applied-ai-018 commited on
Commit
eed846f
·
verified ·
1 Parent(s): 6c06f83

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. env-llmeval/lib/python3.10/site-packages/pandas/_libs/algos.cpython-310-x86_64-linux-gnu.so +3 -0
  3. env-llmeval/lib/python3.10/site-packages/pandas/_libs/groupby.cpython-310-x86_64-linux-gnu.so +3 -0
  4. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__init__.py +0 -0
  5. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_reduction.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_arithmetic.py +139 -0
  7. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_astype.py +53 -0
  8. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_comparison.py +60 -0
  9. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_construction.py +325 -0
  10. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_function.py +126 -0
  11. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_indexing.py +13 -0
  12. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_logical.py +254 -0
  13. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_ops.py +27 -0
  14. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_reduction.py +62 -0
  15. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_repr.py +13 -0
  16. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__pycache__/__init__.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__init__.py +0 -0
  18. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/__init__.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/conftest.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_comparison.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_concat.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_construction.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_dtypes.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_function.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_indexing.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_reduction.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_repr.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/conftest.py +68 -0
  30. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_arithmetic.py +385 -0
  31. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_comparison.py +39 -0
  32. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_concat.py +69 -0
  33. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_construction.py +245 -0
  34. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_dtypes.py +294 -0
  35. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_function.py +203 -0
  36. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_indexing.py +19 -0
  37. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_reduction.py +125 -0
  38. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_repr.py +67 -0
  39. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__init__.py +0 -0
  40. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/__init__.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_astype.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_formats.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_interval.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_interval_pyarrow.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_overlaps.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_astype.py +28 -0
  47. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_formats.py +13 -0
  48. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_interval.py +231 -0
  49. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_interval_pyarrow.py +160 -0
  50. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_overlaps.py +93 -0
.gitattributes CHANGED
@@ -173,3 +173,5 @@ env-llmeval/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-x86_64-li
173
  env-llmeval/lib/python3.10/site-packages/pandas/_libs/hashtable.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
174
  env-llmeval/lib/python3.10/site-packages/pandas/_libs/interval.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
175
  env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
 
 
 
173
  env-llmeval/lib/python3.10/site-packages/pandas/_libs/hashtable.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
174
  env-llmeval/lib/python3.10/site-packages/pandas/_libs/interval.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
175
  env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
176
+ env-llmeval/lib/python3.10/site-packages/pandas/_libs/algos.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
177
+ env-llmeval/lib/python3.10/site-packages/pandas/_libs/groupby.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
env-llmeval/lib/python3.10/site-packages/pandas/_libs/algos.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c90dd62bc6525e39bc76c8df9c7162cfc2cb1b371d00ff925cdfe7cd63ffdd5
3
+ size 2194056
env-llmeval/lib/python3.10/site-packages/pandas/_libs/groupby.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:724930f75dc3e6a3f7ae745ed008c7e3d5080a902a35d1843364531122789450
3
+ size 2622024
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_reduction.cpython-310.pyc ADDED
Binary file (1.74 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_arithmetic.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+
9
+
10
+ @pytest.fixture
11
+ def data():
12
+ """Fixture returning boolean array with valid and missing values."""
13
+ return pd.array(
14
+ [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False],
15
+ dtype="boolean",
16
+ )
17
+
18
+
19
+ @pytest.fixture
20
+ def left_array():
21
+ """Fixture returning boolean array with valid and missing values."""
22
+ return pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
23
+
24
+
25
+ @pytest.fixture
26
+ def right_array():
27
+ """Fixture returning boolean array with valid and missing values."""
28
+ return pd.array([True, False, None] * 3, dtype="boolean")
29
+
30
+
31
+ # Basic test for the arithmetic array ops
32
+ # -----------------------------------------------------------------------------
33
+
34
+
35
+ @pytest.mark.parametrize(
36
+ "opname, exp",
37
+ [
38
+ ("add", [True, True, None, True, False, None, None, None, None]),
39
+ ("mul", [True, False, None, False, False, None, None, None, None]),
40
+ ],
41
+ ids=["add", "mul"],
42
+ )
43
+ def test_add_mul(left_array, right_array, opname, exp):
44
+ op = getattr(operator, opname)
45
+ result = op(left_array, right_array)
46
+ expected = pd.array(exp, dtype="boolean")
47
+ tm.assert_extension_array_equal(result, expected)
48
+
49
+
50
+ def test_sub(left_array, right_array):
51
+ msg = (
52
+ r"numpy boolean subtract, the `-` operator, is (?:deprecated|not supported), "
53
+ r"use the bitwise_xor, the `\^` operator, or the logical_xor function instead\."
54
+ )
55
+ with pytest.raises(TypeError, match=msg):
56
+ left_array - right_array
57
+
58
+
59
+ def test_div(left_array, right_array):
60
+ msg = "operator '.*' not implemented for bool dtypes"
61
+ with pytest.raises(NotImplementedError, match=msg):
62
+ # check that we are matching the non-masked Series behavior
63
+ pd.Series(left_array._data) / pd.Series(right_array._data)
64
+
65
+ with pytest.raises(NotImplementedError, match=msg):
66
+ left_array / right_array
67
+
68
+
69
+ @pytest.mark.parametrize(
70
+ "opname",
71
+ [
72
+ "floordiv",
73
+ "mod",
74
+ "pow",
75
+ ],
76
+ )
77
+ def test_op_int8(left_array, right_array, opname):
78
+ op = getattr(operator, opname)
79
+ if opname != "mod":
80
+ msg = "operator '.*' not implemented for bool dtypes"
81
+ with pytest.raises(NotImplementedError, match=msg):
82
+ result = op(left_array, right_array)
83
+ return
84
+ result = op(left_array, right_array)
85
+ expected = op(left_array.astype("Int8"), right_array.astype("Int8"))
86
+ tm.assert_extension_array_equal(result, expected)
87
+
88
+
89
+ # Test generic characteristics / errors
90
+ # -----------------------------------------------------------------------------
91
+
92
+
93
+ def test_error_invalid_values(data, all_arithmetic_operators, using_infer_string):
94
+ # invalid ops
95
+
96
+ if using_infer_string:
97
+ import pyarrow as pa
98
+
99
+ err = (TypeError, pa.lib.ArrowNotImplementedError, NotImplementedError)
100
+ else:
101
+ err = TypeError
102
+
103
+ op = all_arithmetic_operators
104
+ s = pd.Series(data)
105
+ ops = getattr(s, op)
106
+
107
+ # invalid scalars
108
+ msg = (
109
+ "did not contain a loop with signature matching types|"
110
+ "BooleanArray cannot perform the operation|"
111
+ "not supported for the input types, and the inputs could not be safely coerced "
112
+ "to any supported types according to the casting rule ''safe''"
113
+ )
114
+ with pytest.raises(TypeError, match=msg):
115
+ ops("foo")
116
+ msg = "|".join(
117
+ [
118
+ r"unsupported operand type\(s\) for",
119
+ "Concatenation operation is not implemented for NumPy arrays",
120
+ "has no kernel",
121
+ ]
122
+ )
123
+ with pytest.raises(err, match=msg):
124
+ ops(pd.Timestamp("20180101"))
125
+
126
+ # invalid array-likes
127
+ if op not in ("__mul__", "__rmul__"):
128
+ # TODO(extension) numpy's mul with object array sees booleans as numbers
129
+ msg = "|".join(
130
+ [
131
+ r"unsupported operand type\(s\) for",
132
+ "can only concatenate str",
133
+ "not all arguments converted during string formatting",
134
+ "has no kernel",
135
+ "not implemented",
136
+ ]
137
+ )
138
+ with pytest.raises(err, match=msg):
139
+ ops(pd.Series("foo", index=s.index))
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_astype.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ def test_astype():
9
+ # with missing values
10
+ arr = pd.array([True, False, None], dtype="boolean")
11
+
12
+ with pytest.raises(ValueError, match="cannot convert NA to integer"):
13
+ arr.astype("int64")
14
+
15
+ with pytest.raises(ValueError, match="cannot convert float NaN to"):
16
+ arr.astype("bool")
17
+
18
+ result = arr.astype("float64")
19
+ expected = np.array([1, 0, np.nan], dtype="float64")
20
+ tm.assert_numpy_array_equal(result, expected)
21
+
22
+ result = arr.astype("str")
23
+ expected = np.array(["True", "False", "<NA>"], dtype=f"{tm.ENDIAN}U5")
24
+ tm.assert_numpy_array_equal(result, expected)
25
+
26
+ # no missing values
27
+ arr = pd.array([True, False, True], dtype="boolean")
28
+ result = arr.astype("int64")
29
+ expected = np.array([1, 0, 1], dtype="int64")
30
+ tm.assert_numpy_array_equal(result, expected)
31
+
32
+ result = arr.astype("bool")
33
+ expected = np.array([True, False, True], dtype="bool")
34
+ tm.assert_numpy_array_equal(result, expected)
35
+
36
+
37
+ def test_astype_to_boolean_array():
38
+ # astype to BooleanArray
39
+ arr = pd.array([True, False, None], dtype="boolean")
40
+
41
+ result = arr.astype("boolean")
42
+ tm.assert_extension_array_equal(result, arr)
43
+ result = arr.astype(pd.BooleanDtype())
44
+ tm.assert_extension_array_equal(result, arr)
45
+
46
+
47
+ def test_astype_to_integer_array():
48
+ # astype to IntegerArray
49
+ arr = pd.array([True, False, None], dtype="boolean")
50
+
51
+ result = arr.astype("Int64")
52
+ expected = pd.array([1, 0, None], dtype="Int64")
53
+ tm.assert_extension_array_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_comparison.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.arrays import BooleanArray
7
+ from pandas.tests.arrays.masked_shared import ComparisonOps
8
+
9
+
10
+ @pytest.fixture
11
+ def data():
12
+ """Fixture returning boolean array with valid and missing data"""
13
+ return pd.array(
14
+ [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False],
15
+ dtype="boolean",
16
+ )
17
+
18
+
19
+ @pytest.fixture
20
+ def dtype():
21
+ """Fixture returning BooleanDtype"""
22
+ return pd.BooleanDtype()
23
+
24
+
25
+ class TestComparisonOps(ComparisonOps):
26
+ def test_compare_scalar(self, data, comparison_op):
27
+ self._compare_other(data, comparison_op, True)
28
+
29
+ def test_compare_array(self, data, comparison_op):
30
+ other = pd.array([True] * len(data), dtype="boolean")
31
+ self._compare_other(data, comparison_op, other)
32
+ other = np.array([True] * len(data))
33
+ self._compare_other(data, comparison_op, other)
34
+ other = pd.Series([True] * len(data))
35
+ self._compare_other(data, comparison_op, other)
36
+
37
+ @pytest.mark.parametrize("other", [True, False, pd.NA])
38
+ def test_scalar(self, other, comparison_op, dtype):
39
+ ComparisonOps.test_scalar(self, other, comparison_op, dtype)
40
+
41
+ def test_array(self, comparison_op):
42
+ op = comparison_op
43
+ a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
44
+ b = pd.array([True, False, None] * 3, dtype="boolean")
45
+
46
+ result = op(a, b)
47
+
48
+ values = op(a._data, b._data)
49
+ mask = a._mask | b._mask
50
+ expected = BooleanArray(values, mask)
51
+ tm.assert_extension_array_equal(result, expected)
52
+
53
+ # ensure we haven't mutated anything inplace
54
+ result[0] = None
55
+ tm.assert_extension_array_equal(
56
+ a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
57
+ )
58
+ tm.assert_extension_array_equal(
59
+ b, pd.array([True, False, None] * 3, dtype="boolean")
60
+ )
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_construction.py ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.arrays import BooleanArray
7
+ from pandas.core.arrays.boolean import coerce_to_array
8
+
9
+
10
+ def test_boolean_array_constructor():
11
+ values = np.array([True, False, True, False], dtype="bool")
12
+ mask = np.array([False, False, False, True], dtype="bool")
13
+
14
+ result = BooleanArray(values, mask)
15
+ expected = pd.array([True, False, True, None], dtype="boolean")
16
+ tm.assert_extension_array_equal(result, expected)
17
+
18
+ with pytest.raises(TypeError, match="values should be boolean numpy array"):
19
+ BooleanArray(values.tolist(), mask)
20
+
21
+ with pytest.raises(TypeError, match="mask should be boolean numpy array"):
22
+ BooleanArray(values, mask.tolist())
23
+
24
+ with pytest.raises(TypeError, match="values should be boolean numpy array"):
25
+ BooleanArray(values.astype(int), mask)
26
+
27
+ with pytest.raises(TypeError, match="mask should be boolean numpy array"):
28
+ BooleanArray(values, None)
29
+
30
+ with pytest.raises(ValueError, match="values.shape must match mask.shape"):
31
+ BooleanArray(values.reshape(1, -1), mask)
32
+
33
+ with pytest.raises(ValueError, match="values.shape must match mask.shape"):
34
+ BooleanArray(values, mask.reshape(1, -1))
35
+
36
+
37
+ def test_boolean_array_constructor_copy():
38
+ values = np.array([True, False, True, False], dtype="bool")
39
+ mask = np.array([False, False, False, True], dtype="bool")
40
+
41
+ result = BooleanArray(values, mask)
42
+ assert result._data is values
43
+ assert result._mask is mask
44
+
45
+ result = BooleanArray(values, mask, copy=True)
46
+ assert result._data is not values
47
+ assert result._mask is not mask
48
+
49
+
50
+ def test_to_boolean_array():
51
+ expected = BooleanArray(
52
+ np.array([True, False, True]), np.array([False, False, False])
53
+ )
54
+
55
+ result = pd.array([True, False, True], dtype="boolean")
56
+ tm.assert_extension_array_equal(result, expected)
57
+ result = pd.array(np.array([True, False, True]), dtype="boolean")
58
+ tm.assert_extension_array_equal(result, expected)
59
+ result = pd.array(np.array([True, False, True], dtype=object), dtype="boolean")
60
+ tm.assert_extension_array_equal(result, expected)
61
+
62
+ # with missing values
63
+ expected = BooleanArray(
64
+ np.array([True, False, True]), np.array([False, False, True])
65
+ )
66
+
67
+ result = pd.array([True, False, None], dtype="boolean")
68
+ tm.assert_extension_array_equal(result, expected)
69
+ result = pd.array(np.array([True, False, None], dtype=object), dtype="boolean")
70
+ tm.assert_extension_array_equal(result, expected)
71
+
72
+
73
+ def test_to_boolean_array_all_none():
74
+ expected = BooleanArray(np.array([True, True, True]), np.array([True, True, True]))
75
+
76
+ result = pd.array([None, None, None], dtype="boolean")
77
+ tm.assert_extension_array_equal(result, expected)
78
+ result = pd.array(np.array([None, None, None], dtype=object), dtype="boolean")
79
+ tm.assert_extension_array_equal(result, expected)
80
+
81
+
82
+ @pytest.mark.parametrize(
83
+ "a, b",
84
+ [
85
+ ([True, False, None, np.nan, pd.NA], [True, False, None, None, None]),
86
+ ([True, np.nan], [True, None]),
87
+ ([True, pd.NA], [True, None]),
88
+ ([np.nan, np.nan], [None, None]),
89
+ (np.array([np.nan, np.nan], dtype=float), [None, None]),
90
+ ],
91
+ )
92
+ def test_to_boolean_array_missing_indicators(a, b):
93
+ result = pd.array(a, dtype="boolean")
94
+ expected = pd.array(b, dtype="boolean")
95
+ tm.assert_extension_array_equal(result, expected)
96
+
97
+
98
+ @pytest.mark.parametrize(
99
+ "values",
100
+ [
101
+ ["foo", "bar"],
102
+ ["1", "2"],
103
+ # "foo",
104
+ [1, 2],
105
+ [1.0, 2.0],
106
+ pd.date_range("20130101", periods=2),
107
+ np.array(["foo"]),
