dict[key] = value
+
+ model_state_dict["shared_image_embedding.positional_embedding"] = model_state_dict[
+ "prompt_encoder.shared_embedding.positional_embedding"
+ ]
+
+ return model_state_dict
+
+
+def convert_sam_checkpoint(model_name, checkpoint_path, pytorch_dump_folder, push_to_hub):
+ config = get_config(model_name)
+
+ state_dict = torch.load(checkpoint_path, map_location="cpu")
+ state_dict = replace_keys(state_dict)
+
+ image_processor = SamImageProcessor()
+ processor = SamProcessor(image_processor=image_processor)
+ hf_model = SamModel(config)
+ hf_model.eval()
+
+ device = "cuda" if torch.cuda.is_available() else "cpu"
+
+ hf_model.load_state_dict(state_dict)
+ hf_model = hf_model.to(device)
+
+ img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
+
+ input_points = [[[500, 375]]]
+ input_labels = [[1]]
+
+ inputs = processor(images=np.array(raw_image), return_tensors="pt").to(device)
+
+ with torch.no_grad():
+ output = hf_model(**inputs)
+ scores = output.iou_scores.squeeze()
+
+ if model_name == "sam_vit_b_01ec64":
+ inputs = processor(
+ images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt"
+ ).to(device)
+
+ with torch.no_grad():
+ output = hf_model(**inputs)
+ scores = output.iou_scores.squeeze()
+
+ elif model_name == "sam_vit_h_4b8939":
+ inputs = processor(
+ images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt"
+ ).to(device)
+
+ with torch.no_grad():
+ output = hf_model(**inputs)
+ scores = output.iou_scores.squeeze()
+
+ assert scores[-1].item() == 0.9712603092193604
+
+ input_boxes = ((75, 275, 1725, 850),)
+
+ inputs = processor(images=np.array(raw_image), input_boxes=input_boxes, return_tensors="pt").to(device)
+
+ with torch.no_grad():
+ output = hf_model(**inputs)
+ scores = output.iou_scores.squeeze()
+
+ assert scores[-1].item() == 0.8686015605926514
+
+ # Test with 2 points and 1 image.
+ input_points = [[[400, 650], [800, 650]]]
+ input_labels = [[1, 1]]
+
+ inputs = processor(
+ images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt"
+ ).to(device)
+
+ with torch.no_grad():
+ output = hf_model(**inputs)
+ scores = output.iou_scores.squeeze()
+
+ assert scores[-1].item() == 0.9936047792434692
+
+ if pytorch_dump_folder is not None:
+ processor.save_pretrained(pytorch_dump_folder)
+ hf_model.save_pretrained(pytorch_dump_folder)
+
+ if push_to_hub:
+ repo_id = f"nielsr/{model_name}" if "slimsam" in model_name else f"meta/{model_name}"
+ processor.push_to_hub(repo_id)
+ hf_model.push_to_hub(repo_id)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ choices = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195", "slimsam-50-uniform", "slimsam-77-uniform"]
+ parser.add_argument(
+ "--model_name",
+ default="sam_vit_h_4b8939",
+ choices=choices,
+ type=str,
+ help="Name of the original model to convert",
+ )
+ parser.add_argument(
+ "--checkpoint_path",
+ type=str,
+ required=False,
+ help="Path to the original checkpoint",
+ )
+ parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
+ parser.add_argument(
+ "--push_to_hub",
+ action="store_true",
+ help="Whether to push the model and processor to the hub after converting",
+ )
+
+ args = parser.parse_args()
+
+ if "slimsam" in args.model_name:
+ checkpoint_path = args.checkpoint_path
+ if checkpoint_path is None:
+ raise ValueError("You need to provide a checkpoint path for SlimSAM models.")
+ else:
+ checkpoint_path = hf_hub_download("ybelkada/segment-anything", f"checkpoints/{args.model_name}.pth")
+
+ convert_sam_checkpoint(args.model_name, checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/image_processing_sam.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/image_processing_sam.py
new file mode 100644
index 0000000000000000000000000000000000000000..ccdc72fc7baadb24f420e1d556eb96159c5c4b72
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/image_processing_sam.py
@@ -0,0 +1,1496 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for SAM."""
+import math
+from copy import deepcopy
+from itertools import product
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format
+from ...image_utils import (
+ IMAGENET_DEFAULT_MEAN,
+ IMAGENET_DEFAULT_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ get_image_size,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import (
+ TensorType,
+ is_tf_available,
+ is_torch_available,
+ is_torchvision_available,
+ logging,
+ requires_backends,
+)
+
+
+if is_torch_available():
+ import torch
+ import torch.nn.functional as F
+
+if is_torchvision_available():
+ from torchvision.ops.boxes import batched_nms
+
+if is_tf_available():
+ import tensorflow as tf
+ from tensorflow.experimental import numpy as tnp
+
+ from ...tf_utils import flatten, shape_list
+
+logger = logging.get_logger(__name__)
+
+
+class SamImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a SAM image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
+ `do_resize` parameter in the `preprocess` method.
+ size (`dict`, *optional*, defaults to `{"longest_edge": 1024}`):
+ Size of the output image after resizing. Resizes the longest edge of the image to match
+ `size["longest_edge"]` while maintaining the aspect ratio. Can be overridden by the `size` parameter in the
+ `preprocess` method.
+ mask_size (`dict`, *optional*, defaults to `{"longest_edge": 256}`):
+ Size of the output segmentation map after resizing. Resizes the longest edge of the image to match
+ `size["longest_edge"]` while maintaining the aspect ratio. Can be overridden by the `mask_size` parameter
+ in the `preprocess` method.
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
+ Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
+ `preprocess` method.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
+ `do_rescale` parameter in the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
+ overridden by the `rescale_factor` parameter in the `preprocess` method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
+ method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
+ overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
+ do_pad (`bool`, *optional*, defaults to `True`):
+ Whether to pad the image to the specified `pad_size`. Can be overridden by the `do_pad` parameter in the
+ `preprocess` method.
+ pad_size (`dict`, *optional*, defaults to `{"height": 1024, "width": 1024}`):
+ Size of the output image after padding. Can be overridden by the `pad_size` parameter in the `preprocess`
+ method.
+ mask_pad_size (`dict`, *optional*, defaults to `{"height": 256, "width": 256}`):
+ Size of the output segmentation map after padding. Can be overridden by the `mask_pad_size` parameter in
+ the `preprocess` method.
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
+ Whether to convert the image to RGB.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ mask_size: Dict[str, int] = None,
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_pad: bool = True,
+ pad_size: int = None,
+ mask_pad_size: int = None,
+ do_convert_rgb: bool = True,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ size = size if size is not None else {"longest_edge": 1024}
+ size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size
+
+ pad_size = pad_size if pad_size is not None else {"height": 1024, "width": 1024}
+ pad_size = get_size_dict(pad_size, default_to_square=True)
+
+ mask_size = mask_size if mask_size is not None else {"longest_edge": 256}
+ mask_size = (
+ get_size_dict(max_size=mask_size, default_to_square=False)
+ if not isinstance(mask_size, dict)
+ else mask_size
+ )
+
+ mask_pad_size = mask_pad_size if mask_pad_size is not None else {"height": 256, "width": 256}
+ mask_pad_size = get_size_dict(mask_pad_size, default_to_square=True)
+
+ self.do_resize = do_resize
+ self.size = size
+ self.mask_size = mask_size
+ self.resample = resample
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_normalize = do_normalize
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
+ self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
+ self.do_pad = do_pad
+ self.pad_size = pad_size
+ self.mask_pad_size = mask_pad_size
+ self.do_convert_rgb = do_convert_rgb
+ self._valid_processor_keys = [
+ "images",
+ "segmentation_maps",
+ "do_resize",
+ "size",
+ "mask_size",
+ "resample",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "do_pad",
+ "pad_size",
+ "mask_pad_size",
+ "do_convert_rgb",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ def pad_image(
+ self,
+ image: np.ndarray,
+ pad_size: Dict[str, int],
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Pad an image to `(pad_size["height"], pad_size["width"])` with zeros to the right and bottom.
+
+ Args:
+ image (`np.ndarray`):
+ Image to pad.
+ pad_size (`Dict[str, int]`):
+ Size of the output image after padding.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The data format of the image. Can be either "channels_first" or "channels_last". If `None`, the
+ `data_format` of the `image` will be used.
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ output_height, output_width = pad_size["height"], pad_size["width"]
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
+
+ pad_width = output_width - input_width
+ pad_height = output_height - input_height
+
+ padded_image = pad(
+ image,
+ ((0, pad_height), (0, pad_width)),
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+ return padded_image
+
+ def _get_preprocess_shape(self, old_shape: Tuple[int, int], longest_edge: int):
+ """
+ Compute the output size given input size and target long side length.
+ """
+ oldh, oldw = old_shape
+ scale = longest_edge * 1.0 / max(oldh, oldw)
+ newh, neww = oldh * scale, oldw * scale
+ newh = int(newh + 0.5)
+ neww = int(neww + 0.5)
+ return (newh, neww)
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize an image to `(size["height"], size["width"])`.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Dictionary in the format `{"longest_edge": int}` specifying the size of the output image. The longest
+ edge of the image will be resized to the specified size, while the other edge will be resized to
+ maintain the aspect ratio.
+ resample:
+ `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
+ data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
+ image is used. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+
+ Returns:
+ `np.ndarray`: The resized image.
+ """
+ size = get_size_dict(size)
+ if "longest_edge" not in size:
+ raise ValueError(f"The `size` dictionary must contain the key `longest_edge`. Got {size.keys()}")
+ input_size = get_image_size(image, channel_dim=input_data_format)
+ output_height, output_width = self._get_preprocess_shape(input_size, size["longest_edge"])
+ return resize(
+ image,
+ size=(output_height, output_width),
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def _preprocess(
+ self,
+ image: ImageInput,
+ do_resize: bool,
+ do_rescale: bool,
+ do_normalize: bool,
+ size: Optional[Dict[str, int]] = None,
+ resample: PILImageResampling = None,
+ rescale_factor: Optional[float] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_pad: Optional[bool] = None,
+ pad_size: Optional[Dict[str, int]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ):
+ if do_resize:
+ image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
+ reshaped_input_size = get_image_size(image, channel_dim=input_data_format)
+
+ if do_rescale:
+ image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+
+ if do_normalize:
+ image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+
+ if do_pad:
+ image = self.pad_image(image=image, pad_size=pad_size, input_data_format=input_data_format)
+
+ return image, reshaped_input_size
+
+ def _preprocess_image(
+ self,
+ image: ImageInput,
+ do_resize: Optional[bool] = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_rescale: bool = None,
+ rescale_factor: Optional[float] = None,
+ do_normalize: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_pad: Optional[bool] = None,
+ pad_size: Optional[Dict[str, int]] = None,
+ do_convert_rgb: Optional[bool] = None,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> Tuple[np.ndarray, Tuple[int, int], Tuple[int, int]]:
+ image = to_numpy_array(image)
+
+ # PIL RGBA images are converted to RGB
+ if do_convert_rgb:
+ image = convert_to_rgb(image)
+
+ # All transformations expect numpy arrays.
+ image = to_numpy_array(image)
+
+ if is_scaled_image(image) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(image)
+
+ original_size = get_image_size(image, channel_dim=input_data_format)
+
+ image, reshaped_input_size = self._preprocess(
+ image=image,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_pad=do_pad,
+ pad_size=pad_size,
+ input_data_format=input_data_format,
+ )
+
+ if data_format is not None:
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
+
+ return image, original_size, reshaped_input_size
+
+ def _preprocess_mask(
+ self,
+ segmentation_map: ImageInput,
+ do_resize: Optional[bool] = None,
+ mask_size: Dict[str, int] = None,
+ do_pad: Optional[bool] = None,
+ mask_pad_size: Optional[Dict[str, int]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ segmentation_map = to_numpy_array(segmentation_map)
+
+ # Add channel dimension if missing - needed for certain transformations
+ if segmentation_map.ndim == 2:
+ added_channel_dim = True
+ segmentation_map = segmentation_map[None, ...]
+ input_data_format = ChannelDimension.FIRST
+ else:
+ added_channel_dim = False
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
+
+ original_size = get_image_size(segmentation_map, channel_dim=input_data_format)
+
+ segmentation_map, _ = self._preprocess(
+ image=segmentation_map,
+ do_resize=do_resize,
+ size=mask_size,
+ resample=PILImageResampling.NEAREST,
+ do_rescale=False,
+ do_normalize=False,
+ do_pad=do_pad,
+ pad_size=mask_pad_size,
+ input_data_format=input_data_format,
+ )
+
+ # Remove extra channel dimension if added for processing
+ if added_channel_dim:
+ segmentation_map = segmentation_map.squeeze(0)
+ segmentation_map = segmentation_map.astype(np.int64)
+
+ return segmentation_map, original_size
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ segmentation_maps: Optional[ImageInput] = None,
+ do_resize: Optional[bool] = None,
+ size: Optional[Dict[str, int]] = None,
+ mask_size: Optional[Dict[str, int]] = None,
+ resample: Optional["PILImageResampling"] = None,
+ do_rescale: Optional[bool] = None,
+ rescale_factor: Optional[Union[int, float]] = None,
+ do_normalize: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_pad: Optional[bool] = None,
+ pad_size: Optional[Dict[str, int]] = None,
+ mask_pad_size: Optional[Dict[str, int]] = None,
+ do_convert_rgb: Optional[bool] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: ChannelDimension = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ):
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ segmentation_maps (`ImageInput`, *optional*):
+ Segmentation map to preprocess.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Controls the size of the image after `resize`. The longest edge of the image is resized to
+ `size["longest_edge"]` whilst preserving the aspect ratio.
+ mask_size (`Dict[str, int]`, *optional*, defaults to `self.mask_size`):
+ Controls the size of the segmentation map after `resize`. The longest edge of the image is resized to
+ `size["longest_edge"]` whilst preserving the aspect ratio.
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
+ `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image pixel values by rescaling factor.
+ rescale_factor (`int` or `float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to apply to the image pixel values.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to normalize the image by if `do_normalize` is set to `True`.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
+ do_pad (`bool`, *optional*, defaults to `self.do_pad`):
+ Whether to pad the image.
+ pad_size (`Dict[str, int]`, *optional*, defaults to `self.pad_size`):
+ Controls the size of the padding applied to the image. The image is padded to `pad_size["height"]` and
+ `pad_size["width"]` if `do_pad` is set to `True`.
+ mask_pad_size (`Dict[str, int]`, *optional*, defaults to `self.mask_pad_size`):
+ Controls the size of the padding applied to the segmentation map. The image is padded to
+ `mask_pad_size["height"]` and `mask_pad_size["width"]` if `do_pad` is set to `True`.
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
+ Whether to convert the image to RGB.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ size = size if size is not None else self.size
+ size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size
+ mask_size = mask_size if mask_size is not None else self.mask_size
+ mask_size = (
+ get_size_dict(max_size=mask_size, default_to_square=False)
+ if not isinstance(mask_size, dict)
+ else mask_size
+ )
+ resample = resample if resample is not None else self.resample
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+ do_pad = do_pad if do_pad is not None else self.do_pad
+ pad_size = pad_size if pad_size is not None else self.pad_size
+ pad_size = get_size_dict(pad_size, default_to_square=True)
+ mask_pad_size = mask_pad_size if mask_pad_size is not None else self.mask_pad_size
+ mask_pad_size = get_size_dict(mask_pad_size, default_to_square=True)
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
+
+ images = make_list_of_images(images)
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ if segmentation_maps is not None:
+ segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
+
+ if not valid_images(segmentation_maps):
+ raise ValueError(
+ "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_pad=do_pad,
+ size_divisibility=pad_size, # Here _preprocess needs do_pad and pad_size.
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ images, original_sizes, reshaped_input_sizes = zip(
+ *(
+ self._preprocess_image(
+ image=img,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_pad=do_pad,
+ pad_size=pad_size,
+ do_convert_rgb=do_convert_rgb,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ for img in images
+ )
+ )
+
+ data = {
+ "pixel_values": images,
+ "original_sizes": original_sizes,
+ "reshaped_input_sizes": reshaped_input_sizes,
+ }
+
+ if segmentation_maps is not None:
+ segmentation_maps, original_mask_sizes = zip(
+ *(
+ self._preprocess_mask(
+ segmentation_map=mask,
+ do_resize=do_resize,
+ mask_size=mask_size,
+ do_pad=do_pad,
+ mask_pad_size=mask_pad_size,
+ input_data_format=input_data_format,
+ )
+ for mask in segmentation_maps
+ )
+ )
+
+ # masks should start out the same size as input images
+ assert all(
+ original_im_size == original_mask_size
+ for original_im_size, original_mask_size in zip(original_sizes, original_mask_sizes)
+ ), "Segmentation maps should be the same size as input images."
+
+ data["labels"] = segmentation_maps
+
+ return BatchFeature(data=data, tensor_type=return_tensors)
+
+ def post_process_masks(
+ self,
+ masks,
+ original_sizes,
+ reshaped_input_sizes,
+ mask_threshold=0.0,
+ binarize=True,
+ pad_size=None,
+ return_tensors="pt",
+ ):
+ """
+ Remove padding and upscale masks to the original image size.
+
+ Args:
+ masks (`Union[List[torch.Tensor], List[np.ndarray], List[tf.Tensor]]`):
+ Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format.
+ original_sizes (`Union[torch.Tensor, tf.Tensor, List[Tuple[int,int]]]`):
+ The original sizes of each image before it was resized to the model's expected input shape, in (height,
+ width) format.
+ reshaped_input_sizes (`Union[torch.Tensor, tf.Tensor, List[Tuple[int,int]]]`):
+ The size of each image as it is fed to the model, in (height, width) format. Used to remove padding.
+ mask_threshold (`float`, *optional*, defaults to 0.0):
+ The threshold to use for binarizing the masks.
+ binarize (`bool`, *optional*, defaults to `True`):
+ Whether to binarize the masks.
+ pad_size (`int`, *optional*, defaults to `self.pad_size`):
+ The target size the images were padded to before being passed to the model. If None, the target size is
+ assumed to be the processor's `pad_size`.
+ return_tensors (`str`, *optional*, defaults to `"pt"`):
+ If `"pt"`, return PyTorch tensors. If `"tf"`, return TensorFlow tensors.
+ Returns:
+ (`Union[torch.Tensor, tf.Tensor]`): Batched masks in batch_size, num_channels, height, width) format, where
+ (height, width) is given by original_size.
+ """
+ if return_tensors == "pt":
+ return self._post_process_masks_pt(
+ masks=masks,
+ original_sizes=original_sizes,
+ reshaped_input_sizes=reshaped_input_sizes,
+ mask_threshold=mask_threshold,
+ binarize=binarize,
+ pad_size=pad_size,
+ )
+ elif return_tensors == "tf":
+ return self._post_process_masks_tf(
+ masks=masks,
+ original_sizes=original_sizes,
+ reshaped_input_sizes=reshaped_input_sizes,
+ mask_threshold=mask_threshold,
+ binarize=binarize,
+ pad_size=pad_size,
+ )
+ else:
+ raise ValueError("return_tensors must be either 'pt' or 'tf'")
+
+ def _post_process_masks_pt(
+ self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None
+ ):
+ """
+ Remove padding and upscale masks to the original image size.
+
+ Args:
+ masks (`Union[List[torch.Tensor], List[np.ndarray]]`):
+ Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format.
+ original_sizes (`Union[torch.Tensor, List[Tuple[int,int]]]`):
+ The original sizes of each image before it was resized to the model's expected input shape, in (height,
+ width) format.
+ reshaped_input_sizes (`Union[torch.Tensor, List[Tuple[int,int]]]`):
+ The size of each image as it is fed to the model, in (height, width) format. Used to remove padding.
+ mask_threshold (`float`, *optional*, defaults to 0.0):
+ The threshold to use for binarizing the masks.
+ binarize (`bool`, *optional*, defaults to `True`):
+ Whether to binarize the masks.
+ pad_size (`int`, *optional*, defaults to `self.pad_size`):
+ The target size the images were padded to before being passed to the model. If None, the target size is
+ assumed to be the processor's `pad_size`.
+ Returns:
+ (`torch.Tensor`): Batched masks in batch_size, num_channels, height, width) format, where (height, width)
+ is given by original_size.
+ """
+ requires_backends(self, ["torch"])
+ pad_size = self.pad_size if pad_size is None else pad_size
+ target_image_size = (pad_size["height"], pad_size["width"])
+ if isinstance(original_sizes, (torch.Tensor, np.ndarray)):
+ original_sizes = original_sizes.tolist()
+ if isinstance(reshaped_input_sizes, (torch.Tensor, np.ndarray)):
+ reshaped_input_sizes = reshaped_input_sizes.tolist()
+ output_masks = []
+ for i, original_size in enumerate(original_sizes):
+ if isinstance(masks[i], np.ndarray):
+ masks[i] = torch.from_numpy(masks[i])
+ elif not isinstance(masks[i], torch.Tensor):
+ raise ValueError("Input masks should be a list of `torch.tensors` or a list of `np.ndarray`")
+ interpolated_mask = F.interpolate(masks[i], target_image_size, mode="bilinear", align_corners=False)
+ interpolated_mask = interpolated_mask[..., : reshaped_input_sizes[i][0], : reshaped_input_sizes[i][1]]
+ interpolated_mask = F.interpolate(interpolated_mask, original_size, mode="bilinear", align_corners=False)
+ if binarize:
+ interpolated_mask = interpolated_mask > mask_threshold
+ output_masks.append(interpolated_mask)
+
+ return output_masks
+
+ def _post_process_masks_tf(
+ self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None
+ ):
+ """
+ Remove padding and upscale masks to the original image size.
+
+ Args:
+ masks (`tf.Tensor`):
+ Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format.
+ original_sizes (`tf.Tensor`):
+ The original size of the images before resizing for input to the model, in (height, width) format.
+ reshaped_input_sizes (`tf.Tensor`):
+ The size of the image input to the model, in (height, width) format. Used to remove padding.
+ mask_threshold (`float`, *optional*, defaults to 0.0):
+ The threshold to use for binarizing the masks.
+ binarize (`bool`, *optional*, defaults to `True`):
+ Whether to binarize the masks.
+ pad_size (`int`, *optional*, defaults to `self.pad_size`):
+ The target size the images were padded to before being passed to the model. If None, the target size is
+ assumed to be the processor's `pad_size`.
+ Returns:
+ (`tf.Tensor`): Batched masks in batch_size, num_channels, height, width) format, where (height, width) is
+ given by original_size.
+ """
+ requires_backends(self, ["tf"])
+ pad_size = self.pad_size if pad_size is None else pad_size
+ target_image_size = (pad_size["height"], pad_size["width"])
+
+ output_masks = []
+ for i, original_size in enumerate(original_sizes):
+ # tf.image expects NHWC, we transpose the NCHW inputs for it
+ mask = tf.transpose(masks[i], perm=[0, 2, 3, 1])
+ interpolated_mask = tf.image.resize(mask, target_image_size, method="bilinear")
+ interpolated_mask = interpolated_mask[:, : reshaped_input_sizes[i][0], : reshaped_input_sizes[i][1], :]
+ interpolated_mask = tf.image.resize(interpolated_mask, original_size, method="bilinear")
+ if binarize:
+ interpolated_mask = interpolated_mask > mask_threshold
+ # And then we transpose them back at the end
+ output_masks.append(tf.transpose(interpolated_mask, perm=[0, 3, 1, 2]))
+
+ return output_masks
+
+ def post_process_for_mask_generation(
+ self, all_masks, all_scores, all_boxes, crops_nms_thresh, return_tensors="pt"
+ ):
+ """
+ Post processes mask that are generated by calling the Non Maximum Suppression algorithm on the predicted masks.
+
+ Args:
+ all_masks (`Union[List[torch.Tensor], List[tf.Tensor]]`):
+ List of all predicted segmentation masks
+ all_scores (`Union[List[torch.Tensor], List[tf.Tensor]]`):
+ List of all predicted iou scores
+ all_boxes (`Union[List[torch.Tensor], List[tf.Tensor]]`):
+ List of all bounding boxes of the predicted masks
+ crops_nms_thresh (`float`):
+ Threshold for NMS (Non Maximum Suppression) algorithm.
+ return_tensors (`str`, *optional*, defaults to `pt`):
+ If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`.
+ """
+ if return_tensors == "pt":
+ return _postprocess_for_mg(all_masks, all_scores, all_boxes, crops_nms_thresh)
+ elif return_tensors == "tf":
+ return _postprocess_for_mg_tf(all_masks, all_scores, all_boxes, crops_nms_thresh)
+
+ def generate_crop_boxes(
+ self,
+ image,
+ target_size,
+ crop_n_layers: int = 0,
+ overlap_ratio: float = 512 / 1500,
+ points_per_crop: Optional[int] = 32,
+ crop_n_points_downscale_factor: Optional[List[int]] = 1,
+ device: Optional["torch.device"] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ return_tensors: str = "pt",
+ ):
+ """
+ Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer.
+
+ Args:
+ image (`np.array`):
+ Input original image
+ target_size (`int`):
+ Target size of the resized image
+ crop_n_layers (`int`, *optional*, defaults to 0):
+ If >0, mask prediction will be run again on crops of the image. Sets the number of layers to run, where
+ each layer has 2**i_layer number of image crops.
+ overlap_ratio (`float`, *optional*, defaults to 512/1500):
+ Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of
+ the image length. Later layers with more crops scale down this overlap.
+ points_per_crop (`int`, *optional*, defaults to 32):
+ Number of points to sample from each crop.
+ crop_n_points_downscale_factor (`List[int]`, *optional*, defaults to 1):
+ The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
+ device (`torch.device`, *optional*, defaults to None):
+ Device to use for the computation. If None, cpu will be used.
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ return_tensors (`str`, *optional*, defaults to `pt`):
+ If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`.
+ """
+ crop_boxes, points_per_crop, cropped_images, input_labels = _generate_crop_boxes(
+ image,
+ target_size,
+ crop_n_layers,
+ overlap_ratio,
+ points_per_crop,
+ crop_n_points_downscale_factor,
+ input_data_format,
+ )
+ if return_tensors == "pt":
+ if device is None:
+ device = torch.device("cpu")
+ crop_boxes = torch.tensor(crop_boxes, device=device)
+ points_per_crop = torch.tensor(points_per_crop, device=device)
+ # cropped_images stays as np
+ input_labels = torch.tensor(input_labels, device=device)
+
+ elif return_tensors == "tf":
+ if device is not None:
+ raise ValueError("device is not a supported argument when return_tensors is tf!")
+ crop_boxes = tf.convert_to_tensor(crop_boxes)
+ points_per_crop = tf.convert_to_tensor(points_per_crop)
+ # cropped_images stays as np
+ input_labels = tf.convert_to_tensor(input_labels)
+ else:
+ raise ValueError("return_tensors must be either 'pt' or 'tf'.")
+ return crop_boxes, points_per_crop, cropped_images, input_labels
+
+ def filter_masks(
+ self,
+ masks,
+ iou_scores,
+ original_size,
+ cropped_box_image,
+ pred_iou_thresh=0.88,
+ stability_score_thresh=0.95,
+ mask_threshold=0,
+ stability_score_offset=1,
+ return_tensors="pt",
+ ):
+ """
+ Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being
+ that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability
+ score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to
+ bounding boxes and pad the predicted masks if necessary.
+
+ Args:
+ masks (`Union[torch.Tensor, tf.Tensor]`):
+ Input masks.
+ iou_scores (`Union[torch.Tensor, tf.Tensor]`):
+ List of IoU scores.
+ original_size (`Tuple[int,int]`):
+ Size of the orginal image.
+ cropped_box_image (`np.array`):
+ The cropped image.
+ pred_iou_thresh (`float`, *optional*, defaults to 0.88):
+ The threshold for the iou scores.
+ stability_score_thresh (`float`, *optional*, defaults to 0.95):
+ The threshold for the stability score.
+ mask_threshold (`float`, *optional*, defaults to 0):
+ The threshold for the predicted masks.
+ stability_score_offset (`float`, *optional*, defaults to 1):
+ The offset for the stability score used in the `_compute_stability_score` method.
+ return_tensors (`str`, *optional*, defaults to `pt`):
+ If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`.
+ """
+ if return_tensors == "pt":
+ return self._filter_masks_pt(
+ masks=masks,
+ iou_scores=iou_scores,
+ original_size=original_size,
+ cropped_box_image=cropped_box_image,
+ pred_iou_thresh=pred_iou_thresh,
+ stability_score_thresh=stability_score_thresh,
+ mask_threshold=mask_threshold,
+ stability_score_offset=stability_score_offset,
+ )
+ elif return_tensors == "tf":
+ return self._filter_masks_tf(
+ masks=masks,
+ iou_scores=iou_scores,
+ original_size=original_size,
+ cropped_box_image=cropped_box_image,
+ pred_iou_thresh=pred_iou_thresh,
+ stability_score_thresh=stability_score_thresh,
+ mask_threshold=mask_threshold,
+ stability_score_offset=stability_score_offset,
+ )
+
+ def _filter_masks_pt(
+ self,
+ masks,
+ iou_scores,
+ original_size,
+ cropped_box_image,
+ pred_iou_thresh=0.88,
+ stability_score_thresh=0.95,
+ mask_threshold=0,
+ stability_score_offset=1,
+ ):
+ """
+ Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being
+ that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability
+ score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to
+ bounding boxes and pad the predicted masks if necessary.
+
+ Args:
+ masks (`torch.Tensor`):
+ Input masks.
+ iou_scores (`torch.Tensor`):
+ List of IoU scores.
+ original_size (`Tuple[int,int]`):
+ Size of the orginal image.
+ cropped_box_image (`np.array`):
+ The cropped image.
+ pred_iou_thresh (`float`, *optional*, defaults to 0.88):
+ The threshold for the iou scores.
+ stability_score_thresh (`float`, *optional*, defaults to 0.95):
+ The threshold for the stability score.
+ mask_threshold (`float`, *optional*, defaults to 0):
+ The threshold for the predicted masks.
+ stability_score_offset (`float`, *optional*, defaults to 1):
+ The offset for the stability score used in the `_compute_stability_score` method.
+
+ """
+ requires_backends(self, ["torch"])
+ original_height, original_width = original_size
+ iou_scores = iou_scores.flatten(0, 1)
+ masks = masks.flatten(0, 1)
+
+ if masks.shape[0] != iou_scores.shape[0]:
+ raise ValueError("masks and iou_scores must have the same batch size.")
