Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/absl/__init__.py +13 -0
- llmeval-env/lib/python3.10/site-packages/absl/app.py +480 -0
- llmeval-env/lib/python3.10/site-packages/absl/app.pyi +99 -0
- llmeval-env/lib/python3.10/site-packages/absl/command_name.py +63 -0
- llmeval-env/lib/python3.10/site-packages/absl/logging/__init__.py +1281 -0
- llmeval-env/lib/python3.10/site-packages/absl/logging/__init__.pyi +290 -0
- llmeval-env/lib/python3.10/site-packages/absl/logging/converter.py +214 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/__init__.py +158 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/aqlm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/awq.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/bitsandbytes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/deepspeed.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/integration_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/peft.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/quanto.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/tpu.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/aqlm.py +99 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/awq.py +444 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/bitsandbytes.py +324 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/deepspeed.py +441 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/integration_utils.py +1914 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/peft.py +476 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/quanto.py +94 -0
- llmeval-env/lib/python3.10/site-packages/transformers/integrations/tpu.py +36 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__init__.py +1108 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/audio_classification.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/audio_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/base.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/conversational.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/depth_estimation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/document_question_answering.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_classification.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_feature_extraction.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_segmentation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_to_image.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_to_text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/mask_generation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/object_detection.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/pt_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/question_answering.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/table_question_answering.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/text2text_generation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/text_classification.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/text_to_audio.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/token_classification.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/visual_question_answering.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/zero_shot_audio_classification.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/zero_shot_classification.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/zero_shot_image_classification.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/absl/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2017 The Abseil Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
llmeval-env/lib/python3.10/site-packages/absl/app.py
ADDED
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2017 The Abseil Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""Generic entry point for Abseil Python applications.
|
16 |
+
|
17 |
+
To use this module, define a ``main`` function with a single ``argv`` argument
|
18 |
+
and call ``app.run(main)``. For example::
|
19 |
+
|
20 |
+
def main(argv):
|
21 |
+
if len(argv) > 1:
|
22 |
+
raise app.UsageError('Too many command-line arguments.')
|
23 |
+
|
24 |
+
if __name__ == '__main__':
|
25 |
+
app.run(main)
|
26 |
+
"""
|
27 |
+
|
28 |
+
import collections
|
29 |
+
import errno
|
30 |
+
import os
|
31 |
+
import pdb
|
32 |
+
import sys
|
33 |
+
import textwrap
|
34 |
+
import traceback
|
35 |
+
|
36 |
+
from absl import command_name
|
37 |
+
from absl import flags
|
38 |
+
from absl import logging
|
39 |
+
|
40 |
+
try:
|
41 |
+
import faulthandler
|
42 |
+
except ImportError:
|
43 |
+
faulthandler = None
|
44 |
+
|
45 |
+
FLAGS = flags.FLAGS
|
46 |
+
|
47 |
+
flags.DEFINE_boolean('run_with_pdb', False, 'Set to true for PDB debug mode')
|
48 |
+
flags.DEFINE_boolean('pdb_post_mortem', False,
|
49 |
+
'Set to true to handle uncaught exceptions with PDB '
|
50 |
+
'post mortem.')
|
51 |
+
flags.DEFINE_alias('pdb', 'pdb_post_mortem')
|
52 |
+
flags.DEFINE_boolean('run_with_profiling', False,
|
53 |
+
'Set to true for profiling the script. '
|
54 |
+
'Execution will be slower, and the output format might '
|
55 |
+
'change over time.')
|
56 |
+
flags.DEFINE_string('profile_file', None,
|
57 |
+
'Dump profile information to a file (for python -m '
|
58 |
+
'pstats). Implies --run_with_profiling.')
|
59 |
+
flags.DEFINE_boolean('use_cprofile_for_profiling', True,
|
60 |
+
'Use cProfile instead of the profile module for '
|
61 |
+
'profiling. This has no effect unless '
|
62 |
+
'--run_with_profiling is set.')
|
63 |
+
flags.DEFINE_boolean('only_check_args', False,
|
64 |
+
'Set to true to validate args and exit.',
|
65 |
+
allow_hide_cpp=True)
|
66 |
+
|
67 |
+
|
68 |
+
# If main() exits via an abnormal exception, call into these
|
69 |
+
# handlers before exiting.
|
70 |
+
EXCEPTION_HANDLERS = []
|
71 |
+
|
72 |
+
|
73 |
+
class Error(Exception):
|
74 |
+
pass
|
75 |
+
|
76 |
+
|
77 |
+
class UsageError(Error):
|
78 |
+
"""Exception raised when the arguments supplied by the user are invalid.
|
79 |
+
|
80 |
+
Raise this when the arguments supplied are invalid from the point of
|
81 |
+
view of the application. For example when two mutually exclusive
|
82 |
+
flags have been supplied or when there are not enough non-flag
|
83 |
+
arguments. It is distinct from flags.Error which covers the lower
|
84 |
+
level of parsing and validating individual flags.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, message, exitcode=1):
|
88 |
+
super(UsageError, self).__init__(message)
|
89 |
+
self.exitcode = exitcode
|
90 |
+
|
91 |
+
|
92 |
+
class HelpFlag(flags.BooleanFlag):
|
93 |
+
"""Special boolean flag that displays usage and raises SystemExit."""
|
94 |
+
NAME = 'help'
|
95 |
+
SHORT_NAME = '?'
|
96 |
+
|
97 |
+
def __init__(self):
|
98 |
+
super(HelpFlag, self).__init__(
|
99 |
+
self.NAME, False, 'show this help',
|
100 |
+
short_name=self.SHORT_NAME, allow_hide_cpp=True)
|
101 |
+
|
102 |
+
def parse(self, arg):
|
103 |
+
if self._parse(arg):
|
104 |
+
usage(shorthelp=True, writeto_stdout=True)
|
105 |
+
# Advertise --helpfull on stdout, since usage() was on stdout.
|
106 |
+
print()
|
107 |
+
print('Try --helpfull to get a list of all flags.')
|
108 |
+
sys.exit(1)
|
109 |
+
|
110 |
+
|
111 |
+
class HelpshortFlag(HelpFlag):
|
112 |
+
"""--helpshort is an alias for --help."""
|
113 |
+
NAME = 'helpshort'
|
114 |
+
SHORT_NAME = None
|
115 |
+
|
116 |
+
|
117 |
+
class HelpfullFlag(flags.BooleanFlag):
|
118 |
+
"""Display help for flags in the main module and all dependent modules."""
|
119 |
+
|
120 |
+
def __init__(self):
|
121 |
+
super(HelpfullFlag, self).__init__(
|
122 |
+
'helpfull', False, 'show full help', allow_hide_cpp=True)
|
123 |
+
|
124 |
+
def parse(self, arg):
|
125 |
+
if self._parse(arg):
|
126 |
+
usage(writeto_stdout=True)
|
127 |
+
sys.exit(1)
|
128 |
+
|
129 |
+
|
130 |
+
class HelpXMLFlag(flags.BooleanFlag):
|
131 |
+
"""Similar to HelpfullFlag, but generates output in XML format."""
|
132 |
+
|
133 |
+
def __init__(self):
|
134 |
+
super(HelpXMLFlag, self).__init__(
|
135 |
+
'helpxml', False, 'like --helpfull, but generates XML output',
|
136 |
+
allow_hide_cpp=True)
|
137 |
+
|
138 |
+
def parse(self, arg):
|
139 |
+
if self._parse(arg):
|
140 |
+
flags.FLAGS.write_help_in_xml_format(sys.stdout)
|
141 |
+
sys.exit(1)
|
142 |
+
|
143 |
+
|
144 |
+
def parse_flags_with_usage(args):
|
145 |
+
"""Tries to parse the flags, print usage, and exit if unparsable.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
args: [str], a non-empty list of the command line arguments including
|
149 |
+
program name.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
[str], a non-empty list of remaining command line arguments after parsing
|
153 |
+
flags, including program name.
|
154 |
+
"""
|
155 |
+
try:
|
156 |
+
return FLAGS(args)
|
157 |
+
except flags.Error as error:
|
158 |
+
message = str(error)
|
159 |
+
if '\n' in message:
|
160 |
+
final_message = 'FATAL Flags parsing error:\n%s\n' % textwrap.indent(
|
161 |
+
message, ' ')
|
162 |
+
else:
|
163 |
+
final_message = 'FATAL Flags parsing error: %s\n' % message
|
164 |
+
sys.stderr.write(final_message)
|
165 |
+
sys.stderr.write('Pass --helpshort or --helpfull to see help on flags.\n')
|
166 |
+
sys.exit(1)
|
167 |
+
|
168 |
+
|
169 |
+
_define_help_flags_called = False
|
170 |
+
|
171 |
+
|
172 |
+
def define_help_flags():
|
173 |
+
"""Registers help flags. Idempotent."""
|
174 |
+
# Use a global to ensure idempotence.
|
175 |
+
global _define_help_flags_called
|
176 |
+
|
177 |
+
if not _define_help_flags_called:
|
178 |
+
flags.DEFINE_flag(HelpFlag())
|
179 |
+
flags.DEFINE_flag(HelpshortFlag()) # alias for --help
|
180 |
+
flags.DEFINE_flag(HelpfullFlag())
|
181 |
+
flags.DEFINE_flag(HelpXMLFlag())
|
182 |
+
_define_help_flags_called = True
|
183 |
+
|
184 |
+
|
185 |
+
def _register_and_parse_flags_with_usage(
|
186 |
+
argv=None,
|
187 |
+
flags_parser=parse_flags_with_usage,
|
188 |
+
):
|
189 |
+
"""Registers help flags, parses arguments and shows usage if appropriate.
|
190 |
+
|
191 |
+
This also calls sys.exit(0) if flag --only_check_args is True.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
argv: [str], a non-empty list of the command line arguments including
|
195 |
+
program name, sys.argv is used if None.
|
196 |
+
flags_parser: Callable[[List[Text]], Any], the function used to parse flags.
|
197 |
+
The return value of this function is passed to `main` untouched.
|
198 |
+
It must guarantee FLAGS is parsed after this function is called.
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
The return value of `flags_parser`. When using the default `flags_parser`,
|
202 |
+
it returns the following:
|
203 |
+
[str], a non-empty list of remaining command line arguments after parsing
|
204 |
+
flags, including program name.
|
205 |
+
|
206 |
+
Raises:
|
207 |
+
Error: Raised when flags_parser is called, but FLAGS is not parsed.
|
208 |
+
SystemError: Raised when it's called more than once.
|
209 |
+
"""
|
210 |
+
if _register_and_parse_flags_with_usage.done:
|
211 |
+
raise SystemError('Flag registration can be done only once.')
|
212 |
+
|
213 |
+
define_help_flags()
|
214 |
+
|
215 |
+
original_argv = sys.argv if argv is None else argv
|
216 |
+
args_to_main = flags_parser(original_argv)
|
217 |
+
if not FLAGS.is_parsed():
|
218 |
+
raise Error('FLAGS must be parsed after flags_parser is called.')
|
219 |
+
|
220 |
+
# Exit when told so.
|
221 |
+
if FLAGS.only_check_args:
|
222 |
+
sys.exit(0)
|
223 |
+
# Immediately after flags are parsed, bump verbosity to INFO if the flag has
|
224 |
+
# not been set.
|
225 |
+
if FLAGS['verbosity'].using_default_value:
|
226 |
+
FLAGS.verbosity = 0
|
227 |
+
_register_and_parse_flags_with_usage.done = True
|
228 |
+
|
229 |
+
return args_to_main
|
230 |
+
|
231 |
+
_register_and_parse_flags_with_usage.done = False
|
232 |
+
|
233 |
+
|
234 |
+
def _run_main(main, argv):
|
235 |
+
"""Calls main, optionally with pdb or profiler."""
|
236 |
+
if FLAGS.run_with_pdb:
|
237 |
+
sys.exit(pdb.runcall(main, argv))
|
238 |
+
elif FLAGS.run_with_profiling or FLAGS.profile_file:
|
239 |
+
# Avoid import overhead since most apps (including performance-sensitive
|
240 |
+
# ones) won't be run with profiling.
|
241 |
+
# pylint: disable=g-import-not-at-top
|
242 |
+
import atexit
|
243 |
+
if FLAGS.use_cprofile_for_profiling:
|
244 |
+
import cProfile as profile
|
245 |
+
else:
|
246 |
+
import profile
|
247 |
+
profiler = profile.Profile()
|
248 |
+
if FLAGS.profile_file:
|
249 |
+
atexit.register(profiler.dump_stats, FLAGS.profile_file)
|
250 |
+
else:
|
251 |
+
atexit.register(profiler.print_stats)
|
252 |
+
sys.exit(profiler.runcall(main, argv))
|
253 |
+
else:
|
254 |
+
sys.exit(main(argv))
|
255 |
+
|
256 |
+
|
257 |
+
def _call_exception_handlers(exception):
|
258 |
+
"""Calls any installed exception handlers."""
|
259 |
+
for handler in EXCEPTION_HANDLERS:
|
260 |
+
try:
|
261 |
+
if handler.wants(exception):
|
262 |
+
handler.handle(exception)
|
263 |
+
except: # pylint: disable=bare-except
|
264 |
+
try:
|
265 |
+
# We don't want to stop for exceptions in the exception handlers but
|
266 |
+
# we shouldn't hide them either.
|
267 |
+
logging.error(traceback.format_exc())
|
268 |
+
except: # pylint: disable=bare-except
|
269 |
+
# In case even the logging statement fails, ignore.
|
270 |
+
pass
|
271 |
+
|
272 |
+
|
273 |
+
def run(
|
274 |
+
main,
|
275 |
+
argv=None,
|
276 |
+
flags_parser=parse_flags_with_usage,
|
277 |
+
):
|
278 |
+
"""Begins executing the program.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
main: The main function to execute. It takes an single argument "argv",
|
282 |
+
which is a list of command line arguments with parsed flags removed.
|
283 |
+
The return value is passed to `sys.exit`, and so for example
|
284 |
+
a return value of 0 or None results in a successful termination, whereas
|
285 |
+
a return value of 1 results in abnormal termination.
|
286 |
+
For more details, see https://docs.python.org/3/library/sys#sys.exit
|
287 |
+
argv: A non-empty list of the command line arguments including program name,
|
288 |
+
sys.argv is used if None.
|
289 |
+
flags_parser: Callable[[List[Text]], Any], the function used to parse flags.
|
290 |
+
The return value of this function is passed to `main` untouched.
|
291 |
+
It must guarantee FLAGS is parsed after this function is called.
|
292 |
+
Should be passed as a keyword-only arg which will become mandatory in a
|
293 |
+
future release.
|
294 |
+
- Parses command line flags with the flag module.
|
295 |
+
- If there are any errors, prints usage().
|
296 |
+
- Calls main() with the remaining arguments.
|
297 |
+
- If main() raises a UsageError, prints usage and the error message.
|
298 |
+
"""
|
299 |
+
try:
|
300 |
+
args = _run_init(
|
301 |
+
sys.argv if argv is None else argv,
|
302 |
+
flags_parser,
|
303 |
+
)
|
304 |
+
while _init_callbacks:
|
305 |
+
callback = _init_callbacks.popleft()
|
306 |
+
callback()
|
307 |
+
try:
|
308 |
+
_run_main(main, args)
|
309 |
+
except UsageError as error:
|
310 |
+
usage(shorthelp=True, detailed_error=error, exitcode=error.exitcode)
|
311 |
+
except:
|
312 |
+
exc = sys.exc_info()[1]
|
313 |
+
# Don't try to post-mortem debug successful SystemExits, since those
|
314 |
+
# mean there wasn't actually an error. In particular, the test framework
|
315 |
+
# raises SystemExit(False) even if all tests passed.
|
316 |
+
if isinstance(exc, SystemExit) and not exc.code:
|
317 |
+
raise
|
318 |
+
|
319 |
+
# Check the tty so that we don't hang waiting for input in an
|
320 |
+
# non-interactive scenario.
|
321 |
+
if FLAGS.pdb_post_mortem and sys.stdout.isatty():
|
322 |
+
traceback.print_exc()
|
323 |
+
print()
|
324 |
+
print(' *** Entering post-mortem debugging ***')
|
325 |
+
print()
|
326 |
+
pdb.post_mortem()
|
327 |
+
raise
|
328 |
+
except Exception as e:
|
329 |
+
_call_exception_handlers(e)
|
330 |
+
raise
|
331 |
+
|
332 |
+
# Callbacks which have been deferred until after _run_init has been called.
|
333 |
+
_init_callbacks = collections.deque()
|
334 |
+
|
335 |
+
|
336 |
+
def call_after_init(callback):
|
337 |
+
"""Calls the given callback only once ABSL has finished initialization.
|
338 |
+
|
339 |
+
If ABSL has already finished initialization when ``call_after_init`` is
|
340 |
+
called then the callback is executed immediately, otherwise `callback` is
|
341 |
+
stored to be executed after ``app.run`` has finished initializing (aka. just
|
342 |
+
before the main function is called).
|
343 |
+
|
344 |
+
If called after ``app.run``, this is equivalent to calling ``callback()`` in
|
345 |
+
the caller thread. If called before ``app.run``, callbacks are run
|
346 |
+
sequentially (in an undefined order) in the same thread as ``app.run``.
|
347 |
+
|
348 |
+
Args:
|
349 |
+
callback: a callable to be called once ABSL has finished initialization.
|
350 |
+
This may be immediate if initialization has already finished. It
|
351 |
+
takes no arguments and returns nothing.
|
352 |
+
"""
|
353 |
+
if _run_init.done:
|
354 |
+
callback()
|
355 |
+
else:
|
356 |
+
_init_callbacks.append(callback)
|
357 |
+
|
358 |
+
|
359 |
+
def _run_init(
|
360 |
+
argv,
|
361 |
+
flags_parser,
|
362 |
+
):
|
363 |
+
"""Does one-time initialization and re-parses flags on rerun."""
|
364 |
+
if _run_init.done:
|
365 |
+
return flags_parser(argv)
|
366 |
+
command_name.make_process_name_useful()
|
367 |
+
# Set up absl logging handler.
|
368 |
+
logging.use_absl_handler()
|
369 |
+
args = _register_and_parse_flags_with_usage(
|
370 |
+
argv=argv,
|
371 |
+
flags_parser=flags_parser,
|
372 |
+
)
|
373 |
+
if faulthandler:
|
374 |
+
try:
|
375 |
+
faulthandler.enable()
|
376 |
+
except Exception: # pylint: disable=broad-except
|
377 |
+
# Some tests verify stderr output very closely, so don't print anything.
|
378 |
+
# Disabled faulthandler is a low-impact error.
|
379 |
+
pass
|
380 |
+
_run_init.done = True
|
381 |
+
return args
|
382 |
+
|
383 |
+
|
384 |
+
_run_init.done = False
|
385 |
+
|
386 |
+
|
387 |
+
def usage(shorthelp=False, writeto_stdout=False, detailed_error=None,
|
388 |
+
exitcode=None):
|
389 |
+
"""Writes __main__'s docstring to stderr with some help text.
|
390 |
+
|
391 |
+
Args:
|
392 |
+
shorthelp: bool, if True, prints only flags from the main module,
|
393 |
+
rather than all flags.
|
394 |
+
writeto_stdout: bool, if True, writes help message to stdout,
|
395 |
+
rather than to stderr.
|
396 |
+
detailed_error: str, additional detail about why usage info was presented.
|
397 |
+
exitcode: optional integer, if set, exits with this status code after
|
398 |
+
writing help.
|
399 |
+
"""
|
400 |
+
if writeto_stdout:
|
401 |
+
stdfile = sys.stdout
|
402 |
+
else:
|
403 |
+
stdfile = sys.stderr
|
404 |
+
|
405 |
+
doc = sys.modules['__main__'].__doc__
|
406 |
+
if not doc:
|
407 |
+
doc = '\nUSAGE: %s [flags]\n' % sys.argv[0]
|
408 |
+
doc = flags.text_wrap(doc, indent=' ', firstline_indent='')
|
409 |
+
else:
|
410 |
+
# Replace all '%s' with sys.argv[0], and all '%%' with '%'.
|
411 |
+
num_specifiers = doc.count('%') - 2 * doc.count('%%')
|
412 |
+
try:
|
413 |
+
doc %= (sys.argv[0],) * num_specifiers
|
414 |
+
except (OverflowError, TypeError, ValueError):
|
415 |
+
# Just display the docstring as-is.
|
416 |
+
pass
|
417 |
+
if shorthelp:
|
418 |
+
flag_str = FLAGS.main_module_help()
|
419 |
+
else:
|
420 |
+
flag_str = FLAGS.get_help()
|
421 |
+
try:
|
422 |
+
stdfile.write(doc)
|
423 |
+
if flag_str:
|
424 |
+
stdfile.write('\nflags:\n')
|
425 |
+
stdfile.write(flag_str)
|
426 |
+
stdfile.write('\n')
|
427 |
+
if detailed_error is not None:
|
428 |
+
stdfile.write('\n%s\n' % detailed_error)
|
429 |
+
except IOError as e:
|
430 |
+
# We avoid printing a huge backtrace if we get EPIPE, because
|
431 |
+
# "foo.par --help | less" is a frequent use case.
|
432 |
+
if e.errno != errno.EPIPE:
|
433 |
+
raise
|
434 |
+
if exitcode is not None:
|
435 |
+
sys.exit(exitcode)
|
436 |
+
|
437 |
+
|
438 |
+
class ExceptionHandler(object):
|
439 |
+
"""Base exception handler from which other may inherit."""
|
440 |
+
|
441 |
+
def wants(self, exc):
|
442 |
+
"""Returns whether this handler wants to handle the exception or not.
|
443 |
+
|
444 |
+
This base class returns True for all exceptions by default. Override in
|
445 |
+
subclass if it wants to be more selective.
|
446 |
+
|
447 |
+
Args:
|
448 |
+
exc: Exception, the current exception.
|
449 |
+
"""
|
450 |
+
del exc # Unused.
|
451 |
+
return True
|
452 |
+
|
453 |
+
def handle(self, exc):
|
454 |
+
"""Do something with the current exception.
|
455 |
+
|
456 |
+
Args:
|
457 |
+
exc: Exception, the current exception
|
458 |
+
|
459 |
+
This method must be overridden.
|
460 |
+
"""
|
461 |
+
raise NotImplementedError()
|
462 |
+
|
463 |
+
|
464 |
+
def install_exception_handler(handler):
|
465 |
+
"""Installs an exception handler.
|
466 |
+
|
467 |
+
Args:
|
468 |
+
handler: ExceptionHandler, the exception handler to install.
|
469 |
+
|
470 |
+
Raises:
|
471 |
+
TypeError: Raised when the handler was not of the correct type.
|
472 |
+
|
473 |
+
All installed exception handlers will be called if main() exits via
|
474 |
+
an abnormal exception, i.e. not one of SystemExit, KeyboardInterrupt,
|
475 |
+
FlagsError or UsageError.
|
476 |
+
"""
|
477 |
+
if not isinstance(handler, ExceptionHandler):
|
478 |
+
raise TypeError('handler of type %s does not inherit from ExceptionHandler'
|
479 |
+
% type(handler))
|
480 |
+
EXCEPTION_HANDLERS.append(handler)
|
llmeval-env/lib/python3.10/site-packages/absl/app.pyi
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import Any, Callable, Collection, Iterable, List, NoReturn, Optional, Text, TypeVar, Union, overload
|
3 |
+
|
4 |
+
from absl.flags import _flag
|
5 |
+
|
6 |
+
|
7 |
+
_MainArgs = TypeVar('_MainArgs')
|
8 |
+
_Exc = TypeVar('_Exc', bound=Exception)
|
9 |
+
|
10 |
+
|
11 |
+
class ExceptionHandler():
|
12 |
+
|
13 |
+
def wants(self, exc: _Exc) -> bool:
|
14 |
+
...
|
15 |
+
|
16 |
+
def handle(self, exc: _Exc):
|
17 |
+
...
|
18 |
+
|
19 |
+
|
20 |
+
EXCEPTION_HANDLERS: List[ExceptionHandler] = ...
|
21 |
+
|
22 |
+
|
23 |
+
class HelpFlag(_flag.BooleanFlag):
|
24 |
+
def __init__(self):
|
25 |
+
...
|
26 |
+
|
27 |
+
|
28 |
+
class HelpshortFlag(HelpFlag):
|
29 |
+
...
|
30 |
+
|
31 |
+
|
32 |
+
class HelpfullFlag(_flag.BooleanFlag):
|
33 |
+
def __init__(self):
|
34 |
+
...
|
35 |
+
|
36 |
+
|
37 |
+
class HelpXMLFlag(_flag.BooleanFlag):
|
38 |
+
def __init__(self):
|
39 |
+
...
|
40 |
+
|
41 |
+
|
42 |
+
def define_help_flags() -> None:
|
43 |
+
...
|
44 |
+
|
45 |
+
|
46 |
+
@overload
|
47 |
+
def usage(shorthelp: Union[bool, int] = ...,
|
48 |
+
writeto_stdout: Union[bool, int] = ...,
|
49 |
+
detailed_error: Optional[Any] = ...,
|
50 |
+
exitcode: None = ...) -> None:
|
51 |
+
...
|
52 |
+
|
53 |
+
|
54 |
+
@overload
|
55 |
+
def usage(shorthelp: Union[bool, int] = ...,
|
56 |
+
writeto_stdout: Union[bool, int] = ...,
|
57 |
+
detailed_error: Optional[Any] = ...,
|
58 |
+
exitcode: int = ...) -> NoReturn:
|
59 |
+
...
|
60 |
+
|
61 |
+
|
62 |
+
def install_exception_handler(handler: ExceptionHandler) -> None:
|
63 |
+
...
|
64 |
+
|
65 |
+
|
66 |
+
class Error(Exception):
|
67 |
+
...
|
68 |
+
|
69 |
+
|
70 |
+
class UsageError(Error):
|
71 |
+
exitcode: int
|
72 |
+
|
73 |
+
|
74 |
+
def parse_flags_with_usage(args: List[Text]) -> List[Text]:
|
75 |
+
...
|
76 |
+
|
77 |
+
|
78 |
+
def call_after_init(callback: Callable[[], Any]) -> None:
|
79 |
+
...
|
80 |
+
|
81 |
+
|
82 |
+
# Without the flag_parser argument, `main` should require a List[Text].
|
83 |
+
@overload
|
84 |
+
def run(
|
85 |
+
main: Callable[[List[Text]], Any],
|
86 |
+
argv: Optional[List[Text]] = ...,
|
87 |
+
*,
|
88 |
+
) -> NoReturn:
|
89 |
+
...
|
90 |
+
|
91 |
+
|
92 |
+
@overload
|
93 |
+
def run(
|
94 |
+
main: Callable[[_MainArgs], Any],
|
95 |
+
argv: Optional[List[Text]] = ...,
|
96 |
+
*,
|
97 |
+
flags_parser: Callable[[List[Text]], _MainArgs],
|
98 |
+
) -> NoReturn:
|
99 |
+
...
|
llmeval-env/lib/python3.10/site-packages/absl/command_name.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2017 The Abseil Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""A tiny stand alone library to change the kernel process name on Linux."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
import sys
|
19 |
+
|
20 |
+
# This library must be kept small and stand alone. It is used by small things
|
21 |
+
# that require no extension modules.
|
22 |
+
|
23 |
+
|
24 |
+
def make_process_name_useful():
|
25 |
+
"""Sets the process name to something better than 'python' if possible."""
|
26 |
+
set_kernel_process_name(os.path.basename(sys.argv[0]))
|
27 |
+
|
28 |
+
|
29 |
+
def set_kernel_process_name(name):
|
30 |
+
"""Changes the Kernel's /proc/self/status process name on Linux.
|
31 |
+
|
32 |
+
The kernel name is NOT what will be shown by the ps or top command.
|
33 |
+
It is a 15 character string stored in the kernel's process table that
|
34 |
+
is included in the kernel log when a process is OOM killed.
|
35 |
+
The first 15 bytes of name are used. Non-ASCII unicode is replaced with '?'.
|
36 |
+
|
37 |
+
Does nothing if /proc/self/comm cannot be written or prctl() fails.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
name: bytes|unicode, the Linux kernel's command name to set.
|
41 |
+
"""
|
42 |
+
if not isinstance(name, bytes):
|
43 |
+
name = name.encode('ascii', 'replace')
|
44 |
+
try:
|
45 |
+
# This is preferred to using ctypes to try and call prctl() when possible.
|
46 |
+
with open('/proc/self/comm', 'wb') as proc_comm:
|
47 |
+
proc_comm.write(name[:15])
|
48 |
+
except EnvironmentError:
|
49 |
+
try:
|
50 |
+
import ctypes # pylint: disable=g-import-not-at-top
|
51 |
+
except ImportError:
|
52 |
+
return # No ctypes.
|
53 |
+
try:
|
54 |
+
libc = ctypes.CDLL('libc.so.6')
|
55 |
+
except EnvironmentError:
|
56 |
+
return # No libc.so.6.
|
57 |
+
pr_set_name = ctypes.c_ulong(15) # linux/prctl.h PR_SET_NAME value.
|
58 |
+
zero = ctypes.c_ulong(0)
|
59 |
+
try:
|
60 |
+
libc.prctl(pr_set_name, name, zero, zero, zero)
|
61 |
+
# Ignore the prctl return value. Nothing we can do if it errored.
|
62 |
+
except AttributeError:
|
63 |
+
return # No prctl.
|
llmeval-env/lib/python3.10/site-packages/absl/logging/__init__.py
ADDED
@@ -0,0 +1,1281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2017 The Abseil Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""Abseil Python logging module implemented on top of standard logging.
|
16 |
+
|
17 |
+
Simple usage::
|
18 |
+
|
19 |
+
from absl import logging
|
20 |
+
|
21 |
+
logging.info('Interesting Stuff')
|
22 |
+
logging.info('Interesting Stuff with Arguments: %d', 42)
|
23 |
+
|
24 |
+
logging.set_verbosity(logging.INFO)
|
25 |
+
logging.log(logging.DEBUG, 'This will *not* be printed')
|
26 |
+
logging.set_verbosity(logging.DEBUG)
|
27 |
+
logging.log(logging.DEBUG, 'This will be printed')
|
28 |
+
|
29 |
+
logging.warning('Worrying Stuff')
|
30 |
+
logging.error('Alarming Stuff')
|
31 |
+
logging.fatal('AAAAHHHHH!!!!') # Process exits.
|
32 |
+
|
33 |
+
Usage note: Do not pre-format the strings in your program code.
|
34 |
+
Instead, let the logging module perform argument interpolation.
|
35 |
+
This saves cycles because strings that don't need to be printed
|
36 |
+
are never formatted. Note that this module does not attempt to
|
37 |
+
interpolate arguments when no arguments are given. In other words::
|
38 |
+
|
39 |
+
logging.info('Interesting Stuff: %s')
|
40 |
+
|
41 |
+
does not raise an exception because logging.info() has only one
|
42 |
+
argument, the message string.
|
43 |
+
|
44 |
+
"Lazy" evaluation for debugging
|
45 |
+
-------------------------------
|
46 |
+
|
47 |
+
If you do something like this::
|
48 |
+
|
49 |
+
logging.debug('Thing: %s', thing.ExpensiveOp())
|
50 |
+
|
51 |
+
then the ExpensiveOp will be evaluated even if nothing
|
52 |
+
is printed to the log. To avoid this, use the level_debug() function::
|
53 |
+
|
54 |
+
if logging.level_debug():
|
55 |
+
logging.debug('Thing: %s', thing.ExpensiveOp())
|
56 |
+
|
57 |
+
Per file level logging is supported by logging.vlog() and
|
58 |
+
logging.vlog_is_on(). For example::
|
59 |
+
|
60 |
+
if logging.vlog_is_on(2):
|
61 |
+
logging.vlog(2, very_expensive_debug_message())
|
62 |
+
|
63 |
+
Notes on Unicode
|
64 |
+
----------------
|
65 |
+
|
66 |
+
The log output is encoded as UTF-8. Don't pass data in other encodings in
|
67 |
+
bytes() instances -- instead pass unicode string instances when you need to
|
68 |
+
(for both the format string and arguments).
|
69 |
+
|
70 |
+
Note on critical and fatal:
|
71 |
+
Standard logging module defines fatal as an alias to critical, but it's not
|
72 |
+
documented, and it does NOT actually terminate the program.
|
73 |
+
This module only defines fatal but not critical, and it DOES terminate the
|
74 |
+
program.
|
75 |
+
|
76 |
+
The differences in behavior are historical and unfortunate.
|
77 |
+
"""
|
78 |
+
|
79 |
+
import collections
|
80 |
+
from collections import abc
|
81 |
+
import getpass
|
82 |
+
import io
|
83 |
+
import itertools
|
84 |
+
import logging
|
85 |
+
import os
|
86 |
+
import socket
|
87 |
+
import struct
|
88 |
+
import sys
|
89 |
+
import tempfile
|
90 |
+
import threading
|
91 |
+
import time
|
92 |
+
import timeit
|
93 |
+
import traceback
|
94 |
+
import types
|
95 |
+
import warnings
|
96 |
+
|
97 |
+
from absl import flags
|
98 |
+
from absl.logging import converter
|
99 |
+
|
100 |
+
# pylint: disable=g-import-not-at-top
|
101 |
+
try:
|
102 |
+
from typing import NoReturn
|
103 |
+
except ImportError:
|
104 |
+
pass
|
105 |
+
|
106 |
+
# pylint: enable=g-import-not-at-top
|
107 |
+
|
108 |
+
FLAGS = flags.FLAGS
|
109 |
+
|
110 |
+
|
111 |
+
# Logging levels.
|
112 |
+
FATAL = converter.ABSL_FATAL
|
113 |
+
ERROR = converter.ABSL_ERROR
|
114 |
+
WARNING = converter.ABSL_WARNING
|
115 |
+
WARN = converter.ABSL_WARNING # Deprecated name.
|
116 |
+
INFO = converter.ABSL_INFO
|
117 |
+
DEBUG = converter.ABSL_DEBUG
|
118 |
+
|
119 |
+
# Regex to match/parse log line prefixes.
|
120 |
+
ABSL_LOGGING_PREFIX_REGEX = (
|
121 |
+
r'^(?P<severity>[IWEF])'
|
122 |
+
r'(?P<month>\d\d)(?P<day>\d\d) '
|
123 |
+
r'(?P<hour>\d\d):(?P<minute>\d\d):(?P<second>\d\d)'
|
124 |
+
r'\.(?P<microsecond>\d\d\d\d\d\d) +'
|
125 |
+
r'(?P<thread_id>-?\d+) '
|
126 |
+
r'(?P<filename>[a-zA-Z<][\w._<>-]+):(?P<line>\d+)')
|
127 |
+
|
128 |
+
|
129 |
+
# Mask to convert integer thread ids to unsigned quantities for logging purposes
|
130 |
+
_THREAD_ID_MASK = 2 ** (struct.calcsize('L') * 8) - 1
|
131 |
+
|
132 |
+
# Extra property set on the LogRecord created by ABSLLogger when its level is
|
133 |
+
# CRITICAL/FATAL.
|
134 |
+
_ABSL_LOG_FATAL = '_absl_log_fatal'
|
135 |
+
# Extra prefix added to the log message when a non-absl logger logs a
|
136 |
+
# CRITICAL/FATAL message.
|
137 |
+
_CRITICAL_PREFIX = 'CRITICAL - '
|
138 |
+
|
139 |
+
# Used by findCaller to skip callers from */logging/__init__.py.
|
140 |
+
_LOGGING_FILE_PREFIX = os.path.join('logging', '__init__.')
|
141 |
+
|
142 |
+
# The ABSL logger instance, initialized in _initialize().
|
143 |
+
_absl_logger = None
|
144 |
+
# The ABSL handler instance, initialized in _initialize().
|
145 |
+
_absl_handler = None
|
146 |
+
|
147 |
+
|
148 |
+
_CPP_NAME_TO_LEVELS = {
|
149 |
+
'debug': '0', # Abseil C++ has no DEBUG level, mapping it to INFO here.
|
150 |
+
'info': '0',
|
151 |
+
'warning': '1',
|
152 |
+
'warn': '1',
|
153 |
+
'error': '2',
|
154 |
+
'fatal': '3'
|
155 |
+
}
|
156 |
+
|
157 |
+
_CPP_LEVEL_TO_NAMES = {
|
158 |
+
'0': 'info',
|
159 |
+
'1': 'warning',
|
160 |
+
'2': 'error',
|
161 |
+
'3': 'fatal',
|
162 |
+
}
|
163 |
+
|
164 |
+
|
165 |
+
class _VerbosityFlag(flags.Flag):
|
166 |
+
"""Flag class for -v/--verbosity."""
|
167 |
+
|
168 |
+
def __init__(self, *args, **kwargs):
|
169 |
+
super(_VerbosityFlag, self).__init__(
|
170 |
+
flags.IntegerParser(),
|
171 |
+
flags.ArgumentSerializer(),
|
172 |
+
*args, **kwargs)
|
173 |
+
|
174 |
+
@property
|
175 |
+
def value(self):
|
176 |
+
return self._value
|
177 |
+
|
178 |
+
@value.setter
|
179 |
+
def value(self, v):
|
180 |
+
self._value = v
|
181 |
+
self._update_logging_levels()
|
182 |
+
|
183 |
+
def _update_logging_levels(self):
|
184 |
+
"""Updates absl logging levels to the current verbosity.
|
185 |
+
|
186 |
+
Visibility: module-private
|
187 |
+
"""
|
188 |
+
if not _absl_logger:
|
189 |
+
return
|
190 |
+
|
191 |
+
if self._value <= converter.ABSL_DEBUG:
|
192 |
+
standard_verbosity = converter.absl_to_standard(self._value)
|
193 |
+
else:
|
194 |
+
# --verbosity is set to higher than 1 for vlog.
|
195 |
+
standard_verbosity = logging.DEBUG - (self._value - 1)
|
196 |
+
|
197 |
+
# Also update root level when absl_handler is used.
|
198 |
+
if _absl_handler in logging.root.handlers:
|
199 |
+
# Make absl logger inherit from the root logger. absl logger might have
|
200 |
+
# a non-NOTSET value if logging.set_verbosity() is called at import time.
|
201 |
+
_absl_logger.setLevel(logging.NOTSET)
|
202 |
+
logging.root.setLevel(standard_verbosity)
|
203 |
+
else:
|
204 |
+
_absl_logger.setLevel(standard_verbosity)
|
205 |
+
|
206 |
+
|
207 |
+
class _LoggerLevelsFlag(flags.Flag):
|
208 |
+
"""Flag class for --logger_levels."""
|
209 |
+
|
210 |
+
def __init__(self, *args, **kwargs):
|
211 |
+
super(_LoggerLevelsFlag, self).__init__(
|
212 |
+
_LoggerLevelsParser(),
|
213 |
+
_LoggerLevelsSerializer(),
|
214 |
+
*args, **kwargs)
|
215 |
+
|
216 |
+
@property
|
217 |
+
def value(self):
|
218 |
+
# For lack of an immutable type, be defensive and return a copy.
|
219 |
+
# Modifications to the dict aren't supported and won't have any affect.
|
220 |
+
# While Py3 could use MappingProxyType, that isn't deepcopy friendly, so
|
221 |
+
# just return a copy.
|
222 |
+
return self._value.copy()
|
223 |
+
|
224 |
+
@value.setter
|
225 |
+
def value(self, v):
|
226 |
+
self._value = {} if v is None else v
|
227 |
+
self._update_logger_levels()
|
228 |
+
|
229 |
+
def _update_logger_levels(self):
|
230 |
+
# Visibility: module-private.
|
231 |
+
# This is called by absl.app.run() during initialization.
|
232 |
+
for name, level in self._value.items():
|
233 |
+
logging.getLogger(name).setLevel(level)
|
234 |
+
|
235 |
+
|
236 |
+
class _LoggerLevelsParser(flags.ArgumentParser):
|
237 |
+
"""Parser for --logger_levels flag."""
|
238 |
+
|
239 |
+
def parse(self, value):
|
240 |
+
if isinstance(value, abc.Mapping):
|
241 |
+
return value
|
242 |
+
|
243 |
+
pairs = [pair.strip() for pair in value.split(',') if pair.strip()]
|
244 |
+
|
245 |
+
# Preserve the order so that serialization is deterministic.
|
246 |
+
levels = collections.OrderedDict()
|
247 |
+
for name_level in pairs:
|
248 |
+
name, level = name_level.split(':', 1)
|
249 |
+
name = name.strip()
|
250 |
+
level = level.strip()
|
251 |
+
levels[name] = level
|
252 |
+
return levels
|
253 |
+
|
254 |
+
|
255 |
+
class _LoggerLevelsSerializer(object):
|
256 |
+
"""Serializer for --logger_levels flag."""
|
257 |
+
|
258 |
+
def serialize(self, value):
|
259 |
+
if isinstance(value, str):
|
260 |
+
return value
|
261 |
+
return ','.join(
|
262 |
+
'{}:{}'.format(name, level) for name, level in value.items())
|
263 |
+
|
264 |
+
|
265 |
+
class _StderrthresholdFlag(flags.Flag):
|
266 |
+
"""Flag class for --stderrthreshold."""
|
267 |
+
|
268 |
+
def __init__(self, *args, **kwargs):
|
269 |
+
super(_StderrthresholdFlag, self).__init__(
|
270 |
+
flags.ArgumentParser(),
|
271 |
+
flags.ArgumentSerializer(),
|
272 |
+
*args, **kwargs)
|
273 |
+
|
274 |
+
@property
|
275 |
+
def value(self):
|
276 |
+
return self._value
|
277 |
+
|
278 |
+
@value.setter
|
279 |
+
def value(self, v):
|
280 |
+
if v in _CPP_LEVEL_TO_NAMES:
|
281 |
+
# --stderrthreshold also accepts numeric strings whose values are
|
282 |
+
# Abseil C++ log levels.
|
283 |
+
cpp_value = int(v)
|
284 |
+
v = _CPP_LEVEL_TO_NAMES[v] # Normalize to strings.
|
285 |
+
elif v.lower() in _CPP_NAME_TO_LEVELS:
|
286 |
+
v = v.lower()
|
287 |
+
if v == 'warn':
|
288 |
+
v = 'warning' # Use 'warning' as the canonical name.
|
289 |
+
cpp_value = int(_CPP_NAME_TO_LEVELS[v])
|
290 |
+
else:
|
291 |
+
raise ValueError(
|
292 |
+
'--stderrthreshold must be one of (case-insensitive) '
|
293 |
+
"'debug', 'info', 'warning', 'error', 'fatal', "
|
294 |
+
"or '0', '1', '2', '3', not '%s'" % v)
|
295 |
+
|
296 |
+
self._value = v
|
297 |
+
|
298 |
+
|
299 |
+
LOGTOSTDERR = flags.DEFINE_boolean(
|
300 |
+
'logtostderr',
|
301 |
+
False,
|
302 |
+
'Should only log to stderr?',
|
303 |
+
allow_override_cpp=True,
|
304 |
+
)
|
305 |
+
ALSOLOGTOSTDERR = flags.DEFINE_boolean(
|
306 |
+
'alsologtostderr',
|
307 |
+
False,
|
308 |
+
'also log to stderr?',
|
309 |
+
allow_override_cpp=True,
|
310 |
+
)
|
311 |
+
LOG_DIR = flags.DEFINE_string(
|
312 |
+
'log_dir',
|
313 |
+
os.getenv('TEST_TMPDIR', ''),
|
314 |
+
'directory to write logfiles into',
|
315 |
+
allow_override_cpp=True,
|
316 |
+
)
|
317 |
+
VERBOSITY = flags.DEFINE_flag(
|
318 |
+
_VerbosityFlag(
|
319 |
+
'verbosity',
|
320 |
+
-1,
|
321 |
+
(
|
322 |
+
'Logging verbosity level. Messages logged at this level or lower'
|
323 |
+
' will be included. Set to 1 for debug logging. If the flag was not'
|
324 |
+
' set or supplied, the value will be changed from the default of -1'
|
325 |
+
' (warning) to 0 (info) after flags are parsed.'
|
326 |
+
),
|
327 |
+
short_name='v',
|
328 |
+
allow_hide_cpp=True,
|
329 |
+
)
|
330 |
+
)
|
331 |
+
LOGGER_LEVELS = flags.DEFINE_flag(
|
332 |
+
_LoggerLevelsFlag(
|
333 |
+
'logger_levels',
|
334 |
+
{},
|
335 |
+
(
|
336 |
+
'Specify log level of loggers. The format is a CSV list of '
|
337 |
+
'`name:level`. Where `name` is the logger name used with '
|
338 |
+
'`logging.getLogger()`, and `level` is a level name (INFO, DEBUG, '
|
339 |
+
'etc). e.g. `myapp.foo:INFO,other.logger:DEBUG`'
|
340 |
+
),
|
341 |
+
)
|
342 |
+
)
|
343 |
+
STDERRTHRESHOLD = flags.DEFINE_flag(
|
344 |
+
_StderrthresholdFlag(
|
345 |
+
'stderrthreshold',
|
346 |
+
'fatal',
|
347 |
+
(
|
348 |
+
'log messages at this level, or more severe, to stderr in '
|
349 |
+
'addition to the logfile. Possible values are '
|
350 |
+
"'debug', 'info', 'warning', 'error', and 'fatal'. "
|
351 |
+
'Obsoletes --alsologtostderr. Using --alsologtostderr '
|
352 |
+
'cancels the effect of this flag. Please also note that '
|
353 |
+
'this flag is subject to --verbosity and requires logfile '
|
354 |
+
'not be stderr.'