108
+ np.array([1, 2]),
109
+ np.array([1.0, 2.0]),
110
+ [np.nan, {"a": 1}],
111
+ ],
112
+ )
113
+ def test_to_boolean_array_error(values):
114
+ # error in converting existing arrays to BooleanArray
115
+ msg = "Need to pass bool-like value"
116
+ with pytest.raises(TypeError, match=msg):
117
+ pd.array(values, dtype="boolean")
118
+
119
+
120
+ def test_to_boolean_array_from_integer_array():
121
+ result = pd.array(np.array([1, 0, 1, 0]), dtype="boolean")
122
+ expected = pd.array([True, False, True, False], dtype="boolean")
123
+ tm.assert_extension_array_equal(result, expected)
124
+
125
+ # with missing values
126
+ result = pd.array(np.array([1, 0, 1, None]), dtype="boolean")
127
+ expected = pd.array([True, False, True, None], dtype="boolean")
128
+ tm.assert_extension_array_equal(result, expected)
129
+
130
+
131
+ def test_to_boolean_array_from_float_array():
132
+ result = pd.array(np.array([1.0, 0.0, 1.0, 0.0]), dtype="boolean")
133
+ expected = pd.array([True, False, True, False], dtype="boolean")
134
+ tm.assert_extension_array_equal(result, expected)
135
+
136
+ # with missing values
137
+ result = pd.array(np.array([1.0, 0.0, 1.0, np.nan]), dtype="boolean")
138
+ expected = pd.array([True, False, True, None], dtype="boolean")
139
+ tm.assert_extension_array_equal(result, expected)
140
+
141
+
142
+ def test_to_boolean_array_integer_like():
143
+ # integers of 0's and 1's
144
+ result = pd.array([1, 0, 1, 0], dtype="boolean")
145
+ expected = pd.array([True, False, True, False], dtype="boolean")
146
+ tm.assert_extension_array_equal(result, expected)
147
+
148
+ # with missing values
149
+ result = pd.array([1, 0, 1, None], dtype="boolean")
150
+ expected = pd.array([True, False, True, None], dtype="boolean")
151
+ tm.assert_extension_array_equal(result, expected)
152
+
153
+
154
+ def test_coerce_to_array():
155
+ # TODO this is currently not public API
156
+ values = np.array([True, False, True, False], dtype="bool")
157
+ mask = np.array([False, False, False, True], dtype="bool")
158
+ result = BooleanArray(*coerce_to_array(values, mask=mask))
159
+ expected = BooleanArray(values, mask)
160
+ tm.assert_extension_array_equal(result, expected)
161
+ assert result._data is values
162
+ assert result._mask is mask
163
+ result = BooleanArray(*coerce_to_array(values, mask=mask, copy=True))
164
+ expected = BooleanArray(values, mask)
165
+ tm.assert_extension_array_equal(result, expected)
166
+ assert result._data is not values
167
+ assert result._mask is not mask
168
+
169
+ # mixed missing from values and mask
170
+ values = [True, False, None, False]
171
+ mask = np.array([False, False, False, True], dtype="bool")
172
+ result = BooleanArray(*coerce_to_array(values, mask=mask))
173
+ expected = BooleanArray(
174
+ np.array([True, False, True, True]), np.array([False, False, True, True])
175
+ )
176
+ tm.assert_extension_array_equal(result, expected)
177
+ result = BooleanArray(*coerce_to_array(np.array(values, dtype=object), mask=mask))
178
+ tm.assert_extension_array_equal(result, expected)
179
+ result = BooleanArray(*coerce_to_array(values, mask=mask.tolist()))
180
+ tm.assert_extension_array_equal(result, expected)
181
+
182
+ # raise errors for wrong dimension
183
+ values = np.array([True, False, True, False], dtype="bool")
184
+ mask = np.array([False, False, False, True], dtype="bool")
185
+
186
+ # passing 2D values is OK as long as no mask
187
+ coerce_to_array(values.reshape(1, -1))
188
+
189
+ with pytest.raises(ValueError, match="values.shape and mask.shape must match"):
190
+ coerce_to_array(values.reshape(1, -1), mask=mask)
191
+
192
+ with pytest.raises(ValueError, match="values.shape and mask.shape must match"):
193
+ coerce_to_array(values, mask=mask.reshape(1, -1))
194
+
195
+
196
+ def test_coerce_to_array_from_boolean_array():
197
+ # passing BooleanArray to coerce_to_array
198
+ values = np.array([True, False, True, False], dtype="bool")
199
+ mask = np.array([False, False, False, True], dtype="bool")
200
+ arr = BooleanArray(values, mask)
201
+ result = BooleanArray(*coerce_to_array(arr))
202
+ tm.assert_extension_array_equal(result, arr)
203
+ # no copy
204
+ assert result._data is arr._data
205
+ assert result._mask is arr._mask
206
+
207
+ result = BooleanArray(*coerce_to_array(arr), copy=True)
208
+ tm.assert_extension_array_equal(result, arr)
209
+ assert result._data is not arr._data
210
+ assert result._mask is not arr._mask
211
+
212
+ with pytest.raises(ValueError, match="cannot pass mask for BooleanArray input"):
213
+ coerce_to_array(arr, mask=mask)
214
+
215
+
216
+ def test_coerce_to_numpy_array():
217
+ # with missing values -> object dtype
218
+ arr = pd.array([True, False, None], dtype="boolean")
219
+ result = np.array(arr)
220
+ expected = np.array([True, False, pd.NA], dtype="object")
221
+ tm.assert_numpy_array_equal(result, expected)
222
+
223
+ # also with no missing values -> object dtype
224
+ arr = pd.array([True, False, True], dtype="boolean")
225
+ result = np.array(arr)
226
+ expected = np.array([True, False, True], dtype="bool")
227
+ tm.assert_numpy_array_equal(result, expected)
228
+
229
+ # force bool dtype
230
+ result = np.array(arr, dtype="bool")
231
+ expected = np.array([True, False, True], dtype="bool")
232
+ tm.assert_numpy_array_equal(result, expected)
233
+ # with missing values will raise error
234
+ arr = pd.array([True, False, None], dtype="boolean")
235
+ msg = (
236
+ "cannot convert to 'bool'-dtype NumPy array with missing values. "
237
+ "Specify an appropriate 'na_value' for this dtype."
238
+ )
239
+ with pytest.raises(ValueError, match=msg):
240
+ np.array(arr, dtype="bool")
241
+
242
+
243
+ def test_to_boolean_array_from_strings():
244
+ result = BooleanArray._from_sequence_of_strings(
245
+ np.array(["True", "False", "1", "1.0", "0", "0.0", np.nan], dtype=object),
246
+ dtype="boolean",
247
+ )
248
+ expected = BooleanArray(
249
+ np.array([True, False, True, True, False, False, False]),
250
+ np.array([False, False, False, False, False, False, True]),
251
+ )
252
+
253
+ tm.assert_extension_array_equal(result, expected)
254
+
255
+
256
+ def test_to_boolean_array_from_strings_invalid_string():
257
+ with pytest.raises(ValueError, match="cannot be cast"):
258
+ BooleanArray._from_sequence_of_strings(["donkey"], dtype="boolean")
259
+
260
+
261
+ @pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
262
+ def test_to_numpy(box):
263
+ con = pd.Series if box else pd.array
264
+ # default (with or without missing values) -> object dtype
265
+ arr = con([True, False, True], dtype="boolean")
266
+ result = arr.to_numpy()
267
+ expected = np.array([True, False, True], dtype="bool")
268
+ tm.assert_numpy_array_equal(result, expected)
269
+
270
+ arr = con([True, False, None], dtype="boolean")
271
+ result = arr.to_numpy()
272
+ expected = np.array([True, False, pd.NA], dtype="object")
273
+ tm.assert_numpy_array_equal(result, expected)
274
+
275
+ arr = con([True, False, None], dtype="boolean")
276
+ result = arr.to_numpy(dtype="str")
277
+ expected = np.array([True, False, pd.NA], dtype=f"{tm.ENDIAN}U5")
278
+ tm.assert_numpy_array_equal(result, expected)
279
+
280
+ # no missing values -> can convert to bool, otherwise raises
281
+ arr = con([True, False, True], dtype="boolean")
282
+ result = arr.to_numpy(dtype="bool")
283
+ expected = np.array([True, False, True], dtype="bool")
284
+ tm.assert_numpy_array_equal(result, expected)
285
+
286
+ arr = con([True, False, None], dtype="boolean")
287
+ with pytest.raises(ValueError, match="cannot convert to 'bool'-dtype"):
288
+ result = arr.to_numpy(dtype="bool")
289
+
290
+ # specify dtype and na_value
291
+ arr = con([True, False, None], dtype="boolean")
292
+ result = arr.to_numpy(dtype=object, na_value=None)
293
+ expected = np.array([True, False, None], dtype="object")
294
+ tm.assert_numpy_array_equal(result, expected)
295
+
296
+ result = arr.to_numpy(dtype=bool, na_value=False)
297
+ expected = np.array([True, False, False], dtype="bool")
298
+ tm.assert_numpy_array_equal(result, expected)
299
+
300
+ result = arr.to_numpy(dtype="int64", na_value=-99)
301
+ expected = np.array([1, 0, -99], dtype="int64")
302
+ tm.assert_numpy_array_equal(result, expected)
303
+
304
+ result = arr.to_numpy(dtype="float64", na_value=np.nan)
305
+ expected = np.array([1, 0, np.nan], dtype="float64")
306
+ tm.assert_numpy_array_equal(result, expected)
307
+
308
+ # converting to int or float without specifying na_value raises
309
+ with pytest.raises(ValueError, match="cannot convert to 'int64'-dtype"):
310
+ arr.to_numpy(dtype="int64")
311
+
312
+
313
+ def test_to_numpy_copy():
314
+ # to_numpy can be zero-copy if no missing values
315
+ arr = pd.array([True, False, True], dtype="boolean")
316
+ result = arr.to_numpy(dtype=bool)
317
+ result[0] = False
318
+ tm.assert_extension_array_equal(
319
+ arr, pd.array([False, False, True], dtype="boolean")
320
+ )
321
+
322
+ arr = pd.array([True, False, True], dtype="boolean")
323
+ result = arr.to_numpy(dtype=bool, copy=True)
324
+ result[0] = False
325
+ tm.assert_extension_array_equal(arr, pd.array([True, False, True], dtype="boolean"))
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_function.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ @pytest.mark.parametrize(
9
+ "ufunc", [np.add, np.logical_or, np.logical_and, np.logical_xor]
10
+ )
11
+ def test_ufuncs_binary(ufunc):
12
+ # two BooleanArrays
13
+ a = pd.array([True, False, None], dtype="boolean")
14
+ result = ufunc(a, a)
15
+ expected = pd.array(ufunc(a._data, a._data), dtype="boolean")
16
+ expected[a._mask] = np.nan
17
+ tm.assert_extension_array_equal(result, expected)
18
+
19
+ s = pd.Series(a)
20
+ result = ufunc(s, a)
21
+ expected = pd.Series(ufunc(a._data, a._data), dtype="boolean")
22
+ expected[a._mask] = np.nan
23
+ tm.assert_series_equal(result, expected)
24
+
25
+ # Boolean with numpy array
26
+ arr = np.array([True, True, False])
27
+ result = ufunc(a, arr)
28
+ expected = pd.array(ufunc(a._data, arr), dtype="boolean")
29
+ expected[a._mask] = np.nan
30
+ tm.assert_extension_array_equal(result, expected)
31
+
32
+ result = ufunc(arr, a)
33
+ expected = pd.array(ufunc(arr, a._data), dtype="boolean")
34
+ expected[a._mask] = np.nan
35
+ tm.assert_extension_array_equal(result, expected)
36
+
37
+ # BooleanArray with scalar
38
+ result = ufunc(a, True)
39
+ expected = pd.array(ufunc(a._data, True), dtype="boolean")
40
+ expected[a._mask] = np.nan
41
+ tm.assert_extension_array_equal(result, expected)
42
+
43
+ result = ufunc(True, a)
44
+ expected = pd.array(ufunc(True, a._data), dtype="boolean")
45
+ expected[a._mask] = np.nan
46
+ tm.assert_extension_array_equal(result, expected)
47
+
48
+ # not handled types
49
+ msg = r"operand type\(s\) all returned NotImplemented from __array_ufunc__"
50
+ with pytest.raises(TypeError, match=msg):
51
+ ufunc(a, "test")
52
+
53
+
54
+ @pytest.mark.parametrize("ufunc", [np.logical_not])
55
+ def test_ufuncs_unary(ufunc):
56
+ a = pd.array([True, False, None], dtype="boolean")
57
+ result = ufunc(a)
58
+ expected = pd.array(ufunc(a._data), dtype="boolean")
59
+ expected[a._mask] = np.nan
60
+ tm.assert_extension_array_equal(result, expected)
61
+
62
+ ser = pd.Series(a)
63
+ result = ufunc(ser)
64
+ expected = pd.Series(ufunc(a._data), dtype="boolean")
65
+ expected[a._mask] = np.nan
66
+ tm.assert_series_equal(result, expected)
67
+
68
+
69
+ def test_ufunc_numeric():
70
+ # np.sqrt on np.bool_ returns float16, which we upcast to Float32
71
+ # bc we do not have Float16
72
+ arr = pd.array([True, False, None], dtype="boolean")
73
+
74
+ res = np.sqrt(arr)
75
+
76
+ expected = pd.array([1, 0, None], dtype="Float32")
77
+ tm.assert_extension_array_equal(res, expected)
78
+
79
+
80
+ @pytest.mark.parametrize("values", [[True, False], [True, None]])
81
+ def test_ufunc_reduce_raises(values):
82
+ arr = pd.array(values, dtype="boolean")
83
+
84
+ res = np.add.reduce(arr)
85
+ if arr[-1] is pd.NA:
86
+ expected = pd.NA
87
+ else:
88
+ expected = arr._data.sum()
89
+ tm.assert_almost_equal(res, expected)
90
+
91
+
92
+ def test_value_counts_na():
93
+ arr = pd.array([True, False, pd.NA], dtype="boolean")
94
+ result = arr.value_counts(dropna=False)
95
+ expected = pd.Series([1, 1, 1], index=arr, dtype="Int64", name="count")
96
+ assert expected.index.dtype == arr.dtype
97
+ tm.assert_series_equal(result, expected)
98
+
99
+ result = arr.value_counts(dropna=True)
100
+ expected = pd.Series([1, 1], index=arr[:-1], dtype="Int64", name="count")
101
+ assert expected.index.dtype == arr.dtype
102
+ tm.assert_series_equal(result, expected)
103
+
104
+
105
+ def test_value_counts_with_normalize():
106
+ ser = pd.Series([True, False, pd.NA], dtype="boolean")
107
+ result = ser.value_counts(normalize=True)
108
+ expected = pd.Series([1, 1], index=ser[:-1], dtype="Float64", name="proportion") / 2
109
+ assert expected.index.dtype == "boolean"
110
+ tm.assert_series_equal(result, expected)
111
+
112
+
113
+ def test_diff():
114
+ a = pd.array(
115
+ [True, True, False, False, True, None, True, None, False], dtype="boolean"
116
+ )
117
+ result = pd.core.algorithms.diff(a, 1)
118
+ expected = pd.array(
119
+ [None, False, True, False, True, None, None, None, None], dtype="boolean"
120
+ )
121
+ tm.assert_extension_array_equal(result, expected)
122
+
123
+ ser = pd.Series(a)
124
+ result = ser.diff()
125
+ expected = pd.Series(expected)
126
+ tm.assert_series_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_indexing.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ @pytest.mark.parametrize("na", [None, np.nan, pd.NA])
9
+ def test_setitem_missing_values(na):
10
+ arr = pd.array([True, False, None], dtype="boolean")
11
+ expected = pd.array([True, None, None], dtype="boolean")
12
+ arr[1] = na
13
+ tm.assert_extension_array_equal(arr, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_logical.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.arrays import BooleanArray
9
+ from pandas.core.ops.mask_ops import (
10
+ kleene_and,
11
+ kleene_or,
12
+ kleene_xor,
13
+ )
14
+ from pandas.tests.extension.base import BaseOpsUtil
15
+
16
+
17
+ class TestLogicalOps(BaseOpsUtil):
18
+ def test_numpy_scalars_ok(self, all_logical_operators):
19
+ a = pd.array([True, False, None], dtype="boolean")
20
+ op = getattr(a, all_logical_operators)
21
+
22
+ tm.assert_extension_array_equal(op(True), op(np.bool_(True)))
23
+ tm.assert_extension_array_equal(op(False), op(np.bool_(False)))
24
+
25
+ def get_op_from_name(self, op_name):
26
+ short_opname = op_name.strip("_")
27
+ short_opname = short_opname if "xor" in short_opname else short_opname + "_"
28
+ try:
29
+ op = getattr(operator, short_opname)
30
+ except AttributeError:
31
+ # Assume it is the reverse operator
32
+ rop = getattr(operator, short_opname[1:])
33
+ op = lambda x, y: rop(y, x)
34
+
35
+ return op
36
+
37
+ def test_empty_ok(self, all_logical_operators):
38
+ a = pd.array([], dtype="boolean")
39
+ op_name = all_logical_operators
40
+ result = getattr(a, op_name)(True)
41
+ tm.assert_extension_array_equal(a, result)
42
+
43
+ result = getattr(a, op_name)(False)
44
+ tm.assert_extension_array_equal(a, result)
45
+
46
+ result = getattr(a, op_name)(pd.NA)
47
+ tm.assert_extension_array_equal(a, result)
48
+
49
+ @pytest.mark.parametrize(
50
+ "other", ["a", pd.Timestamp(2017, 1, 1, 12), np.timedelta64(4)]
51
+ )
52
+ def test_eq_mismatched_type(self, other):
53
+ # GH-44499
54
+ arr = pd.array([True, False])
55
+ result = arr == other
56
+ expected = pd.array([False, False])
57
+ tm.assert_extension_array_equal(result, expected)
58
+
59
+ result = arr != other
60
+ expected = pd.array([True, True])
61
+ tm.assert_extension_array_equal(result, expected)
62
+
63
+ def test_logical_length_mismatch_raises(self, all_logical_operators):
64
+ op_name = all_logical_operators
65
+ a = pd.array([True, False, None], dtype="boolean")
66
+ msg = "Lengths must match"
67
+
68
+ with pytest.raises(ValueError, match=msg):
69
+ getattr(a, op_name)([True, False])
70
+
71
+ with pytest.raises(ValueError, match=msg):
72
+ getattr(a, op_name)(np.array([True, False]))
73
+
74
+ with pytest.raises(ValueError, match=msg):
75
+ getattr(a, op_name)(pd.array([True, False], dtype="boolean"))
76
+
77
+ def test_logical_nan_raises(self, all_logical_operators):
78
+ op_name = all_logical_operators
79
+ a = pd.array([True, False, None], dtype="boolean")
80
+ msg = "Got float instead"
81
+
82
+ with pytest.raises(TypeError, match=msg):
83
+ getattr(a, op_name)(np.nan)
84
+
85
+ @pytest.mark.parametrize("other", ["a", 1])
86
+ def test_non_bool_or_na_other_raises(self, other, all_logical_operators):
87
+ a = pd.array([True, False], dtype="boolean")
88
+ with pytest.raises(TypeError, match=str(type(other).__name__)):
89
+ getattr(a, all_logical_operators)(other)
90
+
91
+ def test_kleene_or(self):
92
+ # A clear test of behavior.