+
+ if masks.device != iou_scores.device:
+ iou_scores = iou_scores.to(masks.device)
+
+ batch_size = masks.shape[0]
+
+ keep_mask = torch.ones(batch_size, dtype=torch.bool, device=masks.device)
+
+ if pred_iou_thresh > 0.0:
+ keep_mask = keep_mask & (iou_scores > pred_iou_thresh)
+
+ # compute stability score
+ if stability_score_thresh > 0.0:
+ stability_scores = _compute_stability_score_pt(masks, mask_threshold, stability_score_offset)
+ keep_mask = keep_mask & (stability_scores > stability_score_thresh)
+
+ scores = iou_scores[keep_mask]
+ masks = masks[keep_mask]
+
+ # binarize masks
+ masks = masks > mask_threshold
+ converted_boxes = _batched_mask_to_box(masks)
+
+ keep_mask = ~_is_box_near_crop_edge(
+ converted_boxes, cropped_box_image, [0, 0, original_width, original_height]
+ )
+
+ scores = scores[keep_mask]
+ masks = masks[keep_mask]
+ converted_boxes = converted_boxes[keep_mask]
+
+ masks = _pad_masks(masks, cropped_box_image, original_height, original_width)
+ # conversion to rle is necessary to run non-maximum suppresion
+ masks = _mask_to_rle_pytorch(masks)
+
+ return masks, scores, converted_boxes
+
+ def _filter_masks_tf(
+ self,
+ masks,
+ iou_scores,
+ original_size,
+ cropped_box_image,
+ pred_iou_thresh=0.88,
+ stability_score_thresh=0.95,
+ mask_threshold=0,
+ stability_score_offset=1,
+ ):
+ """
+ Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being
+ that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability
+ score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to
+ bounding boxes and pad the predicted masks if necessary.
+
+ Args:
+ masks (`tf.Tensor`):
+ Input masks.
+ iou_scores (`tf.Tensor`):
+ List of IoU scores.
+ original_size (`Tuple[int,int]`):
+ Size of the orginal image.
+ cropped_box_image (`np.array`):
+ The cropped image.
+ pred_iou_thresh (`float`, *optional*, defaults to 0.88):
+ The threshold for the iou scores.
+ stability_score_thresh (`float`, *optional*, defaults to 0.95):
+ The threshold for the stability score.
+ mask_threshold (`float`, *optional*, defaults to 0):
+ The threshold for the predicted masks.
+ stability_score_offset (`float`, *optional*, defaults to 1):
+ The offset for the stability score used in the `_compute_stability_score` method.
+
+ """
+ requires_backends(self, ["tf"])
+ original_height, original_width = original_size
+ iou_scores = tf.reshape(iou_scores, [iou_scores.shape[0] * iou_scores.shape[1], iou_scores.shape[2:]])
+ masks = tf.reshape(masks, [masks.shape[0] * masks.shape[1], masks.shape[2:]])
+
+ if masks.shape[0] != iou_scores.shape[0]:
+ raise ValueError("masks and iou_scores must have the same batch size.")
+
+ batch_size = masks.shape[0]
+
+ keep_mask = tf.ones(batch_size, dtype=tf.bool)
+
+ if pred_iou_thresh > 0.0:
+ keep_mask = keep_mask & (iou_scores > pred_iou_thresh)
+
+ # compute stability score
+ if stability_score_thresh > 0.0:
+ stability_scores = _compute_stability_score_tf(masks, mask_threshold, stability_score_offset)
+ keep_mask = keep_mask & (stability_scores > stability_score_thresh)
+
+ scores = iou_scores[keep_mask]
+ masks = masks[keep_mask]
+
+ # binarize masks
+ masks = masks > mask_threshold
+ converted_boxes = _batched_mask_to_box_tf(masks)
+
+ keep_mask = ~_is_box_near_crop_edge_tf(
+ converted_boxes, cropped_box_image, [0, 0, original_width, original_height]
+ )
+
+ scores = scores[keep_mask]
+ masks = masks[keep_mask]
+ converted_boxes = converted_boxes[keep_mask]
+
+ masks = _pad_masks_tf(masks, cropped_box_image, original_height, original_width)
+ # conversion to rle is necessary to run non-maximum suppresion
+ masks = _mask_to_rle_tf(masks)
+
+ return masks, scores, converted_boxes
+
+
+def _compute_stability_score_pt(masks: "torch.Tensor", mask_threshold: float, stability_score_offset: int):
+ # One mask is always contained inside the other.
+ # Save memory by preventing unnecesary cast to torch.int64
+ intersections = (
+ (masks > (mask_threshold + stability_score_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
+ )
+ unions = (masks > (mask_threshold - stability_score_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
+ stability_scores = intersections / unions
+ return stability_scores
+
+
+def _compute_stability_score_tf(masks: "tf.Tensor", mask_threshold: float, stability_score_offset: int):
+ # Torch does Py3-style division but TF does floor division with ints. We cast to float32 in TF to make sure
+ # we get the right division results.
+ intersections = tf.count_nonzero(
+ masks > (mask_threshold + stability_score_offset), axis=[-1, -2], dtype=tf.float32
+ )
+ unions = tf.count_nonzero(masks > (mask_threshold - stability_score_offset), axis=[-1, -2], dtype=tf.float32)
+ stability_scores = intersections / unions
+ return stability_scores
+
+
+def _build_point_grid(n_per_side: int) -> np.ndarray:
+ """Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
+ offset = 1 / (2 * n_per_side)
+ points_one_side = np.linspace(offset, 1 - offset, n_per_side)
+ points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
+ points_y = np.tile(points_one_side[:, None], (1, n_per_side))
+ points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
+ return points
+
+
+def _normalize_coordinates(
+ target_size: int, coords: np.ndarray, original_size: Tuple[int, int], is_bounding_box=False
+) -> np.ndarray:
+ """
+ Expects a numpy array of length 2 in the final dimension. Requires the original image size in (height, width)
+ format.
+ """
+ old_height, old_width = original_size
+
+ scale = target_size * 1.0 / max(old_height, old_width)
+ new_height, new_width = old_height * scale, old_width * scale
+ new_width = int(new_width + 0.5)
+ new_height = int(new_height + 0.5)
+
+ coords = deepcopy(coords).astype(float)
+
+ if is_bounding_box:
+ coords = coords.reshape(-1, 2, 2)
+
+ coords[..., 0] = coords[..., 0] * (new_width / old_width)
+ coords[..., 1] = coords[..., 1] * (new_height / old_height)
+
+ if is_bounding_box:
+ coords = coords.reshape(-1, 4)
+
+ return coords
+
+
+def _generate_crop_boxes(
+ image,
+ target_size: int, # Is it tuple here?
+ crop_n_layers: int = 0,
+ overlap_ratio: float = 512 / 1500,
+ points_per_crop: Optional[int] = 32,
+ crop_n_points_downscale_factor: Optional[List[int]] = 1,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+) -> Tuple[List[List[int]], List[int]]:
+ """
+ Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer.
+
+ Args:
+ image (Union[`numpy.ndarray`, `PIL.Image`, `torch.Tensor`]):
+ Image to generate crops for.
+ target_size (`int`):
+ Size of the smallest crop.
+ crop_n_layers (`int`, *optional*):
+ If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of layers
+ to run, where each layer has 2**i_layer number of image crops.
+ overlap_ratio (`int`, *optional*):
+ Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of the
+ image length. Later layers with more crops scale down this overlap.
+ points_per_crop (`int`, *optional*):
+ Number of points to sample per crop.
+ crop_n_points_downscale_factor (`int`, *optional*):
+ The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+
+ if isinstance(image, list):
+ raise ValueError("Only one image is allowed for crop generation.")
+ image = to_numpy_array(image)
+ original_size = get_image_size(image, input_data_format)
+
+ points_grid = []
+ for i in range(crop_n_layers + 1):
+ n_points = int(points_per_crop / (crop_n_points_downscale_factor**i))
+ points_grid.append(_build_point_grid(n_points))
+
+ crop_boxes, layer_idxs = _generate_per_layer_crops(crop_n_layers, overlap_ratio, original_size)
+
+ cropped_images, point_grid_per_crop = _generate_crop_images(
+ crop_boxes, image, points_grid, layer_idxs, target_size, original_size, input_data_format
+ )
+ crop_boxes = np.array(crop_boxes)
+ crop_boxes = crop_boxes.astype(np.float32)
+ points_per_crop = np.array([point_grid_per_crop])
+ points_per_crop = np.transpose(points_per_crop, axes=(0, 2, 1, 3))
+
+ input_labels = np.ones_like(points_per_crop[:, :, :, 0], dtype=np.int64)
+
+ return crop_boxes, points_per_crop, cropped_images, input_labels
+
+
+def _generate_per_layer_crops(crop_n_layers, overlap_ratio, original_size):
+ """
+ Generates 2 ** (layers idx + 1) crops for each crop_n_layers. Crops are in the XYWH format : The XYWH format
+ consists of the following required indices:
+ - X: X coordinate of the top left of the bounding box
+ - Y: Y coordinate of the top left of the bounding box
+ - W: width of the bounding box
+ - H: height of the bounding box
+ """
+ crop_boxes, layer_idxs = [], []
+ im_height, im_width = original_size
+ short_side = min(im_height, im_width)
+
+ # Original image
+ crop_boxes.append([0, 0, im_width, im_height])
+ layer_idxs.append(0)
+ for i_layer in range(crop_n_layers):
+ n_crops_per_side = 2 ** (i_layer + 1)
+ overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
+
+ crop_width = int(math.ceil((overlap * (n_crops_per_side - 1) + im_width) / n_crops_per_side))
+ crop_height = int(math.ceil((overlap * (n_crops_per_side - 1) + im_height) / n_crops_per_side))
+
+ crop_box_x0 = [int((crop_width - overlap) * i) for i in range(n_crops_per_side)]
+ crop_box_y0 = [int((crop_height - overlap) * i) for i in range(n_crops_per_side)]
+
+ for left, top in product(crop_box_x0, crop_box_y0):
+ box = [left, top, min(left + crop_width, im_width), min(top + crop_height, im_height)]
+ crop_boxes.append(box)
+ layer_idxs.append(i_layer + 1)
+
+ return crop_boxes, layer_idxs
+
+
+def _generate_crop_images(
+ crop_boxes, image, points_grid, layer_idxs, target_size, original_size, input_data_format=None
+):
+ """
+ Takes as an input bounding boxes that are used to crop the image. Based in the crops, the corresponding points are
+ also passed.
+ """
+ cropped_images = []
+ total_points_per_crop = []
+ for i, crop_box in enumerate(crop_boxes):
+ left, top, right, bottom = crop_box
+
+ channel_dim = infer_channel_dimension_format(image, input_data_format)
+ if channel_dim == ChannelDimension.LAST:
+ cropped_im = image[top:bottom, left:right, :]
+ else:
+ cropped_im = image[:, top:bottom, left:right]
+
+ cropped_images.append(cropped_im)
+
+ cropped_im_size = get_image_size(cropped_im, channel_dim)
+ points_scale = np.array(cropped_im_size)[None, ::-1]
+
+ points = points_grid[layer_idxs[i]] * points_scale
+ normalized_points = _normalize_coordinates(target_size, points, original_size)
+ total_points_per_crop.append(normalized_points)
+
+ return cropped_images, total_points_per_crop
+
+
+def _pad_masks(masks, crop_box: List[int], orig_height: int, orig_width: int):
+ left, top, right, bottom = crop_box
+ if left == 0 and top == 0 and right == orig_width and bottom == orig_height:
+ return masks
+ # Coordinate transform masks
+ pad_x, pad_y = orig_width - (right - left), orig_height - (bottom - top)
+ pad = (left, pad_x - left, top, pad_y - top)
+ return torch.nn.functional.pad(masks, pad, value=0)
+
+
+def _pad_masks_tf(masks, crop_box: List[int], orig_height: int, orig_width: int):
+ left, top, right, bottom = crop_box
+ if left == 0 and top == 0 and right == orig_width and bottom == orig_height:
+ return masks
+ # Coordinate transform masks
+ pad_x, pad_y = orig_width - (right - left), orig_height - (bottom - top)
+ pad = (left, pad_x - left, top, pad_y - top)
+ return tf.pad(masks, pad, constant_values=0)
+
+
+def _is_box_near_crop_edge(boxes, crop_box, orig_box, atol=20.0):
+ """Filter masks at the edge of a crop, but not at the edge of the original image."""
+ crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
+ orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
+
+ left, top, _, _ = crop_box
+ offset = torch.tensor([[left, top, left, top]], device=boxes.device)
+ # Check if boxes has a channel dimension
+ if len(boxes.shape) == 3:
+ offset = offset.unsqueeze(1)
+ boxes = (boxes + offset).float()
+
+ near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
+ near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
+ near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
+ return torch.any(near_crop_edge, dim=1)
+
+
+def _is_box_near_crop_edge_tf(boxes, crop_box, orig_box, atol=20.0):
+ """Filter masks at the edge of a crop, but not at the edge of the original image."""
+ crop_box_tf = tf.convert_to_tensor(crop_box, dtype=tf.float32)
+ orig_box_tf = tf.convert_to_tensor(orig_box, dtype=tf.float32)
+
+ left, top, _, _ = crop_box
+ offset = tf.convert_to_tensor([[left, top, left, top]])
+ # Check if boxes has a channel dimension
+ if len(boxes.shape) == 3:
+ offset = tf.expand_dims(offset, 1)
+ boxes = tf.cast(boxes + offset, tf.float32)
+
+ near_crop_edge = tnp.isclose(boxes, crop_box_tf[None, :], atol=atol, rtol=0)
+ near_image_edge = tnp.isclose(boxes, orig_box_tf[None, :], atol=atol, rtol=0)
+ near_crop_edge = tf.math.logical_and(near_crop_edge, ~near_image_edge)
+ return tf.reduce_any(near_crop_edge, axis=1)
+
+
+def _batched_mask_to_box(masks: "torch.Tensor"):
+ """
+ Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which
+ corresponds the following required indices:
+ - LEFT: left hand side of the bounding box
+ - TOP: top of the bounding box
+ - RIGHT: right of the bounding box
+ - BOTTOM: bottom of the bounding box
+
+ Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape
+ is channel_1 x channel_2 x ... x 4.
+
+ Args:
+ - masks (`torch.Tensor` of shape `(batch, nb_mask, height, width)`)
+ """
+ # torch.max below raises an error on empty inputs, just skip in this case
+
+ if torch.numel(masks) == 0:
+ return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
+
+ # Normalize shape to Cxheightxwidth
+ shape = masks.shape
+ height, width = shape[-2:]
+
+ # Get top and bottom edges
+ in_height, _ = torch.max(masks, dim=-1)
+ in_height_coords = in_height * torch.arange(height, device=in_height.device)[None, :]
+ bottom_edges, _ = torch.max(in_height_coords, dim=-1)
+ in_height_coords = in_height_coords + height * (~in_height)
+ top_edges, _ = torch.min(in_height_coords, dim=-1)
+
+ # Get left and right edges
+ in_width, _ = torch.max(masks, dim=-2)
+ in_width_coords = in_width * torch.arange(width, device=in_width.device)[None, :]
+ right_edges, _ = torch.max(in_width_coords, dim=-1)
+ in_width_coords = in_width_coords + width * (~in_width)
+ left_edges, _ = torch.min(in_width_coords, dim=-1)
+
+ # If the mask is empty the right edge will be to the left of the left edge.
+ # Replace these boxes with [0, 0, 0, 0]
+ empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
+ out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
+ out = out * (~empty_filter).unsqueeze(-1)
+
+ # Return to original shape
+ out = out.reshape(*shape[:-2], 4)
+ return out
+
+
+def _batched_mask_to_box_tf(masks: "tf.Tensor"):
+ """
+ Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which
+ corresponds the following required indices:
+ - LEFT: left hand side of the bounding box
+ - TOP: top of the bounding box
+ - RIGHT: right of the bounding box
+ - BOTTOM: bottom of the bounding box
+
+ Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape
+ is channel_1 x channel_2 x ... x 4.
+
+ Args:
+ - masks (`tf.Tensor` of shape `(batch, nb_mask, height, width)`)
+ """
+
+ if tf.size(masks) == 0:
+ return tf.zeros([*masks.shape[:-2], 4])
+
+ # Normalize shape to Cxheightxwidth
+ shape = shape_list(masks)
+ height, width = shape[-2:]
+
+ # Get top and bottom edges
+ in_height = tf.reduce_max(masks, axis=-1)
+ in_height_coords = in_height * tf.range(height)[None, :]
+ bottom_edges = tf.reduce_max(in_height_coords, axis=-1)
+ in_height_coords = in_height_coords + height * (~in_height)
+ top_edges = tf.reduce_min(in_height_coords, axis=-1)
+
+ # Get left and right edges
+ in_width, _ = tf.reduce_max(masks, axis=-2)
+ in_width_coords = in_width * tf.range(width)[None, :]
+ right_edges, _ = tf.reduce_max(in_width_coords, axis=-1)
+ in_width_coords = in_width_coords + width * (~in_width)
+ left_edges, _ = tf.reduce_min(in_width_coords, axis=-1)
+
+ # If the mask is empty the right edge will be to the left of the left edge.
+ # Replace these boxes with [0, 0, 0, 0]
+ empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
+ out = tf.stack([left_edges, top_edges, right_edges, bottom_edges], axis=-1)
+ out = out * tf.expand_dims(~empty_filter, -1)
+
+ # Return to original shape
+ out = tf.reshape(out, *shape[:-2], 4)
+ return out
+
+
+def _mask_to_rle_pytorch(input_mask: "torch.Tensor"):
+ """
+ Encodes masks the run-length encoding (RLE), in the format expected by pycoco tools.
+ """
+ # Put in fortran order and flatten height and width
+ batch_size, height, width = input_mask.shape
+ input_mask = input_mask.permute(0, 2, 1).flatten(1)
+
+ # Compute change indices
+ diff = input_mask[:, 1:] ^ input_mask[:, :-1]
+ change_indices = diff.nonzero()
+
+ # Encode run length
+ out = []
+ for i in range(batch_size):
+ cur_idxs = change_indices[change_indices[:, 0] == i, 1] + 1
+ btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
+ counts = [] if input_mask[i, 0] == 0 else [0]
+ counts += [cur_idxs[0].item()] + btw_idxs.tolist() + [height * width - cur_idxs[-1]]
+ out.append({"size": [height, width], "counts": counts})
+ return out
+
+
+def _mask_to_rle_tf(input_mask: "tf.Tensor"):
+ """
+ Encodes masks the run-length encoding (RLE), in the format expected by pycoco tools.
+ """
+ # Put in fortran order and flatten height and width
+ batch_size, height, width = input_mask.shape
+ input_mask = flatten(tf.transpose(input_mask, perm=(0, 2, 1)), 1)
+
+ # Compute change indices
+ diff = input_mask[:, 1:] ^ input_mask[:, :-1]
+ change_indices = tf.where(diff)
+
+ # Encode run length
+ out = []
+ for i in range(batch_size):
+ cur_idxs = change_indices[change_indices[:, 0] == i, 1] + 1
+ btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
+ counts = [] if input_mask[i, 0] == 0 else [0]
+ counts += [cur_idxs[0].item()] + btw_idxs.tolist() + [height * width - cur_idxs[-1]]
+ out.append({"size": [height, width], "counts": counts})
+ return out
+
+
+def _rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
+ """Compute a binary mask from an uncompressed RLE."""
+ height, width = rle["size"]
+ mask = np.empty(height * width, dtype=bool)
+ idx = 0
+ parity = False
+ for count in rle["counts"]:
+ mask[idx : idx + count] = parity
+ idx += count
+ parity = not parity
+ mask = mask.reshape(width, height)
+ return mask.transpose() # Reshape to original shape
+
+
+def _postprocess_for_mg(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7):
+ """
+ Perform NMS (Non Maximum Suppression) on the outputs.
+
+ Args:
+ rle_masks (`torch.Tensor`):
+ binary masks in the RLE format
+ iou_scores (`torch.Tensor` of shape (nb_masks, 1)):
+ iou_scores predicted by the model
+ mask_boxes (`torch.Tensor`):
+ The bounding boxes corresponding to segmentation masks
+ amg_crops_nms_thresh (`float`, *optional*, defaults to 0.7):
+ NMS threshold.
+ """
+ keep_by_nms = batched_nms(
+ boxes=mask_boxes.float(),
+ scores=iou_scores,
+ idxs=torch.zeros(mask_boxes.shape[0]),
+ iou_threshold=amg_crops_nms_thresh,
+ )
+
+ iou_scores = iou_scores[keep_by_nms]
+ rle_masks = [rle_masks[i] for i in keep_by_nms]
+ mask_boxes = mask_boxes[keep_by_nms]
+ masks = [_rle_to_mask(rle) for rle in rle_masks]
+
+ return masks, iou_scores, rle_masks, mask_boxes
+
+
+def _postprocess_for_mg_tf(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7):
+ """
+ Perform NMS (Non Maximum Suppression) on the outputs.
+
+ Args:
+ rle_masks (`tf.Tensor`):
+ binary masks in the RLE format
+ iou_scores (`tf.Tensor` of shape (nb_masks, 1)):
+ iou_scores predicted by the model
+ mask_boxes (`tf.Tensor`):
+ The bounding boxes corresponding to segmentation masks
+ amg_crops_nms_thresh (`float`, *optional*, defaults to 0.7):
+ NMS threshold.
+ """
+ keep_by_nms = tf.image.combined_non_max_suppression(
+ boxes=mask_boxes.float(),
+ scores=iou_scores,
+ idxs=torch.zeros(mask_boxes.shape[0]),
+ iou_threshold=amg_crops_nms_thresh,
+ )
+
+ iou_scores = iou_scores[keep_by_nms]
+ rle_masks = [rle_masks[i] for i in keep_by_nms]
+ mask_boxes = mask_boxes[keep_by_nms]
+ masks = [_rle_to_mask(rle) for rle in rle_masks]
+
+ return masks, iou_scores, rle_masks, mask_boxes
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_sam.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_sam.py
new file mode 100644
index 0000000000000000000000000000000000000000..385fb9c00aea4f4df7c6ea062159ab8de08df7d9
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_sam.py
@@ -0,0 +1,1415 @@
+# coding=utf-8
+# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch SAM model."""
+
+import collections
+import math
+from dataclasses import dataclass
+from typing import Dict, List, Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+import torch.utils.checkpoint
+from torch import Tensor, nn
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BaseModelOutput
+from ...modeling_utils import PreTrainedModel
+from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "SamConfig"
+_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge"
+
+
+from ..deprecated._archive_maps import SAM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+class SamVisionEncoderOutput(ModelOutput):
+ """
+ Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection
+ layer to the pooler_output.
+
+ Args:
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
+ The image embeddings obtained by applying the projection layer to the pooler_output.
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ image_embeds: Optional[torch.FloatTensor] = None
+ last_hidden_state: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class SamImageSegmentationOutput(ModelOutput):
+ """
+ Base class for Segment-Anything model's output
+
+ Args:
+ iou_scores (`torch.FloatTensor` of shape `(batch_size, num_masks)`):
+ The iou scores of the predicted masks.
+ pred_masks (`torch.FloatTensor` of shape `(batch_size, num_masks, height, width)`):
+ The predicted low resolutions masks. Needs to be post-processed by the processor
+ vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs.
+ vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ mask_decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ iou_scores: torch.FloatTensor = None
+ pred_masks: torch.FloatTensor = None
+ vision_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ vision_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ mask_decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+class SamPatchEmbeddings(nn.Module):
+ """
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
+ Transformer.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ image_size, patch_size = config.image_size, config.patch_size
+ num_channels, hidden_size = config.num_channels, config.hidden_size
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_patches = num_patches
+
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
+
+ def forward(self, pixel_values):
+ batch_size, num_channels, height, width = pixel_values.shape
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ if height != self.image_size[0] or width != self.image_size[1]:
+ raise ValueError(
+ f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
+ )
+ embeddings = self.projection(pixel_values).permute(0, 2, 3, 1)
+ return embeddings
+
+
+class SamMLPBlock(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim)
+ self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size)
+ self.act = ACT2FN[config.hidden_act]
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.lin1(hidden_states)
+ hidden_states = self.act(hidden_states)
+ hidden_states = self.lin2(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->Sam
+class SamLayerNorm(nn.Module):
+ r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
+ width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
+ """
+
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
+ self.eps = eps
+ self.data_format = data_format
+ if self.data_format not in ["channels_last", "channels_first"]:
+ raise NotImplementedError(f"Unsupported data format: {self.data_format}")
+ self.normalized_shape = (normalized_shape,)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ if self.data_format == "channels_last":
+ x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
+ elif self.data_format == "channels_first":
+ input_dtype = x.dtype
+ x = x.float()
+ u = x.mean(1, keepdim=True)
+ s = (x - u).pow(2).mean(1, keepdim=True)
+ x = (x - u) / torch.sqrt(s + self.eps)
+ x = x.to(dtype=input_dtype)
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
+ return x
+
+
+class SamAttention(nn.Module):
+ """
+ SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
+ values.
+ """
+
+ def __init__(self, config, downsample_rate=None):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+
+ downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate
+
+ self.internal_dim = config.hidden_size // downsample_rate
+ self.num_attention_heads = config.num_attention_heads
+ if self.internal_dim % config.num_attention_heads != 0:
+ raise ValueError("num_attention_heads must divide hidden_size.")
+
+ self.q_proj = nn.Linear(self.hidden_size, self.internal_dim)
+ self.k_proj = nn.Linear(self.hidden_size, self.internal_dim)
+ self.v_proj = nn.Linear(self.hidden_size, self.internal_dim)
+ self.out_proj = nn.Linear(self.internal_dim, self.hidden_size)
+
+ def _separate_heads(self, hidden_states: Tensor, num_attention_heads: int) -> Tensor:
+ batch, point_batch_size, n_tokens, channel = hidden_states.shape
+ c_per_head = channel // num_attention_heads
+ hidden_states = hidden_states.reshape(batch * point_batch_size, n_tokens, num_attention_heads, c_per_head)
+ return hidden_states.transpose(1, 2)
+
+ def _recombine_heads(self, hidden_states: Tensor, point_batch_size: int) -> Tensor:
+ batch, n_heads, n_tokens, c_per_head = hidden_states.shape
+ hidden_states = hidden_states.transpose(1, 2)
+ return hidden_states.reshape(batch // point_batch_size, point_batch_size, n_tokens, n_heads * c_per_head)
+
+ def forward(self, query: Tensor, key: Tensor, value: Tensor, attention_similarity: Tensor = None) -> Tensor:
+ # Input projections
+ query = self.q_proj(query)
+ key = self.k_proj(key)
+ value = self.v_proj(value)
+
+ point_batch_size = query.shape[1]
+ # Separate into heads
+ query = self._separate_heads(query, self.num_attention_heads)
+ key = self._separate_heads(key, self.num_attention_heads)
+ value = self._separate_heads(value, self.num_attention_heads)
+
+ # SamAttention
+ _, _, _, c_per_head = query.shape
+ attn = query @ key.permute(0, 1, 3, 2) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens
+ attn = attn / math.sqrt(c_per_head)
+ attn = torch.softmax(attn, dim=-1)
+
+ if attention_similarity is not None:
+ attn = attn + attention_similarity
+ attn = torch.softmax(attn, dim=-1)
+
+ # Get output
+ out = attn @ value
+ out = self._recombine_heads(out, point_batch_size)
+ out = self.out_proj(out)
+
+ return out
+
+
+class SamTwoWayAttentionBlock(nn.Module):
+ def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False):
+ """
+ A transformer block with four layers:
+ (1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on
+ sparse inputs (4) cross attention of dense inputs -> sparse inputs
+
+ Arguments:
+ config (`SamMaskDecoderConfig`):
+ The configuration file used to instantiate the block
+ attention_downsample_rate (*optionalk*, int, defaults to 2):
+ The downsample ratio of the block used to reduce the inner dim of the attention.
+ skip_first_layer_pe (*optional*, bool, defaults to `False`):
+ Whether or not to skip the addition of the query_point_embedding on the first layer.