|
355 |
+
),
|
356 |
+
allow_hide_cpp=True,
|
357 |
+
)
|
358 |
+
)
|
359 |
+
SHOWPREFIXFORINFO = flags.DEFINE_boolean(
|
360 |
+
'showprefixforinfo',
|
361 |
+
True,
|
362 |
+
(
|
363 |
+
'If False, do not prepend prefix to info messages '
|
364 |
+
"when it's logged to stderr, "
|
365 |
+
'--verbosity is set to INFO level, '
|
366 |
+
'and python logging is used.'
|
367 |
+
),
|
368 |
+
)
|
369 |
+
|
370 |
+
|
371 |
+
def get_verbosity():
|
372 |
+
"""Returns the logging verbosity."""
|
373 |
+
return FLAGS['verbosity'].value
|
374 |
+
|
375 |
+
|
376 |
+
def set_verbosity(v):
|
377 |
+
"""Sets the logging verbosity.
|
378 |
+
|
379 |
+
Causes all messages of level <= v to be logged,
|
380 |
+
and all messages of level > v to be silently discarded.
|
381 |
+
|
382 |
+
Args:
|
383 |
+
v: int|str, the verbosity level as an integer or string. Legal string values
|
384 |
+
are those that can be coerced to an integer as well as case-insensitive
|
385 |
+
'debug', 'info', 'warning', 'error', and 'fatal'.
|
386 |
+
"""
|
387 |
+
try:
|
388 |
+
new_level = int(v)
|
389 |
+
except ValueError:
|
390 |
+
new_level = converter.ABSL_NAMES[v.upper()]
|
391 |
+
FLAGS.verbosity = new_level
|
392 |
+
|
393 |
+
|
394 |
+
def set_stderrthreshold(s):
|
395 |
+
"""Sets the stderr threshold to the value passed in.
|
396 |
+
|
397 |
+
Args:
|
398 |
+
s: str|int, valid strings values are case-insensitive 'debug',
|
399 |
+
'info', 'warning', 'error', and 'fatal'; valid integer values are
|
400 |
+
logging.DEBUG|INFO|WARNING|ERROR|FATAL.
|
401 |
+
|
402 |
+
Raises:
|
403 |
+
ValueError: Raised when s is an invalid value.
|
404 |
+
"""
|
405 |
+
if s in converter.ABSL_LEVELS:
|
406 |
+
FLAGS.stderrthreshold = converter.ABSL_LEVELS[s]
|
407 |
+
elif isinstance(s, str) and s.upper() in converter.ABSL_NAMES:
|
408 |
+
FLAGS.stderrthreshold = s
|
409 |
+
else:
|
410 |
+
raise ValueError(
|
411 |
+
'set_stderrthreshold only accepts integer absl logging level '
|
412 |
+
'from -3 to 1, or case-insensitive string values '
|
413 |
+
"'debug', 'info', 'warning', 'error', and 'fatal'. "
|
414 |
+
'But found "{}" ({}).'.format(s, type(s)))
|
415 |
+
|
416 |
+
|
417 |
+
def fatal(msg, *args, **kwargs):
|
418 |
+
# type: (Any, Any, Any) -> NoReturn
|
419 |
+
"""Logs a fatal message."""
|
420 |
+
log(FATAL, msg, *args, **kwargs)
|
421 |
+
|
422 |
+
|
423 |
+
def error(msg, *args, **kwargs):
|
424 |
+
"""Logs an error message."""
|
425 |
+
log(ERROR, msg, *args, **kwargs)
|
426 |
+
|
427 |
+
|
428 |
+
def warning(msg, *args, **kwargs):
|
429 |
+
"""Logs a warning message."""
|
430 |
+
log(WARNING, msg, *args, **kwargs)
|
431 |
+
|
432 |
+
|
433 |
+
def warn(msg, *args, **kwargs):
|
434 |
+
"""Deprecated, use 'warning' instead."""
|
435 |
+
warnings.warn("The 'warn' function is deprecated, use 'warning' instead",
|
436 |
+
DeprecationWarning, 2)
|
437 |
+
log(WARNING, msg, *args, **kwargs)
|
438 |
+
|
439 |
+
|
440 |
+
def info(msg, *args, **kwargs):
|
441 |
+
"""Logs an info message."""
|
442 |
+
log(INFO, msg, *args, **kwargs)
|
443 |
+
|
444 |
+
|
445 |
+
def debug(msg, *args, **kwargs):
|
446 |
+
"""Logs a debug message."""
|
447 |
+
log(DEBUG, msg, *args, **kwargs)
|
448 |
+
|
449 |
+
|
450 |
+
def exception(msg, *args, exc_info=True, **kwargs):
|
451 |
+
"""Logs an exception, with traceback and message."""
|
452 |
+
error(msg, *args, exc_info=exc_info, **kwargs)
|
453 |
+
|
454 |
+
|
455 |
+
# Counter to keep track of number of log entries per token.
|
456 |
+
_log_counter_per_token = {}
|
457 |
+
|
458 |
+
|
459 |
+
def _get_next_log_count_per_token(token):
|
460 |
+
"""Wrapper for _log_counter_per_token. Thread-safe.
|
461 |
+
|
462 |
+
Args:
|
463 |
+
token: The token for which to look up the count.
|
464 |
+
|
465 |
+
Returns:
|
466 |
+
The number of times this function has been called with
|
467 |
+
*token* as an argument (starting at 0).
|
468 |
+
"""
|
469 |
+
# Can't use a defaultdict because defaultdict isn't atomic, whereas
|
470 |
+
# setdefault is.
|
471 |
+
return next(_log_counter_per_token.setdefault(token, itertools.count()))
|
472 |
+
|
473 |
+
|
474 |
+
def log_every_n(level, msg, n, *args):
|
475 |
+
"""Logs ``msg % args`` at level 'level' once per 'n' times.
|
476 |
+
|
477 |
+
Logs the 1st call, (N+1)st call, (2N+1)st call, etc.
|
478 |
+
Not threadsafe.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
level: int, the absl logging level at which to log.
|
482 |
+
msg: str, the message to be logged.
|
483 |
+
n: int, the number of times this should be called before it is logged.
|
484 |
+
*args: The args to be substituted into the msg.
|
485 |
+
"""
|
486 |
+
count = _get_next_log_count_per_token(get_absl_logger().findCaller())
|
487 |
+
log_if(level, msg, not (count % n), *args)
|
488 |
+
|
489 |
+
|
490 |
+
# Keeps track of the last log time of the given token.
|
491 |
+
# Note: must be a dict since set/get is atomic in CPython.
|
492 |
+
# Note: entries are never released as their number is expected to be low.
|
493 |
+
_log_timer_per_token = {}
|
494 |
+
|
495 |
+
|
496 |
+
def _seconds_have_elapsed(token, num_seconds):
|
497 |
+
"""Tests if 'num_seconds' have passed since 'token' was requested.
|
498 |
+
|
499 |
+
Not strictly thread-safe - may log with the wrong frequency if called
|
500 |
+
concurrently from multiple threads. Accuracy depends on resolution of
|
501 |
+
'timeit.default_timer()'.
|
502 |
+
|
503 |
+
Always returns True on the first call for a given 'token'.
|
504 |
+
|
505 |
+
Args:
|
506 |
+
token: The token for which to look up the count.
|
507 |
+
num_seconds: The number of seconds to test for.
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
Whether it has been >= 'num_seconds' since 'token' was last requested.
|
511 |
+
"""
|
512 |
+
now = timeit.default_timer()
|
513 |
+
then = _log_timer_per_token.get(token, None)
|
514 |
+
if then is None or (now - then) >= num_seconds:
|
515 |
+
_log_timer_per_token[token] = now
|
516 |
+
return True
|
517 |
+
else:
|
518 |
+
return False
|
519 |
+
|
520 |
+
|
521 |
+
def log_every_n_seconds(level, msg, n_seconds, *args):
|
522 |
+
"""Logs ``msg % args`` at level ``level`` iff ``n_seconds`` elapsed since last call.
|
523 |
+
|
524 |
+
Logs the first call, logs subsequent calls if 'n' seconds have elapsed since
|
525 |
+
the last logging call from the same call site (file + line). Not thread-safe.
|
526 |
+
|
527 |
+
Args:
|
528 |
+
level: int, the absl logging level at which to log.
|
529 |
+
msg: str, the message to be logged.
|
530 |
+
n_seconds: float or int, seconds which should elapse before logging again.
|
531 |
+
*args: The args to be substituted into the msg.
|
532 |
+
"""
|
533 |
+
should_log = _seconds_have_elapsed(get_absl_logger().findCaller(), n_seconds)
|
534 |
+
log_if(level, msg, should_log, *args)
|
535 |
+
|
536 |
+
|
537 |
+
def log_first_n(level, msg, n, *args):
|
538 |
+
"""Logs ``msg % args`` at level ``level`` only first ``n`` times.
|
539 |
+
|
540 |
+
Not threadsafe.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
level: int, the absl logging level at which to log.
|
544 |
+
msg: str, the message to be logged.
|
545 |
+
n: int, the maximal number of times the message is logged.
|
546 |
+
*args: The args to be substituted into the msg.
|
547 |
+
"""
|
548 |
+
count = _get_next_log_count_per_token(get_absl_logger().findCaller())
|
549 |
+
log_if(level, msg, count < n, *args)
|
550 |
+
|
551 |
+
|
552 |
+
def log_if(level, msg, condition, *args):
|
553 |
+
"""Logs ``msg % args`` at level ``level`` only if condition is fulfilled."""
|
554 |
+
if condition:
|
555 |
+
log(level, msg, *args)
|
556 |
+
|
557 |
+
|
558 |
+
def log(level, msg, *args, **kwargs):
|
559 |
+
"""Logs ``msg % args`` at absl logging level ``level``.
|
560 |
+
|
561 |
+
If no args are given just print msg, ignoring any interpolation specifiers.
|
562 |
+
|
563 |
+
Args:
|
564 |
+
level: int, the absl logging level at which to log the message
|
565 |
+
(logging.DEBUG|INFO|WARNING|ERROR|FATAL). While some C++ verbose logging
|
566 |
+
level constants are also supported, callers should prefer explicit
|
567 |
+
logging.vlog() calls for such purpose.
|
568 |
+
|
569 |
+
msg: str, the message to be logged.
|
570 |
+
*args: The args to be substituted into the msg.
|
571 |
+
**kwargs: May contain exc_info to add exception traceback to message.
|
572 |
+
"""
|
573 |
+
if level > converter.ABSL_DEBUG:
|
574 |
+
# Even though this function supports level that is greater than 1, users
|
575 |
+
# should use logging.vlog instead for such cases.
|
576 |
+
# Treat this as vlog, 1 is equivalent to DEBUG.
|
577 |
+
standard_level = converter.STANDARD_DEBUG - (level - 1)
|
578 |
+
else:
|
579 |
+
if level < converter.ABSL_FATAL:
|
580 |
+
level = converter.ABSL_FATAL
|
581 |
+
standard_level = converter.absl_to_standard(level)
|
582 |
+
|
583 |
+
# Match standard logging's behavior. Before use_absl_handler() and
|
584 |
+
# logging is configured, there is no handler attached on _absl_logger nor
|
585 |
+
# logging.root. So logs go no where.
|
586 |
+
if not logging.root.handlers:
|
587 |
+
logging.basicConfig()
|
588 |
+
|
589 |
+
_absl_logger.log(standard_level, msg, *args, **kwargs)
|
590 |
+
|
591 |
+
|
592 |
+
def vlog(level, msg, *args, **kwargs):
|
593 |
+
"""Log ``msg % args`` at C++ vlog level ``level``.
|
594 |
+
|
595 |
+
Args:
|
596 |
+
level: int, the C++ verbose logging level at which to log the message,
|
597 |
+
e.g. 1, 2, 3, 4... While absl level constants are also supported,
|
598 |
+
callers should prefer logging.log|debug|info|... calls for such purpose.
|
599 |
+
msg: str, the message to be logged.
|
600 |
+
*args: The args to be substituted into the msg.
|
601 |
+
**kwargs: May contain exc_info to add exception traceback to message.
|
602 |
+
"""
|
603 |
+
log(level, msg, *args, **kwargs)
|
604 |
+
|
605 |
+
|
606 |
+
def vlog_is_on(level):
|
607 |
+
"""Checks if vlog is enabled for the given level in caller's source file.
|
608 |
+
|
609 |
+
Args:
|
610 |
+
level: int, the C++ verbose logging level at which to log the message,
|
611 |
+
e.g. 1, 2, 3, 4... While absl level constants are also supported,
|
612 |
+
callers should prefer level_debug|level_info|... calls for
|
613 |
+
checking those.
|
614 |
+
|
615 |
+
Returns:
|
616 |
+
True if logging is turned on for that level.
|
617 |
+
"""
|
618 |
+
|
619 |
+
if level > converter.ABSL_DEBUG:
|
620 |
+
# Even though this function supports level that is greater than 1, users
|
621 |
+
# should use logging.vlog instead for such cases.
|
622 |
+
# Treat this as vlog, 1 is equivalent to DEBUG.
|
623 |
+
standard_level = converter.STANDARD_DEBUG - (level - 1)
|
624 |
+
else:
|
625 |
+
if level < converter.ABSL_FATAL:
|
626 |
+
level = converter.ABSL_FATAL
|
627 |
+
standard_level = converter.absl_to_standard(level)
|
628 |
+
return _absl_logger.isEnabledFor(standard_level)
|
629 |
+
|
630 |
+
|
631 |
+
def flush():
|
632 |
+
"""Flushes all log files."""
|
633 |
+
get_absl_handler().flush()
|
634 |
+
|
635 |
+
|
636 |
+
def level_debug():
|
637 |
+
"""Returns True if debug logging is turned on."""
|
638 |
+
return get_verbosity() >= DEBUG
|
639 |
+
|
640 |
+
|
641 |
+
def level_info():
|
642 |
+
"""Returns True if info logging is turned on."""
|
643 |
+
return get_verbosity() >= INFO
|
644 |
+
|
645 |
+
|
646 |
+
def level_warning():
|
647 |
+
"""Returns True if warning logging is turned on."""
|
648 |
+
return get_verbosity() >= WARNING
|
649 |
+
|
650 |
+
|
651 |
+
level_warn = level_warning # Deprecated function.
|
652 |
+
|
653 |
+
|
654 |
+
def level_error():
|
655 |
+
"""Returns True if error logging is turned on."""
|
656 |
+
return get_verbosity() >= ERROR
|
657 |
+
|
658 |
+
|
659 |
+
def get_log_file_name(level=INFO):
|
660 |
+
"""Returns the name of the log file.
|
661 |
+
|
662 |
+
For Python logging, only one file is used and level is ignored. And it returns
|
663 |
+
empty string if it logs to stderr/stdout or the log stream has no `name`
|
664 |
+
attribute.
|
665 |
+
|
666 |
+
Args:
|
667 |
+
level: int, the absl.logging level.
|
668 |
+
|
669 |
+
Raises:
|
670 |
+
ValueError: Raised when `level` has an invalid value.
|
671 |
+
"""
|
672 |
+
if level not in converter.ABSL_LEVELS:
|
673 |
+
raise ValueError('Invalid absl.logging level {}'.format(level))
|
674 |
+
stream = get_absl_handler().python_handler.stream
|
675 |
+
if (stream == sys.stderr or stream == sys.stdout or
|
676 |
+
not hasattr(stream, 'name')):
|
677 |
+
return ''
|
678 |
+
else:
|
679 |
+
return stream.name
|
680 |
+
|
681 |
+
|
682 |
+
def find_log_dir_and_names(program_name=None, log_dir=None):
|
683 |
+
"""Computes the directory and filename prefix for log file.
|
684 |
+
|
685 |
+
Args:
|
686 |
+
program_name: str|None, the filename part of the path to the program that
|
687 |
+
is running without its extension. e.g: if your program is called
|
688 |
+
``usr/bin/foobar.py`` this method should probably be called with
|
689 |
+
``program_name='foobar`` However, this is just a convention, you can
|
690 |
+
pass in any string you want, and it will be used as part of the
|
691 |
+
log filename. If you don't pass in anything, the default behavior
|
692 |
+
is as described in the example. In python standard logging mode,
|
693 |
+
the program_name will be prepended with ``py_`` if it is the
|
694 |
+
``program_name`` argument is omitted.
|
695 |
+
log_dir: str|None, the desired log directory.
|
696 |
+
|
697 |
+
Returns:
|
698 |
+
(log_dir, file_prefix, symlink_prefix)
|
699 |
+
|
700 |
+
Raises:
|
701 |
+
FileNotFoundError: raised in Python 3 when it cannot find a log directory.
|
702 |
+
OSError: raised in Python 2 when it cannot find a log directory.
|
703 |
+
"""
|
704 |
+
if not program_name:
|
705 |
+
# Strip the extension (foobar.par becomes foobar, and
|
706 |
+
# fubar.py becomes fubar). We do this so that the log
|
707 |
+
# file names are similar to C++ log file names.
|
708 |
+
program_name = os.path.splitext(os.path.basename(sys.argv[0]))[0]
|
709 |
+
|
710 |
+
# Prepend py_ to files so that python code gets a unique file, and
|
711 |
+
# so that C++ libraries do not try to write to the same log files as us.
|
712 |
+
program_name = 'py_%s' % program_name
|
713 |
+
|
714 |
+
actual_log_dir = find_log_dir(log_dir=log_dir)
|
715 |
+
|
716 |
+
try:
|
717 |
+
username = getpass.getuser()
|
718 |
+
except KeyError:
|
719 |
+
# This can happen, e.g. when running under docker w/o passwd file.
|
720 |
+
if hasattr(os, 'getuid'):
|
721 |
+
# Windows doesn't have os.getuid
|
722 |
+
username = str(os.getuid())
|
723 |
+
else:
|
724 |
+
username = 'unknown'
|
725 |
+
hostname = socket.gethostname()
|
726 |
+
file_prefix = '%s.%s.%s.log' % (program_name, hostname, username)
|
727 |
+
|
728 |
+
return actual_log_dir, file_prefix, program_name
|
729 |
+
|
730 |
+
|
731 |
+
def find_log_dir(log_dir=None):
|
732 |
+
"""Returns the most suitable directory to put log files into.
|
733 |
+
|
734 |
+
Args:
|
735 |
+
log_dir: str|None, if specified, the logfile(s) will be created in that
|
736 |
+
directory. Otherwise if the --log_dir command-line flag is provided,
|
737 |
+
the logfile will be created in that directory. Otherwise the logfile
|
738 |
+
will be created in a standard location.
|
739 |
+
|
740 |
+
Raises:
|
741 |
+
FileNotFoundError: raised in Python 3 when it cannot find a log directory.
|
742 |
+
OSError: raised in Python 2 when it cannot find a log directory.
|
743 |
+
"""
|
744 |
+
# Get a list of possible log dirs (will try to use them in order).
|
745 |
+
# NOTE: Google's internal implementation has a special handling for Google
|
746 |
+
# machines, which uses a list of directories. Hence the following uses `dirs`
|
747 |
+
# instead of a single directory.
|
748 |
+
if log_dir:
|
749 |
+
# log_dir was explicitly specified as an arg, so use it and it alone.
|
750 |
+
dirs = [log_dir]
|
751 |
+
elif FLAGS['log_dir'].value:
|
752 |
+
# log_dir flag was provided, so use it and it alone (this mimics the
|
753 |
+
# behavior of the same flag in logging.cc).
|
754 |
+
dirs = [FLAGS['log_dir'].value]
|
755 |
+
else:
|
756 |
+
dirs = [tempfile.gettempdir()]
|
757 |
+
|
758 |
+
# Find the first usable log dir.
|
759 |
+
for d in dirs:
|
760 |
+
if os.path.isdir(d) and os.access(d, os.W_OK):
|
761 |
+
return d
|
762 |
+
raise FileNotFoundError(
|
763 |
+
"Can't find a writable directory for logs, tried %s" % dirs)
|
764 |
+
|
765 |
+
|
766 |
+
def get_absl_log_prefix(record):
|
767 |
+
"""Returns the absl log prefix for the log record.
|
768 |
+
|
769 |
+
Args:
|
770 |
+
record: logging.LogRecord, the record to get prefix for.
|
771 |
+
"""
|
772 |
+
created_tuple = time.localtime(record.created)
|
773 |
+
created_microsecond = int(record.created % 1.0 * 1e6)
|
774 |
+
|
775 |
+
critical_prefix = ''
|
776 |
+
level = record.levelno
|
777 |
+
if _is_non_absl_fatal_record(record):
|
778 |
+
# When the level is FATAL, but not logged from absl, lower the level so
|
779 |
+
# it's treated as ERROR.
|
780 |
+
level = logging.ERROR
|
781 |
+
critical_prefix = _CRITICAL_PREFIX
|
782 |
+
severity = converter.get_initial_for_level(level)
|
783 |
+
|
784 |
+
return '%c%02d%02d %02d:%02d:%02d.%06d %5d %s:%d] %s' % (
|
785 |
+
severity,
|
786 |
+
created_tuple.tm_mon,
|
787 |
+
created_tuple.tm_mday,
|
788 |
+
created_tuple.tm_hour,
|
789 |
+
created_tuple.tm_min,
|
790 |
+
created_tuple.tm_sec,
|
791 |
+
created_microsecond,
|
792 |
+
_get_thread_id(),
|
793 |
+
record.filename,
|
794 |
+
record.lineno,
|
795 |
+
critical_prefix)
|
796 |
+
|
797 |
+
|
798 |
+
def skip_log_prefix(func):
|
799 |
+
"""Skips reporting the prefix of a given function or name by :class:`~absl.logging.ABSLLogger`.
|
800 |
+
|
801 |
+
This is a convenience wrapper function / decorator for
|
802 |
+
:meth:`~absl.logging.ABSLLogger.register_frame_to_skip`.
|
803 |
+
|
804 |
+
If a callable function is provided, only that function will be skipped.
|
805 |
+
If a function name is provided, all functions with the same name in the
|
806 |
+
file that this is called in will be skipped.
|
807 |
+
|
808 |
+
This can be used as a decorator of the intended function to be skipped.
|
809 |
+
|
810 |
+
Args:
|
811 |
+
func: Callable function or its name as a string.
|
812 |
+
|
813 |
+
Returns:
|
814 |
+
func (the input, unchanged).
|
815 |
+
|
816 |
+
Raises:
|
817 |
+
ValueError: The input is callable but does not have a function code object.
|
818 |
+
TypeError: The input is neither callable nor a string.
|
819 |
+
"""
|
820 |
+
if callable(func):
|
821 |
+
func_code = getattr(func, '__code__', None)
|
822 |
+
if func_code is None:
|
823 |
+
raise ValueError('Input callable does not have a function code object.')
|
824 |
+
file_name = func_code.co_filename
|
825 |
+
func_name = func_code.co_name
|
826 |
+
func_lineno = func_code.co_firstlineno
|
827 |
+
elif isinstance(func, str):
|
828 |
+
file_name = get_absl_logger().findCaller()[0]
|
829 |
+
func_name = func
|
830 |
+
func_lineno = None
|
831 |
+
else:
|
832 |
+
raise TypeError('Input is neither callable nor a string.')
|
833 |
+
ABSLLogger.register_frame_to_skip(file_name, func_name, func_lineno)
|
834 |
+
return func
|
835 |
+
|
836 |
+
|
837 |
+
def _is_non_absl_fatal_record(log_record):
|
838 |
+
return (log_record.levelno >= logging.FATAL and
|
839 |
+
not log_record.__dict__.get(_ABSL_LOG_FATAL, False))
|
840 |
+
|
841 |
+
|
842 |
+
def _is_absl_fatal_record(log_record):
|
843 |
+
return (log_record.levelno >= logging.FATAL and
|
844 |
+
log_record.__dict__.get(_ABSL_LOG_FATAL, False))
|
845 |
+
|
846 |
+
|
847 |
+
# Indicates if we still need to warn about pre-init logs going to stderr.
|
848 |
+
_warn_preinit_stderr = True
|
849 |
+
|
850 |
+
|
851 |
+
class PythonHandler(logging.StreamHandler):
|
852 |
+
"""The handler class used by Abseil Python logging implementation."""
|
853 |
+
|
854 |
+
def __init__(self, stream=None, formatter=None):
|
855 |
+
super(PythonHandler, self).__init__(stream)
|
856 |
+
self.setFormatter(formatter or PythonFormatter())
|
857 |
+
|
858 |
+
def start_logging_to_file(self, program_name=None, log_dir=None):
|
859 |
+
"""Starts logging messages to files instead of standard error."""
|
860 |
+
FLAGS.logtostderr = False
|
861 |
+
|
862 |
+
actual_log_dir, file_prefix, symlink_prefix = find_log_dir_and_names(
|
863 |
+
program_name=program_name, log_dir=log_dir)
|
864 |
+
|
865 |
+
basename = '%s.INFO.%s.%d' % (
|
866 |
+
file_prefix,
|
867 |
+
time.strftime('%Y%m%d-%H%M%S', time.localtime(time.time())),
|
868 |
+
os.getpid())
|
869 |
+
filename = os.path.join(actual_log_dir, basename)
|
870 |
+
|
871 |
+
self.stream = open(filename, 'a', encoding='utf-8')
|
872 |
+
|
873 |
+
# os.symlink is not available on Windows Python 2.
|
874 |
+
if getattr(os, 'symlink', None):
|
875 |
+
# Create a symlink to the log file with a canonical name.
|
876 |
+
symlink = os.path.join(actual_log_dir, symlink_prefix + '.INFO')
|
877 |
+
try:
|
878 |
+
if os.path.islink(symlink):
|
879 |
+
os.unlink(symlink)
|
880 |
+
os.symlink(os.path.basename(filename), symlink)
|
881 |
+
except EnvironmentError:
|
882 |
+
# If it fails, we're sad but it's no error. Commonly, this
|
883 |
+
# fails because the symlink was created by another user and so
|
884 |
+
# we can't modify it
|
885 |
+
pass
|
886 |
+
|
887 |
+
def use_absl_log_file(self, program_name=None, log_dir=None):
|
888 |
+
"""Conditionally logs to files, based on --logtostderr."""
|
889 |
+
if FLAGS['logtostderr'].value:
|
890 |
+
self.stream = sys.stderr
|
891 |
+
else:
|
892 |
+
self.start_logging_to_file(program_name=program_name, log_dir=log_dir)
|
893 |
+
|
894 |
+
def flush(self):
|
895 |
+
"""Flushes all log files."""
|
896 |
+
self.acquire()
|
897 |
+
try:
|
898 |
+
if self.stream and hasattr(self.stream, 'flush'):
|
899 |
+
self.stream.flush()
|
900 |
+
except (EnvironmentError, ValueError):
|
901 |
+
# A ValueError is thrown if we try to flush a closed file.
|
902 |
+
pass
|
903 |
+
finally:
|
904 |
+
self.release()
|
905 |
+
|
906 |
+
def _log_to_stderr(self, record):
|
907 |
+
"""Emits the record to stderr.
|
908 |
+
|
909 |
+
This temporarily sets the handler stream to stderr, calls
|
910 |
+
StreamHandler.emit, then reverts the stream back.
|
911 |
+
|
912 |
+
Args:
|
913 |
+
record: logging.LogRecord, the record to log.
|
914 |
+
"""
|
915 |
+
# emit() is protected by a lock in logging.Handler, so we don't need to
|
916 |
+
# protect here again.
|
917 |
+
old_stream = self.stream
|
918 |
+
self.stream = sys.stderr
|
919 |
+
try:
|
920 |
+
super(PythonHandler, self).emit(record)
|
921 |
+
finally:
|
922 |
+
self.stream = old_stream
|
923 |
+
|
924 |
+
def emit(self, record):
|
925 |
+
"""Prints a record out to some streams.
|
926 |
+
|
927 |
+
1. If ``FLAGS.logtostderr`` is set, it will print to ``sys.stderr`` ONLY.
|
928 |
+
2. If ``FLAGS.alsologtostderr`` is set, it will print to ``sys.stderr``.
|
929 |
+
3. If ``FLAGS.logtostderr`` is not set, it will log to the stream
|
930 |
+
associated with the current thread.
|
931 |
+
|
932 |
+
Args:
|
933 |
+
record: :class:`logging.LogRecord`, the record to emit.
|
934 |
+
"""
|
935 |
+
# People occasionally call logging functions at import time before
|
936 |
+
# our flags may have even been defined yet, let alone even parsed, as we
|
937 |
+
# rely on the C++ side to define some flags for us and app init to
|
938 |
+
# deal with parsing. Match the C++ library behavior of notify and emit
|
939 |
+
# such messages to stderr. It encourages people to clean-up and does
|
940 |
+
# not hide the message.
|
941 |
+
level = record.levelno
|
942 |
+
if not FLAGS.is_parsed(): # Also implies "before flag has been defined".
|
943 |
+
global _warn_preinit_stderr
|
944 |
+
if _warn_preinit_stderr:
|
945 |
+
sys.stderr.write(
|
946 |
+
'WARNING: Logging before flag parsing goes to stderr.\n')
|
947 |
+
_warn_preinit_stderr = False
|
948 |
+
self._log_to_stderr(record)
|
949 |
+
elif FLAGS['logtostderr'].value:
|
950 |
+
self._log_to_stderr(record)
|
951 |
+
else:
|
952 |
+
super(PythonHandler, self).emit(record)
|
953 |
+
stderr_threshold = converter.string_to_standard(
|
954 |
+
FLAGS['stderrthreshold'].value)
|
955 |
+
if ((FLAGS['alsologtostderr'].value or level >= stderr_threshold) and
|
956 |
+
self.stream != sys.stderr):
|
957 |
+
self._log_to_stderr(record)
|
958 |
+
# Die when the record is created from ABSLLogger and level is FATAL.
|
959 |
+
if _is_absl_fatal_record(record):
|
960 |
+
self.flush() # Flush the log before dying.
|
961 |
+
|
962 |
+
# In threaded python, sys.exit() from a non-main thread only
|
963 |
+
# exits the thread in question.
|
964 |
+
os.abort()
|
965 |
+
|
966 |
+
def close(self):
|
967 |
+
"""Closes the stream to which we are writing."""
|
968 |
+
self.acquire()
|
969 |
+
try:
|
970 |
+
self.flush()
|
971 |
+
try:
|
972 |
+
# Do not close the stream if it's sys.stderr|stdout. They may be
|
973 |
+
# redirected or overridden to files, which should be managed by users
|
974 |
+
# explicitly.
|
975 |
+
user_managed = sys.stderr, sys.stdout, sys.__stderr__, sys.__stdout__
|
976 |
+
if self.stream not in user_managed and (
|
977 |
+
not hasattr(self.stream, 'isatty') or not self.stream.isatty()):
|
978 |
+
self.stream.close()
|
979 |
+
except ValueError:
|
980 |
+
# A ValueError is thrown if we try to run isatty() on a closed file.
|
981 |
+
pass
|
982 |
+
super(PythonHandler, self).close()
|
983 |
+
finally:
|
984 |
+
self.release()
|
985 |
+
|
986 |
+
|
987 |
+
class ABSLHandler(logging.Handler):
|
988 |
+
"""Abseil Python logging module's log handler."""
|
989 |
+
|
990 |
+
def __init__(self, python_logging_formatter):
|
991 |
+
super(ABSLHandler, self).__init__()
|
992 |
+
|
993 |
+
self._python_handler = PythonHandler(formatter=python_logging_formatter)
|
994 |
+
self.activate_python_handler()
|
995 |
+
|
996 |
+
def format(self, record):
|
997 |
+
return self._current_handler.format(record)
|
998 |
+
|
999 |
+
def setFormatter(self, fmt):
|
1000 |
+
self._current_handler.setFormatter(fmt)
|
1001 |
+
|
1002 |
+
def emit(self, record):
|
1003 |
+
self._current_handler.emit(record)
|
1004 |
+
|
1005 |
+
def flush(self):
|
1006 |
+
self._current_handler.flush()
|
1007 |
+
|
1008 |
+
def close(self):
|
1009 |
+
super(ABSLHandler, self).close()
|
1010 |
+
self._current_handler.close()
|
1011 |
+
|
1012 |
+
def handle(self, record):
|
1013 |
+
rv = self.filter(record)
|
1014 |
+
if rv:
|
1015 |
+
return self._current_handler.handle(record)
|
1016 |
+
return rv
|
1017 |
+
|
1018 |
+
@property
|
1019 |
+
def python_handler(self):
|
1020 |
+
return self._python_handler
|
1021 |
+
|
1022 |
+
def activate_python_handler(self):
|
1023 |
+
"""Uses the Python logging handler as the current logging handler."""
|
1024 |
+
self._current_handler = self._python_handler
|
1025 |
+
|
1026 |
+
def use_absl_log_file(self, program_name=None, log_dir=None):
|
1027 |
+
self._current_handler.use_absl_log_file(program_name, log_dir)
|
1028 |
+
|
1029 |
+
def start_logging_to_file(self, program_name=None, log_dir=None):
|
1030 |
+
self._current_handler.start_logging_to_file(program_name, log_dir)
|
1031 |
+
|
1032 |
+
|
1033 |
+
class PythonFormatter(logging.Formatter):
|
1034 |
+
"""Formatter class used by :class:`~absl.logging.PythonHandler`."""
|
1035 |
+
|
1036 |
+
def format(self, record):
|
1037 |
+
"""Appends the message from the record to the results of the prefix.
|
1038 |
+
|
1039 |
+
Args:
|
1040 |
+
record: logging.LogRecord, the record to be formatted.
|
1041 |
+
|
1042 |
+
Returns:
|
1043 |
+
The formatted string representing the record.
|
1044 |
+
"""
|
1045 |
+
if (not FLAGS['showprefixforinfo'].value and
|
1046 |
+
FLAGS['verbosity'].value == converter.ABSL_INFO and
|
1047 |
+
record.levelno == logging.INFO and
|
1048 |
+
_absl_handler.python_handler.stream == sys.stderr):
|
1049 |
+
prefix = ''
|
1050 |
+
else:
|
1051 |
+
prefix = get_absl_log_prefix(record)
|
1052 |
+
return prefix + super(PythonFormatter, self).format(record)
|
1053 |
+
|
1054 |
+
|
1055 |
+
class ABSLLogger(logging.getLoggerClass()):
|
1056 |
+
"""A logger that will create LogRecords while skipping some stack frames.
|
1057 |
+
|
1058 |
+
This class maintains an internal list of filenames and method names
|
1059 |
+
for use when determining who called the currently executing stack
|
1060 |
+
frame. Any method names from specific source files are skipped when
|
1061 |
+
walking backwards through the stack.
|
1062 |
+
|
1063 |
+
Client code should use the register_frame_to_skip method to let the
|
1064 |
+
ABSLLogger know which method from which file should be
|
1065 |
+
excluded from the walk backwards through the stack.
|
1066 |
+
"""
|
1067 |
+
_frames_to_skip = set()
|
1068 |
+
|
1069 |
+
def findCaller(self, stack_info=False, stacklevel=1):
|
1070 |
+
"""Finds the frame of the calling method on the stack.
|
1071 |
+
|
1072 |
+
This method skips any frames registered with the
|
1073 |
+
ABSLLogger and any methods from this file, and whatever
|
1074 |
+
method is currently being used to generate the prefix for the log
|
1075 |
+
line. Then it returns the file name, line number, and method name
|
1076 |
+
of the calling method. An optional fourth item may be returned,
|
1077 |
+
callers who only need things from the first three are advised to
|
1078 |
+
always slice or index the result rather than using direct unpacking
|
1079 |
+
assignment.
|
1080 |
+
|
1081 |
+
Args:
|
1082 |
+
stack_info: bool, when True, include the stack trace as a fourth item
|
1083 |
+
returned. On Python 3 there are always four items returned - the
|
1084 |
+
fourth will be None when this is False. On Python 2 the stdlib
|
1085 |
+
base class API only returns three items. We do the same when this
|
1086 |
+
new parameter is unspecified or False for compatibility.
|
1087 |
+
|
1088 |
+
Returns:
|
1089 |
+
(filename, lineno, methodname[, sinfo]) of the calling method.
|
1090 |
+
"""
|
1091 |
+
f_to_skip = ABSLLogger._frames_to_skip
|
1092 |
+
# Use sys._getframe(2) instead of logging.currentframe(), it's slightly
|
1093 |
+
# faster because there is one less frame to traverse.
|
1094 |
+
frame = sys._getframe(2) # pylint: disable=protected-access
|
1095 |
+
|
1096 |
+
while frame:
|
1097 |
+
code = frame.f_code
|
1098 |
+
if (_LOGGING_FILE_PREFIX not in code.co_filename and
|
1099 |
+
(code.co_filename, code.co_name,
|
1100 |
+
code.co_firstlineno) not in f_to_skip and
|
1101 |
+
(code.co_filename, code.co_name) not in f_to_skip):
|
1102 |
+
sinfo = None
|
1103 |
+
if stack_info:
|
1104 |
+
out = io.StringIO()
|
1105 |
+
out.write(u'Stack (most recent call last):\n')
|
1106 |
+
traceback.print_stack(frame, file=out)
|
1107 |
+
sinfo = out.getvalue().rstrip(u'\n')
|
1108 |
+
return (code.co_filename, frame.f_lineno, code.co_name, sinfo)
|
1109 |
+
frame = frame.f_back
|
1110 |
+
|
1111 |
+
def critical(self, msg, *args, **kwargs):
|
1112 |
+
"""Logs ``msg % args`` with severity ``CRITICAL``."""
|
1113 |
+
self.log(logging.CRITICAL, msg, *args, **kwargs)
|
1114 |
+
|
1115 |
+
def fatal(self, msg, *args, **kwargs):
|
1116 |
+
"""Logs ``msg % args`` with severity ``FATAL``."""
|
1117 |
+
self.log(logging.FATAL, msg, *args, **kwargs)
|
1118 |
+
|
1119 |
+
def error(self, msg, *args, **kwargs):
|
1120 |
+
"""Logs ``msg % args`` with severity ``ERROR``."""
|
1121 |
+
self.log(logging.ERROR, msg, *args, **kwargs)
|
1122 |
+
|
1123 |
+
def warn(self, msg, *args, **kwargs):
|
1124 |
+
"""Logs ``msg % args`` with severity ``WARN``."""
|
1125 |
+
warnings.warn("The 'warn' method is deprecated, use 'warning' instead",
|
1126 |
+
DeprecationWarning, 2)
|
1127 |
+
self.log(logging.WARN, msg, *args, **kwargs)
|
1128 |
+
|
1129 |
+
def warning(self, msg, *args, **kwargs):
|
1130 |
+
"""Logs ``msg % args`` with severity ``WARNING``."""
|
1131 |
+
self.log(logging.WARNING, msg, *args, **kwargs)
|
1132 |
+
|
1133 |
+
def info(self, msg, *args, **kwargs):
|
1134 |
+
"""Logs ``msg % args`` with severity ``INFO``."""
|
1135 |
+
self.log(logging.INFO, msg, *args, **kwargs)
|
1136 |
+
|
1137 |
+
def debug(self, msg, *args, **kwargs):
|
1138 |
+
"""Logs ``msg % args`` with severity ``DEBUG``."""
|
1139 |
+
self.log(logging.DEBUG, msg, *args, **kwargs)
|
1140 |
+
|
1141 |
+
def log(self, level, msg, *args, **kwargs):
|
1142 |
+
"""Logs a message at a cetain level substituting in the supplied arguments.
|
1143 |
+
|
1144 |
+
This method behaves differently in python and c++ modes.
|
1145 |
+
|
1146 |
+
Args:
|
1147 |
+
level: int, the standard logging level at which to log the message.
|
1148 |
+
msg: str, the text of the message to log.
|
1149 |
+
*args: The arguments to substitute in the message.
|
1150 |
+
**kwargs: The keyword arguments to substitute in the message.
|
1151 |
+
"""
|
1152 |
+
if level >= logging.FATAL:
|
1153 |
+
# Add property to the LogRecord created by this logger.
|
1154 |
+
# This will be used by the ABSLHandler to determine whether it should
|
1155 |
+
# treat CRITICAL/FATAL logs as really FATAL.
|
1156 |
+
extra = kwargs.setdefault('extra', {})
|
1157 |
+
extra[_ABSL_LOG_FATAL] = True
|
1158 |
+
super(ABSLLogger, self).log(level, msg, *args, **kwargs)
|
1159 |
+
|
1160 |
+
def handle(self, record):
|
1161 |
+
"""Calls handlers without checking ``Logger.disabled``.
|
1162 |
+
|
1163 |
+
Non-root loggers are set to disabled after setup with :func:`logging.config`
|
1164 |
+
if it's not explicitly specified. Historically, absl logging will not be
|
1165 |
+
disabled by that. To maintaining this behavior, this function skips
|
1166 |
+
checking the ``Logger.disabled`` bit.
|
1167 |
+
|
1168 |
+
This logger can still be disabled by adding a filter that filters out
|
1169 |
+
everything.
|
1170 |
+
|
1171 |
+
Args:
|
1172 |
+
record: logging.LogRecord, the record to handle.
|
1173 |
+
"""
|
1174 |
+
if self.filter(record):
|
1175 |
+
self.callHandlers(record)
|
1176 |
+
|
1177 |
+
@classmethod
|
1178 |
+
def register_frame_to_skip(cls, file_name, function_name, line_number=None):
|
1179 |
+
"""Registers a function name to skip when walking the stack.
|
1180 |
+
|
1181 |
+
The :class:`~absl.logging.ABSLLogger` sometimes skips method calls on the
|
1182 |
+
stack to make the log messages meaningful in their appropriate context.
|
1183 |
+
This method registers a function from a particular file as one
|
1184 |
+
which should be skipped.
|
1185 |
+
|
1186 |
+
Args:
|
1187 |
+
file_name: str, the name of the file that contains the function.
|
1188 |
+
function_name: str, the name of the function to skip.
|
1189 |
+
line_number: int, if provided, only the function with this starting line
|
1190 |
+
number will be skipped. Otherwise, all functions with the same name
|
1191 |
+
in the file will be skipped.
|
1192 |
+
"""
|
1193 |
+
if line_number is not None:
|
1194 |
+
cls._frames_to_skip.add((file_name, function_name, line_number))
|
1195 |
+
else:
|
1196 |
+
cls._frames_to_skip.add((file_name, function_name))
|
1197 |
+
|
1198 |
+
|
1199 |
+
def _get_thread_id():
|
1200 |
+
"""Gets id of current thread, suitable for logging as an unsigned quantity.
|
1201 |
+
|
1202 |
+
If pywrapbase is linked, returns GetTID() for the thread ID to be
|
1203 |
+
consistent with C++ logging. Otherwise, returns the numeric thread id.
|
1204 |
+
The quantities are made unsigned by masking with 2*sys.maxint + 1.
|
1205 |
+
|
1206 |
+
Returns:
|
1207 |
+
Thread ID unique to this process (unsigned)
|
1208 |
+
"""
|
1209 |
+
thread_id = threading.get_ident()
|
1210 |
+
return thread_id & _THREAD_ID_MASK
|
1211 |
+
|
1212 |
+
|
1213 |
+
def get_absl_logger():
|
1214 |
+
"""Returns the absl logger instance."""
|
1215 |
+
assert _absl_logger is not None
|
1216 |
+
return _absl_logger
|
1217 |
+
|
1218 |
+
|
1219 |
+
def get_absl_handler():
|
1220 |
+
"""Returns the absl handler instance."""
|
1221 |
+
assert _absl_handler is not None
|
1222 |
+
return _absl_handler
|
1223 |
+
|
1224 |
+
|
1225 |
+
def use_python_logging(quiet=False):
|
1226 |
+
"""Uses the python implementation of the logging code.
|
1227 |
+
|
1228 |
+
Args:
|
1229 |
+
quiet: No logging message about switching logging type.
|
1230 |
+
"""
|
1231 |
+
get_absl_handler().activate_python_handler()
|
1232 |
+
if not quiet:
|
1233 |
+
info('Restoring pure python logging')
|
1234 |
+
|
1235 |
+
|
1236 |
+
_attempted_to_remove_stderr_stream_handlers = False
|
1237 |
+
|
1238 |
+
|
1239 |
+
def use_absl_handler():
|
1240 |
+
"""Uses the ABSL logging handler for logging.
|
1241 |
+
|
1242 |
+
This method is called in :func:`app.run()<absl.app.run>` so the absl handler
|
1243 |
+
is used in absl apps.
|
1244 |
+
"""
|
1245 |
+
global _attempted_to_remove_stderr_stream_handlers
|
1246 |
+
if not _attempted_to_remove_stderr_stream_handlers:
|
1247 |
+
# The absl handler logs to stderr by default. To prevent double logging to
|
1248 |
+
# stderr, the following code tries its best to remove other handlers that
|
1249 |
+
# emit to stderr. Those handlers are most commonly added when
|
1250 |
+
# logging.info/debug is called before calling use_absl_handler().
|
1251 |
+
handlers = [
|
1252 |
+
h for h in logging.root.handlers
|
1253 |
+
if isinstance(h, logging.StreamHandler) and h.stream == sys.stderr]
|
1254 |
+
for h in handlers:
|
1255 |
+
logging.root.removeHandler(h)
|
1256 |
+
_attempted_to_remove_stderr_stream_handlers = True
|
1257 |
+
|
1258 |
+
absl_handler = get_absl_handler()
|
1259 |
+
if absl_handler not in logging.root.handlers:
|
1260 |
+
logging.root.addHandler(absl_handler)
|
1261 |
+
FLAGS['verbosity']._update_logging_levels() # pylint: disable=protected-access
|
1262 |
+
FLAGS['logger_levels']._update_logger_levels() # pylint: disable=protected-access
|
1263 |
+
|
1264 |
+
|
1265 |
+
def _initialize():
|
1266 |
+
"""Initializes loggers and handlers."""