93
+ a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
94
+ b = pd.array([True, False, None] * 3, dtype="boolean")
95
+ result = a | b
96
+ expected = pd.array(
97
+ [True, True, True, True, False, None, True, None, None], dtype="boolean"
98
+ )
99
+ tm.assert_extension_array_equal(result, expected)
100
+
101
+ result = b | a
102
+ tm.assert_extension_array_equal(result, expected)
103
+
104
+ # ensure we haven't mutated anything inplace
105
+ tm.assert_extension_array_equal(
106
+ a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
107
+ )
108
+ tm.assert_extension_array_equal(
109
+ b, pd.array([True, False, None] * 3, dtype="boolean")
110
+ )
111
+
112
+ @pytest.mark.parametrize(
113
+ "other, expected",
114
+ [
115
+ (pd.NA, [True, None, None]),
116
+ (True, [True, True, True]),
117
+ (np.bool_(True), [True, True, True]),
118
+ (False, [True, False, None]),
119
+ (np.bool_(False), [True, False, None]),
120
+ ],
121
+ )
122
+ def test_kleene_or_scalar(self, other, expected):
123
+ # TODO: test True & False
124
+ a = pd.array([True, False, None], dtype="boolean")
125
+ result = a | other
126
+ expected = pd.array(expected, dtype="boolean")
127
+ tm.assert_extension_array_equal(result, expected)
128
+
129
+ result = other | a
130
+ tm.assert_extension_array_equal(result, expected)
131
+
132
+ # ensure we haven't mutated anything inplace
133
+ tm.assert_extension_array_equal(
134
+ a, pd.array([True, False, None], dtype="boolean")
135
+ )
136
+
137
+ def test_kleene_and(self):
138
+ # A clear test of behavior.
139
+ a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
140
+ b = pd.array([True, False, None] * 3, dtype="boolean")
141
+ result = a & b
142
+ expected = pd.array(
143
+ [True, False, None, False, False, False, None, False, None], dtype="boolean"
144
+ )
145
+ tm.assert_extension_array_equal(result, expected)
146
+
147
+ result = b & a
148
+ tm.assert_extension_array_equal(result, expected)
149
+
150
+ # ensure we haven't mutated anything inplace
151
+ tm.assert_extension_array_equal(
152
+ a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
153
+ )
154
+ tm.assert_extension_array_equal(
155
+ b, pd.array([True, False, None] * 3, dtype="boolean")
156
+ )
157
+
158
+ @pytest.mark.parametrize(
159
+ "other, expected",
160
+ [
161
+ (pd.NA, [None, False, None]),
162
+ (True, [True, False, None]),
163
+ (False, [False, False, False]),
164
+ (np.bool_(True), [True, False, None]),
165
+ (np.bool_(False), [False, False, False]),
166
+ ],
167
+ )
168
+ def test_kleene_and_scalar(self, other, expected):
169
+ a = pd.array([True, False, None], dtype="boolean")
170
+ result = a & other
171
+ expected = pd.array(expected, dtype="boolean")
172
+ tm.assert_extension_array_equal(result, expected)
173
+
174
+ result = other & a
175
+ tm.assert_extension_array_equal(result, expected)
176
+
177
+ # ensure we haven't mutated anything inplace
178
+ tm.assert_extension_array_equal(
179
+ a, pd.array([True, False, None], dtype="boolean")
180
+ )
181
+
182
+ def test_kleene_xor(self):
183
+ a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
184
+ b = pd.array([True, False, None] * 3, dtype="boolean")
185
+ result = a ^ b
186
+ expected = pd.array(
187
+ [False, True, None, True, False, None, None, None, None], dtype="boolean"
188
+ )
189
+ tm.assert_extension_array_equal(result, expected)
190
+
191
+ result = b ^ a
192
+ tm.assert_extension_array_equal(result, expected)
193
+
194
+ # ensure we haven't mutated anything inplace
195
+ tm.assert_extension_array_equal(
196
+ a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
197
+ )
198
+ tm.assert_extension_array_equal(
199
+ b, pd.array([True, False, None] * 3, dtype="boolean")
200
+ )
201
+
202
+ @pytest.mark.parametrize(
203
+ "other, expected",
204
+ [
205
+ (pd.NA, [None, None, None]),
206
+ (True, [False, True, None]),
207
+ (np.bool_(True), [False, True, None]),
208
+ (np.bool_(False), [True, False, None]),
209
+ ],
210
+ )
211
+ def test_kleene_xor_scalar(self, other, expected):
212
+ a = pd.array([True, False, None], dtype="boolean")
213
+ result = a ^ other
214
+ expected = pd.array(expected, dtype="boolean")
215
+ tm.assert_extension_array_equal(result, expected)
216
+
217
+ result = other ^ a
218
+ tm.assert_extension_array_equal(result, expected)
219
+
220
+ # ensure we haven't mutated anything inplace
221
+ tm.assert_extension_array_equal(
222
+ a, pd.array([True, False, None], dtype="boolean")
223
+ )
224
+
225
+ @pytest.mark.parametrize("other", [True, False, pd.NA, [True, False, None] * 3])
226
+ def test_no_masked_assumptions(self, other, all_logical_operators):
227
+ # The logical operations should not assume that masked values are False!
228
+ a = pd.arrays.BooleanArray(
229
+ np.array([True, True, True, False, False, False, True, False, True]),
230
+ np.array([False] * 6 + [True, True, True]),
231
+ )
232
+ b = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
233
+ if isinstance(other, list):
234
+ other = pd.array(other, dtype="boolean")
235
+
236
+ result = getattr(a, all_logical_operators)(other)
237
+ expected = getattr(b, all_logical_operators)(other)
238
+ tm.assert_extension_array_equal(result, expected)
239
+
240
+ if isinstance(other, BooleanArray):
241
+ other._data[other._mask] = True
242
+ a._data[a._mask] = False
243
+
244
+ result = getattr(a, all_logical_operators)(other)
245
+ expected = getattr(b, all_logical_operators)(other)
246
+ tm.assert_extension_array_equal(result, expected)
247
+
248
+
249
+ @pytest.mark.parametrize("operation", [kleene_or, kleene_xor, kleene_and])
250
+ def test_error_both_scalar(operation):
251
+ msg = r"Either `left` or `right` need to be a np\.ndarray."
252
+ with pytest.raises(TypeError, match=msg):
253
+ # masks need to be non-None, otherwise it ends up in an infinite recursion
254
+ operation(True, True, np.zeros(1), np.zeros(1))
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_ops.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import pandas._testing as tm
3
+
4
+
5
+ class TestUnaryOps:
6
+ def test_invert(self):
7
+ a = pd.array([True, False, None], dtype="boolean")
8
+ expected = pd.array([False, True, None], dtype="boolean")
9
+ tm.assert_extension_array_equal(~a, expected)
10
+
11
+ expected = pd.Series(expected, index=["a", "b", "c"], name="name")
12
+ result = ~pd.Series(a, index=["a", "b", "c"], name="name")
13
+ tm.assert_series_equal(result, expected)
14
+
15
+ df = pd.DataFrame({"A": a, "B": [True, False, False]}, index=["a", "b", "c"])
16
+ result = ~df
17
+ expected = pd.DataFrame(
18
+ {"A": expected, "B": [False, True, True]}, index=["a", "b", "c"]
19
+ )
20
+ tm.assert_frame_equal(result, expected)
21
+
22
+ def test_abs(self):
23
+ # matching numpy behavior, abs is the identity function
24
+ arr = pd.array([True, False, None], dtype="boolean")
25
+ result = abs(arr)
26
+
27
+ tm.assert_extension_array_equal(result, arr)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_reduction.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+
6
+
7
+ @pytest.fixture
8
+ def data():
9
+ """Fixture returning boolean array, with valid and missing values."""
10
+ return pd.array(
11
+ [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False],
12
+ dtype="boolean",
13
+ )
14
+
15
+
16
+ @pytest.mark.parametrize(
17
+ "values, exp_any, exp_all, exp_any_noskip, exp_all_noskip",
18
+ [
19
+ ([True, pd.NA], True, True, True, pd.NA),
20
+ ([False, pd.NA], False, False, pd.NA, False),
21
+ ([pd.NA], False, True, pd.NA, pd.NA),
22
+ ([], False, True, False, True),
23
+ # GH-33253: all True / all False values buggy with skipna=False
24
+ ([True, True], True, True, True, True),
25
+ ([False, False], False, False, False, False),
26
+ ],
27
+ )
28
+ def test_any_all(values, exp_any, exp_all, exp_any_noskip, exp_all_noskip):
29
+ # the methods return numpy scalars
30
+ exp_any = pd.NA if exp_any is pd.NA else np.bool_(exp_any)
31
+ exp_all = pd.NA if exp_all is pd.NA else np.bool_(exp_all)
32
+ exp_any_noskip = pd.NA if exp_any_noskip is pd.NA else np.bool_(exp_any_noskip)
33
+ exp_all_noskip = pd.NA if exp_all_noskip is pd.NA else np.bool_(exp_all_noskip)
34
+
35
+ for con in [pd.array, pd.Series]:
36
+ a = con(values, dtype="boolean")
37
+ assert a.any() is exp_any
38
+ assert a.all() is exp_all
39
+ assert a.any(skipna=False) is exp_any_noskip
40
+ assert a.all(skipna=False) is exp_all_noskip
41
+
42
+ assert np.any(a.any()) is exp_any
43
+ assert np.all(a.all()) is exp_all
44
+
45
+
46
+ @pytest.mark.parametrize("dropna", [True, False])
47
+ def test_reductions_return_types(dropna, data, all_numeric_reductions):
48
+ op = all_numeric_reductions
49
+ s = pd.Series(data)
50
+ if dropna:
51
+ s = s.dropna()
52
+
53
+ if op in ("sum", "prod"):
54
+ assert isinstance(getattr(s, op)(), np.int_)
55
+ elif op == "count":
56
+ # Oddly on the 32 bit build (but not Windows), this is intc (!= intp)
57
+ assert isinstance(getattr(s, op)(), np.integer)
58
+ elif op in ("min", "max"):
59
+ assert isinstance(getattr(s, op)(), np.bool_)
60
+ else:
61
+ # "mean", "std", "var", "median", "kurt", "skew"
62
+ assert isinstance(getattr(s, op)(), np.float64)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_repr.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+
4
+ def test_repr():
5
+ df = pd.DataFrame({"A": pd.array([True, False, None], dtype="boolean")})
6
+ expected = " A\n0 True\n1 False\n2 <NA>"
7
+ assert repr(df) == expected
8
+
9
+ expected = "0 True\n1 False\n2 <NA>\nName: A, dtype: boolean"
10
+ assert repr(df.A) == expected
11
+
12
+ expected = "<BooleanArray>\n[True, False, <NA>]\nLength: 3, dtype: boolean"
13
+ assert repr(df.A.array) == expected
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (194 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (192 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (1.79 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_arithmetic.cpython-310.pyc ADDED
Binary file (9.38 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_comparison.cpython-310.pyc ADDED
Binary file (1.49 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_concat.cpython-310.pyc ADDED
Binary file (1.84 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_construction.cpython-310.pyc ADDED
Binary file (6.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_dtypes.cpython-310.pyc ADDED
Binary file (7.18 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_function.cpython-310.pyc ADDED
Binary file (5.89 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (801 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_reduction.cpython-310.pyc ADDED
Binary file (2.95 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_repr.cpython-310.pyc ADDED
Binary file (1.93 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/conftest.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas.core.arrays.integer import (
6
+ Int8Dtype,
7
+ Int16Dtype,
8
+ Int32Dtype,
9
+ Int64Dtype,
10
+ UInt8Dtype,
11
+ UInt16Dtype,
12
+ UInt32Dtype,
13
+ UInt64Dtype,
14
+ )
15
+
16
+
17
+ @pytest.fixture(
18
+ params=[
19
+ Int8Dtype,
20
+ Int16Dtype,
21
+ Int32Dtype,
22
+ Int64Dtype,
23
+ UInt8Dtype,
24
+ UInt16Dtype,
25
+ UInt32Dtype,
26
+ UInt64Dtype,
27
+ ]
28
+ )
29
+ def dtype(request):
30
+ """Parametrized fixture returning integer 'dtype'"""
31
+ return request.param()
32
+
33
+
34
+ @pytest.fixture
35
+ def data(dtype):
36
+ """
37
+ Fixture returning 'data' array with valid and missing values according to
38
+ parametrized integer 'dtype'.
39
+
40
+ Used to test dtype conversion with and without missing values.
41
+ """
42
+ return pd.array(
43
+ list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100],
44
+ dtype=dtype,
45
+ )
46
+
47
+
48
+ @pytest.fixture
49
+ def data_missing(dtype):
50
+ """
51
+ Fixture returning array with exactly one NaN and one valid integer,
52
+ according to parametrized integer 'dtype'.
53
+
54
+ Used to test dtype conversion with and without missing values.
