diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/configuration_clipseg.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/configuration_clipseg.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..77b1fc92d71ee9e703a83d0d014b7ff2832f4120
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/configuration_clipseg.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2720cc6d1ffe268a9439c6b78d89e074cb179bbf
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__pycache__/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__pycache__/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f50b4fa3d871fc7c298644b20ead4b12af36b616
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__pycache__/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..342cdcf0a7eb5605a6cabce3cc50dc3db920462e
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/convert_donut_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/convert_donut_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..651d4425ee677c333ee6b86c4ce64aba5bd0da92
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/convert_donut_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/feature_extraction_donut.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/feature_extraction_donut.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7805937bb63e6d27fef716e462f730dcc071c7d5
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/feature_extraction_donut.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/image_processing_donut.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/image_processing_donut.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8cc6d8ae475d790485c59d69979a0f49218fd760
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/image_processing_donut.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/modeling_donut_swin.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/modeling_donut_swin.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0c5ad25d120b70a1ab3bb1968d7060ef75bd2fd9
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/modeling_donut_swin.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/processing_donut.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/processing_donut.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4a79b1b2cad93f8ec5823fbbbf00eb8a26782774
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/processing_donut.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/feature_extraction_donut.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/feature_extraction_donut.py
new file mode 100644
index 0000000000000000000000000000000000000000..e6ca078c0e8ac4939514dcb297f5d2c63de032f7
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/feature_extraction_donut.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Feature extractor class for Donut."""
+
+import warnings
+
+from ...utils import logging
+from .image_processing_donut import DonutImageProcessor
+
+
+logger = logging.get_logger(__name__)
+
+
+class DonutFeatureExtractor(DonutImageProcessor):
+ def __init__(self, *args, **kwargs) -> None:
+ warnings.warn(
+ "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
+ " use DonutImageProcessor instead.",
+ FutureWarning,
+ )
+ super().__init__(*args, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/image_processing_donut.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/image_processing_donut.py
new file mode 100644
index 0000000000000000000000000000000000000000..1c6e4723139046ae4c479690c5242e35ef5e604d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/donut/image_processing_donut.py
@@ -0,0 +1,480 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for Donut."""
+
+from typing import Dict, List, Optional, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import (
+ get_resize_output_image_size,
+ pad,
+ resize,
+ to_channel_dimension_format,
+)
+from ...image_utils import (
+ IMAGENET_STANDARD_MEAN,
+ IMAGENET_STANDARD_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ get_image_size,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import TensorType, logging
+from ...utils.import_utils import is_vision_available
+
+
+logger = logging.get_logger(__name__)
+
+
+if is_vision_available():
+ import PIL
+
+
+class DonutImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a Donut image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
+ `do_resize` in the `preprocess` method.
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
+ Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
+ the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
+ method.
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
+ Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
+ do_thumbnail (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image using thumbnail method.
+ do_align_long_axis (`bool`, *optional*, defaults to `False`):
+ Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
+ do_pad (`bool`, *optional*, defaults to `True`):
+ Whether to pad the image. If `random_padding` is set to `True` in `preprocess`, each image is padded with a
+ random amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are
+ padded to the largest image size in the batch.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
+ the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
+ method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
+ Image standard deviation.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ do_thumbnail: bool = True,
+ do_align_long_axis: bool = False,
+ do_pad: bool = True,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+
+ size = size if size is not None else {"height": 2560, "width": 1920}
+ if isinstance(size, (tuple, list)):
+ # The previous feature extractor size parameter was in (width, height) format
+ size = size[::-1]
+ size = get_size_dict(size)
+
+ self.do_resize = do_resize
+ self.size = size
+ self.resample = resample
+ self.do_thumbnail = do_thumbnail
+ self.do_align_long_axis = do_align_long_axis
+ self.do_pad = do_pad
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_normalize = do_normalize
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
+ self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
+ self._valid_processor_keys = [
+ "images",
+ "do_resize",
+ "size",
+ "resample",
+ "do_thumbnail",
+ "do_align_long_axis",
+ "do_pad",
+ "random_padding",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ def align_long_axis(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """
+ Align the long axis of the image to the longest axis of the specified size.
+
+ Args:
+ image (`np.ndarray`):
+ The image to be aligned.
+ size (`Dict[str, int]`):
+ The size `{"height": h, "width": w}` to align the long axis to.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The data format of the output image. If unset, the same format as the input image is used.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+
+ Returns:
+ `np.ndarray`: The aligned image.
+ """
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
+ output_height, output_width = size["height"], size["width"]
+
+ if (output_width < output_height and input_width > input_height) or (
+ output_width > output_height and input_width < input_height
+ ):
+ image = np.rot90(image, 3)
+
+ if data_format is not None:
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
+
+ return image
+
+ def pad_image(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ random_padding: bool = False,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """
+ Pad the image to the specified size.
+
+ Args:
+ image (`np.ndarray`):
+ The image to be padded.
+ size (`Dict[str, int]`):
+ The size `{"height": h, "width": w}` to pad the image to.
+ random_padding (`bool`, *optional*, defaults to `False`):
+ Whether to use random padding or not.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The data format of the output image. If unset, the same format as the input image is used.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ output_height, output_width = size["height"], size["width"]
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
+
+ delta_width = output_width - input_width
+ delta_height = output_height - input_height
+
+ if random_padding:
+ pad_top = np.random.randint(low=0, high=delta_height + 1)
+ pad_left = np.random.randint(low=0, high=delta_width + 1)
+ else:
+ pad_top = delta_height // 2
+ pad_left = delta_width // 2
+
+ pad_bottom = delta_height - pad_top
+ pad_right = delta_width - pad_left
+
+ padding = ((pad_top, pad_bottom), (pad_left, pad_right))
+ return pad(image, padding, data_format=data_format, input_data_format=input_data_format)
+
+ def pad(self, *args, **kwargs):
+ logger.info("pad is deprecated and will be removed in version 4.27. Please use pad_image instead.")
+ return self.pad_image(*args, **kwargs)
+
+ def thumbnail(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any
+ corresponding dimension of the specified size.
+
+ Args:
+ image (`np.ndarray`):
+ The image to be resized.
+ size (`Dict[str, int]`):
+ The size `{"height": h, "width": w}` to resize the image to.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
+ The resampling filter to use.
+ data_format (`Optional[Union[str, ChannelDimension]]`, *optional*):
+ The data format of the output image. If unset, the same format as the input image is used.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
+ output_height, output_width = size["height"], size["width"]
+
+ # We always resize to the smallest of either the input or output size.
+ height = min(input_height, output_height)
+ width = min(input_width, output_width)
+
+ if height == input_height and width == input_width:
+ return image
+
+ if input_height > input_width:
+ width = int(input_width * height / input_height)
+ elif input_width > input_height:
+ height = int(input_height * width / input_width)
+
+ return resize(
+ image,
+ size=(height, width),
+ resample=resample,
+ reducing_gap=2.0,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resizes `image` to `(height, width)` specified by `size` using the PIL library.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Size of the output image.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
+ Resampling filter to use when resiizing the image.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ size = get_size_dict(size)
+ shortest_edge = min(size["height"], size["width"])
+ output_size = get_resize_output_image_size(
+ image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format
+ )
+ resized_image = resize(
+ image,
+ size=output_size,
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+ return resized_image
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_thumbnail: bool = None,
+ do_align_long_axis: bool = None,
+ do_pad: bool = None,
+ random_padding: bool = False,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> PIL.Image.Image:
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Size of the image after resizing. Shortest edge of the image is resized to min(size["height"],
+ size["width"]) with the longest edge resized to keep the input aspect ratio.
+ resample (`int`, *optional*, defaults to `self.resample`):
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
+ has an effect if `do_resize` is set to `True`.
+ do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
+ Whether to resize the image using thumbnail method.
+ do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
+ Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
+ do_pad (`bool`, *optional*, defaults to `self.do_pad`):
+ Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random
+ amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are
+ padded to the largest image size in the batch.
+ random_padding (`bool`, *optional*, defaults to `self.random_padding`):
+ Whether to use random padding when padding the image. If `True`, each image in the batch with be padded
+ with a random amount of padding on each side up to the size of the largest image in the batch.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image pixel values.
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to use for normalization.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to use for normalization.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: defaults to the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ size = size if size is not None else self.size
+ if isinstance(size, (tuple, list)):
+ # Previous feature extractor had size in (width, height) format
+ size = size[::-1]
+ size = get_size_dict(size)
+ resample = resample if resample is not None else self.resample
+ do_thumbnail = do_thumbnail if do_thumbnail is not None else self.do_thumbnail
+ do_align_long_axis = do_align_long_axis if do_align_long_axis is not None else self.do_align_long_axis
+ do_pad = do_pad if do_pad is not None else self.do_pad
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+
+ images = make_list_of_images(images)
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_pad=do_pad,
+ size_divisibility=size, # There is no pad divisibility in this processor, but pad requires the size arg.
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if do_align_long_axis:
+ images = [self.align_long_axis(image, size=size, input_data_format=input_data_format) for image in images]
+
+ if do_resize:
+ images = [
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_thumbnail:
+ images = [self.thumbnail(image=image, size=size, input_data_format=input_data_format) for image in images]
+
+ if do_pad:
+ images = [
+ self.pad_image(
+ image=image, size=size, random_padding=random_padding, input_data_format=input_data_format
+ )
+ for image in images
+ ]
+
+ if do_rescale:
+ images = [
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_normalize:
+ images = [
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ images = [
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
+ ]
+
+ data = {"pixel_values": images}
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8d026a9443271c6f750bbe204abd777c1195ee07
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__init__.py
@@ -0,0 +1,97 @@
+# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
+
+
+_import_structure = {
+ "configuration_flava": [
+ "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "FlavaConfig",
+ "FlavaImageCodebookConfig",
+ "FlavaImageConfig",
+ "FlavaMultimodalConfig",
+ "FlavaTextConfig",
+ ],
+}
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["feature_extraction_flava"] = ["FlavaFeatureExtractor"]
+ _import_structure["image_processing_flava"] = ["FlavaImageProcessor"]
+ _import_structure["processing_flava"] = ["FlavaProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flava"] = [
+ "FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "FlavaForPreTraining",
+ "FlavaImageCodebook",
+ "FlavaImageModel",
+ "FlavaModel",
+ "FlavaMultimodalModel",
+ "FlavaPreTrainedModel",
+ "FlavaTextModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_flava import (
+ FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ FlavaConfig,
+ FlavaImageCodebookConfig,
+ FlavaImageConfig,
+ FlavaMultimodalConfig,
+ FlavaTextConfig,
+ )
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .feature_extraction_flava import FlavaFeatureExtractor
+ from .image_processing_flava import FlavaImageProcessor
+ from .processing_flava import FlavaProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flava import (
+ FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
+ FlavaForPreTraining,
+ FlavaImageCodebook,
+ FlavaImageModel,
+ FlavaModel,
+ FlavaMultimodalModel,
+ FlavaPreTrainedModel,
+ FlavaTextModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b9797adf75926e0464d8a1593da191f51a083a7d
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/configuration_flava.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/configuration_flava.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0524a976203452d1565be439b34730e9cdc64bdf
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/configuration_flava.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/convert_dalle_to_flava_codebook.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/convert_dalle_to_flava_codebook.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8ac7146bd9f353c6f370d04d73c8371994b40833
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/convert_dalle_to_flava_codebook.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/convert_flava_original_pytorch_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/convert_flava_original_pytorch_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9efc068e8de8731f929b1161a46faee155f8e869
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/convert_flava_original_pytorch_to_hf.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/feature_extraction_flava.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/feature_extraction_flava.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1041fbaa20c7a32e4044a8497cdce1ea078b0402
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/feature_extraction_flava.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/image_processing_flava.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/image_processing_flava.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2b66437ee5404056005ecbe061e894f77b431dec
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/image_processing_flava.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/modeling_flava.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/modeling_flava.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..30883fd21d74d6907cc55e0e78bf57ad38b2caa7
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/modeling_flava.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/processing_flava.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/processing_flava.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..159a4a792e6cd06b8fdd0b246ce377ad125e4ea9
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/processing_flava.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/configuration_flava.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/configuration_flava.py
new file mode 100644
index 0000000000000000000000000000000000000000..2c8642bfd2759f0ce797611635b90fcbb160b12c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/configuration_flava.py
@@ -0,0 +1,764 @@
+# coding=utf-8
+# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" FLAVA model configurations"""
+
+import os
+from typing import Any, Dict, Union
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class FlavaImageConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`FlavaImageModel`]. It is used to instantiate an
+ FLAVA model according to the specified arguments, defining the model architecture.
+
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
+ [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image.
+ patch_size (`int`, *optional*, defaults to 16):
+ The size (resolution) of each patch.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether to add a bias to the queries, keys and values.
+ mask_token (`bool`, *optional*, defaults to `True`):
+ Whether to use a mask token or not. Used in MIM (Masked Image Modeling) loss for FLAVA.
+ vocab_size (`int`, *optional*, defaults to 8192):
+ Vocabulary size of the [`FlavaImageCodebook`] used in conjunction with [`FlavaImageModel`] for MIM (Masked
+ Image Modeling) loss for FLAVA.
+
+ Example:
+
+ ```python
+ >>> from transformers import FlavaImageConfig, FlavaImageModel
+
+ >>> # Initializing a FlavaImageModel with style configuration
+ >>> configuration = FlavaImageConfig()
+
+ >>> # Initializing a FlavaImageModel model (with random weights) from the style configuration
+ >>> model = FlavaImageModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "flava_image_model"
+
+ def __init__(
+ self,
+ hidden_size: int = 768,
+ num_hidden_layers: int = 12,
+ num_attention_heads: int = 12,
+ intermediate_size: int = 3072,
+ hidden_act: int = "gelu",
+ hidden_dropout_prob: float = 0.0,
+ attention_probs_dropout_prob: float = 0.0,
+ initializer_range: float = 0.02,
+ layer_norm_eps: float = 1e-12,
+ image_size: int = 224,
+ patch_size: int = 16,
+ num_channels: int = 3,
+ qkv_bias: bool = True,
+ mask_token: bool = True,
+ vocab_size: int = 8192,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.qkv_bias = qkv_bias
+ self.mask_token = mask_token
+ self.vocab_size = vocab_size
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the image config dict if we are loading from FlavaConfig
+ if config_dict.get("model_type") == "flava":
+ config_dict = config_dict["image_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class FlavaTextConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`FlavaTextModel`]. It is used to instantiate an
+ FLAVA model according to the specified arguments, defining the model architecture.
+
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
+ [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`FlavaTextModel`].
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`FlavaTextModel`]. Note that even though
+ text encoder allows `token_type_ids`'s value as 2, for text-only pretraining and fine-tuning, only 1 is
+ used similar to RoBERTa.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048). For VL, max_length passed to model is 77.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image.
+ patch_size (`int`, *optional*, defaults to 16):
+ The size (resolution) of each patch.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether to add a bias to the queries, keys and values.
+
+ Example:
+
+ ```python
+ >>> from transformers import FlavaTextConfig, FlavaTextModel
+
+ >>> # Initializing a FlavaTextModel with style configuration
+ >>> configuration = FlavaTextConfig()
+
+ >>> # Initializing a FlavaTextModel model (with random weights) from the style configuration
+ >>> model = FlavaTextModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "flava_text_model"
+
+ def __init__(
+ self,
+ vocab_size: int = 30522,
+ type_vocab_size: int = 2,
+ max_position_embeddings: int = 512,
+ position_embedding_type: str = "absolute",
+ hidden_size: int = 768,
+ num_hidden_layers: int = 12,
+ num_attention_heads: int = 12,
+ intermediate_size: int = 3072,
+ hidden_act: str = "gelu",
+ hidden_dropout_prob: float = 0.0,
+ attention_probs_dropout_prob: float = 0.0,
+ initializer_range: float = 0.02,
+ layer_norm_eps: float = 1e-12,
+ pad_token_id: int = 0,
+ qkv_bias: bool = True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.vocab_size = vocab_size
+ self.type_vocab_size = type_vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.position_embedding_type = position_embedding_type
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.qkv_bias = qkv_bias
+ self.pad_token_id = pad_token_id
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the text config dict if we are loading from FlavaConfig
+ if config_dict.get("model_type") == "flava":
+ config_dict = config_dict["text_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class FlavaMultimodalConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`FlavaMultimodalModel`]. It is used to instantiate
+ an FLAVA model according to the specified arguments, defining the model architecture.
+
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
+ [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 6):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether to add a bias to the queries, keys and values.
+ use_cls_token (`bool`, *optional*, defaults to `True`):
+ Whether to use an extra CLS token for multimodal settings. Usually needed by the FLAVA model.
+
+
+ Example:
+
+ ```python
+ >>> from transformers import FlavaMultimodalConfig, FlavaMultimodalModel
+
+ >>> # Initializing a FlavaMultimodalModel with style configuration
+ >>> configuration = FlavaMultimodalConfig()
+
+ >>> # Initializing a FlavaMultimodalModel model (with random weights) from the style configuration
+ >>> model = FlavaMultimodalModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "flava_multimodal_model"
+
+ def __init__(
+ self,
+ hidden_size: int = 768,
+ num_hidden_layers: int = 6,
+ num_attention_heads: int = 12,
+ intermediate_size: int = 3072,
+ hidden_act: int = "gelu",
+ hidden_dropout_prob: int = 0.0,
+ attention_probs_dropout_prob: int = 0.0,
+ initializer_range: float = 0.02,
+ layer_norm_eps: float = 1e-12,
+ qkv_bias: bool = True,
+ use_cls_token: bool = True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.qkv_bias = qkv_bias
+ self.use_cls_token = use_cls_token
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the multimodal config dict if we are loading from FlavaConfig
+ if config_dict.get("model_type") == "flava":
+ config_dict = config_dict["multimodal_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class FlavaImageCodebookConfig(PretrainedConfig):
+ model_type = "flava_image_codebook"
+
+ r"""
+ [`FlavaImageCodebookConfig`] is the configuration class to store the configuration of a [`FlavaImageCodebook`]. It
+ is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
+ [facebook/flava-image-codebook](https://huggingface.co/facebook/flava-image-codebook) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ num_groups (`int`, defaults to 4):
+ Number of groups to be created. This parameter as of now doesn't affect the model and is used for some
+ internal calculation and estimations.