|
1267 |
+
global _absl_logger, _absl_handler
|
1268 |
+
|
1269 |
+
if _absl_logger:
|
1270 |
+
return
|
1271 |
+
|
1272 |
+
original_logger_class = logging.getLoggerClass()
|
1273 |
+
logging.setLoggerClass(ABSLLogger)
|
1274 |
+
_absl_logger = logging.getLogger('absl')
|
1275 |
+
logging.setLoggerClass(original_logger_class)
|
1276 |
+
|
1277 |
+
python_logging_formatter = PythonFormatter()
|
1278 |
+
_absl_handler = ABSLHandler(python_logging_formatter)
|
1279 |
+
|
1280 |
+
|
1281 |
+
_initialize()
|
llmeval-env/lib/python3.10/site-packages/absl/logging/__init__.pyi
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2017 The Abseil Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import logging
|
16 |
+
from typing import Any, Callable, Dict, NoReturn, Optional, Tuple, TypeVar, Union
|
17 |
+
|
18 |
+
from absl import flags
|
19 |
+
|
20 |
+
# Logging levels.
|
21 |
+
FATAL: int
|
22 |
+
ERROR: int
|
23 |
+
WARNING: int
|
24 |
+
WARN: int # Deprecated name.
|
25 |
+
INFO: int
|
26 |
+
DEBUG: int
|
27 |
+
|
28 |
+
ABSL_LOGGING_PREFIX_REGEX: str
|
29 |
+
|
30 |
+
LOGTOSTDERR: flags.FlagHolder[bool]
|
31 |
+
ALSOLOGTOSTDERR: flags.FlagHolder[bool]
|
32 |
+
LOG_DIR: flags.FlagHolder[str]
|
33 |
+
VERBOSITY: flags.FlagHolder[int]
|
34 |
+
LOGGER_LEVELS: flags.FlagHolder[Dict[str, str]]
|
35 |
+
STDERRTHRESHOLD: flags.FlagHolder[str]
|
36 |
+
SHOWPREFIXFORINFO: flags.FlagHolder[bool]
|
37 |
+
|
38 |
+
|
39 |
+
def get_verbosity() -> int:
|
40 |
+
...
|
41 |
+
|
42 |
+
|
43 |
+
def set_verbosity(v: Union[int, str]) -> None:
|
44 |
+
...
|
45 |
+
|
46 |
+
|
47 |
+
def set_stderrthreshold(s: Union[int, str]) -> None:
|
48 |
+
...
|
49 |
+
|
50 |
+
|
51 |
+
# TODO(b/277607978): Provide actual args+kwargs shadowing stdlib's logging functions.
|
52 |
+
def fatal(msg: Any, *args: Any, **kwargs: Any) -> NoReturn:
|
53 |
+
...
|
54 |
+
|
55 |
+
|
56 |
+
def error(msg: Any, *args: Any, **kwargs: Any) -> None:
|
57 |
+
...
|
58 |
+
|
59 |
+
|
60 |
+
def warning(msg: Any, *args: Any, **kwargs: Any) -> None:
|
61 |
+
...
|
62 |
+
|
63 |
+
|
64 |
+
def warn(msg: Any, *args: Any, **kwargs: Any) -> None:
|
65 |
+
...
|
66 |
+
|
67 |
+
|
68 |
+
def info(msg: Any, *args: Any, **kwargs: Any) -> None:
|
69 |
+
...
|
70 |
+
|
71 |
+
|
72 |
+
def debug(msg: Any, *args: Any, **kwargs: Any) -> None:
|
73 |
+
...
|
74 |
+
|
75 |
+
|
76 |
+
def exception(msg: Any, *args: Any, **kwargs: Any) -> None:
|
77 |
+
...
|
78 |
+
|
79 |
+
|
80 |
+
def log_every_n(level: int, msg: Any, n: int, *args: Any) -> None:
|
81 |
+
...
|
82 |
+
|
83 |
+
|
84 |
+
def log_every_n_seconds(
|
85 |
+
level: int, msg: Any, n_seconds: float, *args: Any
|
86 |
+
) -> None:
|
87 |
+
...
|
88 |
+
|
89 |
+
|
90 |
+
def log_first_n(level: int, msg: Any, n: int, *args: Any) -> None:
|
91 |
+
...
|
92 |
+
|
93 |
+
|
94 |
+
def log_if(level: int, msg: Any, condition: Any, *args: Any) -> None:
|
95 |
+
...
|
96 |
+
|
97 |
+
|
98 |
+
def log(level: int, msg: Any, *args: Any, **kwargs: Any) -> None:
|
99 |
+
...
|
100 |
+
|
101 |
+
|
102 |
+
def vlog(level: int, msg: Any, *args: Any, **kwargs: Any) -> None:
|
103 |
+
...
|
104 |
+
|
105 |
+
|
106 |
+
def vlog_is_on(level: int) -> bool:
|
107 |
+
...
|
108 |
+
|
109 |
+
|
110 |
+
def flush() -> None:
|
111 |
+
...
|
112 |
+
|
113 |
+
|
114 |
+
def level_debug() -> bool:
|
115 |
+
...
|
116 |
+
|
117 |
+
|
118 |
+
def level_info() -> bool:
|
119 |
+
...
|
120 |
+
|
121 |
+
|
122 |
+
def level_warning() -> bool:
|
123 |
+
...
|
124 |
+
|
125 |
+
|
126 |
+
level_warn = level_warning # Deprecated function.
|
127 |
+
|
128 |
+
|
129 |
+
def level_error() -> bool:
|
130 |
+
...
|
131 |
+
|
132 |
+
|
133 |
+
def get_log_file_name(level: int = ...) -> str:
|
134 |
+
...
|
135 |
+
|
136 |
+
|
137 |
+
def find_log_dir_and_names(
|
138 |
+
program_name: Optional[str] = ..., log_dir: Optional[str] = ...
|
139 |
+
) -> Tuple[str, str, str]:
|
140 |
+
...
|
141 |
+
|
142 |
+
|
143 |
+
def find_log_dir(log_dir: Optional[str] = ...) -> str:
|
144 |
+
...
|
145 |
+
|
146 |
+
|
147 |
+
def get_absl_log_prefix(record: logging.LogRecord) -> str:
|
148 |
+
...
|
149 |
+
|
150 |
+
|
151 |
+
_SkipLogT = TypeVar('_SkipLogT', str, Callable[..., Any])
|
152 |
+
|
153 |
+
def skip_log_prefix(func: _SkipLogT) -> _SkipLogT:
|
154 |
+
...
|
155 |
+
|
156 |
+
|
157 |
+
_StreamT = TypeVar("_StreamT")
|
158 |
+
|
159 |
+
|
160 |
+
class PythonHandler(logging.StreamHandler[_StreamT]):
|
161 |
+
|
162 |
+
def __init__(
|
163 |
+
self,
|
164 |
+
stream: Optional[_StreamT] = ...,
|
165 |
+
formatter: Optional[logging.Formatter] = ...,
|
166 |
+
) -> None:
|
167 |
+
...
|
168 |
+
|
169 |
+
def start_logging_to_file(
|
170 |
+
self, program_name: Optional[str] = ..., log_dir: Optional[str] = ...
|
171 |
+
) -> None:
|
172 |
+
...
|
173 |
+
|
174 |
+
def use_absl_log_file(
|
175 |
+
self, program_name: Optional[str] = ..., log_dir: Optional[str] = ...
|
176 |
+
) -> None:
|
177 |
+
...
|
178 |
+
|
179 |
+
def flush(self) -> None:
|
180 |
+
...
|
181 |
+
|
182 |
+
def emit(self, record: logging.LogRecord) -> None:
|
183 |
+
...
|
184 |
+
|
185 |
+
def close(self) -> None:
|
186 |
+
...
|
187 |
+
|
188 |
+
|
189 |
+
class ABSLHandler(logging.Handler):
|
190 |
+
|
191 |
+
def __init__(self, python_logging_formatter: PythonFormatter) -> None:
|
192 |
+
...
|
193 |
+
|
194 |
+
def format(self, record: logging.LogRecord) -> str:
|
195 |
+
...
|
196 |
+
|
197 |
+
def setFormatter(self, fmt) -> None:
|
198 |
+
...
|
199 |
+
|
200 |
+
def emit(self, record: logging.LogRecord) -> None:
|
201 |
+
...
|
202 |
+
|
203 |
+
def flush(self) -> None:
|
204 |
+
...
|
205 |
+
|
206 |
+
def close(self) -> None:
|
207 |
+
...
|
208 |
+
|
209 |
+
def handle(self, record: logging.LogRecord) -> bool:
|
210 |
+
...
|
211 |
+
|
212 |
+
@property
|
213 |
+
def python_handler(self) -> PythonHandler:
|
214 |
+
...
|
215 |
+
|
216 |
+
def activate_python_handler(self) -> None:
|
217 |
+
...
|
218 |
+
|
219 |
+
def use_absl_log_file(
|
220 |
+
self, program_name: Optional[str] = ..., log_dir: Optional[str] = ...
|
221 |
+
) -> None:
|
222 |
+
...
|
223 |
+
|
224 |
+
def start_logging_to_file(self, program_name=None, log_dir=None) -> None:
|
225 |
+
...
|
226 |
+
|
227 |
+
|
228 |
+
class PythonFormatter(logging.Formatter):
|
229 |
+
|
230 |
+
def format(self, record: logging.LogRecord) -> str:
|
231 |
+
...
|
232 |
+
|
233 |
+
|
234 |
+
class ABSLLogger(logging.Logger):
|
235 |
+
|
236 |
+
def findCaller(
|
237 |
+
self, stack_info: bool = ..., stacklevel: int = ...
|
238 |
+
) -> Tuple[str, int, str, Optional[str]]:
|
239 |
+
...
|
240 |
+
|
241 |
+
def critical(self, msg: Any, *args: Any, **kwargs: Any) -> None:
|
242 |
+
...
|
243 |
+
|
244 |
+
def fatal(self, msg: Any, *args: Any, **kwargs: Any) -> NoReturn:
|
245 |
+
...
|
246 |
+
|
247 |
+
def error(self, msg: Any, *args: Any, **kwargs: Any) -> None:
|
248 |
+
...
|
249 |
+
|
250 |
+
def warn(self, msg: Any, *args: Any, **kwargs: Any) -> None:
|
251 |
+
...
|
252 |
+
|
253 |
+
def warning(self, msg: Any, *args: Any, **kwargs: Any) -> None:
|
254 |
+
...
|
255 |
+
|
256 |
+
def info(self, msg: Any, *args: Any, **kwargs: Any) -> None:
|
257 |
+
...
|
258 |
+
|
259 |
+
def debug(self, msg: Any, *args: Any, **kwargs: Any) -> None:
|
260 |
+
...
|
261 |
+
|
262 |
+
def log(self, level: int, msg: Any, *args: Any, **kwargs: Any) -> None:
|
263 |
+
...
|
264 |
+
|
265 |
+
def handle(self, record: logging.LogRecord) -> None:
|
266 |
+
...
|
267 |
+
|
268 |
+
@classmethod
|
269 |
+
def register_frame_to_skip(
|
270 |
+
cls, file_name: str, function_name: str, line_number: Optional[int] = ...
|
271 |
+
) -> None:
|
272 |
+
...
|
273 |
+
|
274 |
+
|
275 |
+
# NOTE: Returns None before _initialize called but shouldn't occur after import.
|
276 |
+
def get_absl_logger() -> ABSLLogger:
|
277 |
+
...
|
278 |
+
|
279 |
+
|
280 |
+
# NOTE: Returns None before _initialize called but shouldn't occur after import.
|
281 |
+
def get_absl_handler() -> ABSLHandler:
|
282 |
+
...
|
283 |
+
|
284 |
+
|
285 |
+
def use_python_logging(quiet: bool = ...) -> None:
|
286 |
+
...
|
287 |
+
|
288 |
+
|
289 |
+
def use_absl_handler() -> None:
|
290 |
+
...
|
llmeval-env/lib/python3.10/site-packages/absl/logging/converter.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2017 The Abseil Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""Module to convert log levels between Abseil Python, C++, and Python standard.
|
16 |
+
|
17 |
+
This converter has to convert (best effort) between three different
|
18 |
+
logging level schemes:
|
19 |
+
|
20 |
+
* **cpp**: The C++ logging level scheme used in Abseil C++.
|
21 |
+
* **absl**: The absl.logging level scheme used in Abseil Python.
|
22 |
+
* **standard**: The python standard library logging level scheme.
|
23 |
+
|
24 |
+
Here is a handy ascii chart for easy mental mapping::
|
25 |
+
|
26 |
+
LEVEL | cpp | absl | standard |
|
27 |
+
---------+-----+--------+----------+
|
28 |
+
DEBUG | 0 | 1 | 10 |
|
29 |
+
INFO | 0 | 0 | 20 |
|
30 |
+
WARNING | 1 | -1 | 30 |
|
31 |
+
ERROR | 2 | -2 | 40 |
|
32 |
+
CRITICAL | 3 | -3 | 50 |
|
33 |
+
FATAL | 3 | -3 | 50 |
|
34 |
+
|
35 |
+
Note: standard logging ``CRITICAL`` is mapped to absl/cpp ``FATAL``.
|
36 |
+
However, only ``CRITICAL`` logs from the absl logger (or absl.logging.fatal)
|
37 |
+
will terminate the program. ``CRITICAL`` logs from non-absl loggers are treated
|
38 |
+
as error logs with a message prefix ``"CRITICAL - "``.
|
39 |
+
|
40 |
+
Converting from standard to absl or cpp is a lossy conversion.
|
41 |
+
Converting back to standard will lose granularity. For this reason,
|
42 |
+
users should always try to convert to standard, the richest
|
43 |
+
representation, before manipulating the levels, and then only to cpp
|
44 |
+
or absl if those level schemes are absolutely necessary.
|
45 |
+
"""
|
46 |
+
|
47 |
+
import logging
|
48 |
+
|
49 |
+
STANDARD_CRITICAL = logging.CRITICAL
|
50 |
+
STANDARD_ERROR = logging.ERROR
|
51 |
+
STANDARD_WARNING = logging.WARNING
|
52 |
+
STANDARD_INFO = logging.INFO
|
53 |
+
STANDARD_DEBUG = logging.DEBUG
|
54 |
+
|
55 |
+
# These levels are also used to define the constants
|
56 |
+
# FATAL, ERROR, WARNING, INFO, and DEBUG in the
|
57 |
+
# absl.logging module.
|
58 |
+
ABSL_FATAL = -3
|
59 |
+
ABSL_ERROR = -2
|
60 |
+
ABSL_WARNING = -1
|
61 |
+
ABSL_WARN = -1 # Deprecated name.
|
62 |
+
ABSL_INFO = 0
|
63 |
+
ABSL_DEBUG = 1
|
64 |
+
|
65 |
+
ABSL_LEVELS = {ABSL_FATAL: 'FATAL',
|
66 |
+
ABSL_ERROR: 'ERROR',
|
67 |
+
ABSL_WARNING: 'WARNING',
|
68 |
+
ABSL_INFO: 'INFO',
|
69 |
+
ABSL_DEBUG: 'DEBUG'}
|
70 |
+
|
71 |
+
# Inverts the ABSL_LEVELS dictionary
|
72 |
+
ABSL_NAMES = {'FATAL': ABSL_FATAL,
|
73 |
+
'ERROR': ABSL_ERROR,
|
74 |
+
'WARNING': ABSL_WARNING,
|
75 |
+
'WARN': ABSL_WARNING, # Deprecated name.
|
76 |
+
'INFO': ABSL_INFO,
|
77 |
+
'DEBUG': ABSL_DEBUG}
|
78 |
+
|
79 |
+
ABSL_TO_STANDARD = {ABSL_FATAL: STANDARD_CRITICAL,
|
80 |
+
ABSL_ERROR: STANDARD_ERROR,
|
81 |
+
ABSL_WARNING: STANDARD_WARNING,
|
82 |
+
ABSL_INFO: STANDARD_INFO,
|
83 |
+
ABSL_DEBUG: STANDARD_DEBUG}
|
84 |
+
|
85 |
+
# Inverts the ABSL_TO_STANDARD
|
86 |
+
STANDARD_TO_ABSL = dict((v, k) for (k, v) in ABSL_TO_STANDARD.items())
|
87 |
+
|
88 |
+
|
89 |
+
def get_initial_for_level(level):
|
90 |
+
"""Gets the initial that should start the log line for the given level.
|
91 |
+
|
92 |
+
It returns:
|
93 |
+
|
94 |
+
* ``'I'`` when: ``level < STANDARD_WARNING``.
|
95 |
+
* ``'W'`` when: ``STANDARD_WARNING <= level < STANDARD_ERROR``.
|
96 |
+
* ``'E'`` when: ``STANDARD_ERROR <= level < STANDARD_CRITICAL``.
|
97 |
+
* ``'F'`` when: ``level >= STANDARD_CRITICAL``.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
level: int, a Python standard logging level.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
The first initial as it would be logged by the C++ logging module.
|
104 |
+
"""
|
105 |
+
if level < STANDARD_WARNING:
|
106 |
+
return 'I'
|
107 |
+
elif level < STANDARD_ERROR:
|
108 |
+
return 'W'
|
109 |
+
elif level < STANDARD_CRITICAL:
|
110 |
+
return 'E'
|
111 |
+
else:
|
112 |
+
return 'F'
|
113 |
+
|
114 |
+
|
115 |
+
def absl_to_cpp(level):
|
116 |
+
"""Converts an absl log level to a cpp log level.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
level: int, an absl.logging level.
|
120 |
+
|
121 |
+
Raises:
|
122 |
+
TypeError: Raised when level is not an integer.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
The corresponding integer level for use in Abseil C++.
|
126 |
+
"""
|
127 |
+
if not isinstance(level, int):
|
128 |
+
raise TypeError('Expect an int level, found {}'.format(type(level)))
|
129 |
+
if level >= 0:
|
130 |
+
# C++ log levels must be >= 0
|
131 |
+
return 0
|
132 |
+
else:
|
133 |
+
return -level
|
134 |
+
|
135 |
+
|
136 |
+
def absl_to_standard(level):
|
137 |
+
"""Converts an integer level from the absl value to the standard value.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
level: int, an absl.logging level.
|
141 |
+
|
142 |
+
Raises:
|
143 |
+
TypeError: Raised when level is not an integer.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
The corresponding integer level for use in standard logging.
|
147 |
+
"""
|
148 |
+
if not isinstance(level, int):
|
149 |
+
raise TypeError('Expect an int level, found {}'.format(type(level)))
|
150 |
+
if level < ABSL_FATAL:
|
151 |
+
level = ABSL_FATAL
|
152 |
+
if level <= ABSL_DEBUG:
|
153 |
+
return ABSL_TO_STANDARD[level]
|
154 |
+
# Maps to vlog levels.
|
155 |
+
return STANDARD_DEBUG - level + 1
|
156 |
+
|
157 |
+
|
158 |
+
def string_to_standard(level):
|
159 |
+
"""Converts a string level to standard logging level value.
|
160 |
+
|
161 |
+
Args:
|
162 |
+
level: str, case-insensitive ``'debug'``, ``'info'``, ``'warning'``,
|
163 |
+
``'error'``, ``'fatal'``.
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
The corresponding integer level for use in standard logging.
|
167 |
+
"""
|
168 |
+
return absl_to_standard(ABSL_NAMES.get(level.upper()))
|
169 |
+
|
170 |
+
|
171 |
+
def standard_to_absl(level):
|
172 |
+
"""Converts an integer level from the standard value to the absl value.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
level: int, a Python standard logging level.
|
176 |
+
|
177 |
+
Raises:
|
178 |
+
TypeError: Raised when level is not an integer.
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
The corresponding integer level for use in absl logging.
|
182 |
+
"""
|
183 |
+
if not isinstance(level, int):
|
184 |
+
raise TypeError('Expect an int level, found {}'.format(type(level)))
|
185 |
+
if level < 0:
|
186 |
+
level = 0
|
187 |
+
if level < STANDARD_DEBUG:
|
188 |
+
# Maps to vlog levels.
|
189 |
+
return STANDARD_DEBUG - level + 1
|
190 |
+
elif level < STANDARD_INFO:
|
191 |
+
return ABSL_DEBUG
|
192 |
+
elif level < STANDARD_WARNING:
|
193 |
+
return ABSL_INFO
|
194 |
+
elif level < STANDARD_ERROR:
|
195 |
+
return ABSL_WARNING
|
196 |
+
elif level < STANDARD_CRITICAL:
|
197 |
+
return ABSL_ERROR
|
198 |
+
else:
|
199 |
+
return ABSL_FATAL
|
200 |
+
|
201 |
+
|
202 |
+
def standard_to_cpp(level):
|
203 |
+
"""Converts an integer level from the standard value to the cpp value.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
level: int, a Python standard logging level.
|
207 |
+
|
208 |
+
Raises:
|
209 |
+
TypeError: Raised when level is not an integer.
|
210 |
+
|
211 |
+
Returns:
|
212 |
+
The corresponding integer level for use in cpp logging.
|
213 |
+
"""
|
214 |
+
return absl_to_cpp(standard_to_absl(level))
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/__init__.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ..utils import _LazyModule
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"aqlm": ["replace_with_aqlm_linear"],
|
21 |
+
"awq": [
|
22 |
+
"fuse_awq_modules",
|
23 |
+
"post_init_awq_exllama_modules",
|
24 |
+
"replace_with_awq_linear",
|
25 |
+
],
|
26 |
+
"bitsandbytes": [
|
27 |
+
"get_keys_to_not_convert",
|
28 |
+
"replace_8bit_linear",
|
29 |
+
"replace_with_bnb_linear",
|
30 |
+
"set_module_8bit_tensor_to_device",
|
31 |
+
"set_module_quantized_tensor_to_device",
|
32 |
+
],
|
33 |
+
"deepspeed": [
|
34 |
+
"HfDeepSpeedConfig",
|
35 |
+
"HfTrainerDeepSpeedConfig",
|
36 |
+
"deepspeed_config",
|
37 |
+
"deepspeed_init",
|
38 |
+
"deepspeed_load_checkpoint",
|
39 |
+
"deepspeed_optim_sched",
|
40 |
+
"is_deepspeed_available",
|
41 |
+
"is_deepspeed_zero3_enabled",
|
42 |
+
"set_hf_deepspeed_config",
|
43 |
+
"unset_hf_deepspeed_config",
|
44 |
+
],
|
45 |
+
"integration_utils": [
|
46 |
+
"INTEGRATION_TO_CALLBACK",
|
47 |
+
"AzureMLCallback",
|
48 |
+
"ClearMLCallback",
|
49 |
+
"CodeCarbonCallback",
|
50 |
+
"CometCallback",
|
51 |
+
"DagsHubCallback",
|
52 |
+
"DVCLiveCallback",
|
53 |
+
"FlyteCallback",
|
54 |
+
"MLflowCallback",
|
55 |
+
"NeptuneCallback",
|
56 |
+
"NeptuneMissingConfiguration",
|
57 |
+
"TensorBoardCallback",
|
58 |
+
"WandbCallback",
|
59 |
+
"get_available_reporting_integrations",
|
60 |
+
"get_reporting_integration_callbacks",
|
61 |
+
"hp_params",
|
62 |
+
"is_azureml_available",
|
63 |
+
"is_clearml_available",
|
64 |
+
"is_codecarbon_available",
|
65 |
+
"is_comet_available",
|
66 |
+
"is_dagshub_available",
|
67 |
+
"is_dvclive_available",
|
68 |
+
"is_flyte_deck_standard_available",
|
69 |
+
"is_flytekit_available",
|
70 |
+
"is_mlflow_available",
|
71 |
+
"is_neptune_available",
|
72 |
+
"is_optuna_available",
|
73 |
+
"is_ray_available",
|
74 |
+
"is_ray_tune_available",
|
75 |
+
"is_sigopt_available",
|
76 |
+
"is_tensorboard_available",
|
77 |
+
"is_wandb_available",
|
78 |
+
"rewrite_logs",
|
79 |
+
"run_hp_search_optuna",
|
80 |
+
"run_hp_search_ray",
|
81 |
+
"run_hp_search_sigopt",
|
82 |
+
"run_hp_search_wandb",
|
83 |
+
],
|
84 |
+
"peft": ["PeftAdapterMixin"],
|
85 |
+
"quanto": ["replace_with_quanto_layers"],
|
86 |
+
}
|
87 |
+
|
88 |
+
if TYPE_CHECKING:
|
89 |
+
from .aqlm import replace_with_aqlm_linear
|
90 |
+
from .awq import (
|
91 |
+
fuse_awq_modules,
|
92 |
+
post_init_awq_exllama_modules,
|
93 |
+
replace_with_awq_linear,
|
94 |
+
)
|
95 |
+
from .bitsandbytes import (
|
96 |
+
get_keys_to_not_convert,
|
97 |
+
replace_8bit_linear,
|
98 |
+
replace_with_bnb_linear,
|
99 |
+
set_module_8bit_tensor_to_device,
|
100 |
+
set_module_quantized_tensor_to_device,
|
101 |
+
)
|
102 |
+
from .deepspeed import (
|
103 |
+
HfDeepSpeedConfig,
|
104 |
+
HfTrainerDeepSpeedConfig,
|
105 |
+
deepspeed_config,
|
106 |
+
deepspeed_init,
|
107 |
+
deepspeed_load_checkpoint,
|
108 |
+
deepspeed_optim_sched,
|
109 |
+
is_deepspeed_available,
|
110 |
+
is_deepspeed_zero3_enabled,
|
111 |
+
set_hf_deepspeed_config,
|
112 |
+
unset_hf_deepspeed_config,
|
113 |
+
)
|
114 |
+
from .integration_utils import (
|
115 |
+
INTEGRATION_TO_CALLBACK,
|
116 |
+
AzureMLCallback,
|
117 |
+
ClearMLCallback,
|
118 |
+
CodeCarbonCallback,
|
119 |
+
CometCallback,
|
120 |
+
DagsHubCallback,
|
121 |
+
DVCLiveCallback,
|
122 |
+
FlyteCallback,
|
123 |
+
MLflowCallback,
|
124 |
+
NeptuneCallback,
|
125 |
+
NeptuneMissingConfiguration,
|
126 |
+
TensorBoardCallback,
|
127 |
+
WandbCallback,
|
128 |
+
get_available_reporting_integrations,
|
129 |
+
get_reporting_integration_callbacks,
|
130 |
+
hp_params,
|
131 |
+
is_azureml_available,
|
132 |
+
is_clearml_available,
|
133 |
+
is_codecarbon_available,
|
134 |
+
is_comet_available,
|
135 |
+
is_dagshub_available,
|
136 |
+
is_dvclive_available,
|
137 |
+
is_flyte_deck_standard_available,
|
138 |
+
is_flytekit_available,
|
139 |
+
is_mlflow_available,
|
140 |
+
is_neptune_available,
|
141 |
+
is_optuna_available,
|
142 |
+
is_ray_available,
|
143 |
+
is_ray_tune_available,
|
144 |
+
is_sigopt_available,
|
145 |
+
is_tensorboard_available,
|
146 |
+
is_wandb_available,
|
147 |
+
rewrite_logs,
|
148 |
+
run_hp_search_optuna,
|
149 |
+
run_hp_search_ray,
|
150 |
+
run_hp_search_sigopt,
|
151 |
+
run_hp_search_wandb,
|
152 |
+
)
|
153 |
+
from .peft import PeftAdapterMixin
|
154 |
+
from .quanto import replace_with_quanto_layers
|
155 |
+
else:
|
156 |
+
import sys
|
157 |
+
|
158 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.53 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/aqlm.cpython-310.pyc
ADDED
Binary file (2.77 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/awq.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/bitsandbytes.cpython-310.pyc
ADDED
Binary file (10 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/deepspeed.cpython-310.pyc
ADDED
Binary file (12.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/integration_utils.cpython-310.pyc
ADDED
Binary file (63.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/peft.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/quanto.cpython-310.pyc
ADDED
Binary file (2.84 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/__pycache__/tpu.cpython-310.pyc
ADDED
Binary file (873 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/aqlm.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"AQLM (Additive Quantization of Language Model) integration file"
|
15 |
+
|
16 |
+
|
17 |
+
from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
if is_torch_available():
|
21 |
+
import torch.nn as nn
|
22 |
+
|
23 |
+
|
24 |
+
def replace_with_aqlm_linear(
|
25 |
+
model,
|
26 |
+
quantization_config=None,
|
27 |
+
linear_weights_not_to_quantize=None,
|
28 |
+
current_key_name=None,
|
29 |
+
has_been_replaced=False,
|
30 |
+
):
|
31 |
+
"""
|
32 |
+
Public method that recursively replaces the Linear layers of the given model with AQLM quantized layers.
|
33 |
+
`accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the
|
34 |
+
conversion has been successfull or not.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
model (`torch.nn.Module`):
|
38 |
+
The model to convert, can be any `torch.nn.Module` instance.
|
39 |
+
quantization_config (`AqlmConfig`):
|
40 |
+
The quantization config object that contains the quantization parameters.
|
41 |
+
linear_weights_not_to_quantize (`list[str]`, *optional*):
|
42 |
+
A list of nn.Linear weights to not convert. If a parameter path is in the list (e.g. `lm_head.weight`), the corresponding module will not be
|
43 |
+
converted.
|
44 |
+
current_key_name (`list`, *optional*):
|
45 |
+
A list that contains the current key name. This is used for recursion and should not be passed by the user.
|
46 |
+
has_been_replaced (`bool`, *optional*):
|
47 |
+
A boolean that indicates if the conversion has been successful or not. This is used for recursion and
|
48 |
+
should not be passed by the user.
|
49 |
+
"""
|
50 |
+
if not is_aqlm_available():
|
51 |
+
raise ValueError("AQLM is not available. Please install it with `pip install aqlm[cpu,gpu]`")
|
52 |
+
|
53 |
+
if not is_accelerate_available():
|
54 |
+
raise ValueError("AQLM requires Accelerate to be installed: `pip install accelerate`")
|
55 |
+
|
56 |
+
if linear_weights_not_to_quantize is None:
|
57 |
+
linear_weights_not_to_quantize = []
|
58 |
+
|
59 |
+
from accelerate import init_empty_weights
|
60 |
+
from aqlm import QuantizedLinear
|
61 |
+
|
62 |
+
for name, module in model.named_children():
|
63 |
+
if current_key_name is None:
|
64 |
+
current_key_name = []
|
65 |
+
current_key_name.append(name)
|
66 |
+
|
67 |
+
if isinstance(module, nn.Linear):
|
68 |
+
# Check if the current key is not in the `linear_weights_not_to_quantize`
|
69 |
+
if ".".join(current_key_name) + ".weight" not in linear_weights_not_to_quantize:
|
70 |
+
with init_empty_weights():
|
71 |
+
in_features = module.in_features
|
72 |
+
out_features = module.out_features
|
73 |
+
|
74 |
+
model._modules[name] = QuantizedLinear(
|
75 |
+
in_features,
|
76 |
+
out_features,
|
77 |
+
bias=module.bias is not None,
|
78 |
+
in_group_size=quantization_config.in_group_size,
|
79 |
+
out_group_size=quantization_config.out_group_size,
|
80 |
+
num_codebooks=quantization_config.num_codebooks,
|
81 |
+
nbits_per_codebook=quantization_config.nbits_per_codebook,
|
82 |
+
)
|
83 |
+
has_been_replaced = True
|
84 |
+
|
85 |
+
# Store the module class in case we need to transpose the weight later
|
86 |
+
model._modules[name].source_cls = type(module)
|
87 |
+
# Force requires grad to False to avoid unexpected errors
|
88 |
+
model._modules[name].requires_grad_(False)
|
89 |
+
if len(list(module.children())) > 0:
|
90 |
+
_, has_been_replaced = replace_with_aqlm_linear(
|
91 |
+
module,
|
92 |
+
quantization_config=quantization_config,
|
93 |
+
linear_weights_not_to_quantize=linear_weights_not_to_quantize,
|
94 |
+
current_key_name=current_key_name,
|
95 |
+
has_been_replaced=has_been_replaced,
|
96 |
+
)
|
97 |
+
# Remove the last key for recursion
|
98 |
+
current_key_name.pop(-1)
|
99 |
+
return model, has_been_replaced
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/awq.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"AWQ (Activation aware Weight Quantization) integration file"
|
15 |
+
from ..activations import ACT2FN
|
16 |
+
from ..modeling_utils import PreTrainedModel
|
17 |
+
from ..utils import is_auto_awq_available, is_torch_available
|
18 |
+
from ..utils.quantization_config import (
|
19 |
+
AwqBackendPackingMethod,
|
20 |
+
AwqConfig,
|
21 |
+
AWQLinearVersion,
|
22 |
+
ExllamaVersion,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
if is_torch_available():
|
27 |
+
import torch
|
28 |
+
import torch.nn as nn
|
29 |
+
|
30 |
+
|
31 |
+
AWQ_FUSED_MAPPINGS = {
|
32 |
+
"mistral": {
|
33 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
34 |
+
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
35 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
36 |
+
"use_alibi": False,
|
37 |
+
},
|
38 |
+
"mixtral": {
|
39 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
40 |
+
"mlp": ["w1", "w3", "w2"],
|
41 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
42 |
+
"use_alibi": False,
|
43 |
+
"rope_theta": 1000000.0,
|
44 |
+
},
|
45 |
+
"llama": {
|
46 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
47 |
+
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
48 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
49 |
+
"use_alibi": False,
|
50 |
+
},
|
51 |
+
"llava": {
|
52 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
53 |
+
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
54 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
55 |
+
"use_alibi": False,
|
56 |
+
},
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
def replace_with_awq_linear(
|
61 |
+
model,
|
62 |
+
modules_to_not_convert=None,
|
63 |
+
quantization_config=None,
|
64 |
+
current_key_name=None,
|
65 |
+
has_been_replaced=False,
|
66 |
+
) -> bool:
|
67 |
+
"""
|
68 |
+
Public method that recursively replaces the Linear layers of the given model with AWQ quantized layers.
|
69 |
+
`accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the
|
70 |
+
conversion has been successfull or not.
|
71 |
+
|
72 |
+
During the module replacement, we also infer the backend to use through the `quantization_config` object.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
model (`torch.nn.Module`):
|
76 |
+
The model to convert, can be any `torch.nn.Module` instance.
|
77 |
+
quantization_config (`AwqConfig`):
|
78 |
+
The quantization config object that contains the quantization parameters.
|
79 |
+
modules_to_not_convert (`list`, *optional*):
|
80 |
+
A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be
|
81 |
+
converted.
|
82 |
+
current_key_name (`list`, *optional*):
|
83 |
+
A list that contains the current key name. This is used for recursion and should not be passed by the user.
|
84 |
+
has_been_replaced (`bool`, *optional*):
|
85 |
+
A boolean that indicates if the conversion has been successful or not. This is used for recursion and
|
86 |
+
should not be passed by the user.
|
87 |
+
"""
|
88 |
+
if modules_to_not_convert is None:
|
89 |
+
modules_to_not_convert = []
|
90 |
+
|
91 |
+
backend = quantization_config.backend
|
92 |
+
|
93 |
+
if not is_auto_awq_available():
|
94 |
+
raise ValueError(
|
95 |
+
"AWQ (either `autoawq` or `llmawq`) is not available. Please install it with `pip install autoawq` or check out the installation guide in https://github.com/mit-han-lab/llm-awq"
|
96 |
+
)
|
97 |
+
|
98 |
+
if backend == AwqBackendPackingMethod.AUTOAWQ:
|
99 |
+
if quantization_config.version == AWQLinearVersion.GEMM:
|
100 |
+
from awq.modules.linear.gemm import WQLinear_GEMM
|
101 |
+
|
102 |
+
target_cls = WQLinear_GEMM
|
103 |
+
elif quantization_config.version == AWQLinearVersion.GEMV:
|
104 |
+
from awq.modules.linear.gemv import WQLinear_GEMV
|
105 |
+
|
106 |
+
target_cls = WQLinear_GEMV
|
107 |
+
elif quantization_config.version == AWQLinearVersion.EXLLAMA:
|
108 |
+
if quantization_config.exllama_config["version"] == ExllamaVersion.ONE:
|
109 |
+
from awq.modules.linear.exllama import WQLinear_Exllama
|
110 |
+
|
111 |
+
target_cls = WQLinear_Exllama
|
112 |
+
elif quantization_config.exllama_config["version"] == ExllamaVersion.TWO:
|
113 |
+
from awq.modules.linear.exllamav2 import WQLinear_ExllamaV2
|
114 |
+
|
115 |
+
target_cls = WQLinear_ExllamaV2
|
116 |
+
else:
|
117 |
+
raise ValueError(f"Unrecognized Exllama version: {quantization_config.exllama_config['version']}")
|
118 |
+
else:
|
119 |
+
raise ValueError(f"Unrecognized AWQ version: {quantization_config.version}")
|
120 |
+
else:
|
121 |
+
from awq.quantize.qmodule import WQLinear
|
122 |
+
|
123 |
+
target_cls = WQLinear
|
124 |
+
|
125 |
+
for name, module in model.named_children():
|
126 |
+
if current_key_name is None:
|
127 |
+
current_key_name = []
|
128 |
+
current_key_name.append(name)
|
129 |
+
|
130 |
+
if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
|
131 |
+
# Check if the current key is not in the `modules_to_not_convert`
|
132 |
+
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
|
133 |
+
in_features = module.in_features
|
134 |
+
out_features = module.out_features
|
135 |
+
|
136 |
+
model._modules[name] = target_cls(
|
137 |
+
w_bit=quantization_config.bits,
|
138 |
+
group_size=quantization_config.group_size,
|
139 |
+
in_features=in_features,
|
140 |
+
out_features=out_features,
|
141 |
+
bias=module.bias is not None,
|
142 |
+
dev=module.weight.device,
|
143 |
+
)
|
144 |
+
has_been_replaced = True
|
145 |
+
|
146 |
+
# Force requires grad to False to avoid unexpected errors
|
147 |
+
model._modules[name].requires_grad_(False)
|
148 |
+
if len(list(module.children())) > 0:
|
149 |
+
_, has_been_replaced = replace_with_awq_linear(
|
150 |
+
module,
|
151 |
+
modules_to_not_convert=modules_to_not_convert,
|
152 |
+
current_key_name=current_key_name,
|
153 |
+
quantization_config=quantization_config,
|
154 |
+
has_been_replaced=has_been_replaced,
|
155 |
+
)
|
156 |
+
# Remove the last key for recursion
|
157 |
+
current_key_name.pop(-1)
|
158 |
+
return model, has_been_replaced
|
159 |
+
|
160 |
+
|
161 |
+
def get_modules_to_fuse(model, quantization_config):
|
162 |
+
"""
|
163 |
+
Returns the fusing mapping given the quantization config and the model
|
164 |
+
|
165 |
+
Args:
|
166 |
+
model (`~PreTrainedModel`):
|
167 |
+
The model to fuse - note this model should have been converted into AWQ format beforehand.
|
168 |
+
quantization_config (`~transformers.quantization_config.AWQConfig`):
|
169 |
+
The quantization configuration to use.
|
170 |
+
"""
|
171 |
+
if not isinstance(model, PreTrainedModel):
|
172 |
+
raise ValueError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}")
|
173 |
+
|
174 |
+
# Always default to `quantization_config.modules_to_fuse`
|
175 |
+
if quantization_config.modules_to_fuse is not None:
|
176 |
+
current_fused_mapping = quantization_config.modules_to_fuse
|
177 |
+
current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len
|
178 |
+
elif model.config.model_type in AWQ_FUSED_MAPPINGS:
|
179 |
+
current_fused_mapping = AWQ_FUSED_MAPPINGS[model.config.model_type]
|
180 |
+
|
181 |
+
# Properly deal with the case where we have a multi-modal model as well (e.g. Llava)
|
182 |
+
if not hasattr(model.config, "text_config"):
|
183 |
+
config = model.config
|
184 |
+
else:
|
185 |
+
config = model.config.text_config
|
186 |
+
|
187 |
+
# Handle hidden_size, num_attention_heads, num_key_value_heads on our own.
|
188 |
+
hidden_size = config.hidden_size
|
189 |
+
num_attention_heads = config.num_attention_heads
|
190 |
+
num_key_value_heads = getattr(config, "num_key_value_heads", num_attention_heads)
|
191 |
+
|
192 |
+
# Fill `current_fused_mapping` with the expected values
|
193 |
+
current_fused_mapping["hidden_size"] = hidden_size
|
194 |
+
current_fused_mapping["num_attention_heads"] = num_attention_heads
|
195 |
+
current_fused_mapping["num_key_value_heads"] = num_key_value_heads
|
196 |
+
current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len
|
197 |
+
else:
|
198 |
+
raise ValueError(
|
199 |
+
"Fusing mapping not found either on the quantization config or the supported `AWQ_FUSED_MAPPINGS`. Please pass a `fused_mapping` argument"
|
200 |
+
" in the `quantization_config` or raise an issue on transformers https://github.com/huggingface/transformers to add its support."
|
201 |
+
)
|
202 |
+
return current_fused_mapping
|
203 |
+
|
204 |
+
|
205 |
+
def fuse_awq_modules(model, quantization_config):
|
206 |
+
"""
|
207 |
+
Optionally fuse some modules in the model to speedup inference.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
model (`~PreTrainedModel`):
|
211 |
+
The model to fuse - note this model should have been converted into AWQ format beforehand.
|
212 |
+
quantization_config (`Union[AwqConfig, dict]`):
|
213 |
+
The quantization configuration to use.
|
214 |
+
"""
|
215 |
+
# We need to convert it from dict in order to get an AwqConfig object
|
216 |
+
# otherwise the fields `backend` etc. will not be available
|
217 |
+
# https://github.com/huggingface/transformers/pull/27411#discussion_r1414044495
|
218 |
+
if isinstance(quantization_config, dict):
|
219 |
+
quantization_config = AwqConfig.from_dict(quantization_config)
|
220 |
+
backend = quantization_config.backend
|
221 |
+
|
222 |
+
modules_to_fuse = get_modules_to_fuse(model, quantization_config)
|
223 |
+
modules_to_not_convert = getattr(quantization_config, "modules_to_not_convert", None)
|
224 |
+
|
225 |
+
if backend == AwqBackendPackingMethod.AUTOAWQ:
|
226 |
+
from awq.modules.fused.attn import QuantAttentionFused
|
227 |
+
from awq.modules.fused.mlp import QuantFusedMLP
|
228 |
+
from awq.modules.fused.norm import FasterTransformerRMSNorm
|
229 |
+
else:
|
230 |
+
raise ValueError("Fusing is only supported for the AutoAWQ backend")
|
231 |
+
|
232 |
+
fused_attention_modules = []
|
233 |
+
|
234 |
+
for name, module in model.named_modules():
|
235 |
+
if modules_to_not_convert is not None:
|
236 |
+
if any(module_name_to_not_convert in name for module_name_to_not_convert in modules_to_not_convert):
|
237 |
+
continue
|
238 |
+
|
239 |
+
# Replace layer norms
|
240 |
+
_fuse_awq_layernorm(modules_to_fuse["layernorm"], module, FasterTransformerRMSNorm)
|
241 |
+
|
242 |
+
# Replace MLP layers
|
243 |
+
_fuse_awq_mlp(model, name, modules_to_fuse["mlp"], module, QuantFusedMLP)
|
244 |
+
|
245 |
+
# Replace attention layers
|
246 |
+
attention_has_been_fused = _fuse_awq_attention_layers(
|
247 |
+
model, module, modules_to_fuse, name, QuantAttentionFused
|
248 |
+
)
|
249 |
+
|
250 |
+
if attention_has_been_fused:
|
251 |
+
fused_attention_modules.append(name.split(".")[0])
|
252 |
+
|
253 |
+
# For AWQ fused + Llama we need to set `config._attn_implementation` = "custom" to avoid unexpected behavior and pass
|
254 |
+
# `None` attention mask to the fused attention modules as now the attention mask is dropped by our models and dealt
|
255 |
+
# by the `AttentionMaskConverter` module.
|
256 |
+
if len(fused_attention_modules) > 0:
|
257 |
+
for module_name, module in model.named_modules():
|
258 |
+
if any(
|
259 |
+
module_name in fused_attention_modules for fused_attention_parent_module in fused_attention_modules
|
260 |
+
):
|
261 |
+
if hasattr(module, "config") and hasattr(module.config, "_attn_implementation"):
|
262 |
+
module.config._attn_implementation = "custom"
|
263 |
+
return model
|
264 |
+
|
265 |
+
|
266 |
+
def _fuse_awq_layernorm(fuse_module_names, module, target_cls):
|
267 |
+
"""
|
268 |
+
Fuse the LayerNorm layers into a target class using autoawq
|
269 |
+
|
270 |
+
Args:
|
271 |
+
fuse_module_names (`List[str]`):
|
272 |
+
The list of module names to fuse
|
273 |
+
module (`nn.Module`):
|
274 |
+
The pytorch parent module that has layernorm modules to fuse
|
275 |
+
target_cls (`~autoawq.FasterTransformerRMSNorm`):
|
276 |
+
The `FasterTransformerRMSNorm` class as it only supports that class
|
277 |
+
for now.
|
278 |
+
"""
|
279 |
+
for module_name in fuse_module_names:
|
280 |
+
if hasattr(module, module_name):
|
281 |
+
old_module = getattr(module, module_name)
|
282 |
+
module._modules[module_name] = target_cls(
|
283 |
+
old_module.weight,
|
284 |
+
old_module.variance_epsilon,
|
285 |
+
).to(old_module.weight.device)
|
286 |
+
del old_module
|
287 |
+
|
288 |
+
|
289 |
+
def _fuse_awq_mlp(model, current_module_name, fuse_module_names, module, target_cls):
|
290 |
+
"""
|
291 |
+
Fuse the MLP layers into a target class using autoawq
|
292 |
+
|
293 |
+
Args:
|
294 |
+
model (`~PreTrainedModel`):
|
295 |
+
The input pretrained model
|
296 |
+
current_module_name (`str`):
|
297 |
+
The current submodule name
|
298 |
+
fuse_module_names (`List[str]`):
|
299 |
+
The list of module names to fuse. For the MLP layers it has to be an array
|
300 |
+
of length 3 that consists of the 3 MLP layers in the order (gate (dense layer post-attention) / up / down layers)
|
301 |
+
module (`nn.Module`):
|
302 |
+
The pytorch parent module that has layernorm modules to fuse
|
303 |
+
target_cls (`~autoawq.QuantFusedMLP`):
|
304 |
+
The `QuantFusedMLP` class as it only supports that class
|
305 |
+
for now.