55
+ """
56
+ return pd.array([np.nan, 1], dtype=dtype)
57
+
58
+
59
+ @pytest.fixture(params=["data", "data_missing"])
60
+ def all_data(request, data, data_missing):
61
+ """Parametrized fixture returning 'data' or 'data_missing' integer arrays.
62
+
63
+ Used to test dtype conversion with and without missing values.
64
+ """
65
+ if request.param == "data":
66
+ return data
67
+ elif request.param == "data_missing":
68
+ return data_missing
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_arithmetic.py ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.core import ops
9
+ from pandas.core.arrays import FloatingArray
10
+
11
+ # Basic test for the arithmetic array ops
12
+ # -----------------------------------------------------------------------------
13
+
14
+
15
+ @pytest.mark.parametrize(
16
+ "opname, exp",
17
+ [("add", [1, 3, None, None, 9]), ("mul", [0, 2, None, None, 20])],
18
+ ids=["add", "mul"],
19
+ )
20
+ def test_add_mul(dtype, opname, exp):
21
+ a = pd.array([0, 1, None, 3, 4], dtype=dtype)
22
+ b = pd.array([1, 2, 3, None, 5], dtype=dtype)
23
+
24
+ # array / array
25
+ expected = pd.array(exp, dtype=dtype)
26
+
27
+ op = getattr(operator, opname)
28
+ result = op(a, b)
29
+ tm.assert_extension_array_equal(result, expected)
30
+
31
+ op = getattr(ops, "r" + opname)
32
+ result = op(a, b)
33
+ tm.assert_extension_array_equal(result, expected)
34
+
35
+
36
+ def test_sub(dtype):
37
+ a = pd.array([1, 2, 3, None, 5], dtype=dtype)
38
+ b = pd.array([0, 1, None, 3, 4], dtype=dtype)
39
+
40
+ result = a - b
41
+ expected = pd.array([1, 1, None, None, 1], dtype=dtype)
42
+ tm.assert_extension_array_equal(result, expected)
43
+
44
+
45
+ def test_div(dtype):
46
+ a = pd.array([1, 2, 3, None, 5], dtype=dtype)
47
+ b = pd.array([0, 1, None, 3, 4], dtype=dtype)
48
+
49
+ result = a / b
50
+ expected = pd.array([np.inf, 2, None, None, 1.25], dtype="Float64")
51
+ tm.assert_extension_array_equal(result, expected)
52
+
53
+
54
+ @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
55
+ def test_divide_by_zero(zero, negative):
56
+ # https://github.com/pandas-dev/pandas/issues/27398, GH#22793
57
+ a = pd.array([0, 1, -1, None], dtype="Int64")
58
+ result = a / zero
59
+ expected = FloatingArray(
60
+ np.array([np.nan, np.inf, -np.inf, 1], dtype="float64"),
61
+ np.array([False, False, False, True]),
62
+ )
63
+ if negative:
64
+ expected *= -1
65
+ tm.assert_extension_array_equal(result, expected)
66
+
67
+
68
+ def test_floordiv(dtype):
69
+ a = pd.array([1, 2, 3, None, 5], dtype=dtype)
70
+ b = pd.array([0, 1, None, 3, 4], dtype=dtype)
71
+
72
+ result = a // b
73
+ # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet)
74
+ expected = pd.array([0, 2, None, None, 1], dtype=dtype)
75
+ tm.assert_extension_array_equal(result, expected)
76
+
77
+
78
+ def test_floordiv_by_int_zero_no_mask(any_int_ea_dtype):
79
+ # GH 48223: Aligns with non-masked floordiv
80
+ # but differs from numpy
81
+ # https://github.com/pandas-dev/pandas/issues/30188#issuecomment-564452740
82
+ ser = pd.Series([0, 1], dtype=any_int_ea_dtype)
83
+ result = 1 // ser
84
+ expected = pd.Series([np.inf, 1.0], dtype="Float64")
85
+ tm.assert_series_equal(result, expected)
86
+
87
+ ser_non_nullable = ser.astype(ser.dtype.numpy_dtype)
88
+ result = 1 // ser_non_nullable
89
+ expected = expected.astype(np.float64)
90
+ tm.assert_series_equal(result, expected)
91
+
92
+
93
+ def test_mod(dtype):
94
+ a = pd.array([1, 2, 3, None, 5], dtype=dtype)
95
+ b = pd.array([0, 1, None, 3, 4], dtype=dtype)
96
+
97
+ result = a % b
98
+ expected = pd.array([0, 0, None, None, 1], dtype=dtype)
99
+ tm.assert_extension_array_equal(result, expected)
100
+
101
+
102
+ def test_pow_scalar():
103
+ a = pd.array([-1, 0, 1, None, 2], dtype="Int64")
104
+ result = a**0
105
+ expected = pd.array([1, 1, 1, 1, 1], dtype="Int64")
106
+ tm.assert_extension_array_equal(result, expected)
107
+
108
+ result = a**1
109
+ expected = pd.array([-1, 0, 1, None, 2], dtype="Int64")
110
+ tm.assert_extension_array_equal(result, expected)
111
+
112
+ result = a**pd.NA
113
+ expected = pd.array([None, None, 1, None, None], dtype="Int64")
114
+ tm.assert_extension_array_equal(result, expected)
115
+
116
+ result = a**np.nan
117
+ expected = FloatingArray(
118
+ np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64"),
119
+ np.array([False, False, False, True, False]),
120
+ )
121
+ tm.assert_extension_array_equal(result, expected)
122
+
123
+ # reversed
124
+ a = a[1:] # Can't raise integers to negative powers.
125
+
126
+ result = 0**a
127
+ expected = pd.array([1, 0, None, 0], dtype="Int64")
128
+ tm.assert_extension_array_equal(result, expected)
129
+
130
+ result = 1**a
131
+ expected = pd.array([1, 1, 1, 1], dtype="Int64")
132
+ tm.assert_extension_array_equal(result, expected)
133
+
134
+ result = pd.NA**a
135
+ expected = pd.array([1, None, None, None], dtype="Int64")
136
+ tm.assert_extension_array_equal(result, expected)
137
+
138
+ result = np.nan**a
139
+ expected = FloatingArray(
140
+ np.array([1, np.nan, np.nan, np.nan], dtype="float64"),
141
+ np.array([False, False, True, False]),
142
+ )
143
+ tm.assert_extension_array_equal(result, expected)
144
+
145
+
146
+ def test_pow_array():
147
+ a = pd.array([0, 0, 0, 1, 1, 1, None, None, None])
148
+ b = pd.array([0, 1, None, 0, 1, None, 0, 1, None])
149
+ result = a**b
150
+ expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None])
151
+ tm.assert_extension_array_equal(result, expected)
152
+
153
+
154
+ def test_rpow_one_to_na():
155
+ # https://github.com/pandas-dev/pandas/issues/22022
156
+ # https://github.com/pandas-dev/pandas/issues/29997
157
+ arr = pd.array([np.nan, np.nan], dtype="Int64")
158
+ result = np.array([1.0, 2.0]) ** arr
159
+ expected = pd.array([1.0, np.nan], dtype="Float64")
160
+ tm.assert_extension_array_equal(result, expected)
161
+
162
+
163
+ @pytest.mark.parametrize("other", [0, 0.5])
164
+ def test_numpy_zero_dim_ndarray(other):
165
+ arr = pd.array([1, None, 2])
166
+ result = arr + np.array(other)
167
+ expected = arr + other
168
+ tm.assert_equal(result, expected)
169
+
170
+
171
+ # Test generic characteristics / errors
172
+ # -----------------------------------------------------------------------------
173
+
174
+
175
+ def test_error_invalid_values(data, all_arithmetic_operators, using_infer_string):
176
+ op = all_arithmetic_operators
177
+ s = pd.Series(data)
178
+ ops = getattr(s, op)
179
+
180
+ if using_infer_string:
181
+ import pyarrow as pa
182
+
183
+ errs = (TypeError, pa.lib.ArrowNotImplementedError, NotImplementedError)
184
+ else:
185
+ errs = TypeError
186
+
187
+ # invalid scalars
188
+ msg = "|".join(
189
+ [
190
+ r"can only perform ops with numeric values",
191
+ r"IntegerArray cannot perform the operation mod",
192
+ r"unsupported operand type",
193
+ r"can only concatenate str \(not \"int\"\) to str",
194
+ "not all arguments converted during string",
195
+ "ufunc '.*' not supported for the input types, and the inputs could not",
196
+ "ufunc '.*' did not contain a loop with signature matching types",
197
+ "Addition/subtraction of integers and integer-arrays with Timestamp",
198
+ "has no kernel",
199
+ "not implemented",
200
+ "The 'out' kwarg is necessary. Use numpy.strings.multiply without it.",
201
+ ]
202
+ )
203
+ with pytest.raises(errs, match=msg):
204
+ ops("foo")
205
+ with pytest.raises(errs, match=msg):
206
+ ops(pd.Timestamp("20180101"))
207
+
208
+ # invalid array-likes
209
+ str_ser = pd.Series("foo", index=s.index)
210
+ # with pytest.raises(TypeError, match=msg):
211
+ if (
212
+ all_arithmetic_operators
213
+ in [
214
+ "__mul__",
215
+ "__rmul__",
216
+ ]
217
+ and not using_infer_string
218
+ ): # (data[~data.isna()] >= 0).all():
219
+ res = ops(str_ser)
220
+ expected = pd.Series(["foo" * x for x in data], index=s.index)
221
+ expected = expected.fillna(np.nan)
222
+ # TODO: doing this fillna to keep tests passing as we make
223
+ # assert_almost_equal stricter, but the expected with pd.NA seems
224
+ # more-correct than np.nan here.
225
+ tm.assert_series_equal(res, expected)
226
+ else:
227
+ with pytest.raises(errs, match=msg):
228
+ ops(str_ser)
229
+
230
+ msg = "|".join(
231
+ [
232
+ "can only perform ops with numeric values",
233
+ "cannot perform .* with this index type: DatetimeArray",
234
+ "Addition/subtraction of integers and integer-arrays "
235
+ "with DatetimeArray is no longer supported. *",
236
+ "unsupported operand type",
237
+ r"can only concatenate str \(not \"int\"\) to str",
238
+ "not all arguments converted during string",
239
+ "cannot subtract DatetimeArray from ndarray",
240
+ "has no kernel",
241
+ "not implemented",
242
+ ]
243
+ )
244
+ with pytest.raises(errs, match=msg):
245
+ ops(pd.Series(pd.date_range("20180101", periods=len(s))))
246
+
247
+
248
+ # Various
249
+ # -----------------------------------------------------------------------------
250
+
251
+
252
+ # TODO test unsigned overflow
253
+
254
+
255
+ def test_arith_coerce_scalar(data, all_arithmetic_operators):
256
+ op = tm.get_op_from_name(all_arithmetic_operators)
257
+ s = pd.Series(data)
258
+ other = 0.01
259
+
260
+ result = op(s, other)
261
+ expected = op(s.astype(float), other)
262
+ expected = expected.astype("Float64")
263
+
264
+ # rmod results in NaN that wasn't NA in original nullable Series -> unmask it
265
+ if all_arithmetic_operators == "__rmod__":
266
+ mask = (s == 0).fillna(False).to_numpy(bool)
267
+ expected.array._mask[mask] = False
268
+
269
+ tm.assert_series_equal(result, expected)
270
+
271
+
272
+ @pytest.mark.parametrize("other", [1.0, np.array(1.0)])
273
+ def test_arithmetic_conversion(all_arithmetic_operators, other):
274
+ # if we have a float operand we should have a float result
275
+ # if that is equal to an integer
276
+ op = tm.get_op_from_name(all_arithmetic_operators)
277
+
278
+ s = pd.Series([1, 2, 3], dtype="Int64")
279
+ result = op(s, other)
280
+ assert result.dtype == "Float64"
281
+
282
+
283
+ def test_cross_type_arithmetic():
284
+ df = pd.DataFrame(
285
+ {
286
+ "A": pd.Series([1, 2, np.nan], dtype="Int64"),
287
+ "B": pd.Series([1, np.nan, 3], dtype="UInt8"),
288
+ "C": [1, 2, 3],
289
+ }
290
+ )
291
+
292
+ result = df.A + df.C
293
+ expected = pd.Series([2, 4, np.nan], dtype="Int64")
294
+ tm.assert_series_equal(result, expected)
295
+
296
+ result = (df.A + df.C) * 3 == 12
297
+ expected = pd.Series([False, True, None], dtype="boolean")
298
+ tm.assert_series_equal(result, expected)
299
+
300
+ result = df.A + df.B
301
+ expected = pd.Series([2, np.nan, np.nan], dtype="Int64")
302
+ tm.assert_series_equal(result, expected)
303
+
304
+
305
+ @pytest.mark.parametrize("op", ["mean"])
306
+ def test_reduce_to_float(op):
307
+ # some reduce ops always return float, even if the result
308
+ # is a rounded number
309
+ df = pd.DataFrame(
310
+ {
311
+ "A": ["a", "b", "b"],
312
+ "B": [1, None, 3],
313
+ "C": pd.array([1, None, 3], dtype="Int64"),
314
+ }
315
+ )
316
+
317
+ # op
318
+ result = getattr(df.C, op)()
319
+ assert isinstance(result, float)
320
+
321
+ # groupby
322
+ result = getattr(df.groupby("A"), op)()
323
+
324
+ expected = pd.DataFrame(
325
+ {"B": np.array([1.0, 3.0]), "C": pd.array([1, 3], dtype="Float64")},
326
+ index=pd.Index(["a", "b"], name="A"),
327
+ )
328
+ tm.assert_frame_equal(result, expected)
329
+
330
+
331
+ @pytest.mark.parametrize(
332
+ "source, neg_target, abs_target",
333
+ [
334
+ ([1, 2, 3], [-1, -2, -3], [1, 2, 3]),
335
+ ([1, 2, None], [-1, -2, None], [1, 2, None]),
336
+ ([-1, 0, 1], [1, 0, -1], [1, 0, 1]),
337
+ ],
338
+ )
339
+ def test_unary_int_operators(any_signed_int_ea_dtype, source, neg_target, abs_target):
340
+ dtype = any_signed_int_ea_dtype
341
+ arr = pd.array(source, dtype=dtype)
342
+ neg_result, pos_result, abs_result = -arr, +arr, abs(arr)
343
+ neg_target = pd.array(neg_target, dtype=dtype)
344
+ abs_target = pd.array(abs_target, dtype=dtype)
345
+
346
+ tm.assert_extension_array_equal(neg_result, neg_target)
347
+ tm.assert_extension_array_equal(pos_result, arr)
348
+ assert not tm.shares_memory(pos_result, arr)
349
+ tm.assert_extension_array_equal(abs_result, abs_target)
350
+
351
+
352
+ def test_values_multiplying_large_series_by_NA():
353
+ # GH#33701
354
+
355
+ result = pd.NA * pd.Series(np.zeros(10001))
356
+ expected = pd.Series([pd.NA] * 10001)
357
+
358
+ tm.assert_series_equal(result, expected)
359
+
360
+
361
+ def test_bitwise(dtype):
362
+ left = pd.array([1, None, 3, 4], dtype=dtype)
363
+ right = pd.array([None, 3, 5, 4], dtype=dtype)
364
+
365
+ result = left | right
366
+ expected = pd.array([None, None, 3 | 5, 4 | 4], dtype=dtype)
367
+ tm.assert_extension_array_equal(result, expected)
368
+
369
+ result = left & right
370
+ expected = pd.array([None, None, 3 & 5, 4 & 4], dtype=dtype)
371
+ tm.assert_extension_array_equal(result, expected)
372
+
373
+ result = left ^ right
374
+ expected = pd.array([None, None, 3 ^ 5, 4 ^ 4], dtype=dtype)
375
+ tm.assert_extension_array_equal(result, expected)
376
+
377
+ # TODO: desired behavior when operating with boolean? defer?