+ """
+ super().__init__()
+
+ self.hidden_size = config.hidden_size
+ self.layer_norm_eps = config.layer_norm_eps
+
+ self.self_attn = SamAttention(config, downsample_rate=1)
+ self.layer_norm1 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
+
+ self.cross_attn_token_to_image = SamAttention(config, downsample_rate=attention_downsample_rate)
+ self.layer_norm2 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
+
+ self.mlp = SamMLPBlock(config)
+ self.layer_norm3 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
+
+ self.layer_norm4 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
+ self.cross_attn_image_to_token = SamAttention(config, downsample_rate=attention_downsample_rate)
+
+ self.skip_first_layer_pe = skip_first_layer_pe
+
+ def forward(
+ self,
+ queries: Tensor,
+ keys: Tensor,
+ query_point_embedding: Tensor,
+ key_point_embedding: Tensor,
+ attention_similarity: Tensor,
+ output_attentions: bool = False,
+ ):
+ # Self attention block
+ if self.skip_first_layer_pe:
+ queries = self.self_attn(query=queries, key=queries, value=queries)
+ else:
+ query = queries + query_point_embedding
+ attn_out = self.self_attn(query=query, key=query, value=queries)
+ queries = queries + attn_out
+ queries = self.layer_norm1(queries)
+
+ # Cross attention block, tokens attending to image embedding
+ query = queries + query_point_embedding
+ key = keys + key_point_embedding
+
+ attn_out = self.cross_attn_token_to_image(
+ query=query, key=key, value=keys, attention_similarity=attention_similarity
+ )
+ queries = queries + attn_out
+
+ queries = self.layer_norm2(queries)
+
+ # MLP block
+ mlp_out = self.mlp(queries)
+ queries = queries + mlp_out
+ queries = self.layer_norm3(queries)
+
+ # Cross attention block, image embedding attending to tokens
+ query = queries + query_point_embedding
+ key = keys + key_point_embedding
+
+ attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries)
+ keys = keys + attn_out
+
+ keys = self.layer_norm4(keys)
+
+ outputs = (queries, keys)
+
+ if output_attentions:
+ outputs = outputs + (attn_out,)
+ else:
+ outputs = outputs + (None,)
+
+ return outputs
+
+
+class SamTwoWayTransformer(nn.Module):
+ def __init__(self, config: SamMaskDecoderConfig):
+ super().__init__()
+ self.config = config
+
+ self.num_hidden_layers = config.num_hidden_layers
+ self.layers = nn.ModuleList()
+
+ for i in range(self.num_hidden_layers):
+ self.layers.append(SamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0)))
+
+ self.final_attn_token_to_image = SamAttention(config)
+ self.layer_norm_final_attn = nn.LayerNorm(config.hidden_size)
+
+ def forward(
+ self,
+ point_embeddings: Tensor,
+ image_embeddings: Tensor,
+ image_positional_embeddings: Tensor,
+ attention_similarity: Tensor,
+ target_embedding=None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ all_attentions = ()
+
+ if image_embeddings is None:
+ raise ValueError("You have to specify an image_embedding")
+
+ image_embeddings = image_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1)
+ image_positional_embeddings = image_positional_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1)
+
+ # Prepare queries
+ queries = point_embeddings
+ keys = image_embeddings
+
+ # Apply transformer blocks and final layernorm
+ for layer in self.layers:
+ if target_embedding is not None:
+ queries += target_embedding
+
+ queries, keys, attention_outputs = layer(
+ queries=queries,
+ keys=keys,
+ query_point_embedding=point_embeddings,
+ key_point_embedding=image_positional_embeddings,
+ attention_similarity=attention_similarity,
+ output_attentions=output_attentions,
+ )
+
+ if output_attentions:
+ all_attentions = all_attentions + (attention_outputs,)
+
+ # Apply the final attenion layer from the points to the image
+ query = queries + point_embeddings
+ key = keys + image_positional_embeddings
+
+ attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys)
+
+ queries = queries + attn_out
+ queries = self.layer_norm_final_attn(queries)
+ return queries, keys, all_attentions
+
+
+class SamFeedForward(nn.Module):
+ def __init__(
+ self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False
+ ):
+ super().__init__()
+ self.num_layers = num_layers
+ self.activation = nn.ReLU()
+ self.proj_in = nn.Linear(input_dim, hidden_dim)
+ self.proj_out = nn.Linear(hidden_dim, output_dim)
+ self.layers = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for _ in range(num_layers - 2)])
+ self.sigmoid_output = sigmoid_output
+
+ def forward(self, hidden_states):
+ hidden_states = self.proj_in(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ for layer in self.layers:
+ hidden_states = self.activation(layer(hidden_states))
+
+ hidden_states = self.proj_out(hidden_states)
+ if self.sigmoid_output:
+ hidden_states = F.sigmoid(hidden_states)
+ return hidden_states
+
+
+class SamMaskDecoder(nn.Module):
+ def __init__(self, config: SamMaskDecoderConfig):
+ super().__init__()
+
+ self.hidden_size = config.hidden_size
+
+ self.num_multimask_outputs = config.num_multimask_outputs
+ self.num_mask_tokens = config.num_multimask_outputs + 1
+
+ self.iou_token = nn.Embedding(1, self.hidden_size)
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, self.hidden_size)
+
+ self.transformer = SamTwoWayTransformer(config)
+
+ # should we create a new class for this?
+ self.upscale_conv1 = nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2)
+ self.upscale_conv2 = nn.ConvTranspose2d(self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2)
+ self.upscale_layer_norm = SamLayerNorm(self.hidden_size // 4, data_format="channels_first")
+ self.activation = nn.GELU()
+
+ mlps_list = []
+ for _ in range(self.num_mask_tokens):
+ mlps_list += [SamFeedForward(self.hidden_size, self.hidden_size, self.hidden_size // 8, 3)]
+ self.output_hypernetworks_mlps = nn.ModuleList(mlps_list)
+
+ self.iou_prediction_head = SamFeedForward(
+ self.hidden_size, config.iou_head_hidden_dim, self.num_mask_tokens, config.iou_head_depth
+ )
+
+ def forward(
+ self,
+ image_embeddings: torch.Tensor,
+ image_positional_embeddings: torch.Tensor,
+ sparse_prompt_embeddings: torch.Tensor,
+ dense_prompt_embeddings: torch.Tensor,
+ multimask_output: bool,
+ output_attentions: Optional[bool] = None,
+ attention_similarity: torch.Tensor = None,
+ target_embedding: torch.Tensor = None,
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """
+ Predict masks given image and prompt embeddings.
+
+ Args:
+ image_embeddings (`torch.Tensor`):
+ the embeddings from the image encoder
+ image_positional_embedding (`torch.Tensor`):
+ positional encoding with the shape of image_embeddings
+ sparse_prompt_embeddings (`torch.Tensor`):
+ The embeddings of the points and boxes
+ dense_prompt_embeddings (`torch.Tensor`):
+ the embeddings of the mask inputs
+ multimask_output (bool):
+ Whether to return multiple masks or a single mask.
+ output_attentions (bool, *optional*):
+ Whether or not to return the attentions tensors of all attention layers.
+ """
+ batch_size, num_channels, height, width = image_embeddings.shape
+ point_batch_size = sparse_prompt_embeddings.shape[1]
+ # Concatenate output tokens
+ output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
+ output_tokens = output_tokens.repeat(batch_size, point_batch_size, 1, 1)
+
+ if sparse_prompt_embeddings.sum().item() != 0:
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=2)
+ else:
+ tokens = output_tokens
+ point_embeddings = tokens.to(self.iou_token.weight.dtype)
+
+ # Expand per-image data in batch direction to be per-point
+ image_embeddings = image_embeddings + dense_prompt_embeddings
+ image_embeddings = image_embeddings.repeat_interleave(point_batch_size, 0)
+ image_positional_embeddings = image_positional_embeddings.repeat_interleave(point_batch_size, 0)
+
+ # Run the transformer, image_positional_embedding are consumed
+ point_embedding, image_embeddings, attentions = self.transformer(
+ point_embeddings=point_embeddings,
+ image_embeddings=image_embeddings,
+ image_positional_embeddings=image_positional_embeddings,
+ attention_similarity=attention_similarity,
+ target_embedding=target_embedding,
+ output_attentions=output_attentions,
+ )
+ iou_token_out = point_embedding[:, :, 0, :]
+ mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :]
+
+ # Upscale mask embeddings and predict masks using the mask tokens
+ image_embeddings = image_embeddings.transpose(2, 3).reshape(
+ batch_size * point_batch_size, num_channels, height, width
+ )
+
+ upscaled_embedding = self.upscale_conv1(image_embeddings)
+ upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding))
+ upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding))
+
+ hyper_in_list = []
+ for i in range(self.num_mask_tokens):
+ current_mlp = self.output_hypernetworks_mlps[i]
+ hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])]
+ hyper_in = torch.stack(hyper_in_list, dim=2)
+
+ _, num_channels, height, width = upscaled_embedding.shape
+ upscaled_embedding = upscaled_embedding.reshape(batch_size, point_batch_size, num_channels, height * width)
+ masks = (hyper_in @ upscaled_embedding).reshape(batch_size, point_batch_size, -1, height, width)
+
+ # Generate mask quality predictions
+ iou_pred = self.iou_prediction_head(iou_token_out)
+
+ # Select the correct mask or masks for output
+ if multimask_output:
+ mask_slice = slice(1, None)
+ else:
+ mask_slice = slice(0, 1)
+ masks = masks[:, :, mask_slice, :, :]
+ iou_pred = iou_pred[:, :, mask_slice]
+
+ outputs = (masks, iou_pred)
+
+ if output_attentions:
+ outputs = outputs + (attentions,)
+ else:
+ outputs = outputs + (None,)
+
+ return outputs
+
+
+class SamPositionalEmbedding(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.scale = config.hidden_size // 2
+ self.register_buffer("positional_embedding", self.scale * torch.randn((2, config.num_pos_feats)))
+
+ def forward(self, input_coords, input_shape=None):
+ """Positionally encode points that are normalized to [0,1]."""
+ coordinates = input_coords.clone()
+
+ if input_shape is not None:
+ coordinates[:, :, :, 0] = coordinates[:, :, :, 0] / input_shape[1]
+ coordinates[:, :, :, 1] = coordinates[:, :, :, 1] / input_shape[0]
+
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
+ coordinates = 2 * coordinates - 1
+ coordinates = coordinates.to(self.positional_embedding.dtype)
+ coordinates = coordinates @ self.positional_embedding
+ coordinates = 2 * np.pi * coordinates
+ # outputs d_1 x ... x d_n x channel shape
+ return torch.cat([torch.sin(coordinates), torch.cos(coordinates)], dim=-1)
+
+
+class SamMaskEmbedding(nn.Module):
+ def __init__(self, config: SamPromptEncoderConfig):
+ super().__init__()
+ self.mask_input_channels = config.mask_input_channels // 4
+ self.activation = ACT2FN[config.hidden_act]
+ self.conv1 = nn.Conv2d(1, self.mask_input_channels, kernel_size=2, stride=2)
+ self.conv2 = nn.Conv2d(self.mask_input_channels, config.mask_input_channels, kernel_size=2, stride=2)
+ self.conv3 = nn.Conv2d(config.mask_input_channels, config.hidden_size, kernel_size=1)
+ self.layer_norm1 = SamLayerNorm(
+ self.mask_input_channels, eps=config.layer_norm_eps, data_format="channels_first"
+ )
+ self.layer_norm2 = SamLayerNorm(
+ self.mask_input_channels * 4, eps=config.layer_norm_eps, data_format="channels_first"
+ )
+
+ def forward(self, masks):
+ hidden_states = self.conv1(masks)
+ hidden_states = self.layer_norm1(hidden_states)
+ hidden_states = self.activation(hidden_states)
+
+ hidden_states = self.conv2(hidden_states)
+ hidden_states = self.layer_norm2(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ dense_embeddings = self.conv3(hidden_states)
+ return dense_embeddings
+
+
+class SamPromptEncoder(nn.Module):
+ def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding):
+ super().__init__()
+ self.shared_embedding = shared_patch_embedding
+ self.mask_embed = SamMaskEmbedding(config)
+ self.no_mask_embed = nn.Embedding(1, config.hidden_size)
+
+ self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size)
+ self.input_image_size = config.image_size
+
+ self.point_embed = nn.ModuleList(
+ [nn.Embedding(1, config.hidden_size) for i in range(config.num_point_embeddings)]
+ )
+ self.hidden_size = config.hidden_size
+ self.not_a_point_embed = nn.Embedding(1, config.hidden_size)
+
+ def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
+ """Embeds point prompts."""
+ points = points + 0.5 # Shift to center of pixel
+ if pad:
+ target_point_shape = (points.shape[0], points.shape[1], 1, points.shape[-1])
+ target_labels_shape = (points.shape[0], points.shape[1], 1)
+ padding_point = torch.zeros(target_point_shape, device=points.device)
+ padding_label = -torch.ones(target_labels_shape, device=labels.device)
+ points = torch.cat([points, padding_point], dim=2)
+ labels = torch.cat([labels, padding_label], dim=2)
+ input_shape = (self.input_image_size, self.input_image_size)
+ point_embedding = self.shared_embedding(points, input_shape)
+
+ # torch.where and expanding the labels tensor is required by the ONNX export
+ point_embedding = torch.where(labels[..., None] == -1, self.not_a_point_embed.weight, point_embedding)
+
+ # This is required for the ONNX export. The dtype, device need to be explicitely
+ # specificed as otherwise torch.onnx.export interprets as double
+ point_embedding = torch.where(
+ labels[..., None] != -10,
+ point_embedding,
+ torch.tensor(0.0, dtype=point_embedding.dtype, device=point_embedding.device),
+ )
+
+ point_embedding = torch.where(
+ (labels == 0)[:, :, :, None],
+ point_embedding + self.point_embed[0].weight[None, None, :, :],
+ point_embedding,
+ )
+
+ point_embedding = torch.where(
+ (labels == 1)[:, :, :, None],
+ point_embedding + self.point_embed[1].weight[None, None, :, :],
+ point_embedding,
+ )
+
+ return point_embedding
+
+ def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
+ """Embeds box prompts."""
+ boxes = boxes + 0.5 # Shift to center of pixel
+ batch_size, nb_boxes = boxes.shape[:2]
+ coords = boxes.reshape(batch_size, nb_boxes, 2, 2)
+ input_shape = (self.input_image_size, self.input_image_size)
+ corner_embedding = self.shared_embedding(coords, input_shape)
+ corner_embedding[:, :, 0, :] += self.point_embed[2].weight
+ corner_embedding[:, :, 1, :] += self.point_embed[3].weight
+ return corner_embedding
+
+ def forward(
+ self,
+ input_points: Optional[Tuple[torch.Tensor, torch.Tensor]],
+ input_labels: Optional[torch.Tensor],
+ input_boxes: Optional[torch.Tensor],
+ input_masks: Optional[torch.Tensor],
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """
+ Embeds different types of prompts, returning both sparse and dense embeddings.
+
+ Args:
+ points (`torch.Tensor`, *optional*):
+ point coordinates and labels to embed.
+ boxes (`torch.Tensor`, *optional*):
+ boxes to embed
+ masks (`torch.Tensor`, *optional*):
+ masks to embed
+ """
+ sparse_embeddings = None
+ batch_size = 1
+ target_device = self.shared_embedding.positional_embedding.device
+ if input_points is not None:
+ batch_size, point_batch_size = input_points.shape[:2]
+ if input_labels is None:
+ raise ValueError("If points are provided, labels must also be provided.")
+ point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None))
+ sparse_embeddings = point_embeddings
+ if input_boxes is not None:
+ batch_size = input_boxes.shape[0]
+ box_embeddings = self._embed_boxes(input_boxes)
+ if sparse_embeddings is None:
+ sparse_embeddings = box_embeddings
+ else:
+ sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=2)
+ if input_masks is not None:
+ dense_embeddings = self.mask_embed(input_masks)
+ else:
+ dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
+ batch_size, -1, self.image_embedding_size[0], self.image_embedding_size[1]
+ )
+
+ if sparse_embeddings is None:
+ sparse_embeddings = torch.zeros((batch_size, 1, 1, self.hidden_size), device=target_device)
+
+ return sparse_embeddings, dense_embeddings
+
+
+class SamVisionAttention(nn.Module):
+ """Multi-head Attention block with relative position embeddings."""
+
+ def __init__(self, config, window_size):
+ super().__init__()
+ input_size = (
+ (config.image_size // config.patch_size, config.image_size // config.patch_size)
+ if window_size == 0
+ else (window_size, window_size)
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ head_dim = config.hidden_size // config.num_attention_heads
+ self.scale = head_dim**-0.5
+ self.dropout = config.attention_dropout
+
+ self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias)
+ self.proj = nn.Linear(config.hidden_size, config.hidden_size)
+
+ self.use_rel_pos = config.use_rel_pos
+ if self.use_rel_pos:
+ if input_size is None:
+ raise ValueError("Input size must be provided if using relative positional encoding.")
+
+ # initialize relative positional embeddings
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
+
+ def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
+ """
+ Get relative positional embeddings according to the relative positions of
+ query and key sizes.
+
+ Args:
+ q_size (int):
+ size of the query.
+ k_size (int):
+ size of key k.
+ rel_pos (`torch.Tensor`):
+ relative position embeddings (L, channel).
+
+ Returns:
+ Extracted positional embeddings according to relative positions.
+ """
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
+ # Interpolate rel pos.
+ rel_pos_resized = F.interpolate(
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
+ size=max_rel_dist,
+ mode="linear",
+ )
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
+
+ # Scale the coords with short length if shapes for q and k are different.
+ q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
+ k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
+
+ return rel_pos_resized[relative_coords.long()]
+
+ def add_decomposed_rel_pos(
+ self,
+ attn: torch.Tensor,
+ query: torch.Tensor,
+ rel_pos_h: torch.Tensor,
+ rel_pos_w: torch.Tensor,
+ q_size: Tuple[int, int],
+ k_size: Tuple[int, int],
+ ) -> torch.Tensor:
+ """
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
+
+ Args:
+ attn (`torch.Tensor`):
+ attention map.
+ query (`torch.Tensor`):
+ query q in the attention layer with shape (batch_size, query_height * query_width, channel).
+ rel_pos_h (`torch.Tensor`):
+ relative position embeddings (Lh, channel) for height axis.
+ rel_pos_w (`torch.Tensor`):
+ relative position embeddings (Lw, channel) for width axis.
+ q_size (tuple):
+ spatial sequence size of query q with (query_height, query_width).
+ k_size (tuple):
+ spatial sequence size of key k with (key_height, key_width).
+
+ Returns:
+ attn (`torch.Tensor`):
+ attention map with added relative positional embeddings.
+ """
+ query_height, query_width = q_size
+ key_height, key_width = k_size
+ relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
+ relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)
+
+ batch_size, _, dim = query.shape
+ reshaped_query = query.reshape(batch_size, query_height, query_width, dim)
+ rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
+ rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
+ attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width)
+ attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
+ attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width)
+ return attn
+
+ def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
+ batch_size, height, width, _ = hidden_states.shape
+ # qkv with shape (3, batch_size, nHead, height * width, channel)
+ qkv = (
+ self.qkv(hidden_states)
+ .reshape(batch_size, height * width, 3, self.num_attention_heads, -1)
+ .permute(2, 0, 3, 1, 4)
+ )
+ # q, k, v with shape (batch_size * nHead, height * width, channel)
+ query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0)
+
+ attn_weights = (query * self.scale) @ key.transpose(-2, -1)
+
+ if self.use_rel_pos:
+ attn_weights = self.add_decomposed_rel_pos(
+ attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
+ )
+
+ attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
+ attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
+
+ attn_output = self.proj(attn_output)
+
+ if output_attentions:
+ outputs = (attn_output, attn_weights)
+ else:
+ outputs = (attn_output, None)
+
+ return outputs
+
+
+class SamVisionLayer(nn.Module):
+ def __init__(self, config, window_size):
+ super().__init__()
+ self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.attn = SamVisionAttention(config, window_size)
+ self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.mlp = SamMLPBlock(config)
+ self.window_size = window_size
+
+ def window_partition(self, hidden_states: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
+ """
+ Args:
+ Partition into non-overlapping windows with padding if needed.
+ hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window
+ size.
+
+ Returns:
+ windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel].
+ (pad_height, pad_width): padded height and width before partition
+ """
+ batch_size, height, width, channel = hidden_states.shape
+
+ pad_h = (window_size - height % window_size) % window_size
+ pad_w = (window_size - width % window_size) % window_size
+ hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h))
+ pad_height, pad_width = height + pad_h, width + pad_w
+
+ hidden_states = hidden_states.reshape(
+ batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel
+ )
+ windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(-1, window_size, window_size, channel)
+ return windows, (pad_height, pad_width)
+
+ def window_unpartition(
+ self, windows: torch.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int]
+ ) -> torch.Tensor:
+ """
+ Args:
+ Window unpartition into original sequences and removing padding.
+ hidden_states (tensor):
+ input tokens with [batch_size * num_windows, window_size, window_size, channel].
+ window_size (int):
+ window size.
+ padding_shape (Tuple):
+ padded height and width (pad_height, pad_width).
+ original_shape (Tuple): original height and width (height, width) before padding.
+
+ Returns:
+ hidden_states: unpartitioned sequences with [batch_size, height, width, channel].
+ """
+ pad_height, pad_width = padding_shape
+ height, width = original_shape
+ batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size)
+ hidden_states = windows.reshape(
+ batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1
+ )
+ hidden_states = (
+ hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(batch_size, pad_height, pad_width, -1)
+ )
+
+ hidden_states = hidden_states[:, :height, :width, :].contiguous()
+ return hidden_states
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor]:
+ residual = hidden_states
+
+ hidden_states = self.layer_norm1(hidden_states)
+ # Window partition
+ if self.window_size > 0:
+ height, width = hidden_states.shape[1], hidden_states.shape[2]
+ hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)
+
+ hidden_states, attn_weights = self.attn(
+ hidden_states=hidden_states,
+ output_attentions=output_attentions,
+ )
+ # Reverse window partition
+ if self.window_size > 0:
+ hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width))
+
+ hidden_states = residual + hidden_states
+ layernorm_output = self.layer_norm2(hidden_states)
+ hidden_states = hidden_states + self.mlp(layernorm_output)
+
+ outputs = (hidden_states,)
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+class SamVisionNeck(nn.Module):
+ def __init__(self, config: SamVisionConfig):
+ super().__init__()
+ self.config = config
+
+ self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False)
+ self.layer_norm1 = SamLayerNorm(config.output_channels, data_format="channels_first")
+ self.conv2 = nn.Conv2d(config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False)
+ self.layer_norm2 = SamLayerNorm(config.output_channels, data_format="channels_first")
+
+ def forward(self, hidden_states):
+ hidden_states = hidden_states.permute(0, 3, 1, 2)
+ hidden_states = self.conv1(hidden_states)
+ hidden_states = self.layer_norm1(hidden_states)
+
+ hidden_states = self.conv2(hidden_states)
+ hidden_states = self.layer_norm2(hidden_states)
+ return hidden_states
+
+
+class SamVisionEncoder(nn.Module):
+ def __init__(self, config: SamVisionConfig):
+ super().__init__()
+ self.config = config
+ self.image_size = config.image_size
+
+ self.patch_embed = SamPatchEmbeddings(config)
+
+ self.pos_embed = None
+ if config.use_abs_pos:
+ # Initialize absolute positional embedding with pretrain image size.
+ self.pos_embed = nn.Parameter(
+ torch.zeros(
+ 1,
+ config.image_size // config.patch_size,
+ config.image_size // config.patch_size,
+ config.hidden_size,
+ )
+ )
+
+ self.layers = nn.ModuleList()
+ for i in range(config.num_hidden_layers):
+ layer = SamVisionLayer(
+ config,
+ window_size=config.window_size if i not in config.global_attn_indexes else 0,
+ )
+ self.layers.append(layer)
+
+ self.neck = SamVisionNeck(config)
+
+ self.gradient_checkpointing = False
+
+ def get_input_embeddings(self):
+ return self.patch_embed
+
+ def forward(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SamVisionEncoderOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ hidden_states = self.patch_embed(pixel_values)
+ if self.pos_embed is not None:
+ hidden_states = hidden_states + self.pos_embed
+
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, output_attentions=output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ hidden_states = self.neck(hidden_states)
+
+ if not return_dict:
+ outputs = (hidden_states,)
+ if output_hidden_states:
+ outputs = outputs + (all_hidden_states,)
+ if output_attentions:
+ outputs = outputs + (all_self_attentions,)
+ return outputs
+
+ return SamVisionEncoderOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class SamPreTrainedModel(PreTrainedModel):
+ config_class = SamConfig
+ base_model_prefix = "sam"
+ main_input_name = "pixel_values"
+
+ def _init_weights(self, module):
+ std = self.config.initializer_range
+ if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+SAM_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`SamConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+SAM_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for
+ details.
+ input_points (`torch.FloatTensor` of shape `(batch_size, num_points, 2)`):
+ Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much
+ better results. The points can be obtained by passing a list of list of list to the processor that will
+ create corresponding `torch` tensors of dimension 4. The first dimension is the image batch size, the
+ second dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict
+ per input point), the third dimension is the number of points per segmentation mask (it is possible to pass
+ multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal)
+ coordinates of the point. If a different number of points is passed either for each image, or for each
+ mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the
+ computation of the embedding will be skipped for these points using the labels.
+ input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points)`):
+ Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the
+ official implementation, there are 3 types of labels
+
+ - `1`: the point is a point that contains the object of interest
+ - `0`: the point is a point that does not contain the object of interest
+ - `-1`: the point corresponds to the background
+
+ We added the label:
+
+ - `-10`: the point is a padding point, thus should be ignored by the prompt encoder
+
+ The padding labels should be automatically done by the processor.
+ input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes, 4)`):
+ Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to
+ much better generated masks. The boxes can be obtained by passing a list of list of list to the processor,
+ that will generate a `torch` tensor, with each dimension corresponding respectively to the image batch
+ size, the number of boxes per image and the coordinates of the top left and botton right point of the box.
+ In the order (`x1`, `y1`, `x2`, `y2`):
+
+ - `x1`: the x coordinate of the top left point of the input box
+ - `y1`: the y coordinate of the top left point of the input box
+ - `x2`: the x coordinate of the bottom right point of the input box
+ - `y2`: the y coordinate of the bottom right point of the input box
+
+ input_masks (`torch.FloatTensor` of shape `(batch_size, image_size, image_size)`):
+ SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to
+ generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be
+ manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`).
+
+ image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_channels, window_size, window_size)`):
+ Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory
+ efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings`
+ method, and then feed them to the `forward` method instead of feeding the `pixel_values`.
+ multimask_output (`bool`, *optional*):
+ In the original implementation and paper, the model always outputs 3 masks per image (or per point / per
+ bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the
+ "best" mask, by specifying `multimask_output=False`.
+ attention_similarity (`torch.FloatTensor`, *optional*):
+ Attention similarity tensor, to be provided to the mask decoder for target-guided attention in case the
+ model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048).
+ target_embedding (`torch.FloatTensor`, *optional*):
+ Embedding of the target concept, to be provided to the mask decoder for target-semantic prompting in case
+ the model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "Segment Anything Model (SAM) for generating segmentation masks, given an input image and ",
+ " optional 2D location and bounding boxes.",
+ SAM_START_DOCSTRING,
+)
+class SamModel(SamPreTrainedModel):
+ _tied_weights_keys = ["prompt_encoder.shared_embedding.positional_embedding"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.shared_image_embedding = SamPositionalEmbedding(config.vision_config)
+
+ self.vision_encoder = SamVisionEncoder(config.vision_config)
+ self.prompt_encoder = SamPromptEncoder(config.prompt_encoder_config, self.shared_image_embedding)
+ self.mask_decoder = SamMaskDecoder(config.mask_decoder_config)
+
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.vision_encoder.get_input_embeddings()
+
+ def get_image_wide_positional_embeddings(self):
+ size = self.config.prompt_encoder_config.image_embedding_size
+ target_device = self.shared_image_embedding.positional_embedding.device
+ target_dtype = self.shared_image_embedding.positional_embedding.dtype
+ grid = torch.ones((size, size), device=target_device, dtype=target_dtype)
+ y_embed = grid.cumsum(dim=0) - 0.5
+ x_embed = grid.cumsum(dim=1) - 0.5
+ y_embed = y_embed / size
+ x_embed = x_embed / size
+
+ positional_embedding = self.shared_image_embedding(torch.stack([x_embed, y_embed], dim=-1))
+ return positional_embedding.permute(2, 0, 1).unsqueeze(0) # channel x height x width
+
+ @torch.no_grad()
+ def get_image_embeddings(
+ self,
+ pixel_values,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ r"""
+ Returns the image embeddings by passing the pixel values through the vision encoder.
+
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Input pixel values
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+
+ """
+ vision_output = self.vision_encoder(
+ pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ image_embeddings = vision_output[0]
+ return image_embeddings
+
+ @torch.no_grad()
+ def get_prompt_embeddings(
+ self,
+ input_points: Optional[torch.FloatTensor] = None,
+ input_labels: Optional[torch.LongTensor] = None,
+ input_boxes: Optional[torch.FloatTensor] = None,
+ input_masks: Optional[torch.LongTensor] = None,
+ ):
+ r"""
+ Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder.
+
+ Args:
+ input_points (`torch.FloatTensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`):
+ Optional input points for the prompt encoder. The padding of the point is automatically done by the
+ processor. `point_batch_size` refers to the number of masks that we want the model to predict per
+ point. The model will output `point_batch_size` times 3 masks in total.
+ input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points_per_image)`):
+ Optional input labels for the prompt encoder. The padding of the labels is automatically done by the
+ processor, or can be fed by the user.
+ input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes_per_image, 4)`):
+ Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the
+ processor. users can also pass manually the input boxes.
+ input_masks (`torch.LongTensor` of shape `(batch_size, image_size, image_size)`):
+ Optional input masks for the prompt encoder.
+ """
+ prompt_output = self.prompt_encoder(
+ input_points=input_points,
+ input_labels=input_labels,
+ input_boxes=input_boxes,
+ input_masks=input_masks,
+ )
+ return prompt_output
+
+ @add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ input_points: Optional[torch.FloatTensor] = None,
+ input_labels: Optional[torch.LongTensor] = None,
+ input_boxes: Optional[torch.FloatTensor] = None,
+ input_masks: Optional[torch.LongTensor] = None,
+ image_embeddings: Optional[torch.FloatTensor] = None,
+ multimask_output: bool = True,
+ attention_similarity: Optional[torch.FloatTensor] = None,
+ target_embedding: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> List[Dict[str, torch.Tensor]]:
+ r"""
+ Example:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoModel, AutoProcessor
+
+ >>> model = AutoModel.from_pretrained("facebook/sam-vit-base")
+ >>> processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
+
+ >>> img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car.png"
+ >>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
+ >>> input_points = [[[400, 650]]] # 2D location of a window on the car
+ >>> inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt")
+
+ >>> # Get segmentation mask
+ >>> outputs = model(**inputs)
+
+ >>> # Postprocess masks
+ >>> masks = processor.post_process_masks(
+ ... outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
+ ... )
+ ```
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None and image_embeddings is None:
+ raise ValueError("Either pixel_values or image_embeddings must be provided.")
+
+ if pixel_values is not None and image_embeddings is not None:
+ raise ValueError("Only one of pixel_values and image_embeddings can be provided.")