|
306 |
+
"""
|
307 |
+
if len(fuse_module_names) == 0:
|
308 |
+
return
|
309 |
+
|
310 |
+
if hasattr(module, fuse_module_names[0]):
|
311 |
+
gate_proj = getattr(module, fuse_module_names[0])
|
312 |
+
up_proj = getattr(module, fuse_module_names[1])
|
313 |
+
down_proj = getattr(module, fuse_module_names[2])
|
314 |
+
|
315 |
+
previous_device = gate_proj.qweight.device
|
316 |
+
|
317 |
+
# Deal also with the case model has `text_config` attribute
|
318 |
+
hidden_act = (
|
319 |
+
model.config.hidden_act
|
320 |
+
if not hasattr(model.config, "text_config")
|
321 |
+
else model.config.text_config.hidden_act
|
322 |
+
)
|
323 |
+
activation_fn = ACT2FN[hidden_act]
|
324 |
+
new_module = target_cls(gate_proj, down_proj, up_proj, activation_fn)
|
325 |
+
|
326 |
+
parent_name, child_name = current_module_name.rsplit(".", 1)
|
327 |
+
parent = model.get_submodule(parent_name)
|
328 |
+
setattr(parent, child_name, new_module.to(previous_device))
|
329 |
+
|
330 |
+
del gate_proj, up_proj, down_proj
|
331 |
+
|
332 |
+
|
333 |
+
def _fuse_awq_attention_layers(model, module, modules_to_fuse, current_module_name, target_cls):
|
334 |
+
"""
|
335 |
+
Fuse the Attention layers into a target class using autoawq
|
336 |
+
|
337 |
+
Args:
|
338 |
+
model (`~PreTrainedModel`):
|
339 |
+
The input pretrained model
|
340 |
+
module (`nn.Module`):
|
341 |
+
The pytorch parent module that has layernorm modules to fuse
|
342 |
+
modules_to_fuse (`List[str]`):
|
343 |
+
The module fusing mapping. The dictionary has to contain a field `attention` with attention module names
|
344 |
+
in the correct order: q, k, v, o layer
|
345 |
+
current_module_name (`str`):
|
346 |
+
The current submodule name
|
347 |
+
target_cls (`~autoawq.QuantAttentionFused`):
|
348 |
+
The `QuantAttentionFused` class as it only supports that class
|
349 |
+
for now.
|
350 |
+
"""
|
351 |
+
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
|
352 |
+
|
353 |
+
module_has_been_fused = False
|
354 |
+
|
355 |
+
if len(modules_to_fuse["attention"]) == 0:
|
356 |
+
return module_has_been_fused
|
357 |
+
|
358 |
+
if hasattr(module, modules_to_fuse["attention"][0]):
|
359 |
+
# First, we pack the QKV layers together
|
360 |
+
q_proj = getattr(module, modules_to_fuse["attention"][0])
|
361 |
+
|
362 |
+
if isinstance(q_proj, WQLinear_GEMV):
|
363 |
+
linear_target_cls = WQLinear_GEMV
|
364 |
+
cat_dim = 0
|
365 |
+
elif isinstance(q_proj, WQLinear_GEMM):
|
366 |
+
linear_target_cls = WQLinear_GEMM
|
367 |
+
cat_dim = 1
|
368 |
+
else:
|
369 |
+
raise ValueError("Unsupported q_proj type: {type(q_proj)}")
|
370 |
+
|
371 |
+
previous_device = q_proj.qweight.device
|
372 |
+
|
373 |
+
k_proj = getattr(module, modules_to_fuse["attention"][1])
|
374 |
+
v_proj = getattr(module, modules_to_fuse["attention"][2])
|
375 |
+
o_proj = getattr(module, modules_to_fuse["attention"][3])
|
376 |
+
|
377 |
+
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None
|
378 |
+
|
379 |
+
qkv_layer = linear_target_cls(
|
380 |
+
q_proj.w_bit,
|
381 |
+
q_proj.group_size,
|
382 |
+
q_proj.in_features,
|
383 |
+
q_proj.out_features + k_proj.out_features + v_proj.out_features,
|
384 |
+
q_proj.bias is not None,
|
385 |
+
next(iter(module.state_dict().values())).device,
|
386 |
+
)
|
387 |
+
|
388 |
+
qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=cat_dim)
|
389 |
+
qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=cat_dim)
|
390 |
+
qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=cat_dim)
|
391 |
+
|
392 |
+
if isinstance(qkv_layer, WQLinear_GEMV):
|
393 |
+
qkv_layer.split_k_iters = q_proj.split_k_iters
|
394 |
+
|
395 |
+
qkv_layer.bias = bias
|
396 |
+
|
397 |
+
fused_attention_layer = target_cls(
|
398 |
+
modules_to_fuse["hidden_size"],
|
399 |
+
modules_to_fuse["num_attention_heads"],
|
400 |
+
modules_to_fuse["num_key_value_heads"],
|
401 |
+
qkv_layer,
|
402 |
+
o_proj,
|
403 |
+
previous_device,
|
404 |
+
modules_to_fuse["max_seq_len"],
|
405 |
+
use_alibi=modules_to_fuse["use_alibi"],
|
406 |
+
# The default value in autoawq is set to 10000.0
|
407 |
+
rope_theta=modules_to_fuse.get("rope_theta", 10000.0),
|
408 |
+
)
|
409 |
+
|
410 |
+
fused_attention_layer.is_hf_transformers = True
|
411 |
+
|
412 |
+
parent_name, child_name = current_module_name.rsplit(".", 1)
|
413 |
+
parent = model.get_submodule(parent_name)
|
414 |
+
setattr(parent, child_name, fused_attention_layer.to(previous_device))
|
415 |
+
|
416 |
+
del q_proj, k_proj, v_proj, o_proj
|
417 |
+
module_has_been_fused = True
|
418 |
+
|
419 |
+
return module_has_been_fused
|
420 |
+
|
421 |
+
|
422 |
+
def post_init_awq_exllama_modules(model, exllama_config):
|
423 |
+
"""
|
424 |
+
Runs post init for Exllama layers which performs:
|
425 |
+
- Weights unpacking, reordering and repacking
|
426 |
+
- Devices scratch space allocation
|
427 |
+
"""
|
428 |
+
|
429 |
+
if exllama_config["version"] == ExllamaVersion.ONE:
|
430 |
+
from awq.modules.linear.exllama import exllama_post_init
|
431 |
+
|
432 |
+
model = exllama_post_init(model)
|
433 |
+
elif exllama_config["version"] == ExllamaVersion.TWO:
|
434 |
+
from awq.modules.linear.exllamav2 import exllamav2_post_init
|
435 |
+
|
436 |
+
model = exllamav2_post_init(
|
437 |
+
model,
|
438 |
+
max_input_len=exllama_config["max_input_len"],
|
439 |
+
max_batch_size=exllama_config["max_batch_size"],
|
440 |
+
)
|
441 |
+
else:
|
442 |
+
raise ValueError(f"Unrecognized Exllama version: {exllama_config['version']}")
|
443 |
+
|
444 |
+
return model
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/bitsandbytes.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib.metadata
|
2 |
+
import warnings
|
3 |
+
from copy import deepcopy
|
4 |
+
from inspect import signature
|
5 |
+
|
6 |
+
from packaging import version
|
7 |
+
|
8 |
+
from ..utils import is_accelerate_available, is_bitsandbytes_available, logging
|
9 |
+
|
10 |
+
|
11 |
+
if is_bitsandbytes_available():
|
12 |
+
import bitsandbytes as bnb
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
from ..pytorch_utils import Conv1D
|
17 |
+
|
18 |
+
if is_accelerate_available():
|
19 |
+
from accelerate import init_empty_weights
|
20 |
+
from accelerate.utils import find_tied_parameters
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def set_module_quantized_tensor_to_device(module, tensor_name, device, value=None, quantized_stats=None):
|
26 |
+
"""
|
27 |
+
A helper function to set a given tensor (parameter of buffer) of a module on a specific device (note that doing
|
28 |
+
`param.to(device)` creates a new tensor not linked to the parameter, which is why we need this function). The
|
29 |
+
function is adapted from `set_module_tensor_to_device` function from accelerate that is adapted to support the
|
30 |
+
class `Int8Params` from `bitsandbytes`.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
module (`torch.nn.Module`):
|
34 |
+
The module in which the tensor we want to move lives.
|
35 |
+
tensor_name (`str`):
|
36 |
+
The full name of the parameter/buffer.
|
37 |
+
device (`int`, `str` or `torch.device`):
|
38 |
+
The device on which to set the tensor.
|
39 |
+
value (`torch.Tensor`, *optional*):
|
40 |
+
The value of the tensor (useful when going from the meta device to any other device).
|
41 |
+
quantized_stats (`dict[str, Any]`, *optional*):
|
42 |
+
Dict with items for either 4-bit or 8-bit serialization
|
43 |
+
"""
|
44 |
+
# Recurse if needed
|
45 |
+
if "." in tensor_name:
|
46 |
+
splits = tensor_name.split(".")
|
47 |
+
for split in splits[:-1]:
|
48 |
+
new_module = getattr(module, split)
|
49 |
+
if new_module is None:
|
50 |
+
raise ValueError(f"{module} has no attribute {split}.")
|
51 |
+
module = new_module
|
52 |
+
tensor_name = splits[-1]
|
53 |
+
|
54 |
+
if tensor_name not in module._parameters and tensor_name not in module._buffers:
|
55 |
+
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
|
56 |
+
is_buffer = tensor_name in module._buffers
|
57 |
+
old_value = getattr(module, tensor_name)
|
58 |
+
|
59 |
+
if old_value.device == torch.device("meta") and device not in ["meta", torch.device("meta")] and value is None:
|
60 |
+
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}.")
|
61 |
+
|
62 |
+
prequantized_loading = quantized_stats is not None
|
63 |
+
if is_buffer or not is_bitsandbytes_available():
|
64 |
+
is_8bit = False
|
65 |
+
is_4bit = False
|
66 |
+
else:
|
67 |
+
is_4bit = hasattr(bnb.nn, "Params4bit") and isinstance(module._parameters[tensor_name], bnb.nn.Params4bit)
|
68 |
+
is_8bit = isinstance(module._parameters[tensor_name], bnb.nn.Int8Params)
|
69 |
+
|
70 |
+
if is_8bit or is_4bit:
|
71 |
+
param = module._parameters[tensor_name]
|
72 |
+
if param.device.type != "cuda":
|
73 |
+
if value is None:
|
74 |
+
new_value = old_value.to(device)
|
75 |
+
elif isinstance(value, torch.Tensor):
|
76 |
+
new_value = value.to("cpu")
|
77 |
+
else:
|
78 |
+
new_value = torch.tensor(value, device="cpu")
|
79 |
+
|
80 |
+
# Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
|
81 |
+
# Since weights are saved in the correct "orientation", we skip transposing when loading.
|
82 |
+
if issubclass(module.source_cls, Conv1D) and not prequantized_loading:
|
83 |
+
new_value = new_value.T
|
84 |
+
|
85 |
+
kwargs = old_value.__dict__
|
86 |
+
|
87 |
+
if prequantized_loading != (new_value.dtype in (torch.int8, torch.uint8)):
|
88 |
+
raise ValueError(
|
89 |
+
f"Value dtype `{new_value.dtype}` is not compatible with parameter quantization status."
|
90 |
+
)
|
91 |
+
|
92 |
+
if is_8bit:
|
93 |
+
is_8bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse(
|
94 |
+
"0.37.2"
|
95 |
+
)
|
96 |
+
if new_value.dtype in (torch.int8, torch.uint8) and not is_8bit_serializable:
|
97 |
+
raise ValueError(
|
98 |
+
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. "
|
99 |
+
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
|
100 |
+
)
|
101 |
+
new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(device)
|
102 |
+
if prequantized_loading:
|
103 |
+
setattr(new_value, "SCB", quantized_stats["SCB"].to(device))
|
104 |
+
elif is_4bit:
|
105 |
+
if prequantized_loading:
|
106 |
+
is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse(
|
107 |
+
"0.41.3"
|
108 |
+
)
|
109 |
+
if new_value.dtype in (torch.int8, torch.uint8) and not is_4bit_serializable:
|
110 |
+
raise ValueError(
|
111 |
+
"Detected 4-bit weights but the version of bitsandbytes is not compatible with 4-bit serialization. "
|
112 |
+
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
|
113 |
+
)
|
114 |
+
new_value = bnb.nn.Params4bit.from_prequantized(
|
115 |
+
data=new_value,
|
116 |
+
quantized_stats=quantized_stats,
|
117 |
+
requires_grad=False,
|
118 |
+
device=device,
|
119 |
+
**kwargs,
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(device)
|
123 |
+
module._parameters[tensor_name] = new_value
|
124 |
+
|
125 |
+
else:
|
126 |
+
if value is None:
|
127 |
+
new_value = old_value.to(device)
|
128 |
+
elif isinstance(value, torch.Tensor):
|
129 |
+
new_value = value.to(device)
|
130 |
+
else:
|
131 |
+
new_value = torch.tensor(value, device=device)
|
132 |
+
|
133 |
+
if is_buffer:
|
134 |
+
module._buffers[tensor_name] = new_value
|
135 |
+
else:
|
136 |
+
new_value = nn.Parameter(new_value, requires_grad=old_value.requires_grad)
|
137 |
+
module._parameters[tensor_name] = new_value
|
138 |
+
|
139 |
+
|
140 |
+
def _replace_with_bnb_linear(
|
141 |
+
model,
|
142 |
+
modules_to_not_convert=None,
|
143 |
+
current_key_name=None,
|
144 |
+
quantization_config=None,
|
145 |
+
has_been_replaced=False,
|
146 |
+
):
|
147 |
+
"""
|
148 |
+
Private method that wraps the recursion for module replacement.
|
149 |
+
|
150 |
+
Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
|
151 |
+
"""
|
152 |
+
for name, module in model.named_children():
|
153 |
+
if current_key_name is None:
|
154 |
+
current_key_name = []
|
155 |
+
current_key_name.append(name)
|
156 |
+
|
157 |
+
if (isinstance(module, nn.Linear) or isinstance(module, Conv1D)) and name not in modules_to_not_convert:
|
158 |
+
# Check if the current key is not in the `modules_to_not_convert`
|
159 |
+
current_key_name_str = ".".join(current_key_name)
|
160 |
+
if not any(
|
161 |
+
(key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert
|
162 |
+
):
|
163 |
+
with init_empty_weights():
|
164 |
+
if isinstance(module, Conv1D):
|
165 |
+
in_features, out_features = module.weight.shape
|
166 |
+
else:
|
167 |
+
in_features = module.in_features
|
168 |
+
out_features = module.out_features
|
169 |
+
|
170 |
+
if quantization_config.quantization_method() == "llm_int8":
|
171 |
+
model._modules[name] = bnb.nn.Linear8bitLt(
|
172 |
+
in_features,
|
173 |
+
out_features,
|
174 |
+
module.bias is not None,
|
175 |
+
has_fp16_weights=quantization_config.llm_int8_has_fp16_weight,
|
176 |
+
threshold=quantization_config.llm_int8_threshold,
|
177 |
+
)
|
178 |
+
has_been_replaced = True
|
179 |
+
else:
|
180 |
+
if (
|
181 |
+
quantization_config.llm_int8_skip_modules is not None
|
182 |
+
and name in quantization_config.llm_int8_skip_modules
|
183 |
+
):
|
184 |
+
pass
|
185 |
+
else:
|
186 |
+
extra_kwargs = (
|
187 |
+
{"quant_storage": quantization_config.bnb_4bit_quant_storage}
|
188 |
+
if "quant_storage" in list(signature(bnb.nn.Linear4bit).parameters)
|
189 |
+
else {}
|
190 |
+
)
|
191 |
+
model._modules[name] = bnb.nn.Linear4bit(
|
192 |
+
in_features,
|
193 |
+
out_features,
|
194 |
+
module.bias is not None,
|
195 |
+
quantization_config.bnb_4bit_compute_dtype,
|
196 |
+
compress_statistics=quantization_config.bnb_4bit_use_double_quant,
|
197 |
+
quant_type=quantization_config.bnb_4bit_quant_type,
|
198 |
+
**extra_kwargs,
|
199 |
+
)
|
200 |
+
has_been_replaced = True
|
201 |
+
# Store the module class in case we need to transpose the weight later
|
202 |
+
model._modules[name].source_cls = type(module)
|
203 |
+
# Force requires grad to False to avoid unexpected errors
|
204 |
+
model._modules[name].requires_grad_(False)
|
205 |
+
if len(list(module.children())) > 0:
|
206 |
+
_, has_been_replaced = _replace_with_bnb_linear(
|
207 |
+
module,
|
208 |
+
modules_to_not_convert,
|
209 |
+
current_key_name,
|
210 |
+
quantization_config,
|
211 |
+
has_been_replaced=has_been_replaced,
|
212 |
+
)
|
213 |
+
# Remove the last key for recursion
|
214 |
+
current_key_name.pop(-1)
|
215 |
+
return model, has_been_replaced
|
216 |
+
|
217 |
+
|
218 |
+
def replace_with_bnb_linear(model, modules_to_not_convert=None, current_key_name=None, quantization_config=None):
|
219 |
+
"""
|
220 |
+
A helper function to replace all `torch.nn.Linear` modules by `bnb.nn.Linear8bit` modules from the `bitsandbytes`
|
221 |
+
library. This will enable running your models using mixed int8 precision as described by the paper `LLM.int8():
|
222 |
+
8-bit Matrix Multiplication for Transformers at Scale`. Make sure `bitsandbytes` compiled with the correct CUDA
|
223 |
+
version of your hardware is installed before running this function. `pip install -i https://test.pypi.org/simple/
|
224 |
+
bitsandbytes`
|
225 |
+
|
226 |
+
The function will be run recursively and replace all `torch.nn.Linear` modules except for the `lm_head` that should
|
227 |
+
be kept as a `torch.nn.Linear` module. The replacement is done under `init_empty_weights` context manager so no
|
228 |
+
CPU/GPU memory is required to run this function. Int8 mixed-precision matrix decomposition works by separating a
|
229 |
+
matrix multiplication into two streams: (1) and systematic feature outlier stream matrix multiplied in fp16
|
230 |
+
(0.01%), (2) a regular stream of int8 matrix multiplication (99.9%). With this method, int8 inference with no
|
231 |
+
predictive degradation is possible for very large models (>=176B parameters).
|
232 |
+
|
233 |
+
Parameters:
|
234 |
+
model (`torch.nn.Module`):
|
235 |
+
Input model or `torch.nn.Module` as the function is run recursively.
|
236 |
+
modules_to_not_convert (`List[`str`]`, *optional*, defaults to `["lm_head"]`):
|
237 |
+
Names of the modules to not convert in `Linear8bitLt`. In practice we keep the `lm_head` in full precision
|
238 |
+
for numerical stability reasons.
|
239 |
+
current_key_name (`List[`str`]`, *optional*):
|
240 |
+
An array to track the current key of the recursion. This is used to check whether the current key (part of
|
241 |
+
it) is not in the list of modules to not convert (for instances modules that are offloaded to `cpu` or
|
242 |
+
`disk`).
|
243 |
+
"""
|
244 |
+
modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert
|
245 |
+
model, has_been_replaced = _replace_with_bnb_linear(
|
246 |
+
model, modules_to_not_convert, current_key_name, quantization_config
|
247 |
+
)
|
248 |
+
|
249 |
+
if not has_been_replaced:
|
250 |
+
logger.warning(
|
251 |
+
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
|
252 |
+
" Please double check your model architecture, or submit an issue on github if you think this is"
|
253 |
+
" a bug."
|
254 |
+
)
|
255 |
+
|
256 |
+
return model
|
257 |
+
|
258 |
+
|
259 |
+
# For backward compatibility
|
260 |
+
def replace_8bit_linear(*args, **kwargs):
|
261 |
+
warnings.warn(
|
262 |
+
"`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead",
|
263 |
+
FutureWarning,
|
264 |
+
)
|
265 |
+
return replace_with_bnb_linear(*args, **kwargs)
|
266 |
+
|
267 |
+
|
268 |
+
# For backward compatiblity
|
269 |
+
def set_module_8bit_tensor_to_device(*args, **kwargs):
|
270 |
+
warnings.warn(
|
271 |
+
"`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead",
|
272 |
+
FutureWarning,
|
273 |
+
)
|
274 |
+
return set_module_quantized_tensor_to_device(*args, **kwargs)
|
275 |
+
|
276 |
+
|
277 |
+
def get_keys_to_not_convert(model):
|
278 |
+
r"""
|
279 |
+
An utility function to get the key of the module to keep in full precision if any For example for CausalLM modules
|
280 |
+
we may want to keep the lm_head in full precision for numerical stability reasons. For other architectures, we want
|
281 |
+
to keep the tied weights of the model. The function will return a list of the keys of the modules to not convert in
|
282 |
+
int8.
|
283 |
+
|
284 |
+
Parameters:
|
285 |
+
model (`torch.nn.Module`):
|
286 |
+
Input model
|
287 |
+
"""
|
288 |
+
# Create a copy of the model and tie the weights, then
|
289 |
+
# check if it contains tied weights
|
290 |
+
tied_model = deepcopy(model) # this has 0 cost since it is done inside `init_empty_weights` context manager`
|
291 |
+
tied_model.tie_weights()
|
292 |
+
|
293 |
+
tied_params = find_tied_parameters(tied_model)
|
294 |
+
# For compatibility with Accelerate < 0.18
|
295 |
+
if isinstance(tied_params, dict):
|
296 |
+
tied_keys = sum(list(tied_params.values()), []) + list(tied_params.keys())
|
297 |
+
else:
|
298 |
+
tied_keys = sum(tied_params, [])
|
299 |
+
has_tied_params = len(tied_keys) > 0
|
300 |
+
|
301 |
+
# If there is not tied weights, we want to keep the lm_head(output_embedding) in full precision
|
302 |
+
if not has_tied_params:
|
303 |
+
output_emb = model.get_output_embeddings()
|
304 |
+
if output_emb is not None:
|
305 |
+
list_last_module = [name for name, module in model.named_modules() if id(module) == id(output_emb)]
|
306 |
+
return list_last_module
|
307 |
+
|
308 |
+
# otherwise, no tied weights, no output embedding defined, simply keep the last module in full precision
|
309 |
+
list_modules = list(model.named_parameters())
|
310 |
+
list_last_module = [list_modules[-1][0]]
|
311 |
+
# add last module together with tied weights
|
312 |
+
intersection = set(list_last_module) - set(tied_keys)
|
313 |
+
list_untouched = list(set(tied_keys)) + list(intersection)
|
314 |
+
|
315 |
+
# remove ".weight" from the keys
|
316 |
+
names_to_remove = [".weight", ".bias"]
|
317 |
+
filtered_module_names = []
|
318 |
+
for name in list_untouched:
|
319 |
+
for name_to_remove in names_to_remove:
|
320 |
+
if name_to_remove in name:
|
321 |
+
name = name.replace(name_to_remove, "")
|
322 |
+
filtered_module_names.append(name)
|
323 |
+
|
324 |
+
return filtered_module_names
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/deepspeed.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
Integration with Deepspeed
|
16 |
+
"""
|
17 |
+
import copy
|
18 |
+
import importlib.metadata as importlib_metadata
|
19 |
+
import importlib.util
|
20 |
+
import weakref
|
21 |
+
from functools import partialmethod
|
22 |
+
|
23 |
+
from ..dependency_versions_check import dep_version_check
|
24 |
+
from ..utils import is_accelerate_available, is_torch_available, is_torch_mlu_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_torch_available():
|
28 |
+
import torch
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
def is_deepspeed_available():
|
35 |
+
package_exists = importlib.util.find_spec("deepspeed") is not None
|
36 |
+
|
37 |
+
# Check we're not importing a "deepspeed" directory somewhere but the actual library by trying to grab the version
|
38 |
+
# AND checking it has an author field in the metadata that is HuggingFace.
|
39 |
+
if package_exists:
|
40 |
+
try:
|
41 |
+
if is_torch_mlu_available():
|
42 |
+
_ = importlib_metadata.metadata("deepspeed-mlu")
|
43 |
+
return True
|
44 |
+
_ = importlib_metadata.metadata("deepspeed")
|
45 |
+
return True
|
46 |
+
except importlib_metadata.PackageNotFoundError:
|
47 |
+
return False
|
48 |
+
|
49 |
+
|
50 |
+
if is_accelerate_available() and is_deepspeed_available():
|
51 |
+
from accelerate.utils.deepspeed import HfDeepSpeedConfig as DeepSpeedConfig
|
52 |
+
else:
|
53 |
+
# Inherits from a dummy `object` if accelerate is not available, so that python succeeds to import this file.
|
54 |
+
# Deepspeed glue code will never inherit this dummy object as it checks if accelerate is available.
|
55 |
+
from builtins import object as DeepSpeedConfig
|
56 |
+
|
57 |
+
|
58 |
+
class HfDeepSpeedConfig(DeepSpeedConfig):
|
59 |
+
"""
|
60 |
+
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
|
61 |
+
|
62 |
+
A `weakref` of this object is stored in the module's globals to be able to access the config from areas where
|
63 |
+
things like the Trainer object is not available (e.g. `from_pretrained` and `_get_resized_embeddings`). Therefore
|
64 |
+
it's important that this object remains alive while the program is still running.
|
65 |
+
|
66 |
+
[`Trainer`] uses the `HfTrainerDeepSpeedConfig` subclass instead. That subclass has logic to sync the configuration
|
67 |
+
with values of [`TrainingArguments`] by replacing special placeholder values: `"auto"`. Without this special logic
|
68 |
+
the DeepSpeed configuration is not modified in any way.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
config_file_or_dict (`Union[str, Dict]`): path to DeepSpeed config file or dict.
|
72 |
+
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(self, config_file_or_dict):
|
76 |
+
# set global weakref object
|
77 |
+
set_hf_deepspeed_config(self)
|
78 |
+
dep_version_check("accelerate")
|
79 |
+
dep_version_check("deepspeed")
|
80 |
+
super().__init__(config_file_or_dict)
|
81 |
+
|
82 |
+
|
83 |
+
class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig):
|
84 |
+
"""
|
85 |
+
The `HfTrainerDeepSpeedConfig` object is meant to be created during `TrainingArguments` object creation and has the
|
86 |
+
same lifespan as the latter.
|
87 |
+
"""
|
88 |
+
|
89 |
+
def __init__(self, config_file_or_dict):
|
90 |
+
super().__init__(config_file_or_dict)
|
91 |
+
self._dtype = None
|
92 |
+
self.mismatches = []
|
93 |
+
|
94 |
+
def dtype(self):
|
95 |
+
if self._dtype is None:
|
96 |
+
raise ValueError("trainer_config_process() wasn't called yet to tell dtype")
|
97 |
+
return self._dtype
|
98 |
+
|
99 |
+
def is_auto(self, ds_key_long):
|
100 |
+
val = self.get_value(ds_key_long)
|
101 |
+
if val is None:
|
102 |
+
return False
|
103 |
+
else:
|
104 |
+
return val == "auto"
|
105 |
+
|
106 |
+
def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True):
|
107 |
+
"""
|
108 |
+
A utility method that massages the config file and can optionally verify that the values match.
|
109 |
+
|
110 |
+
1. Replace "auto" values with `TrainingArguments` value.
|
111 |
+
|
112 |
+
2. If it wasn't "auto" and `must_match` is true, then check that DS config matches Trainer
|
113 |
+
config values and if mismatched add the entry to `self.mismatched` - will assert during
|
114 |
+
`trainer_config_finalize` for one or more mismatches.
|
115 |
+
|
116 |
+
"""
|
117 |
+
config, ds_key = self.find_config_node(ds_key_long)
|
118 |
+
if config is None:
|
119 |
+
return
|
120 |
+
|
121 |
+
if config.get(ds_key) == "auto":
|
122 |
+
config[ds_key] = hf_val
|
123 |
+
return
|
124 |
+
|
125 |
+
if not must_match:
|
126 |
+
return
|
127 |
+
|
128 |
+
ds_val = config.get(ds_key)
|
129 |
+
if ds_val is not None and ds_val != hf_val:
|
130 |
+
self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}")
|
131 |
+
|
132 |
+
fill_only = partialmethod(fill_match, must_match=False)
|
133 |
+
|
134 |
+
def trainer_config_process(self, args, auto_find_batch_size=False):
|
135 |
+
"""
|
136 |
+
Adjust the config with `TrainingArguments` values. This stage is run during `TrainingArguments` object
|
137 |
+
creation.
|
138 |
+
"""
|
139 |
+
# DeepSpeed does:
|
140 |
+
# train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
|
141 |
+
train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps
|
142 |
+
self.fill_match(
|
143 |
+
"train_micro_batch_size_per_gpu",
|
144 |
+
args.per_device_train_batch_size,
|
145 |
+
"per_device_train_batch_size",
|
146 |
+
not auto_find_batch_size,
|
147 |
+
)
|
148 |
+
self.fill_match(
|
149 |
+
"gradient_accumulation_steps",
|
150 |
+
args.gradient_accumulation_steps,
|
151 |
+
"gradient_accumulation_steps",
|
152 |
+
)
|
153 |
+
self.fill_match(
|
154 |
+
"train_batch_size",
|
155 |
+
train_batch_size,
|
156 |
+
"train_batch_size (calculated)",
|
157 |
+
not auto_find_batch_size,
|
158 |
+
)
|
159 |
+
self.fill_match("gradient_clipping", args.max_grad_norm, "max_grad_norm")
|
160 |
+
|
161 |
+
self.fill_match("optimizer.params.lr", args.learning_rate, "learning_rate")
|
162 |
+
self.fill_match(
|
163 |
+
"optimizer.params.betas",
|
164 |
+
[args.adam_beta1, args.adam_beta2],
|
165 |
+
"adam_beta1+adam_beta2",
|
166 |
+
)
|
167 |
+
self.fill_match("optimizer.params.eps", args.adam_epsilon, "adam_epsilon")
|
168 |
+
self.fill_match("optimizer.params.weight_decay", args.weight_decay, "weight_decay")
|
169 |
+
|
170 |
+
self.fill_only("scheduler.params.warmup_min_lr", 0) # not a trainer arg
|
171 |
+
self.fill_match("scheduler.params.warmup_max_lr", args.learning_rate, "learning_rate")
|
172 |
+
# total_num_steps - will get set in trainer_config_finalize
|
173 |
+
|
174 |
+
# fp16
|
175 |
+
if args.fp16 or args.fp16_full_eval:
|
176 |
+
fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
|
177 |
+
else:
|
178 |
+
fp16_backend = None
|
179 |
+
|
180 |
+
if args.save_on_each_node:
|
181 |
+
# deepspeed uses shared storage by default. Let's override this setting if save_on_each_node == True
|
182 |
+
self.config["checkpoint"] = self.config.get("checkpoint", {})
|
183 |
+
self.config["checkpoint"]["use_node_local_storage"] = args.save_on_each_node
|
184 |
+
|
185 |
+
# amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
|
186 |
+
# any here unless the user did the work
|
187 |
+
self.fill_match(
|
188 |
+
"fp16.enabled",
|
189 |
+
((args.fp16 or args.fp16_full_eval) and fp16_backend == "amp"),
|
190 |
+
"fp16|fp16_full_eval+fp16_backend(amp)",
|
191 |
+
)
|
192 |
+
|
193 |
+
# apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
|
194 |
+
# ZeRO features
|
195 |
+
self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)")
|
196 |
+
self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level")
|
197 |
+
|
198 |
+
self.fill_match("bf16.enabled", (args.bf16 or args.bf16_full_eval), "bf16|bf16_full_eval")
|
199 |
+
|
200 |
+
# deepspeed's default mode is fp16 unless there is a config that says differently
|
201 |
+
if self.is_true("bf16.enabled"):
|
202 |
+
self._dtype = torch.bfloat16
|
203 |
+
elif self.is_false("fp16.enabled"):
|
204 |
+
self._dtype = torch.float32
|
205 |
+
else:
|
206 |
+
self._dtype = torch.float16
|
207 |
+
|
208 |
+
def trainer_config_finalize(self, args, model, num_training_steps):
|
209 |
+
"""
|
210 |
+
This stage is run after we have the model and know num_training_steps.
|
211 |
+
|
212 |
+
Now we can complete the configuration process.
|
213 |
+
"""
|
214 |
+
# zero
|
215 |
+
|
216 |
+
# deal with config keys that use `auto` value and rely on model's hidden_size
|
217 |
+
hidden_size_based_keys = [
|
218 |
+
"zero_optimization.reduce_bucket_size",
|
219 |
+
"zero_optimization.stage3_prefetch_bucket_size",
|
220 |
+
"zero_optimization.stage3_param_persistence_threshold",
|
221 |
+
]
|
222 |
+
hidden_size_auto_keys = [x for x in hidden_size_based_keys if self.is_auto(x)]
|
223 |
+
|
224 |
+
if len(hidden_size_auto_keys) > 0:
|
225 |
+
if hasattr(model.config, "hidden_size"):
|
226 |
+
hidden_size = model.config.hidden_size
|
227 |
+
elif hasattr(model.config, "hidden_sizes"):
|
228 |
+
# if there are many hidden sizes pick the largest one
|
229 |
+
hidden_size = max(model.config.hidden_sizes)
|
230 |
+
else:
|
231 |
+
raise ValueError(
|
232 |
+
"The model's config file has neither `hidden_size` nor `hidden_sizes` entry, "
|
233 |
+
"therefore it's not possible to automatically fill out the following `auto` entries "
|
234 |
+
f"in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing "
|
235 |
+
"`auto` values for these keys with an integer value of your choice."
|
236 |
+
)
|
237 |
+
|
238 |
+
self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size)
|
239 |
+
if self.is_zero3():
|
240 |
+
# automatically assign the optimal config values based on model config
|
241 |
+
self.fill_only(
|
242 |
+
"zero_optimization.stage3_prefetch_bucket_size",
|
243 |
+
0.9 * hidden_size * hidden_size,
|
244 |
+
)
|
245 |
+
self.fill_only(
|
246 |
+
"zero_optimization.stage3_param_persistence_threshold",
|
247 |
+
10 * hidden_size,
|
248 |
+
)
|
249 |
+
|
250 |
+
# scheduler
|
251 |
+
self.fill_match(
|
252 |
+
"scheduler.params.total_num_steps",
|
253 |
+
num_training_steps,
|
254 |
+
"num_training_steps (calculated)",
|
255 |
+
)
|
256 |
+
self.fill_match(
|
257 |
+
"scheduler.params.warmup_num_steps",
|
258 |
+
args.get_warmup_steps(num_training_steps),
|
259 |
+
"warmup_steps",
|
260 |
+
)
|
261 |
+
|
262 |
+
if len(self.mismatches) > 0:
|
263 |
+
mismatches = "\n".join(self.mismatches)
|
264 |
+
raise ValueError(
|
265 |
+
"Please correct the following DeepSpeed config values that mismatch TrainingArguments"
|
266 |
+
f" values:\n{mismatches}\nThe easiest method is to set these DeepSpeed config values to 'auto'."
|
267 |
+
)
|
268 |
+
|
269 |
+
|
270 |
+
# keep the config object global to be able to access it anywhere during TrainingArguments life-cycle
|
271 |
+
_hf_deepspeed_config_weak_ref = None
|
272 |
+
|
273 |
+
|
274 |
+
def set_hf_deepspeed_config(hf_deepspeed_config_obj):
|
275 |
+
# this is a special weakref global object to allow us to get to Deepspeed config from APIs
|
276 |
+
# that don't have an easy way to get to the Deepspeed config outside of the Trainer domain.
|
277 |
+
global _hf_deepspeed_config_weak_ref
|
278 |
+
# will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed)
|
279 |
+
_hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj)
|
280 |
+
|
281 |
+
|
282 |
+
def unset_hf_deepspeed_config():
|
283 |
+
# useful for unit tests to ensure the global state doesn't leak - call from `tearDown` method
|
284 |
+
global _hf_deepspeed_config_weak_ref
|
285 |
+
_hf_deepspeed_config_weak_ref = None
|
286 |
+
|
287 |
+
|
288 |
+
def is_deepspeed_zero3_enabled():
|
289 |
+
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
|
290 |
+
return _hf_deepspeed_config_weak_ref().is_zero3()
|
291 |
+
else:
|
292 |
+
return False
|
293 |
+
|
294 |
+
|
295 |
+
def deepspeed_config():
|
296 |
+
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
|
297 |
+
return _hf_deepspeed_config_weak_ref().config
|
298 |
+
else:
|
299 |
+
return None
|
300 |
+
|
301 |
+
|
302 |
+
def deepspeed_optim_sched(trainer, hf_deepspeed_config, args, num_training_steps, model_parameters):
|
303 |
+
"""
|
304 |
+
A convenience wrapper that deals with optimizer and lr scheduler configuration.
|
305 |
+
"""
|
306 |
+
from accelerate.utils import DummyOptim, DummyScheduler
|
307 |
+
|
308 |
+
config = hf_deepspeed_config.config
|
309 |
+
|
310 |
+
# Mixing and matching DS schedulers and optimizers is supported unless Offload is enabled in which case it's:
|
311 |
+
# 1. DS scheduler + DS optimizer: Yes
|
312 |
+
# 2. HF scheduler + HF optimizer: Mostly*
|
313 |
+
# 3. DS scheduler + HF optimizer: Mostly*
|
314 |
+
# 4. HF scheduler + DS optimizer: Yes
|
315 |
+
#
|
316 |
+
# Mostly*: All non-native DeepSpeed optimizers that have both CPU and GPU implementation should work (except LAMB)
|
317 |
+
|
318 |
+
optimizer = None
|
319 |
+
if "optimizer" in config:
|
320 |
+
if args.adafactor:
|
321 |
+
raise ValueError(
|
322 |
+
"--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. "
|
323 |
+
"Only one optimizer can be configured."
|
324 |
+
)
|
325 |
+
optimizer = DummyOptim(params=model_parameters)
|
326 |
+
else:
|
327 |
+
if hf_deepspeed_config.is_offload():
|
328 |
+
logger.info(
|
329 |
+
"Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the"
|
330 |
+
" custom optimizer has both CPU and GPU implementation (except LAMB)"
|
331 |
+
)
|
332 |
+
|
333 |
+
# ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
|
334 |
+
# But trainer uses AdamW by default.
|
335 |
+
optimizer = trainer.create_optimizer()
|
336 |
+
# To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
|
337 |
+
config["zero_allow_untested_optimizer"] = True
|
338 |
+
|
339 |
+
lr_scheduler = None
|
340 |
+
if "scheduler" in config:
|
341 |
+
lr_scheduler = DummyScheduler(optimizer)
|
342 |
+
else:
|
343 |
+
if isinstance(optimizer, DummyOptim):
|
344 |
+
|
345 |
+
def _lr_scheduler_callable(optimizer):
|
346 |
+
# create a shallow copy first, so later modifications do not affect original trainer
|
347 |
+
trainer_copy = copy.copy(trainer)
|
348 |
+
# at the time _lr_scheduler_callable is called, trainer.lr_scheduler has been set
|
349 |
+
# update it to None so that we can re-create a new scheduler
|
350 |
+
trainer_copy.lr_scheduler = None
|
351 |
+
lr_scheduler = trainer_copy.create_scheduler(
|
352 |
+
num_training_steps=num_training_steps, optimizer=optimizer
|
353 |
+
)
|
354 |
+
return lr_scheduler
|
355 |
+
|
356 |
+
lr_scheduler = DummyScheduler(optimizer, lr_scheduler_callable=_lr_scheduler_callable)
|
357 |
+
else:
|
358 |
+
lr_scheduler = trainer.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)
|
359 |
+
|
360 |
+
return optimizer, lr_scheduler
|
361 |
+
|
362 |
+
|
363 |
+
def deepspeed_init(trainer, num_training_steps, inference=False):
|
364 |
+
"""
|
365 |
+
Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args.
|
366 |
+
|
367 |
+
If `resume_from_checkpoint` was passed then an attempt to resume from a previously saved checkpoint will be made.
|
368 |
+
|
369 |
+
Args:
|
370 |
+
trainer: Trainer object
|
371 |
+
num_training_steps: per single gpu
|
372 |
+
resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load
|
373 |
+
inference: launch in inference mode (no optimizer and no lr scheduler)
|
374 |
+
auto_find_batch_size: whether to ignore the `train_micro_batch_size_per_gpu` argument as it's being
|
375 |
+
set automatically by the auto batch size finder
|
376 |
+
|
377 |
+
Returns: optimizer, lr_scheduler
|
378 |
+
|
379 |
+
We may use `deepspeed_init` more than once during the life of Trainer, when we do - it's a temp hack based on:
|
380 |
+
https://github.com/microsoft/DeepSpeed/issues/1394#issuecomment-937405374 until Deepspeed fixes a bug where it
|
381 |
+
can't resume from a checkpoint after it did some stepping https://github.com/microsoft/DeepSpeed/issues/1612
|
382 |
+
|
383 |
+
"""
|
384 |
+
from deepspeed.utils import logger as ds_logger
|
385 |
+
|
386 |
+
model = trainer.model
|
387 |
+
args = trainer.args
|
388 |
+
|
389 |
+
hf_deepspeed_config = trainer.accelerator.state.deepspeed_plugin.hf_ds_config
|
390 |
+
|
391 |
+
# resume config update - some bits like `model` and `num_training_steps` only become available during train
|
392 |
+
hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps)
|
393 |
+
|
394 |
+
# set the Deepspeed log level consistent with the Trainer
|
395 |
+
ds_logger.setLevel(args.get_process_log_level())
|
396 |
+
|
397 |
+
if inference:
|
398 |
+
# only Z3 makes sense for the inference
|
399 |
+
if not hf_deepspeed_config.is_zero3():
|
400 |
+
raise ValueError("ZeRO inference only makes sense with ZeRO Stage 3 - please adjust your config")
|
401 |
+
|
402 |
+
# in case the training config is re-used for inference
|
403 |
+
hf_deepspeed_config.del_config_sub_tree("optimizer")
|
404 |
+
hf_deepspeed_config.del_config_sub_tree("lr_scheduler")
|
405 |
+
optimizer, lr_scheduler = None, None
|
406 |
+
model_parameters = None
|
407 |
+
else:
|
408 |
+
trainer.optimizer = None # important for when deepspeed_init is used as re-init
|
409 |
+
model_parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
|
410 |
+
optimizer, lr_scheduler = deepspeed_optim_sched(
|
411 |
+
trainer, hf_deepspeed_config, args, num_training_steps, model_parameters
|
412 |
+
)
|
413 |
+
|
414 |
+
# keep for quick debug:
|
415 |
+
# from pprint import pprint; pprint(config)
|
416 |
+
|
417 |
+
return optimizer, lr_scheduler
|
418 |
+
|
419 |
+
|
420 |
+
def deepspeed_load_checkpoint(deepspeed_engine, checkpoint_path, load_module_strict=True):
|
421 |
+
# it's possible that the user is trying to resume from model_path, which doesn't necessarily
|
422 |
+
# contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's
|
423 |
+
# a resume from a checkpoint and not just a local pretrained weight. So we check here if the
|
424 |
+
# path contains what looks like a deepspeed checkpoint
|
425 |
+
import glob
|
426 |
+
|
427 |
+
deepspeed_checkpoint_dirs = sorted(glob.glob(f"{checkpoint_path}/global_step*"))
|
428 |
+
|
429 |
+
if len(deepspeed_checkpoint_dirs) > 0:
|
430 |
+
logger.info(f"Attempting to resume from {checkpoint_path}")
|
431 |
+
# this magically updates self.optimizer and self.lr_scheduler
|
432 |
+
load_path, _ = deepspeed_engine.load_checkpoint(
|
433 |
+
checkpoint_path,
|
434 |
+
load_module_strict=load_module_strict,
|
435 |
+
load_optimizer_states=True,
|
436 |
+
load_lr_scheduler_states=True,
|
437 |
+
)
|
438 |
+
if load_path is None:
|
439 |
+
raise ValueError(f"[deepspeed] failed to resume from checkpoint {checkpoint_path}")
|
440 |
+
else:
|
441 |
+
raise ValueError(f"Can't find a valid checkpoint at {checkpoint_path}")
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/integration_utils.py
ADDED
@@ -0,0 +1,1914 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
Integrations with other Python libraries.