+ input_channels (`int`, defaults to 3):
+ Number of channels in the image to be passed.
+ num_blocks_per_group (`int`, defaults to 2):
+ Number of conv-based blocks per group.
+ hidden_size (`int`, defaults to 256):
+ Size of hidden dim for the blocks.
+ vocab_size (`int`, defaults to 8192):
+ Size of the output vocabulary for the codebook.
+ freeze (`bool`, defaults to `True`):
+ Whether to freeze the weights of the model.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ kwargs (*optional*):
+ Dictionary of keyword arguments.
+
+ Example:
+
+ ```python
+ >>> from transformers import FlavaImageCodebookConfig, FlavaImageCodebook
+
+ >>> # Initializing a FlavaImageCodebook with style configuration
+ >>> configuration = FlavaImageCodebookConfig()
+
+ >>> # Initializing a FlavaImageCodebook model (with random weights) from the style configuration
+ >>> model = FlavaImageCodebook(configuration)
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```
+ """
+
+ def __init__(
+ self,
+ num_groups: int = 4,
+ input_channels: int = 3,
+ num_blocks_per_group: int = 2,
+ hidden_size: int = 256,
+ vocab_size: int = 8192,
+ freeze: int = True,
+ initializer_range: float = 0.02,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.num_groups = num_groups
+ self.input_channels = input_channels
+ self.num_blocks_per_group = num_blocks_per_group
+ self.hidden_size = hidden_size
+ self.vocab_size = vocab_size
+ self.freeze = freeze
+ self.initializer_range = initializer_range
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the image codebook config dict if we are loading from FlavaConfig
+ if config_dict.get("model_type") == "flava":
+ config_dict = config_dict["image_codebook_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class FlavaConfig(PretrainedConfig):
+ r"""
+ [`FlavaConfig`] is the configuration class to store the configuration of a [`FlavaModel`]. It is used to
+ instantiate FLAVA model according to the specified arguments, defining the text model, image model, image codebook
+ and multimodal model configs. Instantiating a configuration with the defaults will yield a similar configuration to
+ that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ text_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`FlavaTextConfig`].
+ image_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`FlavaImageConfig`].
+ multimodal_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`FlavaMultimodalConfig`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ projection_dim (`int`, *optional*, defaults to 512):
+ Dimentionality of text and image projection layers.
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
+ The inital value of the *logit_scale* paramter. Default is used as per the original FLAVA/CLIP
+ implementation.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ ce_ignore_index (`int`, *optional*, defaults to -100):
+ Cross entropy index to ignore.
+ mim_weight (`float`, *optional*, defaults to 1.0):
+ Weight to be assigned to MIM (Masked Image Modeling) unimodal loss
+ mlm_weight (`float`, *optional*, defaults to 1.0):
+ Weight to be assigned to MLM (Masked Language Modeling) unimodal loss
+ global_contrastive_weight (`float`, *optional*, defaults to 1.0):
+ Weight to be assigned to global contrastive cross-alignment loss.
+ itm_weight (`float`, *optional*, defaults to 1.0):
+ Weight to be assigned to image-text matching multimodal loss.
+ mmm_image_weight (`float`, *optional*, defaults to 1.0):
+ Weight to be assigned to MMM loss's image part.
+ mmm_text_weight (`float`, *optional*, defaults to 1.0):
+ Weight to be assigned to MMM loss's text part.
+ global_backprop_contrastive (`bool`, *optional*, defaults to `True`):
+ Whether to use global backpropgation through all workers in contrastive loss.
+ skip_unmasked_multimodal_encoder (`bool`, *optional*, defaults to `True`):
+ Whether to skip running unmasked multimodal encoder whose outputs are not used by FLAVA losses.
+ return_loss (`bool`, *optional*, defaults to `True`):
+ Whether to return loss or not
+
+ kwargs (*optional*):
+ Dictionary of keyword arguments.
+
+ Example:
+
+ ```python
+ >>> from transformers import FlavaConfig, FlavaModel, FlavaForPreTraining
+
+ >>> # Initializing a FlavaConfig with style configuration
+ >>> configuration = FlavaConfig()
+
+ >>> # Initializing a FlavaModel and FlavaForPreTraining model (with random weights) from the style configuration
+ >>> model = FlavaModel(configuration)
+ >>> model_pre = FlavaForPreTraining(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ >>> configuration_pre = model_pre.config
+ ```
+ """
+
+ model_type = "flava"
+
+ def __init__(
+ self,
+ image_config: Dict[str, Any] = None,
+ text_config: Dict[str, Any] = None,
+ multimodal_config: Dict[str, Any] = None,
+ image_codebook_config: Dict[str, Any] = None,
+ hidden_size: int = 768,
+ layer_norm_eps: float = 1e-12,
+ projection_dim: int = 768,
+ init_codebook: bool = True,
+ logit_scale_init_value: float = 2.6592,
+ initializer_range: float = 0.02,
+ ce_ignore_index: int = -100,
+ mim_weight: float = 1.0,
+ mlm_weight: float = 1.0,
+ global_contrastive_weight: float = 1.0,
+ itm_weight: float = 1.0,
+ mmm_image_weight: float = 1.0,
+ mmm_text_weight: float = 1.0,
+ global_backprop_contrastive: bool = True,
+ skip_unmasked_multimodal_encoder: bool = True,
+ return_loss: bool = True,
+ **kwargs,
+ ):
+ # If `_config_dict` exist, we use them for the backward compatibility.
+ # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
+ # of confusion!).
+ text_config_dict = kwargs.pop("text_config_dict", None)
+ image_config_dict = kwargs.pop("image_config_dict", None)
+ multimodal_config_dict = kwargs.pop("multimodal_config_dict", None)
+ image_codebook_config_dict = kwargs.pop("image_codebook_config_dict", None)
+
+ super().__init__(**kwargs)
+
+ # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
+ # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
+ # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
+ if text_config_dict is not None:
+ if text_config is None:
+ text_config = {}
+
+ # This is the complete result when using `text_config_dict`.
+ _text_config_dict = FlavaTextConfig(**text_config_dict).to_dict()
+
+ # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
+ for key, value in _text_config_dict.items():
+ if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
+ # If specified in `text_config_dict`
+ if key in text_config_dict:
+ message = (
+ f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
+ f'The value `text_config_dict["{key}"]` will be used instead.'
+ )
+ # If inferred from default argument values (just to be super careful)
+ else:
+ message = (
+ f"`text_config_dict` is provided which will be used to initialize `FlavaTextConfig`. The "
+ f'value `text_config["{key}"]` will be overriden.'
+ )
+ logger.info(message)
+
+ # Update all values in `text_config` with the ones in `_text_config_dict`.
+ text_config.update(_text_config_dict)
+
+ if image_config_dict is not None:
+ if image_config is None:
+ image_config = {}
+
+ # This is the complete result when using `image_config_dict`.
+ _image_config_dict = FlavaImageConfig(**image_config_dict).to_dict()
+ # convert keys to string instead of integer
+ if "id2label" in _image_config_dict:
+ _image_config_dict["id2label"] = {
+ str(key): value for key, value in _image_config_dict["id2label"].items()
+ }
+
+ # Give a warning if the values exist in both `_image_config_dict` and `image_config` but being different.
+ for key, value in _image_config_dict.items():
+ if key in image_config and value != image_config[key] and key not in ["transformers_version"]:
+ # If specified in `image_config_dict`
+ if key in image_config_dict:
+ message = (
+ f"`{key}` is found in both `image_config_dict` and `image_config` but with different "
+ f'values. The value `image_config_dict["{key}"]` will be used instead.'
+ )
+ # If inferred from default argument values (just to be super careful)
+ else:
+ message = (
+ f"`image_config_dict` is provided which will be used to initialize `FlavaImageConfig`. "
+ f'The value `image_config["{key}"]` will be overriden.'
+ )
+ logger.info(message)
+
+ # Update all values in `image_config` with the ones in `_image_config_dict`.
+ image_config.update(_image_config_dict)
+
+ if multimodal_config_dict is not None:
+ if multimodal_config is None:
+ multimodal_config = {}
+
+ # This is the complete result when using `multimodal_config_dict`.
+ _multimodal_config_dict = FlavaMultimodalConfig(**multimodal_config_dict).to_dict()
+
+ # Give a warning if the values exist in both `_multimodal_config_dict` and `multimodal_config` but being
+ # different.
+ for key, value in _multimodal_config_dict.items():
+ if (
+ key in multimodal_config
+ and value != multimodal_config[key]
+ and key not in ["transformers_version"]
+ ):
+ # If specified in `multimodal_config_dict`
+ if key in multimodal_config_dict:
+ message = (
+ f"`{key}` is found in both `multimodal_config_dict` and `multimodal_config` but with "
+ f'different values. The value `multimodal_config_dict["{key}"]` will be used instead.'
+ )
+ # If inferred from default argument values (just to be super careful)
+ else:
+ message = (
+ f"`multimodal_config_dict` is provided which will be used to initialize "
+ f'`FlavaMultimodalConfig`. The value `multimodal_config["{key}"]` will be overriden.'
+ )
+ logger.info(message)
+
+ # Update all values in `multimodal_config` with the ones in `_multimodal_config_dict`.
+ multimodal_config.update(_multimodal_config_dict)
+
+ if image_codebook_config_dict is not None:
+ if image_codebook_config is None:
+ image_codebook_config = {}
+
+ # This is the complete result when using `image_codebook_config_dict`.
+ _image_codebook_config_dict = FlavaImageCodebookConfig(**image_codebook_config_dict).to_dict()
+
+ # Give a warning if the values exist in both `_image_codebook_config_dict` and `image_codebook_config` but
+ # being different.
+ for key, value in _image_codebook_config_dict.items():
+ if (
+ key in image_codebook_config
+ and value != image_codebook_config[key]
+ and key not in ["transformers_version"]
+ ):
+ # If specified in `image_codebook_config_dict`
+ if key in image_codebook_config_dict:
+ message = (
+ f"`{key}` is found in both `image_codebook_config_dict` and `image_codebook_config` but "
+ f'with different values. The value `image_codebook_config_dict["{key}"]` will be used '
+ "instead."
+ )
+ # If inferred from default argument values (just to be super careful)
+ else:
+ message = (
+ f"`image_codebook_config_dict` is provided which will be used to initialize "
+ f'`FlavaImageCodebookConfig`. The value `image_codebook_config["{key}"]` will be overriden.'
+ )
+ logger.info(message)
+
+ # Update all values in `image_codebook_config` with the ones in `_image_codebook_config_dict`.
+ image_codebook_config.update(_image_codebook_config_dict)
+
+ if image_config is None:
+ image_config = {}
+ logger.info("`image_config` is `None`. initializing the `FlavaImageConfig` with default values.")
+
+ if text_config is None:
+ text_config = {}
+ logger.info("`text_config` is `None`. Initializing the `FlavaTextConfig` with default values.")
+
+ if multimodal_config is None:
+ multimodal_config = {}
+ logger.info("`multimodal_config` is `None`. initializing the `FlavaMultimodalConfig` with default values.")
+
+ if image_codebook_config is None:
+ image_codebook_config = {}
+ logger.info(
+ "`image_codebook_config` is `None`. initializing the `FlavaImageCodebookConfig` with default values."
+ )
+
+ self.image_config = FlavaImageConfig(**image_config)
+ self.text_config = FlavaTextConfig(**text_config)
+ self.multimodal_config = FlavaMultimodalConfig(**multimodal_config)
+ self.image_codebook_config = FlavaImageCodebookConfig(**image_codebook_config)
+ self.projection_dim = projection_dim
+ self.init_codebook = init_codebook
+
+ self.hidden_size = hidden_size
+ self.layer_norm_eps = layer_norm_eps
+ self.initializer_range = initializer_range
+ self.logit_scale_init_value = logit_scale_init_value
+ self.initializer_factor = 1.0
+ self.ce_ignore_index = ce_ignore_index
+ self.mim_weight = mim_weight
+ self.mlm_weight = mlm_weight
+ self.global_contrastive_weight = global_contrastive_weight
+ self.itm_weight = itm_weight
+ self.mmm_image_weight = mmm_image_weight
+ self.mmm_text_weight = mmm_text_weight
+ self.global_backprop_contrastive = global_backprop_contrastive
+ self.skip_unmasked_multimodal_encoder = skip_unmasked_multimodal_encoder
+ self.return_loss = return_loss
+
+ @classmethod
+ def from_configs(
+ cls,
+ image_config: FlavaImageConfig,
+ text_config: FlavaTextConfig,
+ multimodal_config: FlavaMultimodalConfig,
+ image_codebook_config: FlavaImageCodebookConfig,
+ **kwargs,
+ ):
+ r"""
+ Instantiate a [`FlavaConfig`] (or a derived class) from flava text model configuration, flava image model
+ configuration, flava multimodal model and flava codebook model configuration.
+
+ Returns:
+ [`FlavaConfig`]: An instance of a configuration object
+ """
+
+ return cls(
+ image_config=image_config.to_dict(),
+ text_config=text_config.to_dict(),
+ multimodal_config=multimodal_config.to_dict(),
+ image_codebook_config=image_codebook_config.to_dict(),
+ **kwargs,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/convert_dalle_to_flava_codebook.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/convert_dalle_to_flava_codebook.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b544125114c85fcf01a881f460ae70472148c85
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/convert_dalle_to_flava_codebook.py
@@ -0,0 +1,102 @@
+# coding=utf-8
+# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import os
+
+import torch
+
+from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
+
+
+def rreplace(s, old, new, occurrence):
+ li = s.rsplit(old, occurrence)
+ return new.join(li)
+
+
+def count_parameters(state_dict):
+ # encoder.embeddings are double copied in original FLAVA
+ return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items())
+
+
+def upgrade_state_dict(state_dict):
+ upgrade = {}
+
+ group_keys = ["group_1", "group_2", "group_3", "group_4"]
+ for key, value in state_dict.items():
+ for group_key in group_keys:
+ if group_key in key:
+ key = key.replace(f"{group_key}.", f"{group_key}.group.")
+
+ if "res_path" in key:
+ key = key.replace("res_path.", "res_path.path.")
+
+ if key.endswith(".w"):
+ key = rreplace(key, ".w", ".weight", 1)
+ if key.endswith(".b"):
+ key = rreplace(key, ".b", ".bias", 1)
+
+ upgrade[key] = value.float()
+
+ return upgrade
+
+
+@torch.no_grad()
+def convert_dalle_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None, save_checkpoint=True):
+ """
+ Copy/paste/tweak model's weights to transformers design.
+ """
+ from dall_e import Encoder
+
+ encoder = Encoder()
+ if os.path.exists(checkpoint_path):
+ ckpt = torch.load(checkpoint_path)
+ else:
+ ckpt = torch.hub.load_state_dict_from_url(checkpoint_path)
+
+ if isinstance(ckpt, Encoder):
+ ckpt = ckpt.state_dict()
+ encoder.load_state_dict(ckpt)
+
+ if config_path is not None:
+ config = FlavaImageCodebookConfig.from_pretrained(config_path)
+ else:
+ config = FlavaImageCodebookConfig()
+
+ hf_model = FlavaImageCodebook(config).eval()
+ state_dict = encoder.state_dict()
+
+ hf_state_dict = upgrade_state_dict(state_dict)
+ hf_model.load_state_dict(hf_state_dict)
+ hf_state_dict = hf_model.state_dict()
+ hf_count = count_parameters(hf_state_dict)
+ state_dict_count = count_parameters(state_dict)
+
+ assert torch.allclose(hf_count, state_dict_count, atol=1e-3)
+
+ if save_checkpoint:
+ hf_model.save_pretrained(pytorch_dump_folder_path)
+ else:
+ return hf_state_dict
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
+ parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
+ parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
+ args = parser.parse_args()
+
+ convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/convert_flava_original_pytorch_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/convert_flava_original_pytorch_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..95ebb2bfdb236060037fc91c355dc4f7fe2f62d7
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/convert_flava_original_pytorch_to_hf.py
@@ -0,0 +1,99 @@
+# coding=utf-8
+# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import os
+
+import torch
+
+from transformers import FlavaConfig, FlavaForPreTraining
+from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
+
+
+def count_parameters(state_dict):
+ # encoder.embeddings are double copied in original FLAVA
+ return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items())
+
+
+def upgrade_state_dict(state_dict, codebook_state_dict):
+ upgrade = {}
+
+ for key, value in state_dict.items():
+ if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
+ continue
+
+ key = key.replace("heads.cmd.mim_head.cls.predictions", "mmm_image_head")
+ key = key.replace("heads.cmd.mlm_head.cls.predictions", "mmm_text_head")
+ key = key.replace("heads.cmd.itm_head.cls", "itm_head")
+ key = key.replace("heads.cmd.itm_head.pooler", "itm_head.pooler")
+ key = key.replace("heads.cmd.clip_head.logit_scale", "flava.logit_scale")
+ key = key.replace("heads.fairseq_mlm.cls.predictions", "mlm_head")
+ key = key.replace("heads.imagenet.mim_head.cls.predictions", "mim_head")
+ key = key.replace("mm_text_projection", "flava.text_to_mm_projection")
+ key = key.replace("mm_image_projection", "flava.image_to_mm_projection")
+ key = key.replace("image_encoder.module", "flava.image_model")
+ key = key.replace("text_encoder.module", "flava.text_model")
+ key = key.replace("mm_encoder.module.encoder.cls_token", "flava.multimodal_model.cls_token")
+ key = key.replace("mm_encoder.module", "flava.multimodal_model")
+ key = key.replace("text_projection", "flava.text_projection")
+ key = key.replace("image_projection", "flava.image_projection")
+
+ upgrade[key] = value.float()
+
+ for key, value in codebook_state_dict.items():
+ upgrade[f"image_codebook.{key}"] = value
+
+ return upgrade
+
+
+@torch.no_grad()
+def convert_flava_checkpoint(checkpoint_path, codebook_path, pytorch_dump_folder_path, config_path=None):
+ """
+ Copy/paste/tweak model's weights to transformers design.