+
+ if input_points is not None and len(input_points.shape) != 4:
+ raise ValueError(
+ "The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.",
+ " got {}.".format(input_points.shape),
+ )
+ if input_boxes is not None and len(input_boxes.shape) != 3:
+ raise ValueError(
+ "The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.",
+ " got {}.".format(input_boxes.shape),
+ )
+ if input_points is not None and input_boxes is not None:
+ point_batch_size = input_points.shape[1]
+ box_batch_size = input_boxes.shape[1]
+ if point_batch_size != box_batch_size:
+ raise ValueError(
+ "You should provide as many bounding boxes as input points per box. Got {} and {}.".format(
+ point_batch_size, box_batch_size
+ )
+ )
+
+ image_positional_embeddings = self.get_image_wide_positional_embeddings()
+ # repeat with batch size
+ batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeddings.shape[0]
+ image_positional_embeddings = image_positional_embeddings.repeat(batch_size, 1, 1, 1)
+
+ vision_attentions = None
+ vision_hidden_states = None
+
+ if pixel_values is not None:
+ vision_outputs = self.vision_encoder(
+ pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ image_embeddings = vision_outputs[0]
+
+ if output_hidden_states:
+ vision_hidden_states = vision_outputs[1]
+ if output_attentions:
+ vision_attentions = vision_outputs[-1]
+
+ if input_points is not None and input_labels is None:
+ input_labels = torch.ones_like(input_points[:, :, :, 0], dtype=torch.int, device=input_points.device)
+
+ if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]:
+ raise ValueError(
+ "The batch size of the image embeddings and the input points must be the same. ",
+ "Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]),
+ " if you want to pass multiple points for the same image, make sure that you passed ",
+ " input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ",
+ " input_labels of shape (batch_size, point_batch_size, num_points_per_image)",
+ )
+
+ sparse_embeddings, dense_embeddings = self.prompt_encoder(
+ input_points=input_points,
+ input_labels=input_labels,
+ input_boxes=input_boxes,
+ input_masks=input_masks,
+ )
+
+ low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder(
+ image_embeddings=image_embeddings,
+ image_positional_embeddings=image_positional_embeddings,
+ sparse_prompt_embeddings=sparse_embeddings,
+ dense_prompt_embeddings=dense_embeddings,
+ multimask_output=multimask_output,
+ attention_similarity=attention_similarity,
+ target_embedding=target_embedding,
+ output_attentions=output_attentions,
+ )
+
+ if not return_dict:
+ output = (iou_predictions, low_res_masks)
+ if output_hidden_states:
+ output = output + (vision_hidden_states,)
+
+ if output_attentions:
+ output = output + (vision_attentions, mask_decoder_attentions)
+ return output
+
+ return SamImageSegmentationOutput(
+ iou_scores=iou_predictions,
+ pred_masks=low_res_masks,
+ vision_hidden_states=vision_hidden_states,
+ vision_attentions=vision_attentions,
+ mask_decoder_attentions=mask_decoder_attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_tf_sam.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_tf_sam.py
new file mode 100644
index 0000000000000000000000000000000000000000..f527337cd6cdaa8c653272795ae98fe4deadaa0f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_tf_sam.py
@@ -0,0 +1,1656 @@
+# coding=utf-8
+# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+TensorFlow SAM model. This file was mostly generated by auto-translation from the PyTorch original. In the event of a
+discrepancy, the original file should be regarded as the 'reference' version.
+"""
+
+
+from __future__ import annotations
+
+import collections
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import ACT2FN
+from ...modeling_tf_outputs import TFBaseModelOutput
+from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, keras, shape_list, unpack_inputs
+from ...tf_utils import flatten, functional_layernorm
+from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "SamConfig"
+_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge"
+
+
+from ..deprecated._archive_maps import TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+class TFSamVisionEncoderOutput(ModelOutput):
+ """
+ Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection
+ layer to the pooler_output.
+
+ Args:
+ image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
+ The image embeddings obtained by applying the projection layer to the pooler_output.
+ last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
+ the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ image_embeds: tf.Tensor | None = None
+ last_hidden_state: tf.Tensor = None
+ hidden_states: Tuple[tf.Tensor, ...] | None = None
+ attentions: Tuple[tf.Tensor, ...] | None = None
+
+
+@dataclass
+class TFSamImageSegmentationOutput(ModelOutput):
+ """
+ Base class for Segment-Anything model's output
+
+ Args:
+ iou_scores (`tf.Tensor` of shape `(batch_size, num_masks)`):
+ The iou scores of the predicted masks.
+ pred_masks (`tf.Tensor` of shape `(batch_size, num_masks, height, width)`):
+ The predicted low resolutions masks. Needs to be post-processed by the processor
+ vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
+ the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs.
+ vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ mask_decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ iou_scores: tf.Tensor = None
+ pred_masks: tf.Tensor = None
+ vision_hidden_states: Tuple[tf.Tensor, ...] | None = None
+ vision_attentions: Tuple[tf.Tensor, ...] | None = None
+ mask_decoder_attentions: Tuple[tf.Tensor, ...] | None = None
+
+
+class TFSamPatchEmbeddings(keras.layers.Layer):
+ """
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
+ Transformer.
+ """
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ image_size, patch_size = config.image_size, config.patch_size
+ num_channels, hidden_size = config.num_channels, config.hidden_size
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_patches = num_patches
+
+ self.projection = keras.layers.Conv2D(
+ hidden_size, kernel_size=patch_size, strides=patch_size, name="projection"
+ )
+
+ def call(self, pixel_values):
+ batch_size, num_channels, height, width = shape_list(pixel_values)
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ if height != self.image_size[0] or width != self.image_size[1]:
+ raise ValueError(
+ f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
+ )
+ embeddings = self.projection(tf.transpose(pixel_values, perm=[0, 2, 3, 1]))
+ return embeddings
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "projection", None) is not None:
+ with tf.name_scope(self.projection.name):
+ self.projection.build([None, None, None, self.num_channels])
+
+
+class TFSamMLPBlock(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.lin1 = keras.layers.Dense(config.mlp_dim, name="lin1")
+ self.lin2 = keras.layers.Dense(config.hidden_size, name="lin2")
+ self.act = ACT2FN[config.hidden_act]
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.lin1(hidden_states)
+ hidden_states = self.act(hidden_states)
+ hidden_states = self.lin2(hidden_states)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "lin1", None) is not None:
+ with tf.name_scope(self.lin1.name):
+ self.lin1.build([None, None, self.config.hidden_size])
+ if getattr(self, "lin2", None) is not None:
+ with tf.name_scope(self.lin2.name):
+ self.lin2.build([None, None, self.config.mlp_dim])
+
+
+class TFSamLayerNorm(keras.layers.Layer):
+ r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
+ width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
+ """
+
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", **kwargs):
+ super().__init__(**kwargs)
+ self.eps = eps
+ self.data_format = data_format
+ self.normalized_shape = normalized_shape
+ if self.data_format not in ["channels_last", "channels_first"]:
+ raise NotImplementedError(f"Unsupported data format: {self.data_format}")
+
+ def build(self, input_shape):
+ self.weight = self.add_weight(shape=self.normalized_shape, initializer="ones", name="weight")
+ self.bias = self.add_weight(shape=self.normalized_shape, initializer="zeros", name="bias")
+ super().build(input_shape)
+
+ def call(self, x: tf.Tensor) -> tf.Tensor:
+ if self.data_format == "channels_last":
+ x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=-1)
+ elif self.data_format == "channels_first":
+ x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=1)
+ return x
+
+
+class TFSamAttention(keras.layers.Layer):
+ """
+ SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
+ values.
+ """
+
+ def __init__(self, config, downsample_rate=None, **kwargs):
+ super().__init__(**kwargs)
+ self.hidden_size = config.hidden_size
+
+ downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate
+
+ self.internal_dim = config.hidden_size // downsample_rate
+ self.num_attention_heads = config.num_attention_heads
+ if self.internal_dim % config.num_attention_heads != 0:
+ raise ValueError("num_attention_heads must divide hidden_size.")
+
+ self.q_proj = keras.layers.Dense(self.internal_dim, name="q_proj")
+ self.k_proj = keras.layers.Dense(self.internal_dim, name="k_proj")
+ self.v_proj = keras.layers.Dense(self.internal_dim, name="v_proj")
+ self.out_proj = keras.layers.Dense(self.hidden_size, name="out_proj")
+
+ def _separate_heads(self, hidden_states: tf.Tensor, num_attention_heads: int) -> tf.Tensor:
+ batch, point_batch_size, n_tokens, channel = shape_list(hidden_states)
+ c_per_head = channel // num_attention_heads
+ hidden_states = tf.reshape(
+ hidden_states, (batch * point_batch_size, n_tokens, num_attention_heads, c_per_head)
+ )
+ return tf.transpose(hidden_states, perm=[0, 2, 1, 3])
+
+ def _recombine_heads(self, hidden_states: tf.Tensor, point_batch_size: int) -> tf.Tensor:
+ batch, n_heads, n_tokens, c_per_head = shape_list(hidden_states)
+ hidden_states = tf.transpose(hidden_states, perm=[0, 2, 1, 3])
+ return tf.reshape(
+ hidden_states,
+ (batch // tf.reduce_max([1, point_batch_size]), point_batch_size, n_tokens, n_heads * c_per_head),
+ )
+
+ def call(self, query: tf.Tensor, key: tf.Tensor, value: tf.Tensor) -> tf.Tensor:
+ # Input projections
+ query = self.q_proj(query)
+ key = self.k_proj(key)
+ value = self.v_proj(value)
+
+ point_batch_size = shape_list(query)[1]
+ # Separate into heads
+ query = self._separate_heads(query, self.num_attention_heads)
+ key = self._separate_heads(key, self.num_attention_heads)
+ value = self._separate_heads(value, self.num_attention_heads)
+
+ # SamAttention
+ _, _, _, c_per_head = shape_list(query)
+ attn = tf.matmul(
+ query, tf.transpose(key, perm=[0, 1, 3, 2])
+ ) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens
+ attn = attn / tf.math.sqrt(float(c_per_head))
+ attn = tf.nn.softmax(attn, axis=-1)
+
+ # Get output
+ out = tf.matmul(attn, value)
+ out = self._recombine_heads(out, point_batch_size)
+ out = self.out_proj(out)
+
+ return out
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "q_proj", None) is not None:
+ with tf.name_scope(self.q_proj.name):
+ self.q_proj.build([None, None, self.hidden_size])
+ if getattr(self, "k_proj", None) is not None:
+ with tf.name_scope(self.k_proj.name):
+ self.k_proj.build([None, None, self.hidden_size])
+ if getattr(self, "v_proj", None) is not None:
+ with tf.name_scope(self.v_proj.name):
+ self.v_proj.build([None, None, self.hidden_size])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.internal_dim])
+
+
+class TFSamTwoWayAttentionBlock(keras.layers.Layer):
+ def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, **kwargs):
+ """
+ A transformer block with four layers:
+ (1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on
+ sparse inputs (4) cross attention of dense inputs -> sparse inputs
+
+ Arguments:
+ config (`SamMaskDecoderConfig`):
+ The configuration file used to instantiate the block
+ attention_downsample_rate (*optionalk*, int, defaults to 2):
+ The downsample ratio of the block used to reduce the inner dim of the attention.
+ skip_first_layer_pe (*optional*, bool, defaults to `False`):
+ Whether or not to skip the addition of the query_point_embedding on the first layer.
+ """
+ super().__init__(**kwargs)
+
+ self.hidden_size = config.hidden_size
+ self.layer_norm_eps = config.layer_norm_eps
+
+ self.self_attn = TFSamAttention(config, downsample_rate=1, name="self_attn")
+ self.layer_norm1 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm1")
+
+ self.cross_attn_token_to_image = TFSamAttention(
+ config, downsample_rate=attention_downsample_rate, name="cross_attn_token_to_image"
+ )
+ self.layer_norm2 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm2")
+
+ self.mlp = TFSamMLPBlock(config, name="mlp")
+ self.layer_norm3 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm3")
+
+ self.layer_norm4 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm4")
+ self.cross_attn_image_to_token = TFSamAttention(
+ config, downsample_rate=attention_downsample_rate, name="cross_attn_image_to_token"
+ )
+
+ self.skip_first_layer_pe = skip_first_layer_pe
+
+ def call(
+ self,
+ queries: tf.Tensor,
+ keys: tf.Tensor,
+ query_point_embedding: tf.Tensor,
+ key_point_embedding: tf.Tensor,
+ output_attentions: bool = False,
+ ):
+ # Self attention block
+ if self.skip_first_layer_pe:
+ queries = self.self_attn(query=queries, key=queries, value=queries)
+ else:
+ query = queries + query_point_embedding
+ attn_out = self.self_attn(query=query, key=query, value=queries)
+ queries = queries + attn_out
+ queries = self.layer_norm1(queries)
+
+ # Cross attention block, tokens attending to image embedding
+ query = queries + query_point_embedding
+ key = keys + key_point_embedding
+
+ attn_out = self.cross_attn_token_to_image(query=query, key=key, value=keys)
+ queries = queries + attn_out
+
+ queries = self.layer_norm2(queries)
+
+ # MLP block
+ mlp_out = self.mlp(queries)
+ queries = queries + mlp_out
+ queries = self.layer_norm3(queries)
+
+ # Cross attention block, image embedding attending to tokens
+ query = queries + query_point_embedding
+ key = keys + key_point_embedding
+
+ attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries)
+ keys = keys + attn_out
+
+ keys = self.layer_norm4(keys)
+
+ outputs = (queries, keys)
+
+ if output_attentions:
+ outputs = outputs + (attn_out,)
+ else:
+ outputs = outputs + (None,)
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attn", None) is not None:
+ with tf.name_scope(self.self_attn.name):
+ self.self_attn.build(None)
+ if getattr(self, "layer_norm1", None) is not None:
+ with tf.name_scope(self.layer_norm1.name):
+ self.layer_norm1.build([None, None, None, self.hidden_size])
+ if getattr(self, "cross_attn_token_to_image", None) is not None:
+ with tf.name_scope(self.cross_attn_token_to_image.name):
+ self.cross_attn_token_to_image.build(None)
+ if getattr(self, "layer_norm2", None) is not None:
+ with tf.name_scope(self.layer_norm2.name):
+ self.layer_norm2.build([None, None, None, self.hidden_size])
+ if getattr(self, "mlp", None) is not None:
+ with tf.name_scope(self.mlp.name):
+ self.mlp.build(None)
+ if getattr(self, "layer_norm3", None) is not None:
+ with tf.name_scope(self.layer_norm3.name):
+ self.layer_norm3.build([None, None, None, self.hidden_size])
+ if getattr(self, "layer_norm4", None) is not None:
+ with tf.name_scope(self.layer_norm4.name):
+ self.layer_norm4.build([None, None, None, self.hidden_size])
+ if getattr(self, "cross_attn_image_to_token", None) is not None:
+ with tf.name_scope(self.cross_attn_image_to_token.name):
+ self.cross_attn_image_to_token.build(None)
+
+
+class TFSamTwoWayTransformer(keras.layers.Layer):
+ def __init__(self, config: SamMaskDecoderConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+
+ self.num_hidden_layers = config.num_hidden_layers
+ self.layers = []
+
+ for i in range(self.num_hidden_layers):
+ self.layers.append(TFSamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0), name=f"layers_._{i}"))
+
+ self.final_attn_token_to_image = TFSamAttention(config, name="final_attn_token_to_image")
+ self.layer_norm_final_attn = keras.layers.LayerNormalization(
+ epsilon=config.layer_norm_eps, name="layer_norm_final_attn"
+ )
+
+ def call(
+ self,
+ point_embeddings: tf.Tensor,
+ image_embeddings: tf.Tensor,
+ image_positional_embeddings: tf.Tensor,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TFBaseModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ all_attentions = ()
+
+ if image_embeddings is None:
+ raise ValueError("You have to specify an image_embedding")
+
+ image_embeddings = tf.transpose(flatten(image_embeddings, 2), perm=(0, 2, 1))[:, None]
+ image_positional_embeddings = tf.transpose(flatten(image_positional_embeddings, 2), (0, 2, 1))[:, None]
+
+ # Prepare queries
+ queries = point_embeddings
+ keys = image_embeddings
+
+ # Apply transformer blocks and final layernorm
+ for layer in self.layers:
+ queries, keys, attention_outputs = layer(
+ queries=queries,
+ keys=keys,
+ query_point_embedding=point_embeddings,
+ key_point_embedding=image_positional_embeddings,
+ output_attentions=output_attentions,
+ )
+
+ if output_attentions:
+ all_attentions = all_attentions + (attention_outputs,)
+
+ # Apply the final attenion layer from the points to the image
+ query = queries + point_embeddings
+ key = keys + image_positional_embeddings
+
+ attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys)
+
+ queries = queries + attn_out
+ queries = self.layer_norm_final_attn(queries)
+ return queries, keys, all_attentions
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "final_attn_token_to_image", None) is not None:
+ with tf.name_scope(self.final_attn_token_to_image.name):
+ self.final_attn_token_to_image.build(None)
+ if getattr(self, "layer_norm_final_attn", None) is not None:
+ with tf.name_scope(self.layer_norm_final_attn.name):
+ self.layer_norm_final_attn.build([None, None, None, self.config.hidden_size])
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+class TFSamFeedForward(keras.layers.Layer):
+ def __init__(
+ self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, **kwargs
+ ):
+ super().__init__(**kwargs)
+ self.num_layers = num_layers
+ self.activation = keras.layers.ReLU()
+ self.proj_in = keras.layers.Dense(hidden_dim, input_shape=(input_dim,), name="proj_in")
+ self.proj_out = keras.layers.Dense(output_dim, input_shape=(hidden_dim,), name="proj_out")
+ self.layers = [
+ keras.layers.Dense(hidden_dim, input_shape=(hidden_dim,), name=f"layers_._{i}")
+ for i in range(num_layers - 2)
+ ]
+ self.sigmoid_output = sigmoid_output
+ self.hidden_dim = hidden_dim
+ self.input_dim = input_dim
+
+ def call(self, hidden_states):
+ hidden_states = self.proj_in(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ for layer in self.layers:
+ hidden_states = self.activation(layer(hidden_states))
+
+ hidden_states = self.proj_out(hidden_states)
+ if self.sigmoid_output:
+ hidden_states = tf.sigmoid(hidden_states)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "proj_in", None) is not None:
+ with tf.name_scope(self.proj_in.name):
+ self.proj_in.build([None, None, self.input_dim])
+ if getattr(self, "proj_out", None) is not None:
+ with tf.name_scope(self.proj_out.name):
+ self.proj_out.build([None, None, self.hidden_dim])
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build([None, None, self.hidden_dim])
+
+
+class TFSamMaskDecoder(keras.layers.Layer):
+ def __init__(self, config: SamMaskDecoderConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.hidden_size = config.hidden_size
+
+ self.num_multimask_outputs = config.num_multimask_outputs
+ self.num_mask_tokens = config.num_multimask_outputs + 1
+
+ self.transformer = TFSamTwoWayTransformer(config, name="transformer")
+
+ self.upscale_conv1 = keras.layers.Conv2DTranspose(
+ self.hidden_size // 4, kernel_size=2, strides=2, name="upscale_conv1", data_format="channels_first"
+ )
+ self.upscale_conv2 = keras.layers.Conv2DTranspose(
+ self.hidden_size // 8, kernel_size=2, strides=2, name="upscale_conv2", data_format="channels_first"
+ )
+ self.upscale_layer_norm = TFSamLayerNorm(
+ self.hidden_size // 4, data_format="channels_first", name="upscale_layer_norm"
+ )
+ self.activation = tf.nn.gelu
+
+ mlps_list = []
+ for i in range(self.num_mask_tokens):
+ mlps_list += [
+ TFSamFeedForward(
+ self.hidden_size,
+ self.hidden_size,
+ self.hidden_size // 8,
+ 3,
+ name=f"output_hypernetworks_mlps_._{i}",
+ )
+ ]
+ self.output_hypernetworks_mlps = mlps_list
+
+ self.iou_prediction_head = TFSamFeedForward(
+ self.hidden_size,
+ config.iou_head_hidden_dim,
+ self.num_mask_tokens,
+ config.iou_head_depth,
+ name="iou_prediction_head",
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ self.iou_token = self.add_weight(shape=(1, self.hidden_size), name="iou_token.weight", trainable=True)
+ self.mask_tokens = self.add_weight(
+ shape=(self.num_mask_tokens, self.hidden_size), name="mask_tokens.weight", trainable=True
+ )
+
+ if getattr(self, "transformer", None) is not None:
+ with tf.name_scope(self.transformer.name):
+ self.transformer.build(None)
+ if getattr(self, "upscale_conv1", None) is not None:
+ with tf.name_scope(self.upscale_conv1.name):
+ self.upscale_conv1.build([None, self.hidden_size, None, None])
+ if getattr(self, "upscale_conv2", None) is not None:
+ with tf.name_scope(self.upscale_conv2.name):
+ self.upscale_conv2.build([None, self.hidden_size // 4, None, None])
+ if getattr(self, "upscale_layer_norm", None) is not None:
+ with tf.name_scope(self.upscale_layer_norm.name):
+ self.upscale_layer_norm.build(None)
+ if getattr(self, "iou_prediction_head", None) is not None:
+ with tf.name_scope(self.iou_prediction_head.name):
+ self.iou_prediction_head.build(None)
+ for mlp in self.output_hypernetworks_mlps:
+ with tf.name_scope(mlp.name):
+ mlp.build(None)
+
+ def call(
+ self,
+ image_embeddings: tf.Tensor,
+ image_positional_embeddings: tf.Tensor,
+ sparse_prompt_embeddings: tf.Tensor,
+ dense_prompt_embeddings: tf.Tensor,
+ multimask_output: bool,
+ output_attentions: Optional[bool] = None,
+ ) -> Tuple[tf.Tensor, tf.Tensor]:
+ batch_size, num_channels, height, width = shape_list(image_embeddings)
+ point_batch_size = tf.math.maximum(1, tf.shape(sparse_prompt_embeddings)[1])
+
+ output_tokens = tf.concat([self.iou_token, self.mask_tokens], axis=0) # Should be (1, 32) + (4, 32) = (5, 32)
+ output_tokens = tf.tile(
+ output_tokens[None, None, :], [batch_size, point_batch_size, 1, 1]
+ ) # Should be (batch_size, point_size, 5, 32)
+
+ # Matt: The original Torch code checked that the sum of sparse_prompt_embeddings equalled 0. However, this only
+ # happens when the sparse prompt embeddings are an empty tensor with shape[1] == 0. I replaced
+ # it with an explicit shape check to avoid data-dependent control flow which breaks XLA.
+ if shape_list(sparse_prompt_embeddings)[1] != 0:
+ tokens = tf.concat((output_tokens, sparse_prompt_embeddings), axis=2)
+ else:
+ tokens = output_tokens
+ point_embeddings = tf.cast(tokens, self.iou_token.dtype)
+
+ image_embeddings = image_embeddings + dense_prompt_embeddings
+ image_embeddings = tf.repeat(image_embeddings, point_batch_size, axis=0)
+ image_positional_embeddings = tf.repeat(image_positional_embeddings, point_batch_size, axis=0)
+
+ point_embedding, image_embeddings, attentions = self.transformer(
+ point_embeddings=point_embeddings,
+ image_embeddings=image_embeddings,
+ image_positional_embeddings=image_positional_embeddings,
+ output_attentions=output_attentions,
+ )
+ iou_token_out = point_embedding[:, :, 0, :]
+ mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :]
+
+ image_embeddings = tf.transpose(image_embeddings, perm=(0, 1, 3, 2))
+ image_embeddings = tf.reshape(image_embeddings, [batch_size * point_batch_size, num_channels, height, width])
+
+ upscaled_embedding = self.upscale_conv1(image_embeddings)
+ upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding))
+ upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding))
+
+ hyper_in_list = []
+ for i in range(self.num_mask_tokens):
+ current_mlp = self.output_hypernetworks_mlps[i]
+ hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])]
+ hyper_in = tf.stack(hyper_in_list, axis=2)
+
+ _, num_channels, height, width = shape_list(upscaled_embedding)
+ upscaled_embedding = tf.reshape(
+ upscaled_embedding, [batch_size, point_batch_size, num_channels, height * width]
+ )
+ masks = tf.reshape(hyper_in @ upscaled_embedding, [batch_size, point_batch_size, -1, height, width])
+
+ iou_pred = self.iou_prediction_head(iou_token_out)
+
+ if multimask_output:
+ mask_slice = slice(1, None)
+ else:
+ mask_slice = slice(0, 1)
+ masks = masks[:, :, mask_slice, :, :]
+ iou_pred = iou_pred[:, :, mask_slice]
+
+ outputs = (masks, iou_pred)
+
+ if output_attentions:
+ outputs = outputs + (attentions,)
+ else:
+ outputs = outputs + (None,)
+
+ return outputs
+
+
+class TFSamPositionalEmbedding(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.scale = config.hidden_size // 2
+ self.config = config
+
+ def build(self, input_shape):
+ # TODO Matt: What is going on here? Why is a non-trainable weight randomly initialized?
+ self.positional_embedding = self.add_weight(
+ name="positional_embedding",
+ shape=(2, self.config.num_pos_feats),
+ initializer=keras.initializers.RandomNormal(mean=0.0, stddev=self.scale),
+ trainable=False,
+ )
+ super().build(input_shape)
+
+ def call(self, input_coords, input_shape=None):
+ """Positionally encode points that are normalized to [0,1]."""
+ coordinates = tf.identity(input_coords)
+
+ if input_shape is not None:
+ coordinates = tf.stack(
+ [
+ tf.cast(coordinates[:, :, :, 0], tf.float32) / input_shape[1],
+ tf.cast(coordinates[:, :, :, 1], tf.float32) / input_shape[0],
+ ],
+ axis=-1,
+ )
+
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
+ coordinates = 2 * coordinates - 1
+ coordinates = tf.cast(coordinates, self.positional_embedding.dtype)
+ coordinates = tf.matmul(coordinates, self.positional_embedding)
+ coordinates = 2 * np.pi * coordinates
+ # outputs d_1 x ... x d_n x channel shape
+ return tf.concat([tf.sin(coordinates), tf.cos(coordinates)], axis=-1)
+
+
+class TFSamMaskEmbedding(keras.layers.Layer):
+ def __init__(self, config: SamPromptEncoderConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.mask_input_channels = config.mask_input_channels // 4
+ self.activation = ACT2FN[config.hidden_act]
+ self.conv1 = keras.layers.Conv2D(self.mask_input_channels, kernel_size=2, strides=2, name="conv1")
+ self.conv2 = keras.layers.Conv2D(config.mask_input_channels, kernel_size=2, strides=2, name="conv2")
+ self.conv3 = keras.layers.Conv2D(config.hidden_size, kernel_size=1, name="conv3")
+ self.layer_norm1 = TFSamLayerNorm(self.mask_input_channels, config.layer_norm_eps, name="layer_norm1")
+ self.layer_norm2 = TFSamLayerNorm(self.mask_input_channels * 4, config.layer_norm_eps, name="layer_norm2")
+ self.config = config
+
+ def call(self, masks):
+ masks = tf.transpose(masks, perm=(0, 2, 3, 1)) # Convert to channels-last
+ hidden_states = self.conv1(masks)
+ hidden_states = self.layer_norm1(hidden_states)
+ hidden_states = self.activation(hidden_states)
+
+ hidden_states = self.conv2(hidden_states)
+ hidden_states = self.layer_norm2(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ dense_embeddings = self.conv3(hidden_states)
+ dense_embeddings = tf.transpose(dense_embeddings, perm=(0, 3, 1, 2)) # Convert back to channels-first
+ return dense_embeddings
+
+ def build(self, input_shape=None):
+ # This class needs an explicit build method because it isn't called with the standard dummy inputs
+ if self.built:
+ return
+ self.built = True
+ with tf.name_scope("conv1"):
+ self.conv1.build([None, None, None, 1])
+ with tf.name_scope("conv2"):
+ self.conv2.build([None, None, None, self.mask_input_channels])
+ with tf.name_scope("conv3"):
+ self.conv3.build([None, None, None, self.mask_input_channels * 4])
+ with tf.name_scope("layer_norm1"):
+ self.layer_norm1.build([None, None, None, self.mask_input_channels])
+ with tf.name_scope("layer_norm2"):
+ self.layer_norm2.build([None, None, None, self.mask_input_channels * 4])
+
+
+class TFSamPromptEncoder(keras.layers.Layer):
+ def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding, **kwargs):
+ super().__init__(**kwargs)
+ self.shared_embedding = shared_patch_embedding
+ self.mask_embed = TFSamMaskEmbedding(config, name="mask_embed")
+ self.no_mask_embed = None
+
+ self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size)
+ self.input_image_size = config.image_size
+
+ self.point_embed = []
+ self.hidden_size = config.hidden_size
+ self.not_a_point_embed = None
+ self.config = config
+
+ def build(self, input_shape=None):
+ self.no_mask_embed = self.add_weight(
+ name="no_mask_embed.weight",
+ shape=(1, self.hidden_size),
+ initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
+ trainable=True,
+ )
+ self.point_embed = [
+ self.add_weight(
+ name=f"point_embed_._{i}.weight",
+ shape=(1, self.hidden_size),
+ initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
+ trainable=True,
+ )
+ for i in range(self.config.num_point_embeddings)
+ ]
+ self.not_a_point_embed = self.add_weight(
+ name="not_a_point_embed.weight",
+ shape=(1, self.hidden_size),
+ initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
+ trainable=True,
+ )
+ with tf.name_scope("mask_embed"):
+ # We must explicitly build the mask embed because it isn't touched by the standard dummy inputs
+ self.mask_embed.build(
+ (None, self.config.mask_input_channels, self.config.image_size, self.config.image_size)
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "mask_embed", None) is not None:
+ with tf.name_scope(self.mask_embed.name):
+ self.mask_embed.build(None)
+
+ def _embed_points(self, points: tf.Tensor, labels: tf.Tensor, pad: bool) -> tf.Tensor:
+ """Embeds point prompts."""
+ points = points + 0.5 # Shift to center of pixel
+ if pad:
+ target_point_shape = (shape_list(points)[0], shape_list(points)[1], 1, shape_list(points)[-1])
+ target_labels_shape = (shape_list(points)[0], shape_list(points)[1], 1)
+ padding_point = tf.zeros(target_point_shape, dtype=points.dtype)
+ padding_label = -tf.ones(target_labels_shape, dtype=labels.dtype)
+ points = tf.concat([points, padding_point], axis=2)
+ labels = tf.concat([labels, padding_label], axis=2)
+ input_shape = (self.input_image_size, self.input_image_size)
+ point_embedding = self.shared_embedding(points, input_shape)
+
+ point_embedding = tf.where(labels[..., None] == -1, self.not_a_point_embed[0], point_embedding)
+
+ point_embedding = tf.where(
+ labels[..., None] != -10,
+ point_embedding,
+ tf.zeros_like(point_embedding),
+ )
+ point_embedding = tf.where(
+ (labels == 0)[:, :, :, None], point_embedding + self.point_embed[0], point_embedding
+ )
+ point_embedding = tf.where(
+ (labels == 1)[:, :, :, None], point_embedding + self.point_embed[1], point_embedding
+ )
+ return point_embedding
+
+ def _embed_boxes(self, boxes: tf.Tensor) -> tf.Tensor:
+ """Embeds box prompts."""