|
16 |
+
"""
|
17 |
+
import functools
|
18 |
+
import importlib.metadata
|
19 |
+
import importlib.util
|
20 |
+
import json
|
21 |
+
import numbers
|
22 |
+
import os
|
23 |
+
import pickle
|
24 |
+
import shutil
|
25 |
+
import sys
|
26 |
+
import tempfile
|
27 |
+
from dataclasses import asdict, fields
|
28 |
+
from pathlib import Path
|
29 |
+
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union
|
30 |
+
|
31 |
+
import numpy as np
|
32 |
+
import packaging.version
|
33 |
+
|
34 |
+
from .. import __version__ as version
|
35 |
+
from ..utils import flatten_dict, is_datasets_available, is_pandas_available, is_torch_available, logging
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
if is_torch_available():
|
41 |
+
import torch
|
42 |
+
|
43 |
+
# comet_ml requires to be imported before any ML frameworks
|
44 |
+
_has_comet = importlib.util.find_spec("comet_ml") is not None and os.getenv("COMET_MODE", "").upper() != "DISABLED"
|
45 |
+
if _has_comet:
|
46 |
+
try:
|
47 |
+
import comet_ml # noqa: F401
|
48 |
+
|
49 |
+
if hasattr(comet_ml, "config") and comet_ml.config.get_config("comet.api_key"):
|
50 |
+
_has_comet = True
|
51 |
+
else:
|
52 |
+
if os.getenv("COMET_MODE", "").upper() != "DISABLED":
|
53 |
+
logger.warning("comet_ml is installed but `COMET_API_KEY` is not set.")
|
54 |
+
_has_comet = False
|
55 |
+
except (ImportError, ValueError):
|
56 |
+
_has_comet = False
|
57 |
+
|
58 |
+
_has_neptune = (
|
59 |
+
importlib.util.find_spec("neptune") is not None or importlib.util.find_spec("neptune-client") is not None
|
60 |
+
)
|
61 |
+
if TYPE_CHECKING and _has_neptune:
|
62 |
+
try:
|
63 |
+
_neptune_version = importlib.metadata.version("neptune")
|
64 |
+
logger.info(f"Neptune version {_neptune_version} available.")
|
65 |
+
except importlib.metadata.PackageNotFoundError:
|
66 |
+
try:
|
67 |
+
_neptune_version = importlib.metadata.version("neptune-client")
|
68 |
+
logger.info(f"Neptune-client version {_neptune_version} available.")
|
69 |
+
except importlib.metadata.PackageNotFoundError:
|
70 |
+
_has_neptune = False
|
71 |
+
|
72 |
+
from ..trainer_callback import ProgressCallback, TrainerCallback # noqa: E402
|
73 |
+
from ..trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, IntervalStrategy # noqa: E402
|
74 |
+
from ..training_args import ParallelMode # noqa: E402
|
75 |
+
from ..utils import ENV_VARS_TRUE_VALUES, is_torch_xla_available # noqa: E402
|
76 |
+
|
77 |
+
|
78 |
+
# Integration functions:
|
79 |
+
def is_wandb_available():
|
80 |
+
# any value of WANDB_DISABLED disables wandb
|
81 |
+
if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES:
|
82 |
+
logger.warning(
|
83 |
+
"Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the "
|
84 |
+
"--report_to flag to control the integrations used for logging result (for instance --report_to none)."
|
85 |
+
)
|
86 |
+
return False
|
87 |
+
return importlib.util.find_spec("wandb") is not None
|
88 |
+
|
89 |
+
|
90 |
+
def is_clearml_available():
|
91 |
+
return importlib.util.find_spec("clearml") is not None
|
92 |
+
|
93 |
+
|
94 |
+
def is_comet_available():
|
95 |
+
return _has_comet
|
96 |
+
|
97 |
+
|
98 |
+
def is_tensorboard_available():
|
99 |
+
return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None
|
100 |
+
|
101 |
+
|
102 |
+
def is_optuna_available():
|
103 |
+
return importlib.util.find_spec("optuna") is not None
|
104 |
+
|
105 |
+
|
106 |
+
def is_ray_available():
|
107 |
+
return importlib.util.find_spec("ray") is not None
|
108 |
+
|
109 |
+
|
110 |
+
def is_ray_tune_available():
|
111 |
+
if not is_ray_available():
|
112 |
+
return False
|
113 |
+
return importlib.util.find_spec("ray.tune") is not None
|
114 |
+
|
115 |
+
|
116 |
+
def is_sigopt_available():
|
117 |
+
return importlib.util.find_spec("sigopt") is not None
|
118 |
+
|
119 |
+
|
120 |
+
def is_azureml_available():
|
121 |
+
if importlib.util.find_spec("azureml") is None:
|
122 |
+
return False
|
123 |
+
if importlib.util.find_spec("azureml.core") is None:
|
124 |
+
return False
|
125 |
+
return importlib.util.find_spec("azureml.core.run") is not None
|
126 |
+
|
127 |
+
|
128 |
+
def is_mlflow_available():
|
129 |
+
if os.getenv("DISABLE_MLFLOW_INTEGRATION", "FALSE").upper() == "TRUE":
|
130 |
+
return False
|
131 |
+
return importlib.util.find_spec("mlflow") is not None
|
132 |
+
|
133 |
+
|
134 |
+
def is_dagshub_available():
|
135 |
+
return None not in [importlib.util.find_spec("dagshub"), importlib.util.find_spec("mlflow")]
|
136 |
+
|
137 |
+
|
138 |
+
def is_neptune_available():
|
139 |
+
return _has_neptune
|
140 |
+
|
141 |
+
|
142 |
+
def is_codecarbon_available():
|
143 |
+
return importlib.util.find_spec("codecarbon") is not None
|
144 |
+
|
145 |
+
|
146 |
+
def is_flytekit_available():
|
147 |
+
return importlib.util.find_spec("flytekit") is not None
|
148 |
+
|
149 |
+
|
150 |
+
def is_flyte_deck_standard_available():
|
151 |
+
if not is_flytekit_available():
|
152 |
+
return False
|
153 |
+
return importlib.util.find_spec("flytekitplugins.deck") is not None
|
154 |
+
|
155 |
+
|
156 |
+
def is_dvclive_available():
|
157 |
+
return importlib.util.find_spec("dvclive") is not None
|
158 |
+
|
159 |
+
|
160 |
+
def hp_params(trial):
|
161 |
+
if is_optuna_available():
|
162 |
+
import optuna
|
163 |
+
|
164 |
+
if isinstance(trial, optuna.Trial):
|
165 |
+
return trial.params
|
166 |
+
if is_ray_tune_available():
|
167 |
+
if isinstance(trial, dict):
|
168 |
+
return trial
|
169 |
+
|
170 |
+
if is_sigopt_available():
|
171 |
+
if isinstance(trial, dict):
|
172 |
+
return trial
|
173 |
+
|
174 |
+
if is_wandb_available():
|
175 |
+
if isinstance(trial, dict):
|
176 |
+
return trial
|
177 |
+
|
178 |
+
raise RuntimeError(f"Unknown type for trial {trial.__class__}")
|
179 |
+
|
180 |
+
|
181 |
+
def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
|
182 |
+
import optuna
|
183 |
+
|
184 |
+
if trainer.args.process_index == 0:
|
185 |
+
|
186 |
+
def _objective(trial, checkpoint_dir=None):
|
187 |
+
checkpoint = None
|
188 |
+
if checkpoint_dir:
|
189 |
+
for subdir in os.listdir(checkpoint_dir):
|
190 |
+
if subdir.startswith(PREFIX_CHECKPOINT_DIR):
|
191 |
+
checkpoint = os.path.join(checkpoint_dir, subdir)
|
192 |
+
trainer.objective = None
|
193 |
+
if trainer.args.world_size > 1:
|
194 |
+
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
|
195 |
+
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.")
|
196 |
+
trainer._hp_search_setup(trial)
|
197 |
+
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
|
198 |
+
trainer.train(resume_from_checkpoint=checkpoint)
|
199 |
+
else:
|
200 |
+
trainer.train(resume_from_checkpoint=checkpoint, trial=trial)
|
201 |
+
# If there hasn't been any evaluation during the training loop.
|
202 |
+
if getattr(trainer, "objective", None) is None:
|
203 |
+
metrics = trainer.evaluate()
|
204 |
+
trainer.objective = trainer.compute_objective(metrics)
|
205 |
+
return trainer.objective
|
206 |
+
|
207 |
+
timeout = kwargs.pop("timeout", None)
|
208 |
+
n_jobs = kwargs.pop("n_jobs", 1)
|
209 |
+
directions = direction if isinstance(direction, list) else None
|
210 |
+
direction = None if directions is not None else direction
|
211 |
+
study = optuna.create_study(direction=direction, directions=directions, **kwargs)
|
212 |
+
study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs)
|
213 |
+
if not study._is_multi_objective():
|
214 |
+
best_trial = study.best_trial
|
215 |
+
return BestRun(str(best_trial.number), best_trial.value, best_trial.params)
|
216 |
+
else:
|
217 |
+
best_trials = study.best_trials
|
218 |
+
return [BestRun(str(best.number), best.values, best.params) for best in best_trials]
|
219 |
+
else:
|
220 |
+
for i in range(n_trials):
|
221 |
+
trainer.objective = None
|
222 |
+
args_main_rank = list(pickle.dumps(trainer.args))
|
223 |
+
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
|
224 |
+
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.")
|
225 |
+
torch.distributed.broadcast_object_list(args_main_rank, src=0)
|
226 |
+
args = pickle.loads(bytes(args_main_rank))
|
227 |
+
for key, value in asdict(args).items():
|
228 |
+
if key != "local_rank":
|
229 |
+
setattr(trainer.args, key, value)
|
230 |
+
trainer.train(resume_from_checkpoint=None)
|
231 |
+
# If there hasn't been any evaluation during the training loop.
|
232 |
+
if getattr(trainer, "objective", None) is None:
|
233 |
+
metrics = trainer.evaluate()
|
234 |
+
trainer.objective = trainer.compute_objective(metrics)
|
235 |
+
return None
|
236 |
+
|
237 |
+
|
238 |
+
def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
|
239 |
+
import ray
|
240 |
+
import ray.train
|
241 |
+
|
242 |
+
def _objective(trial: dict, local_trainer):
|
243 |
+
try:
|
244 |
+
from transformers.utils.notebook import NotebookProgressCallback
|
245 |
+
|
246 |
+
if local_trainer.pop_callback(NotebookProgressCallback):
|
247 |
+
local_trainer.add_callback(ProgressCallback)
|
248 |
+
except ModuleNotFoundError:
|
249 |
+
pass
|
250 |
+
|
251 |
+
local_trainer.objective = None
|
252 |
+
|
253 |
+
checkpoint = ray.train.get_checkpoint()
|
254 |
+
if checkpoint:
|
255 |
+
# Upon trial resume, the local_trainer's objective gets reset to None.
|
256 |
+
# If `local_trainer.train` is a noop (training has already reached
|
257 |
+
# the target number of epochs/steps), then this would
|
258 |
+
# trigger an unnecessary extra checkpoint at the end of training.
|
259 |
+
# -> Set the objective to a dummy value upon resume as a workaround.
|
260 |
+
local_trainer.objective = "objective"
|
261 |
+
|
262 |
+
with checkpoint.as_directory() as checkpoint_dir:
|
263 |
+
checkpoint_path = next(Path(checkpoint_dir).glob(f"{PREFIX_CHECKPOINT_DIR}*")).as_posix()
|
264 |
+
local_trainer.train(resume_from_checkpoint=checkpoint_path, trial=trial)
|
265 |
+
else:
|
266 |
+
local_trainer.train(trial=trial)
|
267 |
+
|
268 |
+
# If there hasn't been any evaluation during the training loop.
|
269 |
+
if getattr(local_trainer, "objective", None) is None:
|
270 |
+
metrics = local_trainer.evaluate()
|
271 |
+
local_trainer.objective = local_trainer.compute_objective(metrics)
|
272 |
+
|
273 |
+
metrics.update({"objective": local_trainer.objective, "done": True})
|
274 |
+
|
275 |
+
with tempfile.TemporaryDirectory() as temp_checkpoint_dir:
|
276 |
+
local_trainer._tune_save_checkpoint(checkpoint_dir=temp_checkpoint_dir)
|
277 |
+
checkpoint = ray.train.Checkpoint.from_directory(temp_checkpoint_dir)
|
278 |
+
ray.train.report(metrics, checkpoint=checkpoint)
|
279 |
+
|
280 |
+
if not trainer._memory_tracker.skip_memory_metrics:
|
281 |
+
from ..trainer_utils import TrainerMemoryTracker
|
282 |
+
|
283 |
+
logger.warning(
|
284 |
+
"Memory tracking for your Trainer is currently "
|
285 |
+
"enabled. Automatically disabling the memory tracker "
|
286 |
+
"since the memory tracker is not serializable."
|
287 |
+
)
|
288 |
+
trainer._memory_tracker = TrainerMemoryTracker(skip_memory_metrics=True)
|
289 |
+
|
290 |
+
# The model and TensorBoard writer do not pickle so we have to remove them (if they exists)
|
291 |
+
# while doing the ray hp search.
|
292 |
+
_tb_writer = trainer.pop_callback(TensorBoardCallback)
|
293 |
+
trainer.model = None
|
294 |
+
|
295 |
+
# Setup default `resources_per_trial`.
|
296 |
+
if "resources_per_trial" not in kwargs:
|
297 |
+
# Default to 1 CPU and 1 GPU (if applicable) per trial.
|
298 |
+
kwargs["resources_per_trial"] = {"cpu": 1}
|
299 |
+
if trainer.args.n_gpu > 0:
|
300 |
+
kwargs["resources_per_trial"]["gpu"] = 1
|
301 |
+
resource_msg = "1 CPU" + (" and 1 GPU" if trainer.args.n_gpu > 0 else "")
|
302 |
+
logger.info(
|
303 |
+
"No `resources_per_trial` arg was passed into "
|
304 |
+
"`hyperparameter_search`. Setting it to a default value "
|
305 |
+
f"of {resource_msg} for each trial."
|
306 |
+
)
|
307 |
+
# Make sure each trainer only uses GPUs that were allocated per trial.
|
308 |
+
gpus_per_trial = kwargs["resources_per_trial"].get("gpu", 0)
|
309 |
+
trainer.args._n_gpu = gpus_per_trial
|
310 |
+
|
311 |
+
# Setup default `progress_reporter`.
|
312 |
+
if "progress_reporter" not in kwargs:
|
313 |
+
from ray.tune import CLIReporter
|
314 |
+
|
315 |
+
kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"])
|
316 |
+
|
317 |
+
if "scheduler" in kwargs:
|
318 |
+
from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining
|
319 |
+
|
320 |
+
# Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting.
|
321 |
+
if isinstance(
|
322 |
+
kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining)
|
323 |
+
) and (not trainer.args.do_eval or trainer.args.evaluation_strategy == IntervalStrategy.NO):
|
324 |
+
raise RuntimeError(
|
325 |
+
"You are using {cls} as a scheduler but you haven't enabled evaluation during training. "
|
326 |
+
"This means your trials will not report intermediate results to Ray Tune, and "
|
327 |
+
"can thus not be stopped early or used to exploit other trials parameters. "
|
328 |
+
"If this is what you want, do not use {cls}. If you would like to use {cls}, "
|
329 |
+
"make sure you pass `do_eval=True` and `evaluation_strategy='steps'` in the "
|
330 |
+
"Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__)
|
331 |
+
)
|
332 |
+
|
333 |
+
trainable = ray.tune.with_parameters(_objective, local_trainer=trainer)
|
334 |
+
|
335 |
+
@functools.wraps(trainable)
|
336 |
+
def dynamic_modules_import_trainable(*args, **kwargs):
|
337 |
+
"""
|
338 |
+
Wrapper around `tune.with_parameters` to ensure datasets_modules are loaded on each Actor.
|
339 |
+
|
340 |
+
Without this, an ImportError will be thrown. See https://github.com/huggingface/transformers/issues/11565.
|
341 |
+
|
342 |
+
Assumes that `_objective`, defined above, is a function.
|
343 |
+
"""
|
344 |
+
if is_datasets_available():
|
345 |
+
import datasets.load
|
346 |
+
|
347 |
+
dynamic_modules_path = os.path.join(datasets.load.init_dynamic_modules(), "__init__.py")
|
348 |
+
# load dynamic_modules from path
|
349 |
+
spec = importlib.util.spec_from_file_location("datasets_modules", dynamic_modules_path)
|
350 |
+
datasets_modules = importlib.util.module_from_spec(spec)
|
351 |
+
sys.modules[spec.name] = datasets_modules
|
352 |
+
spec.loader.exec_module(datasets_modules)
|
353 |
+
return trainable(*args, **kwargs)
|
354 |
+
|
355 |
+
# special attr set by tune.with_parameters
|
356 |
+
if hasattr(trainable, "__mixins__"):
|
357 |
+
dynamic_modules_import_trainable.__mixins__ = trainable.__mixins__
|
358 |
+
|
359 |
+
analysis = ray.tune.run(
|
360 |
+
dynamic_modules_import_trainable,
|
361 |
+
config=trainer.hp_space(None),
|
362 |
+
num_samples=n_trials,
|
363 |
+
**kwargs,
|
364 |
+
)
|
365 |
+
best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3], scope=trainer.args.ray_scope)
|
366 |
+
best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config, analysis)
|
367 |
+
if _tb_writer is not None:
|
368 |
+
trainer.add_callback(_tb_writer)
|
369 |
+
return best_run
|
370 |
+
|
371 |
+
|
372 |
+
def run_hp_search_sigopt(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
|
373 |
+
import sigopt
|
374 |
+
|
375 |
+
if trainer.args.process_index == 0:
|
376 |
+
if importlib.metadata.version("sigopt") >= "8.0.0":
|
377 |
+
sigopt.set_project("huggingface")
|
378 |
+
|
379 |
+
experiment = sigopt.create_experiment(
|
380 |
+
name="huggingface-tune",
|
381 |
+
type="offline",
|
382 |
+
parameters=trainer.hp_space(None),
|
383 |
+
metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}],
|
384 |
+
parallel_bandwidth=1,
|
385 |
+
budget=n_trials,
|
386 |
+
)
|
387 |
+
|
388 |
+
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}")
|
389 |
+
|
390 |
+
for run in experiment.loop():
|
391 |
+
with run:
|
392 |
+
trainer.objective = None
|
393 |
+
if trainer.args.world_size > 1:
|
394 |
+
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
|
395 |
+
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
|
396 |
+
trainer._hp_search_setup(run.run)
|
397 |
+
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
|
398 |
+
trainer.train(resume_from_checkpoint=None)
|
399 |
+
else:
|
400 |
+
trainer.train(resume_from_checkpoint=None, trial=run.run)
|
401 |
+
# If there hasn't been any evaluation during the training loop.
|
402 |
+
if getattr(trainer, "objective", None) is None:
|
403 |
+
metrics = trainer.evaluate()
|
404 |
+
trainer.objective = trainer.compute_objective(metrics)
|
405 |
+
run.log_metric("objective", trainer.objective)
|
406 |
+
|
407 |
+
best = list(experiment.get_best_runs())[0]
|
408 |
+
best_run = BestRun(best.id, best.values["objective"].value, best.assignments)
|
409 |
+
else:
|
410 |
+
from sigopt import Connection
|
411 |
+
|
412 |
+
conn = Connection()
|
413 |
+
proxies = kwargs.pop("proxies", None)
|
414 |
+
if proxies is not None:
|
415 |
+
conn.set_proxies(proxies)
|
416 |
+
|
417 |
+
experiment = conn.experiments().create(
|
418 |
+
name="huggingface-tune",
|
419 |
+
parameters=trainer.hp_space(None),
|
420 |
+
metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}],
|
421 |
+
parallel_bandwidth=1,
|
422 |
+
observation_budget=n_trials,
|
423 |
+
project="huggingface",
|
424 |
+
)
|
425 |
+
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}")
|
426 |
+
|
427 |
+
while experiment.progress.observation_count < experiment.observation_budget:
|
428 |
+
suggestion = conn.experiments(experiment.id).suggestions().create()
|
429 |
+
trainer.objective = None
|
430 |
+
if trainer.args.world_size > 1:
|
431 |
+
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
|
432 |
+
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
|
433 |
+
trainer._hp_search_setup(suggestion)
|
434 |
+
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
|
435 |
+
trainer.train(resume_from_checkpoint=None)
|
436 |
+
else:
|
437 |
+
trainer.train(resume_from_checkpoint=None, trial=suggestion)
|
438 |
+
# If there hasn't been any evaluation during the training loop.
|
439 |
+
if getattr(trainer, "objective", None) is None:
|
440 |
+
metrics = trainer.evaluate()
|
441 |
+
trainer.objective = trainer.compute_objective(metrics)
|
442 |
+
|
443 |
+
values = [{"name": "objective", "value": trainer.objective}]
|
444 |
+
obs = conn.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=values)
|
445 |
+
logger.info(f"[suggestion_id, observation_id]: [{suggestion.id}, {obs.id}]")
|
446 |
+
experiment = conn.experiments(experiment.id).fetch()
|
447 |
+
|
448 |
+
best = list(conn.experiments(experiment.id).best_assignments().fetch().iterate_pages())[0]
|
449 |
+
best_run = BestRun(best.id, best.value, best.assignments)
|
450 |
+
return best_run
|
451 |
+
else:
|
452 |
+
for i in range(n_trials):
|
453 |
+
trainer.objective = None
|
454 |
+
args_main_rank = list(pickle.dumps(trainer.args))
|
455 |
+
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
|
456 |
+
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
|
457 |
+
torch.distributed.broadcast_object_list(args_main_rank, src=0)
|
458 |
+
args = pickle.loads(bytes(args_main_rank))
|
459 |
+
for key, value in asdict(args).items():
|
460 |
+
if key != "local_rank":
|
461 |
+
setattr(trainer.args, key, value)
|
462 |
+
trainer.train(resume_from_checkpoint=None)
|
463 |
+
# If there hasn't been any evaluation during the training loop.
|
464 |
+
if getattr(trainer, "objective", None) is None:
|
465 |
+
metrics = trainer.evaluate()
|
466 |
+
trainer.objective = trainer.compute_objective(metrics)
|
467 |
+
return None
|
468 |
+
|
469 |
+
|
470 |
+
def run_hp_search_wandb(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
|
471 |
+
from ..integrations import is_wandb_available
|
472 |
+
|
473 |
+
if not is_wandb_available():
|
474 |
+
raise ImportError("This function needs wandb installed: `pip install wandb`")
|
475 |
+
import wandb
|
476 |
+
|
477 |
+
# add WandbCallback if not already added in trainer callbacks
|
478 |
+
reporting_to_wandb = False
|
479 |
+
for callback in trainer.callback_handler.callbacks:
|
480 |
+
if isinstance(callback, WandbCallback):
|
481 |
+
reporting_to_wandb = True
|
482 |
+
break
|
483 |
+
if not reporting_to_wandb:
|
484 |
+
trainer.add_callback(WandbCallback())
|
485 |
+
trainer.args.report_to = ["wandb"]
|
486 |
+
best_trial = {"run_id": None, "objective": None, "hyperparameters": None}
|
487 |
+
sweep_id = kwargs.pop("sweep_id", None)
|
488 |
+
project = kwargs.pop("project", None)
|
489 |
+
name = kwargs.pop("name", None)
|
490 |
+
entity = kwargs.pop("entity", None)
|
491 |
+
metric = kwargs.pop("metric", "eval/loss")
|
492 |
+
|
493 |
+
sweep_config = trainer.hp_space(None)
|
494 |
+
sweep_config["metric"]["goal"] = direction
|
495 |
+
sweep_config["metric"]["name"] = metric
|
496 |
+
if name:
|
497 |
+
sweep_config["name"] = name
|
498 |
+
|
499 |
+
def _objective():
|
500 |
+
run = wandb.run if wandb.run else wandb.init()
|
501 |
+
trainer.state.trial_name = run.name
|
502 |
+
run.config.update({"assignments": {}, "metric": metric})
|
503 |
+
config = wandb.config
|
504 |
+
|
505 |
+
trainer.objective = None
|
506 |
+
|
507 |
+
trainer.train(resume_from_checkpoint=None, trial=vars(config)["_items"])
|
508 |
+
# If there hasn't been any evaluation during the training loop.
|
509 |
+
if getattr(trainer, "objective", None) is None:
|
510 |
+
metrics = trainer.evaluate()
|
511 |
+
trainer.objective = trainer.compute_objective(metrics)
|
512 |
+
format_metrics = rewrite_logs(metrics)
|
513 |
+
if metric not in format_metrics:
|
514 |
+
logger.warning(
|
515 |
+
f"Provided metric {metric} not found. This might result in unexpected sweeps charts. The available"
|
516 |
+
f" metrics are {format_metrics.keys()}"
|
517 |
+
)
|
518 |
+
best_score = False
|
519 |
+
if best_trial["run_id"] is not None:
|
520 |
+
if direction == "minimize":
|
521 |
+
best_score = trainer.objective < best_trial["objective"]
|
522 |
+
elif direction == "maximize":
|
523 |
+
best_score = trainer.objective > best_trial["objective"]
|
524 |
+
|
525 |
+
if best_score or best_trial["run_id"] is None:
|
526 |
+
best_trial["run_id"] = run.id
|
527 |
+
best_trial["objective"] = trainer.objective
|
528 |
+
best_trial["hyperparameters"] = dict(config)
|
529 |
+
|
530 |
+
return trainer.objective
|
531 |
+
|
532 |
+
sweep_id = wandb.sweep(sweep_config, project=project, entity=entity) if not sweep_id else sweep_id
|
533 |
+
logger.info(f"wandb sweep id - {sweep_id}")
|
534 |
+
wandb.agent(sweep_id, function=_objective, count=n_trials)
|
535 |
+
|
536 |
+
return BestRun(best_trial["run_id"], best_trial["objective"], best_trial["hyperparameters"])
|
537 |
+
|
538 |
+
|
539 |
+
def get_available_reporting_integrations():
|
540 |
+
integrations = []
|
541 |
+
if is_azureml_available() and not is_mlflow_available():
|
542 |
+
integrations.append("azure_ml")
|
543 |
+
if is_comet_available():
|
544 |
+
integrations.append("comet_ml")
|
545 |
+
if is_dagshub_available():
|
546 |
+
integrations.append("dagshub")
|
547 |
+
if is_dvclive_available():
|
548 |
+
integrations.append("dvclive")
|
549 |
+
if is_mlflow_available():
|
550 |
+
integrations.append("mlflow")
|
551 |
+
if is_neptune_available():
|
552 |
+
integrations.append("neptune")
|
553 |
+
if is_tensorboard_available():
|
554 |
+
integrations.append("tensorboard")
|
555 |
+
if is_wandb_available():
|
556 |
+
integrations.append("wandb")
|
557 |
+
if is_codecarbon_available():
|
558 |
+
integrations.append("codecarbon")
|
559 |
+
if is_clearml_available():
|
560 |
+
integrations.append("clearml")
|
561 |
+
return integrations
|
562 |
+
|
563 |
+
|
564 |
+
def rewrite_logs(d):
|
565 |
+
new_d = {}
|
566 |
+
eval_prefix = "eval_"
|
567 |
+
eval_prefix_len = len(eval_prefix)
|
568 |
+
test_prefix = "test_"
|
569 |
+
test_prefix_len = len(test_prefix)
|
570 |
+
for k, v in d.items():
|
571 |
+
if k.startswith(eval_prefix):
|
572 |
+
new_d["eval/" + k[eval_prefix_len:]] = v
|
573 |
+
elif k.startswith(test_prefix):
|
574 |
+
new_d["test/" + k[test_prefix_len:]] = v
|
575 |
+
else:
|
576 |
+
new_d["train/" + k] = v
|
577 |
+
return new_d
|
578 |
+
|
579 |
+
|
580 |
+
class TensorBoardCallback(TrainerCallback):
|
581 |
+
"""
|
582 |
+
A [`TrainerCallback`] that sends the logs to [TensorBoard](https://www.tensorflow.org/tensorboard).
|
583 |
+
|
584 |
+
Args:
|
585 |
+
tb_writer (`SummaryWriter`, *optional*):
|
586 |
+
The writer to use. Will instantiate one if not set.
|
587 |
+
"""
|
588 |
+
|
589 |
+
def __init__(self, tb_writer=None):
|
590 |
+
has_tensorboard = is_tensorboard_available()
|
591 |
+
if not has_tensorboard:
|
592 |
+
raise RuntimeError(
|
593 |
+
"TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or"
|
594 |
+
" install tensorboardX."
|
595 |
+
)
|
596 |
+
if has_tensorboard:
|
597 |
+
try:
|
598 |
+
from torch.utils.tensorboard import SummaryWriter # noqa: F401
|
599 |
+
|
600 |
+
self._SummaryWriter = SummaryWriter
|
601 |
+
except ImportError:
|
602 |
+
try:
|
603 |
+
from tensorboardX import SummaryWriter
|
604 |
+
|
605 |
+
self._SummaryWriter = SummaryWriter
|
606 |
+
except ImportError:
|
607 |
+
self._SummaryWriter = None
|
608 |
+
else:
|
609 |
+
self._SummaryWriter = None
|
610 |
+
self.tb_writer = tb_writer
|
611 |
+
|
612 |
+
def _init_summary_writer(self, args, log_dir=None):
|
613 |
+
log_dir = log_dir or args.logging_dir
|
614 |
+
if self._SummaryWriter is not None:
|
615 |
+
self.tb_writer = self._SummaryWriter(log_dir=log_dir)
|
616 |
+
|
617 |
+
def on_train_begin(self, args, state, control, **kwargs):
|
618 |
+
if not state.is_world_process_zero:
|
619 |
+
return
|
620 |
+
|
621 |
+
log_dir = None
|
622 |
+
|
623 |
+
if state.is_hyper_param_search:
|
624 |
+
trial_name = state.trial_name
|
625 |
+
if trial_name is not None:
|
626 |
+
log_dir = os.path.join(args.logging_dir, trial_name)
|
627 |
+
|
628 |
+
if self.tb_writer is None:
|
629 |
+
self._init_summary_writer(args, log_dir)
|
630 |
+
|
631 |
+
if self.tb_writer is not None:
|
632 |
+
self.tb_writer.add_text("args", args.to_json_string())
|
633 |
+
if "model" in kwargs:
|
634 |
+
model = kwargs["model"]
|
635 |
+
if hasattr(model, "config") and model.config is not None:
|
636 |
+
model_config_json = model.config.to_json_string()
|
637 |
+
self.tb_writer.add_text("model_config", model_config_json)
|
638 |
+
|
639 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
640 |
+
if not state.is_world_process_zero:
|
641 |
+
return
|
642 |
+
|
643 |
+
if self.tb_writer is None:
|
644 |
+
self._init_summary_writer(args)
|
645 |
+
|
646 |
+
if self.tb_writer is not None:
|
647 |
+
logs = rewrite_logs(logs)
|
648 |
+
for k, v in logs.items():
|
649 |
+
if isinstance(v, (int, float)):
|
650 |
+
self.tb_writer.add_scalar(k, v, state.global_step)
|
651 |
+
else:
|
652 |
+
logger.warning(
|
653 |
+
"Trainer is attempting to log a value of "
|
654 |
+
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
|
655 |
+
"This invocation of Tensorboard's writer.add_scalar() "
|
656 |
+
"is incorrect so we dropped this attribute."
|
657 |
+
)
|
658 |
+
self.tb_writer.flush()
|
659 |
+
|
660 |
+
def on_train_end(self, args, state, control, **kwargs):
|
661 |
+
if self.tb_writer:
|
662 |
+
self.tb_writer.close()
|
663 |
+
self.tb_writer = None
|
664 |
+
|
665 |
+
|
666 |
+
class WandbCallback(TrainerCallback):
|
667 |
+
"""
|
668 |
+
A [`TrainerCallback`] that logs metrics, media, model checkpoints to [Weight and Biases](https://www.wandb.com/).
|
669 |
+
"""
|
670 |
+
|
671 |
+
def __init__(self):
|
672 |
+
has_wandb = is_wandb_available()
|
673 |
+
if not has_wandb:
|
674 |
+
raise RuntimeError("WandbCallback requires wandb to be installed. Run `pip install wandb`.")
|
675 |
+
if has_wandb:
|
676 |
+
import wandb
|
677 |
+
|
678 |
+
self._wandb = wandb
|
679 |
+
self._initialized = False
|
680 |
+
# log model
|
681 |
+
if os.getenv("WANDB_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"}):
|
682 |
+
DeprecationWarning(
|
683 |
+
f"Setting `WANDB_LOG_MODEL` as {os.getenv('WANDB_LOG_MODEL')} is deprecated and will be removed in "
|
684 |
+
"version 5 of transformers. Use one of `'end'` or `'checkpoint'` instead."
|
685 |
+
)
|
686 |
+
logger.info(f"Setting `WANDB_LOG_MODEL` from {os.getenv('WANDB_LOG_MODEL')} to `end` instead")
|
687 |
+
self._log_model = "end"
|
688 |
+
else:
|
689 |
+
self._log_model = os.getenv("WANDB_LOG_MODEL", "false").lower()
|
690 |
+
|
691 |
+
def setup(self, args, state, model, **kwargs):
|
692 |
+
"""
|
693 |
+
Setup the optional Weights & Biases (*wandb*) integration.
|
694 |
+
|
695 |
+
One can subclass and override this method to customize the setup if needed. Find more information
|
696 |
+
[here](https://docs.wandb.ai/guides/integrations/huggingface). You can also override the following environment
|
697 |
+
variables:
|
698 |
+
|
699 |
+
Environment:
|
700 |
+
- **WANDB_LOG_MODEL** (`str`, *optional*, defaults to `"false"`):
|
701 |
+
Whether to log model and checkpoints during training. Can be `"end"`, `"checkpoint"` or `"false"`. If set
|
702 |
+
to `"end"`, the model will be uploaded at the end of training. If set to `"checkpoint"`, the checkpoint
|
703 |
+
will be uploaded every `args.save_steps` . If set to `"false"`, the model will not be uploaded. Use along
|
704 |
+
with [`~transformers.TrainingArguments.load_best_model_at_end`] to upload best model.
|
705 |
+
|
706 |
+
<Deprecated version="5.0">
|
707 |
+
|
708 |
+
Setting `WANDB_LOG_MODEL` as `bool` will be deprecated in version 5 of 🤗 Transformers.
|
709 |
+
|
710 |
+
</Deprecated>
|
711 |
+
- **WANDB_WATCH** (`str`, *optional* defaults to `"false"`):
|
712 |
+
Can be `"gradients"`, `"all"`, `"parameters"`, or `"false"`. Set to `"all"` to log gradients and
|
713 |
+
parameters.
|
714 |
+
- **WANDB_PROJECT** (`str`, *optional*, defaults to `"huggingface"`):
|
715 |
+
Set this to a custom string to store results in a different project.
|
716 |
+
- **WANDB_DISABLED** (`bool`, *optional*, defaults to `False`):
|
717 |
+
Whether to disable wandb entirely. Set `WANDB_DISABLED=true` to disable.
|
718 |
+
"""
|
719 |
+
if self._wandb is None:
|
720 |
+
return
|
721 |
+
self._initialized = True
|
722 |
+
if state.is_world_process_zero:
|
723 |
+
logger.info(
|
724 |
+
'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
|
725 |
+
)
|
726 |
+
combined_dict = {**args.to_dict()}
|
727 |
+
|
728 |
+
if hasattr(model, "config") and model.config is not None:
|
729 |
+
model_config = model.config.to_dict()
|
730 |
+
combined_dict = {**model_config, **combined_dict}
|
731 |
+
trial_name = state.trial_name
|
732 |
+
init_args = {}
|
733 |
+
if trial_name is not None:
|
734 |
+
init_args["name"] = trial_name
|
735 |
+
init_args["group"] = args.run_name
|
736 |
+
else:
|
737 |
+
if not (args.run_name is None or args.run_name == args.output_dir):
|
738 |
+
init_args["name"] = args.run_name
|
739 |
+
|
740 |
+
if self._wandb.run is None:
|
741 |
+
self._wandb.init(
|
742 |
+
project=os.getenv("WANDB_PROJECT", "huggingface"),
|
743 |
+
**init_args,
|
744 |
+
)
|
745 |
+
# add config parameters (run may have been created manually)
|
746 |
+
self._wandb.config.update(combined_dict, allow_val_change=True)
|
747 |
+
|
748 |
+
# define default x-axis (for latest wandb versions)
|
749 |
+
if getattr(self._wandb, "define_metric", None):
|
750 |
+
self._wandb.define_metric("train/global_step")
|
751 |
+
self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True)
|
752 |
+
|
753 |
+
# keep track of model topology and gradients, unsupported on TPU
|
754 |
+
_watch_model = os.getenv("WANDB_WATCH", "false")
|
755 |
+
if not is_torch_xla_available() and _watch_model in ("all", "parameters", "gradients"):
|
756 |
+
self._wandb.watch(model, log=_watch_model, log_freq=max(100, state.logging_steps))
|
757 |
+
self._wandb.run._label(code="transformers_trainer")
|
758 |
+
|
759 |
+
def on_train_begin(self, args, state, control, model=None, **kwargs):
|
760 |
+
if self._wandb is None:
|
761 |
+
return
|
762 |
+
hp_search = state.is_hyper_param_search
|
763 |
+
if hp_search:
|
764 |
+
self._wandb.finish()
|
765 |
+
self._initialized = False
|
766 |
+
args.run_name = None
|
767 |
+
if not self._initialized:
|
768 |
+
self.setup(args, state, model, **kwargs)
|
769 |
+
|
770 |
+
def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs):
|
771 |
+
if self._wandb is None:
|
772 |
+
return
|
773 |
+
if self._log_model in ("end", "checkpoint") and self._initialized and state.is_world_process_zero:
|
774 |
+
from ..trainer import Trainer
|
775 |
+
|
776 |
+
fake_trainer = Trainer(args=args, model=model, tokenizer=tokenizer)
|
777 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
778 |
+
fake_trainer.save_model(temp_dir)
|
779 |
+
metadata = (
|
780 |
+
{
|
781 |
+
k: v
|
782 |
+
for k, v in dict(self._wandb.summary).items()
|
783 |
+
if isinstance(v, numbers.Number) and not k.startswith("_")
|
784 |
+
}
|
785 |
+
if not args.load_best_model_at_end
|
786 |
+
else {
|
787 |
+
f"eval/{args.metric_for_best_model}": state.best_metric,
|
788 |
+
"train/total_floss": state.total_flos,
|
789 |
+
}
|
790 |
+
)
|
791 |
+
logger.info("Logging model artifacts. ...")
|
792 |
+
model_name = (
|
793 |
+
f"model-{self._wandb.run.id}"
|
794 |
+
if (args.run_name is None or args.run_name == args.output_dir)
|
795 |
+
else f"model-{self._wandb.run.name}"
|
796 |
+
)
|
797 |
+
artifact = self._wandb.Artifact(name=model_name, type="model", metadata=metadata)
|
798 |
+
for f in Path(temp_dir).glob("*"):
|
799 |
+
if f.is_file():
|
800 |
+
with artifact.new_file(f.name, mode="wb") as fa:
|
801 |
+
fa.write(f.read_bytes())
|
802 |
+
self._wandb.run.log_artifact(artifact)
|
803 |
+
|
804 |
+
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
805 |
+
single_value_scalars = [
|
806 |
+
"train_runtime",
|
807 |
+
"train_samples_per_second",
|
808 |
+
"train_steps_per_second",
|
809 |
+
"train_loss",
|
810 |
+
"total_flos",
|
811 |
+
]
|
812 |
+
|
813 |
+
if self._wandb is None:
|
814 |
+
return
|
815 |
+
if not self._initialized:
|
816 |
+
self.setup(args, state, model)
|
817 |
+
if state.is_world_process_zero:
|
818 |
+
for k, v in logs.items():
|
819 |
+
if k in single_value_scalars:
|
820 |
+
self._wandb.run.summary[k] = v
|
821 |
+
non_scalar_logs = {k: v for k, v in logs.items() if k not in single_value_scalars}
|
822 |
+
non_scalar_logs = rewrite_logs(non_scalar_logs)
|
823 |
+
self._wandb.log({**non_scalar_logs, "train/global_step": state.global_step})
|
824 |
+
|
825 |
+
def on_save(self, args, state, control, **kwargs):
|
826 |
+
if self._log_model == "checkpoint" and self._initialized and state.is_world_process_zero:
|
827 |
+
checkpoint_metadata = {
|
828 |
+
k: v
|
829 |
+
for k, v in dict(self._wandb.summary).items()
|
830 |
+
if isinstance(v, numbers.Number) and not k.startswith("_")
|
831 |
+
}
|
832 |
+
|
833 |
+
ckpt_dir = f"checkpoint-{state.global_step}"
|
834 |
+
artifact_path = os.path.join(args.output_dir, ckpt_dir)
|
835 |
+
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. ...")
|
836 |
+
checkpoint_name = (
|
837 |
+
f"checkpoint-{self._wandb.run.id}"
|
838 |
+
if (args.run_name is None or args.run_name == args.output_dir)
|
839 |
+
else f"checkpoint-{self._wandb.run.name}"
|
840 |
+
)
|
841 |
+
artifact = self._wandb.Artifact(name=checkpoint_name, type="model", metadata=checkpoint_metadata)
|
842 |
+
artifact.add_dir(artifact_path)
|
843 |
+
self._wandb.log_artifact(artifact, aliases=[f"checkpoint-{state.global_step}"])
|
844 |
+
|
845 |
+
|
846 |
+
class CometCallback(TrainerCallback):
|
847 |
+
"""
|
848 |
+
A [`TrainerCallback`] that sends the logs to [Comet ML](https://www.comet.ml/site/).
|
849 |
+
"""
|
850 |
+
|
851 |
+
def __init__(self):
|
852 |
+
if not _has_comet:
|
853 |
+
raise RuntimeError("CometCallback requires comet-ml to be installed. Run `pip install comet-ml`.")
|
854 |
+
self._initialized = False
|
855 |
+
self._log_assets = False
|
856 |
+
|
857 |
+
def setup(self, args, state, model):
|
858 |
+
"""
|
859 |
+
Setup the optional Comet.ml integration.
|
860 |
+
|
861 |
+
Environment:
|
862 |
+
- **COMET_MODE** (`str`, *optional*, defaults to `ONLINE`):
|
863 |
+
Whether to create an online, offline experiment or disable Comet logging. Can be `OFFLINE`, `ONLINE`, or
|
864 |
+
`DISABLED`.
|
865 |
+
- **COMET_PROJECT_NAME** (`str`, *optional*):
|
866 |
+
Comet project name for experiments.
|
867 |
+
- **COMET_OFFLINE_DIRECTORY** (`str`, *optional*):
|
868 |
+
Folder to use for saving offline experiments when `COMET_MODE` is `OFFLINE`.
|
869 |
+
- **COMET_LOG_ASSETS** (`str`, *optional*, defaults to `TRUE`):
|
870 |
+
Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can be `TRUE`, or
|
871 |
+
`FALSE`.
|
872 |
+
|
873 |
+
For a number of configurable items in the environment, see
|
874 |
+
[here](https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables).
|
875 |
+
"""
|
876 |
+
self._initialized = True
|
877 |
+
log_assets = os.getenv("COMET_LOG_ASSETS", "FALSE").upper()
|
878 |
+
if log_assets in {"TRUE", "1"}:
|
879 |
+
self._log_assets = True
|
880 |
+
if state.is_world_process_zero:
|
881 |
+
comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
|
882 |
+
experiment = None
|
883 |
+
experiment_kwargs = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
|
884 |
+
if comet_mode == "ONLINE":
|
885 |
+
experiment = comet_ml.Experiment(**experiment_kwargs)
|
886 |
+
experiment.log_other("Created from", "transformers")
|
887 |
+
logger.info("Automatic Comet.ml online logging enabled")
|
888 |
+
elif comet_mode == "OFFLINE":
|
889 |
+
experiment_kwargs["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
|
890 |
+
experiment = comet_ml.OfflineExperiment(**experiment_kwargs)
|
891 |
+
experiment.log_other("Created from", "transformers")
|
892 |
+
logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
|
893 |
+
if experiment is not None:
|
894 |
+
experiment._set_model_graph(model, framework="transformers")
|
895 |
+
experiment._log_parameters(args, prefix="args/", framework="transformers")
|
896 |
+
if hasattr(model, "config"):
|
897 |
+
experiment._log_parameters(model.config, prefix="config/", framework="transformers")
|
898 |
+
|
899 |
+
def on_train_begin(self, args, state, control, model=None, **kwargs):
|
900 |
+
if not self._initialized:
|
901 |
+
self.setup(args, state, model)
|
902 |
+
|
903 |
+
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
904 |
+
if not self._initialized:
|
905 |
+
self.setup(args, state, model)
|
906 |
+
if state.is_world_process_zero:
|
907 |
+
experiment = comet_ml.config.get_global_experiment()
|
908 |
+
if experiment is not None:
|
909 |
+
experiment._log_metrics(logs, step=state.global_step, epoch=state.epoch, framework="transformers")
|
910 |
+
|
911 |
+
def on_train_end(self, args, state, control, **kwargs):
|
912 |
+
if self._initialized and state.is_world_process_zero:
|
913 |
+
experiment = comet_ml.config.get_global_experiment()
|
914 |
+
if experiment is not None:
|
915 |
+
if self._log_assets is True:
|
916 |
+
logger.info("Logging checkpoints. This may take time.")
|
917 |
+
experiment.log_asset_folder(
|
918 |
+
args.output_dir, recursive=True, log_file_name=True, step=state.global_step
|
919 |
+
)
|
920 |
+
experiment.end()
|
921 |
+
|
922 |
+
|
923 |
+
class AzureMLCallback(TrainerCallback):
|
924 |
+
"""
|
925 |
+
A [`TrainerCallback`] that sends the logs to [AzureML](https://pypi.org/project/azureml-sdk/).
|
926 |
+
"""
|
927 |
+
|
928 |
+
def __init__(self, azureml_run=None):
|
929 |
+
if not is_azureml_available():
|
930 |
+
raise RuntimeError("AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`.")