+ """
+ if config_path is not None:
+ config = FlavaConfig.from_pretrained(config_path)
+ else:
+ config = FlavaConfig()
+
+ hf_model = FlavaForPreTraining(config).eval()
+
+ codebook_state_dict = convert_dalle_checkpoint(codebook_path, None, save_checkpoint=False)
+
+ if os.path.exists(checkpoint_path):
+ state_dict = torch.load(checkpoint_path, map_location="cpu")
+ else:
+ state_dict = torch.hub.load_state_dict_from_url(checkpoint_path, map_location="cpu")
+
+ hf_state_dict = upgrade_state_dict(state_dict, codebook_state_dict)
+ hf_model.load_state_dict(hf_state_dict)
+ hf_state_dict = hf_model.state_dict()
+ hf_count = count_parameters(hf_state_dict)
+ state_dict_count = count_parameters(state_dict) + count_parameters(codebook_state_dict)
+
+ assert torch.allclose(hf_count, state_dict_count, atol=1e-3)
+
+ hf_model.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
+ parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
+ parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint")
+ parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
+ args = parser.parse_args()
+
+ convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/feature_extraction_flava.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/feature_extraction_flava.py
new file mode 100644
index 0000000000000000000000000000000000000000..c707b575cef2eff9d3dff7e122cc6a875f3e3931
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/feature_extraction_flava.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Feature extractor class for FLAVA."""
+
+import warnings
+
+from ...utils import logging
+from .image_processing_flava import FlavaImageProcessor
+
+
+logger = logging.get_logger(__name__)
+
+
+class FlavaFeatureExtractor(FlavaImageProcessor):
+ def __init__(self, *args, **kwargs) -> None:
+ warnings.warn(
+ "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
+ " use FlavaImageProcessor instead.",
+ FutureWarning,
+ )
+ super().__init__(*args, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/image_processing_flava.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/image_processing_flava.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6a7c8080bb6b4aa9e89f693dd96d3483b6e0e44
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/image_processing_flava.py
@@ -0,0 +1,738 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for Flava."""
+
+import math
+import random
+from functools import lru_cache
+from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import resize, to_channel_dimension_format
+from ...image_utils import (
+ OPENAI_CLIP_MEAN,
+ OPENAI_CLIP_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import TensorType, is_vision_available, logging
+
+
+if is_vision_available():
+ import PIL
+
+
+logger = logging.get_logger(__name__)
+
+
+# These values are taken from CLIP
+FLAVA_IMAGE_MEAN = OPENAI_CLIP_MEAN
+FLAVA_IMAGE_STD = OPENAI_CLIP_STD
+FLAVA_CODEBOOK_MEAN = [0.0, 0.0, 0.0]
+FLAVA_CODEBOOK_STD = [1.0, 1.0, 1.0]
+LOGIT_LAPLACE_EPS: float = 0.1
+
+
+# Inspired from https://github.com/microsoft/unilm/blob/master/beit/masking_generator.py
+class FlavaMaskingGenerator:
+ def __init__(
+ self,
+ input_size: Union[int, Tuple[int, int]] = 14,
+ total_mask_patches: int = 75,
+ mask_group_max_patches: Optional[int] = None,
+ mask_group_min_patches: int = 16,
+ mask_group_min_aspect_ratio: Optional[float] = 0.3,
+ mask_group_max_aspect_ratio: float = None,
+ ):
+ if not isinstance(input_size, tuple):
+ input_size = (input_size,) * 2
+ self.height, self.width = input_size
+
+ self.num_patches = self.height * self.width
+ self.total_mask_patches = total_mask_patches
+
+ self.mask_group_min_patches = mask_group_min_patches
+ self.mask_group_max_patches = total_mask_patches if mask_group_max_patches is None else mask_group_max_patches
+
+ mask_group_max_aspect_ratio = mask_group_max_aspect_ratio or 1 / mask_group_min_aspect_ratio
+ self.log_aspect_ratio = (math.log(mask_group_min_aspect_ratio), math.log(mask_group_max_aspect_ratio))
+
+ def __repr__(self):
+ repr_str = "MaskingGenerator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
+ self.height,
+ self.width,
+ self.mask_group_min_patches,
+ self.mask_group_max_patches,
+ self.total_mask_patches,
+ self.log_aspect_ratio[0],
+ self.log_aspect_ratio[1],
+ )
+ return repr_str
+
+ def get_shape(self):
+ return self.height, self.width
+
+ def _mask(self, mask, max_mask_patches):
+ delta = 0
+ for _attempt in range(10):
+ target_area = random.uniform(self.mask_group_min_patches, max_mask_patches)
+ aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
+ height = int(round(math.sqrt(target_area * aspect_ratio)))
+ width = int(round(math.sqrt(target_area / aspect_ratio)))
+ if width < self.width and height < self.height:
+ top = random.randint(0, self.height - height)
+ left = random.randint(0, self.width - width)
+
+ num_masked = mask[top : top + height, left : left + width].sum()
+ # Overlap
+ if 0 < height * width - num_masked <= max_mask_patches:
+ for i in range(top, top + height):
+ for j in range(left, left + width):
+ if mask[i, j] == 0:
+ mask[i, j] = 1
+ delta += 1
+
+ if delta > 0:
+ break
+ return delta
+
+ def __call__(self):
+ mask = np.zeros(shape=self.get_shape(), dtype=int)
+ mask_count = 0
+ while mask_count < self.total_mask_patches:
+ max_mask_patches = self.total_mask_patches - mask_count
+ max_mask_patches = min(max_mask_patches, self.mask_group_max_patches)
+
+ delta = self._mask(mask, max_mask_patches)
+ if delta == 0:
+ break
+ else:
+ mask_count += delta
+
+ return mask
+
+
+class FlavaImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a Flava image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
+ `do_resize` parameter in `preprocess`.
+ size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
+ Size of the image after resizing. Can be overridden by the `size` parameter in `preprocess`.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
+ Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in
+ `preprocess`.
+ do_center_crop (`bool`, *optional*, defaults to `True`):
+ Whether to center crop the images. Can be overridden by the `do_center_crop` parameter in `preprocess`.
+ crop_size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
+ Size of image after the center crop `(crop_size["height"], crop_size["width"])`. Can be overridden by the
+ `crop_size` parameter in `preprocess`.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
+ parameter in `preprocess`.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in
+ `preprocess`.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in `preprocess`.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ return_image_mask (`bool`, *optional*, defaults to `False`):
+ Whether to return the image mask. Can be overridden by the `return_image_mask` parameter in `preprocess`.
+ input_size_patches (`int`, *optional*, defaults to 14):
+ Number of patches in the image in height and width direction. 14x14 = 196 total patches. Can be overridden
+ by the `input_size_patches` parameter in `preprocess`.
+ total_mask_patches (`int`, *optional*, defaults to 75):
+ Total number of patches that should be masked. Can be overridden by the `total_mask_patches` parameter in
+ `preprocess`.
+ mask_group_min_patches (`int`, *optional*, defaults to 16):
+ Minimum number of patches that should be masked. Can be overridden by the `mask_group_min_patches`
+ parameter in `preprocess`.
+ mask_group_max_patches (`int`, *optional*):
+ Maximum number of patches that should be masked. Can be overridden by the `mask_group_max_patches`
+ parameter in `preprocess`.
+ mask_group_min_aspect_ratio (`float`, *optional*, defaults to 0.3):
+ Minimum aspect ratio of the mask window. Can be overridden by the `mask_group_min_aspect_ratio` parameter
+ in `preprocess`.
+ mask_group_max_aspect_ratio (`float`, *optional*):
+ Maximum aspect ratio of the mask window. Can be overridden by the `mask_group_max_aspect_ratio` parameter
+ in `preprocess`.
+ codebook_do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the input for codebook to a certain. Can be overridden by the `codebook_do_resize`
+ parameter in `preprocess`. `codebook_size`.
+ codebook_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
+ Resize the input for codebook to the given size. Can be overridden by the `codebook_size` parameter in
+ `preprocess`.
+ codebook_resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`):
+ Resampling filter to use if resizing the codebook image. Can be overridden by the `codebook_resample`
+ parameter in `preprocess`.
+ codebook_do_center_crop (`bool`, *optional*, defaults to `True`):
+ Whether to crop the input for codebook at the center. If the input size is smaller than
+ `codebook_crop_size` along any edge, the image is padded with 0's and then center cropped. Can be
+ overridden by the `codebook_do_center_crop` parameter in `preprocess`.
+ codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
+ Desired output size for codebook input when applying center-cropping. Can be overridden by the
+ `codebook_crop_size` parameter in `preprocess`.
+ codebook_do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the input for codebook by the specified scale `codebook_rescale_factor`. Can be
+ overridden by the `codebook_do_rescale` parameter in `preprocess`.
+ codebook_rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Defines the scale factor to use if rescaling the codebook image. Can be overridden by the
+ `codebook_rescale_factor` parameter in `preprocess`.
+ codebook_do_map_pixels (`bool`, *optional*, defaults to `True`):
+ Whether to map the pixel values of the codebook input to (1 - 2e)x + e. Can be overridden by the
+ `codebook_do_map_pixels` parameter in `preprocess`.
+ codebook_do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether or not to normalize the input for codebook with `codebook_image_mean` and `codebook_image_std`. Can
+ be overridden by the `codebook_do_normalize` parameter in `preprocess`.
+ codebook_image_mean (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0, 0, 0]`):
+ The sequence of means for each channel, to be used when normalizing images for codebook. Can be overridden
+ by the `codebook_image_mean` parameter in `preprocess`.
+ codebook_image_std (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
+ The sequence of standard deviations for each channel, to be used when normalizing images for codebook. Can
+ be overridden by the `codebook_image_std` parameter in `preprocess`.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ do_center_crop: bool = True,
+ crop_size: Dict[str, int] = None,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, Iterable[float]]] = None,
+ image_std: Optional[Union[float, Iterable[float]]] = None,
+ # Mask related params
+ return_image_mask: bool = False,
+ input_size_patches: int = 14,
+ total_mask_patches: int = 75,
+ mask_group_min_patches: int = 16,
+ mask_group_max_patches: Optional[int] = None,
+ mask_group_min_aspect_ratio: float = 0.3,
+ mask_group_max_aspect_ratio: Optional[float] = None,
+ # Codebook related params
+ return_codebook_pixels: bool = False,
+ codebook_do_resize: bool = True,
+ codebook_size: bool = None,
+ codebook_resample: int = PILImageResampling.LANCZOS,
+ codebook_do_center_crop: bool = True,
+ codebook_crop_size: int = None,
+ codebook_do_rescale: bool = True,
+ codebook_rescale_factor: Union[int, float] = 1 / 255,
+ codebook_do_map_pixels: bool = True,
+ codebook_do_normalize: bool = True,
+ codebook_image_mean: Optional[Union[float, Iterable[float]]] = None,
+ codebook_image_std: Optional[Union[float, Iterable[float]]] = None,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ size = size if size is not None else {"height": 224, "width": 224}
+ size = get_size_dict(size)
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
+
+ codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
+ codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
+ codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
+ codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
+
+ self.do_resize = do_resize
+ self.size = size
+ self.resample = resample
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_center_crop = do_center_crop
+ self.crop_size = crop_size
+ self.do_normalize = do_normalize
+ self.image_mean = image_mean if image_mean is not None else FLAVA_IMAGE_MEAN
+ self.image_std = image_std if image_std is not None else FLAVA_IMAGE_STD
+
+ self.return_image_mask = return_image_mask
+ self.input_size_patches = input_size_patches
+ self.total_mask_patches = total_mask_patches
+ self.mask_group_min_patches = mask_group_min_patches
+ self.mask_group_max_patches = mask_group_max_patches
+ self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
+ self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
+
+ self.return_codebook_pixels = return_codebook_pixels
+ self.codebook_do_resize = codebook_do_resize
+ self.codebook_size = codebook_size
+ self.codebook_resample = codebook_resample
+ self.codebook_do_center_crop = codebook_do_center_crop
+ self.codebook_crop_size = codebook_crop_size
+ self.codebook_do_rescale = codebook_do_rescale
+ self.codebook_rescale_factor = codebook_rescale_factor
+ self.codebook_do_map_pixels = codebook_do_map_pixels
+ self.codebook_do_normalize = codebook_do_normalize
+ self.codebook_image_mean = codebook_image_mean
+ self.codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else FLAVA_CODEBOOK_MEAN
+ self.codebook_image_std = codebook_image_std if codebook_image_std is not None else FLAVA_CODEBOOK_STD
+ self._valid_processor_keys = [
+ "images",
+ "do_resize",
+ "size",
+ "resample",
+ "do_center_crop",
+ "crop_size",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "return_image_mask",
+ "input_size_patches",
+ "total_mask_patches",
+ "mask_group_min_patches",
+ "mask_group_max_patches",
+ "mask_group_min_aspect_ratio",
+ "mask_group_max_aspect_ratio",
+ "return_codebook_pixels",
+ "codebook_do_resize",
+ "codebook_size",
+ "codebook_resample",
+ "codebook_do_center_crop",
+ "codebook_crop_size",
+ "codebook_do_rescale",
+ "codebook_rescale_factor",
+ "codebook_do_map_pixels",
+ "codebook_do_normalize",
+ "codebook_image_mean",
+ "codebook_image_std",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ @classmethod
+ def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
+ """
+ Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
+ created using from_dict and kwargs e.g. `FlavaImageProcessor.from_pretrained(checkpoint, codebook_size=600)`
+ """
+ image_processor_dict = image_processor_dict.copy()
+ if "codebook_size" in kwargs:
+ image_processor_dict["codebook_size"] = kwargs.pop("codebook_size")
+ if "codebook_crop_size" in kwargs:
+ image_processor_dict["codebook_crop_size"] = kwargs.pop("codebook_crop_size")
+ return super().from_dict(image_processor_dict, **kwargs)
+
+ @lru_cache()
+ def masking_generator(
+ self,
+ input_size_patches,
+ total_mask_patches,
+ mask_group_min_patches,
+ mask_group_max_patches,
+ mask_group_min_aspect_ratio,
+ mask_group_max_aspect_ratio,
+ ) -> FlavaMaskingGenerator:
+ return FlavaMaskingGenerator(
+ input_size=input_size_patches,
+ total_mask_patches=total_mask_patches,
+ mask_group_min_patches=mask_group_min_patches,
+ mask_group_max_patches=mask_group_max_patches,
+ mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
+ mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
+ )
+
+ # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize an image to `(size["height"], size["width"])`.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
+ `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
+ data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
+ image is used. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+
+ Returns:
+ `np.ndarray`: The resized image.
+ """
+ size = get_size_dict(size)
+ if "height" not in size or "width" not in size:
+ raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
+ output_size = (size["height"], size["width"])
+ return resize(
+ image,
+ size=output_size,
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def map_pixels(self, image: np.ndarray) -> np.ndarray:
+ return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS
+
+ def _preprocess_image(
+ self,
+ image: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_center_crop: bool = None,
+ crop_size: Dict[str, int] = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_map_pixels: bool = None,
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[ChannelDimension] = None,
+ ) -> np.ndarray:
+ """Preprocesses a single image."""
+
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_center_crop=do_center_crop,
+ crop_size=crop_size,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ # All transformations expect numpy arrays.
+ image = to_numpy_array(image)
+
+ if is_scaled_image(image) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(image)
+
+ if do_resize:
+ image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
+
+ if do_center_crop:
+ image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
+
+ if do_rescale:
+ image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+
+ if do_normalize:
+ image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+
+ if do_map_pixels:
+ image = self.map_pixels(image)
+
+ if data_format is not None:
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
+ return image
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ do_resize: Optional[bool] = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_center_crop: Optional[bool] = None,
+ crop_size: Optional[Dict[str, int]] = None,
+ do_rescale: Optional[bool] = None,
+ rescale_factor: Optional[float] = None,
+ do_normalize: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ # Mask related params
+ return_image_mask: Optional[bool] = None,
+ input_size_patches: Optional[int] = None,
+ total_mask_patches: Optional[int] = None,
+ mask_group_min_patches: Optional[int] = None,
+ mask_group_max_patches: Optional[int] = None,
+ mask_group_min_aspect_ratio: Optional[float] = None,
+ mask_group_max_aspect_ratio: Optional[float] = None,
+ # Codebook related params
+ return_codebook_pixels: Optional[bool] = None,
+ codebook_do_resize: Optional[bool] = None,
+ codebook_size: Optional[Dict[str, int]] = None,
+ codebook_resample: Optional[int] = None,
+ codebook_do_center_crop: Optional[bool] = None,
+ codebook_crop_size: Optional[Dict[str, int]] = None,
+ codebook_do_rescale: Optional[bool] = None,
+ codebook_rescale_factor: Optional[float] = None,
+ codebook_do_map_pixels: Optional[bool] = None,
+ codebook_do_normalize: Optional[bool] = None,
+ codebook_image_mean: Optional[Iterable[float]] = None,
+ codebook_image_std: Optional[Iterable[float]] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: ChannelDimension = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> PIL.Image.Image:
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Size of the image.
+ resample (`int`, *optional*, defaults to `self.resample`):
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
+ has an effect if `do_resize` is set to `True`.
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
+ Whether to center crop the image.
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
+ Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image values between [0 - 1].