+ boxes = boxes + 0.5 # Shift to center of pixel
+ batch_size, nb_boxes = shape_list(boxes)[:2]
+ coords = tf.reshape(boxes, (batch_size, nb_boxes, 2, 2))
+ input_shape = (self.input_image_size, self.input_image_size)
+ corner_embedding = self.shared_embedding(coords, input_shape)
+ corner_embedding += tf.where(
+ tf.range(shape_list(corner_embedding)[2])[None, None, :, None] == 0,
+ self.point_embed[2][0],
+ self.point_embed[3][0],
+ )
+ return corner_embedding
+
+ def call(
+ self,
+ batch_size: Optional[int],
+ input_points: Optional[Tuple[tf.Tensor, tf.Tensor]],
+ input_labels: tf.Tensor | None,
+ input_boxes: tf.Tensor | None,
+ input_masks: tf.Tensor | None,
+ ) -> Tuple[tf.Tensor, tf.Tensor]:
+ """
+ Embeds different types of prompts, returning both sparse and dense embeddings.
+
+ Args:
+ points (`tf.Tensor`, *optional*):
+ point coordinates and labels to embed.
+ boxes (`tf.Tensor`, *optional*):
+ boxes to embed
+ masks (`tf.Tensor`, *optional*):
+ masks to embed
+ """
+ sparse_embeddings = None
+ if input_points is not None:
+ batch_size, point_batch_size = shape_list(input_points)[:2]
+ if input_labels is None:
+ raise ValueError("If points are provided, labels must also be provided.")
+ point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None))
+ sparse_embeddings = tf.zeros(
+ (batch_size, point_batch_size, 0, self.hidden_size), dtype=point_embeddings.dtype
+ )
+ sparse_embeddings = tf.concat([sparse_embeddings, point_embeddings], axis=2)
+ if input_boxes is not None:
+ batch_size = shape_list(input_boxes)[0]
+ box_embeddings = self._embed_boxes(input_boxes)
+ if sparse_embeddings is None:
+ sparse_embeddings = box_embeddings
+ else:
+ sparse_embeddings = tf.concat([sparse_embeddings, box_embeddings], axis=2)
+ if input_masks is not None:
+ dense_embeddings = self.mask_embed(input_masks)
+ else:
+ dense_embeddings = self.no_mask_embed[0]
+ dense_embeddings = tf.reshape(dense_embeddings, (1, -1, 1, 1))
+ dense_embeddings = tf.tile(
+ dense_embeddings, (batch_size, 1, self.image_embedding_size[0], self.image_embedding_size[1])
+ )
+ if sparse_embeddings is None:
+ sparse_embeddings = tf.zeros((batch_size, 0, 1, self.hidden_size), dtype=dense_embeddings.dtype)
+
+ return sparse_embeddings, dense_embeddings
+
+
+class TFSamVisionAttention(keras.layers.Layer):
+ """Multi-head Attention block with relative position embeddings."""
+
+ def __init__(self, config, window_size, **kwargs):
+ super().__init__(**kwargs)
+ input_size = (
+ (config.image_size // config.patch_size, config.image_size // config.patch_size)
+ if window_size == 0
+ else (window_size, window_size)
+ )
+ self.input_size = input_size
+
+ self.num_attention_heads = config.num_attention_heads
+ head_dim = config.hidden_size // config.num_attention_heads
+ self.head_dim = head_dim
+ self.scale = head_dim**-0.5
+ self.dropout = config.attention_dropout
+
+ self.qkv = keras.layers.Dense(config.hidden_size * 3, use_bias=config.qkv_bias, name="qkv")
+ self.proj = keras.layers.Dense(config.hidden_size, name="proj")
+
+ self.use_rel_pos = config.use_rel_pos
+ if self.use_rel_pos:
+ if input_size is None:
+ raise ValueError("Input size must be provided if using relative positional encoding.")
+ self.config = config
+
+ def build(self, input_shape=None):
+ if self.input_size is not None:
+ # initialize relative positional embeddings
+ self.rel_pos_h = self.add_weight(
+ shape=(2 * self.input_size[0] - 1, self.head_dim), initializer="zeros", name="rel_pos_h"
+ )
+ self.rel_pos_w = self.add_weight(
+ shape=(2 * self.input_size[1] - 1, self.head_dim), initializer="zeros", name="rel_pos_w"
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "qkv", None) is not None:
+ with tf.name_scope(self.qkv.name):
+ self.qkv.build([None, None, self.config.hidden_size])
+ if getattr(self, "proj", None) is not None:
+ with tf.name_scope(self.proj.name):
+ self.proj.build([None, None, self.config.hidden_size])
+
+ def get_rel_pos(self, q_size: int, k_size: int, rel_pos: tf.Tensor) -> tf.Tensor:
+ """
+ Get relative positional embeddings according to the relative positions of
+ query and key sizes.
+
+ Args:
+ q_size (int):
+ size of the query.
+ k_size (int):
+ size of key k.
+ rel_pos (`tf.Tensor`):
+ relative position embeddings (L, channel).
+
+ Returns:
+ Extracted positional embeddings according to relative positions.
+ """
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
+ # Interpolate rel pos if needed.
+ if rel_pos.shape[0] != max_rel_dist:
+ # Interpolate rel pos.
+ rel_pos_resized = tf.image.resize(
+ tf.reshape(rel_pos, (1, rel_pos.shape[0], -1)),
+ size=(max_rel_dist, rel_pos.shape[1]),
+ method="bilinear",
+ )
+ rel_pos_resized = tf.reshape(rel_pos_resized, (-1, max_rel_dist))
+ else:
+ rel_pos_resized = rel_pos
+
+ # Scale the coords with short length if shapes for q and k are different.
+ q_coords = tf.expand_dims(tf.range(q_size, dtype=tf.float32), 1) * max(k_size / q_size, 1.0)
+ k_coords = tf.expand_dims(tf.range(k_size, dtype=tf.float32), 0) * max(q_size / k_size, 1.0)
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
+
+ return tf.gather(rel_pos_resized, tf.cast(relative_coords, tf.int32))
+
+ def add_decomposed_rel_pos(
+ self,
+ attn: tf.Tensor,
+ query: tf.Tensor,
+ rel_pos_h: tf.Tensor,
+ rel_pos_w: tf.Tensor,
+ q_size: Tuple[int, int],
+ k_size: Tuple[int, int],
+ ) -> tf.Tensor:
+ """
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
+
+ Args:
+ attn (`tf.Tensor`):
+ attention map.
+ query (`tf.Tensor`):
+ query q in the attention layer with shape (batch_size, query_height * query_width, channel).
+ rel_pos_h (`tf.Tensor`):
+ relative position embeddings (Lh, channel) for height axis.
+ rel_pos_w (`tf.Tensor`):
+ relative position embeddings (Lw, channel) for width axis.
+ q_size (tuple):
+ spatial sequence size of query q with (query_height, query_width).
+ k_size (tuple):
+ spatial sequence size of key k with (key_height, key_width).
+
+ Returns:
+ attn (`tf.Tensor`):
+ attention map with added relative positional embeddings.
+ """
+ query_height, query_width = q_size
+ key_height, key_width = k_size
+ relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
+ relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)
+
+ batch_size, _, dim = shape_list(query)
+ reshaped_query = tf.reshape(query, (batch_size, query_height, query_width, dim))
+ rel_h = tf.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
+ rel_w = tf.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
+ attn = tf.reshape(attn, (batch_size, query_height, query_width, key_height, key_width))
+ attn = attn + tf.expand_dims(rel_h, axis=-1) + tf.expand_dims(rel_w, axis=-2)
+ attn = tf.reshape(attn, (batch_size, query_height * query_width, key_height * key_width))
+ return attn
+
+ def call(self, hidden_states: tf.Tensor, output_attentions=False, training=False) -> tf.Tensor:
+ batch_size, height, width, _ = shape_list(hidden_states)
+ # qkv with shape (3, batch_size, nHead, height * width, channel)
+ qkv = tf.reshape(self.qkv(hidden_states), (batch_size, height * width, 3, self.num_attention_heads, -1))
+ qkv = tf.transpose(qkv, perm=(2, 0, 3, 1, 4))
+ # q, k, v with shape (batch_size * nHead, height * width, channel)
+ query, key, value = tf.unstack(
+ tf.reshape(qkv, (3, batch_size * self.num_attention_heads, height * width, -1)), axis=0
+ )
+ attn_weights = tf.matmul(query * self.scale, key, transpose_b=True)
+
+ if self.use_rel_pos:
+ attn_weights = self.add_decomposed_rel_pos(
+ attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
+ )
+
+ attn_weights = tf.nn.softmax(attn_weights, axis=-1)
+
+ if training:
+ attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout)
+ else:
+ attn_probs = attn_weights
+
+ attn_output = tf.reshape(attn_probs @ value, (batch_size, self.num_attention_heads, height, width, -1))
+ attn_output = tf.transpose(attn_output, perm=(0, 2, 3, 1, 4))
+ attn_output = tf.reshape(attn_output, (batch_size, height, width, self.config.hidden_size))
+
+ attn_output = self.proj(attn_output)
+
+ if output_attentions:
+ outputs = (attn_output, attn_weights)
+ else:
+ outputs = (attn_output, None)
+
+ return outputs
+
+
+class TFSamVisionLayer(keras.layers.Layer):
+ def __init__(self, config, window_size, **kwargs):
+ super().__init__(**kwargs)
+ self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
+ self.attn = TFSamVisionAttention(config, window_size, name="attn")
+ self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
+ self.mlp = TFSamMLPBlock(config, name="mlp")
+ self.window_size = window_size
+ self.config = config
+
+ def window_partition(self, hidden_states: tf.Tensor, window_size: int) -> Tuple[tf.Tensor, Tuple[int, int]]:
+ batch_size, height, width, channel = shape_list(hidden_states)
+
+ pad_h = (window_size - height % window_size) % window_size
+ pad_w = (window_size - width % window_size) % window_size
+ if pad_h > 0 or pad_w > 0:
+ hidden_states = tf.pad(hidden_states, [[0, 0], [0, pad_h], [0, pad_w], [0, 0]])
+ pad_height, pad_width = height + pad_h, width + pad_w
+
+ hidden_states = tf.reshape(
+ hidden_states,
+ [batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel],
+ )
+ windows = tf.reshape(
+ tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [-1, window_size, window_size, channel]
+ )
+ return windows, (pad_height, pad_width)
+
+ def window_unpartition(
+ self, windows: tf.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int]
+ ) -> tf.Tensor:
+ pad_height, pad_width = padding_shape
+ height, width = original_shape
+ batch_size = shape_list(windows)[0] // (pad_height * pad_width // window_size // window_size)
+ hidden_states = tf.reshape(
+ windows, [batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1]
+ )
+ hidden_states = tf.reshape(
+ tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [batch_size, pad_height, pad_width, -1]
+ )
+
+ if pad_height > height or pad_width > width:
+ hidden_states = hidden_states[:, :height, :width, :]
+ return hidden_states
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ output_attentions: Optional[bool] = False,
+ training: Optional[bool] = False,
+ ) -> Tuple[tf.Tensor]:
+ residual = hidden_states
+
+ hidden_states = self.layer_norm1(hidden_states)
+ if self.window_size > 0:
+ height, width = hidden_states.shape[1], hidden_states.shape[2]
+ hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)
+
+ hidden_states, attn_weights = self.attn(
+ hidden_states=hidden_states,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ if self.window_size > 0:
+ hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width))
+
+ hidden_states = residual + hidden_states
+ layernorm_output = self.layer_norm2(hidden_states)
+ hidden_states = hidden_states + self.mlp(layernorm_output)
+
+ outputs = (hidden_states,)
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "layer_norm1", None) is not None:
+ with tf.name_scope(self.layer_norm1.name):
+ self.layer_norm1.build([None, None, None, self.config.hidden_size])
+ if getattr(self, "attn", None) is not None:
+ with tf.name_scope(self.attn.name):
+ self.attn.build(None)
+ if getattr(self, "layer_norm2", None) is not None:
+ with tf.name_scope(self.layer_norm2.name):
+ self.layer_norm2.build([None, None, None, self.config.hidden_size])
+ if getattr(self, "mlp", None) is not None:
+ with tf.name_scope(self.mlp.name):
+ self.mlp.build(None)
+
+
+class TFSamVisionNeck(keras.layers.Layer):
+ def __init__(self, config: SamVisionConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+
+ self.conv1 = keras.layers.Conv2D(
+ config.output_channels,
+ kernel_size=1,
+ use_bias=False,
+ name="conv1",
+ )
+ self.layer_norm1 = TFSamLayerNorm(config.output_channels, name="layer_norm1")
+ self.conv2 = keras.layers.Conv2D(
+ config.output_channels,
+ kernel_size=3,
+ padding="same",
+ use_bias=False,
+ name="conv2",
+ )
+ self.layer_norm2 = TFSamLayerNorm(config.output_channels, name="layer_norm2")
+
+ def call(self, hidden_states):
+ hidden_states = self.conv1(hidden_states)
+ hidden_states = self.layer_norm1(hidden_states)
+
+ hidden_states = self.conv2(hidden_states)
+ hidden_states = self.layer_norm2(hidden_states)
+ hidden_states = tf.transpose(hidden_states, perm=[0, 3, 1, 2])
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "conv1", None) is not None:
+ with tf.name_scope(self.conv1.name):
+ self.conv1.build([None, None, None, self.config.hidden_size])
+ if getattr(self, "layer_norm1", None) is not None:
+ with tf.name_scope(self.layer_norm1.name):
+ self.layer_norm1.build(None)
+ if getattr(self, "conv2", None) is not None:
+ with tf.name_scope(self.conv2.name):
+ self.conv2.build([None, None, None, self.config.output_channels])
+ if getattr(self, "layer_norm2", None) is not None:
+ with tf.name_scope(self.layer_norm2.name):
+ self.layer_norm2.build(None)
+
+
+class TFSamVisionEncoder(keras.layers.Layer):
+ def __init__(self, config: SamVisionConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.image_size = config.image_size
+
+ self.patch_embed = TFSamPatchEmbeddings(config, name="patch_embed")
+
+ self.pos_embed = None
+
+ self.layers = []
+ for i in range(config.num_hidden_layers):
+ layer = TFSamVisionLayer(
+ config,
+ window_size=config.window_size if i not in config.global_attn_indexes else 0,
+ name=f"layers_._{i}",
+ )
+ self.layers.append(layer)
+
+ self.neck = TFSamVisionNeck(config, name="neck")
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if self.config.use_abs_pos:
+ # Initialize absolute positional embedding with pretrain image size.
+ self.pos_embed = self.add_weight(
+ shape=[
+ 1,
+ self.config.image_size // self.config.patch_size,
+ self.config.image_size // self.config.patch_size,
+ self.config.hidden_size,
+ ],
+ initializer="zeros",
+ trainable=True,
+ name="pos_embed",
+ )
+
+ if getattr(self, "patch_embed", None) is not None:
+ with tf.name_scope(self.patch_embed.name):
+ self.patch_embed.build(None)
+ if getattr(self, "neck", None) is not None:
+ with tf.name_scope(self.neck.name):
+ self.neck.build(None)
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+ def get_input_embeddings(self):
+ return self.patch_embed
+
+ def call(
+ self,
+ pixel_values: tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[Tuple, TFSamVisionEncoderOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ hidden_states = self.patch_embed(pixel_values)
+ if self.pos_embed is not None:
+ hidden_states = hidden_states + self.pos_embed
+
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_outputs = layer_module(hidden_states, output_attentions=output_attentions, training=training)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ hidden_states = self.neck(hidden_states)
+
+ if not return_dict:
+ outputs = (hidden_states,)
+ if output_hidden_states:
+ outputs = outputs + (all_hidden_states,)
+ if output_attentions:
+ outputs = outputs + (all_self_attentions,)
+ return outputs
+
+ return TFSamVisionEncoderOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class TFSamPreTrainedModel(TFPreTrainedModel):
+ config_class = SamConfig
+ base_model_prefix = "sam"
+ main_input_name = "pixel_values"
+
+
+SAM_START_DOCSTRING = r"""
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a TensorFlow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
+ subclass. Use it as a regular TensorFlow Model and refer to the TensorFlow documentation for all matter related to
+ general usage and behavior.
+
+ Parameters:
+ config ([`SamConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+SAM_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for
+ details.
+ input_points (`tf.Tensor` of shape `(batch_size, num_points, 2)`):
+ Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much
+ better results. The points can be obtained by passing a list of list of list to the processor that will
+ create corresponding `tf` tensors of dimension 4. The first dimension is the image batch size, the second
+ dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict per
+ input point), the third dimension is the number of points per segmentation mask (it is possible to pass
+ multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal)
+ coordinates of the point. If a different number of points is passed either for each image, or for each
+ mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the
+ computation of the embedding will be skipped for these points using the labels.
+ input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points)`):
+ Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the
+ official implementation, there are 3 types of labels
+
+ - `1`: the point is a point that contains the object of interest
+ - `0`: the point is a point that does not contain the object of interest
+ - `-1`: the point corresponds to the background
+
+ We added the label:
+
+ - `-10`: the point is a padding point, thus should be ignored by the prompt encoder
+
+ The padding labels should be automatically done by the processor.
+ input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes, 4)`):
+ Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to
+ much better generated masks. The boxes can be obtained by passing a list of list of list to the processor,
+ that will generate a `tf` tensor, with each dimension corresponding respectively to the image batch size,
+ the number of boxes per image and the coordinates of the top left and botton right point of the box. In the
+ order (`x1`, `y1`, `x2`, `y2`):
+
+ - `x1`: the x coordinate of the top left point of the input box
+ - `y1`: the y coordinate of the top left point of the input box
+ - `x2`: the x coordinate of the bottom right point of the input box
+ - `y2`: the y coordinate of the bottom right point of the input box
+
+ input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`):
+ SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to
+ generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be
+ manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`).
+
+ image_embeddings (`tf.Tensor` of shape `(batch_size, output_channels, window_size, window_size)`):
+ Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory
+ efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings`
+ method, and then feed them to the `call` method instead of feeding the `pixel_values`.
+ multimask_output (`bool`, *optional*):
+ In the original implementation and paper, the model always outputs 3 masks per image (or per point / per
+ bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the
+ "best" mask, by specifying `multimask_output=False`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "Segment Anything Model (SAM) for generating segmentation masks, given an input image and ",
+ " optional 2D location and bounding boxes.",
+ SAM_START_DOCSTRING,
+)
+class TFSamModel(TFSamPreTrainedModel):
+ _keys_to_ignore_on_load_missing = [r"prompt_encoder.shared_embedding.positional_embedding"]
+
+ def __init__(self, config, **kwargs):
+ super().__init__(config, **kwargs)
+ self.shared_image_embedding = TFSamPositionalEmbedding(config.vision_config, name="shared_image_embedding")
+
+ self.vision_encoder = TFSamVisionEncoder(config.vision_config, name="vision_encoder")
+ self.prompt_encoder = TFSamPromptEncoder(
+ config.prompt_encoder_config, self.shared_image_embedding, name="prompt_encoder"
+ )
+ self.mask_decoder = TFSamMaskDecoder(config.mask_decoder_config, name="mask_decoder")
+ self.config = config
+
+ def get_input_embeddings(self):
+ return self.vision_encoder.get_input_embeddings()
+
+ def get_image_wide_positional_embeddings(self):
+ size = self.config.prompt_encoder_config.image_embedding_size
+ grid = tf.ones((size, size))
+ y_embed = tf.math.cumsum(grid, axis=0) - 0.5
+ x_embed = tf.math.cumsum(grid, axis=1) - 0.5
+ y_embed = y_embed / size
+ x_embed = x_embed / size
+
+ positional_embedding = self.shared_image_embedding(tf.stack([x_embed, y_embed], axis=-1))
+ return tf.expand_dims(tf.transpose(positional_embedding, perm=[2, 0, 1]), axis=0) # channel x height x width
+
+ def get_image_embeddings(
+ self,
+ pixel_values,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ r"""
+ Returns the image embeddings by passing the pixel values through the vision encoder.
+
+ Args:
+ pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
+ Input pixel values
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.TFModelOutput`] instead of a plain tuple.
+
+ """
+ vision_output = self.vision_encoder(
+ pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ image_embeddings = vision_output[0]
+ return image_embeddings
+
+ def get_prompt_embeddings(
+ self,
+ input_points: tf.Tensor | None = None,
+ input_labels: tf.Tensor | None = None,
+ input_boxes: tf.Tensor | None = None,
+ input_masks: tf.Tensor | None = None,
+ ):
+ r"""
+ Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder.
+
+ Args:
+ input_points (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`):
+ Optional input points for the prompt encoder. The padding of the point is automatically done by the
+ processor. `point_batch_size` refers to the number of masks that we want the model to predict per
+ point. The model will output `point_batch_size` times 3 masks in total.
+ input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image)`):
+ Optional input labels for the prompt encoder. The padding of the labels is automatically done by the
+ processor, or can be fed by the user.
+ input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes_per_image, 4)`):
+ Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the
+ processor. users can also pass manually the input boxes.
+ input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`):
+ Optional input masks for the prompt encoder.
+ """
+ prompt_output = self.prompt_encoder(
+ input_points=input_points,
+ input_labels=input_labels,
+ input_boxes=input_boxes,
+ input_masks=input_masks,
+ )
+ return prompt_output
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING)
+ def call(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ input_points: tf.Tensor | None = None,
+ input_labels: tf.Tensor | None = None,
+ input_boxes: tf.Tensor | None = None,
+ input_masks: tf.Tensor | None = None,
+ image_embeddings: tf.Tensor | None = None,
+ multimask_output: bool = True,
+ output_attentions: bool | None = None,
+ output_hidden_states: bool | None = None,
+ return_dict: bool | None = None,
+ training: bool = False,
+ **kwargs,
+ ) -> TFSamImageSegmentationOutput | Tuple[tf.Tensor]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None and image_embeddings is None:
+ raise ValueError("Either pixel_values or image_embeddings must be provided.")
+
+ if pixel_values is not None and image_embeddings is not None:
+ raise ValueError("Only one of pixel_values and image_embeddings can be provided.")
+
+ if input_points is not None and len(input_points.shape) != 4:
+ raise ValueError(
+ "The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.",
+ " got {}.".format(input_points.shape),
+ )
+ if input_boxes is not None and len(input_boxes.shape) != 3:
+ raise ValueError(
+ "The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.",
+ " got {}.".format(input_boxes.shape),
+ )
+ if input_points is not None and input_boxes is not None:
+ point_batch_size = shape_list(input_points)[1]
+ box_batch_size = shape_list(input_boxes)[1]
+ if point_batch_size != box_batch_size:
+ raise ValueError(
+ "You should provide as many bounding boxes as input points per box. Got {} and {}.".format(
+ point_batch_size, box_batch_size
+ )
+ )
+ if pixel_values is not None:
+ # Ensures that later checks pass even with an all-None shape from the serving signature
+ pixel_values = tf.ensure_shape(
+ pixel_values,
+ [
+ None,
+ self.config.vision_config.num_channels,
+ self.config.vision_config.image_size,
+ self.config.vision_config.image_size,
+ ],
+ )
+ image_positional_embeddings = self.get_image_wide_positional_embeddings()
+ # repeat with batch size
+ batch_size = shape_list(pixel_values)[0] if pixel_values is not None else shape_list(image_embeddings)[0]
+ image_positional_embeddings = tf.repeat(image_positional_embeddings, batch_size, axis=0)
+
+ vision_attentions = None
+ vision_hidden_states = None
+
+ if pixel_values is not None:
+ vision_outputs = self.vision_encoder(
+ pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ training=training,
+ )
+ image_embeddings = vision_outputs["last_hidden_state"]
+
+ if output_hidden_states:
+ vision_hidden_states = vision_outputs["hidden_states"]
+ if output_attentions:
+ vision_attentions = vision_outputs["attentions"]
+
+ if input_points is not None and input_labels is None:
+ input_labels = tf.ones_like(input_points[:, :, :, 0], dtype=tf.int32)
+
+ if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]:
+ raise ValueError(
+ "The batch size of the image embeddings and the input points must be the same. ",
+ "Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]),
+ " if you want to pass multiple points for the same image, make sure that you passed ",
+ " input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ",
+ " input_labels of shape (batch_size, point_batch_size, num_points_per_image)",
+ )
+
+ sparse_embeddings, dense_embeddings = self.prompt_encoder(
+ batch_size=shape_list(image_embeddings)[0],
+ input_points=input_points,
+ input_labels=input_labels,
+ input_boxes=input_boxes,
+ input_masks=input_masks,
+ )
+
+ low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder(
+ image_embeddings=image_embeddings,
+ image_positional_embeddings=image_positional_embeddings,
+ sparse_prompt_embeddings=sparse_embeddings,
+ dense_prompt_embeddings=dense_embeddings,
+ multimask_output=multimask_output,
+ output_attentions=output_attentions,
+ )
+
+ if not return_dict:
+ output = (iou_predictions, low_res_masks)
+ if output_hidden_states:
+ output = output + (vision_hidden_states,)
+
+ if output_attentions:
+ output = output + (vision_attentions, mask_decoder_attentions)
+ return output
+
+ return TFSamImageSegmentationOutput(
+ iou_scores=iou_predictions,
+ pred_masks=low_res_masks,
+ vision_hidden_states=vision_hidden_states,
+ vision_attentions=vision_attentions,
+ mask_decoder_attentions=mask_decoder_attentions,
+ )
+
+ def serving_output(self, output: TFSamImageSegmentationOutput) -> TFSamImageSegmentationOutput:
+ hs = tf.convert_to_tensor(output.vision_hidden_states) if self.config.output_hidden_states else None
+ attns = tf.convert_to_tensor(output.vision_attentions) if self.config.output_attentions else None
+
+ return TFSamImageSegmentationOutput(
+ iou_scores=output.iou_scores,
+ pred_masks=output.pred_masks,
+ vision_hidden_states=hs if self.config.output_hidden_states else None,
+ vision_attentions=attns if self.config.output_attentions else None,
+ mask_decoder_attentions=output.mask_decoder_attentions if self.config.output_attentions else None,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "shared_image_embedding", None) is not None:
+ with tf.name_scope(self.shared_image_embedding.name):
+ self.shared_image_embedding.build(None)
+ if getattr(self, "vision_encoder", None) is not None:
+ with tf.name_scope(self.vision_encoder.name):
+ self.vision_encoder.build(None)
+ if getattr(self, "prompt_encoder", None) is not None:
+ with tf.name_scope(self.prompt_encoder.name):
+ self.prompt_encoder.build(None)
+ if getattr(self, "mask_decoder", None) is not None:
+ with tf.name_scope(self.mask_decoder.name):
+ self.mask_decoder.build(None)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/processing_sam.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/processing_sam.py
new file mode 100644
index 0000000000000000000000000000000000000000..ed89ebeb3a035bdedfe0b1a50d6b564d346d4707
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sam/processing_sam.py
@@ -0,0 +1,266 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Processor class for SAM.
+"""
+from copy import deepcopy
+from typing import Optional, Union
+
+import numpy as np
+
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils_base import BatchEncoding
+from ...utils import TensorType, is_tf_available, is_torch_available
+
+
+if is_torch_available():
+ import torch
+
+if is_tf_available():
+ import tensorflow as tf
+
+
+class SamProcessor(ProcessorMixin):
+ r"""
+ Constructs a SAM processor which wraps a SAM image processor and an 2D points & Bounding boxes processor into a
+ single processor.
+
+ [`SamProcessor`] offers all the functionalities of [`SamImageProcessor`]. See the docstring of
+ [`~SamImageProcessor.__call__`] for more information.
+
+ Args:
+ image_processor (`SamImageProcessor`):
+ An instance of [`SamImageProcessor`]. The image processor is a required input.
+ """
+
+ attributes = ["image_processor"]
+ image_processor_class = "SamImageProcessor"
+
+ def __init__(self, image_processor):
+ super().__init__(image_processor)
+ self.current_processor = self.image_processor
+ self.point_pad_value = -10
+ self.target_size = self.image_processor.size["longest_edge"]
+
+ def __call__(
+ self,
+ images=None,
+ segmentation_maps=None,
+ input_points=None,
+ input_labels=None,
+ input_boxes=None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ This method uses [`SamImageProcessor.__call__`] method to prepare image(s) for the model. It also prepares 2D
+ points and bounding boxes for the model if they are provided.
+ """
+ encoding_image_processor = self.image_processor(
+ images,
+ segmentation_maps=segmentation_maps,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+
+ # pop arguments that are not used in the foward but used nevertheless
+ original_sizes = encoding_image_processor["original_sizes"]
+
+ if hasattr(original_sizes, "numpy"): # Checks if Torch or TF tensor
+ original_sizes = original_sizes.numpy()
+
+ input_points, input_labels, input_boxes = self._check_and_preprocess_points(
+ input_points=input_points,
+ input_labels=input_labels,
+ input_boxes=input_boxes,
+ )
+
+ encoding_image_processor = self._normalize_and_convert(
+ encoding_image_processor,
+ original_sizes,
+ input_points=input_points,
+ input_labels=input_labels,
+ input_boxes=input_boxes,
+ return_tensors=return_tensors,
+ )
+
+ return encoding_image_processor
+
+ def _normalize_and_convert(
+ self,
+ encoding_image_processor,
+ original_sizes,
+ input_points=None,
+ input_labels=None,
+ input_boxes=None,
+ return_tensors="pt",
+ ):
+ if input_points is not None:
+ if len(original_sizes) != len(input_points):
+ input_points = [
+ self._normalize_coordinates(self.target_size, point, original_sizes[0]) for point in input_points
+ ]
+ else:
+ input_points = [
+ self._normalize_coordinates(self.target_size, point, original_size)
+ for point, original_size in zip(input_points, original_sizes)
+ ]
+ # check that all arrays have the same shape
+ if not all(point.shape == input_points[0].shape for point in input_points):
+ if input_labels is not None:
+ input_points, input_labels = self._pad_points_and_labels(input_points, input_labels)
+
+ input_points = np.array(input_points)
+
+ if input_labels is not None:
+ input_labels = np.array(input_labels)
+
+ if input_boxes is not None:
+ if len(original_sizes) != len(input_boxes):
+ input_boxes = [
+ self._normalize_coordinates(self.target_size, box, original_sizes[0], is_bounding_box=True)
+ for box in input_boxes
+ ]
+ else:
+ input_boxes = [
+ self._normalize_coordinates(self.target_size, box, original_size, is_bounding_box=True)
+ for box, original_size in zip(input_boxes, original_sizes)
+ ]
+ input_boxes = np.array(input_boxes)
+
+ if input_boxes is not None:
+ if return_tensors == "pt":
+ input_boxes = torch.from_numpy(input_boxes)
+ # boxes batch size of 1 by default
+ input_boxes = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes
+ elif return_tensors == "tf":
+ input_boxes = tf.convert_to_tensor(input_boxes)
+ # boxes batch size of 1 by default
+ input_boxes = tf.expand_dims(input_boxes, 1) if len(input_boxes.shape) != 3 else input_boxes
+ encoding_image_processor.update({"input_boxes": input_boxes})
+ if input_points is not None:
+ if return_tensors == "pt":
+ input_points = torch.from_numpy(input_points)
+ # point batch size of 1 by default
+ input_points = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points
+ elif return_tensors == "tf":
+ input_points = tf.convert_to_tensor(input_points)
+ # point batch size of 1 by default
+ input_points = tf.expand_dims(input_points, 1) if len(input_points.shape) != 4 else input_points
+ encoding_image_processor.update({"input_points": input_points})
+ if input_labels is not None:
+ if return_tensors == "pt":
+ input_labels = torch.from_numpy(input_labels)
+ # point batch size of 1 by default
+ input_labels = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels
+ elif return_tensors == "tf":
+ input_labels = tf.convert_to_tensor(input_labels)
+ # point batch size of 1 by default
+ input_labels = tf.expand_dims(input_labels, 1) if len(input_labels.shape) != 3 else input_labels
+ encoding_image_processor.update({"input_labels": input_labels})
+
+ return encoding_image_processor
+
+ def _pad_points_and_labels(self, input_points, input_labels):
+ r"""
+ The method pads the 2D points and labels to the maximum number of points in the batch.