|
931 |
+
self.azureml_run = azureml_run
|
932 |
+
|
933 |
+
def on_init_end(self, args, state, control, **kwargs):
|
934 |
+
from azureml.core.run import Run
|
935 |
+
|
936 |
+
if self.azureml_run is None and state.is_world_process_zero:
|
937 |
+
self.azureml_run = Run.get_context()
|
938 |
+
|
939 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
940 |
+
if self.azureml_run and state.is_world_process_zero:
|
941 |
+
for k, v in logs.items():
|
942 |
+
if isinstance(v, (int, float)):
|
943 |
+
self.azureml_run.log(k, v, description=k)
|
944 |
+
|
945 |
+
|
946 |
+
class MLflowCallback(TrainerCallback):
|
947 |
+
"""
|
948 |
+
A [`TrainerCallback`] that sends the logs to [MLflow](https://www.mlflow.org/). Can be disabled by setting
|
949 |
+
environment variable `DISABLE_MLFLOW_INTEGRATION = TRUE`.
|
950 |
+
"""
|
951 |
+
|
952 |
+
def __init__(self):
|
953 |
+
if not is_mlflow_available():
|
954 |
+
raise RuntimeError("MLflowCallback requires mlflow to be installed. Run `pip install mlflow`.")
|
955 |
+
import mlflow
|
956 |
+
|
957 |
+
self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH
|
958 |
+
self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH
|
959 |
+
|
960 |
+
self._initialized = False
|
961 |
+
self._auto_end_run = False
|
962 |
+
self._log_artifacts = False
|
963 |
+
self._ml_flow = mlflow
|
964 |
+
|
965 |
+
def setup(self, args, state, model):
|
966 |
+
"""
|
967 |
+
Setup the optional MLflow integration.
|
968 |
+
|
969 |
+
Environment:
|
970 |
+
- **HF_MLFLOW_LOG_ARTIFACTS** (`str`, *optional*):
|
971 |
+
Whether to use MLflow `.log_artifact()` facility to log artifacts. This only makes sense if logging to a
|
972 |
+
remote server, e.g. s3 or GCS. If set to `True` or *1*, will copy each saved checkpoint on each save in
|
973 |
+
[`TrainingArguments`]'s `output_dir` to the local or remote artifact storage. Using it without a remote
|
974 |
+
storage will just copy the files to your artifact location.
|
975 |
+
- **MLFLOW_TRACKING_URI** (`str`, *optional*):
|
976 |
+
Whether to store runs at a specific path or remote server. Unset by default, which skips setting the
|
977 |
+
tracking URI entirely.
|
978 |
+
- **MLFLOW_EXPERIMENT_NAME** (`str`, *optional*, defaults to `None`):
|
979 |
+
Whether to use an MLflow experiment_name under which to launch the run. Default to `None` which will point
|
980 |
+
to the `Default` experiment in MLflow. Otherwise, it is a case sensitive name of the experiment to be
|
981 |
+
activated. If an experiment with this name does not exist, a new experiment with this name is created.
|
982 |
+
- **MLFLOW_TAGS** (`str`, *optional*):
|
983 |
+
A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example:
|
984 |
+
`os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'`.
|
985 |
+
- **MLFLOW_NESTED_RUN** (`str`, *optional*):
|
986 |
+
Whether to use MLflow nested runs. If set to `True` or *1*, will create a nested run inside the current
|
987 |
+
run.
|
988 |
+
- **MLFLOW_RUN_ID** (`str`, *optional*):
|
989 |
+
Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint. When
|
990 |
+
`MLFLOW_RUN_ID` environment variable is set, `start_run` attempts to resume a run with the specified run ID
|
991 |
+
and other parameters are ignored.
|
992 |
+
- **MLFLOW_FLATTEN_PARAMS** (`str`, *optional*, defaults to `False`):
|
993 |
+
Whether to flatten the parameters dictionary before logging.
|
994 |
+
"""
|
995 |
+
self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
|
996 |
+
self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES
|
997 |
+
self._tracking_uri = os.getenv("MLFLOW_TRACKING_URI", None)
|
998 |
+
self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None)
|
999 |
+
self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
|
1000 |
+
self._run_id = os.getenv("MLFLOW_RUN_ID", None)
|
1001 |
+
|
1002 |
+
# "synchronous" flag is only available with mlflow version >= 2.8.0
|
1003 |
+
# https://github.com/mlflow/mlflow/pull/9705
|
1004 |
+
# https://github.com/mlflow/mlflow/releases/tag/v2.8.0
|
1005 |
+
self._async_log = packaging.version.parse(self._ml_flow.__version__) >= packaging.version.parse("2.8.0")
|
1006 |
+
|
1007 |
+
logger.debug(
|
1008 |
+
f"MLflow experiment_name={self._experiment_name}, run_name={args.run_name}, nested={self._nested_run},"
|
1009 |
+
f" tags={self._nested_run}, tracking_uri={self._tracking_uri}"
|
1010 |
+
)
|
1011 |
+
if state.is_world_process_zero:
|
1012 |
+
if not self._ml_flow.is_tracking_uri_set():
|
1013 |
+
if self._tracking_uri:
|
1014 |
+
self._ml_flow.set_tracking_uri(self._tracking_uri)
|
1015 |
+
logger.debug(f"MLflow tracking URI is set to {self._tracking_uri}")
|
1016 |
+
else:
|
1017 |
+
logger.debug(
|
1018 |
+
"Environment variable `MLFLOW_TRACKING_URI` is not provided and therefore will not be"
|
1019 |
+
" explicitly set."
|
1020 |
+
)
|
1021 |
+
else:
|
1022 |
+
logger.debug(f"MLflow tracking URI is set to {self._ml_flow.get_tracking_uri()}")
|
1023 |
+
|
1024 |
+
if self._ml_flow.active_run() is None or self._nested_run or self._run_id:
|
1025 |
+
if self._experiment_name:
|
1026 |
+
# Use of set_experiment() ensure that Experiment is created if not exists
|
1027 |
+
self._ml_flow.set_experiment(self._experiment_name)
|
1028 |
+
self._ml_flow.start_run(run_name=args.run_name, nested=self._nested_run)
|
1029 |
+
logger.debug(f"MLflow run started with run_id={self._ml_flow.active_run().info.run_id}")
|
1030 |
+
self._auto_end_run = True
|
1031 |
+
combined_dict = args.to_dict()
|
1032 |
+
if hasattr(model, "config") and model.config is not None:
|
1033 |
+
model_config = model.config.to_dict()
|
1034 |
+
combined_dict = {**model_config, **combined_dict}
|
1035 |
+
combined_dict = flatten_dict(combined_dict) if self._flatten_params else combined_dict
|
1036 |
+
# remove params that are too long for MLflow
|
1037 |
+
for name, value in list(combined_dict.items()):
|
1038 |
+
# internally, all values are converted to str in MLflow
|
1039 |
+
if len(str(value)) > self._MAX_PARAM_VAL_LENGTH:
|
1040 |
+
logger.warning(
|
1041 |
+
f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s'
|
1042 |
+
" log_param() only accepts values no longer than 250 characters so we dropped this attribute."
|
1043 |
+
" You can use `MLFLOW_FLATTEN_PARAMS` environment variable to flatten the parameters and"
|
1044 |
+
" avoid this message."
|
1045 |
+
)
|
1046 |
+
del combined_dict[name]
|
1047 |
+
# MLflow cannot log more than 100 values in one go, so we have to split it
|
1048 |
+
combined_dict_items = list(combined_dict.items())
|
1049 |
+
for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH):
|
1050 |
+
if self._async_log:
|
1051 |
+
self._ml_flow.log_params(
|
1052 |
+
dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]), synchronous=False
|
1053 |
+
)
|
1054 |
+
else:
|
1055 |
+
self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]))
|
1056 |
+
mlflow_tags = os.getenv("MLFLOW_TAGS", None)
|
1057 |
+
if mlflow_tags:
|
1058 |
+
mlflow_tags = json.loads(mlflow_tags)
|
1059 |
+
self._ml_flow.set_tags(mlflow_tags)
|
1060 |
+
self._initialized = True
|
1061 |
+
|
1062 |
+
def on_train_begin(self, args, state, control, model=None, **kwargs):
|
1063 |
+
if not self._initialized:
|
1064 |
+
self.setup(args, state, model)
|
1065 |
+
|
1066 |
+
def on_log(self, args, state, control, logs, model=None, **kwargs):
|
1067 |
+
if not self._initialized:
|
1068 |
+
self.setup(args, state, model)
|
1069 |
+
if state.is_world_process_zero:
|
1070 |
+
metrics = {}
|
1071 |
+
for k, v in logs.items():
|
1072 |
+
if isinstance(v, (int, float)):
|
1073 |
+
metrics[k] = v
|
1074 |
+
elif isinstance(v, torch.Tensor) and v.numel() == 1:
|
1075 |
+
metrics[k] = v.item()
|
1076 |
+
else:
|
1077 |
+
logger.warning(
|
1078 |
+
f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. '
|
1079 |
+
"MLflow's log_metric() only accepts float and int types so we dropped this attribute."
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
if self._async_log:
|
1083 |
+
self._ml_flow.log_metrics(metrics=metrics, step=state.global_step, synchronous=False)
|
1084 |
+
else:
|
1085 |
+
self._ml_flow.log_metrics(metrics=metrics, step=state.global_step)
|
1086 |
+
|
1087 |
+
def on_train_end(self, args, state, control, **kwargs):
|
1088 |
+
if self._initialized and state.is_world_process_zero:
|
1089 |
+
if self._auto_end_run and self._ml_flow.active_run():
|
1090 |
+
self._ml_flow.end_run()
|
1091 |
+
|
1092 |
+
def on_save(self, args, state, control, **kwargs):
|
1093 |
+
if self._initialized and state.is_world_process_zero and self._log_artifacts:
|
1094 |
+
ckpt_dir = f"checkpoint-{state.global_step}"
|
1095 |
+
artifact_path = os.path.join(args.output_dir, ckpt_dir)
|
1096 |
+
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.")
|
1097 |
+
self._ml_flow.pyfunc.log_model(
|
1098 |
+
ckpt_dir,
|
1099 |
+
artifacts={"model_path": artifact_path},
|
1100 |
+
python_model=self._ml_flow.pyfunc.PythonModel(),
|
1101 |
+
)
|
1102 |
+
|
1103 |
+
def __del__(self):
|
1104 |
+
# if the previous run is not terminated correctly, the fluent API will
|
1105 |
+
# not let you start a new run before the previous one is killed
|
1106 |
+
if (
|
1107 |
+
self._auto_end_run
|
1108 |
+
and callable(getattr(self._ml_flow, "active_run", None))
|
1109 |
+
and self._ml_flow.active_run() is not None
|
1110 |
+
):
|
1111 |
+
self._ml_flow.end_run()
|
1112 |
+
|
1113 |
+
|
1114 |
+
class DagsHubCallback(MLflowCallback):
|
1115 |
+
"""
|
1116 |
+
A [`TrainerCallback`] that logs to [DagsHub](https://dagshub.com/). Extends [`MLflowCallback`]
|
1117 |
+
"""
|
1118 |
+
|
1119 |
+
def __init__(self):
|
1120 |
+
super().__init__()
|
1121 |
+
if not is_dagshub_available():
|
1122 |
+
raise ImportError("DagsHubCallback requires dagshub to be installed. Run `pip install dagshub`.")
|
1123 |
+
|
1124 |
+
from dagshub.upload import Repo
|
1125 |
+
|
1126 |
+
self.Repo = Repo
|
1127 |
+
|
1128 |
+
def setup(self, *args, **kwargs):
|
1129 |
+
"""
|
1130 |
+
Setup the DagsHub's Logging integration.
|
1131 |
+
|
1132 |
+
Environment:
|
1133 |
+
- **HF_DAGSHUB_LOG_ARTIFACTS** (`str`, *optional*):
|
1134 |
+
Whether to save the data and model artifacts for the experiment. Default to `False`.
|
1135 |
+
"""
|
1136 |
+
|
1137 |
+
self.log_artifacts = os.getenv("HF_DAGSHUB_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
|
1138 |
+
self.name = os.getenv("HF_DAGSHUB_MODEL_NAME") or "main"
|
1139 |
+
self.remote = os.getenv("MLFLOW_TRACKING_URI")
|
1140 |
+
self.repo = self.Repo(
|
1141 |
+
owner=self.remote.split(os.sep)[-2],
|
1142 |
+
name=self.remote.split(os.sep)[-1].split(".")[0],
|
1143 |
+
branch=os.getenv("BRANCH") or "main",
|
1144 |
+
)
|
1145 |
+
self.path = Path("artifacts")
|
1146 |
+
|
1147 |
+
if self.remote is None:
|
1148 |
+
raise RuntimeError(
|
1149 |
+
"DagsHubCallback requires the `MLFLOW_TRACKING_URI` environment variable to be set. Did you run"
|
1150 |
+
" `dagshub.init()`?"
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
super().setup(*args, **kwargs)
|
1154 |
+
|
1155 |
+
def on_train_end(self, args, state, control, **kwargs):
|
1156 |
+
if self.log_artifacts:
|
1157 |
+
if getattr(self, "train_dataloader", None):
|
1158 |
+
torch.save(self.train_dataloader.dataset, os.path.join(args.output_dir, "dataset.pt"))
|
1159 |
+
|
1160 |
+
self.repo.directory(str(self.path)).add_dir(args.output_dir)
|
1161 |
+
|
1162 |
+
|
1163 |
+
class NeptuneMissingConfiguration(Exception):
|
1164 |
+
def __init__(self):
|
1165 |
+
super().__init__(
|
1166 |
+
"""
|
1167 |
+
------ Unsupported ---- We were not able to create new runs. You provided a custom Neptune run to
|
1168 |
+
`NeptuneCallback` with the `run` argument. For the integration to work fully, provide your `api_token` and
|
1169 |
+
`project` by saving them as environment variables or passing them to the callback.
|
1170 |
+
"""
|
1171 |
+
)
|
1172 |
+
|
1173 |
+
|
1174 |
+
class NeptuneCallback(TrainerCallback):
|
1175 |
+
"""TrainerCallback that sends the logs to [Neptune](https://app.neptune.ai).
|
1176 |
+
|
1177 |
+
Args:
|
1178 |
+
api_token (`str`, *optional*): Neptune API token obtained upon registration.
|
1179 |
+
You can leave this argument out if you have saved your token to the `NEPTUNE_API_TOKEN` environment
|
1180 |
+
variable (strongly recommended). See full setup instructions in the
|
1181 |
+
[docs](https://docs.neptune.ai/setup/installation).
|
1182 |
+
project (`str`, *optional*): Name of an existing Neptune project, in the form "workspace-name/project-name".
|
1183 |
+
You can find and copy the name in Neptune from the project settings -> Properties. If None (default), the
|
1184 |
+
value of the `NEPTUNE_PROJECT` environment variable is used.
|
1185 |
+
name (`str`, *optional*): Custom name for the run.
|
1186 |
+
base_namespace (`str`, optional, defaults to "finetuning"): In the Neptune run, the root namespace
|
1187 |
+
that will contain all of the metadata logged by the callback.
|
1188 |
+
log_parameters (`bool`, *optional*, defaults to `True`):
|
1189 |
+
If True, logs all Trainer arguments and model parameters provided by the Trainer.
|
1190 |
+
log_checkpoints (`str`, *optional*): If "same", uploads checkpoints whenever they are saved by the Trainer.
|
1191 |
+
If "last", uploads only the most recently saved checkpoint. If "best", uploads the best checkpoint (among
|
1192 |
+
the ones saved by the Trainer). If `None`, does not upload checkpoints.
|
1193 |
+
run (`Run`, *optional*): Pass a Neptune run object if you want to continue logging to an existing run.
|
1194 |
+
Read more about resuming runs in the [docs](https://docs.neptune.ai/logging/to_existing_object).
|
1195 |
+
**neptune_run_kwargs (*optional*):
|
1196 |
+
Additional keyword arguments to be passed directly to the
|
1197 |
+
[`neptune.init_run()`](https://docs.neptune.ai/api/neptune#init_run) function when a new run is created.
|
1198 |
+
|
1199 |
+
For instructions and examples, see the [Transformers integration
|
1200 |
+
guide](https://docs.neptune.ai/integrations/transformers) in the Neptune documentation.
|
1201 |
+
"""
|
1202 |
+
|
1203 |
+
integration_version_key = "source_code/integrations/transformers"
|
1204 |
+
model_parameters_key = "model_parameters"
|
1205 |
+
trial_name_key = "trial"
|
1206 |
+
trial_params_key = "trial_params"
|
1207 |
+
trainer_parameters_key = "trainer_parameters"
|
1208 |
+
flat_metrics = {"train/epoch"}
|
1209 |
+
|
1210 |
+
def __init__(
|
1211 |
+
self,
|
1212 |
+
*,
|
1213 |
+
api_token: Optional[str] = None,
|
1214 |
+
project: Optional[str] = None,
|
1215 |
+
name: Optional[str] = None,
|
1216 |
+
base_namespace: str = "finetuning",
|
1217 |
+
run=None,
|
1218 |
+
log_parameters: bool = True,
|
1219 |
+
log_checkpoints: Optional[str] = None,
|
1220 |
+
**neptune_run_kwargs,
|
1221 |
+
):
|
1222 |
+
if not is_neptune_available():
|
1223 |
+
raise ValueError(
|
1224 |
+
"NeptuneCallback requires the Neptune client library to be installed. "
|
1225 |
+
"To install the library, run `pip install neptune`."
|
1226 |
+
)
|
1227 |
+
|
1228 |
+
try:
|
1229 |
+
from neptune import Run
|
1230 |
+
from neptune.internal.utils import verify_type
|
1231 |
+
except ImportError:
|
1232 |
+
from neptune.new.internal.utils import verify_type
|
1233 |
+
from neptune.new.metadata_containers.run import Run
|
1234 |
+
|
1235 |
+
verify_type("api_token", api_token, (str, type(None)))
|
1236 |
+
verify_type("project", project, (str, type(None)))
|
1237 |
+
verify_type("name", name, (str, type(None)))
|
1238 |
+
verify_type("base_namespace", base_namespace, str)
|
1239 |
+
verify_type("run", run, (Run, type(None)))
|
1240 |
+
verify_type("log_parameters", log_parameters, bool)
|
1241 |
+
verify_type("log_checkpoints", log_checkpoints, (str, type(None)))
|
1242 |
+
|
1243 |
+
self._base_namespace_path = base_namespace
|
1244 |
+
self._log_parameters = log_parameters
|
1245 |
+
self._log_checkpoints = log_checkpoints
|
1246 |
+
self._initial_run: Optional[Run] = run
|
1247 |
+
|
1248 |
+
self._run = None
|
1249 |
+
self._is_monitoring_run = False
|
1250 |
+
self._run_id = None
|
1251 |
+
self._force_reset_monitoring_run = False
|
1252 |
+
self._init_run_kwargs = {"api_token": api_token, "project": project, "name": name, **neptune_run_kwargs}
|
1253 |
+
|
1254 |
+
self._volatile_checkpoints_dir = None
|
1255 |
+
self._should_upload_checkpoint = self._log_checkpoints is not None
|
1256 |
+
self._recent_checkpoint_path = None
|
1257 |
+
|
1258 |
+
if self._log_checkpoints in {"last", "best"}:
|
1259 |
+
self._target_checkpoints_namespace = f"checkpoints/{self._log_checkpoints}"
|
1260 |
+
self._should_clean_recently_uploaded_checkpoint = True
|
1261 |
+
else:
|
1262 |
+
self._target_checkpoints_namespace = "checkpoints"
|
1263 |
+
self._should_clean_recently_uploaded_checkpoint = False
|
1264 |
+
|
1265 |
+
def _stop_run_if_exists(self):
|
1266 |
+
if self._run:
|
1267 |
+
self._run.stop()
|
1268 |
+
del self._run
|
1269 |
+
self._run = None
|
1270 |
+
|
1271 |
+
def _initialize_run(self, **additional_neptune_kwargs):
|
1272 |
+
try:
|
1273 |
+
from neptune import init_run
|
1274 |
+
from neptune.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException
|
1275 |
+
except ImportError:
|
1276 |
+
from neptune.new import init_run
|
1277 |
+
from neptune.new.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException
|
1278 |
+
|
1279 |
+
self._stop_run_if_exists()
|
1280 |
+
|
1281 |
+
try:
|
1282 |
+
run_params = additional_neptune_kwargs.copy()
|
1283 |
+
run_params.update(self._init_run_kwargs)
|
1284 |
+
self._run = init_run(**run_params)
|
1285 |
+
self._run_id = self._run["sys/id"].fetch()
|
1286 |
+
except (NeptuneMissingProjectNameException, NeptuneMissingApiTokenException) as e:
|
1287 |
+
raise NeptuneMissingConfiguration() from e
|
1288 |
+
|
1289 |
+
def _use_initial_run(self):
|
1290 |
+
self._run = self._initial_run
|
1291 |
+
self._is_monitoring_run = True
|
1292 |
+
self._run_id = self._run["sys/id"].fetch()
|
1293 |
+
self._initial_run = None
|
1294 |
+
|
1295 |
+
def _ensure_run_with_monitoring(self):
|
1296 |
+
if self._initial_run is not None:
|
1297 |
+
self._use_initial_run()
|
1298 |
+
else:
|
1299 |
+
if not self._force_reset_monitoring_run and self._is_monitoring_run:
|
1300 |
+
return
|
1301 |
+
|
1302 |
+
if self._run and not self._is_monitoring_run and not self._force_reset_monitoring_run:
|
1303 |
+
self._initialize_run(with_id=self._run_id)
|
1304 |
+
self._is_monitoring_run = True
|
1305 |
+
else:
|
1306 |
+
self._initialize_run()
|
1307 |
+
self._force_reset_monitoring_run = False
|
1308 |
+
|
1309 |
+
def _ensure_at_least_run_without_monitoring(self):
|
1310 |
+
if self._initial_run is not None:
|
1311 |
+
self._use_initial_run()
|
1312 |
+
else:
|
1313 |
+
if not self._run:
|
1314 |
+
self._initialize_run(
|
1315 |
+
with_id=self._run_id,
|
1316 |
+
capture_stdout=False,
|
1317 |
+
capture_stderr=False,
|
1318 |
+
capture_hardware_metrics=False,
|
1319 |
+
capture_traceback=False,
|
1320 |
+
)
|
1321 |
+
self._is_monitoring_run = False
|
1322 |
+
|
1323 |
+
@property
|
1324 |
+
def run(self):
|
1325 |
+
if self._run is None:
|
1326 |
+
self._ensure_at_least_run_without_monitoring()
|
1327 |
+
return self._run
|
1328 |
+
|
1329 |
+
@property
|
1330 |
+
def _metadata_namespace(self):
|
1331 |
+
return self.run[self._base_namespace_path]
|
1332 |
+
|
1333 |
+
def _log_integration_version(self):
|
1334 |
+
self.run[NeptuneCallback.integration_version_key] = version
|
1335 |
+
|
1336 |
+
def _log_trainer_parameters(self, args):
|
1337 |
+
self._metadata_namespace[NeptuneCallback.trainer_parameters_key] = args.to_sanitized_dict()
|
1338 |
+
|
1339 |
+
def _log_model_parameters(self, model):
|
1340 |
+
from neptune.utils import stringify_unsupported
|
1341 |
+
|
1342 |
+
if model and hasattr(model, "config") and model.config is not None:
|
1343 |
+
self._metadata_namespace[NeptuneCallback.model_parameters_key] = stringify_unsupported(
|
1344 |
+
model.config.to_dict()
|
1345 |
+
)
|
1346 |
+
|
1347 |
+
def _log_hyper_param_search_parameters(self, state):
|
1348 |
+
if state and hasattr(state, "trial_name"):
|
1349 |
+
self._metadata_namespace[NeptuneCallback.trial_name_key] = state.trial_name
|
1350 |
+
|
1351 |
+
if state and hasattr(state, "trial_params") and state.trial_params is not None:
|
1352 |
+
self._metadata_namespace[NeptuneCallback.trial_params_key] = state.trial_params
|
1353 |
+
|
1354 |
+
def _log_model_checkpoint(self, source_directory: str, checkpoint: str):
|
1355 |
+
target_path = relative_path = os.path.join(source_directory, checkpoint)
|
1356 |
+
|
1357 |
+
if self._volatile_checkpoints_dir is not None:
|
1358 |
+
consistent_checkpoint_path = os.path.join(self._volatile_checkpoints_dir, checkpoint)
|
1359 |
+
try:
|
1360 |
+
# Remove leading ../ from a relative path.
|
1361 |
+
cpkt_path = relative_path.replace("..", "").lstrip(os.path.sep)
|
1362 |
+
copy_path = os.path.join(consistent_checkpoint_path, cpkt_path)
|
1363 |
+
shutil.copytree(relative_path, copy_path)
|
1364 |
+
target_path = consistent_checkpoint_path
|
1365 |
+
except IOError as e:
|
1366 |
+
logger.warning(
|
1367 |
+
"NeptuneCallback was unable to made a copy of checkpoint due to I/O exception: '{}'. "
|
1368 |
+
"Could fail trying to upload.".format(e)
|
1369 |
+
)
|
1370 |
+
|
1371 |
+
self._metadata_namespace[self._target_checkpoints_namespace].upload_files(target_path)
|
1372 |
+
|
1373 |
+
if self._should_clean_recently_uploaded_checkpoint and self._recent_checkpoint_path is not None:
|
1374 |
+
self._metadata_namespace[self._target_checkpoints_namespace].delete_files(self._recent_checkpoint_path)
|
1375 |
+
|
1376 |
+
self._recent_checkpoint_path = relative_path
|
1377 |
+
|
1378 |
+
def on_init_end(self, args, state, control, **kwargs):
|
1379 |
+
self._volatile_checkpoints_dir = None
|
1380 |
+
if self._log_checkpoints and (args.overwrite_output_dir or args.save_total_limit is not None):
|
1381 |
+
self._volatile_checkpoints_dir = tempfile.TemporaryDirectory().name
|
1382 |
+
|
1383 |
+
if self._log_checkpoints == "best" and not args.load_best_model_at_end:
|
1384 |
+
raise ValueError("To save the best model checkpoint, the load_best_model_at_end argument must be enabled.")
|
1385 |
+
|
1386 |
+
def on_train_begin(self, args, state, control, model=None, **kwargs):
|
1387 |
+
if not state.is_world_process_zero:
|
1388 |
+
return
|
1389 |
+
|
1390 |
+
self._ensure_run_with_monitoring()
|
1391 |
+
self._force_reset_monitoring_run = True
|
1392 |
+
|
1393 |
+
self._log_integration_version()
|
1394 |
+
if self._log_parameters:
|
1395 |
+
self._log_trainer_parameters(args)
|
1396 |
+
self._log_model_parameters(model)
|
1397 |
+
|
1398 |
+
if state.is_hyper_param_search:
|
1399 |
+
self._log_hyper_param_search_parameters(state)
|
1400 |
+
|
1401 |
+
def on_train_end(self, args, state, control, **kwargs):
|
1402 |
+
self._stop_run_if_exists()
|
1403 |
+
|
1404 |
+
def __del__(self):
|
1405 |
+
if self._volatile_checkpoints_dir is not None:
|
1406 |
+
shutil.rmtree(self._volatile_checkpoints_dir, ignore_errors=True)
|
1407 |
+
|
1408 |
+
self._stop_run_if_exists()
|
1409 |
+
|
1410 |
+
def on_save(self, args, state, control, **kwargs):
|
1411 |
+
if self._should_upload_checkpoint:
|
1412 |
+
self._log_model_checkpoint(args.output_dir, f"checkpoint-{state.global_step}")
|
1413 |
+
|
1414 |
+
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
|
1415 |
+
if self._log_checkpoints == "best":
|
1416 |
+
best_metric_name = args.metric_for_best_model
|
1417 |
+
if not best_metric_name.startswith("eval_"):
|
1418 |
+
best_metric_name = f"eval_{best_metric_name}"
|
1419 |
+
|
1420 |
+
metric_value = metrics.get(best_metric_name)
|
1421 |
+
|
1422 |
+
operator = np.greater if args.greater_is_better else np.less
|
1423 |
+
|
1424 |
+
self._should_upload_checkpoint = state.best_metric is None or operator(metric_value, state.best_metric)
|
1425 |
+
|
1426 |
+
@classmethod
|
1427 |
+
def get_run(cls, trainer):
|
1428 |
+
for callback in trainer.callback_handler.callbacks:
|
1429 |
+
if isinstance(callback, cls):
|
1430 |
+
return callback.run
|
1431 |
+
|
1432 |
+
raise Exception("The trainer doesn't have a NeptuneCallback configured.")
|
1433 |
+
|
1434 |
+
def on_log(self, args, state, control, logs: Optional[Dict[str, float]] = None, **kwargs):
|
1435 |
+
if not state.is_world_process_zero:
|
1436 |
+
return
|
1437 |
+
|
1438 |
+
if logs is not None:
|
1439 |
+
for name, value in rewrite_logs(logs).items():
|
1440 |
+
if isinstance(value, (int, float)):
|
1441 |
+
if name in NeptuneCallback.flat_metrics:
|
1442 |
+
self._metadata_namespace[name] = value
|
1443 |
+
else:
|
1444 |
+
self._metadata_namespace[name].log(value, step=state.global_step)
|
1445 |
+
|
1446 |
+
|
1447 |
+
class CodeCarbonCallback(TrainerCallback):
|
1448 |
+
"""
|
1449 |
+
A [`TrainerCallback`] that tracks the CO2 emission of training.
|
1450 |
+
"""
|
1451 |
+
|
1452 |
+
def __init__(self):
|
1453 |
+
if not is_codecarbon_available():
|
1454 |
+
raise RuntimeError(
|
1455 |
+
"CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`."
|
1456 |
+
)
|
1457 |
+
import codecarbon
|
1458 |
+
|
1459 |
+
self._codecarbon = codecarbon
|
1460 |
+
self.tracker = None
|
1461 |
+
|
1462 |
+
def on_init_end(self, args, state, control, **kwargs):
|
1463 |
+
if self.tracker is None and state.is_local_process_zero:
|
1464 |
+
# CodeCarbon will automatically handle environment variables for configuration
|
1465 |
+
self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir)
|
1466 |
+
|
1467 |
+
def on_train_begin(self, args, state, control, model=None, **kwargs):
|
1468 |
+
if self.tracker and state.is_local_process_zero:
|
1469 |
+
self.tracker.start()
|
1470 |
+
|
1471 |
+
def on_train_end(self, args, state, control, **kwargs):
|
1472 |
+
if self.tracker and state.is_local_process_zero:
|
1473 |
+
self.tracker.stop()
|
1474 |
+
|
1475 |
+
|
1476 |
+
class ClearMLCallback(TrainerCallback):
|
1477 |
+
"""
|
1478 |
+
A [`TrainerCallback`] that sends the logs to [ClearML](https://clear.ml/).
|
1479 |
+
|
1480 |
+
Environment:
|
1481 |
+
- **CLEARML_PROJECT** (`str`, *optional*, defaults to `HuggingFace Transformers`):
|
1482 |
+
ClearML project name.
|
1483 |
+
- **CLEARML_TASK** (`str`, *optional*, defaults to `Trainer`):
|
1484 |
+
ClearML task name.
|
1485 |
+
- **CLEARML_LOG_MODEL** (`bool`, *optional*, defaults to `False`):
|
1486 |
+
Whether to log models as artifacts during training.
|
1487 |
+
"""
|
1488 |
+
|
1489 |
+
log_suffix = ""
|
1490 |
+
|
1491 |
+
_hparams_section = "Transformers"
|
1492 |
+
_model_config_section = "Model Configuration"
|
1493 |
+
_ignore_hparams_overrides = "_ignore_hparams_ui_overrides_"
|
1494 |
+
_ignoge_model_config_overrides = "_ignore_model_config_ui_overrides_"
|
1495 |
+
_model_config_description = "The configuration of model number {}."
|
1496 |
+
_model_config_description_note = (
|
1497 |
+
"Note that, when cloning this task and running it remotely,"
|
1498 |
+
" the configuration might be applied to another model instead of this one."
|
1499 |
+
" To avoid this, initialize the task externally by calling `Task.init`"
|
1500 |
+
" before the `ClearMLCallback` is instantiated."
|
1501 |
+
)
|
1502 |
+
_train_run_counter = 0
|
1503 |
+
_model_connect_counter = 0
|
1504 |
+
_task_created_in_callback = False
|
1505 |
+
_should_close_on_train_end = None
|
1506 |
+
|
1507 |
+
def __init__(self):
|
1508 |
+
if is_clearml_available():
|
1509 |
+
import clearml
|
1510 |
+
|
1511 |
+
self._clearml = clearml
|
1512 |
+
else:
|
1513 |
+
raise RuntimeError("ClearMLCallback requires 'clearml' to be installed. Run `pip install clearml`.")
|
1514 |
+
|
1515 |
+
self._initialized = False
|
1516 |
+
self._clearml_task = None
|
1517 |
+
|
1518 |
+
self._log_model = False
|
1519 |
+
self._checkpoints_saved = []
|
1520 |
+
|
1521 |
+
def setup(self, args, state, model, tokenizer, **kwargs):
|
1522 |
+
if self._clearml is None:
|
1523 |
+
return
|
1524 |
+
if self._initialized:
|
1525 |
+
return
|
1526 |
+
ClearMLCallback._train_run_counter += 1
|
1527 |
+
ClearMLCallback._model_connect_counter += 1
|
1528 |
+
ClearMLCallback.log_suffix = (
|
1529 |
+
"" if ClearMLCallback._train_run_counter == 1 else "_" + str(ClearMLCallback._train_run_counter)
|
1530 |
+
)
|
1531 |
+
if state.is_world_process_zero:
|
1532 |
+
logger.info("Automatic ClearML logging enabled.")
|
1533 |
+
if self._clearml_task is None:
|
1534 |
+
if ClearMLCallback._should_close_on_train_end is None:
|
1535 |
+
if not self._clearml.Task.running_locally() or self._clearml.Task.current_task():
|
1536 |
+
ClearMLCallback._should_close_on_train_end = False
|
1537 |
+
else:
|
1538 |
+
ClearMLCallback._should_close_on_train_end = True
|
1539 |
+
|
1540 |
+
# This might happen when running inside of a pipeline, where the task is already initialized
|
1541 |
+
# from outside of Hugging Face
|
1542 |
+
if self._clearml.Task.running_locally() and self._clearml.Task.current_task():
|
1543 |
+
self._clearml_task = self._clearml.Task.current_task()
|
1544 |
+
self._log_model = os.getenv(
|
1545 |
+
"CLEARML_LOG_MODEL",
|
1546 |
+
"FALSE" if not ClearMLCallback._task_created_in_callback else "TRUE",
|
1547 |
+
).upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"})
|
1548 |
+
logger.info("External ClearML Task has been connected.")
|
1549 |
+
else:
|
1550 |
+
self._clearml_task = self._clearml.Task.init(
|
1551 |
+
project_name=os.getenv("CLEARML_PROJECT", "HuggingFace Transformers"),
|
1552 |
+
task_name=os.getenv("CLEARML_TASK", "Trainer"),
|
1553 |
+
auto_connect_frameworks={"tensorboard": False, "pytorch": False},
|
1554 |
+
output_uri=True,
|
1555 |
+
)
|
1556 |
+
self._log_model = os.getenv("CLEARML_LOG_MODEL", "TRUE").upper() in ENV_VARS_TRUE_VALUES.union(
|
1557 |
+
{"TRUE"}
|
1558 |
+
)
|
1559 |
+
ClearMLCallback._task_created_in_callback = True
|
1560 |
+
logger.info("ClearML Task has been initialized.")
|
1561 |
+
self._initialized = True
|
1562 |
+
|
1563 |
+
suffixed_hparams_section = ClearMLCallback._hparams_section + ClearMLCallback.log_suffix
|
1564 |
+
ignore_hparams_config_section = suffixed_hparams_section + "/" + ClearMLCallback._ignore_hparams_overrides
|
1565 |
+
if self._clearml.Task.running_locally():
|
1566 |
+
self._copy_training_args_as_hparams(args, suffixed_hparams_section)
|
1567 |
+
self._clearml_task.set_parameter(
|
1568 |
+
name=ignore_hparams_config_section,
|
1569 |
+
value=True,
|
1570 |
+
value_type=bool,
|
1571 |
+
description=(
|
1572 |
+
"If True, ignore Transformers hyperparameters overrides done in the UI/backend "
|
1573 |
+
+ "when running remotely. Otherwise, the overrides will be applied when running remotely"
|
1574 |
+
),
|
1575 |
+
)
|
1576 |
+
elif not self._clearml_task.get_parameter(ignore_hparams_config_section, default=True, cast=True):
|
1577 |
+
self._clearml_task.connect(args, suffixed_hparams_section)
|
1578 |
+
else:
|
1579 |
+
self._copy_training_args_as_hparams(
|
1580 |
+
args, ClearMLCallback._hparams_section + ClearMLCallback.log_suffix
|
1581 |
+
)
|
1582 |
+
|
1583 |
+
if getattr(model, "config", None) is not None:
|
1584 |
+
ignore_model_config_section = (
|
1585 |
+
suffixed_hparams_section + "/" + ClearMLCallback._ignoge_model_config_overrides
|
1586 |
+
)
|
1587 |
+
configuration_object_description = ClearMLCallback._model_config_description.format(
|
1588 |
+
ClearMLCallback._model_connect_counter
|
1589 |
+
)
|
1590 |
+
if ClearMLCallback._model_connect_counter != ClearMLCallback._train_run_counter:
|
1591 |
+
configuration_object_description += " " + ClearMLCallback._model_config_description_note
|
1592 |
+
if self._clearml.Task.running_locally():
|
1593 |
+
self._clearml_task.set_parameter(
|
1594 |
+
name=ignore_model_config_section,
|
1595 |
+
value=True,
|
1596 |
+
value_type=bool,
|
1597 |
+
description=(
|
1598 |
+
"If True, ignore Transformers model configuration overrides done in the UI/backend "
|
1599 |
+
+ "when running remotely. Otherwise, the overrides will be applied when running remotely"
|
1600 |
+
),
|
1601 |
+
)
|
1602 |
+
self._clearml_task.set_configuration_object(
|
1603 |
+
name=ClearMLCallback._model_config_section + ClearMLCallback.log_suffix,
|
1604 |
+
config_dict=model.config.to_dict(),
|
1605 |
+
description=configuration_object_description,
|
1606 |
+
)
|
1607 |
+
elif not self._clearml_task.get_parameter(ignore_model_config_section, default=True, cast=True):
|
1608 |
+
model.config = model.config.from_dict(
|
1609 |
+
self._clearml_task.get_configuration_object_as_dict(
|
1610 |
+
ClearMLCallback._model_config_section + ClearMLCallback.log_suffix
|
1611 |
+
)
|
1612 |
+
)
|
1613 |
+
else:
|
1614 |
+
self._clearml_task.set_configuration_object(
|
1615 |
+
name=ClearMLCallback._model_config_section + ClearMLCallback.log_suffix,
|
1616 |
+
config_dict=model.config.to_dict(),
|
1617 |
+
description=configuration_object_description,
|
1618 |
+
)
|
1619 |
+
|
1620 |
+
def on_train_begin(self, args, state, control, model=None, tokenizer=None, **kwargs):
|
1621 |
+
if self._clearml is None:
|
1622 |
+
return
|
1623 |
+
self._checkpoints_saved = []
|
1624 |
+
if state.is_hyper_param_search:
|
1625 |
+
self._initialized = False
|
1626 |
+
if not self._initialized:
|
1627 |
+
self.setup(args, state, model, tokenizer, **kwargs)
|
1628 |
+
|
1629 |
+
def on_train_end(self, args, state, control, **kwargs):
|
1630 |
+
if ClearMLCallback._should_close_on_train_end:
|
1631 |
+
self._clearml_task.close()
|
1632 |
+
ClearMLCallback._train_run_counter = 0
|
1633 |
+
|
1634 |
+
def on_log(self, args, state, control, model=None, tokenizer=None, logs=None, **kwargs):
|
1635 |
+
if self._clearml is None:
|
1636 |
+
return
|
1637 |
+
if not self._initialized:
|
1638 |
+
self.setup(args, state, model, tokenizer, **kwargs)
|
1639 |
+
if state.is_world_process_zero:
|
1640 |
+
eval_prefix = "eval_"
|
1641 |
+
eval_prefix_len = len(eval_prefix)
|
1642 |
+
test_prefix = "test_"
|
1643 |
+
test_prefix_len = len(test_prefix)
|
1644 |
+
single_value_scalars = [
|
1645 |
+
"train_runtime",
|
1646 |
+
"train_samples_per_second",
|
1647 |
+
"train_steps_per_second",
|
1648 |
+
"train_loss",
|
1649 |
+
"total_flos",
|
1650 |
+
"epoch",
|
1651 |
+
]
|
1652 |
+
for k, v in logs.items():
|
1653 |
+
if isinstance(v, (int, float)):
|
1654 |
+
if k in single_value_scalars:
|
1655 |
+
self._clearml_task.get_logger().report_single_value(
|
1656 |
+
name=k + ClearMLCallback.log_suffix, value=v
|
1657 |
+
)
|
1658 |
+
elif k.startswith(eval_prefix):
|
1659 |
+
self._clearml_task.get_logger().report_scalar(
|
1660 |
+
title="eval" + ClearMLCallback.log_suffix,
|
1661 |
+
series=k[eval_prefix_len:],
|
1662 |
+
value=v,
|
1663 |
+
iteration=state.global_step,
|
1664 |
+
)
|
1665 |
+
elif k.startswith(test_prefix):
|
1666 |
+
self._clearml_task.get_logger().report_scalar(
|
1667 |
+
title="test" + ClearMLCallback.log_suffix,
|
1668 |
+
series=k[test_prefix_len:],
|
1669 |
+
value=v,
|
1670 |
+
iteration=state.global_step,
|
1671 |
+
)
|
1672 |
+
else:
|
1673 |
+
self._clearml_task.get_logger().report_scalar(
|
1674 |
+
title="train" + ClearMLCallback.log_suffix,
|
1675 |
+
series=k,
|
1676 |
+
value=v,
|
1677 |
+
iteration=state.global_step,
|
1678 |
+
)
|
1679 |
+
else:
|
1680 |
+
logger.warning(
|
1681 |
+
"Trainer is attempting to log a value of "
|
1682 |
+
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
|
1683 |
+
"This invocation of ClearML logger's report_scalar() "
|
1684 |
+
"is incorrect so we dropped this attribute."
|
1685 |
+
)
|
1686 |
+
|
1687 |
+
def on_save(self, args, state, control, **kwargs):
|
1688 |
+
if self._log_model and self._clearml_task and state.is_world_process_zero:
|
1689 |
+
ckpt_dir = f"checkpoint-{state.global_step}"
|
1690 |
+
artifact_path = os.path.join(args.output_dir, ckpt_dir)
|
1691 |
+
name = ckpt_dir + ClearMLCallback.log_suffix
|
1692 |
+
logger.info(f"Logging checkpoint artifact `{name}`. This may take some time.")
|
1693 |
+
output_model = self._clearml.OutputModel(task=self._clearml_task, name=name)
|
1694 |
+
output_model.connect(task=self._clearml_task, name=name)
|
1695 |
+
output_model.update_weights_package(
|
1696 |
+
weights_path=artifact_path,
|
1697 |
+
target_filename=ckpt_dir,
|
1698 |
+
iteration=state.global_step,
|
1699 |
+
auto_delete_file=False,
|
1700 |
+
)
|
1701 |
+
self._checkpoints_saved.append(output_model)
|
1702 |
+
while args.save_total_limit and args.save_total_limit < len(self._checkpoints_saved):
|
1703 |
+
try:
|
1704 |
+
self._clearml.model.Model.remove(
|
1705 |
+
self._checkpoints_saved[0],
|
1706 |
+
delete_weights_file=True,
|
1707 |
+
force=True,
|
1708 |
+
raise_on_errors=True,
|
1709 |
+
)
|
1710 |
+
except Exception as e:
|
1711 |
+
logger.warning(
|
1712 |
+
"Could not remove checkpoint `{}` after going over the `save_total_limit`. Error is: {}".format(
|
1713 |
+
self._checkpoints_saved[0].name, e
|
1714 |
+
)
|
1715 |
+
)
|
1716 |
+
break
|
1717 |
+
self._checkpoints_saved = self._checkpoints_saved[1:]
|
1718 |
+
|
1719 |
+
def _copy_training_args_as_hparams(self, training_args, prefix):
|
1720 |
+
as_dict = {
|
1721 |
+
field.name: getattr(training_args, field.name)
|
1722 |
+
for field in fields(training_args)
|
1723 |
+
if field.init and not field.name.endswith("_token")
|
1724 |
+
}
|
1725 |
+
flat_dict = {str(k): v for k, v in self._clearml.utilities.proxy_object.flatten_dictionary(as_dict).items()}
|
1726 |
+
self._clearml_task._arguments.copy_from_dict(flat_dict, prefix=prefix)
|
1727 |
+
|
1728 |
+
|
1729 |
+
class FlyteCallback(TrainerCallback):
|
1730 |
+
"""A [`TrainerCallback`] that sends the logs to [Flyte](https://flyte.org/).
|
1731 |
+
NOTE: This callback only works within a Flyte task.
|
1732 |
+
|
1733 |
+
Args:
|
1734 |
+
save_log_history (`bool`, *optional*, defaults to `True`):
|
1735 |
+
When set to True, the training logs are saved as a Flyte Deck.
|
1736 |
+
|
1737 |
+
sync_checkpoints (`bool`, *optional*, defaults to `True`):
|
1738 |
+
When set to True, checkpoints are synced with Flyte and can be used to resume training in the case of an
|
1739 |
+
interruption.