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation.
+ return_image_mask (`bool`, *optional*, defaults to `self.return_image_mask`):
+ Whether to return the image mask.
+ input_size_patches (`int`, *optional*, defaults to `self.input_size_patches`):
+ Size of the patches to extract from the image.
+ total_mask_patches (`int`, *optional*, defaults to `self.total_mask_patches`):
+ Total number of patches to extract from the image.
+ mask_group_min_patches (`int`, *optional*, defaults to `self.mask_group_min_patches`):
+ Minimum number of patches to extract from the image.
+ mask_group_max_patches (`int`, *optional*, defaults to `self.mask_group_max_patches`):
+ Maximum number of patches to extract from the image.
+ mask_group_min_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_min_aspect_ratio`):
+ Minimum aspect ratio of the patches to extract from the image.
+ mask_group_max_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_max_aspect_ratio`):
+ Maximum aspect ratio of the patches to extract from the image.
+ return_codebook_pixels (`bool`, *optional*, defaults to `self.return_codebook_pixels`):
+ Whether to return the codebook pixels.
+ codebook_do_resize (`bool`, *optional*, defaults to `self.codebook_do_resize`):
+ Whether to resize the codebook pixels.
+ codebook_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_size`):
+ Size of the codebook pixels.
+ codebook_resample (`int`, *optional*, defaults to `self.codebook_resample`):
+ Resampling filter to use if resizing the codebook pixels. This can be one of the enum
+ `PILImageResampling`, Only has an effect if `codebook_do_resize` is set to `True`.
+ codebook_do_center_crop (`bool`, *optional*, defaults to `self.codebook_do_center_crop`):
+ Whether to center crop the codebook pixels.
+ codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_crop_size`):
+ Size of the center crop of the codebook pixels. Only has an effect if `codebook_do_center_crop` is set
+ to `True`.
+ codebook_do_rescale (`bool`, *optional*, defaults to `self.codebook_do_rescale`):
+ Whether to rescale the codebook pixels values between [0 - 1].
+ codebook_rescale_factor (`float`, *optional*, defaults to `self.codebook_rescale_factor`):
+ Rescale factor to rescale the codebook pixels by if `codebook_do_rescale` is set to `True`.
+ codebook_do_map_pixels (`bool`, *optional*, defaults to `self.codebook_do_map_pixels`):
+ Whether to map the codebook pixels values.
+ codebook_do_normalize (`bool`, *optional*, defaults to `self.codebook_do_normalize`):
+ Whether to normalize the codebook pixels.
+ codebook_image_mean (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_mean`):
+ Codebook pixels mean to normalize the codebook pixels by if `codebook_do_normalize` is set to `True`.
+ codebook_image_std (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_std`):
+ Codebook pixels standard deviation to normalize the codebook pixels by if `codebook_do_normalize` is
+ set to `True`.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ size = size if size is not None else self.size
+ size = get_size_dict(size)
+ resample = resample if resample is not None else self.resample
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
+ crop_size = crop_size if crop_size is not None else self.crop_size
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+
+ return_image_mask = return_image_mask if return_image_mask is not None else self.return_image_mask
+ input_size_patches = input_size_patches if input_size_patches is not None else self.input_size_patches
+ total_mask_patches = total_mask_patches if total_mask_patches is not None else self.total_mask_patches
+ mask_group_min_patches = (
+ mask_group_min_patches if mask_group_min_patches is not None else self.mask_group_min_patches
+ )
+ mask_group_max_patches = (
+ mask_group_max_patches if mask_group_max_patches is not None else self.mask_group_max_patches
+ )
+ mask_group_min_aspect_ratio = (
+ mask_group_min_aspect_ratio
+ if mask_group_min_aspect_ratio is not None
+ else self.mask_group_min_aspect_ratio
+ )
+ mask_group_max_aspect_ratio = (
+ mask_group_max_aspect_ratio
+ if mask_group_max_aspect_ratio is not None
+ else self.mask_group_max_aspect_ratio
+ )
+
+ return_codebook_pixels = (
+ return_codebook_pixels if return_codebook_pixels is not None else self.return_codebook_pixels
+ )
+ codebook_do_resize = codebook_do_resize if codebook_do_resize is not None else self.codebook_do_resize
+ codebook_size = codebook_size if codebook_size is not None else self.codebook_size
+ codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
+ codebook_resample = codebook_resample if codebook_resample is not None else self.codebook_resample
+ codebook_do_rescale = codebook_do_rescale if codebook_do_rescale is not None else self.codebook_do_rescale
+ codebook_rescale_factor = (
+ codebook_rescale_factor if codebook_rescale_factor is not None else self.codebook_rescale_factor
+ )
+ codebook_do_center_crop = (
+ codebook_do_center_crop if codebook_do_center_crop is not None else self.codebook_do_center_crop
+ )
+ codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else self.codebook_crop_size
+ codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
+ codebook_do_map_pixels = (
+ codebook_do_map_pixels if codebook_do_map_pixels is not None else self.codebook_do_map_pixels
+ )
+ codebook_do_normalize = (
+ codebook_do_normalize if codebook_do_normalize is not None else self.codebook_do_normalize
+ )
+ codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else self.codebook_image_mean
+ codebook_image_std = codebook_image_std if codebook_image_std is not None else self.codebook_image_std
+
+ images = make_list_of_images(images)
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ processed_images = [
+ self._preprocess_image(
+ image=img,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ do_center_crop=do_center_crop,
+ crop_size=crop_size,
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_map_pixels=False,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ for img in images
+ ]
+ data = {"pixel_values": processed_images}
+
+ if return_codebook_pixels:
+ codebook_images = [
+ self._preprocess_image(
+ image=img,
+ do_resize=codebook_do_resize,
+ size=codebook_size,
+ resample=codebook_resample,
+ do_center_crop=codebook_do_center_crop,
+ crop_size=codebook_crop_size,
+ do_rescale=codebook_do_rescale,
+ rescale_factor=codebook_rescale_factor,
+ do_normalize=codebook_do_normalize,
+ image_mean=codebook_image_mean,
+ image_std=codebook_image_std,
+ do_map_pixels=codebook_do_map_pixels,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ for img in images
+ ]
+ data["codebook_pixel_values"] = codebook_images
+
+ if return_image_mask:
+ mask_generator = self.masking_generator(
+ input_size_patches=input_size_patches,
+ total_mask_patches=total_mask_patches,
+ mask_group_min_patches=mask_group_min_patches,
+ mask_group_max_patches=mask_group_max_patches,
+ mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
+ mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
+ )
+ masks = [mask_generator() for _ in images]
+ data["bool_masked_pos"] = masks
+
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/modeling_flava.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/modeling_flava.py
new file mode 100644
index 0000000000000000000000000000000000000000..19f19d4c9d5666b31a888c3c5cdaf742f530801f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/modeling_flava.py
@@ -0,0 +1,2098 @@
+# coding=utf-8
+# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch FLAVA model."""
+
+import collections
+import math
+from collections import OrderedDict
+from dataclasses import dataclass
+from typing import Any, Dict, List, Optional, Set, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
+from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_flava import (
+ FlavaConfig,
+ FlavaImageCodebookConfig,
+ FlavaImageConfig,
+ FlavaMultimodalConfig,
+ FlavaTextConfig,
+)
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "facebook/flava-full"
+
+# Codebook docstring
+_CHECKPOINT_FOR_CODEBOOK_DOC = "facebook/flava-image-codebook"
+_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC = "FlavaImageConfig"
+_CONFIG_CLASS_FOR_TEXT_MODEL_DOC = "FlavaTextConfig"
+_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC = "FlavaMultimodalConfig"
+_EXPECTED_IMAGE_OUTPUT_SHAPE = [1, 197, 768]
+
+from ..deprecated._archive_maps import FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST = ["facebook/flava-image-codebook"]
+LOGIT_SCALE_CLAMP_MIN = 0
+LOGIT_SCALE_CLAMP_MAX = 4.6052
+
+FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalConfig]
+
+
+@dataclass
+class FlavaModelOutput(ModelOutput):
+ """
+ Output from FlavaModel containing embeddings and outputs from individual encoders.
+
+ Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
+ transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
+ `text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
+
+ Args:
+ image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
+ The image embeddings which are basically the pooled output of [`FlavaImageModel`].
+ image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
+ The output of the [`FlavaImageModel`].
+ text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
+ The text embeddings which are basically the pooled output of [`FlavaTextModel`].
+ text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
+ The output of the [`FlavaTextModel`].
+ multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
+ The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
+ multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
+ The output of the [`FlavaMultimodalModel`].
+ """
+
+ image_embeddings: Optional[torch.FloatTensor] = None
+ image_output: Optional[BaseModelOutputWithPooling] = None
+ text_embeddings: Optional[torch.FloatTensor] = None
+ text_output: Optional[BaseModelOutputWithPooling] = None
+ multimodal_embeddings: Optional[torch.FloatTensor] = None
+ multimodal_output: Optional[BaseModelOutputWithPooling] = None
+
+ def to_tuple(self) -> Tuple[Any]:
+ return tuple(
+ self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple()
+ for k in self.keys()
+ )
+
+
+@dataclass
+class FlavaLosses(ModelOutput):
+ """Class representing pretraining losses from FLAVA model
+
+ Args:
+ mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.:
+ Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
+ mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.:
+ Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
+ itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.:
+ Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
+ masked pairs in FLAVA.
+ global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.:
+ Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
+ data. This is calculated on unmasked images and texts.
+ mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.:
+ Masked Multimodal Modeling loss's image component calculated on paired image-text data.
+ mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.:
+ Masked Multimodal Modeling loss's text component calculated on paired image-text data.
+ """
+
+ mim: Optional[torch.FloatTensor] = None
+ mlm: Optional[torch.FloatTensor] = None
+ itm: Optional[torch.FloatTensor] = None
+ global_contrastive: Optional[torch.FloatTensor] = None
+ mmm_image: Optional[torch.FloatTensor] = None
+ mmm_text: Optional[torch.FloatTensor] = None
+
+ def all_none(self) -> bool:
+ all_none = True
+ for v in self.values():
+ if v is not None:
+ all_none = False
+ break
+ return all_none
+
+
+@dataclass
+class FlavaForPreTrainingOutput(ModelOutput):
+ """
+ Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.
+
+ Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
+ transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
+ `text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
+
+ Args:
+ loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
+ Total loss calculated for this model.
+ loss_info (`FlavaLosses`):
+ Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on
+ the keys.
+ image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
+ The image embeddings which are basically the pooled output of [`FlavaImageModel`].
+ image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
+ The output of the [`FlavaImageModel`].
+ text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
+ The text embeddings which are basically the pooled output of [`FlavaTextModel`].
+ text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
+ The output of the [`FlavaTextModel`].
+ multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
+ The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
+ multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
+ The output of the [`FlavaMultimodalModel`].
+
+ image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
+ The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
+ to create masked images.
+ image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
+ The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images.
+ text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present):
+ The text embeddings which are basically the pooled output of [`FlavaTextModel`].
+ text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present):
+ The output of the [`FlavaTextModel`].
+ multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present):
+ The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
+ multimodal_masked_output (`BaseModelOutputWithPooling`, returned when `input_ids_masked` and `pixel_values` are present):
+ The output of the [`FlavaMultimodalModel`].
+
+ mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
+ The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
+ returned when `bool_masked_pos` has some of the patches masked.
+ mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not):
+ The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of
+ the tokens masked.
+ itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
+ The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
+ mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
+ The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
+ output is returned when `bool_masked_pos` has some of the patches masked.
+ mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
+ The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
+ some of the tokens masked.
+ contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
+ The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
+ `image_projection` and `text_projection` layers respectively. This represents the image-text similarity
+ scores. This is calculated on unmasked images and texts.
+ contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
+ The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
+ `text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
+ texts.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ loss_info: FlavaLosses = None
+ image_embeddings: Optional[torch.FloatTensor] = None
+ image_output: Optional[BaseModelOutputWithPooling] = None
+ text_embeddings: Optional[torch.FloatTensor] = None
+ text_output: Optional[BaseModelOutputWithPooling] = None
+ multimodal_embeddings: Optional[torch.FloatTensor] = None
+ multimodal_output: Optional[BaseModelOutputWithPooling] = None
+ image_masked_embeddings: Optional[torch.FloatTensor] = None
+ image_masked_output: Optional[BaseModelOutputWithPooling] = None
+ text_masked_embeddings: Optional[torch.FloatTensor] = None
+ text_masked_output: Optional[BaseModelOutputWithPooling] = None
+ multimodal_masked_embeddings: Optional[torch.FloatTensor] = None
+ multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None
+ mim_logits: Optional[torch.FloatTensor] = None
+ mlm_logits: Optional[torch.FloatTensor] = None
+ itm_logits: Optional[torch.FloatTensor] = None
+ contrastive_logits_per_image: Optional[torch.FloatTensor] = None
+ contrastive_logits_per_text: Optional[torch.FloatTensor] = None
+ mmm_image_logits: Optional[torch.FloatTensor] = None
+ mmm_text_logits: Optional[torch.FloatTensor] = None
+
+ def to_tuple(self) -> Tuple[Any]:
+ transformer_outputs = [
+ "text_output",
+ "image_output",
+ "multimodal_output",
+ "text_masked_output",
+ "image_masked_output",
+ "multimodal_masked_output",
+ ]
+ return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys())
+
+
+# Based on timm implementation, which can be found here:
+# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
+class FlavaImageEmbeddings(nn.Module):
+ """
+ Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
+ """
+
+ def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None:
+ super().__init__()
+
+ use_mask_token = use_mask_token or config.mask_token
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
+ self.patch_embeddings = PatchEmbeddings(
+ image_size=config.image_size,
+ patch_size=config.patch_size,
+ num_channels=config.num_channels,
+ embed_dim=config.hidden_size,
+ )
+ num_patches = self.patch_embeddings.num_patches
+ self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
+ """
+ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
+ resolution images.
+
+ Source:
+ https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/image_transformer.py#L174
+ """
+
+ npatch = embeddings.shape[1] - 1
+ num_pos = self.position_embeddings.shape[1] - 1
+ if npatch == num_pos and height == width:
+ return self.position_embeddings
+ class_pos_embed = self.position_embeddings[:, 0]
+ patch_pos_embed = self.position_embeddings[:, 1:]
+ dim = embeddings.shape[-1]
+ num_h_patches = height // self.config.patch_size
+ num_w_patches = width // self.config.patch_size
+ # we add a small number to avoid floating point error in the interpolation
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
+ num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1
+ patch_pos_embed = nn.functional.interpolate(
+ patch_pos_embed.reshape(1, int(math.sqrt(num_pos)), int(math.sqrt(num_pos)), dim).permute(0, 3, 1, 2),
+ scale_factor=(num_h_patches / math.sqrt(num_pos), num_w_patches / math.sqrt(num_pos)),
+ mode="bicubic",
+ align_corners=False,
+ )
+ if int(num_h_patches) != patch_pos_embed.shape[-2] or int(num_w_patches) != patch_pos_embed.shape[-1]:
+ raise ValueError(
+ f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the "
+ f"shape of position embedding ({patch_pos_embed.shape[-2], patch_pos_embed.shape[-1]})"
+ )
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
+
+ def forward(
+ self,
+ pixel_values: torch.Tensor,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ interpolate_pos_encoding: bool = False,
+ ) -> torch.Tensor:
+ batch_size, num_channels, height, width = pixel_values.shape
+ embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
+
+ batch_size, seq_len, _ = embeddings.size()
+ if bool_masked_pos is not None:
+ mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
+ # B X H X W = B X HW
+ if bool_masked_pos.dim() == 3:
+ bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1)
+ # replace the masked visual tokens by mask_tokens
+ mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
+ embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
+
+ # add the [CLS] token to the embedded patch tokens
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1)
+ embeddings = torch.cat((cls_tokens, embeddings), dim=1)
+
+ # add positional encoding to each token
+ if interpolate_pos_encoding:
+ embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
+ else:
+ embeddings = embeddings + self.position_embeddings
+
+ embeddings = self.dropout(embeddings)
+
+ return embeddings
+
+
+# Based on timm implementation, which can be found here:
+# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
+class PatchEmbeddings(nn.Module):
+ """
+ Image to Patch Embedding.
+ """
+
+ def __init__(
+ self,
+ image_size: int = 224,
+ patch_size: Union[int, Tuple[int, int]] = 16,
+ num_channels: int = 3,
+ embed_dim: int = 768,
+ ):
+ super().__init__()
+ if not isinstance(image_size, collections.abc.Iterable):
+ image_size = (image_size, image_size)
+ if not isinstance(patch_size, collections.abc.Iterable):
+ patch_size = (patch_size, patch_size)
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_patches = num_patches
+
+ self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
+
+ def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
+ batch_size, num_channels, height, width = pixel_values.shape
+ if not interpolate_pos_encoding:
+ if height != self.image_size[0] or width != self.image_size[1]:
+ raise ValueError(
+ f"Input image size ({height}*{width}) doesn't match model"
+ f" ({self.image_size[0]}*{self.image_size[1]})."
+ )
+ x = self.projection(pixel_values).flatten(2).transpose(1, 2)
+ return x
+
+
+class FlavaTextEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ ):
+ input_shape = input_ids.size()
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class FlavaSelfAttention(nn.Module):
+ def __init__(self, config: FlavaPossibleConfigs) -> None:
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
+ f"heads {config.num_attention_heads}."
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ mixed_query_layer = self.query(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+class FlavaSelfOutput(nn.Module):
+ """
+ The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other
+ models), due to the layernorm applied before each block.