378
+
379
+ floats = right.astype("Float64")
380
+ with pytest.raises(TypeError, match="unsupported operand type"):
381
+ left | floats
382
+ with pytest.raises(TypeError, match="unsupported operand type"):
383
+ left & floats
384
+ with pytest.raises(TypeError, match="unsupported operand type"):
385
+ left ^ floats
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_comparison.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas as pd
4
+ import pandas._testing as tm
5
+ from pandas.tests.arrays.masked_shared import (
6
+ ComparisonOps,
7
+ NumericOps,
8
+ )
9
+
10
+
11
+ class TestComparisonOps(NumericOps, ComparisonOps):
12
+ @pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1])
13
+ def test_scalar(self, other, comparison_op, dtype):
14
+ ComparisonOps.test_scalar(self, other, comparison_op, dtype)
15
+
16
+ def test_compare_to_int(self, dtype, comparison_op):
17
+ # GH 28930
18
+ op_name = f"__{comparison_op.__name__}__"
19
+ s1 = pd.Series([1, None, 3], dtype=dtype)
20
+ s2 = pd.Series([1, None, 3], dtype="float")
21
+
22
+ method = getattr(s1, op_name)
23
+ result = method(2)
24
+
25
+ method = getattr(s2, op_name)
26
+ expected = method(2).astype("boolean")
27
+ expected[s2.isna()] = pd.NA
28
+
29
+ tm.assert_series_equal(result, expected)
30
+
31
+
32
+ def test_equals():
33
+ # GH-30652
34
+ # equals is generally tested in /tests/extension/base/methods, but this
35
+ # specifically tests that two arrays of the same class but different dtype
36
+ # do not evaluate equal
37
+ a1 = pd.array([1, 2, None], dtype="Int64")
38
+ a2 = pd.array([1, 2, None], dtype="Int32")
39
+ assert a1.equals(a2) is False
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_concat.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ @pytest.mark.parametrize(
9
+ "to_concat_dtypes, result_dtype",
10
+ [
11
+ (["Int64", "Int64"], "Int64"),
12
+ (["UInt64", "UInt64"], "UInt64"),
13
+ (["Int8", "Int8"], "Int8"),
14
+ (["Int8", "Int16"], "Int16"),
15
+ (["UInt8", "Int8"], "Int16"),
16
+ (["Int32", "UInt32"], "Int64"),
17
+ (["Int64", "UInt64"], "Float64"),
18
+ (["Int64", "boolean"], "object"),
19
+ (["UInt8", "boolean"], "object"),
20
+ ],
21
+ )
22
+ def test_concat_series(to_concat_dtypes, result_dtype):
23
+ # we expect the same dtypes as we would get with non-masked inputs,
24
+ # just masked where available.
25
+
26
+ result = pd.concat([pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes])
27
+ expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
28
+ result_dtype
29
+ )
30
+ tm.assert_series_equal(result, expected)
31
+
32
+ # order doesn't matter for result
33
+ result = pd.concat(
34
+ [pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes[::-1]]
35
+ )
36
+ expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
37
+ result_dtype
38
+ )
39
+ tm.assert_series_equal(result, expected)
40
+
41
+
42
+ @pytest.mark.parametrize(
43
+ "to_concat_dtypes, result_dtype",
44
+ [
45
+ (["Int64", "int64"], "Int64"),
46
+ (["UInt64", "uint64"], "UInt64"),
47
+ (["Int8", "int8"], "Int8"),
48
+ (["Int8", "int16"], "Int16"),
49
+ (["UInt8", "int8"], "Int16"),
50
+ (["Int32", "uint32"], "Int64"),
51
+ (["Int64", "uint64"], "Float64"),
52
+ (["Int64", "bool"], "object"),
53
+ (["UInt8", "bool"], "object"),
54
+ ],
55
+ )
56
+ def test_concat_series_with_numpy(to_concat_dtypes, result_dtype):
57
+ # we expect the same dtypes as we would get with non-masked inputs,
58
+ # just masked where available.
59
+
60
+ s1 = pd.Series([0, 1, pd.NA], dtype=to_concat_dtypes[0])
61
+ s2 = pd.Series(np.array([0, 1], dtype=to_concat_dtypes[1]))
62
+ result = pd.concat([s1, s2], ignore_index=True)
63
+ expected = pd.Series([0, 1, pd.NA, 0, 1], dtype=object).astype(result_dtype)
64
+ tm.assert_series_equal(result, expected)
65
+
66
+ # order doesn't matter for result
67
+ result = pd.concat([s2, s1], ignore_index=True)
68
+ expected = pd.Series([0, 1, 0, 1, pd.NA], dtype=object).astype(result_dtype)
69
+ tm.assert_series_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_construction.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.api.types import is_integer
7
+ from pandas.core.arrays import IntegerArray
8
+ from pandas.core.arrays.integer import (
9
+ Int8Dtype,
10
+ Int32Dtype,
11
+ Int64Dtype,
12
+ )
13
+
14
+
15
+ @pytest.fixture(params=[pd.array, IntegerArray._from_sequence])
16
+ def constructor(request):
17
+ """Fixture returning parametrized IntegerArray from given sequence.
18
+
19
+ Used to test dtype conversions.
20
+ """
21
+ return request.param
22
+
23
+
24
+ def test_uses_pandas_na():
25
+ a = pd.array([1, None], dtype=Int64Dtype())
26
+ assert a[1] is pd.NA
27
+
28
+
29
+ def test_from_dtype_from_float(data):
30
+ # construct from our dtype & string dtype
31
+ dtype = data.dtype
32
+
33
+ # from float
34
+ expected = pd.Series(data)
35
+ result = pd.Series(data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype))
36
+ tm.assert_series_equal(result, expected)
37
+
38
+ # from int / list
39
+ expected = pd.Series(data)
40
+ result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
41
+ tm.assert_series_equal(result, expected)
42
+
43
+ # from int / array
44
+ expected = pd.Series(data).dropna().reset_index(drop=True)
45
+ dropped = np.array(data.dropna()).astype(np.dtype(dtype.type))
46
+ result = pd.Series(dropped, dtype=str(dtype))
47
+ tm.assert_series_equal(result, expected)
48
+
49
+
50
+ def test_conversions(data_missing):
51
+ # astype to object series
52
+ df = pd.DataFrame({"A": data_missing})
53
+ result = df["A"].astype("object")
54
+ expected = pd.Series(np.array([pd.NA, 1], dtype=object), name="A")
55
+ tm.assert_series_equal(result, expected)
56
+
57
+ # convert to object ndarray
58
+ # we assert that we are exactly equal
59
+ # including type conversions of scalars
60
+ result = df["A"].astype("object").values
61
+ expected = np.array([pd.NA, 1], dtype=object)
62
+ tm.assert_numpy_array_equal(result, expected)
63
+
64
+ for r, e in zip(result, expected):
65
+ if pd.isnull(r):
66
+ assert pd.isnull(e)
67
+ elif is_integer(r):
68
+ assert r == e
69
+ assert is_integer(e)
70
+ else:
71
+ assert r == e
72
+ assert type(r) == type(e)
73
+
74
+
75
+ def test_integer_array_constructor():
76
+ values = np.array([1, 2, 3, 4], dtype="int64")
77
+ mask = np.array([False, False, False, True], dtype="bool")
78
+
79
+ result = IntegerArray(values, mask)
80
+ expected = pd.array([1, 2, 3, np.nan], dtype="Int64")
81
+ tm.assert_extension_array_equal(result, expected)
82
+
83
+ msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
84
+ with pytest.raises(TypeError, match=msg):
85
+ IntegerArray(values.tolist(), mask)
86
+
87
+ with pytest.raises(TypeError, match=msg):
88
+ IntegerArray(values, mask.tolist())
89
+
90
+ with pytest.raises(TypeError, match=msg):
91
+ IntegerArray(values.astype(float), mask)
92
+ msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
93
+ with pytest.raises(TypeError, match=msg):
94
+ IntegerArray(values)
95
+
96
+
97
+ def test_integer_array_constructor_copy():
98
+ values = np.array([1, 2, 3, 4], dtype="int64")
99
+ mask = np.array([False, False, False, True], dtype="bool")
100
+
101
+ result = IntegerArray(values, mask)
102
+ assert result._data is values
103
+ assert result._mask is mask
104
+
105
+ result = IntegerArray(values, mask, copy=True)
106
+ assert result._data is not values
107
+ assert result._mask is not mask
108
+
109
+
110
+ @pytest.mark.parametrize(
111
+ "a, b",
112
+ [
113
+ ([1, None], [1, np.nan]),
114
+ ([None], [np.nan]),
115
+ ([None, np.nan], [np.nan, np.nan]),
116
+ ([np.nan, np.nan], [np.nan, np.nan]),
117
+ ],
118
+ )
119
+ def test_to_integer_array_none_is_nan(a, b):
120
+ result = pd.array(a, dtype="Int64")
121
+ expected = pd.array(b, dtype="Int64")
122
+ tm.assert_extension_array_equal(result, expected)
123
+
124
+
125
+ @pytest.mark.parametrize(
126
+ "values",
127
+ [
128
+ ["foo", "bar"],
129
+ "foo",
130
+ 1,
131
+ 1.0,
132
+ pd.date_range("20130101", periods=2),
133
+ np.array(["foo"]),
134
+ [[1, 2], [3, 4]],
135
+ [np.nan, {"a": 1}],
136
+ ],
137
+ )
138
+ def test_to_integer_array_error(values):
139
+ # error in converting existing arrays to IntegerArrays
140
+ msg = "|".join(
141
+ [
142
+ r"cannot be converted to IntegerDtype",
143
+ r"invalid literal for int\(\) with base 10:",
144
+ r"values must be a 1D list-like",
145
+ r"Cannot pass scalar",
146
+ r"int\(\) argument must be a string",
147
+ ]
148
+ )
149
+ with pytest.raises((ValueError, TypeError), match=msg):
150
+ pd.array(values, dtype="Int64")
151
+
152
+ with pytest.raises((ValueError, TypeError), match=msg):
153
+ IntegerArray._from_sequence(values)
154
+
155
+
156
+ def test_to_integer_array_inferred_dtype(constructor):
157
+ # if values has dtype -> respect it
158
+ result = constructor(np.array([1, 2], dtype="int8"))
159
+ assert result.dtype == Int8Dtype()
160
+ result = constructor(np.array([1, 2], dtype="int32"))
161
+ assert result.dtype == Int32Dtype()
162
+
163
+ # if values have no dtype -> always int64
164
+ result = constructor([1, 2])
165
+ assert result.dtype == Int64Dtype()
166
+
167
+
168
+ def test_to_integer_array_dtype_keyword(constructor):
169
+ result = constructor([1, 2], dtype="Int8")
170
+ assert result.dtype == Int8Dtype()
171
+
172
+ # if values has dtype -> override it
173
+ result = constructor(np.array([1, 2], dtype="int8"), dtype="Int32")
174
+ assert result.dtype == Int32Dtype()
175
+
176
+
177
+ def test_to_integer_array_float():
178
+ result = IntegerArray._from_sequence([1.0, 2.0], dtype="Int64")
179
+ expected = pd.array([1, 2], dtype="Int64")
180
+ tm.assert_extension_array_equal(result, expected)
181
+
182
+ with pytest.raises(TypeError, match="cannot safely cast non-equivalent"):
183
+ IntegerArray._from_sequence([1.5, 2.0], dtype="Int64")
184
+
185
+ # for float dtypes, the itemsize is not preserved
186
+ result = IntegerArray._from_sequence(
187
+ np.array([1.0, 2.0], dtype="float32"), dtype="Int64"
188
+ )
189
+ assert result.dtype == Int64Dtype()
190
+
191
+
192
+ def test_to_integer_array_str():
193
+ result = IntegerArray._from_sequence(["1", "2", None], dtype="Int64")
194
+ expected = pd.array([1, 2, np.nan], dtype="Int64")
195
+ tm.assert_extension_array_equal(result, expected)
196
+
197
+ with pytest.raises(
198
+ ValueError, match=r"invalid literal for int\(\) with base 10: .*"
199
+ ):
200
+ IntegerArray._from_sequence(["1", "2", ""], dtype="Int64")
201
+
202
+ with pytest.raises(
203
+ ValueError, match=r"invalid literal for int\(\) with base 10: .*"
204
+ ):
205
+ IntegerArray._from_sequence(["1.5", "2.0"], dtype="Int64")
206
+
207
+
208
+ @pytest.mark.parametrize(
209
+ "bool_values, int_values, target_dtype, expected_dtype",
210
+ [
211
+ ([False, True], [0, 1], Int64Dtype(), Int64Dtype()),
212
+ ([False, True], [0, 1], "Int64", Int64Dtype()),
213
+ ([False, True, np.nan], [0, 1, np.nan], Int64Dtype(), Int64Dtype()),
214
+ ],
215
+ )
216
+ def test_to_integer_array_bool(
217
+ constructor, bool_values, int_values, target_dtype, expected_dtype
218
+ ):
219
+ result = constructor(bool_values, dtype=target_dtype)
220
+ assert result.dtype == expected_dtype
221
+ expected = pd.array(int_values, dtype=target_dtype)
222
+ tm.assert_extension_array_equal(result, expected)
223
+
224
+
225
+ @pytest.mark.parametrize(
226
+ "values, to_dtype, result_dtype",
227
+ [
228
+ (np.array([1], dtype="int64"), None, Int64Dtype),
229
+ (np.array([1, np.nan]), None, Int64Dtype),
230
+ (np.array([1, np.nan]), "int8", Int8Dtype),
231
+ ],
232
+ )
233
+ def test_to_integer_array(values, to_dtype, result_dtype):
234
+ # convert existing arrays to IntegerArrays
235
+ result = IntegerArray._from_sequence(values, dtype=to_dtype)
236
+ assert result.dtype == result_dtype()
237
+ expected = pd.array(values, dtype=result_dtype())
238
+ tm.assert_extension_array_equal(result, expected)
239
+
240
+
241
+ def test_integer_array_from_boolean():
242
+ # GH31104
243
+ expected = pd.array(np.array([True, False]), dtype="Int64")
244
+ result = pd.array(np.array([True, False], dtype=object), dtype="Int64")
245
+ tm.assert_extension_array_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_dtypes.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.generic import ABCIndex
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.core.arrays.integer import (
9
+ Int8Dtype,
10
+ UInt32Dtype,
11
+ )
12
+
13
+
14
+ def test_dtypes(dtype):
15
+ # smoke tests on auto dtype construction
16
+
17
+ if dtype.is_signed_integer:
18
+ assert np.dtype(dtype.type).kind == "i"
19
+ else:
20
+ assert np.dtype(dtype.type).kind == "u"
21
+ assert dtype.name is not None
22
+
23
+
24
+ @pytest.mark.parametrize("op", ["sum", "min", "max", "prod"])
25
+ def test_preserve_dtypes(op):
26
+ # for ops that enable (mean would actually work here
27
+ # but generally it is a float return value)
28
+ df = pd.DataFrame(
29
+ {
30
+ "A": ["a", "b", "b"],
31
+ "B": [1, None, 3],
32
+ "C": pd.array([1, None, 3], dtype="Int64"),
33
+ }
34
+ )
35
+
36
+ # op
37
+ result = getattr(df.C, op)()
38
+ if op in {"sum", "prod", "min", "max"}:
39
+ assert isinstance(result, np.int64)
40
+ else:
41
+ assert isinstance(result, int)
42