|
1740 |
+
|
1741 |
+
Example:
|
1742 |
+
|
1743 |
+
```python
|
1744 |
+
# Note: This example skips over some setup steps for brevity.
|
1745 |
+
from flytekit import current_context, task
|
1746 |
+
|
1747 |
+
|
1748 |
+
@task
|
1749 |
+
def train_hf_transformer():
|
1750 |
+
cp = current_context().checkpoint
|
1751 |
+
trainer = Trainer(..., callbacks=[FlyteCallback()])
|
1752 |
+
output = trainer.train(resume_from_checkpoint=cp.restore())
|
1753 |
+
```
|
1754 |
+
"""
|
1755 |
+
|
1756 |
+
def __init__(self, save_log_history: bool = True, sync_checkpoints: bool = True):
|
1757 |
+
super().__init__()
|
1758 |
+
if not is_flytekit_available():
|
1759 |
+
raise ImportError("FlyteCallback requires flytekit to be installed. Run `pip install flytekit`.")
|
1760 |
+
|
1761 |
+
if not is_flyte_deck_standard_available() or not is_pandas_available():
|
1762 |
+
logger.warning(
|
1763 |
+
"Syncing log history requires both flytekitplugins-deck-standard and pandas to be installed. "
|
1764 |
+
"Run `pip install flytekitplugins-deck-standard pandas` to enable this feature."
|
1765 |
+
)
|
1766 |
+
save_log_history = False
|
1767 |
+
|
1768 |
+
from flytekit import current_context
|
1769 |
+
|
1770 |
+
self.cp = current_context().checkpoint
|
1771 |
+
self.save_log_history = save_log_history
|
1772 |
+
self.sync_checkpoints = sync_checkpoints
|
1773 |
+
|
1774 |
+
def on_save(self, args, state, control, **kwargs):
|
1775 |
+
if self.sync_checkpoints and state.is_world_process_zero:
|
1776 |
+
ckpt_dir = f"checkpoint-{state.global_step}"
|
1777 |
+
artifact_path = os.path.join(args.output_dir, ckpt_dir)
|
1778 |
+
|
1779 |
+
logger.info(f"Syncing checkpoint in {ckpt_dir} to Flyte. This may take time.")
|
1780 |
+
self.cp.save(artifact_path)
|
1781 |
+
|
1782 |
+
def on_train_end(self, args, state, control, **kwargs):
|
1783 |
+
if self.save_log_history:
|
1784 |
+
import pandas as pd
|
1785 |
+
from flytekit import Deck
|
1786 |
+
from flytekitplugins.deck.renderer import TableRenderer
|
1787 |
+
|
1788 |
+
log_history_df = pd.DataFrame(state.log_history)
|
1789 |
+
Deck("Log History", TableRenderer().to_html(log_history_df))
|
1790 |
+
|
1791 |
+
|
1792 |
+
class DVCLiveCallback(TrainerCallback):
|
1793 |
+
"""
|
1794 |
+
A [`TrainerCallback`] that sends the logs to [DVCLive](https://www.dvc.org/doc/dvclive).
|
1795 |
+
|
1796 |
+
Use the environment variables below in `setup` to configure the integration. To customize this callback beyond
|
1797 |
+
those environment variables, see [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface).
|
1798 |
+
|
1799 |
+
Args:
|
1800 |
+
live (`dvclive.Live`, *optional*, defaults to `None`):
|
1801 |
+
Optional Live instance. If None, a new instance will be created using **kwargs.
|
1802 |
+
log_model (Union[Literal["all"], bool], *optional*, defaults to `None`):
|
1803 |
+
Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True`,
|
1804 |
+
the final checkpoint is logged at the end of training. If set to `"all"`, the entire
|
1805 |
+
[`TrainingArguments`]'s `output_dir` is logged at each checkpoint.
|
1806 |
+
"""
|
1807 |
+
|
1808 |
+
def __init__(
|
1809 |
+
self,
|
1810 |
+
live: Optional[Any] = None,
|
1811 |
+
log_model: Optional[Union[Literal["all"], bool]] = None,
|
1812 |
+
**kwargs,
|
1813 |
+
):
|
1814 |
+
if not is_dvclive_available():
|
1815 |
+
raise RuntimeError("DVCLiveCallback requires dvclive to be installed. Run `pip install dvclive`.")
|
1816 |
+
from dvclive import Live
|
1817 |
+
|
1818 |
+
self._initialized = False
|
1819 |
+
self.live = None
|
1820 |
+
if isinstance(live, Live):
|
1821 |
+
self.live = live
|
1822 |
+
elif live is not None:
|
1823 |
+
raise RuntimeError(f"Found class {live.__class__} for live, expected dvclive.Live")
|
1824 |
+
|
1825 |
+
self._log_model = log_model
|
1826 |
+
if self._log_model is None:
|
1827 |
+
log_model_env = os.getenv("HF_DVCLIVE_LOG_MODEL", "FALSE")
|
1828 |
+
if log_model_env.upper() in ENV_VARS_TRUE_VALUES:
|
1829 |
+
self._log_model = True
|
1830 |
+
elif log_model_env.lower() == "all":
|
1831 |
+
self._log_model = "all"
|
1832 |
+
|
1833 |
+
def setup(self, args, state, model):
|
1834 |
+
"""
|
1835 |
+
Setup the optional DVCLive integration. To customize this callback beyond the environment variables below, see
|
1836 |
+
[here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface).
|
1837 |
+
|
1838 |
+
Environment:
|
1839 |
+
- **HF_DVCLIVE_LOG_MODEL** (`str`, *optional*):
|
1840 |
+
Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True` or
|
1841 |
+
*1*, the final checkpoint is logged at the end of training. If set to `all`, the entire
|
1842 |
+
[`TrainingArguments`]'s `output_dir` is logged at each checkpoint.
|
1843 |
+
"""
|
1844 |
+
from dvclive import Live
|
1845 |
+
|
1846 |
+
self._initialized = True
|
1847 |
+
if state.is_world_process_zero:
|
1848 |
+
if not self.live:
|
1849 |
+
self.live = Live()
|
1850 |
+
self.live.log_params(args.to_dict())
|
1851 |
+
|
1852 |
+
def on_train_begin(self, args, state, control, model=None, **kwargs):
|
1853 |
+
if not self._initialized:
|
1854 |
+
self.setup(args, state, model)
|
1855 |
+
|
1856 |
+
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
1857 |
+
if not self._initialized:
|
1858 |
+
self.setup(args, state, model)
|
1859 |
+
if state.is_world_process_zero:
|
1860 |
+
from dvclive.plots import Metric
|
1861 |
+
from dvclive.utils import standardize_metric_name
|
1862 |
+
|
1863 |
+
for key, value in logs.items():
|
1864 |
+
if Metric.could_log(value):
|
1865 |
+
self.live.log_metric(standardize_metric_name(key, "dvclive.huggingface"), value)
|
1866 |
+
else:
|
1867 |
+
logger.warning(
|
1868 |
+
"Trainer is attempting to log a value of "
|
1869 |
+
f'"{value}" of type {type(value)} for key "{key}" as a scalar. '
|
1870 |
+
"This invocation of DVCLive's Live.log_metric() "
|
1871 |
+
"is incorrect so we dropped this attribute."
|
1872 |
+
)
|
1873 |
+
self.live.next_step()
|
1874 |
+
|
1875 |
+
def on_save(self, args, state, control, **kwargs):
|
1876 |
+
if self._log_model == "all" and self._initialized and state.is_world_process_zero:
|
1877 |
+
self.live.log_artifact(args.output_dir)
|
1878 |
+
|
1879 |
+
def on_train_end(self, args, state, control, **kwargs):
|
1880 |
+
if self._initialized and state.is_world_process_zero:
|
1881 |
+
from transformers.trainer import Trainer
|
1882 |
+
|
1883 |
+
if self._log_model is True:
|
1884 |
+
fake_trainer = Trainer(args=args, model=kwargs.get("model"), tokenizer=kwargs.get("tokenizer"))
|
1885 |
+
name = "best" if args.load_best_model_at_end else "last"
|
1886 |
+
output_dir = os.path.join(args.output_dir, name)
|
1887 |
+
fake_trainer.save_model(output_dir)
|
1888 |
+
self.live.log_artifact(output_dir, name=name, type="model", copy=True)
|
1889 |
+
self.live.end()
|
1890 |
+
|
1891 |
+
|
1892 |
+
INTEGRATION_TO_CALLBACK = {
|
1893 |
+
"azure_ml": AzureMLCallback,
|
1894 |
+
"comet_ml": CometCallback,
|
1895 |
+
"mlflow": MLflowCallback,
|
1896 |
+
"neptune": NeptuneCallback,
|
1897 |
+
"tensorboard": TensorBoardCallback,
|
1898 |
+
"wandb": WandbCallback,
|
1899 |
+
"codecarbon": CodeCarbonCallback,
|
1900 |
+
"clearml": ClearMLCallback,
|
1901 |
+
"dagshub": DagsHubCallback,
|
1902 |
+
"flyte": FlyteCallback,
|
1903 |
+
"dvclive": DVCLiveCallback,
|
1904 |
+
}
|
1905 |
+
|
1906 |
+
|
1907 |
+
def get_reporting_integration_callbacks(report_to):
|
1908 |
+
for integration in report_to:
|
1909 |
+
if integration not in INTEGRATION_TO_CALLBACK:
|
1910 |
+
raise ValueError(
|
1911 |
+
f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported."
|
1912 |
+
)
|
1913 |
+
|
1914 |
+
return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to]
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/peft.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import inspect
|
15 |
+
import warnings
|
16 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
from ..utils import (
|
19 |
+
check_peft_version,
|
20 |
+
find_adapter_config_file,
|
21 |
+
is_accelerate_available,
|
22 |
+
is_peft_available,
|
23 |
+
is_torch_available,
|
24 |
+
logging,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
if is_accelerate_available():
|
29 |
+
from accelerate import dispatch_model
|
30 |
+
from accelerate.utils import get_balanced_memory, infer_auto_device_map
|
31 |
+
|
32 |
+
# Minimum PEFT version supported for the integration
|
33 |
+
MIN_PEFT_VERSION = "0.5.0"
|
34 |
+
|
35 |
+
if TYPE_CHECKING:
|
36 |
+
if is_torch_available():
|
37 |
+
import torch
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
class PeftAdapterMixin:
|
44 |
+
"""
|
45 |
+
A class containing all functions for loading and using adapters weights that are supported in PEFT library. For
|
46 |
+
more details about adapters and injecting them on a transformer-based model, check out the documentation of PEFT
|
47 |
+
library: https://huggingface.co/docs/peft/index
|
48 |
+
|
49 |
+
Currently supported PEFT methods are all non-prefix tuning methods. Below is the list of supported PEFT methods
|
50 |
+
that anyone can load, train and run with this mixin class:
|
51 |
+
- Low Rank Adapters (LoRA): https://huggingface.co/docs/peft/conceptual_guides/lora
|
52 |
+
- IA3: https://huggingface.co/docs/peft/conceptual_guides/ia3
|
53 |
+
- AdaLora: https://arxiv.org/abs/2303.10512
|
54 |
+
|
55 |
+
Other PEFT models such as prompt tuning, prompt learning are out of scope as these adapters are not "injectable"
|
56 |
+
into a torch module. For using these methods, please refer to the usage guide of PEFT library.
|
57 |
+
|
58 |
+
With this mixin, if the correct PEFT version is installed, it is possible to:
|
59 |
+
|
60 |
+
- Load an adapter stored on a local path or in a remote Hub repository, and inject it in the model
|
61 |
+
- Attach new adapters in the model and train them with Trainer or by your own.
|
62 |
+
- Attach multiple adapters and iteratively activate / deactivate them
|
63 |
+
- Activate / deactivate all adapters from the model.
|
64 |
+
- Get the `state_dict` of the active adapter.
|
65 |
+
"""
|
66 |
+
|
67 |
+
_hf_peft_config_loaded = False
|
68 |
+
|
69 |
+
def load_adapter(
|
70 |
+
self,
|
71 |
+
peft_model_id: Optional[str] = None,
|
72 |
+
adapter_name: Optional[str] = None,
|
73 |
+
revision: Optional[str] = None,
|
74 |
+
token: Optional[str] = None,
|
75 |
+
device_map: Optional[str] = "auto",
|
76 |
+
max_memory: Optional[str] = None,
|
77 |
+
offload_folder: Optional[str] = None,
|
78 |
+
offload_index: Optional[int] = None,
|
79 |
+
peft_config: Dict[str, Any] = None,
|
80 |
+
adapter_state_dict: Optional[Dict[str, "torch.Tensor"]] = None,
|
81 |
+
adapter_kwargs: Optional[Dict[str, Any]] = None,
|
82 |
+
) -> None:
|
83 |
+
"""
|
84 |
+
Load adapter weights from file or remote Hub folder. If you are not familiar with adapters and PEFT methods, we
|
85 |
+
invite you to read more about them on PEFT official documentation: https://huggingface.co/docs/peft
|
86 |
+
|
87 |
+
Requires peft as a backend to load the adapter weights.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
peft_model_id (`str`, *optional*):
|
91 |
+
The identifier of the model to look for on the Hub, or a local path to the saved adapter config file
|
92 |
+
and adapter weights.
|
93 |
+
adapter_name (`str`, *optional*):
|
94 |
+
The adapter name to use. If not set, will use the default adapter.
|
95 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
96 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
97 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
98 |
+
identifier allowed by git.
|
99 |
+
|
100 |
+
<Tip>
|
101 |
+
|
102 |
+
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
103 |
+
|
104 |
+
</Tip>
|
105 |
+
|
106 |
+
token (`str`, `optional`):
|
107 |
+
Whether to use authentication token to load the remote folder. Userful to load private repositories
|
108 |
+
that are on HuggingFace Hub. You might need to call `huggingface-cli login` and paste your tokens to
|
109 |
+
cache it.
|
110 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
|
111 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each
|
112 |
+
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
|
113 |
+
same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
|
114 |
+
like `1`) on which the model will be allocated, the device map will map the entire model to this
|
115 |
+
device. Passing `device_map = 0` means put the whole model on GPU 0.
|
116 |
+
|
117 |
+
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
|
118 |
+
more information about each option see [designing a device
|
119 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
120 |
+
max_memory (`Dict`, *optional*):
|
121 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
|
122 |
+
GPU and the available CPU RAM if unset.
|
123 |
+
offload_folder (`str` or `os.PathLike`, `optional`):
|
124 |
+
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
|
125 |
+
offload_index (`int`, `optional`):
|
126 |
+
`offload_index` argument to be passed to `accelerate.dispatch_model` method.
|
127 |
+
peft_config (`Dict[str, Any]`, *optional*):
|
128 |
+
The configuration of the adapter to add, supported adapters are non-prefix tuning and adaption prompts
|
129 |
+
methods. This argument is used in case users directly pass PEFT state dicts
|
130 |
+
adapter_state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
131 |
+
The state dict of the adapter to load. This argument is used in case users directly pass PEFT state
|
132 |
+
dicts
|
133 |
+
adapter_kwargs (`Dict[str, Any]`, *optional*):
|
134 |
+
Additional keyword arguments passed along to the `from_pretrained` method of the adapter config and
|
135 |
+
`find_adapter_config_file` method.
|
136 |
+
"""
|
137 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
138 |
+
|
139 |
+
adapter_name = adapter_name if adapter_name is not None else "default"
|
140 |
+
if adapter_kwargs is None:
|
141 |
+
adapter_kwargs = {}
|
142 |
+
|
143 |
+
from peft import PeftConfig, inject_adapter_in_model, load_peft_weights
|
144 |
+
from peft.utils import set_peft_model_state_dict
|
145 |
+
|
146 |
+
if self._hf_peft_config_loaded and adapter_name in self.peft_config:
|
147 |
+
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
|
148 |
+
|
149 |
+
if peft_model_id is None and (adapter_state_dict is None and peft_config is None):
|
150 |
+
raise ValueError(
|
151 |
+
"You should either pass a `peft_model_id` or a `peft_config` and `adapter_state_dict` to load an adapter."
|
152 |
+
)
|
153 |
+
|
154 |
+
# We keep `revision` in the signature for backward compatibility
|
155 |
+
if revision is not None and "revision" not in adapter_kwargs:
|
156 |
+
adapter_kwargs["revision"] = revision
|
157 |
+
elif revision is not None and "revision" in adapter_kwargs and revision != adapter_kwargs["revision"]:
|
158 |
+
logger.error(
|
159 |
+
"You passed a `revision` argument both in `adapter_kwargs` and as a standalone argument. "
|
160 |
+
"The one in `adapter_kwargs` will be used."
|
161 |
+
)
|
162 |
+
|
163 |
+
# Override token with adapter_kwargs' token
|
164 |
+
if "token" in adapter_kwargs:
|
165 |
+
token = adapter_kwargs.pop("token")
|
166 |
+
|
167 |
+
if peft_config is None:
|
168 |
+
adapter_config_file = find_adapter_config_file(
|
169 |
+
peft_model_id,
|
170 |
+
token=token,
|
171 |
+
**adapter_kwargs,
|
172 |
+
)
|
173 |
+
|
174 |
+
if adapter_config_file is None:
|
175 |
+
raise ValueError(
|
176 |
+
f"adapter model file not found in {peft_model_id}. Make sure you are passing the correct path to the "
|
177 |
+
"adapter model."
|
178 |
+
)
|
179 |
+
|
180 |
+
peft_config = PeftConfig.from_pretrained(
|
181 |
+
peft_model_id,
|
182 |
+
token=token,
|
183 |
+
**adapter_kwargs,
|
184 |
+
)
|
185 |
+
|
186 |
+
# Create and add fresh new adapters into the model.
|
187 |
+
inject_adapter_in_model(peft_config, self, adapter_name)
|
188 |
+
|
189 |
+
if not self._hf_peft_config_loaded:
|
190 |
+
self._hf_peft_config_loaded = True
|
191 |
+
|
192 |
+
if peft_model_id is not None:
|
193 |
+
adapter_state_dict = load_peft_weights(peft_model_id, token=token, **adapter_kwargs)
|
194 |
+
|
195 |
+
# We need to pre-process the state dict to remove unneeded prefixes - for backward compatibility
|
196 |
+
processed_adapter_state_dict = {}
|
197 |
+
prefix = "base_model.model."
|
198 |
+
for key, value in adapter_state_dict.items():
|
199 |
+
if key.startswith(prefix):
|
200 |
+
new_key = key[len(prefix) :]
|
201 |
+
else:
|
202 |
+
new_key = key
|
203 |
+
processed_adapter_state_dict[new_key] = value
|
204 |
+
|
205 |
+
# Load state dict
|
206 |
+
incompatible_keys = set_peft_model_state_dict(self, processed_adapter_state_dict, adapter_name)
|
207 |
+
|
208 |
+
if incompatible_keys is not None:
|
209 |
+
# check only for unexpected keys
|
210 |
+
if hasattr(incompatible_keys, "unexpected_keys") and len(incompatible_keys.unexpected_keys) > 0:
|
211 |
+
logger.warning(
|
212 |
+
f"Loading adapter weights from {peft_model_id} led to unexpected keys not found in the model: "
|
213 |
+
f" {incompatible_keys.unexpected_keys}. "
|
214 |
+
)
|
215 |
+
|
216 |
+
# Re-dispatch model and hooks in case the model is offloaded to CPU / Disk.
|
217 |
+
if (
|
218 |
+
(getattr(self, "hf_device_map", None) is not None)
|
219 |
+
and (len(set(self.hf_device_map.values()).intersection({"cpu", "disk"})) > 0)
|
220 |
+
and len(self.peft_config) == 1
|
221 |
+
):
|
222 |
+
self._dispatch_accelerate_model(
|
223 |
+
device_map=device_map,
|
224 |
+
max_memory=max_memory,
|
225 |
+
offload_folder=offload_folder,
|
226 |
+
offload_index=offload_index,
|
227 |
+
)
|
228 |
+
|
229 |
+
def add_adapter(self, adapter_config, adapter_name: Optional[str] = None) -> None:
|
230 |
+
r"""
|
231 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
|
232 |
+
official documentation: https://huggingface.co/docs/peft
|
233 |
+
|
234 |
+
Adds a fresh new adapter to the current model for training purpose. If no adapter name is passed, a default
|
235 |
+
name is assigned to the adapter to follow the convention of PEFT library (in PEFT we use "default" as the
|
236 |
+
default adapter name).
|
237 |
+
|
238 |
+
Args:
|
239 |
+
adapter_config (`~peft.PeftConfig`):
|
240 |
+
The configuration of the adapter to add, supported adapters are non-prefix tuning and adaption prompts
|
241 |
+
methods
|
242 |
+
adapter_name (`str`, *optional*, defaults to `"default"`):
|
243 |
+
The name of the adapter to add. If no name is passed, a default name is assigned to the adapter.
|
244 |
+
"""
|
245 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
246 |
+
|
247 |
+
from peft import PeftConfig, inject_adapter_in_model
|
248 |
+
|
249 |
+
adapter_name = adapter_name or "default"
|
250 |
+
|
251 |
+
if not self._hf_peft_config_loaded:
|
252 |
+
self._hf_peft_config_loaded = True
|
253 |
+
elif adapter_name in self.peft_config:
|
254 |
+
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
|
255 |
+
|
256 |
+
if not isinstance(adapter_config, PeftConfig):
|
257 |
+
raise ValueError(
|
258 |
+
f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
|
259 |
+
)
|
260 |
+
|
261 |
+
# Retrieve the name or path of the model, one could also use self.config._name_or_path
|
262 |
+
# but to be consistent with what we do in PEFT: https://github.com/huggingface/peft/blob/6e783780ca9df3a623992cc4d1d665001232eae0/src/peft/mapping.py#L100
|
263 |
+
adapter_config.base_model_name_or_path = self.__dict__.get("name_or_path", None)
|
264 |
+
inject_adapter_in_model(adapter_config, self, adapter_name)
|
265 |
+
|
266 |
+
self.set_adapter(adapter_name)
|
267 |
+
|
268 |
+
def set_adapter(self, adapter_name: Union[List[str], str]) -> None:
|
269 |
+
"""
|
270 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
|
271 |
+
official documentation: https://huggingface.co/docs/peft
|
272 |
+
|
273 |
+
Sets a specific adapter by forcing the model to use a that adapter and disable the other adapters.
|
274 |
+
|
275 |
+
Args:
|
276 |
+
adapter_name (`Union[List[str], str]`):
|
277 |
+
The name of the adapter to set. Can be also a list of strings to set multiple adapters.
|
278 |
+
"""
|
279 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
280 |
+
if not self._hf_peft_config_loaded:
|
281 |
+
raise ValueError("No adapter loaded. Please load an adapter first.")
|
282 |
+
elif isinstance(adapter_name, list):
|
283 |
+
missing = set(adapter_name) - set(self.peft_config)
|
284 |
+
if len(missing) > 0:
|
285 |
+
raise ValueError(
|
286 |
+
f"Following adapter(s) could not be found: {', '.join(missing)}. Make sure you are passing the correct adapter name(s)."
|
287 |
+
f" current loaded adapters are: {list(self.peft_config.keys())}"
|
288 |
+
)
|
289 |
+
elif adapter_name not in self.peft_config:
|
290 |
+
raise ValueError(
|
291 |
+
f"Adapter with name {adapter_name} not found. Please pass the correct adapter name among {list(self.peft_config.keys())}"
|
292 |
+
)
|
293 |
+
|
294 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
295 |
+
from peft.utils import ModulesToSaveWrapper
|
296 |
+
|
297 |
+
_adapters_has_been_set = False
|
298 |
+
|
299 |
+
for _, module in self.named_modules():
|
300 |
+
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)):
|
301 |
+
# For backward compatbility with previous PEFT versions
|
302 |
+
if hasattr(module, "set_adapter"):
|
303 |
+
module.set_adapter(adapter_name)
|
304 |
+
else:
|
305 |
+
module.active_adapter = adapter_name
|
306 |
+
_adapters_has_been_set = True
|
307 |
+
|
308 |
+
if not _adapters_has_been_set:
|
309 |
+
raise ValueError(
|
310 |
+
"Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters."
|
311 |
+
)
|
312 |
+
|
313 |
+
def disable_adapters(self) -> None:
|
314 |
+
r"""
|
315 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
|
316 |
+
official documentation: https://huggingface.co/docs/peft
|
317 |
+
|
318 |
+
Disable all adapters that are attached to the model. This leads to inferring with the base model only.
|
319 |
+
"""
|
320 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
321 |
+
|
322 |
+
if not self._hf_peft_config_loaded:
|
323 |
+
raise ValueError("No adapter loaded. Please load an adapter first.")
|
324 |
+
|
325 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
326 |
+
from peft.utils import ModulesToSaveWrapper
|
327 |
+
|
328 |
+
for _, module in self.named_modules():
|
329 |
+
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)):
|
330 |
+
# The recent version of PEFT need to call `enable_adapters` instead
|
331 |
+
if hasattr(module, "enable_adapters"):
|
332 |
+
module.enable_adapters(enabled=False)
|
333 |
+
else:
|
334 |
+
module.disable_adapters = True
|
335 |
+
|
336 |
+
def enable_adapters(self) -> None:
|
337 |
+
"""
|
338 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
|
339 |
+
official documentation: https://huggingface.co/docs/peft
|
340 |
+
|
341 |
+
Enable adapters that are attached to the model. The model will use `self.active_adapter()`
|
342 |
+
"""
|
343 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
344 |
+
|
345 |
+
if not self._hf_peft_config_loaded:
|
346 |
+
raise ValueError("No adapter loaded. Please load an adapter first.")
|
347 |
+
|
348 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
349 |
+
|
350 |
+
for _, module in self.named_modules():
|
351 |
+
if isinstance(module, BaseTunerLayer):
|
352 |
+
# The recent version of PEFT need to call `enable_adapters` instead
|
353 |
+
if hasattr(module, "enable_adapters"):
|
354 |
+
module.enable_adapters(enabled=True)
|
355 |
+
else:
|
356 |
+
module.disable_adapters = False
|
357 |
+
|
358 |
+
def active_adapters(self) -> List[str]:
|
359 |
+
"""
|
360 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
|
361 |
+
official documentation: https://huggingface.co/docs/peft
|
362 |
+
|
363 |
+
Gets the current active adapters of the model. In case of multi-adapter inference (combining multiple adapters
|
364 |
+
for inference) returns the list of all active adapters so that users can deal with them accordingly.
|
365 |
+
|
366 |
+
For previous PEFT versions (that does not support multi-adapter inference), `module.active_adapter` will return
|
367 |
+
a single string.
|
368 |
+
"""
|
369 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
370 |
+
|
371 |
+
if not is_peft_available():
|
372 |
+
raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.")
|
373 |
+
|
374 |
+
if not self._hf_peft_config_loaded:
|
375 |
+
raise ValueError("No adapter loaded. Please load an adapter first.")
|
376 |
+
|
377 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
378 |
+
|
379 |
+
for _, module in self.named_modules():
|
380 |
+
if isinstance(module, BaseTunerLayer):
|
381 |
+
active_adapters = module.active_adapter
|
382 |
+
break
|
383 |
+
|
384 |
+
# For previous PEFT versions
|
385 |
+
if isinstance(active_adapters, str):
|
386 |
+
active_adapters = [active_adapters]
|
387 |
+
|
388 |
+
return active_adapters
|
389 |
+
|
390 |
+
def active_adapter(self) -> str:
|
391 |
+
warnings.warn(
|
392 |
+
"The `active_adapter` method is deprecated and will be removed in a future version.", FutureWarning
|
393 |
+
)
|
394 |
+
|
395 |
+
return self.active_adapters()[0]
|
396 |
+
|
397 |
+
def get_adapter_state_dict(self, adapter_name: Optional[str] = None) -> dict:
|
398 |
+
"""
|
399 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
|
400 |
+
official documentation: https://huggingface.co/docs/peft
|
401 |
+
|
402 |
+
Gets the adapter state dict that should only contain the weights tensors of the specified adapter_name adapter.
|
403 |
+
If no adapter_name is passed, the active adapter is used.
|
404 |
+
|
405 |
+
Args:
|
406 |
+
adapter_name (`str`, *optional*):
|
407 |
+
The name of the adapter to get the state dict from. If no name is passed, the active adapter is used.
|
408 |
+
"""
|
409 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
410 |
+
|
411 |
+
if not self._hf_peft_config_loaded:
|
412 |
+
raise ValueError("No adapter loaded. Please load an adapter first.")
|
413 |
+
|
414 |
+
from peft import get_peft_model_state_dict
|
415 |
+
|
416 |
+
if adapter_name is None:
|
417 |
+
adapter_name = self.active_adapter()
|
418 |
+
|
419 |
+
adapter_state_dict = get_peft_model_state_dict(self, adapter_name=adapter_name)
|
420 |
+
return adapter_state_dict
|
421 |
+
|
422 |
+
def _dispatch_accelerate_model(
|
423 |
+
self,
|
424 |
+
device_map: str,
|
425 |
+
max_memory: Optional[int] = None,
|
426 |
+
offload_folder: Optional[str] = None,
|
427 |
+
offload_index: Optional[int] = None,
|
428 |
+
) -> None:
|
429 |
+
"""
|
430 |
+
Optional re-dispatch the model and attach new hooks to the model in case the model has been loaded with
|
431 |
+
accelerate (i.e. with `device_map=xxx`)
|
432 |
+
|
433 |
+
Args:
|
434 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
|
435 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each
|
436 |
+
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
|
437 |
+
same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
|
438 |
+
like `1`) on which the model will be allocated, the device map will map the entire model to this
|
439 |
+
device. Passing `device_map = 0` means put the whole model on GPU 0.
|
440 |
+
|
441 |
+
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
|
442 |
+
more information about each option see [designing a device
|
443 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
444 |
+
max_memory (`Dict`, *optional*):
|
445 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
|
446 |
+
GPU and the available CPU RAM if unset.
|
447 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
448 |
+
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
|
449 |
+
offload_index (`int`, *optional*):
|
450 |
+
The offload_index argument to be passed to `accelerate.dispatch_model` method.
|
451 |
+
"""
|
452 |
+
dispatch_model_kwargs = {}
|
453 |
+
# Safety checker for previous `accelerate` versions
|
454 |
+
# `offload_index` was introduced in https://github.com/huggingface/accelerate/pull/873/
|
455 |
+
if "offload_index" in inspect.signature(dispatch_model).parameters:
|
456 |
+
dispatch_model_kwargs["offload_index"] = offload_index
|
457 |
+
|
458 |
+
no_split_module_classes = self._no_split_modules
|
459 |
+
|
460 |
+
if device_map != "sequential":
|
461 |
+
max_memory = get_balanced_memory(
|
462 |
+
self,
|
463 |
+
max_memory=max_memory,
|
464 |
+
no_split_module_classes=no_split_module_classes,
|
465 |
+
low_zero=(device_map == "balanced_low_0"),
|
466 |
+
)
|
467 |
+
if isinstance(device_map, str):
|
468 |
+
device_map = infer_auto_device_map(
|
469 |
+
self, max_memory=max_memory, no_split_module_classes=no_split_module_classes
|
470 |
+
)
|
471 |
+
dispatch_model(
|
472 |
+
self,
|
473 |
+
device_map=device_map,
|
474 |
+
offload_dir=offload_folder,
|
475 |
+
**dispatch_model_kwargs,
|
476 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/quanto.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from ..utils import is_torch_available
|
16 |
+
|
17 |
+
|
18 |
+
if is_torch_available():
|
19 |
+
import torch
|
20 |
+
|
21 |
+
|
22 |
+
def replace_with_quanto_layers(
|
23 |
+
model,
|
24 |
+
quantization_config=None,
|
25 |
+
modules_to_not_convert=None,
|
26 |
+
current_key_name=None,
|
27 |
+
has_been_replaced=False,
|
28 |
+
):
|
29 |
+
"""
|
30 |
+
Public method that recursively replaces the Linear layers of the given model with Quanto quantized layers.
|
31 |
+
Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
model (`torch.nn.Module`):
|
35 |
+
The model to convert, can be any `torch.nn.Module` instance.
|
36 |
+
quantization_config (`AqlmConfig`, defaults to `None`):
|
37 |
+
The quantization config object that contains the quantization parameters.
|
38 |
+
modules_to_not_convert (`list`, *optional*, defaults to `None`):
|
39 |
+
A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be
|
40 |
+
converted.
|
41 |
+
current_key_name (`list`, *optional*, defaults to `None`):
|
42 |
+
A list that contains the current key name. This is used for recursion and should not be passed by the user.
|
43 |
+
has_been_replaced (`bool`, *optional*, defaults to `None`):
|
44 |
+
A boolean that indicates if the conversion has been successful or not. This is used for recursion and
|
45 |
+
should not be passed by the user.
|
46 |
+
"""
|
47 |
+
from accelerate import init_empty_weights
|
48 |
+
from quanto import QLayerNorm, QLinear, qfloat8, qint2, qint4, qint8
|
49 |
+
|
50 |
+
w_mapping = {"float8": qfloat8, "int8": qint8, "int4": qint4, "int2": qint2}
|
51 |
+
a_mapping = {None: None, "float8": qfloat8, "int8": qint8}
|
52 |
+
|
53 |
+
if modules_to_not_convert is None:
|
54 |
+
modules_to_not_convert = []
|
55 |
+
|
56 |
+
for name, module in model.named_children():
|
57 |
+
if current_key_name is None:
|
58 |
+
current_key_name = []
|
59 |
+
current_key_name.append(name)
|
60 |
+
|
61 |
+
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
|
62 |
+
with init_empty_weights():
|
63 |
+
if isinstance(module, torch.nn.Linear):
|
64 |
+
model._modules[name] = QLinear(
|
65 |
+
in_features=module.in_features,
|
66 |
+
out_features=module.out_features,
|
67 |
+
bias=module.bias is not None,
|
68 |
+
dtype=module.weight.dtype,
|
69 |
+
weights=w_mapping[quantization_config.weights],
|
70 |
+
activations=a_mapping[quantization_config.activations],
|
71 |
+
)
|
72 |
+
model._modules[name].requires_grad_(False)
|
73 |
+
has_been_replaced = True
|
74 |
+
elif isinstance(module, torch.nn.LayerNorm):
|
75 |
+
if quantization_config.activations is not None:
|
76 |
+
model._modules[name] = QLayerNorm(
|
77 |
+
module.normalized_shape,
|
78 |
+
module.eps,
|
79 |
+
module.elementwise_affine,
|
80 |
+
module.bias is not None,
|
81 |
+
activations=a_mapping[quantization_config.activations],
|
82 |
+
)
|
83 |
+
has_been_replaced = True
|
84 |
+
if len(list(module.children())) > 0:
|
85 |
+
_, has_been_replaced = replace_with_quanto_layers(
|
86 |
+
module,
|
87 |
+
quantization_config=quantization_config,
|
88 |
+
modules_to_not_convert=modules_to_not_convert,
|
89 |
+
current_key_name=current_key_name,
|
90 |
+
has_been_replaced=has_been_replaced,
|
91 |
+
)
|
92 |
+
# Remove the last key for recursion
|
93 |
+
current_key_name.pop(-1)
|
94 |
+
return model, has_been_replaced
|
llmeval-env/lib/python3.10/site-packages/transformers/integrations/tpu.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from torch.utils.data import DataLoader
|
16 |
+
|
17 |
+
from ..utils import is_torch_xla_available
|
18 |
+
|
19 |
+
|
20 |
+
def tpu_spmd_dataloader(dataloader: DataLoader):
|
21 |
+
if is_torch_xla_available():
|
22 |
+
import torch_xla.distributed.parallel_loader as pl
|
23 |
+
|
24 |
+
assert isinstance(
|
25 |
+
dataloader, pl.MpDeviceLoader
|
26 |
+
), "The dataloader must be a `torch_xla.distributed.parallel_loader.MpDeviceLoader`."
|
27 |
+
|
28 |
+
# This is to support PyTorch/XLA FSDP via SPMD.
|
29 |
+
# Here we shard the input data's 0th dim across the fsdp axis.
|
30 |
+
import torch_xla.distributed.spmd as xs
|
31 |
+
|
32 |
+
sharding_spec = xs.ShardingSpec(xs.get_global_mesh(), ("fsdp", None))
|
33 |
+
dataloader._parallel_loader_kwargs["input_sharding"] = sharding_spec
|
34 |
+
return dataloader
|
35 |
+
else:
|
36 |
+
return dataloader
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__init__.py
ADDED
@@ -0,0 +1,1108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
import warnings
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
from huggingface_hub import model_info
|
22 |
+
|
23 |
+
from ..configuration_utils import PretrainedConfig
|
24 |
+
from ..dynamic_module_utils import get_class_from_dynamic_module
|
25 |
+
from ..feature_extraction_utils import PreTrainedFeatureExtractor
|
26 |
+
from ..image_processing_utils import BaseImageProcessor
|
27 |
+
from ..models.auto.configuration_auto import AutoConfig
|
28 |
+
from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
|
29 |
+
from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor
|
30 |
+
from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage
|
31 |
+
from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
|
32 |
+
from ..tokenization_utils import PreTrainedTokenizer
|
33 |
+
from ..utils import (
|
34 |
+
CONFIG_NAME,
|
35 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
36 |
+
cached_file,
|
37 |
+
extract_commit_hash,
|
38 |
+
find_adapter_config_file,
|
39 |
+
is_kenlm_available,
|
40 |
+
is_offline_mode,
|
41 |
+
is_peft_available,
|
42 |
+
is_pyctcdecode_available,
|
43 |
+
is_tf_available,
|
44 |
+
is_torch_available,
|
45 |
+
logging,
|
46 |
+
)
|
47 |
+
from .audio_classification import AudioClassificationPipeline
|
48 |
+
from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
|
49 |
+
from .base import (
|
50 |
+
ArgumentHandler,
|
51 |
+
CsvPipelineDataFormat,
|
52 |
+
JsonPipelineDataFormat,
|
53 |
+
PipedPipelineDataFormat,
|
54 |
+
Pipeline,
|
55 |
+
PipelineDataFormat,
|
56 |
+
PipelineException,
|
57 |
+
PipelineRegistry,
|
58 |
+
get_default_model_and_revision,
|
59 |
+
infer_framework_load_model,
|
60 |
+
)
|
61 |
+
from .conversational import Conversation, ConversationalPipeline
|
62 |
+
from .depth_estimation import DepthEstimationPipeline
|
63 |
+
from .document_question_answering import DocumentQuestionAnsweringPipeline
|
64 |
+
from .feature_extraction import FeatureExtractionPipeline
|
65 |
+
from .fill_mask import FillMaskPipeline
|
66 |
+
from .image_classification import ImageClassificationPipeline
|
67 |
+
from .image_feature_extraction import ImageFeatureExtractionPipeline
|
68 |
+
from .image_segmentation import ImageSegmentationPipeline
|
69 |
+
from .image_to_image import ImageToImagePipeline
|
70 |
+
from .image_to_text import ImageToTextPipeline
|
71 |
+
from .mask_generation import MaskGenerationPipeline
|
72 |
+
from .object_detection import ObjectDetectionPipeline
|
73 |
+
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
|
74 |
+
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
|
75 |
+
from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline
|
76 |
+
from .text_classification import TextClassificationPipeline
|
77 |
+
from .text_generation import TextGenerationPipeline
|
78 |
+
from .text_to_audio import TextToAudioPipeline
|
79 |
+
from .token_classification import (
|
80 |
+
AggregationStrategy,
|
81 |
+
NerPipeline,
|
82 |
+
TokenClassificationArgumentHandler,
|
83 |
+
TokenClassificationPipeline,
|
84 |
+
)
|
85 |
+
from .video_classification import VideoClassificationPipeline
|
86 |
+
from .visual_question_answering import VisualQuestionAnsweringPipeline
|
87 |
+
from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline
|
88 |
+
from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline
|
89 |
+
from .zero_shot_image_classification import ZeroShotImageClassificationPipeline
|
90 |
+
from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline
|
91 |
+
|
92 |
+
|
93 |
+
if is_tf_available():
|
94 |
+
import tensorflow as tf
|
95 |
+
|
96 |
+
from ..models.auto.modeling_tf_auto import (
|
97 |
+
TFAutoModel,
|
98 |
+
TFAutoModelForCausalLM,
|
99 |
+
TFAutoModelForImageClassification,
|
100 |
+
TFAutoModelForMaskedLM,
|
101 |
+
TFAutoModelForQuestionAnswering,
|
102 |
+
TFAutoModelForSeq2SeqLM,
|
103 |
+
TFAutoModelForSequenceClassification,
|
104 |
+
TFAutoModelForTableQuestionAnswering,
|
105 |
+
TFAutoModelForTokenClassification,
|
106 |
+
TFAutoModelForVision2Seq,
|
107 |
+
TFAutoModelForZeroShotImageClassification,
|
108 |
+
)
|
109 |
+
|
110 |
+
if is_torch_available():
|
111 |
+
import torch
|
112 |
+
|
113 |
+
from ..models.auto.modeling_auto import (
|
114 |
+
AutoModel,
|
115 |
+
AutoModelForAudioClassification,
|
116 |
+
AutoModelForCausalLM,
|
117 |
+
AutoModelForCTC,
|
118 |
+
AutoModelForDocumentQuestionAnswering,
|
119 |
+
AutoModelForImageClassification,
|
120 |
+
AutoModelForImageSegmentation,
|
121 |
+
AutoModelForMaskedLM,
|
122 |
+
AutoModelForMaskGeneration,
|
123 |
+
AutoModelForObjectDetection,
|
124 |
+
AutoModelForQuestionAnswering,
|
125 |
+
AutoModelForSemanticSegmentation,
|
126 |
+
AutoModelForSeq2SeqLM,
|
127 |
+
AutoModelForSequenceClassification,
|
128 |
+
AutoModelForSpeechSeq2Seq,
|
129 |
+
AutoModelForTableQuestionAnswering,
|
130 |
+
AutoModelForTextToSpectrogram,
|
131 |
+
AutoModelForTextToWaveform,
|
132 |
+
AutoModelForTokenClassification,
|
133 |
+
AutoModelForVideoClassification,
|
134 |
+
AutoModelForVision2Seq,
|
135 |
+
AutoModelForVisualQuestionAnswering,
|
136 |
+
AutoModelForZeroShotImageClassification,
|
137 |
+
AutoModelForZeroShotObjectDetection,
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
if TYPE_CHECKING:
|
142 |
+
from ..modeling_tf_utils import TFPreTrainedModel
|
143 |
+
from ..modeling_utils import PreTrainedModel
|
144 |
+
from ..tokenization_utils_fast import PreTrainedTokenizerFast
|
145 |
+
|
146 |
+
|
147 |
+
logger = logging.get_logger(__name__)