+ """
+
+ def __init__(self, config: FlavaPossibleConfigs) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ return hidden_states
+
+
+class FlavaAttention(nn.Module):
+ def __init__(self, config: FlavaPossibleConfigs) -> None:
+ super().__init__()
+ self.attention = FlavaSelfAttention(config)
+ self.output = FlavaSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads: Set[int]) -> None:
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.attention.query = prune_linear_layer(self.attention.query, index)
+ self.attention.key = prune_linear_layer(self.attention.key, index)
+ self.attention.value = prune_linear_layer(self.attention.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ self_outputs = self.attention(
+ hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions
+ )
+
+ attention_output = self.output(self_outputs[0], hidden_states)
+
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class FlavaIntermediate(nn.Module):
+ def __init__(self, config: FlavaPossibleConfigs) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ # Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+
+class FlavaOutput(nn.Module):
+ def __init__(self, config: FlavaPossibleConfigs) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # Copied from transformers.models.vit.modeling_vit.ViTOutput.forward
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ hidden_states = hidden_states + input_tensor
+
+ return hidden_states
+
+
+class FlavaLayer(nn.Module):
+ """This corresponds to the Block class in the timm implementation."""
+
+ def __init__(self, config: FlavaPossibleConfigs) -> None:
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = FlavaAttention(config)
+ self.intermediate = FlavaIntermediate(config)
+ self.output = FlavaOutput(config)
+
+ # TODO: Check fp32 layer norm possiblity
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ self_attention_outputs = self.attention(
+ self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ # first residual connection
+ hidden_states = attention_output + hidden_states
+
+ # in ViT, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(hidden_states)
+ layer_output = self.intermediate(layer_output)
+
+ # second residual connection is done here
+ layer_output = self.output(layer_output, hidden_states)
+
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+
+class FlavaEncoder(nn.Module):
+ def __init__(self, config: FlavaConfig) -> None:
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ) -> Union[tuple, BaseModelOutput]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
+ )
+
+
+class FlavaPooler(nn.Module):
+ def __init__(self, config: FlavaPossibleConfigs):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+FLAVA_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`{config}`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+FLAVA_INPUTS_DOCSTRING_COMMON = r"""
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ [What are attention masks?](../glossary#attention-mask)
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+FLAVA_IMAGE_INPUTS_DOCSTRING_BASE = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
+ [`FlavaImageProcessor.__call__`] for details.
+
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
+
+ interpolate_pos_encoding (`bool`, *optional*):
+ Whether to interpolate the pre-trained position encodings.
+"""
+
+FLAVA_IMAGE_INPUTS_DOCSTRING = FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
+
+FLAVA_TEXT_INPUTS_DOCSTRING_BASE = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
+ IDs?](../glossary#input-ids)
+
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+ [What are token type IDs?](../glossary#token-type-ids)
+"""
+
+FLAVA_TEXT_INPUTS_DOCSTRING = FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
+
+FLAVA_MULTIMODAL_INPUTS_DOCSTRING = (
+ r"""
+ Args:
+ hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`):
+ The concatenated hidden states of unimodal encoders.
+"""
+ + FLAVA_INPUTS_DOCSTRING_COMMON
+)
+
+FLAVA_MODEL_INPUTS_DOCSTRING_BASE = r"""
+ Args:
+ skip_multimodal_encoder (*bool*, *optional*):
+ Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.
+"""
+
+FLAVA_MODEL_INPUTS_DOCSTRING = (
+ FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
+ + FLAVA_TEXT_INPUTS_DOCSTRING_BASE
+ + FLAVA_INPUTS_DOCSTRING_COMMON
+ + FLAVA_MODEL_INPUTS_DOCSTRING_BASE
+)
+
+
+FLAVA_PRETRAINING_INPUTS_DOCSTRING = (
+ r"""
+ Args:
+ input_ids_masked (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task
+ to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with
+ [`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
+
+"""
+ + FLAVA_TEXT_INPUTS_DOCSTRING_BASE
+ + FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
+ + r"""
+ image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*):
+ Mask to avoid performing attention on padding token indices specifically for images. Mask values selected
+ in `[0, 1]`:
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ [What are attention masks?](../glossary#attention-mask)
+
+ skip_unmasked_multimodal_encoder (*bool*, *optional*):
+ Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked
+ multimodal embeddings or outputs as of now.
+
+ mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
+ Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction).
+ Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with
+ indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0,
+ ..., text_config.vocab_size - 1]`.
+
+ mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*):
+ Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ...,
+ image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only
+ computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are
+ generated automatically using the image codebook assigned to the model. By default, it uses
+ [`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels.
+
+ itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
+ Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
+ The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well.
+
+ return_loss (`bool`, *optional*, default to None):
+ Whether to return calculated loss or not.
+"""
+ + FLAVA_INPUTS_DOCSTRING_COMMON
+)
+
+FLAVA_PRETRAINING_START_DOCSTRING_EXTRA = r"""
+ Parameters:
+ image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will
+ be initialized using the image_codebook_config defined in the config first as the first parameter.
+"""
+
+
+class FlavaPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = FlavaConfig
+ base_model_prefix = "flava"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+@add_start_docstrings(
+ "The bare FLAVA Image Model transformer outputting raw hidden-states without any specific head on top.",
+ FLAVA_START_DOCSTRING.format(config="FlavaImageConfig"),
+)
+class FlavaImageModel(FlavaPreTrainedModel):
+ config_class = FlavaImageConfig
+ # This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints.
+ base_model_prefix = "flava.image_model"
+ main_input_name = "pixel_values"
+
+ def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True):
+ super().__init__(config)
+
+ self.config = config
+
+ self.embeddings = FlavaImageEmbeddings(config)
+ self.encoder = FlavaEncoder(config)
+
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.pooler = FlavaPooler(config) if add_pooling_layer else None
+
+ self.post_init()
+
+ def get_input_embeddings(self) -> nn.Module:
+ return self.embeddings.patch_embeddings
+
+ def set_input_embeddings(self, value: nn.Module):
+ self.embeddings.patch_embeddings = value
+
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPooling,
+ config_class=_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC,
+ modality="vision",
+ expected_output=_EXPECTED_IMAGE_OUTPUT_SHAPE,
+ )
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, BaseModelOutputWithPooling]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
+ )
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.layernorm(sequence_output)
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare FLAVA Text Model transformer outputting raw hidden-states without any specific head on top.",
+ FLAVA_START_DOCSTRING.format(config="FlavaTextConfig"),
+)
+class FlavaTextModel(FlavaPreTrainedModel):
+ config_class = FlavaTextConfig
+ # This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints.
+ base_model_prefix = "flava.text_model"
+
+ def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = FlavaTextEmbeddings(config)
+ self.encoder = FlavaEncoder(config)
+
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.pooler = FlavaPooler(config) if add_pooling_layer else None
+
+ self.post_init()
+
+ def get_input_embeddings(self) -> PatchEmbeddings:
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value: nn.Module):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPooling,
+ config_class=_CONFIG_CLASS_FOR_TEXT_MODEL_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, BaseModelOutputWithPooling]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is None:
+ raise ValueError("You have to specify input_ids")
+
+ input_shape = input_ids.size()
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=input_ids.device)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
+ attention_mask, input_shape, input_ids.device
+ )
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ )
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.layernorm(sequence_output)
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare FLAVA Multimodal Model transformer outputting raw hidden-states without any specific head on top.",
+ FLAVA_START_DOCSTRING.format(config="FlavaMultimodalConfig"),
+)
+class FlavaMultimodalModel(FlavaPreTrainedModel):
+ config_class = FlavaMultimodalConfig
+ # This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints.
+ base_model_prefix = "flava.multimodal_model"
+ main_input_name = "hidden_states"
+
+ def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+ self.use_cls_token = self.config.use_cls_token
+ if self.use_cls_token:
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
+
+ self.encoder = FlavaEncoder(config)
+
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.pooler = FlavaPooler(config) if add_pooling_layer else None
+
+ self.post_init()
+
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(
+ FLAVA_MULTIMODAL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
+ )
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPooling,
+ config_class=_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC,
+ )
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, BaseModelOutputWithPooling]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ batch_size, seq_length, _ = hidden_states.size()
+
+ if self.use_cls_token:
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1)
+ hidden_states = torch.cat((cls_tokens, hidden_states), dim=1)
+ seq_length += 1
+
+ if attention_mask is None:
+ attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
+ attention_mask, (batch_size, seq_length), hidden_states.device
+ )
+
+ encoder_outputs = self.encoder(
+ hidden_states,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.layernorm(sequence_output)
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare FLAVA Model transformer outputting raw hidden-states without any specific head on top.",
+ FLAVA_START_DOCSTRING.format(config="FlavaConfig"),
+)
+class FlavaModel(FlavaPreTrainedModel):
+ config_class = FlavaConfig
+
+ def __init__(self, config: FlavaConfig):
+ super().__init__(config)
+
+ if not isinstance(config.text_config, FlavaTextConfig):
+ raise ValueError(
+ "config.text_config is expected to be of type FlavaTextConfig but is of type"
+ f" {type(config.text_config)}."
+ )
+
+ if not isinstance(config.image_config, FlavaImageConfig):
+ raise ValueError(
+ "config.image_config is expected to be of type FlavaImageConfig but is of type"
+ f" {type(config.image_config)}."
+ )
+
+ if not isinstance(config.multimodal_config, FlavaMultimodalConfig):
+ raise ValueError(
+ "config.multimodal_config is expected to be of type FlavaMultimodalConfig but "
+ + f"is of type {type(config.multimodal_config)}."
+ )
+
+ text_config = config.text_config
+ image_config = config.image_config
+ multimodal_config = config.multimodal_config
+
+ self.projection_dim = config.projection_dim
+ self.text_hidden_size = text_config.hidden_size
+ self.image_hidden_size = image_config.hidden_size
+ self.mm_hidden_size = multimodal_config.hidden_size
+
+ self.text_model = FlavaTextModel(text_config)
+ self.image_model = FlavaImageModel(image_config)
+ self.multimodal_model = FlavaMultimodalModel(multimodal_config)
+
+ self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim)
+ self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim)
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
+
+ self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size)
+ self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
+ def get_text_features(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> torch.FloatTensor:
+ r"""
+ Returns:
+ text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
+ applying the projection layer to the pooled output of [`FlavaTextModel`].
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoProcessor, FlavaModel
+
+ >>> model = FlavaModel.from_pretrained("{0}")
+ >>> processor = AutoProcessor.from_pretrained("{0}")
+
+ >>> inputs = processor(
+ ... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt"
+ ... )
+ >>> text_features = model.get_text_features(**inputs)
+ ```""".format(_CHECKPOINT_FOR_DOC)
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = text_outputs[0] # last_hidden_state
+ text_features = self.text_projection(pooled_output)
+
+ return text_features
+
+ @add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
+ def get_image_features(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> torch.FloatTensor:
+ r"""
+ Returns:
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
+ applying the projection layer to the pooled output of [`FlavaImageModel`].
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, FlavaModel
+
+ >>> model = FlavaModel.from_pretrained("{0}")
+ >>> processor = AutoProcessor.from_pretrained("{0}")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="pt")
+
+ >>> image_features = model.get_image_features(**inputs)
+ ```""".format(_CHECKPOINT_FOR_DOC)
+ image_outputs = self.image_model(
+ pixel_values=pixel_values,
+ bool_masked_pos=bool_masked_pos,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ interpolate_pos_encoding=interpolate_pos_encoding,
+ return_dict=return_dict,
+ )
+
+ pooled_output = image_outputs[0] # last_hidden_state
+ image_features = self.image_projection(pooled_output)
+
+ return image_features
+
+ @add_start_docstrings_to_model_forward(
+ FLAVA_MODEL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
+ )
+ @replace_return_docstrings(output_type=FlavaModelOutput, config_class=FlavaConfig)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ bool_masked_pos: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ image_attention_mask: Optional[torch.Tensor] = None,
+ skip_multimodal_encoder: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: bool = True,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, FlavaOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, FlavaModel
+
+ >>> model = FlavaModel.from_pretrained("facebook/flava-full")
+ >>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True)
+
+ >>> outputs = model(**inputs)
+
+ >>> image_embeddings = outputs.image_embeddings
+ >>> text_embeddings = outputs.text_embeddings
+ >>> multimodal_embeddings = outputs.multimodal_embeddings
+
+ >>> outputs.image_embeddings.shape
+ torch.Size([1, 197, 768])
+
+ >>> text_embeddings.shape
+ torch.Size([1, 7, 768])
+
+ >>> multimodal_embeddings.shape
+ torch.Size([1, 205, 768])
+ ```
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+ if not output_hidden_states:
+ raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`")
+ image_embeddings = None
+ image_states = None
+ image_mm_projection = None
+ image_output = None
+ if pixel_values is not None:
+ image_output = self.image_model(
+ pixel_values=pixel_values,
+ bool_masked_pos=bool_masked_pos,
+ attention_mask=image_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ image_embeddings, image_states = image_output[0], image_output[2]
+ # Note that these states don't use final layernorm in the transformer model
+ image_mm_projection = self.image_to_mm_projection(image_states[-1])
+
+ text_embeddings = None
+ text_states = None
+ text_mm_projection = None
+ text_output = None
+ if input_ids is not None:
+ text_output = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ text_embeddings, text_states = text_output[0], text_output[2]
+ # Note that these states don't use final layernorm in the transformer model
+ text_mm_projection = self.text_to_mm_projection(text_states[-1])
+
+ multimodal_embeddings = None
+ multimodal_output = None
+ if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder:
+ if attention_mask is not None:
+ batch_size, seq_len, _ = image_mm_projection.shape
+ if self.multimodal_model.use_cls_token:
+ seq_len += 1
+ attention_mask_image = torch.ones(batch_size, seq_len, device=image_mm_projection.device)
+ attention_multimodal = torch.cat([attention_mask_image, attention_mask], dim=1)
+ else:
+ attention_multimodal = None
+ multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1)
+ multimodal_output = self.multimodal_model(
+ multimodal_input, attention_mask=attention_multimodal, return_dict=return_dict
+ )
+ multimodal_embeddings = multimodal_output[0]
+
+ if not return_dict:
+ return (
+ image_embeddings,
+ image_output,
+ text_embeddings,
+ text_output,
+ multimodal_embeddings,
+ multimodal_output,
+ )
+
+ return FlavaModelOutput(
+ image_embeddings=image_embeddings,
+ image_output=image_output,
+ text_embeddings=text_embeddings,
+ text_output=text_output,
+ multimodal_embeddings=multimodal_embeddings,
+ multimodal_output=multimodal_output,
+ )
+
+
+class FlavaImageCodebookResPath(nn.Module):
+ def __init__(self, in_size: int, out_size: int, **kwargs):
+ super().__init__()
+ hid_size = out_size // 4
+
+ path = OrderedDict()
+ path["relu_1"] = nn.ReLU()
+ path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1)
+ path["relu_2"] = nn.ReLU()
+ path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
+ path["relu_3"] = nn.ReLU()
+ path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
+ path["relu_4"] = nn.ReLU()
+ path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0)
+
+ self.path = nn.Sequential(path)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ return self.path(x)
+
+
+class FlavaImageCodebookBlock(nn.Module):
+ def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs):
+ super().__init__()
+
+ self.post_gain = 1 / (num_layers**2)
+
+ if in_size != out_size:
+ self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0)
+ else:
+ self.id_path = nn.Identity()
+
+ self.res_path = FlavaImageCodebookResPath(in_size, out_size)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ return self.id_path(x) + self.post_gain * self.res_path(x)
+
+
+class FlavaImageCodebookLayerGroup(nn.Module):
+ def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True):
+ super().__init__()
+ blocks = OrderedDict()
+ for i in range(num_blocks):
+ if i == 0:
+ blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers)
+ else:
+ blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers)
+
+ if use_pool:
+ blocks["pool"] = nn.MaxPool2d(kernel_size=2)
+
+ self.group = nn.Sequential(blocks)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ return self.group(x)
+
+
+# Inspired by DALLE Encoder in https://github.com/openai/DALL-E/blob/5be4b236bc3ade6943662354117a0e83752cc322/dall_e/encoder.py#L42
+@add_start_docstrings(
+ """
+ The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used
+ to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use
+ `get_codebook_indices` to get image tokens for an image.