+
43
+ # groupby
44
+ result = getattr(df.groupby("A"), op)()
45
+
46
+ expected = pd.DataFrame(
47
+ {"B": np.array([1.0, 3.0]), "C": pd.array([1, 3], dtype="Int64")},
48
+ index=pd.Index(["a", "b"], name="A"),
49
+ )
50
+ tm.assert_frame_equal(result, expected)
51
+
52
+
53
+ def test_astype_nansafe():
54
+ # see gh-22343
55
+ arr = pd.array([np.nan, 1, 2], dtype="Int8")
56
+ msg = "cannot convert NA to integer"
57
+
58
+ with pytest.raises(ValueError, match=msg):
59
+ arr.astype("uint32")
60
+
61
+
62
+ @pytest.mark.parametrize("dropna", [True, False])
63
+ def test_construct_index(all_data, dropna):
64
+ # ensure that we do not coerce to different Index dtype or non-index
65
+
66
+ all_data = all_data[:10]
67
+ if dropna:
68
+ other = np.array(all_data[~all_data.isna()])
69
+ else:
70
+ other = all_data
71
+
72
+ result = pd.Index(pd.array(other, dtype=all_data.dtype))
73
+ expected = pd.Index(other, dtype=all_data.dtype)
74
+ assert all_data.dtype == expected.dtype # dont coerce to object
75
+
76
+ tm.assert_index_equal(result, expected)
77
+
78
+
79
+ @pytest.mark.parametrize("dropna", [True, False])
80
+ def test_astype_index(all_data, dropna):
81
+ # as an int/uint index to Index
82
+
83
+ all_data = all_data[:10]
84
+ if dropna:
85
+ other = all_data[~all_data.isna()]
86
+ else:
87
+ other = all_data
88
+
89
+ dtype = all_data.dtype
90
+ idx = pd.Index(np.array(other))
91
+ assert isinstance(idx, ABCIndex)
92
+
93
+ result = idx.astype(dtype)
94
+ expected = idx.astype(object).astype(dtype)
95
+ tm.assert_index_equal(result, expected)
96
+
97
+
98
+ def test_astype(all_data):
99
+ all_data = all_data[:10]
100
+
101
+ ints = all_data[~all_data.isna()]
102
+ mixed = all_data
103
+ dtype = Int8Dtype()
104
+
105
+ # coerce to same type - ints
106
+ s = pd.Series(ints)
107
+ result = s.astype(all_data.dtype)
108
+ expected = pd.Series(ints)
109
+ tm.assert_series_equal(result, expected)
110
+
111
+ # coerce to same other - ints
112
+ s = pd.Series(ints)
113
+ result = s.astype(dtype)
114
+ expected = pd.Series(ints, dtype=dtype)
115
+ tm.assert_series_equal(result, expected)
116
+
117
+ # coerce to same numpy_dtype - ints
118
+ s = pd.Series(ints)
119
+ result = s.astype(all_data.dtype.numpy_dtype)
120
+ expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype))
121
+ tm.assert_series_equal(result, expected)
122
+
123
+ # coerce to same type - mixed
124
+ s = pd.Series(mixed)
125
+ result = s.astype(all_data.dtype)
126
+ expected = pd.Series(mixed)
127
+ tm.assert_series_equal(result, expected)
128
+
129
+ # coerce to same other - mixed
130
+ s = pd.Series(mixed)
131
+ result = s.astype(dtype)
132
+ expected = pd.Series(mixed, dtype=dtype)
133
+ tm.assert_series_equal(result, expected)
134
+
135
+ # coerce to same numpy_dtype - mixed
136
+ s = pd.Series(mixed)
137
+ msg = "cannot convert NA to integer"
138
+ with pytest.raises(ValueError, match=msg):
139
+ s.astype(all_data.dtype.numpy_dtype)
140
+
141
+ # coerce to object
142
+ s = pd.Series(mixed)
143
+ result = s.astype("object")
144
+ expected = pd.Series(np.asarray(mixed, dtype=object))
145
+ tm.assert_series_equal(result, expected)
146
+
147
+
148
+ def test_astype_copy():
149
+ arr = pd.array([1, 2, 3, None], dtype="Int64")
150
+ orig = pd.array([1, 2, 3, None], dtype="Int64")
151
+
152
+ # copy=True -> ensure both data and mask are actual copies
153
+ result = arr.astype("Int64", copy=True)
154
+ assert result is not arr
155
+ assert not tm.shares_memory(result, arr)
156
+ result[0] = 10
157
+ tm.assert_extension_array_equal(arr, orig)
158
+ result[0] = pd.NA
159
+ tm.assert_extension_array_equal(arr, orig)
160
+
161
+ # copy=False
162
+ result = arr.astype("Int64", copy=False)
163
+ assert result is arr
164
+ assert np.shares_memory(result._data, arr._data)
165
+ assert np.shares_memory(result._mask, arr._mask)
166
+ result[0] = 10
167
+ assert arr[0] == 10
168
+ result[0] = pd.NA
169
+ assert arr[0] is pd.NA
170
+
171
+ # astype to different dtype -> always needs a copy -> even with copy=False
172
+ # we need to ensure that also the mask is actually copied
173
+ arr = pd.array([1, 2, 3, None], dtype="Int64")
174
+ orig = pd.array([1, 2, 3, None], dtype="Int64")
175
+
176
+ result = arr.astype("Int32", copy=False)
177
+ assert not tm.shares_memory(result, arr)
178
+ result[0] = 10
179
+ tm.assert_extension_array_equal(arr, orig)
180
+ result[0] = pd.NA
181
+ tm.assert_extension_array_equal(arr, orig)
182
+
183
+
184
+ def test_astype_to_larger_numpy():
185
+ a = pd.array([1, 2], dtype="Int32")
186
+ result = a.astype("int64")
187
+ expected = np.array([1, 2], dtype="int64")
188
+ tm.assert_numpy_array_equal(result, expected)
189
+
190
+ a = pd.array([1, 2], dtype="UInt32")
191
+ result = a.astype("uint64")
192
+ expected = np.array([1, 2], dtype="uint64")
193
+ tm.assert_numpy_array_equal(result, expected)
194
+
195
+
196
+ @pytest.mark.parametrize("dtype", [Int8Dtype(), "Int8", UInt32Dtype(), "UInt32"])
197
+ def test_astype_specific_casting(dtype):
198
+ s = pd.Series([1, 2, 3], dtype="Int64")
199
+ result = s.astype(dtype)
200
+ expected = pd.Series([1, 2, 3], dtype=dtype)
201
+ tm.assert_series_equal(result, expected)
202
+
203
+ s = pd.Series([1, 2, 3, None], dtype="Int64")
204
+ result = s.astype(dtype)
205
+ expected = pd.Series([1, 2, 3, None], dtype=dtype)
206
+ tm.assert_series_equal(result, expected)
207
+
208
+
209
+ def test_astype_floating():
210
+ arr = pd.array([1, 2, None], dtype="Int64")
211
+ result = arr.astype("Float64")
212
+ expected = pd.array([1.0, 2.0, None], dtype="Float64")
213
+ tm.assert_extension_array_equal(result, expected)
214
+
215
+
216
+ def test_astype_dt64():
217
+ # GH#32435
218
+ arr = pd.array([1, 2, 3, pd.NA]) * 10**9
219
+
220
+ result = arr.astype("datetime64[ns]")
221
+
222
+ expected = np.array([1, 2, 3, "NaT"], dtype="M8[s]").astype("M8[ns]")
223
+ tm.assert_numpy_array_equal(result, expected)
224
+
225
+
226
+ def test_construct_cast_invalid(dtype):
227
+ msg = "cannot safely"
228
+ arr = [1.2, 2.3, 3.7]
229
+ with pytest.raises(TypeError, match=msg):
230
+ pd.array(arr, dtype=dtype)
231
+
232
+ with pytest.raises(TypeError, match=msg):
233
+ pd.Series(arr).astype(dtype)
234
+
235
+ arr = [1.2, 2.3, 3.7, np.nan]
236
+ with pytest.raises(TypeError, match=msg):
237
+ pd.array(arr, dtype=dtype)
238
+
239
+ with pytest.raises(TypeError, match=msg):
240
+ pd.Series(arr).astype(dtype)
241
+
242
+
243
+ @pytest.mark.parametrize("in_series", [True, False])
244
+ def test_to_numpy_na_nan(in_series):
245
+ a = pd.array([0, 1, None], dtype="Int64")
246
+ if in_series:
247
+ a = pd.Series(a)
248
+
249
+ result = a.to_numpy(dtype="float64", na_value=np.nan)
250
+ expected = np.array([0.0, 1.0, np.nan], dtype="float64")
251
+ tm.assert_numpy_array_equal(result, expected)
252
+
253
+ result = a.to_numpy(dtype="int64", na_value=-1)
254
+ expected = np.array([0, 1, -1], dtype="int64")
255
+ tm.assert_numpy_array_equal(result, expected)
256
+
257
+ result = a.to_numpy(dtype="bool", na_value=False)
258
+ expected = np.array([False, True, False], dtype="bool")
259
+ tm.assert_numpy_array_equal(result, expected)
260
+
261
+
262
+ @pytest.mark.parametrize("in_series", [True, False])
263
+ @pytest.mark.parametrize("dtype", ["int32", "int64", "bool"])
264
+ def test_to_numpy_dtype(dtype, in_series):
265
+ a = pd.array([0, 1], dtype="Int64")
266
+ if in_series:
267
+ a = pd.Series(a)
268
+
269
+ result = a.to_numpy(dtype=dtype)
270
+ expected = np.array([0, 1], dtype=dtype)
271
+ tm.assert_numpy_array_equal(result, expected)
272
+
273
+
274
+ @pytest.mark.parametrize("dtype", ["int64", "bool"])
275
+ def test_to_numpy_na_raises(dtype):
276
+ a = pd.array([0, 1, None], dtype="Int64")
277
+ with pytest.raises(ValueError, match=dtype):
278
+ a.to_numpy(dtype=dtype)
279
+
280
+
281
+ def test_astype_str():
282
+ a = pd.array([1, 2, None], dtype="Int64")
283
+ expected = np.array(["1", "2", "<NA>"], dtype=f"{tm.ENDIAN}U21")
284
+
285
+ tm.assert_numpy_array_equal(a.astype(str), expected)
286
+ tm.assert_numpy_array_equal(a.astype("str"), expected)
287
+
288
+
289
+ def test_astype_boolean():
290
+ # https://github.com/pandas-dev/pandas/issues/31102
291
+ a = pd.array([1, 0, -1, 2, None], dtype="Int64")
292
+ result = a.astype("boolean")
293
+ expected = pd.array([True, False, True, True, None], dtype="boolean")
294
+ tm.assert_extension_array_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_function.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.core.arrays import FloatingArray
7
+
8
+
9
+ @pytest.mark.parametrize("ufunc", [np.abs, np.sign])
10
+ # np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127>
11
+ @pytest.mark.filterwarnings("ignore:invalid value encountered in sign:RuntimeWarning")
12
+ def test_ufuncs_single_int(ufunc):
13
+ a = pd.array([1, 2, -3, np.nan])
14
+ result = ufunc(a)
15
+ expected = pd.array(ufunc(a.astype(float)), dtype="Int64")
16
+ tm.assert_extension_array_equal(result, expected)
17
+
18
+ s = pd.Series(a)
19
+ result = ufunc(s)
20
+ expected = pd.Series(pd.array(ufunc(a.astype(float)), dtype="Int64"))
21
+ tm.assert_series_equal(result, expected)
22
+
23
+
24
+ @pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt])
25
+ def test_ufuncs_single_float(ufunc):
26
+ a = pd.array([1, 2, -3, np.nan])
27
+ with np.errstate(invalid="ignore"):
28
+ result = ufunc(a)
29
+ expected = FloatingArray(ufunc(a.astype(float)), mask=a._mask)
30
+ tm.assert_extension_array_equal(result, expected)
31
+
32
+ s = pd.Series(a)
33
+ with np.errstate(invalid="ignore"):
34
+ result = ufunc(s)
35
+ expected = pd.Series(expected)
36
+ tm.assert_series_equal(result, expected)
37
+
38
+
39
+ @pytest.mark.parametrize("ufunc", [np.add, np.subtract])
40
+ def test_ufuncs_binary_int(ufunc):
41
+ # two IntegerArrays
42
+ a = pd.array([1, 2, -3, np.nan])
43
+ result = ufunc(a, a)
44
+ expected = pd.array(ufunc(a.astype(float), a.astype(float)), dtype="Int64")
45
+ tm.assert_extension_array_equal(result, expected)
46
+
47
+ # IntegerArray with numpy array
48
+ arr = np.array([1, 2, 3, 4])
49
+ result = ufunc(a, arr)
50
+ expected = pd.array(ufunc(a.astype(float), arr), dtype="Int64")
51
+ tm.assert_extension_array_equal(result, expected)
52
+
53
+ result = ufunc(arr, a)
54
+ expected = pd.array(ufunc(arr, a.astype(float)), dtype="Int64")
55
+ tm.assert_extension_array_equal(result, expected)
56
+
57
+ # IntegerArray with scalar
58
+ result = ufunc(a, 1)
59
+ expected = pd.array(ufunc(a.astype(float), 1), dtype="Int64")
60
+ tm.assert_extension_array_equal(result, expected)
61
+
62
+ result = ufunc(1, a)
63
+ expected = pd.array(ufunc(1, a.astype(float)), dtype="Int64")
64
+ tm.assert_extension_array_equal(result, expected)
65
+
66
+
67
+ def test_ufunc_binary_output():
68
+ a = pd.array([1, 2, np.nan])
69
+ result = np.modf(a)
70
+ expected = np.modf(a.to_numpy(na_value=np.nan, dtype="float"))
71
+ expected = (pd.array(expected[0]), pd.array(expected[1]))
72
+
73
+ assert isinstance(result, tuple)
74
+ assert len(result) == 2
75
+
76
+ for x, y in zip(result, expected):
77
+ tm.assert_extension_array_equal(x, y)
78
+
79
+
80
+ @pytest.mark.parametrize("values", [[0, 1], [0, None]])
81
+ def test_ufunc_reduce_raises(values):
82
+ arr = pd.array(values)
83
+
84
+ res = np.add.reduce(arr)
85
+ expected = arr.sum(skipna=False)
86
+ tm.assert_almost_equal(res, expected)
87
+
88
+
89
+ @pytest.mark.parametrize(
90
+ "pandasmethname, kwargs",
91
+ [
92
+ ("var", {"ddof": 0}),
93
+ ("var", {"ddof": 1}),
94
+ ("std", {"ddof": 0}),
95
+ ("std", {"ddof": 1}),
96
+ ("kurtosis", {}),
97
+ ("skew", {}),
98
+ ("sem", {}),
99
+ ],
100
+ )
101
+ def test_stat_method(pandasmethname, kwargs):
102
+ s = pd.Series(data=[1, 2, 3, 4, 5, 6, np.nan, np.nan], dtype="Int64")
103
+ pandasmeth = getattr(s, pandasmethname)
104
+ result = pandasmeth(**kwargs)
105
+ s2 = pd.Series(data=[1, 2, 3, 4, 5, 6], dtype="Int64")
106
+ pandasmeth = getattr(s2, pandasmethname)
107
+ expected = pandasmeth(**kwargs)
108
+ assert expected == result
109
+
110
+
111
+ def test_value_counts_na():
112
+ arr = pd.array([1, 2, 1, pd.NA], dtype="Int64")
113
+ result = arr.value_counts(dropna=False)
114
+ ex_index = pd.Index([1, 2, pd.NA], dtype="Int64")
115
+ assert ex_index.dtype == "Int64"
116
+ expected = pd.Series([2, 1, 1], index=ex_index, dtype="Int64", name="count")
117
+ tm.assert_series_equal(result, expected)
118
+
119
+ result = arr.value_counts(dropna=True)
120
+ expected = pd.Series([2, 1], index=arr[:2], dtype="Int64", name="count")
121
+ assert expected.index.dtype == arr.dtype
122
+ tm.assert_series_equal(result, expected)
123
+
124
+
125
+ def test_value_counts_empty():
126
+ # https://github.com/pandas-dev/pandas/issues/33317
127
+ ser = pd.Series([], dtype="Int64")
128
+ result = ser.value_counts()
129
+ idx = pd.Index([], dtype=ser.dtype)
130
+ assert idx.dtype == ser.dtype
131
+ expected = pd.Series([], index=idx, dtype="Int64", name="count")
132
+ tm.assert_series_equal(result, expected)
133
+
134
+
135
+ def test_value_counts_with_normalize():
136
+ # GH 33172
137
+ ser = pd.Series([1, 2, 1, pd.NA], dtype="Int64")
138
+ result = ser.value_counts(normalize=True)
139