|
148 |
+
|
149 |
+
|
150 |
+
# Register all the supported tasks here
|
151 |
+
TASK_ALIASES = {
|
152 |
+
"sentiment-analysis": "text-classification",
|
153 |
+
"ner": "token-classification",
|
154 |
+
"vqa": "visual-question-answering",
|
155 |
+
"text-to-speech": "text-to-audio",
|
156 |
+
}
|
157 |
+
SUPPORTED_TASKS = {
|
158 |
+
"audio-classification": {
|
159 |
+
"impl": AudioClassificationPipeline,
|
160 |
+
"tf": (),
|
161 |
+
"pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
|
162 |
+
"default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
|
163 |
+
"type": "audio",
|
164 |
+
},
|
165 |
+
"automatic-speech-recognition": {
|
166 |
+
"impl": AutomaticSpeechRecognitionPipeline,
|
167 |
+
"tf": (),
|
168 |
+
"pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
|
169 |
+
"default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
|
170 |
+
"type": "multimodal",
|
171 |
+
},
|
172 |
+
"text-to-audio": {
|
173 |
+
"impl": TextToAudioPipeline,
|
174 |
+
"tf": (),
|
175 |
+
"pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
|
176 |
+
"default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
|
177 |
+
"type": "text",
|
178 |
+
},
|
179 |
+
"feature-extraction": {
|
180 |
+
"impl": FeatureExtractionPipeline,
|
181 |
+
"tf": (TFAutoModel,) if is_tf_available() else (),
|
182 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
183 |
+
"default": {
|
184 |
+
"model": {
|
185 |
+
"pt": ("distilbert/distilbert-base-cased", "935ac13"),
|
186 |
+
"tf": ("distilbert/distilbert-base-cased", "935ac13"),
|
187 |
+
}
|
188 |
+
},
|
189 |
+
"type": "multimodal",
|
190 |
+
},
|
191 |
+
"text-classification": {
|
192 |
+
"impl": TextClassificationPipeline,
|
193 |
+
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
|
194 |
+
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
|
195 |
+
"default": {
|
196 |
+
"model": {
|
197 |
+
"pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
|
198 |
+
"tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
|
199 |
+
},
|
200 |
+
},
|
201 |
+
"type": "text",
|
202 |
+
},
|
203 |
+
"token-classification": {
|
204 |
+
"impl": TokenClassificationPipeline,
|
205 |
+
"tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
|
206 |
+
"pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
|
207 |
+
"default": {
|
208 |
+
"model": {
|
209 |
+
"pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
|
210 |
+
"tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
|
211 |
+
},
|
212 |
+
},
|
213 |
+
"type": "text",
|
214 |
+
},
|
215 |
+
"question-answering": {
|
216 |
+
"impl": QuestionAnsweringPipeline,
|
217 |
+
"tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
|
218 |
+
"pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
|
219 |
+
"default": {
|
220 |
+
"model": {
|
221 |
+
"pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
|
222 |
+
"tf": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
|
223 |
+
},
|
224 |
+
},
|
225 |
+
"type": "text",
|
226 |
+
},
|
227 |
+
"table-question-answering": {
|
228 |
+
"impl": TableQuestionAnsweringPipeline,
|
229 |
+
"pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
|
230 |
+
"tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
|
231 |
+
"default": {
|
232 |
+
"model": {
|
233 |
+
"pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
|
234 |
+
"tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
|
235 |
+
},
|
236 |
+
},
|
237 |
+
"type": "text",
|
238 |
+
},
|
239 |
+
"visual-question-answering": {
|
240 |
+
"impl": VisualQuestionAnsweringPipeline,
|
241 |
+
"pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (),
|
242 |
+
"tf": (),
|
243 |
+
"default": {
|
244 |
+
"model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
|
245 |
+
},
|
246 |
+
"type": "multimodal",
|
247 |
+
},
|
248 |
+
"document-question-answering": {
|
249 |
+
"impl": DocumentQuestionAnsweringPipeline,
|
250 |
+
"pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
|
251 |
+
"tf": (),
|
252 |
+
"default": {
|
253 |
+
"model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
|
254 |
+
},
|
255 |
+
"type": "multimodal",
|
256 |
+
},
|
257 |
+
"fill-mask": {
|
258 |
+
"impl": FillMaskPipeline,
|
259 |
+
"tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
|
260 |
+
"pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
|
261 |
+
"default": {
|
262 |
+
"model": {
|
263 |
+
"pt": ("distilbert/distilroberta-base", "ec58a5b"),
|
264 |
+
"tf": ("distilbert/distilroberta-base", "ec58a5b"),
|
265 |
+
}
|
266 |
+
},
|
267 |
+
"type": "text",
|
268 |
+
},
|
269 |
+
"summarization": {
|
270 |
+
"impl": SummarizationPipeline,
|
271 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
272 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
273 |
+
"default": {
|
274 |
+
"model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")}
|
275 |
+
},
|
276 |
+
"type": "text",
|
277 |
+
},
|
278 |
+
# This task is a special case as it's parametrized by SRC, TGT languages.
|
279 |
+
"translation": {
|
280 |
+
"impl": TranslationPipeline,
|
281 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
282 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
283 |
+
"default": {
|
284 |
+
("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
285 |
+
("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
286 |
+
("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
287 |
+
},
|
288 |
+
"type": "text",
|
289 |
+
},
|
290 |
+
"text2text-generation": {
|
291 |
+
"impl": Text2TextGenerationPipeline,
|
292 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
293 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
294 |
+
"default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
295 |
+
"type": "text",
|
296 |
+
},
|
297 |
+
"text-generation": {
|
298 |
+
"impl": TextGenerationPipeline,
|
299 |
+
"tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
|
300 |
+
"pt": (AutoModelForCausalLM,) if is_torch_available() else (),
|
301 |
+
"default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}},
|
302 |
+
"type": "text",
|
303 |
+
},
|
304 |
+
"zero-shot-classification": {
|
305 |
+
"impl": ZeroShotClassificationPipeline,
|
306 |
+
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
|
307 |
+
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
|
308 |
+
"default": {
|
309 |
+
"model": {
|
310 |
+
"pt": ("facebook/bart-large-mnli", "c626438"),
|
311 |
+
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
|
312 |
+
},
|
313 |
+
"config": {
|
314 |
+
"pt": ("facebook/bart-large-mnli", "c626438"),
|
315 |
+
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
|
316 |
+
},
|
317 |
+
},
|
318 |
+
"type": "text",
|
319 |
+
},
|
320 |
+
"zero-shot-image-classification": {
|
321 |
+
"impl": ZeroShotImageClassificationPipeline,
|
322 |
+
"tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
|
323 |
+
"pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
|
324 |
+
"default": {
|
325 |
+
"model": {
|
326 |
+
"pt": ("openai/clip-vit-base-patch32", "f4881ba"),
|
327 |
+
"tf": ("openai/clip-vit-base-patch32", "f4881ba"),
|
328 |
+
}
|
329 |
+
},
|
330 |
+
"type": "multimodal",
|
331 |
+
},
|
332 |
+
"zero-shot-audio-classification": {
|
333 |
+
"impl": ZeroShotAudioClassificationPipeline,
|
334 |
+
"tf": (),
|
335 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
336 |
+
"default": {
|
337 |
+
"model": {
|
338 |
+
"pt": ("laion/clap-htsat-fused", "973b6e5"),
|
339 |
+
}
|
340 |
+
},
|
341 |
+
"type": "multimodal",
|
342 |
+
},
|
343 |
+
"conversational": {
|
344 |
+
"impl": ConversationalPipeline,
|
345 |
+
"tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (),
|
346 |
+
"pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (),
|
347 |
+
"default": {
|
348 |
+
"model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")}
|
349 |
+
},
|
350 |
+
"type": "text",
|
351 |
+
},
|
352 |
+
"image-classification": {
|
353 |
+
"impl": ImageClassificationPipeline,
|
354 |
+
"tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
|
355 |
+
"pt": (AutoModelForImageClassification,) if is_torch_available() else (),
|
356 |
+
"default": {
|
357 |
+
"model": {
|
358 |
+
"pt": ("google/vit-base-patch16-224", "5dca96d"),
|
359 |
+
"tf": ("google/vit-base-patch16-224", "5dca96d"),
|
360 |
+
}
|
361 |
+
},
|
362 |
+
"type": "image",
|
363 |
+
},
|
364 |
+
"image-feature-extraction": {
|
365 |
+
"impl": ImageFeatureExtractionPipeline,
|
366 |
+
"tf": (TFAutoModel,) if is_tf_available() else (),
|
367 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
368 |
+
"default": {
|
369 |
+
"model": {
|
370 |
+
"pt": ("google/vit-base-patch16-224", "3f49326"),
|
371 |
+
"tf": ("google/vit-base-patch16-224", "3f49326"),
|
372 |
+
}
|
373 |
+
},
|
374 |
+
"type": "image",
|
375 |
+
},
|
376 |
+
"image-segmentation": {
|
377 |
+
"impl": ImageSegmentationPipeline,
|
378 |
+
"tf": (),
|
379 |
+
"pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
|
380 |
+
"default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
|
381 |
+
"type": "multimodal",
|
382 |
+
},
|
383 |
+
"image-to-text": {
|
384 |
+
"impl": ImageToTextPipeline,
|
385 |
+
"tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
|
386 |
+
"pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
|
387 |
+
"default": {
|
388 |
+
"model": {
|
389 |
+
"pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
|
390 |
+
"tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
|
391 |
+
}
|
392 |
+
},
|
393 |
+
"type": "multimodal",
|
394 |
+
},
|
395 |
+
"object-detection": {
|
396 |
+
"impl": ObjectDetectionPipeline,
|
397 |
+
"tf": (),
|
398 |
+
"pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
|
399 |
+
"default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
|
400 |
+
"type": "multimodal",
|
401 |
+
},
|
402 |
+
"zero-shot-object-detection": {
|
403 |
+
"impl": ZeroShotObjectDetectionPipeline,
|
404 |
+
"tf": (),
|
405 |
+
"pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
|
406 |
+
"default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
|
407 |
+
"type": "multimodal",
|
408 |
+
},
|
409 |
+
"depth-estimation": {
|
410 |
+
"impl": DepthEstimationPipeline,
|
411 |
+
"tf": (),
|
412 |
+
"pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
|
413 |
+
"default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
|
414 |
+
"type": "image",
|
415 |
+
},
|
416 |
+
"video-classification": {
|
417 |
+
"impl": VideoClassificationPipeline,
|
418 |
+
"tf": (),
|
419 |
+
"pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
|
420 |
+
"default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
|
421 |
+
"type": "video",
|
422 |
+
},
|
423 |
+
"mask-generation": {
|
424 |
+
"impl": MaskGenerationPipeline,
|
425 |
+
"tf": (),
|
426 |
+
"pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
|
427 |
+
"default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
|
428 |
+
"type": "multimodal",
|
429 |
+
},
|
430 |
+
"image-to-image": {
|
431 |
+
"impl": ImageToImagePipeline,
|
432 |
+
"tf": (),
|
433 |
+
"pt": (AutoModelForImageToImage,) if is_torch_available() else (),
|
434 |
+
"default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
|
435 |
+
"type": "image",
|
436 |
+
},
|
437 |
+
}
|
438 |
+
|
439 |
+
NO_FEATURE_EXTRACTOR_TASKS = set()
|
440 |
+
NO_IMAGE_PROCESSOR_TASKS = set()
|
441 |
+
NO_TOKENIZER_TASKS = set()
|
442 |
+
|
443 |
+
# Those model configs are special, they are generic over their task, meaning
|
444 |
+
# any tokenizer/feature_extractor might be use for a given model so we cannot
|
445 |
+
# use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING to
|
446 |
+
# see if the model defines such objects or not.
|
447 |
+
MULTI_MODEL_AUDIO_CONFIGS = {"SpeechEncoderDecoderConfig"}
|
448 |
+
MULTI_MODEL_VISION_CONFIGS = {"VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"}
|
449 |
+
for task, values in SUPPORTED_TASKS.items():
|
450 |
+
if values["type"] == "text":
|
451 |
+
NO_FEATURE_EXTRACTOR_TASKS.add(task)
|
452 |
+
NO_IMAGE_PROCESSOR_TASKS.add(task)
|
453 |
+
elif values["type"] in {"image", "video"}:
|
454 |
+
NO_TOKENIZER_TASKS.add(task)
|
455 |
+
elif values["type"] in {"audio"}:
|
456 |
+
NO_TOKENIZER_TASKS.add(task)
|
457 |
+
NO_IMAGE_PROCESSOR_TASKS.add(task)
|
458 |
+
elif values["type"] != "multimodal":
|
459 |
+
raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}")
|
460 |
+
|
461 |
+
PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES)
|
462 |
+
|
463 |
+
|
464 |
+
def get_supported_tasks() -> List[str]:
|
465 |
+
"""
|
466 |
+
Returns a list of supported task strings.
|
467 |
+
"""
|
468 |
+
return PIPELINE_REGISTRY.get_supported_tasks()
|
469 |
+
|
470 |
+
|
471 |
+
def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str:
|
472 |
+
use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
|
473 |
+
if use_auth_token is not None:
|
474 |
+
warnings.warn(
|
475 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
476 |
+
FutureWarning,
|
477 |
+
)
|
478 |
+
if token is not None:
|
479 |
+
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
480 |
+
token = use_auth_token
|
481 |
+
|
482 |
+
if is_offline_mode():
|
483 |
+
raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode")
|
484 |
+
try:
|
485 |
+
info = model_info(model, token=token)
|
486 |
+
except Exception as e:
|
487 |
+
raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}")
|
488 |
+
if not info.pipeline_tag:
|
489 |
+
raise RuntimeError(
|
490 |
+
f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically"
|
491 |
+
)
|
492 |
+
if getattr(info, "library_name", "transformers") != "transformers":
|
493 |
+
raise RuntimeError(f"This model is meant to be used with {info.library_name} not with transformers")
|
494 |
+
task = info.pipeline_tag
|
495 |
+
return task
|
496 |
+
|
497 |
+
|
498 |
+
def check_task(task: str) -> Tuple[str, Dict, Any]:
|
499 |
+
"""
|
500 |
+
Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and
|
501 |
+
default models if they exist.
|
502 |
+
|
503 |
+
Args:
|
504 |
+
task (`str`):
|
505 |
+
The task defining which pipeline will be returned. Currently accepted tasks are:
|
506 |
+
|
507 |
+
- `"audio-classification"`
|
508 |
+
- `"automatic-speech-recognition"`
|
509 |
+
- `"conversational"`
|
510 |
+
- `"depth-estimation"`
|
511 |
+
- `"document-question-answering"`
|
512 |
+
- `"feature-extraction"`
|
513 |
+
- `"fill-mask"`
|
514 |
+
- `"image-classification"`
|
515 |
+
- `"image-feature-extraction"`
|
516 |
+
- `"image-segmentation"`
|
517 |
+
- `"image-to-text"`
|
518 |
+
- `"image-to-image"`
|
519 |
+
- `"object-detection"`
|
520 |
+
- `"question-answering"`
|
521 |
+
- `"summarization"`
|
522 |
+
- `"table-question-answering"`
|
523 |
+
- `"text2text-generation"`
|
524 |
+
- `"text-classification"` (alias `"sentiment-analysis"` available)
|
525 |
+
- `"text-generation"`
|
526 |
+
- `"text-to-audio"` (alias `"text-to-speech"` available)
|
527 |
+
- `"token-classification"` (alias `"ner"` available)
|
528 |
+
- `"translation"`
|
529 |
+
- `"translation_xx_to_yy"`
|
530 |
+
- `"video-classification"`
|
531 |
+
- `"visual-question-answering"` (alias `"vqa"` available)
|
532 |
+
- `"zero-shot-classification"`
|
533 |
+
- `"zero-shot-image-classification"`
|
534 |
+
- `"zero-shot-object-detection"`
|
535 |
+
|
536 |
+
Returns:
|
537 |
+
(normalized_task: `str`, task_defaults: `dict`, task_options: (`tuple`, None)) The normalized task name
|
538 |
+
(removed alias and options). The actual dictionary required to initialize the pipeline and some extra task
|
539 |
+
options for parametrized tasks like "translation_XX_to_YY"
|
540 |
+
|
541 |
+
|
542 |
+
"""
|
543 |
+
return PIPELINE_REGISTRY.check_task(task)
|
544 |
+
|
545 |
+
|
546 |
+
def clean_custom_task(task_info):
|
547 |
+
import transformers
|
548 |
+
|
549 |
+
if "impl" not in task_info:
|
550 |
+
raise RuntimeError("This model introduces a custom pipeline without specifying its implementation.")
|
551 |
+
pt_class_names = task_info.get("pt", ())
|
552 |
+
if isinstance(pt_class_names, str):
|
553 |
+
pt_class_names = [pt_class_names]
|
554 |
+
task_info["pt"] = tuple(getattr(transformers, c) for c in pt_class_names)
|
555 |
+
tf_class_names = task_info.get("tf", ())
|
556 |
+
if isinstance(tf_class_names, str):
|
557 |
+
tf_class_names = [tf_class_names]
|
558 |
+
task_info["tf"] = tuple(getattr(transformers, c) for c in tf_class_names)
|
559 |
+
return task_info, None
|
560 |
+
|
561 |
+
|
562 |
+
def pipeline(
|
563 |
+
task: str = None,
|
564 |
+
model: Optional[Union[str, "PreTrainedModel", "TFPreTrainedModel"]] = None,
|
565 |
+
config: Optional[Union[str, PretrainedConfig]] = None,
|
566 |
+
tokenizer: Optional[Union[str, PreTrainedTokenizer, "PreTrainedTokenizerFast"]] = None,
|
567 |
+
feature_extractor: Optional[Union[str, PreTrainedFeatureExtractor]] = None,
|
568 |
+
image_processor: Optional[Union[str, BaseImageProcessor]] = None,
|
569 |
+
framework: Optional[str] = None,
|
570 |
+
revision: Optional[str] = None,
|
571 |
+
use_fast: bool = True,
|
572 |
+
token: Optional[Union[str, bool]] = None,
|
573 |
+
device: Optional[Union[int, str, "torch.device"]] = None,
|
574 |
+
device_map=None,
|
575 |
+
torch_dtype=None,
|
576 |
+
trust_remote_code: Optional[bool] = None,
|
577 |
+
model_kwargs: Dict[str, Any] = None,
|
578 |
+
pipeline_class: Optional[Any] = None,
|
579 |
+
**kwargs,
|
580 |
+
) -> Pipeline:
|
581 |
+
"""
|
582 |
+
Utility factory method to build a [`Pipeline`].
|
583 |
+
|
584 |
+
Pipelines are made of:
|
585 |
+
|
586 |
+
- A [tokenizer](tokenizer) in charge of mapping raw textual input to token.
|
587 |
+
- A [model](model) to make predictions from the inputs.
|
588 |
+
- Some (optional) post processing for enhancing model's output.
|
589 |
+
|
590 |
+
Args:
|
591 |
+
task (`str`):
|
592 |
+
The task defining which pipeline will be returned. Currently accepted tasks are:
|
593 |
+
|
594 |
+
- `"audio-classification"`: will return a [`AudioClassificationPipeline`].
|
595 |
+
- `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`].
|
596 |
+
- `"conversational"`: will return a [`ConversationalPipeline`].
|
597 |
+
- `"depth-estimation"`: will return a [`DepthEstimationPipeline`].
|
598 |
+
- `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`].
|
599 |
+
- `"feature-extraction"`: will return a [`FeatureExtractionPipeline`].
|
600 |
+
- `"fill-mask"`: will return a [`FillMaskPipeline`]:.
|
601 |
+
- `"image-classification"`: will return a [`ImageClassificationPipeline`].
|
602 |
+
- `"image-feature-extraction"`: will return an [`ImageFeatureExtractionPipeline`].
|
603 |
+
- `"image-segmentation"`: will return a [`ImageSegmentationPipeline`].
|
604 |
+
- `"image-to-image"`: will return a [`ImageToImagePipeline`].
|
605 |
+
- `"image-to-text"`: will return a [`ImageToTextPipeline`].
|
606 |
+
- `"mask-generation"`: will return a [`MaskGenerationPipeline`].
|
607 |
+
- `"object-detection"`: will return a [`ObjectDetectionPipeline`].
|
608 |
+
- `"question-answering"`: will return a [`QuestionAnsweringPipeline`].
|
609 |
+
- `"summarization"`: will return a [`SummarizationPipeline`].
|
610 |
+
- `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`].
|
611 |
+
- `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`].
|
612 |
+
- `"text-classification"` (alias `"sentiment-analysis"` available): will return a
|
613 |
+
[`TextClassificationPipeline`].
|
614 |
+
- `"text-generation"`: will return a [`TextGenerationPipeline`]:.
|
615 |
+
- `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:.
|
616 |
+
- `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`].
|
617 |
+
- `"translation"`: will return a [`TranslationPipeline`].
|
618 |
+
- `"translation_xx_to_yy"`: will return a [`TranslationPipeline`].
|
619 |
+
- `"video-classification"`: will return a [`VideoClassificationPipeline`].
|
620 |
+
- `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`].
|
621 |
+
- `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`].
|
622 |
+
- `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`].
|
623 |
+
- `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`].
|
624 |
+
- `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`].
|
625 |
+
|
626 |
+
model (`str` or [`PreTrainedModel`] or [`TFPreTrainedModel`], *optional*):
|
627 |
+
The model that will be used by the pipeline to make predictions. This can be a model identifier or an
|
628 |
+
actual instance of a pretrained model inheriting from [`PreTrainedModel`] (for PyTorch) or
|
629 |
+
[`TFPreTrainedModel`] (for TensorFlow).
|
630 |
+
|
631 |
+
If not provided, the default for the `task` will be loaded.
|
632 |
+
config (`str` or [`PretrainedConfig`], *optional*):
|
633 |
+
The configuration that will be used by the pipeline to instantiate the model. This can be a model
|
634 |
+
identifier or an actual pretrained model configuration inheriting from [`PretrainedConfig`].
|
635 |
+
|
636 |
+
If not provided, the default configuration file for the requested model will be used. That means that if
|
637 |
+
`model` is given, its default configuration will be used. However, if `model` is not supplied, this
|
638 |
+
`task`'s default model's config is used instead.
|
639 |
+
tokenizer (`str` or [`PreTrainedTokenizer`], *optional*):
|
640 |
+
The tokenizer that will be used by the pipeline to encode data for the model. This can be a model
|
641 |
+
identifier or an actual pretrained tokenizer inheriting from [`PreTrainedTokenizer`].
|
642 |
+
|
643 |
+
If not provided, the default tokenizer for the given `model` will be loaded (if it is a string). If `model`
|
644 |
+
is not specified or not a string, then the default tokenizer for `config` is loaded (if it is a string).
|
645 |
+
However, if `config` is also not given or not a string, then the default tokenizer for the given `task`
|
646 |
+
will be loaded.
|
647 |
+
feature_extractor (`str` or [`PreTrainedFeatureExtractor`], *optional*):
|
648 |
+
The feature extractor that will be used by the pipeline to encode data for the model. This can be a model
|
649 |
+
identifier or an actual pretrained feature extractor inheriting from [`PreTrainedFeatureExtractor`].
|
650 |
+
|
651 |
+
Feature extractors are used for non-NLP models, such as Speech or Vision models as well as multi-modal
|
652 |
+
models. Multi-modal models will also require a tokenizer to be passed.
|
653 |
+
|
654 |
+
If not provided, the default feature extractor for the given `model` will be loaded (if it is a string). If
|
655 |
+
`model` is not specified or not a string, then the default feature extractor for `config` is loaded (if it
|
656 |
+
is a string). However, if `config` is also not given or not a string, then the default feature extractor
|
657 |
+
for the given `task` will be loaded.
|
658 |
+
framework (`str`, *optional*):
|
659 |
+
The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be
|
660 |
+
installed.
|
661 |
+
|
662 |
+
If no framework is specified, will default to the one currently installed. If no framework is specified and
|
663 |
+
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is
|
664 |
+
provided.
|
665 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
666 |
+
When passing a task name or a string model identifier: The specific model version to use. It can be a
|
667 |
+
branch name, a tag name, or a commit id, since we use a git-based system for storing models and other
|
668 |
+
artifacts on huggingface.co, so `revision` can be any identifier allowed by git.
|
669 |
+
use_fast (`bool`, *optional*, defaults to `True`):
|
670 |
+
Whether or not to use a Fast tokenizer if possible (a [`PreTrainedTokenizerFast`]).
|
671 |
+
use_auth_token (`str` or *bool*, *optional*):
|
672 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
673 |
+
when running `huggingface-cli login` (stored in `~/.huggingface`).
|
674 |
+
device (`int` or `str` or `torch.device`):
|
675 |
+
Defines the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which this
|
676 |
+
pipeline will be allocated.
|
677 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]`, *optional*):
|
678 |
+
Sent directly as `model_kwargs` (just a simpler shortcut). When `accelerate` library is present, set
|
679 |
+
`device_map="auto"` to compute the most optimized `device_map` automatically (see
|
680 |
+
[here](https://huggingface.co/docs/accelerate/main/en/package_reference/big_modeling#accelerate.cpu_offload)
|
681 |
+
for more information).
|
682 |
+
|
683 |
+
<Tip warning={true}>
|
684 |
+
|
685 |
+
Do not use `device_map` AND `device` at the same time as they will conflict
|
686 |
+
|
687 |
+
</Tip>
|
688 |
+
|
689 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
690 |
+
Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model
|
691 |
+
(`torch.float16`, `torch.bfloat16`, ... or `"auto"`).
|
692 |
+
trust_remote_code (`bool`, *optional*, defaults to `False`):
|
693 |
+
Whether or not to allow for custom code defined on the Hub in their own modeling, configuration,
|
694 |
+
tokenization or even pipeline files. This option should only be set to `True` for repositories you trust
|
695 |
+
and in which you have read the code, as it will execute code present on the Hub on your local machine.
|
696 |
+
model_kwargs (`Dict[str, Any]`, *optional*):
|
697 |
+
Additional dictionary of keyword arguments passed along to the model's `from_pretrained(...,
|
698 |
+
**model_kwargs)` function.
|
699 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
700 |
+
Additional keyword arguments passed along to the specific pipeline init (see the documentation for the
|
701 |
+
corresponding pipeline class for possible values).
|
702 |
+
|
703 |
+
Returns:
|
704 |
+
[`Pipeline`]: A suitable pipeline for the task.
|
705 |
+
|
706 |
+
Examples:
|
707 |
+
|
708 |
+
```python
|
709 |
+
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
710 |
+
|
711 |
+
>>> # Sentiment analysis pipeline
|
712 |
+
>>> analyzer = pipeline("sentiment-analysis")
|
713 |
+
|
714 |
+
>>> # Question answering pipeline, specifying the checkpoint identifier
|
715 |
+
>>> oracle = pipeline(
|
716 |
+
... "question-answering", model="distilbert/distilbert-base-cased-distilled-squad", tokenizer="google-bert/bert-base-cased"
|
717 |
+
... )
|
718 |
+
|
719 |
+
>>> # Named entity recognition pipeline, passing in a specific model and tokenizer
|
720 |
+
>>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
|
721 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
|
722 |
+
>>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer)
|
723 |
+
```"""
|
724 |
+
if model_kwargs is None:
|
725 |
+
model_kwargs = {}
|
726 |
+
# Make sure we only pass use_auth_token once as a kwarg (it used to be possible to pass it in model_kwargs,
|
727 |
+
# this is to keep BC).
|
728 |
+
use_auth_token = model_kwargs.pop("use_auth_token", None)
|
729 |
+
if use_auth_token is not None:
|
730 |
+
warnings.warn(
|
731 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
732 |
+
FutureWarning,
|
733 |
+
)
|
734 |
+
if token is not None:
|
735 |
+
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
736 |
+
token = use_auth_token
|
737 |
+
|
738 |
+
code_revision = kwargs.pop("code_revision", None)
|
739 |
+
commit_hash = kwargs.pop("_commit_hash", None)
|
740 |
+
|
741 |
+
hub_kwargs = {
|
742 |
+
"revision": revision,
|
743 |
+
"token": token,
|
744 |
+
"trust_remote_code": trust_remote_code,
|
745 |
+
"_commit_hash": commit_hash,
|
746 |
+
}
|
747 |
+
|
748 |
+
if task is None and model is None:
|
749 |
+
raise RuntimeError(
|
750 |
+
"Impossible to instantiate a pipeline without either a task or a model "
|
751 |
+
"being specified. "
|
752 |
+
"Please provide a task class or a model"
|
753 |
+
)
|
754 |
+
|
755 |
+
if model is None and tokenizer is not None:
|
756 |
+
raise RuntimeError(
|
757 |
+
"Impossible to instantiate a pipeline with tokenizer specified but not the model as the provided tokenizer"
|
758 |
+
" may not be compatible with the default model. Please provide a PreTrainedModel class or a"
|
759 |
+
" path/identifier to a pretrained model when providing tokenizer."
|
760 |
+
)
|
761 |
+
if model is None and feature_extractor is not None:
|
762 |
+
raise RuntimeError(
|
763 |
+
"Impossible to instantiate a pipeline with feature_extractor specified but not the model as the provided"
|
764 |
+
" feature_extractor may not be compatible with the default model. Please provide a PreTrainedModel class"
|
765 |
+
" or a path/identifier to a pretrained model when providing feature_extractor."
|
766 |
+
)
|
767 |
+
if isinstance(model, Path):
|
768 |
+
model = str(model)
|
769 |
+
|
770 |
+
if commit_hash is None:
|
771 |
+
pretrained_model_name_or_path = None
|
772 |
+
if isinstance(config, str):
|
773 |
+
pretrained_model_name_or_path = config
|
774 |
+
elif config is None and isinstance(model, str):
|
775 |
+
pretrained_model_name_or_path = model
|
776 |
+
|
777 |
+
if not isinstance(config, PretrainedConfig) and pretrained_model_name_or_path is not None:
|
778 |
+
# We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
|
779 |
+
resolved_config_file = cached_file(
|
780 |
+
pretrained_model_name_or_path,
|
781 |
+
CONFIG_NAME,
|
782 |
+
_raise_exceptions_for_gated_repo=False,
|
783 |
+
_raise_exceptions_for_missing_entries=False,
|
784 |
+
_raise_exceptions_for_connection_errors=False,
|
785 |
+
cache_dir=model_kwargs.get("cache_dir"),
|
786 |
+
**hub_kwargs,
|
787 |
+
)
|
788 |
+
hub_kwargs["_commit_hash"] = extract_commit_hash(resolved_config_file, commit_hash)
|
789 |
+
else:
|
790 |
+
hub_kwargs["_commit_hash"] = getattr(config, "_commit_hash", None)
|
791 |
+
|
792 |
+
# Config is the primordial information item.
|
793 |
+
# Instantiate config if needed
|
794 |
+
if isinstance(config, str):
|
795 |
+
config = AutoConfig.from_pretrained(
|
796 |
+
config, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs
|
797 |
+
)
|
798 |
+
hub_kwargs["_commit_hash"] = config._commit_hash
|
799 |
+
elif config is None and isinstance(model, str):
|
800 |
+
# Check for an adapter file in the model path if PEFT is available
|
801 |
+
if is_peft_available():
|
802 |
+
# `find_adapter_config_file` doesn't accept `trust_remote_code`
|
803 |
+
_hub_kwargs = {k: v for k, v in hub_kwargs.items() if k != "trust_remote_code"}
|
804 |
+
maybe_adapter_path = find_adapter_config_file(
|
805 |
+
model,
|
806 |
+
token=hub_kwargs["token"],
|
807 |
+
revision=hub_kwargs["revision"],
|
808 |
+
_commit_hash=hub_kwargs["_commit_hash"],
|
809 |
+
)
|
810 |
+
|
811 |
+
if maybe_adapter_path is not None:
|
812 |
+
with open(maybe_adapter_path, "r", encoding="utf-8") as f:
|
813 |
+
adapter_config = json.load(f)
|
814 |
+
model = adapter_config["base_model_name_or_path"]
|
815 |
+
|
816 |
+
config = AutoConfig.from_pretrained(
|
817 |
+
model, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs
|
818 |
+
)
|
819 |
+
hub_kwargs["_commit_hash"] = config._commit_hash
|
820 |
+
|
821 |
+
custom_tasks = {}
|
822 |
+
if config is not None and len(getattr(config, "custom_pipelines", {})) > 0:
|
823 |
+
custom_tasks = config.custom_pipelines
|
824 |
+
if task is None and trust_remote_code is not False:
|
825 |
+
if len(custom_tasks) == 1:
|
826 |
+
task = list(custom_tasks.keys())[0]
|
827 |
+
else:
|
828 |
+
raise RuntimeError(
|
829 |
+
"We can't infer the task automatically for this model as there are multiple tasks available. Pick "
|
830 |
+
f"one in {', '.join(custom_tasks.keys())}"
|
831 |
+
)
|
832 |
+
|
833 |
+
if task is None and model is not None:
|
834 |
+
if not isinstance(model, str):
|
835 |
+
raise RuntimeError(
|
836 |
+
"Inferring the task automatically requires to check the hub with a model_id defined as a `str`. "
|
837 |
+
f"{model} is not a valid model_id."
|
838 |
+
)
|
839 |
+
task = get_task(model, token)
|
840 |
+
|
841 |
+
# Retrieve the task
|
842 |
+
if task in custom_tasks:
|
843 |
+
normalized_task = task
|
844 |
+
targeted_task, task_options = clean_custom_task(custom_tasks[task])
|
845 |
+
if pipeline_class is None:
|
846 |
+
if not trust_remote_code:
|
847 |
+
raise ValueError(
|
848 |
+
"Loading this pipeline requires you to execute the code in the pipeline file in that"
|
849 |
+
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
|
850 |
+
" set the option `trust_remote_code=True` to remove this error."
|
851 |
+
)
|
852 |
+
class_ref = targeted_task["impl"]
|
853 |
+
pipeline_class = get_class_from_dynamic_module(
|
854 |
+
class_ref,
|
855 |
+
model,
|
856 |
+
code_revision=code_revision,
|
857 |
+
**hub_kwargs,
|
858 |
+
)
|
859 |
+
else:
|
860 |
+
normalized_task, targeted_task, task_options = check_task(task)
|
861 |
+
if pipeline_class is None:
|
862 |
+
pipeline_class = targeted_task["impl"]
|
863 |
+
|
864 |
+
# Use default model/config/tokenizer for the task if no model is provided
|
865 |
+
if model is None:
|
866 |
+
# At that point framework might still be undetermined
|
867 |
+
model, default_revision = get_default_model_and_revision(targeted_task, framework, task_options)
|
868 |
+
revision = revision if revision is not None else default_revision
|
869 |
+
logger.warning(
|
870 |
+
f"No model was supplied, defaulted to {model} and revision"
|
871 |
+
f" {revision} ({HUGGINGFACE_CO_RESOLVE_ENDPOINT}/{model}).\n"
|
872 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended."
|
873 |
+
)
|
874 |
+
if config is None and isinstance(model, str):
|
875 |
+
config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs)
|
876 |
+
hub_kwargs["_commit_hash"] = config._commit_hash
|
877 |
+
|
878 |
+
if device_map is not None:
|
879 |
+
if "device_map" in model_kwargs:
|
880 |
+
raise ValueError(
|
881 |
+
'You cannot use both `pipeline(... device_map=..., model_kwargs={"device_map":...})` as those'
|
882 |
+
" arguments might conflict, use only one.)"
|
883 |
+
)
|
884 |
+
if device is not None:
|
885 |
+
logger.warning(
|
886 |
+
"Both `device` and `device_map` are specified. `device` will override `device_map`. You"
|
887 |
+
" will most likely encounter unexpected behavior. Please remove `device` and keep `device_map`."
|
888 |
+
)
|
889 |
+
model_kwargs["device_map"] = device_map
|
890 |
+
if torch_dtype is not None:
|
891 |
+
if "torch_dtype" in model_kwargs:
|
892 |
+
raise ValueError(
|
893 |
+
'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those'
|
894 |
+
" arguments might conflict, use only one.)"
|
895 |
+
)
|
896 |
+
if isinstance(torch_dtype, str) and hasattr(torch, torch_dtype):
|
897 |
+
torch_dtype = getattr(torch, torch_dtype)
|
898 |
+
model_kwargs["torch_dtype"] = torch_dtype
|
899 |
+
|
900 |
+
model_name = model if isinstance(model, str) else None
|
901 |
+
|
902 |
+
# Load the correct model if possible
|
903 |
+
# Infer the framework from the model if not already defined
|
904 |
+
if isinstance(model, str) or framework is None:
|
905 |
+
model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]}
|
906 |
+
framework, model = infer_framework_load_model(
|
907 |
+
model,
|
908 |
+
model_classes=model_classes,
|
909 |
+
config=config,
|
910 |
+
framework=framework,
|
911 |
+
task=task,
|
912 |
+
**hub_kwargs,
|
913 |
+
**model_kwargs,
|
914 |
+
)
|
915 |
+
|
916 |
+
model_config = model.config
|
917 |
+
hub_kwargs["_commit_hash"] = model.config._commit_hash
|
918 |
+
load_tokenizer = type(model_config) in TOKENIZER_MAPPING or model_config.tokenizer_class is not None
|
919 |
+
load_feature_extractor = type(model_config) in FEATURE_EXTRACTOR_MAPPING or feature_extractor is not None
|
920 |
+
load_image_processor = type(model_config) in IMAGE_PROCESSOR_MAPPING or image_processor is not None
|
921 |
+
|
922 |
+
# If `model` (instance of `PretrainedModel` instead of `str`) is passed (and/or same for config), while
|
923 |
+
# `image_processor` or `feature_extractor` is `None`, the loading will fail. This happens particularly for some
|
924 |
+
# vision tasks when calling `pipeline()` with `model` and only one of the `image_processor` and `feature_extractor`.
|
925 |
+
# TODO: we need to make `NO_IMAGE_PROCESSOR_TASKS` and `NO_FEATURE_EXTRACTOR_TASKS` more robust to avoid such issue.
|
926 |
+
# This block is only temporarily to make CI green.
|
927 |
+
if load_image_processor and load_feature_extractor:
|
928 |
+
load_feature_extractor = False
|
929 |
+
|
930 |
+
if (
|
931 |
+
tokenizer is None
|
932 |
+
and not load_tokenizer
|
933 |
+
and normalized_task not in NO_TOKENIZER_TASKS
|
934 |
+
# Using class name to avoid importing the real class.
|
935 |
+
and (
|
936 |
+
model_config.__class__.__name__ in MULTI_MODEL_AUDIO_CONFIGS
|
937 |
+
or model_config.__class__.__name__ in MULTI_MODEL_VISION_CONFIGS
|
938 |
+
)
|
939 |
+
):
|
940 |
+
# This is a special category of models, that are fusions of multiple models
|
941 |
+
# so the model_config might not define a tokenizer, but it seems to be
|
942 |
+
# necessary for the task, so we're force-trying to load it.
|
943 |
+
load_tokenizer = True
|
944 |
+
if (
|
945 |
+
image_processor is None
|
946 |
+
and not load_image_processor
|
947 |
+
and normalized_task not in NO_IMAGE_PROCESSOR_TASKS
|
948 |
+
# Using class name to avoid importing the real class.
|
949 |
+
and model_config.__class__.__name__ in MULTI_MODEL_VISION_CONFIGS
|
950 |
+
):
|
951 |
+
# This is a special category of models, that are fusions of multiple models
|
952 |
+
# so the model_config might not define a tokenizer, but it seems to be
|
953 |
+
# necessary for the task, so we're force-trying to load it.
|
954 |
+
load_image_processor = True
|
955 |
+
if (
|
956 |
+
feature_extractor is None
|
957 |
+
and not load_feature_extractor
|
958 |
+
and normalized_task not in NO_FEATURE_EXTRACTOR_TASKS
|
959 |
+
# Using class name to avoid importing the real class.
|
960 |
+
and model_config.__class__.__name__ in MULTI_MODEL_AUDIO_CONFIGS
|
961 |
+
):
|
962 |
+
# This is a special category of models, that are fusions of multiple models
|
963 |
+
# so the model_config might not define a tokenizer, but it seems to be
|
964 |
+
# necessary for the task, so we're force-trying to load it.
|
965 |
+
load_feature_extractor = True
|
966 |
+
|
967 |
+
if task in NO_TOKENIZER_TASKS:
|
968 |
+
# These will never require a tokenizer.
|
969 |
+
# the model on the other hand might have a tokenizer, but
|
970 |
+
# the files could be missing from the hub, instead of failing
|
971 |
+
# on such repos, we just force to not load it.
|
972 |
+
load_tokenizer = False
|
973 |
+
|
974 |
+
if task in NO_FEATURE_EXTRACTOR_TASKS:
|
975 |
+
load_feature_extractor = False
|
976 |
+
if task in NO_IMAGE_PROCESSOR_TASKS:
|
977 |
+
load_image_processor = False
|
978 |
+
|
979 |
+
if load_tokenizer:
|
980 |
+
# Try to infer tokenizer from model or config name (if provided as str)
|
981 |
+
if tokenizer is None:
|
982 |
+
if isinstance(model_name, str):
|
983 |
+
tokenizer = model_name
|
984 |
+
elif isinstance(config, str):
|
985 |
+
tokenizer = config
|
986 |
+
else:
|
987 |
+
# Impossible to guess what is the right tokenizer here
|
988 |
+
raise Exception(
|
989 |
+
"Impossible to guess which tokenizer to use. "
|
990 |
+
"Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer."
|
991 |
+
)
|
992 |
+
|
993 |
+
# Instantiate tokenizer if needed
|
994 |
+
if isinstance(tokenizer, (str, tuple)):
|
995 |
+
if isinstance(tokenizer, tuple):
|
996 |
+
# For tuple we have (tokenizer name, {kwargs})
|
997 |
+
use_fast = tokenizer[1].pop("use_fast", use_fast)
|
998 |
+
tokenizer_identifier = tokenizer[0]
|
999 |
+
tokenizer_kwargs = tokenizer[1]
|
1000 |
+
else:
|
1001 |
+
tokenizer_identifier = tokenizer
|
1002 |
+
tokenizer_kwargs = model_kwargs.copy()
|
1003 |
+
tokenizer_kwargs.pop("torch_dtype", None)
|
1004 |
+
|
1005 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
1006 |
+
tokenizer_identifier, use_fast=use_fast, _from_pipeline=task, **hub_kwargs, **tokenizer_kwargs
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
if load_image_processor:
|
1010 |
+
# Try to infer image processor from model or config name (if provided as str)
|
1011 |
+
if image_processor is None:
|
1012 |
+
if isinstance(model_name, str):
|
1013 |
+
image_processor = model_name
|
1014 |
+
elif isinstance(config, str):
|
1015 |
+
image_processor = config
|
1016 |
+
# Backward compatibility, as `feature_extractor` used to be the name
|
1017 |
+
# for `ImageProcessor`.
|
1018 |
+
elif feature_extractor is not None and isinstance(feature_extractor, BaseImageProcessor):
|
1019 |
+
image_processor = feature_extractor
|
1020 |
+
else:
|
1021 |
+
# Impossible to guess what is the right image_processor here
|
1022 |
+
raise Exception(
|
1023 |
+
"Impossible to guess which image processor to use. "
|
1024 |
+
"Please provide a PreTrainedImageProcessor class or a path/identifier "
|
1025 |
+
"to a pretrained image processor."
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
# Instantiate image_processor if needed
|
1029 |
+
if isinstance(image_processor, (str, tuple)):
|
1030 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
1031 |
+
image_processor, _from_pipeline=task, **hub_kwargs, **model_kwargs
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
if load_feature_extractor:
|
1035 |
+
# Try to infer feature extractor from model or config name (if provided as str)
|
1036 |
+
if feature_extractor is None:
|
1037 |
+
if isinstance(model_name, str):
|
1038 |
+
feature_extractor = model_name
|
1039 |
+
elif isinstance(config, str):
|
1040 |
+
feature_extractor = config
|
1041 |
+
else:
|
1042 |
+
# Impossible to guess what is the right feature_extractor here
|
1043 |
+
raise Exception(
|
1044 |
+
"Impossible to guess which feature extractor to use. "
|
1045 |
+
"Please provide a PreTrainedFeatureExtractor class or a path/identifier "
|
1046 |
+
"to a pretrained feature extractor."
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
# Instantiate feature_extractor if needed
|
1050 |
+
if isinstance(feature_extractor, (str, tuple)):
|
1051 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
1052 |
+
feature_extractor, _from_pipeline=task, **hub_kwargs, **model_kwargs
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
if (
|
1056 |
+
feature_extractor._processor_class
|
1057 |
+
and feature_extractor._processor_class.endswith("WithLM")
|
1058 |
+
and isinstance(model_name, str)
|
1059 |
+
):
|
1060 |
+
try:
|
1061 |
+
import kenlm # to trigger `ImportError` if not installed
|
1062 |
+
from pyctcdecode import BeamSearchDecoderCTC
|
1063 |
+
|
1064 |
+
if os.path.isdir(model_name) or os.path.isfile(model_name):
|
1065 |
+
decoder = BeamSearchDecoderCTC.load_from_dir(model_name)
|
1066 |
+
else:
|
1067 |
+
language_model_glob = os.path.join(
|
1068 |
+
BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*"
|
1069 |
+
)
|
1070 |
+
alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME
|
1071 |
+
allow_patterns = [language_model_glob, alphabet_filename]
|
1072 |
+
decoder = BeamSearchDecoderCTC.load_from_hf_hub(model_name, allow_patterns=allow_patterns)
|
1073 |
+
|
1074 |
+
kwargs["decoder"] = decoder
|
1075 |
+
except ImportError as e:
|
1076 |
+
logger.warning(f"Could not load the `decoder` for {model_name}. Defaulting to raw CTC. Error: {e}")
|
1077 |
+
if not is_kenlm_available():
|
1078 |
+
logger.warning("Try to install `kenlm`: `pip install kenlm")
|
1079 |
+
|
1080 |
+
if not is_pyctcdecode_available():
|
1081 |
+
logger.warning("Try to install `pyctcdecode`: `pip install pyctcdecode")
|
1082 |
+
|
1083 |
+
if task == "translation" and model.config.task_specific_params:
|
1084 |
+
for key in model.config.task_specific_params:
|
1085 |
+
if key.startswith("translation"):
|
1086 |
+
task = key
|
1087 |
+
warnings.warn(
|
1088 |
+
f'"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{task}"',
|
1089 |
+
UserWarning,
|
1090 |
+
)
|
1091 |
+
break
|
1092 |
+
|
1093 |
+
if tokenizer is not None:
|
1094 |
+
kwargs["tokenizer"] = tokenizer
|
1095 |
+
|
1096 |
+
if feature_extractor is not None:
|
1097 |
+
kwargs["feature_extractor"] = feature_extractor
|
1098 |
+
|
1099 |
+
if torch_dtype is not None:
|
1100 |
+
kwargs["torch_dtype"] = torch_dtype
|
1101 |
+
|
1102 |
+
if image_processor is not None:
|
1103 |
+
kwargs["image_processor"] = image_processor
|
1104 |
+
|
1105 |
+
if device is not None:
|
1106 |
+
kwargs["device"] = device
|
1107 |
+
|
1108 |
+
return pipeline_class(model=model, framework=framework, task=task, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/audio_classification.cpython-310.pyc
ADDED
Binary file (7.55 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/audio_utils.cpython-310.pyc
ADDED
Binary file (7.33 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/base.cpython-310.pyc
ADDED
Binary file (45.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/conversational.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/depth_estimation.cpython-310.pyc
ADDED
Binary file (5.05 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/document_question_answering.cpython-310.pyc
ADDED
Binary file (17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_classification.cpython-310.pyc
ADDED
Binary file (8.42 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_feature_extraction.cpython-310.pyc
ADDED
Binary file (4.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_segmentation.cpython-310.pyc
ADDED
Binary file (7.84 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_to_image.cpython-310.pyc
ADDED
Binary file (4.78 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_to_text.cpython-310.pyc
ADDED
Binary file (5.97 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/mask_generation.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/object_detection.cpython-310.pyc
ADDED
Binary file (7.92 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/pt_utils.cpython-310.pyc
ADDED
Binary file (9.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/question_answering.cpython-310.pyc
ADDED
Binary file (20.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/table_question_answering.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/text2text_generation.cpython-310.pyc
ADDED
Binary file (16.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/text_classification.cpython-310.pyc
ADDED
Binary file (8.88 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/text_to_audio.cpython-310.pyc
ADDED
Binary file (6.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/token_classification.cpython-310.pyc
ADDED
Binary file (19.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/visual_question_answering.cpython-310.pyc
ADDED
Binary file (6.86 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/zero_shot_audio_classification.cpython-310.pyc
ADDED
Binary file (6.36 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/zero_shot_classification.cpython-310.pyc
ADDED
Binary file (11.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/pipelines/__pycache__/zero_shot_image_classification.cpython-310.pyc
ADDED
Binary file (7.03 kB). View file
|
|