+ """,
+ FLAVA_START_DOCSTRING.format(config="FlavaImageCodebookConfig"),
+)
+class FlavaImageCodebook(FlavaPreTrainedModel):
+ base_model_prefix = ""
+ config_class = FlavaImageCodebookConfig
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = False
+
+ def __init__(
+ self,
+ config: FlavaImageCodebookConfig,
+ **kwargs: Any,
+ ):
+ super().__init__(config)
+
+ self.config = config
+ self.num_groups = config.num_groups
+ self.input_channels = config.input_channels
+ self.num_blocks_per_group = config.num_blocks_per_group
+ self.hidden_size = config.hidden_size
+ self.vocab_size = config.vocab_size
+
+ num_layers = self.num_groups * self.num_blocks_per_group
+
+ output_blocks = OrderedDict()
+ output_blocks["relu"] = nn.ReLU()
+ output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0)
+
+ blocks = OrderedDict()
+ blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3)
+ blocks["group_1"] = FlavaImageCodebookLayerGroup(
+ self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size
+ )
+ blocks["group_2"] = FlavaImageCodebookLayerGroup(
+ self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size
+ )
+ blocks["group_3"] = FlavaImageCodebookLayerGroup(
+ self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size
+ )
+ blocks["group_4"] = FlavaImageCodebookLayerGroup(
+ self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False
+ )
+ blocks["output"] = nn.Sequential(output_blocks)
+
+ self.blocks = nn.Sequential(blocks)
+
+ self.post_init()
+
+ if self.config.freeze:
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor:
+ """
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
+ `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
+
+ Examples:
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoImageProcessor, FlavaImageCodebook
+
+ >>> model = FlavaImageCodebook.from_pretrained("{0}")
+ >>> image_processor = AutoImageProcessor.from_pretrained("{0}")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
+ >>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
+
+ >>> outputs = model.get_codebook_indices(**inputs)
+ ```
+ """.format(_CHECKPOINT_FOR_CODEBOOK_DOC)
+ z_logits = self.blocks(pixel_values)
+ return torch.argmax(z_logits, axis=1)
+
+ def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor:
+ z_logits = self.blocks(pixel_values)
+ return nn.Softmax(dim=1)(z_logits)
+
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
+ """
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
+ `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoImageProcessor, FlavaImageCodebook
+
+ >>> model = FlavaImageCodebook.from_pretrained("{0}")
+ >>> image_processor = AutoImageProcessor.from_pretrained("{0}")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
+ >>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
+
+ >>> outputs = model(**inputs)
+ >>> print(outputs.shape)
+ (1, 196)
+ ```
+ """.format(_CHECKPOINT_FOR_CODEBOOK_DOC)
+ if len(pixel_values.shape) != 4:
+ raise ValueError(f"input shape {pixel_values.shape} is not 4d")
+ if pixel_values.shape[1] != self.input_channels:
+ raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}")
+ return self.blocks(pixel_values)
+
+
+class FlavaPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+class FlavaMaskedPredictionHead(nn.Module):
+ def __init__(self, config, weight=None):
+ super().__init__()
+ self.config = config
+ self.transform = FlavaPredictionHeadTransform(config)
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+ if weight is not None:
+ self.decoder.weight = weight
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def forward(self, x):
+ x = self.transform(x)
+ x = self.decoder(x)
+ return x
+
+
+class FlavaITMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.pooler = FlavaPooler(config)
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
+
+ def forward(self, x):
+ x = self.pooler(x)
+ x = self.seq_relationship(x)
+ return x
+
+
+class FlavaGlobalContrastiveHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.global_backprop_contrastive = config.global_backprop_contrastive
+
+ def forward(self, image_embeddings, text_embeddings, logit_scale):
+ temperature = torch.exp(logit_scale)
+ if not torch.distributed.is_available() or not torch.distributed.is_initialized():
+ labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device)
+ image_embeddings_all = [image_embeddings]
+ text_embeddings_all = [text_embeddings]
+ else:
+ local_batch_size = image_embeddings.size(0)
+ world_size = torch.distributed.get_world_size()
+
+ if self.global_backprop_contrastive:
+ # `torch.distributed.nn.functional.all_gather` does backprop on all active workers
+ # whereas `torch.distributed.all_gather` does only backpropagates on the current worker.
+ image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings)
+ text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings)
+ else:
+ image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)]
+ text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)]
+ torch.distributed.all_gather(image_embeddings_all, image_embeddings)
+ torch.distributed.all_gather(text_embeddings_all, text_embeddings)
+
+ labels = local_batch_size * torch.distributed.get_rank() + torch.arange(
+ local_batch_size, device=image_embeddings.device
+ )
+
+ image_embeddings_all = torch.cat(image_embeddings_all)
+ text_embeddings_all = torch.cat(text_embeddings_all)
+
+ logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature
+ logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature
+
+ return logits_per_image, logits_per_text, labels
+
+
+@add_start_docstrings(
+ """
+ The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs.
+ """,
+ FLAVA_START_DOCSTRING.format(config="FlavaConfig") + FLAVA_PRETRAINING_START_DOCSTRING_EXTRA,
+)
+class FlavaForPreTraining(FlavaPreTrainedModel):
+ # Those are linked to xxx.bias
+ _tied_weights_keys = [
+ "mmm_text_head.decoder.bias",
+ "mmm_image_head.decoder.bias",
+ "mlm_head.decoder.bias",
+ "mim_head.decoder.bias",
+ ]
+
+ def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None):
+ super().__init__(config)
+ self.flava = FlavaModel(config)
+
+ self.image_codebook = image_codebook
+ if self.image_codebook is None and config.init_codebook:
+ self.image_codebook = FlavaImageCodebook(config.image_codebook_config)
+
+ # Levarage text and image encoder configs to create the masked
+ # head since it has the right vocab
+ self.mim_head = FlavaMaskedPredictionHead(config.image_config)
+ self.mlm_head = FlavaMaskedPredictionHead(config.text_config)
+ self.itm_head = FlavaITMHead(config)
+ self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config)
+ self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config)
+ self.global_contrastive_head = FlavaGlobalContrastiveHead(config)
+
+ self.image_vocab_size = config.image_config.vocab_size
+ self.text_vocab_size = config.text_config.vocab_size
+ self.mlm_weight = config.mlm_weight
+ self.mim_weight = config.mim_weight
+ self.global_contrastive_weight = config.global_contrastive_weight
+ self.ce_ignore_index = config.ce_ignore_index
+ self.itm_weight = config.itm_weight
+ self.mmm_image_weight = config.mmm_image_weight
+ self.mmm_text_weight = config.mmm_text_weight
+ self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder
+
+ self.post_init()
+
+ def _resize_to_2d(self, x: torch.Tensor):
+ if x.dim() > 2:
+ x = x.view(x.size(0), -1)
+ return x
+
+ @add_start_docstrings_to_model_forward(
+ FLAVA_PRETRAINING_INPUTS_DOCSTRING.format("batch_size, text_seq_len", "batch_size, image_num_patches")
+ )
+ @replace_return_docstrings(output_type=FlavaForPreTrainingOutput, config_class=FlavaConfig)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ input_ids_masked: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ codebook_pixel_values: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ bool_masked_pos: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ image_attention_mask: Optional[torch.Tensor] = None,
+ skip_unmasked_multimodal_encoder: bool = None,
+ mlm_labels: Optional[torch.Tensor] = None,
+ mim_labels: Optional[torch.Tensor] = None,
+ itm_labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: bool = True,
+ return_dict: Optional[bool] = None,
+ return_loss: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]:
+ """
+ Examples:
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import FlavaForPreTraining, AutoProcessor
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
+ >>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
+
+ >>> text = ["a photo of a cat"]
+
+ >>> inputs = processor(
+ ... images=[image],
+ ... text=text,
+ ... return_masks=True,
+ ... return_codebook_pixels=True,
+ ... padding=True,
+ ... max_length=77,
+ ... return_tensors="pt",
+ ... )
+
+
+ >>> output = model(**inputs)
+ ```
+
+ Return:
+
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ return_loss = return_loss if return_loss is not None else self.config.return_loss
+
+ skip_unmasked_multimodal_encoder = (
+ skip_unmasked_multimodal_encoder
+ if skip_unmasked_multimodal_encoder is not None
+ else self.skip_unmasked_multimodal_encoder
+ )
+
+ if input_ids_masked is None and input_ids is not None:
+ logger.warning(
+ "`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to"
+ " `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if"
+ " you are doing inference on unmasked text..."
+ )
+ input_ids_masked = input_ids
+
+ flava_output = self.flava(
+ input_ids=input_ids,
+ pixel_values=pixel_values,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ image_attention_mask=image_attention_mask,
+ # Don't need unmasked multimodal embedding for anything so skip it
+ # NOTE: ITM uses masked version
+ skip_multimodal_encoder=skip_unmasked_multimodal_encoder,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ # Pass true to have deterministic outputs
+ return_dict=True,
+ )
+
+ flava_masked_output = self.flava(
+ input_ids=input_ids_masked,
+ pixel_values=pixel_values,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ image_attention_mask=image_attention_mask,
+ bool_masked_pos=bool_masked_pos,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+
+ pos_mask = None
+
+ image_embeddings = flava_output.image_embeddings
+ text_embeddings = flava_output.text_embeddings
+ image_masked_embeddings = flava_masked_output.image_embeddings
+ text_masked_embeddings = flava_masked_output.text_embeddings
+ multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings
+
+ total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None
+ mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None
+ itm_logits = logits_per_image = logits_per_text = None
+
+ # Calculate mim_labels if necessary from the image_codebook
+ if image_masked_embeddings is not None or multimodal_masked_embeddings is not None:
+ if mim_labels is None and return_loss:
+ if self.image_codebook is None:
+ raise RuntimeError(
+ "`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` "
+ " have been passed. Reinstantiate the model with `init_codebook` set to True or "
+ "pass in your custom `mim_labels`"
+ )
+ if codebook_pixel_values is None:
+ raise ValueError(
+ "`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. "
+ "Call `AutoProcessor` with `return_codebook_pixels` set to True"
+ )
+ mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values)
+ # Unimodal MIM Loss
+ # If multimodal embeddings are present, we will calculate MMM loss
+ if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None:
+ sequence_for_image = image_masked_embeddings
+
+ if mim_labels is not None:
+ mim_labels = self._resize_to_2d(mim_labels)
+ bool_masked_pos = self._resize_to_2d(bool_masked_pos)
+ mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
+
+ sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :]
+ masked_tokens = mim_labels.ne(self.ce_ignore_index)
+ mim_labels_filtered = mim_labels[masked_tokens]
+ sequence_for_image = sequence_for_image[masked_tokens, :]
+ mim_logits = self.mim_head(sequence_for_image)
+ if return_loss:
+ mim_loss = nn.functional.cross_entropy(
+ mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
+ )
+ mim_loss *= self.mim_weight
+ else:
+ mim_logits = self.mim_head(sequence_for_image)
+
+ # Unimodal MLM Loss
+ if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None:
+ sequence_for_text = text_masked_embeddings
+ if mlm_labels is not None:
+ mlm_labels = self._resize_to_2d(mlm_labels)
+ sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :]
+ masked_tokens = mlm_labels.ne(self.ce_ignore_index)
+ mlm_labels_filtered = mlm_labels[masked_tokens]
+ sequence_for_text = sequence_for_text[masked_tokens, :]
+ mlm_logits = self.mlm_head(sequence_for_text)
+ if return_loss:
+ mlm_loss = nn.functional.cross_entropy(
+ mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
+ )
+ mlm_loss *= self.mlm_weight
+ else:
+ mlm_logits = self.mlm_head(sequence_for_text)
+
+ # ITM Loss
+ if self.itm_weight > 0 and multimodal_masked_embeddings is not None:
+ itm_logits = self.itm_head(multimodal_masked_embeddings)
+
+ if itm_labels is not None:
+ pos_pairs = itm_labels.ne(0)
+ pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True]))
+ if return_loss:
+ itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels)
+ itm_loss *= self.itm_weight
+
+ if multimodal_masked_embeddings is not None:
+ multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask]
+
+ if mlm_labels is not None:
+ mlm_labels = mlm_labels[pos_mask]
+
+ if mim_labels is not None:
+ mim_labels = mim_labels[pos_mask]
+ bool_masked_pos = bool_masked_pos[pos_mask]
+
+ # MMM Image Loss
+ if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0:
+ sequence_for_image = multimodal_masked_embeddings
+ end_index = image_masked_embeddings.size(1) - 1
+ sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :]
+
+ if mim_labels is not None:
+ mim_labels = self._resize_to_2d(mim_labels)
+ bool_masked_pos = self._resize_to_2d(bool_masked_pos)
+ mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
+
+ masked_tokens = mim_labels.ne(self.ce_ignore_index)
+ mim_labels_filtered = mim_labels[masked_tokens]
+ sequence_for_image = sequence_for_image[masked_tokens, :]
+ mmm_image_logits = self.mmm_image_head(sequence_for_image)
+ if return_loss:
+ mmm_image_loss = nn.functional.cross_entropy(
+ mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
+ )
+ mmm_image_loss *= self.mmm_image_weight
+ else:
+ mmm_image_logits = self.mmm_image_head(sequence_for_image)
+
+ # MMM Text Loss
+ if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0:
+ sequence_for_text = multimodal_masked_embeddings
+ sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :]
+
+ if mlm_labels is not None:
+ mlm_labels = self._resize_to_2d(mlm_labels)
+ masked_tokens = mlm_labels.ne(self.ce_ignore_index)
+ mlm_labels_filtered = mlm_labels[masked_tokens]
+ sequence_for_text = sequence_for_text[masked_tokens, :]
+ mmm_text_logits = self.mmm_text_head(sequence_for_text)
+ if return_loss:
+ mmm_text_loss = nn.functional.cross_entropy(
+ mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
+ )
+ mmm_text_loss *= self.mmm_text_weight
+ else:
+ mmm_text_logits = self.mmm_text_head(sequence_for_text)
+
+ # Global Contrastive Loss
+ if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0:
+ text_embedding = self.flava.text_projection(text_embeddings[:, 0, :])
+ text_embedding = nn.functional.normalize(text_embedding, dim=-1)
+
+ image_embedding = self.flava.image_projection(image_embeddings[:, 0, :])
+ image_embedding = nn.functional.normalize(image_embedding, dim=-1)
+
+ self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX)
+
+ logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head(
+ image_embedding, text_embedding, self.flava.logit_scale
+ )
+
+ # Apply ITM negative mask if any
+ if pos_mask is not None:
+ logits_per_image = logits_per_image[pos_mask]
+ logits_per_text = logits_per_text[pos_mask]
+ gc_labels = gc_labels[pos_mask]
+
+ if return_loss:
+ gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels)
+ gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels)
+ gc_loss = (gc_loss_image + gc_loss_text) / 2
+ gc_loss *= self.global_contrastive_weight
+
+ flava_losses = FlavaLosses(
+ mim=mim_loss,
+ mlm=mlm_loss,
+ itm=itm_loss,
+ global_contrastive=gc_loss,
+ mmm_image=mmm_image_loss,
+ mmm_text=mmm_text_loss,
+ )
+
+ if return_loss and not flava_losses.all_none():
+ total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values())
+
+ if not return_dict:
+ output = (
+ image_embeddings,
+ flava_output.image_output.to_tuple() if flava_output.image_output is not None else None,
+ text_embeddings,
+ flava_output.text_output.to_tuple() if flava_output.text_output is not None else None,
+ flava_output.multimodal_embeddings,
+ flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None,
+ image_masked_embeddings,
+ flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None,
+ text_masked_embeddings,
+ flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None,
+ multimodal_masked_embeddings,
+ flava_masked_output.multimodal_output.to_tuple()
+ if flava_masked_output.multimodal_output is not None
+ else None,
+ mim_logits,
+ mlm_logits,
+ itm_logits,
+ logits_per_image,
+ logits_per_image,
+ mmm_image_logits,
+ mmm_text_logits,
+ )
+ if return_loss and not flava_losses.all_none():
+ output = (
+ total_loss,
+ flava_losses,
+ ) + output
+
+ # Filter None as transformer by default won't handle it
+ return tuple(x for x in output if x is None)
+
+ return FlavaForPreTrainingOutput(
+ loss=total_loss,
+ loss_info=flava_losses,
+ image_embeddings=image_embeddings,
+ image_output=flava_output.image_output,
+ text_embeddings=text_embeddings,
+ text_output=flava_output.text_output,
+ multimodal_embeddings=flava_output.multimodal_embeddings,
+ multimodal_output=flava_output.multimodal_output,
+ image_masked_embeddings=image_masked_embeddings,
+ image_masked_output=flava_masked_output.image_output,
+ text_masked_embeddings=text_masked_embeddings,
+ text_masked_output=flava_masked_output.text_output,
+ multimodal_masked_embeddings=multimodal_masked_embeddings,
+ multimodal_masked_output=flava_masked_output.multimodal_output,
+ mim_logits=mim_logits,
+ mlm_logits=mlm_logits,
+ itm_logits=itm_logits,
+ contrastive_logits_per_image=logits_per_image,
+ contrastive_logits_per_text=logits_per_text,
+ mmm_image_logits=mmm_image_logits,
+ mmm_text_logits=mmm_text_logits,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/processing_flava.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/processing_flava.py
new file mode 100644
index 0000000000000000000000000000000000000000..7f439b040a8fd04e898075875cc96c7d26440959
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/flava/processing_flava.py
@@ -0,0 +1,165 @@
+# coding=utf-8
+# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Image/Text processor class for FLAVA
+"""
+
+import warnings
+from typing import List, Optional, Union
+
+from ...image_utils import ImageInput
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
+from ...utils import TensorType
+
+
+class FlavaProcessor(ProcessorMixin):
+ r"""
+ Constructs a FLAVA processor which wraps a FLAVA image processor and a FLAVA tokenizer into a single processor.
+
+ [`FlavaProcessor`] offers all the functionalities of [`FlavaImageProcessor`] and [`BertTokenizerFast`]. See the
+ [`~FlavaProcessor.__call__`] and [`~FlavaProcessor.decode`] for more information.
+
+ Args:
+ image_processor ([`FlavaImageProcessor`], *optional*): The image processor is a required input.
+ tokenizer ([`BertTokenizerFast`], *optional*): The tokenizer is a required input.
+ """
+
+ attributes = ["image_processor", "tokenizer"]
+ image_processor_class = "FlavaImageProcessor"
+ tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
+
+ def __init__(self, image_processor=None, tokenizer=None, **kwargs):
+ feature_extractor = None
+ if "feature_extractor" in kwargs:
+ warnings.warn(
+ "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
+ " instead.",
+ FutureWarning,
+ )
+ feature_extractor = kwargs.pop("feature_extractor")
+
+ image_processor = image_processor if image_processor is not None else feature_extractor
+ if image_processor is None:
+ raise ValueError("You need to specify an `image_processor`.")
+ if tokenizer is None:
+ raise ValueError("You need to specify a `tokenizer`.")
+
+ super().__init__(image_processor, tokenizer)
+ self.current_processor = self.image_processor
+
+ def __call__(
+ self,
+ images: Optional[ImageInput] = None,
+ text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = False,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_image_mask: Optional[bool] = None,
+ return_codebook_pixels: Optional[bool] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ **kwargs,
+ ):
+ """
+ This method uses [`FlavaImageProcessor.__call__`] method to prepare image(s) for the model, and
+ [`BertTokenizerFast.__call__`] to prepare text for the model.
+
+ Please refer to the docstring of the above two methods for more information.
+ """
+
+ if text is None and images is None:
+ raise ValueError("You have to specify either text or images. Both cannot be none.")