+ """
+ expected_nb_points = max([point.shape[0] for point in input_points])
+ processed_input_points = []
+ for i, point in enumerate(input_points):
+ if point.shape[0] != expected_nb_points:
+ point = np.concatenate(
+ [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value], axis=0
+ )
+ input_labels[i] = np.append(input_labels[i], [self.point_pad_value])
+ processed_input_points.append(point)
+ input_points = processed_input_points
+ return input_points, input_labels
+
+ def _normalize_coordinates(
+ self, target_size: int, coords: np.ndarray, original_size, is_bounding_box=False
+ ) -> np.ndarray:
+ """
+ Expects a numpy array of length 2 in the final dimension. Requires the original image size in (H, W) format.
+ """
+ old_h, old_w = original_size
+ new_h, new_w = self.image_processor._get_preprocess_shape(original_size, longest_edge=target_size)
+ coords = deepcopy(coords).astype(float)
+
+ if is_bounding_box:
+ coords = coords.reshape(-1, 2, 2)
+
+ coords[..., 0] = coords[..., 0] * (new_w / old_w)
+ coords[..., 1] = coords[..., 1] * (new_h / old_h)
+
+ if is_bounding_box:
+ coords = coords.reshape(-1, 4)
+
+ return coords
+
+ def _check_and_preprocess_points(
+ self,
+ input_points=None,
+ input_labels=None,
+ input_boxes=None,
+ ):
+ r"""
+ Check and preprocesses the 2D points, labels and bounding boxes. It checks if the input is valid and if they
+ are, it converts the coordinates of the points and bounding boxes. If a user passes directly a `torch.Tensor`,
+ it is converted to a `numpy.ndarray` and then to a `list`.
+ """
+ if input_points is not None:
+ if hasattr(input_points, "numpy"): # Checks for TF or Torch tensor
+ input_points = input_points.numpy().tolist()
+
+ if not isinstance(input_points, list) or not isinstance(input_points[0], list):
+ raise ValueError("Input points must be a list of list of floating points.")
+ input_points = [np.array(input_point) for input_point in input_points]
+ else:
+ input_points = None
+
+ if input_labels is not None:
+ if hasattr(input_labels, "numpy"):
+ input_labels = input_labels.numpy().tolist()
+
+ if not isinstance(input_labels, list) or not isinstance(input_labels[0], list):
+ raise ValueError("Input labels must be a list of list integers.")
+ input_labels = [np.array(label) for label in input_labels]
+ else:
+ input_labels = None
+
+ if input_boxes is not None:
+ if hasattr(input_boxes, "numpy"):
+ input_boxes = input_boxes.numpy().tolist()
+
+ if (
+ not isinstance(input_boxes, list)
+ or not isinstance(input_boxes[0], list)
+ or not isinstance(input_boxes[0][0], list)
+ ):
+ raise ValueError("Input boxes must be a list of list of list of floating points.")
+ input_boxes = [np.array(box).astype(np.float32) for box in input_boxes]
+ else:
+ input_boxes = None
+
+ return input_points, input_labels, input_boxes
+
+ @property
+ def model_input_names(self):
+ image_processor_input_names = self.image_processor.model_input_names
+ return list(dict.fromkeys(image_processor_input_names))
+
+ def post_process_masks(self, *args, **kwargs):
+ return self.image_processor.post_process_masks(*args, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..24355c01add73bfeb1c6aefb97c1d742d79e983c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__init__.py
@@ -0,0 +1,79 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
+
+
+_import_structure = {
+ "configuration_splinter": ["SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SplinterConfig"],
+ "tokenization_splinter": ["SplinterTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_splinter_fast"] = ["SplinterTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_splinter"] = [
+ "SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "SplinterForQuestionAnswering",
+ "SplinterForPreTraining",
+ "SplinterLayer",
+ "SplinterModel",
+ "SplinterPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_splinter import SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP, SplinterConfig
+ from .tokenization_splinter import SplinterTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_splinter_fast import SplinterTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_splinter import (
+ SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ SplinterForPreTraining,
+ SplinterForQuestionAnswering,
+ SplinterLayer,
+ SplinterModel,
+ SplinterPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bfb4ce7b8de70f95d2b5b9befef99998e16f0756
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/configuration_splinter.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/configuration_splinter.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cf77240231ac5b6c423fdf93c475e215d481c5b7
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/configuration_splinter.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/modeling_splinter.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/modeling_splinter.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8881183b4c8a995e4db0e98b09c7bb4a7f5e6c0a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/modeling_splinter.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..15c096ec77da7fdc3e36da31522ae30ec9ff2ce0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d38cdadcea35f5806a2279b313296e612460ff97
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/configuration_splinter.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/configuration_splinter.py
new file mode 100644
index 0000000000000000000000000000000000000000..5248c74c1a3efc5a26b03ad17d81c022f750880a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/configuration_splinter.py
@@ -0,0 +1,123 @@
+# coding=utf-8
+# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Splinter model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class SplinterConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`SplinterModel`]. It is used to instantiate an
+ Splinter model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the Splinter
+ [tau/splinter-base](https://huggingface.co/tau/splinter-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the Splinter model. Defines the number of different tokens that can be represented by
+ the `inputs_ids` passed when calling [`SplinterModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimension of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`SplinterModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ question_token_id (`int`, *optional*, defaults to 104):
+ The id of the `[QUESTION]` token.
+
+ Example:
+
+ ```python
+ >>> from transformers import SplinterModel, SplinterConfig
+
+ >>> # Initializing a Splinter tau/splinter-base style configuration
+ >>> configuration = SplinterConfig()
+
+ >>> # Initializing a model from the tau/splinter-base style configuration
+ >>> model = SplinterModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "splinter"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ use_cache=True,
+ pad_token_id=0,
+ question_token_id=104,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.type_vocab_size = type_vocab_size
+ self.layer_norm_eps = layer_norm_eps
+ self.use_cache = use_cache
+ self.question_token_id = question_token_id
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/modeling_splinter.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/modeling_splinter.py
new file mode 100644
index 0000000000000000000000000000000000000000..b643601d0ebd49f3dd909df1db63e70da7e7627e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/modeling_splinter.py
@@ -0,0 +1,1104 @@
+# coding=utf-8
+# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Splinter model."""
+
+
+import math
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, ModelOutput, QuestionAnsweringModelOutput
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_splinter import SplinterConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "tau/splinter-base"
+_CONFIG_FOR_DOC = "SplinterConfig"
+
+
+from ..deprecated._archive_maps import SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class SplinterEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ past_key_values_length: Optional[int] = 0,
+ ) -> Tuple:
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Splinter
+class SplinterSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in SplinterModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Splinter
+class SplinterSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Splinter
+class SplinterAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = SplinterSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = SplinterSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Splinter
+class SplinterIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Splinter
+class SplinterOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Splinter
+class SplinterLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = SplinterAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = SplinterAttention(config, position_embedding_type="absolute")
+ self.intermediate = SplinterIntermediate(config)
+ self.output = SplinterOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Splinter
+class SplinterEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([SplinterLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class SplinterPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = SplinterConfig
+ base_model_prefix = "splinter"
+ supports_gradient_checkpointing = True
+
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+SPLINTER_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`SplinterConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+SPLINTER_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `{0}`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Splinter Model transformer outputting raw hidden-states without any specific head on top.",
+ SPLINTER_START_DOCSTRING,
+)
+class SplinterModel(SplinterPreTrainedModel):
+ """
+ The model is an encoder (with only self-attention) following the architecture described in [Attention is all you
+ need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
+ Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+ """
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = SplinterEmbeddings(config)
+ self.encoder = SplinterEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(SPLINTER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+class SplinterFullyConnectedLayer(nn.Module):
+ def __init__(self, input_dim, output_dim, hidden_act="gelu"):
+ super().__init__()
+
+ self.input_dim = input_dim
+ self.output_dim = output_dim
+
+ self.dense = nn.Linear(self.input_dim, self.output_dim)
+ self.act_fn = ACT2FN[hidden_act]
+ self.LayerNorm = nn.LayerNorm(self.output_dim)
+
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(inputs)
+ hidden_states = self.act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+class QuestionAwareSpanSelectionHead(nn.Module):
+ """
+ Implementation of Question-Aware Span Selection (QASS) head, described in Splinter's paper:
+
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.query_start_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size)
+ self.query_end_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size)
+ self.start_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size)
+ self.end_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size)
+
+ self.start_classifier = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
+ self.end_classifier = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
+
+ def forward(self, inputs, positions):
+ _, _, dim = inputs.size()
+ index = positions.unsqueeze(-1).repeat(1, 1, dim) # [batch_size, num_positions, dim]
+ gathered_reps = torch.gather(inputs, dim=1, index=index) # [batch_size, num_positions, dim]
+
+ query_start_reps = self.query_start_transform(gathered_reps) # [batch_size, num_positions, dim]
+ query_end_reps = self.query_end_transform(gathered_reps) # [batch_size, num_positions, dim]
+ start_reps = self.start_transform(inputs) # [batch_size, seq_length, dim]
+ end_reps = self.end_transform(inputs) # [batch_size, seq_length, dim]
+
+ hidden_states = self.start_classifier(query_start_reps) # [batch_size, num_positions, dim]
+ start_reps = start_reps.permute(0, 2, 1) # [batch_size, dim, seq_length]
+ start_logits = torch.matmul(hidden_states, start_reps)
+
+ hidden_states = self.end_classifier(query_end_reps)
+ end_reps = end_reps.permute(0, 2, 1)
+ end_logits = torch.matmul(hidden_states, end_reps)
+
+ return start_logits, end_logits
+
+
+@add_start_docstrings(
+ """
+ Splinter Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ SPLINTER_START_DOCSTRING,
+)
+class SplinterForQuestionAnswering(SplinterPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.splinter = SplinterModel(config)
+ self.splinter_qass = QuestionAwareSpanSelectionHead(config)
+ self.question_token_id = config.question_token_id
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(SPLINTER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ question_positions: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
+ The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size,
+ num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be
+ the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size,
+ sequence_length)`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ question_positions_were_none = False
+ if question_positions is None:
+ if input_ids is not None:
+ question_position_for_each_example = torch.argmax(
+ (torch.eq(input_ids, self.question_token_id)).int(), dim=-1
+ )
+ else:
+ question_position_for_each_example = torch.zeros(
+ inputs_embeds.size(0), dtype=torch.long, layout=inputs_embeds.layout, device=inputs_embeds.device
+ )
+ question_positions = question_position_for_each_example.unsqueeze(-1)
+ question_positions_were_none = True
+
+ outputs = self.splinter(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ start_logits, end_logits = self.splinter_qass(sequence_output, question_positions)
+
+ if question_positions_were_none:
+ start_logits, end_logits = start_logits.squeeze(1), end_logits.squeeze(1)
+
+ if attention_mask is not None:
+ start_logits = start_logits + (1 - attention_mask) * torch.finfo(start_logits.dtype).min
+ end_logits = end_logits + (1 - attention_mask) * torch.finfo(end_logits.dtype).min
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions.clamp_(0, ignored_index)
+ end_positions.clamp_(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@dataclass
+class SplinterForPreTrainingOutput(ModelOutput):
+ """
+ Class for outputs of Splinter as a span selection model.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when start and end positions are provided):
+ Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
+ start_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`):
+ Span-start scores (before SoftMax).
+ end_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`):
+ Span-end scores (before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ start_logits: torch.FloatTensor = None
+ end_logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@add_start_docstrings(
+ """
+ Splinter Model for the recurring span selection task as done during the pretraining. The difference to the QA task
+ is that we do not have a question, but multiple question tokens that replace the occurrences of recurring spans
+ instead.
+ """,
+ SPLINTER_START_DOCSTRING,
+)
+class SplinterForPreTraining(SplinterPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.splinter = SplinterModel(config)
+ self.splinter_qass = QuestionAwareSpanSelectionHead(config)
+ self.question_token_id = config.question_token_id
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(
+ SPLINTER_INPUTS_DOCSTRING.format("batch_size, num_questions, sequence_length")
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ question_positions: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple, SplinterForPreTrainingOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
+ The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size,
+ num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be
+ the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size,
+ sequence_length)`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if question_positions is None and start_positions is not None and end_positions is not None:
+ raise TypeError("question_positions must be specified in order to calculate the loss")
+
+ elif question_positions is None and input_ids is None:
+ raise TypeError("question_positions must be specified when input_embeds is used")
+
+ elif question_positions is None:
+ question_positions = self._prepare_question_positions(input_ids)
+
+ outputs = self.splinter(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ batch_size, sequence_length, dim = sequence_output.size()
+ # [batch_size, num_questions, sequence_length]
+ start_logits, end_logits = self.splinter_qass(sequence_output, question_positions)
+
+ num_questions = question_positions.size(1)
+ if attention_mask is not None:
+ attention_mask_for_each_question = attention_mask.unsqueeze(1).expand(
+ batch_size, num_questions, sequence_length
+ )
+ start_logits = start_logits + (1 - attention_mask_for_each_question) * torch.finfo(start_logits.dtype).min
+ end_logits = end_logits + (1 - attention_mask_for_each_question) * torch.finfo(end_logits.dtype).min
+
+ total_loss = None
+ # [batch_size, num_questions, sequence_length]
+ if start_positions is not None and end_positions is not None:
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ start_positions.clamp_(0, max(0, sequence_length - 1))
+ end_positions.clamp_(0, max(0, sequence_length - 1))
+
+ # Ignore zero positions in the loss. Splinter never predicts zero
+ # during pretraining and zero is used for padding question
+ # tokens as well as for start and end positions of padded
+ # question tokens.
+ loss_fct = CrossEntropyLoss(ignore_index=self.config.pad_token_id)
+ start_loss = loss_fct(
+ start_logits.view(batch_size * num_questions, sequence_length),
+ start_positions.view(batch_size * num_questions),
+ )
+ end_loss = loss_fct(
+ end_logits.view(batch_size * num_questions, sequence_length),
+ end_positions.view(batch_size * num_questions),
+ )
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return SplinterForPreTrainingOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def _prepare_question_positions(self, input_ids: torch.Tensor) -> torch.Tensor:
+ rows, flat_positions = torch.where(input_ids == self.config.question_token_id)
+ num_questions = torch.bincount(rows)
+ positions = torch.full(
+ (input_ids.size(0), num_questions.max()),
+ self.config.pad_token_id,
+ dtype=torch.long,
+ device=input_ids.device,
+ )
+ cols = torch.cat([torch.arange(n) for n in num_questions])
+ positions[rows, cols] = flat_positions
+ return positions
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter.py
new file mode 100644
index 0000000000000000000000000000000000000000..ee82e19c6cb9b316bb9c7681cd2561a0dac7b4ff
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter.py
@@ -0,0 +1,503 @@
+# coding=utf-8
+# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved.
+# All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for Splinter."""
+
+import collections
+import os
+import unicodedata
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+
+def load_vocab(vocab_file):
+ """Loads a vocabulary file into a dictionary."""
+ vocab = collections.OrderedDict()
+ with open(vocab_file, "r", encoding="utf-8") as reader:
+ tokens = reader.readlines()
+ for index, token in enumerate(tokens):
+ token = token.rstrip("\n")
+ vocab[token] = index
+ return vocab
+
+
+def whitespace_tokenize(text):
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
+ text = text.strip()
+ if not text:
+ return []
+ tokens = text.split()
+ return tokens
+
+
+class SplinterTokenizer(PreTrainedTokenizer):
+ r"""
+ Construct a Splinter tokenizer. Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ do_basic_tokenize (`bool`, *optional*, defaults to `True`):
+ Whether or not to do basic tokenization before WordPiece.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ question_token (`str`, *optional*, defaults to `"[QUESTION]"`):
+ The token used for constructing question representations.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=True,
+ do_basic_tokenize=True,
+ never_split=None,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ question_token="[QUESTION]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ if not os.path.isfile(vocab_file):
+ raise ValueError(
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
+ " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
+ )
+ self.vocab = load_vocab(vocab_file)
+ self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
+ self.do_basic_tokenize = do_basic_tokenize
+ if do_basic_tokenize:
+ self.basic_tokenizer = BasicTokenizer(
+ do_lower_case=do_lower_case,
+ never_split=never_split,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ )
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
+ self.question_token = question_token
+ super().__init__(
+ do_lower_case=do_lower_case,
+ do_basic_tokenize=do_basic_tokenize,
+ never_split=never_split,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ @property
+ def question_token_id(self):
+ """
+ `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question
+ representation.
+ """
+ return self.convert_tokens_to_ids(self.question_token)
+
+ @property
+ def do_lower_case(self):
+ return self.basic_tokenizer.do_lower_case
+
+ @property
+ def vocab_size(self):
+ return len(self.vocab)
+
+ def get_vocab(self):
+ return dict(self.vocab, **self.added_tokens_encoder)
+
+ def _tokenize(self, text):
+ split_tokens = []
+ if self.do_basic_tokenize:
+ for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
+ # If the token is part of the never_split set
+ if token in self.basic_tokenizer.never_split:
+ split_tokens.append(token)
+ else:
+ split_tokens += self.wordpiece_tokenizer.tokenize(token)
+ else:
+ split_tokens = self.wordpiece_tokenizer.tokenize(text)
+ return split_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.ids_to_tokens.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ out_string = " ".join(tokens).replace(" ##", "").strip()
+ return out_string
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special
+ tokens. A Splinter sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ The question token IDs if pad_on_right, else context tokens IDs
+ token_ids_1 (`List[int]`, *optional*):
+ The context token IDs if pad_on_right, else question token IDs
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")]
+ if self.padding_side == "right":
+ # Input is question-then-context
+ return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep
+ else:
+ # Input is context-then-question
+ return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create the token type IDs corresponding to the sequences passed. [What are token type
+ IDs?](../glossary#token-type-ids)
+
+ Should be overridden in a subclass if the model has a special way of building those.
+
+ Args:
+ token_ids_0 (`List[int]`): The first tokenized sequence.
+ token_ids_1 (`List[int]`, *optional*): The second tokenized sequence.
+
+ Returns:
+ `List[int]`: The token type ids.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+
+ if self.padding_side == "right":
+ # Input is question-then-context
+ return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1]
+ else:
+ # Input is context-then-question
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ index = 0
+ if os.path.isdir(save_directory):
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ else:
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
+ with open(vocab_file, "w", encoding="utf-8") as writer:
+ for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
+ " Please check that the vocabulary is not corrupted!"
+ )
+ index = token_index
+ writer.write(token + "\n")
+ index += 1
+ return (vocab_file,)
+
+
+class BasicTokenizer(object):
+ """
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
+
+ Args:
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ """
+
+ def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
+ if never_split is None:
+ never_split = []
+ self.do_lower_case = do_lower_case
+ self.never_split = set(never_split)
+ self.tokenize_chinese_chars = tokenize_chinese_chars
+ self.strip_accents = strip_accents
+
+ def tokenize(self, text, never_split=None):
+ """
+ Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
+ WordPieceTokenizer.
+
+ Args:
+ **never_split**: (*optional*) list of str
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
+ """
+ # union() returns a new set by concatenating the two sets.
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
+ text = self._clean_text(text)
+
+ # This was added on November 1st, 2018 for the multilingual and Chinese
+ # models. This is also applied to the English models now, but it doesn't
+ # matter since the English models were not trained on any Chinese data
+ # and generally don't have any Chinese data in them (there are Chinese
+ # characters in the vocabulary because Wikipedia does have some Chinese
+ # words in the English Wikipedia.).
+ if self.tokenize_chinese_chars:
+ text = self._tokenize_chinese_chars(text)
+ orig_tokens = whitespace_tokenize(text)
+ split_tokens = []
+ for token in orig_tokens:
+ if token not in never_split:
+ if self.do_lower_case:
+ token = token.lower()
+ if self.strip_accents is not False:
+ token = self._run_strip_accents(token)
+ elif self.strip_accents:
+ token = self._run_strip_accents(token)
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
+
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
+ return output_tokens
+
+ def _run_strip_accents(self, text):
+ """Strips accents from a piece of text."""
+ text = unicodedata.normalize("NFD", text)
+ output = []
+ for char in text:
+ cat = unicodedata.category(char)
+ if cat == "Mn":
+ continue
+ output.append(char)
+ return "".join(output)
+
+ def _run_split_on_punc(self, text, never_split=None):
+ """Splits punctuation on a piece of text."""
+ if never_split is not None and text in never_split:
+ return [text]
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def _tokenize_chinese_chars(self, text):
+ """Adds whitespace around any CJK character."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if self._is_chinese_char(cp):
+ output.append(" ")
+ output.append(char)
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+ def _is_chinese_char(self, cp):
+ """Checks whether CP is the codepoint of a CJK character."""
+ # This defines a "chinese character" as anything in the CJK Unicode block:
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+ #
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+ # despite its name. The modern Korean Hangul alphabet is a different block,
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+ # space-separated words, so they are not treated specially and handled
+ # like the all of the other languages.
+ if (
+ (cp >= 0x4E00 and cp <= 0x9FFF)
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
+ or (cp >= 0xF900 and cp <= 0xFAFF)
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
+ ): #
+ return True
+
+ return False
+
+ def _clean_text(self, text):
+ """Performs invalid character removal and whitespace cleanup on text."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
+ continue
+ if _is_whitespace(char):
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+
+class WordpieceTokenizer(object):
+ """Runs WordPiece tokenization."""
+
+ def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
+ self.vocab = vocab
+ self.unk_token = unk_token
+ self.max_input_chars_per_word = max_input_chars_per_word
+
+ def tokenize(self, text):
+ """
+ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
+ tokenization using the given vocabulary.
+
+ For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
+
+ Args:
+ text: A single token or whitespace separated tokens. This should have
+ already been passed through *BasicTokenizer*.
+
+ Returns:
+ A list of wordpiece tokens.
+ """
+
+ output_tokens = []
+ for token in whitespace_tokenize(text):
+ chars = list(token)
+ if len(chars) > self.max_input_chars_per_word:
+ output_tokens.append(self.unk_token)
+ continue
+
+ is_bad = False
+ start = 0
+ sub_tokens = []
+ while start < len(chars):
+ end = len(chars)
+ cur_substr = None
+ while start < end:
+ substr = "".join(chars[start:end])
+ if start > 0:
+ substr = "##" + substr
+ if substr in self.vocab:
+ cur_substr = substr
+ break
+ end -= 1
+ if cur_substr is None:
+ is_bad = True
+ break
+ sub_tokens.append(cur_substr)
+ start = end
+
+ if is_bad:
+ output_tokens.append(self.unk_token)
+ else:
+ output_tokens.extend(sub_tokens)
+ return output_tokens
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..0371fdf2828eb289350ce1b69e13110d8b8c8b22
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter_fast.py
@@ -0,0 +1,190 @@
+# coding=utf-8
+# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Fast Tokenization classes for Splinter."""
+
+import json
+from typing import List, Optional, Tuple
+
+from tokenizers import normalizers
+
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+from .tokenization_splinter import SplinterTokenizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+
+class SplinterTokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a "fast" Splinter tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ question_token (`str`, *optional*, defaults to `"[QUESTION]"`):
+ The token used for constructing question representations.
+ clean_text (`bool`, *optional*, defaults to `True`):
+ Whether or not to clean the text before tokenization by removing any control characters and replacing all
+ whitespaces by the classic one.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
+ issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
+ The prefix for subwords.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = SplinterTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=True,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ question_token="[QUESTION]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ additional_special_tokens=(question_token,),
+ **kwargs,
+ )
+
+ pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
+ if (
+ pre_tok_state.get("lowercase", do_lower_case) != do_lower_case
+ or pre_tok_state.get("strip_accents", strip_accents) != strip_accents
+ ):
+ pre_tok_class = getattr(normalizers, pre_tok_state.pop("type"))
+ pre_tok_state["lowercase"] = do_lower_case
+ pre_tok_state["strip_accents"] = strip_accents
+ self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state)
+
+ self.do_lower_case = do_lower_case
+
+ @property
+ def question_token_id(self):
+ """
+ `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question
+ representation.
+ """
+ return self.convert_tokens_to_ids(self.question_token)
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special
+ tokens. A Splinter sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ The question token IDs if pad_on_right, else context tokens IDs
+ token_ids_1 (`List[int]`, *optional*):
+ The context token IDs if pad_on_right, else question token IDs
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")]
+ if self.padding_side == "right":
+ # Input is question-then-context
+ return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep
+ else:
+ # Input is context-then-question
+ return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create the token type IDs corresponding to the sequences passed. [What are token type
+ IDs?](../glossary#token-type-ids)
+
+ Should be overridden in a subclass if the model has a special way of building those.
+
+ Args:
+ token_ids_0 (`List[int]`): The first tokenized sequence.
+ token_ids_1 (`List[int]`, *optional*): The second tokenized sequence.
+
+ Returns:
+ `List[int]`: The token type ids.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+
+ if self.padding_side == "right":
+ # Input is question-then-context
+ return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1]
+ else:
+ # Input is context-then-question
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f99c6e724c439a3eecaff234a48537a655dfe3c6
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/configuration_swiftformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/configuration_swiftformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..69c7c521db3d9e7403fb7ffc46da162901d78d7b
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/configuration_swiftformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/convert_swiftformer_original_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/convert_swiftformer_original_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..99e5c0c9e09da237d0dea60643c5562f7b8c0f74
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/swiftformer/__pycache__/convert_swiftformer_original_to_hf.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/time_series_transformer/configuration_time_series_transformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/time_series_transformer/configuration_time_series_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..f53f3aad1ec9473f55848df8d7ff1357f704c921
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/time_series_transformer/configuration_time_series_transformer.py
@@ -0,0 +1,229 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Time Series Transformer model configuration"""
+
+from typing import List, Optional, Union
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class TimeSeriesTransformerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`TimeSeriesTransformerModel`]. It is used to
+ instantiate a Time Series Transformer model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the Time Series
+ Transformer
+ [huggingface/time-series-transformer-tourism-monthly](https://huggingface.co/huggingface/time-series-transformer-tourism-monthly)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ prediction_length (`int`):
+ The prediction length for the decoder. In other words, the prediction horizon of the model. This value is
+ typically dictated by the dataset and we recommend to set it appropriately.
+ context_length (`int`, *optional*, defaults to `prediction_length`):
+ The context length for the encoder. If `None`, the context length will be the same as the
+ `prediction_length`.
+ distribution_output (`string`, *optional*, defaults to `"student_t"`):
+ The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial".
+ loss (`string`, *optional*, defaults to `"nll"`):
+ The loss function for the model corresponding to the `distribution_output` head. For parametric
+ distributions it is the negative log likelihood (nll) - which currently is the only supported one.
+ input_size (`int`, *optional*, defaults to 1):
+ The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
+ multivariate targets.
+ scaling (`string` or `bool`, *optional* defaults to `"mean"`):
+ Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
+ scaler is set to "mean".
+ lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`):
+ The lags of the input time series as covariates often dictated by the frequency of the data. Default is
+ `[1, 2, 3, 4, 5, 6, 7]` but we recommend to change it based on the dataset appropriately.
+ num_time_features (`int`, *optional*, defaults to 0):
+ The number of time features in the input time series.
+ num_dynamic_real_features (`int`, *optional*, defaults to 0):
+ The number of dynamic real valued features.
+ num_static_categorical_features (`int`, *optional*, defaults to 0):
+ The number of static categorical features.
+ num_static_real_features (`int`, *optional*, defaults to 0):
+ The number of static real valued features.
+ cardinality (`list[int]`, *optional*):
+ The cardinality (number of different values) for each of the static categorical features. Should be a list
+ of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if
+ `num_static_categorical_features` is > 0.
+ embedding_dimension (`list[int]`, *optional*):
+ The dimension of the embedding for each of the static categorical features. Should be a list of integers,
+ having the same length as `num_static_categorical_features`. Cannot be `None` if
+ `num_static_categorical_features` is > 0.
+ d_model (`int`, *optional*, defaults to 64):
+ Dimensionality of the transformer layers.
+ encoder_layers (`int`, *optional*, defaults to 2):
+ Number of encoder layers.
+ decoder_layers (`int`, *optional*, defaults to 2):
+ Number of decoder layers.
+ encoder_attention_heads (`int`, *optional*, defaults to 2):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ decoder_attention_heads (`int`, *optional*, defaults to 2):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ encoder_ffn_dim (`int`, *optional*, defaults to 32):
+ Dimension of the "intermediate" (often named feed-forward) layer in encoder.
+ decoder_ffn_dim (`int`, *optional*, defaults to 32):
+ Dimension of the "intermediate" (often named feed-forward) layer in decoder.
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and
+ `"relu"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the encoder, and decoder.
+ encoder_layerdrop (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the attention and fully connected layers for each encoder layer.
+ decoder_layerdrop (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the attention and fully connected layers for each decoder layer.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the attention probabilities.
+ activation_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability used between the two layers of the feed-forward networks.