+ expected = pd.Series([2, 1], index=ser[:2], dtype="Float64", name="proportion") / 3
140
+ assert expected.index.dtype == ser.dtype
141
+ tm.assert_series_equal(result, expected)
142
+
143
+
144
+ @pytest.mark.parametrize("skipna", [True, False])
145
+ @pytest.mark.parametrize("min_count", [0, 4])
146
+ def test_integer_array_sum(skipna, min_count, any_int_ea_dtype):
147
+ dtype = any_int_ea_dtype
148
+ arr = pd.array([1, 2, 3, None], dtype=dtype)
149
+ result = arr.sum(skipna=skipna, min_count=min_count)
150
+ if skipna and min_count == 0:
151
+ assert result == 6
152
+ else:
153
+ assert result is pd.NA
154
+
155
+
156
+ @pytest.mark.parametrize("skipna", [True, False])
157
+ @pytest.mark.parametrize("method", ["min", "max"])
158
+ def test_integer_array_min_max(skipna, method, any_int_ea_dtype):
159
+ dtype = any_int_ea_dtype
160
+ arr = pd.array([0, 1, None], dtype=dtype)
161
+ func = getattr(arr, method)
162
+ result = func(skipna=skipna)
163
+ if skipna:
164
+ assert result == (0 if method == "min" else 1)
165
+ else:
166
+ assert result is pd.NA
167
+
168
+
169
+ @pytest.mark.parametrize("skipna", [True, False])
170
+ @pytest.mark.parametrize("min_count", [0, 9])
171
+ def test_integer_array_prod(skipna, min_count, any_int_ea_dtype):
172
+ dtype = any_int_ea_dtype
173
+ arr = pd.array([1, 2, None], dtype=dtype)
174
+ result = arr.prod(skipna=skipna, min_count=min_count)
175
+ if skipna and min_count == 0:
176
+ assert result == 2
177
+ else:
178
+ assert result is pd.NA
179
+
180
+
181
+ @pytest.mark.parametrize(
182
+ "values, expected", [([1, 2, 3], 6), ([1, 2, 3, None], 6), ([None], 0)]
183
+ )
184
+ def test_integer_array_numpy_sum(values, expected):
185
+ arr = pd.array(values, dtype="Int64")
186
+ result = np.sum(arr)
187
+ assert result == expected
188
+
189
+
190
+ @pytest.mark.parametrize("op", ["sum", "prod", "min", "max"])
191
+ def test_dataframe_reductions(op):
192
+ # https://github.com/pandas-dev/pandas/pull/32867
193
+ # ensure the integers are not cast to float during reductions
194
+ df = pd.DataFrame({"a": pd.array([1, 2], dtype="Int64")})
195
+ result = df.max()
196
+ assert isinstance(result["a"], np.int64)
197
+
198
+
199
+ # TODO(jreback) - these need testing / are broken
200
+
201
+ # shift
202
+
203
+ # set_index (destroys type)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_indexing.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import pandas._testing as tm
3
+
4
+
5
+ def test_array_setitem_nullable_boolean_mask():
6
+ # GH 31446
7
+ ser = pd.Series([1, 2], dtype="Int64")
8
+ result = ser.where(ser > 1)
9
+ expected = pd.Series([pd.NA, 2], dtype="Int64")
10
+ tm.assert_series_equal(result, expected)
11
+
12
+
13
+ def test_array_setitem():
14
+ # GH 31446
15
+ arr = pd.Series([1, 2], dtype="Int64").array
16
+ arr[arr > 1] = 1
17
+
18
+ expected = pd.array([1, 1], dtype="Int64")
19
+ tm.assert_extension_array_equal(arr, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_reduction.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ DataFrame,
7
+ Series,
8
+ array,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ @pytest.mark.parametrize(
14
+ "op, expected",
15
+ [
16
+ ["sum", np.int64(3)],
17
+ ["prod", np.int64(2)],
18
+ ["min", np.int64(1)],
19
+ ["max", np.int64(2)],
20
+ ["mean", np.float64(1.5)],
21
+ ["median", np.float64(1.5)],
22
+ ["var", np.float64(0.5)],
23
+ ["std", np.float64(0.5**0.5)],
24
+ ["skew", pd.NA],
25
+ ["kurt", pd.NA],
26
+ ["any", True],
27
+ ["all", True],
28
+ ],
29
+ )
30
+ def test_series_reductions(op, expected):
31
+ ser = Series([1, 2], dtype="Int64")
32
+ result = getattr(ser, op)()
33
+ tm.assert_equal(result, expected)
34
+
35
+
36
+ @pytest.mark.parametrize(
37
+ "op, expected",
38
+ [
39
+ ["sum", Series([3], index=["a"], dtype="Int64")],
40
+ ["prod", Series([2], index=["a"], dtype="Int64")],
41
+ ["min", Series([1], index=["a"], dtype="Int64")],
42
+ ["max", Series([2], index=["a"], dtype="Int64")],
43
+ ["mean", Series([1.5], index=["a"], dtype="Float64")],
44
+ ["median", Series([1.5], index=["a"], dtype="Float64")],
45
+ ["var", Series([0.5], index=["a"], dtype="Float64")],
46
+ ["std", Series([0.5**0.5], index=["a"], dtype="Float64")],
47
+ ["skew", Series([pd.NA], index=["a"], dtype="Float64")],
48
+ ["kurt", Series([pd.NA], index=["a"], dtype="Float64")],
49
+ ["any", Series([True], index=["a"], dtype="boolean")],
50
+ ["all", Series([True], index=["a"], dtype="boolean")],
51
+ ],
52
+ )
53
+ def test_dataframe_reductions(op, expected):
54
+ df = DataFrame({"a": array([1, 2], dtype="Int64")})
55
+ result = getattr(df, op)()
56
+ tm.assert_series_equal(result, expected)
57
+
58
+
59
+ @pytest.mark.parametrize(
60
+ "op, expected",
61
+ [
62
+ ["sum", array([1, 3], dtype="Int64")],
63
+ ["prod", array([1, 3], dtype="Int64")],
64
+ ["min", array([1, 3], dtype="Int64")],
65
+ ["max", array([1, 3], dtype="Int64")],
66
+ ["mean", array([1, 3], dtype="Float64")],
67
+ ["median", array([1, 3], dtype="Float64")],
68
+ ["var", array([pd.NA], dtype="Float64")],
69
+ ["std", array([pd.NA], dtype="Float64")],
70
+ ["skew", array([pd.NA], dtype="Float64")],
71
+ ["any", array([True, True], dtype="boolean")],
72
+ ["all", array([True, True], dtype="boolean")],
73
+ ],
74
+ )
75
+ def test_groupby_reductions(op, expected):
76
+ df = DataFrame(
77
+ {
78
+ "A": ["a", "b", "b"],
79
+ "B": array([1, None, 3], dtype="Int64"),
80
+ }
81
+ )
82
+ result = getattr(df.groupby("A"), op)()
83
+ expected = DataFrame(expected, index=pd.Index(["a", "b"], name="A"), columns=["B"])
84
+
85
+ tm.assert_frame_equal(result, expected)
86
+
87
+
88
+ @pytest.mark.parametrize(
89
+ "op, expected",
90
+ [
91
+ ["sum", Series([4, 4], index=["B", "C"], dtype="Float64")],
92
+ ["prod", Series([3, 3], index=["B", "C"], dtype="Float64")],
93
+ ["min", Series([1, 1], index=["B", "C"], dtype="Float64")],
94
+ ["max", Series([3, 3], index=["B", "C"], dtype="Float64")],
95
+ ["mean", Series([2, 2], index=["B", "C"], dtype="Float64")],
96
+ ["median", Series([2, 2], index=["B", "C"], dtype="Float64")],
97
+ ["var", Series([2, 2], index=["B", "C"], dtype="Float64")],
98
+ ["std", Series([2**0.5, 2**0.5], index=["B", "C"], dtype="Float64")],
99
+ ["skew", Series([pd.NA, pd.NA], index=["B", "C"], dtype="Float64")],
100
+ ["kurt", Series([pd.NA, pd.NA], index=["B", "C"], dtype="Float64")],
101
+ ["any", Series([True, True, True], index=["A", "B", "C"], dtype="boolean")],
102
+ ["all", Series([True, True, True], index=["A", "B", "C"], dtype="boolean")],
103
+ ],
104
+ )
105
+ def test_mixed_reductions(op, expected, using_infer_string):
106
+ if op in ["any", "all"] and using_infer_string:
107
+ expected = expected.astype("bool")
108
+ df = DataFrame(
109
+ {
110
+ "A": ["a", "b", "b"],
111
+ "B": [1, None, 3],
112
+ "C": array([1, None, 3], dtype="Int64"),
113
+ }
114
+ )
115
+
116
+ # series
117
+ result = getattr(df.C, op)()
118
+ tm.assert_equal(result, expected["C"])
119
+
120
+ # frame
121
+ if op in ["any", "all"]:
122
+ result = getattr(df, op)()
123
+ else:
124
+ result = getattr(df, op)(numeric_only=True)
125
+ tm.assert_series_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_repr.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas.core.arrays.integer import (
6
+ Int8Dtype,
7
+ Int16Dtype,
8
+ Int32Dtype,
9
+ Int64Dtype,
10
+ UInt8Dtype,
11
+ UInt16Dtype,
12
+ UInt32Dtype,
13
+ UInt64Dtype,
14
+ )
15
+
16
+
17
+ def test_dtypes(dtype):
18
+ # smoke tests on auto dtype construction
19
+
20
+ if dtype.is_signed_integer:
21
+ assert np.dtype(dtype.type).kind == "i"
22
+ else:
23
+ assert np.dtype(dtype.type).kind == "u"
24
+ assert dtype.name is not None
25
+
26
+
27
+ @pytest.mark.parametrize(
28
+ "dtype, expected",
29
+ [
30
+ (Int8Dtype(), "Int8Dtype()"),
31
+ (Int16Dtype(), "Int16Dtype()"),
32
+ (Int32Dtype(), "Int32Dtype()"),
33
+ (Int64Dtype(), "Int64Dtype()"),
34
+ (UInt8Dtype(), "UInt8Dtype()"),
35
+ (UInt16Dtype(), "UInt16Dtype()"),
36
+ (UInt32Dtype(), "UInt32Dtype()"),
37
+ (UInt64Dtype(), "UInt64Dtype()"),
38
+ ],
39
+ )
40
+ def test_repr_dtype(dtype, expected):
41
+ assert repr(dtype) == expected
42
+
43
+
44
+ def test_repr_array():
45
+ result = repr(pd.array([1, None, 3]))
46
+ expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64"
47
+ assert result == expected
48
+
49
+
50
+ def test_repr_array_long():
51
+ data = pd.array([1, 2, None] * 1000)
52
+ expected = (
53
+ "<IntegerArray>\n"
54
+ "[ 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>, 1,\n"
55
+ " ...\n"
56
+ " <NA>, 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>]\n"
57
+ "Length: 3000, dtype: Int64"
58
+ )
59
+ result = repr(data)
60
+ assert result == expected
61
+
62
+
63
+ def test_frame_repr(data_missing):
64
+ df = pd.DataFrame({"A": data_missing})
65
+ result = repr(df)
66
+ expected = " A\n0 <NA>\n1 1"
67
+ assert result == expected
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (193 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (1.06 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_formats.cpython-310.pyc ADDED
Binary file (543 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_interval.cpython-310.pyc ADDED
Binary file (7.53 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_interval_pyarrow.cpython-310.pyc ADDED
Binary file (4.41 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_overlaps.cpython-310.pyc ADDED
Binary file (3.42 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_astype.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ Categorical,
5
+ CategoricalDtype,
6
+ Index,
7
+ IntervalIndex,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ class TestAstype:
13
+ @pytest.mark.parametrize("ordered", [True, False])
14
+ def test_astype_categorical_retains_ordered(self, ordered):
15
+ index = IntervalIndex.from_breaks(range(5))
16
+ arr = index._data
17
+
18
+ dtype = CategoricalDtype(None, ordered=ordered)
19
+
20
+ expected = Categorical(list(arr), ordered=ordered)
21
+ result = arr.astype(dtype)
22
+ assert result.ordered is ordered
23
+ tm.assert_categorical_equal(result, expected)
24
+
25
+ # test IntervalIndex.astype while we're at it.
26
+ result = index.astype(dtype)
27
+ expected = Index(expected)
28
+ tm.assert_index_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_formats.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas.core.arrays import IntervalArray
2
+
3
+
4
+ def test_repr():
5
+ # GH#25022
6
+ arr = IntervalArray.from_tuples([(0, 1), (1, 2)])
7
+ result = repr(arr)
8
+ expected = (
9
+ "<IntervalArray>\n"
10
+ "[(0, 1], (1, 2]]\n"
11
+ "Length: 2, dtype: interval[int64, right]"
12
+ )
13
+ assert result == expected
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_interval.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ Index,
7
+ Interval,
8
+ IntervalIndex,
9
+ Timedelta,
10
+ Timestamp,
11
+ date_range,
12
+ timedelta_range,
13
+ )
14
+ import pandas._testing as tm
15
+ from pandas.core.arrays import IntervalArray
16
+
17
+
18
+ @pytest.fixture(
19
+ params=[
20
+ (Index([0, 2, 4]), Index([1, 3, 5])),
21
+ (Index([0.0, 1.0, 2.0]), Index([1.0, 2.0, 3.0])),
22
+ (timedelta_range("0 days", periods=3), timedelta_range("1 day", periods=3)),
23
+ (date_range("20170101", periods=3), date_range("20170102", periods=3)),
24
+ (
25
+ date_range("20170101", periods=3, tz="US/Eastern"),
26
+ date_range("20170102", periods=3, tz="US/Eastern"),
27
+ ),
28
+ ],
29
+ ids=lambda x: str(x[0].dtype),
30
+ )
31
+ def left_right_dtypes(request):
32
+ """
33
+ Fixture for building an IntervalArray from various dtypes
34
+ """
35
+ return request.param
36
+
37
+
38
+ class TestAttributes:
39
+ @pytest.mark.parametrize(
40
+ "left, right",
41
+ [
42
+ (0, 1),
43
+ (Timedelta("0 days"), Timedelta("1 day")),
44
+ (Timestamp("2018-01-01"), Timestamp("2018-01-02")),
45
+ (
46
+ Timestamp("2018-01-01", tz="US/Eastern"),
47
+ Timestamp("2018-01-02", tz="US/Eastern"),
48
+ ),
49
+ ],
50
+ )
51
+ @pytest.mark.parametrize("constructor", [IntervalArray, IntervalIndex])
52
+ def test_is_empty(self, constructor, left, right, closed):
53
+ # GH27219
54
+ tuples = [(left, left), (left, right), np.nan]
55
+ expected = np.array([closed != "both", False, False])
56
+ result = constructor.from_tuples(tuples, closed=closed).is_empty
57
+ tm.assert_numpy_array_equal(result, expected)
58
+
59
+
60
+ class TestMethods:
61
+ @pytest.mark.parametrize("new_closed", ["left", "right", "both", "neither"])
62
+ def test_set_closed(self, closed, new_closed):
63
+ # GH 21670
64
+ array = IntervalArray.from_breaks(range(10), closed=closed)
65
+ result = array.set_closed(new_closed)
66
+ expected = IntervalArray.from_breaks(range(10), closed=new_closed)
67
+ tm.assert_extension_array_equal(result, expected)
68
+
69
+ @pytest.mark.parametrize(
70
+ "other",
71
+ [
72
+ Interval(0, 1, closed="right"),
73
+ IntervalArray.from_breaks([1, 2, 3, 4], closed="right"),
74
+ ],
75
+ )
76
+ def test_where_raises(self, other):
77
+ # GH#45768 The IntervalArray methods raises; the Series method coerces
78
+ ser = pd.Series(IntervalArray.from_breaks([1, 2, 3, 4], closed="left"))
79
+ mask = np.array([True, False, True])
80
+ match = "'value.closed' is 'right', expected 'left'."