+
+ if text is not None:
+ encoding = self.tokenizer(
+ text=text,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+ if images is not None:
+ image_features = self.image_processor(
+ images,
+ return_image_mask=return_image_mask,
+ return_codebook_pixels=return_codebook_pixels,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+
+ if text is not None and images is not None:
+ encoding.update(image_features)
+ return encoding
+ elif text is not None:
+ return encoding
+ else:
+ return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
+ the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ image_processor_input_names = self.image_processor.model_input_names
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
+
+ @property
+ def feature_extractor_class(self):
+ warnings.warn(
+ "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
+ FutureWarning,
+ )
+ return self.image_processor_class
+
+ @property
+ def feature_extractor(self):
+ warnings.warn(
+ "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
+ FutureWarning,
+ )
+ return self.image_processor
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f8df88ce16f683bce947839ab1dbf5b4b1325ee1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__init__.py
@@ -0,0 +1,83 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
+
+
+_import_structure = {
+ "configuration_markuplm": ["MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "MarkupLMConfig"],
+ "feature_extraction_markuplm": ["MarkupLMFeatureExtractor"],
+ "processing_markuplm": ["MarkupLMProcessor"],
+ "tokenization_markuplm": ["MarkupLMTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_markuplm_fast"] = ["MarkupLMTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_markuplm"] = [
+ "MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "MarkupLMForQuestionAnswering",
+ "MarkupLMForSequenceClassification",
+ "MarkupLMForTokenClassification",
+ "MarkupLMModel",
+ "MarkupLMPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_markuplm import MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP, MarkupLMConfig
+ from .feature_extraction_markuplm import MarkupLMFeatureExtractor
+ from .processing_markuplm import MarkupLMProcessor
+ from .tokenization_markuplm import MarkupLMTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_markuplm_fast import MarkupLMTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_markuplm import (
+ MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST,
+ MarkupLMForQuestionAnswering,
+ MarkupLMForSequenceClassification,
+ MarkupLMForTokenClassification,
+ MarkupLMModel,
+ MarkupLMPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..43339546b0f6e19bd451baad0874f0b1ef720656
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/configuration_markuplm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/configuration_markuplm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..67a7bd85172587eafcbea67aef1b8663ea3ecf83
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/configuration_markuplm.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/feature_extraction_markuplm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/feature_extraction_markuplm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a6325764b1134523e9a978cca72a936334045371
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/feature_extraction_markuplm.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/modeling_markuplm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/modeling_markuplm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..209e8bbdc939f3476cea0dfcd51b02853d93bce5
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/modeling_markuplm.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/processing_markuplm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/processing_markuplm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..12a14b4889af61396cac95d74df69f72592501d4
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/processing_markuplm.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/tokenization_markuplm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/tokenization_markuplm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3c279507118bfc4e68b222ac7a31c7d29ae74580
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/tokenization_markuplm.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/tokenization_markuplm_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/tokenization_markuplm_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d4875868c1274121b0080f4d2af94135bdf133d9
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/tokenization_markuplm_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/configuration_markuplm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/configuration_markuplm.py
new file mode 100644
index 0000000000000000000000000000000000000000..aeb80ae51f96baecf7e84276af9839559e49d596
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/configuration_markuplm.py
@@ -0,0 +1,156 @@
+# coding=utf-8
+# Copyright 2021, The Microsoft Research Asia MarkupLM Team authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" MarkupLM model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class MarkupLMConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`MarkupLMModel`]. It is used to instantiate a
+ MarkupLM model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the MarkupLM
+ [microsoft/markuplm-base](https://huggingface.co/microsoft/markuplm-base) architecture.
+
+ Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the
+ documentation from [`BertConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the MarkupLM model. Defines the different tokens that can be represented by the
+ *inputs_ids* passed to the forward method of [`MarkupLMModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed into [`MarkupLMModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ max_tree_id_unit_embeddings (`int`, *optional*, defaults to 1024):
+ The maximum value that the tree id unit embedding might ever use. Typically set this to something large
+ just in case (e.g., 1024).
+ max_xpath_tag_unit_embeddings (`int`, *optional*, defaults to 256):
+ The maximum value that the xpath tag unit embedding might ever use. Typically set this to something large
+ just in case (e.g., 256).
+ max_xpath_subs_unit_embeddings (`int`, *optional*, defaults to 1024):
+ The maximum value that the xpath subscript unit embedding might ever use. Typically set this to something
+ large just in case (e.g., 1024).
+ tag_pad_id (`int`, *optional*, defaults to 216):
+ The id of the padding token in the xpath tags.
+ subs_pad_id (`int`, *optional*, defaults to 1001):
+ The id of the padding token in the xpath subscripts.
+ xpath_tag_unit_hidden_size (`int`, *optional*, defaults to 32):
+ The hidden size of each tree id unit. One complete tree index will have
+ (50*xpath_tag_unit_hidden_size)-dim.
+ max_depth (`int`, *optional*, defaults to 50):
+ The maximum depth in xpath.
+
+ Examples:
+
+ ```python
+ >>> from transformers import MarkupLMModel, MarkupLMConfig
+
+ >>> # Initializing a MarkupLM microsoft/markuplm-base style configuration
+ >>> configuration = MarkupLMConfig()
+
+ >>> # Initializing a model from the microsoft/markuplm-base style configuration
+ >>> model = MarkupLMModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "markuplm"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=0,
+ bos_token_id=0,
+ eos_token_id=2,
+ max_xpath_tag_unit_embeddings=256,
+ max_xpath_subs_unit_embeddings=1024,
+ tag_pad_id=216,
+ subs_pad_id=1001,
+ xpath_unit_hidden_size=32,
+ max_depth=50,
+ position_embedding_type="absolute",
+ use_cache=True,
+ classifier_dropout=None,
+ **kwargs,
+ ):
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ **kwargs,
+ )
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_cache = use_cache
+ self.classifier_dropout = classifier_dropout
+ # additional properties
+ self.max_depth = max_depth
+ self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings
+ self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings
+ self.tag_pad_id = tag_pad_id
+ self.subs_pad_id = subs_pad_id
+ self.xpath_unit_hidden_size = xpath_unit_hidden_size
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/feature_extraction_markuplm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/feature_extraction_markuplm.py
new file mode 100644
index 0000000000000000000000000000000000000000..73c16bad302b54d6456e3be7e16c825c4d03b6ad
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/feature_extraction_markuplm.py
@@ -0,0 +1,183 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Feature extractor class for MarkupLM.
+"""
+
+import html
+
+from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
+from ...utils import is_bs4_available, logging, requires_backends
+
+
+if is_bs4_available():
+ import bs4
+ from bs4 import BeautifulSoup
+
+
+logger = logging.get_logger(__name__)
+
+
+class MarkupLMFeatureExtractor(FeatureExtractionMixin):
+ r"""
+ Constructs a MarkupLM feature extractor. This can be used to get a list of nodes and corresponding xpaths from HTML
+ strings.
+
+ This feature extractor inherits from [`~feature_extraction_utils.PreTrainedFeatureExtractor`] which contains most
+ of the main methods. Users should refer to this superclass for more information regarding those methods.
+
+ """
+
+ def __init__(self, **kwargs):
+ requires_backends(self, ["bs4"])
+ super().__init__(**kwargs)
+
+ def xpath_soup(self, element):
+ xpath_tags = []
+ xpath_subscripts = []
+ child = element if element.name else element.parent
+ for parent in child.parents: # type: bs4.element.Tag
+ siblings = parent.find_all(child.name, recursive=False)
+ xpath_tags.append(child.name)
+ xpath_subscripts.append(
+ 0 if 1 == len(siblings) else next(i for i, s in enumerate(siblings, 1) if s is child)
+ )
+ child = parent
+ xpath_tags.reverse()
+ xpath_subscripts.reverse()
+ return xpath_tags, xpath_subscripts
+
+ def get_three_from_single(self, html_string):
+ html_code = BeautifulSoup(html_string, "html.parser")
+
+ all_doc_strings = []
+ string2xtag_seq = []
+ string2xsubs_seq = []
+
+ for element in html_code.descendants:
+ if isinstance(element, bs4.element.NavigableString):
+ if type(element.parent) != bs4.element.Tag:
+ continue
+
+ text_in_this_tag = html.unescape(element).strip()
+ if not text_in_this_tag:
+ continue
+
+ all_doc_strings.append(text_in_this_tag)
+
+ xpath_tags, xpath_subscripts = self.xpath_soup(element)
+ string2xtag_seq.append(xpath_tags)
+ string2xsubs_seq.append(xpath_subscripts)
+
+ if len(all_doc_strings) != len(string2xtag_seq):
+ raise ValueError("Number of doc strings and xtags does not correspond")
+ if len(all_doc_strings) != len(string2xsubs_seq):
+ raise ValueError("Number of doc strings and xsubs does not correspond")
+
+ return all_doc_strings, string2xtag_seq, string2xsubs_seq
+
+ def construct_xpath(self, xpath_tags, xpath_subscripts):
+ xpath = ""
+ for tagname, subs in zip(xpath_tags, xpath_subscripts):
+ xpath += f"/{tagname}"
+ if subs != 0:
+ xpath += f"[{subs}]"
+ return xpath
+
+ def __call__(self, html_strings) -> BatchFeature:
+ """
+ Main method to prepare for the model one or several HTML strings.
+
+ Args:
+ html_strings (`str`, `List[str]`):
+ The HTML string or batch of HTML strings from which to extract nodes and corresponding xpaths.
+
+ Returns:
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
+
+ - **nodes** -- Nodes.
+ - **xpaths** -- Corresponding xpaths.
+
+ Examples:
+
+ ```python
+ >>> from transformers import MarkupLMFeatureExtractor
+
+ >>> page_name_1 = "page1.html"
+ >>> page_name_2 = "page2.html"
+ >>> page_name_3 = "page3.html"
+
+ >>> with open(page_name_1) as f:
+ ... single_html_string = f.read()
+
+ >>> feature_extractor = MarkupLMFeatureExtractor()
+
+ >>> # single example
+ >>> encoding = feature_extractor(single_html_string)
+ >>> print(encoding.keys())
+ >>> # dict_keys(['nodes', 'xpaths'])
+
+ >>> # batched example
+
+ >>> multi_html_strings = []
+
+ >>> with open(page_name_2) as f:
+ ... multi_html_strings.append(f.read())
+ >>> with open(page_name_3) as f:
+ ... multi_html_strings.append(f.read())
+
+ >>> encoding = feature_extractor(multi_html_strings)
+ >>> print(encoding.keys())
+ >>> # dict_keys(['nodes', 'xpaths'])
+ ```"""
+
+ # Input type checking for clearer error
+ valid_strings = False
+
+ # Check that strings has a valid type
+ if isinstance(html_strings, str):
+ valid_strings = True
+ elif isinstance(html_strings, (list, tuple)):
+ if len(html_strings) == 0 or isinstance(html_strings[0], str):
+ valid_strings = True
+
+ if not valid_strings:
+ raise ValueError(
+ "HTML strings must of type `str`, `List[str]` (batch of examples), "
+ f"but is of type {type(html_strings)}."
+ )
+
+ is_batched = bool(isinstance(html_strings, (list, tuple)) and (isinstance(html_strings[0], str)))
+
+ if not is_batched:
+ html_strings = [html_strings]
+
+ # Get nodes + xpaths
+ nodes = []
+ xpaths = []
+ for html_string in html_strings:
+ all_doc_strings, string2xtag_seq, string2xsubs_seq = self.get_three_from_single(html_string)
+ nodes.append(all_doc_strings)
+ xpath_strings = []
+ for node, tag_list, sub_list in zip(all_doc_strings, string2xtag_seq, string2xsubs_seq):
+ xpath_string = self.construct_xpath(tag_list, sub_list)
+ xpath_strings.append(xpath_string)
+ xpaths.append(xpath_strings)
+
+ # return as Dict
+ data = {"nodes": nodes, "xpaths": xpaths}
+ encoded_inputs = BatchFeature(data=data, tensor_type=None)
+
+ return encoded_inputs
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/modeling_markuplm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/modeling_markuplm.py
new file mode 100644
index 0000000000000000000000000000000000000000..2058ce2795167689468496e43394ac26ee2bdeab
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/modeling_markuplm.py
@@ -0,0 +1,1316 @@
+# coding=utf-8
+# Copyright 2022 Microsoft Research Asia and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch MarkupLM model."""
+
+import math
+import os
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...file_utils import (
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ replace_return_docstrings,
+)
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+ MaskedLMOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import (
+ PreTrainedModel,
+ apply_chunking_to_forward,
+ find_pruneable_heads_and_indices,
+ prune_linear_layer,
+)
+from ...utils import logging
+from .configuration_markuplm import MarkupLMConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "microsoft/markuplm-base"
+_CONFIG_FOR_DOC = "MarkupLMConfig"
+
+
+from ..deprecated._archive_maps import MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class XPathEmbeddings(nn.Module):
+ """Construct the embeddings from xpath tags and subscripts.
+
+ We drop tree-id in this version, as its info can be covered by xpath.
+ """
+
+ def __init__(self, config):
+ super(XPathEmbeddings, self).__init__()
+ self.max_depth = config.max_depth
+
+ self.xpath_unitseq2_embeddings = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, config.hidden_size)
+
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ self.activation = nn.ReLU()
+ self.xpath_unitseq2_inner = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, 4 * config.hidden_size)
+ self.inner2emb = nn.Linear(4 * config.hidden_size, config.hidden_size)
+
+ self.xpath_tag_sub_embeddings = nn.ModuleList(
+ [
+ nn.Embedding(config.max_xpath_tag_unit_embeddings, config.xpath_unit_hidden_size)
+ for _ in range(self.max_depth)
+ ]
+ )
+
+ self.xpath_subs_sub_embeddings = nn.ModuleList(
+ [
+ nn.Embedding(config.max_xpath_subs_unit_embeddings, config.xpath_unit_hidden_size)
+ for _ in range(self.max_depth)
+ ]
+ )
+
+ def forward(self, xpath_tags_seq=None, xpath_subs_seq=None):
+ xpath_tags_embeddings = []
+ xpath_subs_embeddings = []
+
+ for i in range(self.max_depth):
+ xpath_tags_embeddings.append(self.xpath_tag_sub_embeddings[i](xpath_tags_seq[:, :, i]))
+ xpath_subs_embeddings.append(self.xpath_subs_sub_embeddings[i](xpath_subs_seq[:, :, i]))
+
+ xpath_tags_embeddings = torch.cat(xpath_tags_embeddings, dim=-1)
+ xpath_subs_embeddings = torch.cat(xpath_subs_embeddings, dim=-1)
+
+ xpath_embeddings = xpath_tags_embeddings + xpath_subs_embeddings
+
+ xpath_embeddings = self.inner2emb(self.dropout(self.activation(self.xpath_unitseq2_inner(xpath_embeddings))))
+
+ return xpath_embeddings
+
+
+# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
+def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ x: torch.Tensor x:
+
+ Returns: torch.Tensor
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = input_ids.ne(padding_idx).int()
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
+ return incremental_indices.long() + padding_idx
+
+
+class MarkupLMEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super(MarkupLMEmbeddings, self).__init__()
+ self.config = config
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+
+ self.max_depth = config.max_depth
+
+ self.xpath_embeddings = XPathEmbeddings(config)
+
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+
+ self.padding_idx = config.pad_token_id
+ self.position_embeddings = nn.Embedding(
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
+ )
+
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings.create_position_ids_from_inputs_embeds
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
+ """
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
+
+ Args:
+ inputs_embeds: torch.Tensor
+
+ Returns: torch.Tensor
+ """
+ input_shape = inputs_embeds.size()[:-1]
+ sequence_length = input_shape[1]
+
+ position_ids = torch.arange(
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
+ )
+ return position_ids.unsqueeze(0).expand(input_shape)
+
+ def forward(
+ self,
+ input_ids=None,
+ xpath_tags_seq=None,
+ xpath_subs_seq=None,
+ token_type_ids=None,
+ position_ids=None,
+ inputs_embeds=None,
+ past_key_values_length=0,
+ ):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
+ else:
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ # prepare xpath seq
+ if xpath_tags_seq is None:
+ xpath_tags_seq = self.config.tag_pad_id * torch.ones(
+ tuple(list(input_shape) + [self.max_depth]), dtype=torch.long, device=device
+ )
+ if xpath_subs_seq is None:
+ xpath_subs_seq = self.config.subs_pad_id * torch.ones(
+ tuple(list(input_shape) + [self.max_depth]), dtype=torch.long, device=device
+ )
+
+ words_embeddings = inputs_embeds
+ position_embeddings = self.position_embeddings(position_ids)
+
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ xpath_embeddings = self.xpath_embeddings(xpath_tags_seq, xpath_subs_seq)
+ embeddings = words_embeddings + position_embeddings + token_type_embeddings + xpath_embeddings
+
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->MarkupLM
+class MarkupLMSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate
+class MarkupLMIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->MarkupLM
+class MarkupLMOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler
+class MarkupLMPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->MarkupLM
+class MarkupLMPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->MarkupLM
+class MarkupLMLMPredictionHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = MarkupLMPredictionHeadTransform(config)
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->MarkupLM
+class MarkupLMOnlyMLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = MarkupLMLMPredictionHead(config)
+
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
+ prediction_scores = self.predictions(sequence_output)
+ return prediction_scores
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->MarkupLM
+class MarkupLMSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in MarkupLMModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->MarkupLM
+class MarkupLMAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = MarkupLMSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = MarkupLMSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->MarkupLM
+class MarkupLMLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = MarkupLMAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = MarkupLMAttention(config, position_embedding_type="absolute")
+ self.intermediate = MarkupLMIntermediate(config)
+ self.output = MarkupLMOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->MarkupLM
+class MarkupLMEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([MarkupLMLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class MarkupLMPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = MarkupLMConfig
+ base_model_prefix = "markuplm"
+
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights with Bert->MarkupLM
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
+ return super(MarkupLMPreTrainedModel, cls).from_pretrained(
+ pretrained_model_name_or_path, *model_args, **kwargs
+ )
+
+
+MARKUPLM_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`MarkupLMConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+MARKUPLM_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ xpath_tags_seq (`torch.LongTensor` of shape `({0}, config.max_depth)`, *optional*):
+ Tag IDs for each token in the input sequence, padded up to config.max_depth.