+ num_parallel_samples (`int`, *optional*, defaults to 100):
+ The number of samples to generate in parallel for each time step of inference.
+ init_std (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated normal weight initialization distribution.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether to use the past key/values attentions (if applicable to the model) to speed up decoding.
+
+ Example:
+
+ ```python
+ >>> from transformers import TimeSeriesTransformerConfig, TimeSeriesTransformerModel
+
+ >>> # Initializing a Time Series Transformer configuration with 12 time steps for prediction
+ >>> configuration = TimeSeriesTransformerConfig(prediction_length=12)
+
+ >>> # Randomly initializing a model (with random weights) from the configuration
+ >>> model = TimeSeriesTransformerModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "time_series_transformer"
+ attribute_map = {
+ "hidden_size": "d_model",
+ "num_attention_heads": "encoder_attention_heads",
+ "num_hidden_layers": "encoder_layers",
+ }
+
+ def __init__(
+ self,
+ prediction_length: Optional[int] = None,
+ context_length: Optional[int] = None,
+ distribution_output: str = "student_t",
+ loss: str = "nll",
+ input_size: int = 1,
+ lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7],
+ scaling: Optional[Union[str, bool]] = "mean",
+ num_dynamic_real_features: int = 0,
+ num_static_categorical_features: int = 0,
+ num_static_real_features: int = 0,
+ num_time_features: int = 0,
+ cardinality: Optional[List[int]] = None,
+ embedding_dimension: Optional[List[int]] = None,
+ encoder_ffn_dim: int = 32,
+ decoder_ffn_dim: int = 32,
+ encoder_attention_heads: int = 2,
+ decoder_attention_heads: int = 2,
+ encoder_layers: int = 2,
+ decoder_layers: int = 2,
+ is_encoder_decoder: bool = True,
+ activation_function: str = "gelu",
+ d_model: int = 64,
+ dropout: float = 0.1,
+ encoder_layerdrop: float = 0.1,
+ decoder_layerdrop: float = 0.1,
+ attention_dropout: float = 0.1,
+ activation_dropout: float = 0.1,
+ num_parallel_samples: int = 100,
+ init_std: float = 0.02,
+ use_cache=True,
+ **kwargs,
+ ):
+ # time series specific configuration
+ self.prediction_length = prediction_length
+ self.context_length = context_length or prediction_length
+ self.distribution_output = distribution_output
+ self.loss = loss
+ self.input_size = input_size
+ self.num_time_features = num_time_features
+ self.lags_sequence = lags_sequence
+ self.scaling = scaling
+ self.num_dynamic_real_features = num_dynamic_real_features
+ self.num_static_real_features = num_static_real_features
+ self.num_static_categorical_features = num_static_categorical_features
+ if cardinality and num_static_categorical_features > 0:
+ if len(cardinality) != num_static_categorical_features:
+ raise ValueError(
+ "The cardinality should be a list of the same length as `num_static_categorical_features`"
+ )
+ self.cardinality = cardinality
+ else:
+ self.cardinality = [0]
+ if embedding_dimension and num_static_categorical_features > 0:
+ if len(embedding_dimension) != num_static_categorical_features:
+ raise ValueError(
+ "The embedding dimension should be a list of the same length as `num_static_categorical_features`"
+ )
+ self.embedding_dimension = embedding_dimension
+ else:
+ self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality]
+ self.num_parallel_samples = num_parallel_samples
+
+ # Transformer architecture configuration
+ self.feature_size = input_size * len(lags_sequence) + self._number_of_features
+ self.d_model = d_model
+ self.encoder_attention_heads = encoder_attention_heads
+ self.decoder_attention_heads = decoder_attention_heads
+ self.encoder_ffn_dim = encoder_ffn_dim
+ self.decoder_ffn_dim = decoder_ffn_dim
+ self.encoder_layers = encoder_layers
+ self.decoder_layers = decoder_layers
+
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.encoder_layerdrop = encoder_layerdrop
+ self.decoder_layerdrop = decoder_layerdrop
+
+ self.activation_function = activation_function
+ self.init_std = init_std
+
+ self.use_cache = use_cache
+
+ super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
+
+ @property
+ def _number_of_features(self) -> int:
+ return (
+ sum(self.embedding_dimension)
+ + self.num_dynamic_real_features
+ + self.num_time_features
+ + self.num_static_real_features
+ + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..86c0f7c1c0b99d1bfaff6d2b644d7b7c7b67441a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__init__.py
@@ -0,0 +1,88 @@
+# flake8: noqa
+# There's no way to ignore "F401 '...' imported but unused" warnings in this
+# module, but to preserve other warnings. So, don't check this module at all.
+
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_torch_available,
+ is_vision_available,
+)
+
+
+_import_structure = {
+ "configuration_tvlt": ["TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP", "TvltConfig"],
+ "feature_extraction_tvlt": ["TvltFeatureExtractor"],
+ "processing_tvlt": ["TvltProcessor"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tvlt"] = [
+ "TVLT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TvltModel",
+ "TvltForPreTraining",
+ "TvltForAudioVisualClassification",
+ "TvltPreTrainedModel",
+ ]
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["image_processing_tvlt"] = ["TvltImageProcessor"]
+
+
+if TYPE_CHECKING:
+ from .configuration_tvlt import TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP, TvltConfig
+ from .processing_tvlt import TvltProcessor
+ from .feature_extraction_tvlt import TvltFeatureExtractor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tvlt import (
+ TVLT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TvltForAudioVisualClassification,
+ TvltForPreTraining,
+ TvltModel,
+ TvltPreTrainedModel,
+ )
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .image_processing_tvlt import TvltImageProcessor
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/configuration_tvlt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/configuration_tvlt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..eba5f63375263d0270592803351f5747ce99734e
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/configuration_tvlt.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/feature_extraction_tvlt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/feature_extraction_tvlt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9ac6657d6ca9f8089a344bf401ff5f66fbf72908
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/feature_extraction_tvlt.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/image_processing_tvlt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/image_processing_tvlt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c9c8252706cad7f9f63f6457d24eb9bb1c077abb
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/image_processing_tvlt.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/processing_tvlt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/processing_tvlt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0e338c1054f2b827785e2c91f867fcea077db183
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/__pycache__/processing_tvlt.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/configuration_tvlt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/configuration_tvlt.py
new file mode 100644
index 0000000000000000000000000000000000000000..063befc9d77f92d97c034928a85cd638b7c1d5bc
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/configuration_tvlt.py
@@ -0,0 +1,187 @@
+# coding=utf-8
+# Copyright 2023 MURGe-Lab and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TVLT model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class TvltConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`TvltModel`]. It is used to instantiate a TVLT
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the TVLT
+ [ZinengTang/tvlt-base](https://huggingface.co/ZinengTang/tvlt-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image.
+ spectrogram_length (`int`, *optional*, defaults to 2048):
+ The time length of each audio spectrogram.
+ frequency_length (`int`, *optional*, defaults to 128):
+ The frequency length of audio spectrogram.
+ image_patch_size (`List[int]`, *optional*, defaults to `[16, 16]`):
+ The size (resolution) of each image patch.
+ audio_patch_size (`List[int]`, *optional*, defaults to `[16, 16]`):
+ The size (resolution) of each audio patch.
+ num_image_channels (`int`, *optional*, defaults to 3):
+ The number of input image channels.
+ num_audio_channels (`int`, *optional*, defaults to 1):
+ The number of input audio channels.
+ num_frames (`int`, *optional*, defaults to 8):
+ The maximum number of frames for an input video.
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the layer normalization layers.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether to add a bias to the queries, keys and values.
+ use_mean_pooling (`bool`, *optional*, defaults to `False`):
+ Whether to mean pool the final hidden states instead of using the final hidden state of the [CLS] token.
+ decoder_num_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the decoder.
+ decoder_hidden_size (`int`, *optional*, defaults to 512):
+ Dimensionality of the decoder.
+ decoder_num_hidden_layers (`int`, *optional*, defaults to 8):
+ Number of hidden layers in the decoder.
+ decoder_intermediate_size (`int`, *optional*, defaults to 2048):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder.
+ pixel_mask_ratio (`float`, *optional*, defaults to 0.75):
+ Image patch masking ratio.
+ audio_mask_ratio (`float`, *optional*, defaults to 0.15):
+ Audio patch masking ratio.
+ audio_mask_type (`str`, *optional*, defaults to `"frame-level"`):
+ Audio patch masking type, choose between "frame-level" and "patch-level".
+ task_matching (`bool`, *optional*, defaults to `True`):
+ Whether to use vision audio matching task in pretraining.
+ task_mae (`bool`, *optional*, defaults to `True`):
+ Whether to use the masked auto-encoder (MAE) in pretraining.
+ loss_type (`str`, *optional*, defaults to `"classification"`):
+ Loss types including regression and classification.
+
+ Example:
+
+ ```python
+ >>> from transformers import TvltConfig, TvltModel
+
+ >>> # # Initializing a TVLT ZinengTang/tvlt-base style configuration
+ >>> configuration = TvltConfig()
+
+ >>> # # Initializing a model (with random weights) from the ZinengTang/tvlt-base style configuration
+ >>> model = TvltModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "tvlt"
+
+ def __init__(
+ self,
+ image_size=224,
+ spectrogram_length=2048,
+ frequency_length=128,
+ image_patch_size=[16, 16],
+ audio_patch_size=[16, 16],
+ num_image_channels=3,
+ num_audio_channels=1,
+ num_frames=8,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.0,
+ attention_probs_dropout_prob=0.0,
+ initializer_range=0.02,
+ layer_norm_eps=1e-6,
+ qkv_bias=True,
+ use_mean_pooling=False,
+ decoder_num_attention_heads=16,
+ decoder_hidden_size=512,
+ decoder_num_hidden_layers=8,
+ decoder_intermediate_size=2048,
+ pixel_mask_ratio=0.75,
+ audio_mask_ratio=0.15,
+ audio_mask_type="frame-level",
+ task_matching=True,
+ task_mae=True,
+ loss_type="classification",
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ if audio_mask_type not in ("frame-level", "patch_level"):
+ raise ValueError(
+ "audio_mask_type must be one of two acceptable strategies - {'frame_level', 'patch-level') "
+ f"got {audio_mask_type}"
+ )
+
+ self.image_size = image_size
+ self.spectrogram_length = spectrogram_length
+ self.frequency_length = frequency_length
+ self.image_patch_size = image_patch_size
+ self.audio_patch_size = audio_patch_size
+ self.num_image_channels = num_image_channels
+ self.num_audio_channels = num_audio_channels
+ self.num_frames = num_frames
+
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.qkv_bias = qkv_bias
+ self.use_mean_pooling = use_mean_pooling
+
+ self.decoder_num_attention_heads = decoder_num_attention_heads
+ self.decoder_hidden_size = decoder_hidden_size
+ self.decoder_num_hidden_layers = decoder_num_hidden_layers
+ self.decoder_intermediate_size = decoder_intermediate_size
+ self.pixel_mask_ratio = pixel_mask_ratio
+ self.audio_mask_ratio = audio_mask_ratio
+ self.audio_mask_type = audio_mask_type
+
+ self.task_matching = task_matching
+ self.task_mae = task_mae
+ self.loss_type = loss_type
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/feature_extraction_tvlt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/feature_extraction_tvlt.py
new file mode 100644
index 0000000000000000000000000000000000000000..7dc5e0463138c526b3d2d1ab1d922315d7d4c792
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/feature_extraction_tvlt.py
@@ -0,0 +1,230 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Feature extractor class for TVLT."""
+
+from math import ceil
+from typing import List, Optional, Union
+
+import numpy as np
+
+from ...audio_utils import mel_filter_bank, spectrogram, window_function
+from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
+from ...utils import TensorType, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class TvltFeatureExtractor(SequenceFeatureExtractor):
+ r"""
+ Constructs a TVLT audio feature extractor. This feature extractor can be used to prepare audios for the model.
+
+ This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users
+ should refer to this superclass for more information regarding those methods.
+
+ Args:
+ spectrogram_length (`Dict[str, int]` *optional*, defaults to 2048):
+ The time length of each audio spectrogram.
+ num_channels (`int` *optional*, defaults to 1):
+ Number of audio channels.
+ patch_size (`List[int]` *optional*, defaults to `[16, 16]`):
+ The patch size of audio patch embedding.
+ feature_size (`int`, *optional*, defaults to 128):
+ The frequency length of audio spectrogram.
+ sampling_rate (`int`, *optional*, defaults to 44100):
+ The sampling rate at which the audio files should be digitalized expressed in Hertz (Hz).
+ hop_length_to_sampling_rate (`int`, *optional*, defaults to 86):
+ Hop length is length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
+ For example, with sampling rate 44100, the hop length is 512, with 44100 / 512 = 86
+ n_fft (`int`, *optional*, defaults to 2048):
+ Size of the Fourier transform.
+ padding_value (`float`, *optional*, defaults to 0.0):
+ Padding value used to pad the audio. Should correspond to silences.
+ """
+
+ model_input_names = ["audio_values", "audio_mask"]
+
+ def __init__(
+ self,
+ spectrogram_length=2048,
+ num_channels=1,
+ patch_size=[16, 16],
+ feature_size=128,
+ sampling_rate=44100,
+ hop_length_to_sampling_rate=86,
+ n_fft=2048,
+ padding_value=0.0,
+ **kwargs,
+ ):
+ super().__init__(
+ feature_size=feature_size,
+ sampling_rate=sampling_rate,
+ padding_value=padding_value,
+ **kwargs,
+ )
+
+ self.spectrogram_length = spectrogram_length
+ self.num_channels = num_channels
+ self.patch_size = patch_size
+ self.freq_len = feature_size // self.patch_size[1]
+ self.n_fft = n_fft
+ self.hop_length = sampling_rate // hop_length_to_sampling_rate
+ self.sampling_rate = sampling_rate
+ self.padding_value = padding_value
+ self.mel_filters = mel_filter_bank(
+ num_frequency_bins=1 + n_fft // 2,
+ num_mel_filters=feature_size,
+ min_frequency=0.0,
+ max_frequency=22050.0,
+ sampling_rate=sampling_rate,
+ norm="slaney",
+ mel_scale="slaney",
+ ).T
+
+ def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
+ """
+ Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch
+ implementation with 1e-5 tolerance.
+ """
+ log_spec = spectrogram(
+ waveform,
+ window_function(self.n_fft, "hann"),
+ frame_length=self.n_fft,
+ hop_length=self.hop_length,
+ power=2.0,
+ mel_filters=self.mel_filters.T,
+ log_mel="dB",
+ db_range=80.0,
+ )
+ log_spec = log_spec[:, :-1]
+ log_spec = log_spec - 20.0
+ log_spec = np.clip(log_spec / 40.0, -2.0, 0.0) + 1.0
+ return log_spec
+
+ def __call__(
+ self,
+ raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_attention_mask: Optional[bool] = True,
+ sampling_rate: Optional[int] = None,
+ resample: bool = False,
+ mask_audio: bool = False,
+ **kwargs,
+ ) -> BatchFeature:
+ """
+ Main method to prepare one or several audio(s) for the model.
+
+ Args:
+ raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
+ The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
+ values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
+ stereo, i.e. single float per timestep.
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+ return_attention_mask (`bool`, *optional*, default to `True`):
+ Whether to return the attention mask. If left to the default, will return the attention mask according
+ to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask)
+
+
+
+ For TvltTransformer models, `attention_mask` should alwys be passed for batched inference, to avoid
+ subtle bugs.
+
+
+
+ sampling_rate (`int`, *optional*):
+ The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
+ `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
+ pipeline. Current model supports sampling rate 16000 and 44100.
+ resample (`bool`, *optional*, defaults to `False`):
+ If the sampling rate is not matched, resample the input audio to match.
+ mask_audio (`bool`, *optional*, defaults to `False`):
+ Whether or not to mask input audio for MAE task.
+
+ Returns:
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
+
+ - **audio_values** -- Audio values to be fed to a model, of shape (batch_size, num_channels, height,
+ width).
+
+ - **audio_mask** -- Audio masks to be fed to a model, of shape (batch_size, num_audio_patches).
+ """
+
+ if sampling_rate is not None:
+ if sampling_rate != self.sampling_rate:
+ raise ValueError(
+ "This feature extractor is set to support sampling rate"
+ f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
+ f" with {self.sampling_rate} and not {sampling_rate}."
+ )
+ else:
+ logger.warning(
+ "It is strongly recommended to pass the `sampling_rate` argument to this function. "
+ "Failing to do so can result in silent errors that might be hard to debug."
+ )
+
+ is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
+ if is_batched_numpy and len(raw_speech.shape) > 2:
+ raise ValueError(f"Only mono-channel audio is supported for input to {self}")
+ is_batched = is_batched_numpy or (
+ isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
+ )
+ if is_batched:
+ raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
+ elif not is_batched and not isinstance(raw_speech, np.ndarray):
+ raw_speech = np.asarray(raw_speech, dtype=np.float32)
+ elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
+ raw_speech = raw_speech.astype(np.float32)
+ # always return batch
+ if not is_batched:
+ raw_speech = [np.asarray([raw_speech]).T]
+
+ # Convert audio signals to log mel spectrograms, truncate by time axis
+ audio_features = [
+ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech
+ ]
+ if isinstance(audio_features[0], List):
+ audio_features = [np.asarray(feature, dtype=np.float32) for feature in audio_features]
+
+ # Create audio attention mask
+ max_patch_len = max(
+ [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]
+ ) # The maximum number of audio patches in a batch
+ if return_attention_mask:
+ audio_mask = [
+ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1]
+ + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0]
+ for feature in audio_features
+ ]
+ audio_mask = np.array(audio_mask).astype(np.float32)
+
+ # convert into correct format for padding
+ max_time_len = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
+ padded_audio_features = np.ones([len(audio_features), 1, max_time_len, self.feature_size]).astype(np.float32)
+ padded_audio_features = padded_audio_features * self.padding_value
+ for i in range(len(audio_features)):
+ feature = audio_features[i]
+ padded_audio_features[i, :, : feature.shape[0], :] = feature
+
+ # return as BatchFeature
+ if return_attention_mask:
+ data = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
+ else:
+ data = {"audio_values": padded_audio_features}
+
+ encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
+ return encoded_inputs
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/image_processing_tvlt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/image_processing_tvlt.py
new file mode 100644
index 0000000000000000000000000000000000000000..f13101c15a96152c6dc35f179009e760437300e0
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/image_processing_tvlt.py
@@ -0,0 +1,434 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for TVLT."""
+from typing import Dict, List, Optional, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import (
+ get_resize_output_image_size,
+ resize,
+ to_channel_dimension_format,
+)
+from ...image_utils import (
+ IMAGENET_STANDARD_MEAN,
+ IMAGENET_STANDARD_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ is_valid_image,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import TensorType, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+def make_batched(videos) -> List[List[ImageInput]]:
+ if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)):
+ return videos
+
+ elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
+ videos_dim = np.array(videos[0]).ndim
+ if videos_dim == 3:
+ return [videos]
+ elif videos_dim == 4:
+ return videos
+
+ elif is_valid_image(videos):
+ videos_dim = np.array(videos).ndim
+ if videos_dim == 3:
+ return [[videos]]
+ elif videos_dim == 4:
+ return [videos]
+ elif videos_dim == 5:
+ return videos
+
+ raise ValueError(f"Could not make batched video from {videos}")
+
+
+class TvltImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a TVLT image processor.
+
+ This processor can be used to prepare either videos or images for the model by converting images to 1-frame videos.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
+ `do_resize` parameter in the `preprocess` method.
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
+ Size of the output image after resizing. The shortest edge of the image will be resized to
+ `size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by
+ `size` in the `preprocess` method.
+ patch_size (`List[int]` *optional*, defaults to [16,16]):
+ The patch size of image patch embedding.
+ num_frames (`int` *optional*, defaults to 8):
+ The maximum number of video frames.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
+ Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
+ `preprocess` method.
+ do_center_crop (`bool`, *optional*, defaults to `True`):
+ Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
+ parameter in the `preprocess` method.
+ crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
+ Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
+ `preprocess` method.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
+ parameter in the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to 1/255):
+ Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
+ in the `preprocess` method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
+ method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ """
+
+ model_input_names = [
+ "pixel_values",
+ "pixel_mask",
+ "pixel_values_mixed",
+ "pixel_mask_mixed",
+ ]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ patch_size: List[int] = [16, 16],
+ num_frames: int = 8,
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ do_center_crop: bool = True,
+ crop_size: Dict[str, int] = None,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = IMAGENET_STANDARD_MEAN,
+ image_std: Optional[Union[float, List[float]]] = IMAGENET_STANDARD_STD,
+ init_mask_generator=False,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ size = size if size is not None else {"shortest_edge": 224}
+ size = get_size_dict(size, default_to_square=False)
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
+
+ self.do_resize = do_resize
+ self.size = size
+ self.patch_size = patch_size
+ self.num_frames = num_frames
+ self.do_center_crop = do_center_crop
+ self.crop_size = crop_size
+ self.resample = resample
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_normalize = do_normalize
+ self.image_mean = image_mean
+ self.image_std = image_std
+ self._valid_processor_keys = [
+ "videos",
+ "do_resize",
+ "size",
+ "patch_size",
+ "num_frames",
+ "resample",
+ "do_center_crop",
+ "crop_size",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "is_mixed",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize an image.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
+ have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its
+ shortest edge of length `s` while keeping the aspect ratio of the original image.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
+ Resampling filter to use when resiizing the image.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ size = get_size_dict(size, default_to_square=False)
+ if "shortest_edge" in size:
+ output_size = get_resize_output_image_size(
+ image, size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
+ )
+ elif "height" in size and "width" in size:
+ output_size = (size["height"], size["width"])
+ else:
+ raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
+ return resize(
+ image,
+ size=output_size,
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def _preprocess_image(
+ self,
+ image: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_center_crop: bool = None,
+ crop_size: Dict[str, int] = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """Preprocesses a single image."""
+
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_center_crop=do_center_crop,
+ crop_size=crop_size,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ # All transformations expect numpy arrays.
+ image = to_numpy_array(image)
+
+ if is_scaled_image(image) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(image)
+
+ if do_resize:
+ image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
+
+ if do_center_crop:
+ image = self.center_crop(image, size=crop_size, input_data_format=input_data_format)
+
+ if do_rescale:
+ image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+
+ if do_normalize:
+ image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
+ return image
+
+ def preprocess(
+ self,
+ videos: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ patch_size: List[int] = None,
+ num_frames: int = None,
+ resample: PILImageResampling = None,
+ do_center_crop: bool = None,
+ crop_size: Dict[str, int] = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ is_mixed: bool = False,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: ChannelDimension = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> BatchFeature:
+ """
+ Preprocess an videos or image or batch of videos or images.
+
+ Args:
+ videos (`ImageInput`):
+ Images or videos to preprocess. Expects a single or batch of frames with pixel values ranging from 0 to
+ 255. If passing in frames with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Size of the image after applying resize.
+ patch_size (`List[int]` *optional*, defaults to self.patch_size):
+ The patch size of image patch embedding.
+ num_frames (`int` *optional*, defaults to self.num_frames):
+ The maximum number of video frames.
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
+ has an effect if `do_resize` is set to `True`.
+ do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
+ Whether to centre crop the image.
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
+ Size of the image after applying the centre crop.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image values between [0 - 1].
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation.
+ is_mixed (`bool`, *optional*):
+ If the input video has negative samples.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the inferred channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+
+ Returns:
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
+
+ - **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
+ width).
+
+ - **pixel_mask** -- Pixel masks to be fed to a model, of shape (batch_size, num_pixel_patches).
+
+ - **pixel_values_mixed** -- Pixel values with both postive or negative to be fed to a model, of shape
+ (batch_size, num_channels, height, width).
+
+ - **pixel_mask_mixed** -- Pixel masks with both postive or negative to be fed to a model, of shape
+ (batch_size, num_pixel_patches).
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ resample = resample if resample is not None else self.resample
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+
+ size = size if size is not None else self.size
+ size = get_size_dict(size, default_to_square=False)
+ crop_size = crop_size if crop_size is not None else self.crop_size
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
+ patch_size = patch_size if patch_size is not None else self.patch_size
+ num_frames = num_frames if patch_size is not None else self.num_frames
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ if not valid_images(videos):
+ raise ValueError(
+ "Invalid image or video type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ videos = make_batched(videos)
+
+ # Check number of frames is fewer than maximum frames
+ for video in videos:
+ if len(video) > self.num_frames:
+ raise ValueError(
+ f"number of frames must not be greater than the maximum frames of the model {self.num_frames}."
+ )
+
+ max_num_frames = max([len(video) for video in videos])
+ num_patches_per_image = (size["shortest_edge"] // patch_size[0]) ** 2
+ video_masks = np.array(
+ [
+ len(video) * num_patches_per_image * [1] + (max_num_frames - len(video)) * num_patches_per_image * [0]
+ for video in videos
+ ]
+ )
+
+ videos = [
+ [
+ self._preprocess_image(
+ image=img,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ do_center_crop=do_center_crop,
+ crop_size=crop_size,
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ for img in video
+ ]
+ for video in videos
+ ]
+
+ # If videos contain both positive/negative, use mixed key for video-audio matching task
+ if is_mixed:
+ data = {"pixel_values_mixed": videos, "pixel_mask_mixed": video_masks}
+ else:
+ data = {"pixel_values": videos, "pixel_mask": video_masks}
+
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/modeling_tvlt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/modeling_tvlt.py
new file mode 100644
index 0000000000000000000000000000000000000000..f841c47ea4bc568fc00464a5cdd36720ae1fd8d4
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/modeling_tvlt.py
@@ -0,0 +1,1299 @@
+# coding=utf-8
+# Copyright 2023 MURGe-Lab and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch TVLT model."""
+
+
+import collections.abc
+import math
+from copy import deepcopy
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BaseModelOutput, SequenceClassifierOutput
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_tvlt import TvltConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "TvltConfig"
+_CHECKPOINT_FOR_DOC = "ZinengTang/tvlt-base"
+
+
+from ..deprecated._archive_maps import TVLT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+class TvltModelOutput(ModelOutput):
+ """
+ Class for TvltModel's outputs, with potential hidden states and attentions.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ last_pixel_hidden_state (`torch.FloatTensor` of shape `(batch_size, pixel_sequence_length, hidden_size)`):
+ Pixel sequence of hidden-states at the output of the last layer of the model.
+ last_audio_hidden_state (`torch.FloatTensor` of shape `(batch_size, audio_sequence_length, hidden_size)`):
+ Audio sequence of hidden-states at the output of the last layer of the model.
+ pixel_label_masks (`torch.FloatTensor` of shape `(batch_size, pixel_patch_length)`):
+ Tensor indicating which pixel patches are masked (1) and which are not (0).
+ audio_label_masks (`torch.FloatTensor` of shape `(batch_size, audio_patch_length)`):
+ Tensor indicating which audio patches are masked (1) and which are not (0).
+ pixel_ids_restore (`torch.LongTensor` of shape `(batch_size, pixel_patch_length)`):
+ Tensor containing the ids permutation of pixel masking.
+ audio_ids_restore (`torch.LongTensor` of shape `(batch_size, audio_patch_length)`):
+ Tensor containing the ids permutation of audio masking.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ last_hidden_state: torch.FloatTensor = None
+ last_pixel_hidden_state: torch.FloatTensor = None
+ last_audio_hidden_state: torch.FloatTensor = None
+ pixel_label_masks: torch.LongTensor = None
+ audio_label_masks: torch.LongTensor = None
+ pixel_ids_restore: torch.LongTensor = None
+ audio_ids_restore: torch.LongTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class TvltDecoderOutput(ModelOutput):
+ """
+ Class for TvltDecoder's outputs, with potential hidden states and attentions.
+
+ Args:
+ logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`):
+ Pixel reconstruction logits.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class TvltForPreTrainingOutput(ModelOutput):
+ """
+ Class for TvltForPreTraining's outputs, with potential hidden states and attentions.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`):
+ Pixel reconstruction loss.
+ matching_logits (`torch.FloatTensor` of shape `(batch_size, 1)`):
+ Matching objective logits.
+ pixel_logits (`torch.FloatTensor` of shape
+ `(batch_size, pixel_patch_length, image_patch_size ** 3 * pixel_num_channels)`): Pixel reconstruction
+ logits.
+ audio_logits (`torch.FloatTensor` of shape
+ `(batch_size, audio_patch_length, image_patch_size[0] * image_patch_size[1])`): Audio reconstruction
+ logits.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ matching_logits: torch.FloatTensor = None
+ pixel_logits: torch.FloatTensor = None
+ audio_logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+def generate_pixel_mask_noise(pixel_values, pixel_mask=None, mask_ratio=0.75):
+ """Generate noise for audio masking."""
+
+ batch_size, seq_len = pixel_values.shape[:2]
+ noise = torch.rand((batch_size, seq_len), device=pixel_values.device) # noise in [0, 1]
+ len_keep = int(seq_len * (1 - mask_ratio))
+ return noise, len_keep
+
+
+def generate_audio_mask_noise(audio_values, audio_mask=None, mask_ratio=0.75, mask_type="patch-level", freq_len=8):
+ """Generate noise for audio masking."""