81
+ with pytest.raises(ValueError, match=match):
82
+ ser.array._where(mask, other)
83
+
84
+ res = ser.where(mask, other=other)
85
+ expected = ser.astype(object).where(mask, other)
86
+ tm.assert_series_equal(res, expected)
87
+
88
+ def test_shift(self):
89
+ # https://github.com/pandas-dev/pandas/issues/31495, GH#22428, GH#31502
90
+ a = IntervalArray.from_breaks([1, 2, 3])
91
+ result = a.shift()
92
+ # int -> float
93
+ expected = IntervalArray.from_tuples([(np.nan, np.nan), (1.0, 2.0)])
94
+ tm.assert_interval_array_equal(result, expected)
95
+
96
+ msg = "can only insert Interval objects and NA into an IntervalArray"
97
+ with pytest.raises(TypeError, match=msg):
98
+ a.shift(1, fill_value=pd.NaT)
99
+
100
+ def test_shift_datetime(self):
101
+ # GH#31502, GH#31504
102
+ a = IntervalArray.from_breaks(date_range("2000", periods=4))
103
+ result = a.shift(2)
104
+ expected = a.take([-1, -1, 0], allow_fill=True)
105
+ tm.assert_interval_array_equal(result, expected)
106
+
107
+ result = a.shift(-1)
108
+ expected = a.take([1, 2, -1], allow_fill=True)
109
+ tm.assert_interval_array_equal(result, expected)
110
+
111
+ msg = "can only insert Interval objects and NA into an IntervalArray"
112
+ with pytest.raises(TypeError, match=msg):
113
+ a.shift(1, fill_value=np.timedelta64("NaT", "ns"))
114
+
115
+
116
+ class TestSetitem:
117
+ def test_set_na(self, left_right_dtypes):
118
+ left, right = left_right_dtypes
119
+ left = left.copy(deep=True)
120
+ right = right.copy(deep=True)
121
+ result = IntervalArray.from_arrays(left, right)
122
+
123
+ if result.dtype.subtype.kind not in ["m", "M"]:
124
+ msg = "'value' should be an interval type, got <.*NaTType'> instead."
125
+ with pytest.raises(TypeError, match=msg):
126
+ result[0] = pd.NaT
127
+ if result.dtype.subtype.kind in ["i", "u"]:
128
+ msg = "Cannot set float NaN to integer-backed IntervalArray"
129
+ # GH#45484 TypeError, not ValueError, matches what we get with
130
+ # non-NA un-holdable value.
131
+ with pytest.raises(TypeError, match=msg):
132
+ result[0] = np.nan
133
+ return
134
+
135
+ result[0] = np.nan
136
+
137
+ expected_left = Index([left._na_value] + list(left[1:]))
138
+ expected_right = Index([right._na_value] + list(right[1:]))
139
+ expected = IntervalArray.from_arrays(expected_left, expected_right)
140
+
141
+ tm.assert_extension_array_equal(result, expected)
142
+
143
+ def test_setitem_mismatched_closed(self):
144
+ arr = IntervalArray.from_breaks(range(4))
145
+ orig = arr.copy()
146
+ other = arr.set_closed("both")
147
+
148
+ msg = "'value.closed' is 'both', expected 'right'"
149
+ with pytest.raises(ValueError, match=msg):
150
+ arr[0] = other[0]
151
+ with pytest.raises(ValueError, match=msg):
152
+ arr[:1] = other[:1]
153
+ with pytest.raises(ValueError, match=msg):
154
+ arr[:0] = other[:0]
155
+ with pytest.raises(ValueError, match=msg):
156
+ arr[:] = other[::-1]
157
+ with pytest.raises(ValueError, match=msg):
158
+ arr[:] = list(other[::-1])
159
+ with pytest.raises(ValueError, match=msg):
160
+ arr[:] = other[::-1].astype(object)
161
+ with pytest.raises(ValueError, match=msg):
162
+ arr[:] = other[::-1].astype("category")
163
+
164
+ # empty list should be no-op
165
+ arr[:0] = []
166
+ tm.assert_interval_array_equal(arr, orig)
167
+
168
+
169
+ class TestReductions:
170
+ def test_min_max_invalid_axis(self, left_right_dtypes):
171
+ left, right = left_right_dtypes
172
+ left = left.copy(deep=True)
173
+ right = right.copy(deep=True)
174
+ arr = IntervalArray.from_arrays(left, right)
175
+
176
+ msg = "`axis` must be fewer than the number of dimensions"
177
+ for axis in [-2, 1]:
178
+ with pytest.raises(ValueError, match=msg):
179
+ arr.min(axis=axis)
180
+ with pytest.raises(ValueError, match=msg):
181
+ arr.max(axis=axis)
182
+
183
+ msg = "'>=' not supported between"
184
+ with pytest.raises(TypeError, match=msg):
185
+ arr.min(axis="foo")
186
+ with pytest.raises(TypeError, match=msg):
187
+ arr.max(axis="foo")
188
+
189
+ def test_min_max(self, left_right_dtypes, index_or_series_or_array):
190
+ # GH#44746
191
+ left, right = left_right_dtypes
192
+ left = left.copy(deep=True)
193
+ right = right.copy(deep=True)
194
+ arr = IntervalArray.from_arrays(left, right)
195
+
196
+ # The expected results below are only valid if monotonic
197
+ assert left.is_monotonic_increasing
198
+ assert Index(arr).is_monotonic_increasing
199
+
200
+ MIN = arr[0]
201
+ MAX = arr[-1]
202
+
203
+ indexer = np.arange(len(arr))
204
+ np.random.default_rng(2).shuffle(indexer)
205
+ arr = arr.take(indexer)
206
+
207
+ arr_na = arr.insert(2, np.nan)
208
+
209
+ arr = index_or_series_or_array(arr)
210
+ arr_na = index_or_series_or_array(arr_na)
211
+
212
+ for skipna in [True, False]:
213
+ res = arr.min(skipna=skipna)
214
+ assert res == MIN
215
+ assert type(res) == type(MIN)
216
+
217
+ res = arr.max(skipna=skipna)
218
+ assert res == MAX
219
+ assert type(res) == type(MAX)
220
+
221
+ res = arr_na.min(skipna=False)
222
+ assert np.isnan(res)
223
+ res = arr_na.max(skipna=False)
224
+ assert np.isnan(res)
225
+
226
+ res = arr_na.min(skipna=True)
227
+ assert res == MIN
228
+ assert type(res) == type(MIN)
229
+ res = arr_na.max(skipna=True)
230
+ assert res == MAX
231
+ assert type(res) == type(MAX)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_interval_pyarrow.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.core.arrays import IntervalArray
7
+
8
+
9
+ def test_arrow_extension_type():
10
+ pa = pytest.importorskip("pyarrow")
11
+
12
+ from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
13
+
14
+ p1 = ArrowIntervalType(pa.int64(), "left")
15
+ p2 = ArrowIntervalType(pa.int64(), "left")
16
+ p3 = ArrowIntervalType(pa.int64(), "right")
17
+
18
+ assert p1.closed == "left"
19
+ assert p1 == p2
20
+ assert p1 != p3
21
+ assert hash(p1) == hash(p2)
22
+ assert hash(p1) != hash(p3)
23
+
24
+
25
+ def test_arrow_array():
26
+ pa = pytest.importorskip("pyarrow")
27
+
28
+ from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
29
+
30
+ intervals = pd.interval_range(1, 5, freq=1).array
31
+
32
+ result = pa.array(intervals)
33
+ assert isinstance(result.type, ArrowIntervalType)
34
+ assert result.type.closed == intervals.closed
35
+ assert result.type.subtype == pa.int64()
36
+ assert result.storage.field("left").equals(pa.array([1, 2, 3, 4], type="int64"))
37
+ assert result.storage.field("right").equals(pa.array([2, 3, 4, 5], type="int64"))
38
+
39
+ expected = pa.array([{"left": i, "right": i + 1} for i in range(1, 5)])
40
+ assert result.storage.equals(expected)
41
+
42
+ # convert to its storage type
43
+ result = pa.array(intervals, type=expected.type)
44
+ assert result.equals(expected)
45
+
46
+ # unsupported conversions
47
+ with pytest.raises(TypeError, match="Not supported to convert IntervalArray"):
48
+ pa.array(intervals, type="float64")
49
+
50
+ with pytest.raises(TypeError, match="Not supported to convert IntervalArray"):
51
+ pa.array(intervals, type=ArrowIntervalType(pa.float64(), "left"))
52
+
53
+
54
+ def test_arrow_array_missing():
55
+ pa = pytest.importorskip("pyarrow")
56
+
57
+ from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
58
+
59
+ arr = IntervalArray.from_breaks([0.0, 1.0, 2.0, 3.0])
60
+ arr[1] = None
61
+
62
+ result = pa.array(arr)
63
+ assert isinstance(result.type, ArrowIntervalType)
64
+ assert result.type.closed == arr.closed
65
+ assert result.type.subtype == pa.float64()
66
+
67
+ # fields have missing values (not NaN)
68
+ left = pa.array([0.0, None, 2.0], type="float64")
69
+ right = pa.array([1.0, None, 3.0], type="float64")
70
+ assert result.storage.field("left").equals(left)
71
+ assert result.storage.field("right").equals(right)
72
+
73
+ # structarray itself also has missing values on the array level
74
+ vals = [
75
+ {"left": 0.0, "right": 1.0},
76
+ {"left": None, "right": None},
77
+ {"left": 2.0, "right": 3.0},
78
+ ]
79
+ expected = pa.StructArray.from_pandas(vals, mask=np.array([False, True, False]))
80
+ assert result.storage.equals(expected)
81
+
82
+
83
+ @pytest.mark.filterwarnings(
84
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
85
+ )
86
+ @pytest.mark.parametrize(
87
+ "breaks",
88
+ [[0.0, 1.0, 2.0, 3.0], pd.date_range("2017", periods=4, freq="D")],
89
+ ids=["float", "datetime64[ns]"],
90
+ )
91
+ def test_arrow_table_roundtrip(breaks):
92
+ pa = pytest.importorskip("pyarrow")
93
+
94
+ from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
95
+
96
+ arr = IntervalArray.from_breaks(breaks)
97
+ arr[1] = None
98
+ df = pd.DataFrame({"a": arr})
99
+
100
+ table = pa.table(df)
101
+ assert isinstance(table.field("a").type, ArrowIntervalType)
102
+ result = table.to_pandas()
103
+ assert isinstance(result["a"].dtype, pd.IntervalDtype)
104
+ tm.assert_frame_equal(result, df)
105
+
106
+ table2 = pa.concat_tables([table, table])
107
+ result = table2.to_pandas()
108
+ expected = pd.concat([df, df], ignore_index=True)
109
+ tm.assert_frame_equal(result, expected)
110
+
111
+ # GH#41040
112
+ table = pa.table(
113
+ [pa.chunked_array([], type=table.column(0).type)], schema=table.schema
114
+ )
115
+ result = table.to_pandas()
116
+ tm.assert_frame_equal(result, expected[0:0])
117
+
118
+
119
+ @pytest.mark.filterwarnings(
120
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
121
+ )
122
+ @pytest.mark.parametrize(
123
+ "breaks",
124
+ [[0.0, 1.0, 2.0, 3.0], pd.date_range("2017", periods=4, freq="D")],
125
+ ids=["float", "datetime64[ns]"],
126
+ )
127
+ def test_arrow_table_roundtrip_without_metadata(breaks):
128
+ pa = pytest.importorskip("pyarrow")
129
+
130
+ arr = IntervalArray.from_breaks(breaks)
131
+ arr[1] = None
132
+ df = pd.DataFrame({"a": arr})
133
+
134
+ table = pa.table(df)
135
+ # remove the metadata
136
+ table = table.replace_schema_metadata()
137
+ assert table.schema.metadata is None
138
+
139
+ result = table.to_pandas()
140
+ assert isinstance(result["a"].dtype, pd.IntervalDtype)
141
+ tm.assert_frame_equal(result, df)
142
+
143
+
144
+ def test_from_arrow_from_raw_struct_array():
145
+ # in case pyarrow lost the Interval extension type (eg on parquet roundtrip
146
+ # with datetime64[ns] subtype, see GH-45881), still allow conversion
147
+ # from arrow to IntervalArray
148
+ pa = pytest.importorskip("pyarrow")
149
+
150
+ arr = pa.array([{"left": 0, "right": 1}, {"left": 1, "right": 2}])
151
+ dtype = pd.IntervalDtype(np.dtype("int64"), closed="neither")
152
+
153
+ result = dtype.__from_arrow__(arr)
154
+ expected = IntervalArray.from_breaks(
155
+ np.array([0, 1, 2], dtype="int64"), closed="neither"
156
+ )
157
+ tm.assert_extension_array_equal(result, expected)
158
+
159
+ result = dtype.__from_arrow__(pa.chunked_array([arr]))
160
+ tm.assert_extension_array_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_overlaps.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for Interval-Interval operations, such as overlaps, contains, etc."""
2
+ import numpy as np
3
+ import pytest
4
+
5
+ from pandas import (
6
+ Interval,
7
+ IntervalIndex,
8
+ Timedelta,
9
+ Timestamp,
10
+ )
11
+ import pandas._testing as tm
12
+ from pandas.core.arrays import IntervalArray
13
+
14
+
15
+ @pytest.fixture(params=[IntervalArray, IntervalIndex])
16
+ def constructor(request):
17
+ """
18
+ Fixture for testing both interval container classes.
19
+ """
20
+ return request.param
21
+
22
+
23
+ @pytest.fixture(
24
+ params=[
25
+ (Timedelta("0 days"), Timedelta("1 day")),
26
+ (Timestamp("2018-01-01"), Timedelta("1 day")),
27
+ (0, 1),
28
+ ],
29
+ ids=lambda x: type(x[0]).__name__,
30
+ )
31
+ def start_shift(request):
32
+ """
33
+ Fixture for generating intervals of different types from a start value
34
+ and a shift value that can be added to start to generate an endpoint.
35
+ """
36
+ return request.param
37
+
38
+
39
+ class TestOverlaps:
40
+ def test_overlaps_interval(self, constructor, start_shift, closed, other_closed):
41
+ start, shift = start_shift
42
+ interval = Interval(start, start + 3 * shift, other_closed)
43
+
44
+ # intervals: identical, nested, spanning, partial, adjacent, disjoint
45
+ tuples = [
46
+ (start, start + 3 * shift),
47
+ (start + shift, start + 2 * shift),
48
+ (start - shift, start + 4 * shift),
49
+ (start + 2 * shift, start + 4 * shift),
50
+ (start + 3 * shift, start + 4 * shift),
51
+ (start + 4 * shift, start + 5 * shift),
52
+ ]
53
+ interval_container = constructor.from_tuples(tuples, closed)
54
+
55
+ adjacent = interval.closed_right and interval_container.closed_left
56
+ expected = np.array([True, True, True, True, adjacent, False])
57
+ result = interval_container.overlaps(interval)
58
+ tm.assert_numpy_array_equal(result, expected)
59
+
60
+ @pytest.mark.parametrize("other_constructor", [IntervalArray, IntervalIndex])
61
+ def test_overlaps_interval_container(self, constructor, other_constructor):
62
+ # TODO: modify this test when implemented
63
+ interval_container = constructor.from_breaks(range(5))
64
+ other_container = other_constructor.from_breaks(range(5))
65
+ with pytest.raises(NotImplementedError, match="^$"):
66
+ interval_container.overlaps(other_container)
67
+
68
+ def test_overlaps_na(self, constructor, start_shift):
69
+ """NA values are marked as False"""
70
+ start, shift = start_shift
71
+ interval = Interval(start, start + shift)
72
+
73
+ tuples = [
74
+ (start, start + shift),
75
+ np.nan,
76
+ (start + 2 * shift, start + 3 * shift),
77
+ ]
78
+ interval_container = constructor.from_tuples(tuples)
79
+
80
+ expected = np.array([True, False, False])
81
+ result = interval_container.overlaps(interval)
82
+ tm.assert_numpy_array_equal(result, expected)
83
+
84
+ @pytest.mark.parametrize(
85
+ "other",
86
+ [10, True, "foo", Timedelta("1 day"), Timestamp("2018-01-01")],
87
+ ids=lambda x: type(x).__name__,
88
+ )
89
+ def test_overlaps_invalid_type(self, constructor, other):
90
+ interval_container = constructor.from_breaks(range(5))
91
+ msg = f"`other` must be Interval-like, got {type(other).__name__}"
92
+ with pytest.raises(TypeError, match=msg):
93
+ interval_container.overlaps(other)