+
+ batch_size, seq_len = audio_values.shape[:2]
+ if mask_type == "frame-level":
+ num_time_patches = seq_len // freq_len
+ noise = (
+ torch.rand(batch_size, num_time_patches, device=audio_values.device)
+ .unsqueeze(-1)
+ .repeat(1, 1, freq_len)
+ .view(batch_size, seq_len)
+ ) # noise in [0, 1]
+ elif mask_type == "patch-level":
+ noise = torch.rand(batch_size, seq_len, device=audio_values.device) # noise in [0, 1]
+ len_keep = int(seq_len * (1 - mask_ratio))
+ return noise, len_keep
+
+
+def random_masking(sequence, noise, len_keep, attention_masks=None):
+ """
+ Perform random masking by per-sample shuffling on frame-level. Per-sample shuffling is done by argsort random
+ noise. sequence: [batch_size, seq_len, hidden_dim], sequence
+ """
+
+ batch_size, seq_len, hidden_dim = sequence.shape
+
+ # sort noise for each sample
+ ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
+ ids_restore = torch.argsort(ids_shuffle, dim=1)
+
+ # keep the first subset
+ ids_keep = ids_shuffle[:, :len_keep]
+ sequence_masked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, hidden_dim))
+
+ # generate the binary mask: 0 is keep, 1 is remove
+ label_masks = torch.ones([batch_size, seq_len], device=sequence.device)
+ label_masks[:, :len_keep] = 0
+ # unshuffle to get the binary mask
+ label_masks = torch.gather(label_masks, dim=1, index=ids_restore)
+
+ if attention_masks is not None:
+ label_masks *= attention_masks
+ attention_masks = torch.gather(attention_masks, dim=1, index=ids_keep)
+
+ return sequence_masked, attention_masks, label_masks, ids_restore
+
+
+class TvltPixelEmbeddings(nn.Module):
+ """Construct the patch and position embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.patch_embeddings = TvltPixelPatchEmbeddings(config)
+ self.num_patches_per_image = self.patch_embeddings.num_patches_per_image
+
+ self.type_embed_v = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
+ self.temporal_embed = nn.Parameter(torch.zeros(1, config.num_frames, config.hidden_size))
+ self.pos_embed_v = nn.Parameter(torch.zeros(1, self.num_patches_per_image, config.hidden_size))
+
+ self.config = config
+
+ def forward(self, pixel_values, attention_masks=None):
+ # create patch embeddings
+ batch_size, num_frames, num_channels, height, width = pixel_values.shape
+
+ embeddings = self.patch_embeddings(pixel_values)
+ embeddings += self.pos_embed_v.repeat(1, num_frames, 1)
+ embeddings += torch.repeat_interleave(self.temporal_embed[:, :num_frames], self.num_patches_per_image, dim=1)
+ embeddings += self.type_embed_v
+
+ return embeddings, attention_masks
+
+
+class TvltAudioEmbeddings(nn.Module):
+ """Construct the patch and position embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.patch_embeddings = TvltAudioPatchEmbeddings(config)
+ self.num_patches = self.patch_embeddings.num_patches
+
+ self.type_embed_a = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
+ self.num_freq_patches = config.frequency_length // config.audio_patch_size[1]
+ self.pos_embed_a = nn.Parameter(torch.zeros(1, self.num_patches // self.num_freq_patches, config.hidden_size))
+ self.freq_embed = nn.Parameter(torch.zeros(1, self.num_freq_patches, config.hidden_size))
+
+ self.num_freq_patches = config.frequency_length // config.audio_patch_size[1]
+ self.config = config
+
+ def forward(self, audio_values, attention_masks=None):
+ # create patch embeddings
+ embeddings = self.patch_embeddings(audio_values)
+
+ num_time_patches = embeddings.size(1) // self.num_freq_patches
+ embeddings += self.freq_embed.repeat(1, num_time_patches, 1)
+ embeddings += torch.repeat_interleave(self.pos_embed_a[:, :num_time_patches], self.num_freq_patches, dim=1)
+ embeddings += self.type_embed_a
+
+ return embeddings, attention_masks
+
+
+class TvltPixelPatchEmbeddings(nn.Module):
+ """
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
+ Transformer.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ image_size, patch_size = config.image_size, config.image_patch_size
+ num_channels, hidden_size = config.num_image_channels, config.hidden_size
+
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches_per_image = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_patches_per_image = num_patches_per_image
+ self.hidden_size = hidden_size
+
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
+
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
+ batch_size, num_frames, num_channels, height, width = pixel_values.shape
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ if height != self.image_size[0] or width != self.image_size[1]:
+ raise ValueError(
+ f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
+ )
+
+ pixel_values = pixel_values.reshape(batch_size * num_frames, num_channels, height, width)
+ embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
+ embeddings = embeddings.reshape(batch_size, num_frames * self.num_patches_per_image, self.hidden_size)
+
+ return embeddings
+
+
+class TvltAudioPatchEmbeddings(nn.Module):
+ """
+ This class turns `audio_values` of shape `(batch_size, num_channels, height, width)` into the initial
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
+ Transformer.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ spectrogram_length, frequency_length, patch_size = (
+ config.spectrogram_length,
+ config.frequency_length,
+ config.audio_patch_size,
+ )
+ num_channels, hidden_size = config.num_audio_channels, config.hidden_size
+
+ spectrogram_size = (spectrogram_length, frequency_length)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches = (spectrogram_size[1] // patch_size[1]) * (spectrogram_size[0] // patch_size[0])
+ patch_shape = (spectrogram_size[0] // patch_size[0], spectrogram_size[1] // patch_size[1])
+ self.spectrogram_size = spectrogram_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_patches = num_patches
+ self.patch_shape = patch_shape
+
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
+
+ def forward(self, audio_values: torch.Tensor) -> torch.Tensor:
+ batch_size, num_channels, height, width = audio_values.shape
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ if height > self.spectrogram_size[0] or width != self.spectrogram_size[1]:
+ raise ValueError(
+ f"Input audio size ({height}*{width}) doesn't match model"
+ f" ({self.spectrogram_size[0]}*{self.spectrogram_size[1]})."
+ )
+ embeddings = self.projection(audio_values).flatten(2).transpose(1, 2)
+
+ return embeddings
+
+
+# Copied from transformers.models.vilt.modeling_vilt.ViltSelfAttention with Vilt->Tvlt
+class TvltSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
+ f"heads {config.num_attention_heads}."
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False):
+ mixed_query_layer = self.query(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+# Copied from transformers.models.vilt.modeling_vilt.ViltSelfOutput with Vilt->Tvlt
+class TvltSelfOutput(nn.Module):
+ """
+ The residual connection is defined in TvltLayer instead of here (as is the case with other models), due to the
+ layernorm applied before each block.
+ """
+
+ def __init__(self, config: TvltConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ return hidden_states
+
+
+# Copied from transformers.models.vilt.modeling_vilt.ViltAttention with Vilt->Tvlt
+class TvltAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.attention = TvltSelfAttention(config)
+ self.output = TvltSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.attention.query = prune_linear_layer(self.attention.query, index)
+ self.attention.key = prune_linear_layer(self.attention.key, index)
+ self.attention.value = prune_linear_layer(self.attention.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False):
+ self_outputs = self.attention(hidden_states, attention_mask, head_mask, output_attentions)
+
+ attention_output = self.output(self_outputs[0], hidden_states)
+
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.vilt.modeling_vilt.ViltIntermediate with Vilt->Tvlt
+class TvltIntermediate(nn.Module):
+ def __init__(self, config: TvltConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+
+# Copied from transformers.models.vilt.modeling_vilt.ViltOutput with Vilt->Tvlt
+class TvltOutput(nn.Module):
+ def __init__(self, config: TvltConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ hidden_states = hidden_states + input_tensor
+
+ return hidden_states
+
+
+# Copied from transformers.models.vilt.modeling_vilt.ViltLayer with Vilt->Tvlt
+class TvltLayer(nn.Module):
+ """This corresponds to the Block class in the timm implementation."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = TvltAttention(config)
+ self.intermediate = TvltIntermediate(config)
+ self.output = TvltOutput(config)
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False):
+ self_attention_outputs = self.attention(
+ self.layernorm_before(hidden_states), # in ViLT, layernorm is applied before self-attention
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ # first residual connection
+ hidden_states = attention_output + hidden_states.to(attention_output.device)
+
+ # in ViLT, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(hidden_states)
+ layer_output = self.intermediate(layer_output)
+
+ # second residual connection is done here
+ layer_output = self.output(layer_output, hidden_states)
+
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+
+# Copied from transformers.models.vilt.modeling_vilt.ViltEncoder with Vilt->Tvlt
+class TvltEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([TvltLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class TvltPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = TvltConfig
+ base_model_prefix = "tvlt"
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+TVLT_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`TvltConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+TVLT_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for
+ details.
+
+ audio_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Audio values. Audio values can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for
+ details.
+
+ pixel_mask (`torch.FloatTensor` of shape `(batch_size, num_pixel_patches)`):
+ Pixel masks. Pixel masks can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for
+ details.
+
+ audio_mask (`torch.FloatTensor` of shape `(batch_size, num_audio_patches)`):
+ Audio masks. Audio masks can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for
+ details.
+
+ pixel_values_mixed (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
+ Pixel values that mix positive and negative samples in Tvlt vision-audio matching. Pixel values mixed can
+ be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details.
+
+ pixel_mask_mixed (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel masks of pixel_values_mixed. Pixel masks mixed can be obtained using [`TvltProcessor`]. See
+ [`TvltProcessor.__call__`] for details.
+
+ mask_pixel (`bool`, *optional*):
+ Whether to mask pixel for MAE tasks. Only set to True in TvltForPreTraining.
+
+ mask_audio (`bool`, *optional*):
+ Whether to mask audio for MAE tasks. Only set to True in TvltForPreTraining.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare TVLT Model transformer outputting raw hidden-states without any specific head on top.",
+ TVLT_START_DOCSTRING,
+)
+class TvltModel(TvltPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.pixel_embeddings = TvltPixelEmbeddings(config)
+ self.audio_embeddings = TvltAudioEmbeddings(config)
+ self.encoder = TvltEncoder(config)
+
+ self.cls_embedding = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
+
+ if config.use_mean_pooling:
+ self.layernorm = None
+ else:
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.pixel_embeddings.patch_embeddings, self.audio_embeddings.patch_embeddings
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TvltModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ audio_values: torch.FloatTensor,
+ pixel_mask: Optional[torch.FloatTensor] = None,
+ audio_mask: Optional[torch.FloatTensor] = None,
+ mask_pixel: bool = False,
+ mask_audio: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], TvltModelOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import TvltProcessor, TvltModel
+ >>> import numpy as np
+ >>> import torch
+
+ >>> num_frames = 8
+ >>> images = list(np.random.randn(num_frames, 3, 224, 224))
+ >>> audio = list(np.random.randn(10000))
+
+ >>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base")
+ >>> model = TvltModel.from_pretrained("ZinengTang/tvlt-base")
+
+ >>> input_dict = processor(images, audio, sampling_rate=44100, return_tensors="pt")
+
+ >>> outputs = model(**input_dict)
+ >>> loss = outputs.loss
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ pixel_embedding_output, pixel_mask = self.pixel_embeddings(pixel_values, pixel_mask)
+
+ audio_embedding_output, audio_mask = self.audio_embeddings(audio_values, audio_mask)
+
+ # Mask pixel if mask_pixel is True
+ pixel_label_masks = None
+ pixel_ids_restore = None
+ if mask_pixel:
+ pixel_mask_noise, pixel_len_keep = generate_pixel_mask_noise(
+ pixel_embedding_output, pixel_mask=pixel_mask, mask_ratio=self.config.pixel_mask_ratio
+ )
+ pixel_embedding_output, pixel_mask, pixel_label_masks, pixel_ids_restore = random_masking(
+ pixel_embedding_output,
+ pixel_mask_noise,
+ pixel_len_keep,
+ attention_masks=pixel_mask,
+ )
+
+ # Mask audio if mask_audio is True
+ audio_label_masks = None
+ audio_ids_restore = None
+ if mask_audio:
+ num_freq_patches = self.config.frequency_length // self.config.audio_patch_size[1]
+ audio_mask_noise, audio_len_keep = generate_audio_mask_noise(
+ audio_embedding_output,
+ audio_mask=audio_mask,
+ mask_ratio=self.config.audio_mask_ratio,
+ mask_type=self.config.audio_mask_type,
+ freq_len=num_freq_patches,
+ )
+ audio_embedding_output, audio_mask, audio_label_masks, audio_ids_restore = random_masking(
+ audio_embedding_output,
+ audio_mask_noise,
+ audio_len_keep,
+ attention_masks=audio_mask,
+ )
+
+ # Prepare for encoder inputs and attention masks
+ batch_size = pixel_values.size(0)
+ embedding_output = torch.cat(
+ [self.cls_embedding.repeat(batch_size, 1, 1), pixel_embedding_output, audio_embedding_output], 1
+ )
+ masked_pixel_len = pixel_embedding_output.size(1)
+
+ attention_mask = None
+ if pixel_mask is not None and audio_mask is not None:
+ attention_mask = torch.cat([pixel_mask[:, :1], pixel_mask, audio_mask], 1)
+
+ input_shape = embedding_output.size()
+ extended_attention_mask = None
+ if attention_mask is not None:
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ if self.layernorm is not None:
+ sequence_output = self.layernorm(sequence_output)
+
+ pixel_sequence_output = sequence_output[:, 1 : 1 + masked_pixel_len]
+ audio_sequence_output = sequence_output[:, 1 + masked_pixel_len :]
+ if not return_dict:
+ return (
+ sequence_output,
+ pixel_sequence_output,
+ audio_sequence_output,
+ pixel_label_masks,
+ audio_label_masks,
+ pixel_ids_restore,
+ audio_ids_restore,
+ ) + encoder_outputs[1:]
+
+ return TvltModelOutput(
+ last_hidden_state=sequence_output,
+ last_pixel_hidden_state=pixel_sequence_output,
+ last_audio_hidden_state=audio_sequence_output,
+ pixel_label_masks=pixel_label_masks,
+ audio_label_masks=audio_label_masks,
+ pixel_ids_restore=pixel_ids_restore,
+ audio_ids_restore=audio_ids_restore,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class TvltDecoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ decoder_config = deepcopy(config)
+ decoder_config.hidden_size = config.decoder_hidden_size
+ decoder_config.num_hidden_layers = config.decoder_num_hidden_layers
+ decoder_config.num_attention_heads = config.decoder_num_attention_heads
+ decoder_config.intermediate_size = config.decoder_intermediate_size
+ self.decoder_layers = nn.ModuleList(
+ [TvltLayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)]
+ )
+
+ self.layernorm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps)
+
+ self.gradient_checkpointing = False
+ self.config = config
+
+ def forward(
+ self,
+ hidden_states,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ # apply Transformer layers (blocks)
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ for i, layer_module in enumerate(self.decoder_layers):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ None,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, output_attentions=output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ # predictor projection
+ logits = self.layernorm(hidden_states)
+
+ if not return_dict:
+ return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None)
+ return TvltDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions)
+
+
+@add_start_docstrings(
+ "The TVLT Model transformer with the decoder on top for self-supervised pre-training.",
+ TVLT_START_DOCSTRING,
+)
+class TvltForPreTraining(TvltPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.task_matching = config.task_matching
+ self.task_mae = config.task_mae
+ if not (self.task_matching or self.task_mae):
+ raise ValueError("Must set at least one of matching task and MAE task to true")
+
+ self.tvlt = TvltModel(config)
+
+ if self.task_matching:
+ self.matching_head = TvltMatchingHead(config)
+
+ if self.task_mae:
+ self.encoder_to_decoder = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=True)
+
+ self.pixel_mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size))
+ self.audio_mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size))
+
+ self.decoder = TvltDecoder(config)
+
+ decoder_hidden_size = config.decoder_hidden_size
+
+ num_frames = config.num_frames
+ num_patches_per_image = self.tvlt.pixel_embeddings.num_patches_per_image
+ self.decoder_pixel_pos_embed = nn.Parameter(torch.zeros(1, num_patches_per_image, decoder_hidden_size))
+ self.decoder_temporal_embed = nn.Parameter(torch.zeros(1, config.num_frames, decoder_hidden_size))
+ self.decoder_pixel_type_embed = nn.Parameter(torch.zeros(1, 1, decoder_hidden_size))
+
+ num_audio_patches = self.tvlt.audio_embeddings.num_patches
+ num_freq_patches = config.frequency_length // config.audio_patch_size[1]
+ self.decoder_audio_pos_embed = nn.Parameter(
+ torch.zeros(1, num_audio_patches // num_freq_patches, decoder_hidden_size)
+ )
+ self.decoder_freq_embed = nn.Parameter(torch.zeros(1, num_freq_patches, decoder_hidden_size))
+ self.decoder_audio_type_embed = nn.Parameter(torch.zeros(1, 1, decoder_hidden_size))
+
+ pixel_mae_output_dim = self.config.image_patch_size[0] ** 2 * self.config.num_image_channels
+ self.pixel_mae_head = TvltMAEHead(config, pixel_mae_output_dim)
+ audio_mae_output_dim = (
+ self.config.audio_patch_size[0] * self.config.audio_patch_size[1] * self.config.num_audio_channels
+ )
+ self.audio_mae_head = TvltMAEHead(config, audio_mae_output_dim)
+
+ self.num_frames = num_frames
+ self.num_patches_per_image = num_patches_per_image
+ self.num_freq_patches = num_freq_patches
+ self.image_patch_size = config.image_patch_size
+ self.audio_patch_size = config.audio_patch_size
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def patchify_pixel(self, pixel_values):
+ """
+ pixel_values: [batch_size, num_frames, 3, height, width]
+ """
+ batch_size, num_frames, num_channels, height, width = pixel_values.shape
+ num_patches_height = pixel_values.shape[3] // self.image_patch_size[0]
+ num_patches_width = pixel_values.shape[4] // self.image_patch_size[1]
+ patchified_pixel_values = pixel_values.reshape(
+ shape=(
+ batch_size,
+ num_frames,
+ num_channels,
+ num_patches_height,
+ self.image_patch_size[0],
+ num_patches_width,
+ self.image_patch_size[1],
+ )
+ )
+ patchified_pixel_values = torch.einsum("ntchpwq->nthwpqc", patchified_pixel_values)
+ patchified_pixel_values = patchified_pixel_values.reshape(
+ shape=(
+ batch_size,
+ num_patches_height * num_patches_width * num_frames,
+ self.image_patch_size[0] * self.image_patch_size[1] * num_channels,
+ )
+ )
+ return patchified_pixel_values
+
+ def patchify_audio(self, audio_values):
+ """
+ audio_values: [batch_size, 1, height, width]
+ """
+ batch_size, num_channels, height, width = audio_values.shape
+ num_patches_height = height // self.audio_patch_size[0]
+ num_patches_width = width // self.audio_patch_size[1]
+ patchified_audio_values = audio_values.reshape(
+ shape=(
+ batch_size,
+ num_channels,
+ num_patches_height,
+ self.audio_patch_size[0],
+ num_patches_width,
+ self.audio_patch_size[1],
+ )
+ )
+ patchified_audio_values = torch.einsum("nchpwq->nhwpqc", patchified_audio_values)
+ patchified_audio_values = patchified_audio_values.reshape(
+ shape=(
+ batch_size,
+ num_patches_height * num_patches_width,
+ self.audio_patch_size[0] * self.audio_patch_size[1] * num_channels,
+ )
+ )
+ return patchified_audio_values
+
+ def pixel_mae_loss(self, pixel_values, pixel_predictions, mask):
+ patchified_pixel_values = self.patchify_pixel(pixel_values)
+ loss = (pixel_predictions - patchified_pixel_values) ** 2
+ loss = loss.mean(dim=-1) # [batch_size, pixel_pixel_length], mean loss per patch
+ loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
+ return loss
+
+ def audio_mae_loss(self, audio_values, audio_predictions, mask):
+ patchified_audio_values = self.patchify_audio(audio_values)
+ loss = (audio_predictions - patchified_audio_values) ** 2
+ loss = loss.mean(dim=-1) # [batch_size, audio_pixel_length], mean loss per patch
+ loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
+ return loss
+
+ def concatenate_mask(self, mask_token, sequence, ids_restore):
+ batch_size, seq_length, dim = sequence.shape
+ mask_tokens = mask_token.repeat(batch_size, ids_restore.shape[1] - seq_length, 1)
+ padded_sequence = torch.cat([sequence, mask_tokens], dim=1)
+ padded_sequence = torch.gather(
+ padded_sequence, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, dim)
+ ) # unshuffle
+ return padded_sequence
+
+ @add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TvltForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ audio_values: torch.FloatTensor,
+ pixel_mask: Optional[torch.FloatTensor] = None,
+ audio_mask: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ pixel_values_mixed: Optional[torch.FloatTensor] = None,
+ pixel_mask_mixed: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], TvltForPreTrainingOutput]:
+ r"""
+ pixel_values_mixed (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
+ Pixel values that mix positive and negative samples in Tvlt vision-audio matching. Audio values can be
+ obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details.
+
+ pixel_mask_mixed (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel masks of pixel_values_mixed. Pixel values mixed can be obtained using [`TvltProcessor`]. See
+ [`TvltProcessor.__call__`] for details.
+
+ labels (`torch.LongTensor` of shape `(batch_size, num_labels)`, *optional*):
+ Labels for computing the vision audio matching loss. Indices should be in `[0, 1]`. num_labels has to be 1.
+
+ Return:
+
+ Examples:
+
+ ```python
+ >>> from transformers import TvltProcessor, TvltForPreTraining
+ >>> import numpy as np
+ >>> import torch
+
+ >>> num_frames = 8
+ >>> images = list(np.random.randn(num_frames, 3, 224, 224))
+ >>> images_mixed = list(np.random.randn(num_frames, 3, 224, 224))
+ >>> audio = list(np.random.randn(10000))
+ >>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base")
+ >>> model = TvltForPreTraining.from_pretrained("ZinengTang/tvlt-base")
+ >>> input_dict = processor(
+ ... images, audio, images_mixed, sampling_rate=44100, mask_pixel=True, mask_audio=True, return_tensors="pt"
+ ... )
+
+ >>> outputs = model(**input_dict)
+ >>> loss = outputs.loss
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ total_loss = 0.0
+
+ if self.task_matching:
+ if labels is None:
+ raise ValueError("Matching task requires labels")
+ if pixel_values_mixed is None:
+ raise ValueError("Matching task requires pixel_values_mixed")
+
+ outputs = self.tvlt(
+ pixel_values_mixed,
+ audio_values,
+ pixel_mask=pixel_mask_mixed,
+ audio_mask=audio_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ matching_logits = self.matching_head(sequence_output)
+
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(matching_logits.view(-1), labels.view(-1))
+ total_loss += loss
+
+ pixel_logits = None
+ audio_logits = None
+ if self.task_mae and self.training:
+ outputs = self.tvlt(
+ pixel_values,
+ audio_values,
+ pixel_mask=pixel_mask,
+ audio_mask=audio_mask,
+ mask_pixel=True,
+ mask_audio=True,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ pixel_sequence_output = outputs.last_pixel_hidden_state if return_dict else outputs[1]
+ audio_sequence_output = outputs.last_audio_hidden_state if return_dict else outputs[2]
+ pixel_label_masks = outputs.pixel_label_masks if return_dict else outputs[3]
+ audio_label_masks = outputs.audio_label_masks if return_dict else outputs[4]
+ pixel_ids_restore = outputs.pixel_ids_restore if return_dict else outputs[5]
+ audio_ids_restore = outputs.audio_ids_restore if return_dict else outputs[6]
+
+ pixel_decoder_input = self.encoder_to_decoder(
+ pixel_sequence_output
+ ) # [batch_size, num_masked_pixel_patches, decoder_hidden_size]
+ audio_decoder_input = self.encoder_to_decoder(
+ audio_sequence_output
+ ) # [batch_size, num_masked_audio_patches, decoder_hidden_size]
+ num_frames = pixel_values.size(1)
+ pixel_decoder_input = self.concatenate_mask(self.pixel_mask_token, pixel_decoder_input, pixel_ids_restore)
+ pixel_decoder_input = pixel_decoder_input + self.decoder_pixel_pos_embed.repeat(1, num_frames, 1)
+ pixel_decoder_input = pixel_decoder_input + torch.repeat_interleave(
+ self.decoder_temporal_embed[:, :num_frames], self.num_patches_per_image, dim=1
+ )
+ pixel_decoder_input = pixel_decoder_input + self.decoder_pixel_type_embed
+ pixel_decoder_outputs = self.decoder(pixel_decoder_input)
+ pixel_logits = self.pixel_mae_head(pixel_decoder_outputs.logits)
+
+ audio_decoder_input = self.concatenate_mask(self.audio_mask_token, audio_decoder_input, audio_ids_restore)
+ num_time_patches = audio_decoder_input.size(1) // self.num_freq_patches
+ audio_decoder_input = audio_decoder_input + self.decoder_freq_embed.repeat(1, num_time_patches, 1)
+ audio_decoder_input = audio_decoder_input + torch.repeat_interleave(
+ self.decoder_audio_pos_embed[:, :num_time_patches], self.num_freq_patches, dim=1
+ )
+ audio_decoder_input = audio_decoder_input + self.decoder_audio_type_embed
+ audio_decoder_outputs = self.decoder(audio_decoder_input)
+ audio_logits = self.audio_mae_head(audio_decoder_outputs.logits)
+
+ loss = self.pixel_mae_loss(pixel_values, pixel_logits, pixel_label_masks) + self.audio_mae_loss(
+ audio_values, audio_logits, audio_label_masks
+ )
+ total_loss += loss
+
+ if not return_dict:
+ output = (matching_logits, pixel_logits, audio_logits) + outputs[7:]
+ return ((total_loss,) + output) if loss is not None else output
+
+ return TvltForPreTrainingOutput(
+ loss=total_loss,
+ matching_logits=matching_logits,
+ pixel_logits=pixel_logits,
+ audio_logits=audio_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class TvltPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states):
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class TvltMatchingHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.pooler = TvltPooler(config)
+ self.fc = nn.Linear(config.hidden_size, 1)
+
+ def forward(self, hidden_states):
+ hidden_states = self.fc(self.pooler(hidden_states))
+ return hidden_states
+
+
+class TvltMAEHead(nn.Module):
+ def __init__(self, config, output_dim=None):
+ super().__init__()
+ self.config = config
+ self.decoder = nn.Linear(config.decoder_hidden_size, output_dim)
+
+ def forward(self, hidden_states):
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+
+@add_start_docstrings(
+ """
+ Tvlt Model transformer with a classifier head on top (an MLP on top of the final hidden state of the [CLS] token)
+ for audiovisual classification tasks, e.g. CMU-MOSEI Sentiment Analysis and Audio to Video Retrieval.
+ """,
+ TVLT_START_DOCSTRING,
+)
+class TvltForAudioVisualClassification(TvltPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.tvlt = TvltModel(config)
+
+ # Classifier head
+ self.classifier = nn.Sequential(
+ nn.Linear(config.hidden_size, config.hidden_size * 2),
+ nn.LayerNorm(config.hidden_size * 2, eps=config.layer_norm_eps),
+ nn.GELU(),
+ nn.Linear(config.hidden_size * 2, config.num_labels),
+ )
+ self.config = config
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ audio_values: torch.FloatTensor,
+ pixel_mask: Optional[torch.FloatTensor] = None,
+ audio_mask: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple[torch.FloatTensor], SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, num_labels)`, *optional*):
+ Labels for computing the audiovisual loss. Indices should be in `[0, ..., num_classes-1]` where num_classes
+ refers to the number of classes in audiovisual tasks.
+
+ Return:
+
+ Examples:
+ ```python
+ >>> from transformers import TvltProcessor, TvltForAudioVisualClassification
+ >>> import numpy as np
+ >>> import torch
+
+ >>> num_frames = 8
+ >>> images = list(np.random.randn(num_frames, 3, 224, 224))
+ >>> audio = list(np.random.randn(10000))
+ >>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base")
+ >>> model = TvltForAudioVisualClassification.from_pretrained("ZinengTang/tvlt-base")
+ >>> input_dict = processor(images, audio, sampling_rate=44100, return_tensors="pt")
+
+ >>> outputs = model(**input_dict)
+ >>> loss = outputs.loss
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.tvlt(
+ pixel_values,
+ audio_values,
+ pixel_mask=pixel_mask,
+ audio_mask=audio_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0][:, 0]
+ logits = self.classifier(sequence_output) # rank value
+
+ loss = None
+ if labels is not None:
+ if self.config.loss_type == "regression":
+ loss_fct = MSELoss()
+ loss = loss_fct(logits, labels)
+ elif self.config.loss_type == "classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[4:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/processing_tvlt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/processing_tvlt.py
new file mode 100644
index 0000000000000000000000000000000000000000..c67a3a8c6d6df01080479a44a2de343695c0f42a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/tvlt/processing_tvlt.py
@@ -0,0 +1,89 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Processor class for TVLT.
+"""
+
+from ...processing_utils import ProcessorMixin
+
+
+class TvltProcessor(ProcessorMixin):
+ r"""
+ Constructs a TVLT processor which wraps a TVLT image processor and TVLT feature extractor into a single processor.
+
+ [`TvltProcessor`] offers all the functionalities of [`TvltImageProcessor`] and [`TvltFeatureExtractor`]. See the
+ docstring of [`~TvltProcessor.__call__`] for more information.
+
+ Args:
+ image_processor (`TvltImageProcessor`):
+ An instance of [`TvltImageProcessor`]. The image processor is a required input.
+ feature_extractor (`TvltFeatureExtractor`):
+ An instance of [`TvltFeatureExtractor`]. The feature extractor is a required input.
+ """
+
+ attributes = ["image_processor", "feature_extractor"]
+ image_processor_class = "TvltImageProcessor"
+ feature_extractor_class = "TvltFeatureExtractor"
+
+ def __init__(self, image_processor, feature_extractor):
+ super().__init__(image_processor=image_processor, feature_extractor=feature_extractor)
+
+ self.image_processor = image_processor
+ self.feature_extractor = feature_extractor
+
+ def __call__(
+ self,
+ images=None,
+ audio=None,
+ images_mixed=None,
+ sampling_rate=None,
+ mask_audio=False,
+ mask_pixel=False,
+ *args,
+ **kwargs,
+ ):
+ """
+ Forwards the `images` argument to TvltImageProcessor's [`~TvltImageProcessor.preprocess`] and the `audio`
+ argument to TvltFeatureExtractor's [`~TvltFeatureExtractor.__call__`]. Please refer to the docstring of the
+ above two methods for more information.
+ """
+
+ if images is None and audio is None:
+ raise ValueError("You need to specify either an `images` or `audio` input to process.")
+
+ images_mixed_dict = None
+ if images is not None:
+ images_dict = self.image_processor(images, mask_pixel=mask_pixel, *args, **kwargs)
+ if images_mixed is not None:
+ images_mixed_dict = self.image_processor(images_mixed, is_mixed=True, *args, **kwargs)
+ if audio is not None:
+ audio_dict = self.feature_extractor(
+ audio, *args, sampling_rate=sampling_rate, mask_audio=mask_audio, **kwargs
+ )
+
+ output_dict = {}
+ if audio is not None:
+ output_dict.update(audio_dict)
+ if images is not None:
+ output_dict.update(images_dict)
+ if images_mixed_dict is not None:
+ output_dict.update(images_mixed_dict)
+ return output_dict
+
+ @property
+ def model_input_names(self):
+ image_processor_input_names = self.image_processor.model_input_names
+ feature_extractor_input_names = self.feature_extractor.model_input_names
+ return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))