+
+ xpath_subs_seq (`torch.LongTensor` of shape `({0}, config.max_depth)`, *optional*):
+ Subscript IDs for each token in the input sequence, padded up to config.max_depth.
+
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: `1` for
+ tokens that are NOT MASKED, `0` for MASKED tokens.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`: `0` corresponds to a *sentence A* token, `1` corresponds to a *sentence B* token
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: `1`
+ indicates the head is **not masked**, `0` indicates the head is **masked**.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ If set to `True`, the attentions tensors of all attention layers are returned. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ If set to `True`, the hidden states of all layers are returned. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ If set to `True`, the model will return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare MarkupLM Model transformer outputting raw hidden-states without any specific head on top.",
+ MARKUPLM_START_DOCSTRING,
+)
+class MarkupLMModel(MarkupLMPreTrainedModel):
+ # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->MarkupLM
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = MarkupLMEmbeddings(config)
+ self.encoder = MarkupLMEncoder(config)
+
+ self.pooler = MarkupLMPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ xpath_tags_seq: Optional[torch.LongTensor] = None,
+ xpath_subs_seq: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoProcessor, MarkupLMModel
+
+ >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base")
+ >>> model = MarkupLMModel.from_pretrained("microsoft/markuplm-base")
+
+ >>> html_string = "
Page Title "
+
+ >>> encoding = processor(html_string, return_tensors="pt")
+
+ >>> outputs = model(**encoding)
+ >>> last_hidden_states = outputs.last_hidden_state
+ >>> list(last_hidden_states.shape)
+ [1, 4, 768]
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
+
+ if head_mask is not None:
+ if head_mask.dim() == 1:
+ head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
+ head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
+ elif head_mask.dim() == 2:
+ head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
+ head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
+ else:
+ head_mask = [None] * self.config.num_hidden_layers
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ xpath_tags_seq=xpath_tags_seq,
+ xpath_subs_seq=xpath_subs_seq,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+ # Copied from transformers.models.bert.modeling_bert.BertModel.prepare_inputs_for_generation
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs
+ ):
+ input_shape = input_ids.shape
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_shape)
+
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ return {
+ "input_ids": input_ids,
+ "attention_mask": attention_mask,
+ "past_key_values": past_key_values,
+ "use_cache": use_cache,
+ }
+
+ # Copied from transformers.models.bert.modeling_bert.BertModel._reorder_cache
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+
+@add_start_docstrings(
+ """
+ MarkupLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ MARKUPLM_START_DOCSTRING,
+)
+class MarkupLMForQuestionAnswering(MarkupLMPreTrainedModel):
+ # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with bert->markuplm, Bert->MarkupLM
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.markuplm = MarkupLMModel(config, add_pooling_layer=False)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ xpath_tags_seq: Optional[torch.Tensor] = None,
+ xpath_subs_seq: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ start_positions: Optional[torch.Tensor] = None,
+ end_positions: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoProcessor, MarkupLMForQuestionAnswering
+ >>> import torch
+
+ >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base-finetuned-websrc")
+ >>> model = MarkupLMForQuestionAnswering.from_pretrained("microsoft/markuplm-base-finetuned-websrc")
+
+ >>> html_string = " My name is Niels "
+ >>> question = "What's his name?"
+
+ >>> encoding = processor(html_string, questions=question, return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... outputs = model(**encoding)
+
+ >>> answer_start_index = outputs.start_logits.argmax()
+ >>> answer_end_index = outputs.end_logits.argmax()
+
+ >>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1]
+ >>> processor.decode(predict_answer_tokens).strip()
+ 'Niels'
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.markuplm(
+ input_ids,
+ xpath_tags_seq=xpath_tags_seq,
+ xpath_subs_seq=xpath_subs_seq,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions.clamp_(0, ignored_index)
+ end_positions.clamp_(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings("""MarkupLM Model with a `token_classification` head on top.""", MARKUPLM_START_DOCSTRING)
+class MarkupLMForTokenClassification(MarkupLMPreTrainedModel):
+ # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with bert->markuplm, Bert->MarkupLM
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.markuplm = MarkupLMModel(config, add_pooling_layer=False)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ xpath_tags_seq: Optional[torch.Tensor] = None,
+ xpath_subs_seq: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoProcessor, AutoModelForTokenClassification
+ >>> import torch
+
+ >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base")
+ >>> processor.parse_html = False
+ >>> model = AutoModelForTokenClassification.from_pretrained("microsoft/markuplm-base", num_labels=7)
+
+ >>> nodes = ["hello", "world"]
+ >>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"]
+ >>> node_labels = [1, 2]
+ >>> encoding = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... outputs = model(**encoding)
+
+ >>> loss = outputs.loss
+ >>> logits = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.markuplm(
+ input_ids,
+ xpath_tags_seq=xpath_tags_seq,
+ xpath_subs_seq=xpath_subs_seq,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.classifier(sequence_output) # (batch_size, seq_length, node_type_size)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(
+ prediction_scores.view(-1, self.config.num_labels),
+ labels.view(-1),
+ )
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ MarkupLM Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ MARKUPLM_START_DOCSTRING,
+)
+class MarkupLMForSequenceClassification(MarkupLMPreTrainedModel):
+ # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with bert->markuplm, Bert->MarkupLM
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.markuplm = MarkupLMModel(config)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ xpath_tags_seq: Optional[torch.Tensor] = None,
+ xpath_subs_seq: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoProcessor, AutoModelForSequenceClassification
+ >>> import torch
+
+ >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base")
+ >>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/markuplm-base", num_labels=7)
+
+ >>> html_string = " Page Title "
+ >>> encoding = processor(html_string, return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... outputs = model(**encoding)
+
+ >>> loss = outputs.loss
+ >>> logits = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.markuplm(
+ input_ids,
+ xpath_tags_seq=xpath_tags_seq,
+ xpath_subs_seq=xpath_subs_seq,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/processing_markuplm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/processing_markuplm.py
new file mode 100644
index 0000000000000000000000000000000000000000..81aaca9e5cce4a691d969462028c537f4673b1df
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/processing_markuplm.py
@@ -0,0 +1,146 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Processor class for MarkupLM.
+"""
+from typing import Optional, Union
+
+from ...file_utils import TensorType
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy
+
+
+class MarkupLMProcessor(ProcessorMixin):
+ r"""
+ Constructs a MarkupLM processor which combines a MarkupLM feature extractor and a MarkupLM tokenizer into a single
+ processor.
+
+ [`MarkupLMProcessor`] offers all the functionalities you need to prepare data for the model.
+
+ It first uses [`MarkupLMFeatureExtractor`] to extract nodes and corresponding xpaths from one or more HTML strings.
+ Next, these are provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which turns them into token-level
+ `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_subs_seq`.
+
+ Args:
+ feature_extractor (`MarkupLMFeatureExtractor`):
+ An instance of [`MarkupLMFeatureExtractor`]. The feature extractor is a required input.
+ tokenizer (`MarkupLMTokenizer` or `MarkupLMTokenizerFast`):
+ An instance of [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. The tokenizer is a required input.
+ parse_html (`bool`, *optional*, defaults to `True`):
+ Whether or not to use `MarkupLMFeatureExtractor` to parse HTML strings into nodes and corresponding xpaths.
+ """
+
+ feature_extractor_class = "MarkupLMFeatureExtractor"
+ tokenizer_class = ("MarkupLMTokenizer", "MarkupLMTokenizerFast")
+ parse_html = True
+
+ def __call__(
+ self,
+ html_strings=None,
+ nodes=None,
+ xpaths=None,
+ node_labels=None,
+ questions=None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ This method first forwards the `html_strings` argument to [`~MarkupLMFeatureExtractor.__call__`]. Next, it
+ passes the `nodes` and `xpaths` along with the additional arguments to [`~MarkupLMTokenizer.__call__`] and
+ returns the output.
+
+ Optionally, one can also provide a `text` argument which is passed along as first sequence.
+
+ Please refer to the docstring of the above two methods for more information.
+ """
+ # first, create nodes and xpaths
+ if self.parse_html:
+ if html_strings is None:
+ raise ValueError("Make sure to pass HTML strings in case `parse_html` is set to `True`")
+
+ if nodes is not None or xpaths is not None or node_labels is not None:
+ raise ValueError(
+ "Please don't pass nodes, xpaths nor node labels in case `parse_html` is set to `True`"
+ )
+
+ features = self.feature_extractor(html_strings)
+ nodes = features["nodes"]
+ xpaths = features["xpaths"]
+ else:
+ if html_strings is not None:
+ raise ValueError("You have passed HTML strings but `parse_html` is set to `False`.")
+ if nodes is None or xpaths is None:
+ raise ValueError("Make sure to pass nodes and xpaths in case `parse_html` is set to `False`")
+
+ # # second, apply the tokenizer
+ if questions is not None and self.parse_html:
+ if isinstance(questions, str):
+ questions = [questions] # add batch dimension (as the feature extractor always adds a batch dimension)
+
+ encoded_inputs = self.tokenizer(
+ text=questions if questions is not None else nodes,
+ text_pair=nodes if questions is not None else None,
+ xpaths=xpaths,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+
+ return encoded_inputs
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
+ to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
+ docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ return tokenizer_input_names
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm.py
new file mode 100644
index 0000000000000000000000000000000000000000..c77865abc934c99d41541b4644eb84b1b62406a4
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm.py
@@ -0,0 +1,1445 @@
+# coding=utf-8
+# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization class for MarkupLM."""
+
+import json
+import os
+from functools import lru_cache
+from typing import Dict, List, Optional, Tuple, Union
+
+import regex as re
+
+from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...tokenization_utils_base import (
+ ENCODE_KWARGS_DOCSTRING,
+ BatchEncoding,
+ EncodedInput,
+ PreTokenizedInput,
+ TextInput,
+ TextInputPair,
+ TruncationStrategy,
+)
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
+
+
+MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
+ add_special_tokens (`bool`, *optional*, defaults to `True`):
+ Whether or not to encode the sequences with the special tokens relative to their model.
+ padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
+ Activates and controls padding. Accepts the following values:
+
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
+ sequence if provided).
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
+ acceptable input length for the model if that argument is not provided.
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
+ lengths).
+ truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
+ Activates and controls truncation. Accepts the following values:
+
+ - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
+ to the maximum acceptable input length for the model if that argument is not provided. This will
+ truncate token by token, removing a token from the longest sequence in the pair if a pair of
+ sequences (or a batch of pairs) is provided.
+ - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will only
+ truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
+ - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will only
+ truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
+ - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
+ greater than the model maximum admissible input size).
+ max_length (`int`, *optional*):
+ Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to
+ `None`, this will use the predefined model maximum length if a maximum length is required by one of the
+ truncation/padding parameters. If the model has no specific maximum input length (like XLNet)
+ truncation/padding to a maximum length will be deactivated.
+ stride (`int`, *optional*, defaults to 0):
+ If set to a number along with `max_length`, the overflowing tokens returned when
+ `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
+ returned to provide some overlap between truncated and overflowing sequences. The value of this
+ argument defines the number of overlapping tokens.
+ pad_to_multiple_of (`int`, *optional*):
+ If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
+ the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
+ return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+"""
+
+
+@lru_cache()
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
+ characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large #
+ of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset
+ you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe
+ vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
+ """
+ bs = (
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
+ )
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8 + n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+
+def get_pairs(word):
+ """
+ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length
+ strings).
+ """
+ pairs = set()
+ prev_char = word[0]
+ for char in word[1:]:
+ pairs.add((prev_char, char))
+ prev_char = char
+ return pairs
+
+
+class MarkupLMTokenizer(PreTrainedTokenizer):
+ r"""
+ Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). [`MarkupLMTokenizer`] can be used to
+ turn HTML strings into to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and
+ `xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
+ Users should refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab_file,
+ merges_file,
+ tags_dict,
+ errors="replace",
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ add_prefix_space=False,
+ max_depth=50,
+ max_width=1000,
+ pad_width=1001,
+ pad_token_label=-100,
+ only_label_first_subword=True,
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
+ sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
+ cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
+
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
+ self.encoder = json.load(vocab_handle)
+
+ self.tags_dict = tags_dict
+ self.decoder = {v: k for k, v in self.encoder.items()}
+ self.errors = errors # how to handle errors in decoding
+ self.byte_encoder = bytes_to_unicode()
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
+ with open(merges_file, encoding="utf-8") as merges_handle:
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
+ self.cache = {}
+ self.add_prefix_space = add_prefix_space
+
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
+
+ # additional properties
+ self.max_depth = max_depth
+ self.max_width = max_width
+ self.pad_width = pad_width
+ self.unk_tag_id = len(self.tags_dict)
+ self.pad_tag_id = self.unk_tag_id + 1
+ self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth
+ self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth
+
+ super().__init__(
+ vocab_file=vocab_file,
+ merges_file=merges_file,
+ tags_dict=tags_dict,
+ errors=errors,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ add_prefix_space=add_prefix_space,
+ max_depth=max_depth,
+ max_width=max_width,
+ pad_width=pad_width,
+ pad_token_label=pad_token_label,
+ only_label_first_subword=only_label_first_subword,
+ **kwargs,
+ )
+
+ self.pad_token_label = pad_token_label
+ self.only_label_first_subword = only_label_first_subword
+
+ def get_xpath_seq(self, xpath):
+ """
+ Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of
+ tag IDs and corresponding subscripts, taking into account max depth.
+ """
+ xpath_tags_list = []
+ xpath_subs_list = []
+
+ xpath_units = xpath.split("/")
+ for unit in xpath_units:
+ if not unit.strip():
+ continue
+ name_subs = unit.strip().split("[")
+ tag_name = name_subs[0]
+ sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1])
+ xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id))
+ xpath_subs_list.append(min(self.max_width, sub))
+
+ xpath_tags_list = xpath_tags_list[: self.max_depth]
+ xpath_subs_list = xpath_subs_list[: self.max_depth]
+ xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list))
+ xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list))
+
+ return xpath_tags_list, xpath_subs_list
+
+ @property
+ def vocab_size(self):
+ return len(self.encoder)
+
+ def get_vocab(self):
+ vocab = self.encoder.copy()
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def bpe(self, token):
+ if token in self.cache:
+ return self.cache[token]
+ word = tuple(token)
+ pairs = get_pairs(word)
+
+ if not pairs:
+ return token
+
+ while True:
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
+ if bigram not in self.bpe_ranks:
+ break
+ first, second = bigram
+ new_word = []
+ i = 0
+ while i < len(word):
+ try:
+ j = word.index(first, i)
+ except ValueError:
+ new_word.extend(word[i:])
+ break
+ else:
+ new_word.extend(word[i:j])
+ i = j
+
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
+ new_word.append(first + second)
+ i += 2
+ else:
+ new_word.append(word[i])
+ i += 1
+ new_word = tuple(new_word)
+ word = new_word
+ if len(word) == 1:
+ break
+ else:
+ pairs = get_pairs(word)
+ word = " ".join(word)
+ self.cache[token] = word
+ return word
+
+ def _tokenize(self, text):
+ """Tokenize a string."""
+ bpe_tokens = []
+ for token in re.findall(self.pat, text):
+ token = "".join(
+ self.byte_encoder[b] for b in token.encode("utf-8")
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
+ return bpe_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.decoder.get(index)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ logger.warning(
+ "MarkupLM now does not support generative tasks, decoding is experimental and subject to change."
+ )
+ text = "".join(tokens)
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
+ return text
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ merge_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
+ )
+
+ # save vocab_file
+ with open(vocab_file, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
+
+ # save merge_file
+ index = 0
+ with open(merge_file, "w", encoding="utf-8") as writer:
+ writer.write("#version: 0.2\n")
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
+ " Please check that the tokenizer is not corrupted!"
+ )
+ index = token_index
+ writer.write(" ".join(bpe_tokens) + "\n")
+ index += 1
+
+ return vocab_file, merge_file
+
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
+ add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
+ if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
+ text = " " + text
+ return (text, kwargs)
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A RoBERTa sequence has the following format:
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def build_xpath_tags_with_special_tokens(
+ self, xpath_tags_0: List[int], xpath_tags_1: Optional[List[int]] = None
+ ) -> List[int]:
+ pad = [self.pad_xpath_tags_seq]
+ if len(xpath_tags_1) == 0:
+ return pad + xpath_tags_0 + pad
+ return pad + xpath_tags_0 + pad + xpath_tags_1 + pad
+
+ def build_xpath_subs_with_special_tokens(
+ self, xpath_subs_0: List[int], xpath_subs_1: Optional[List[int]] = None
+ ) -> List[int]:
+ pad = [self.pad_xpath_subs_seq]
+ if len(xpath_subs_1) == 0:
+ return pad + xpath_subs_0 + pad
+ return pad + xpath_subs_0 + pad + xpath_subs_1 + pad
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Args:
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0]
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def __call__(
+ self,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
+ text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
+ xpaths: Union[List[List[int]], List[List[List[int]]]] = None,
+ node_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
+ sequences with node-level xpaths and optional labels.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
+ (nodes of a single example or questions of a batch of examples) or a list of list of strings (batch of
+ nodes).
+ text_pair (`List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
+ (pretokenized string).
+ xpaths (`List[List[int]]`, `List[List[List[int]]]`):
+ Node-level xpaths.
+ node_labels (`List[int]`, `List[List[int]]`, *optional*):
+ Node-level integer labels (for token classification tasks).
+ """
+
+ # Input type checking for clearer error
+ def _is_valid_text_input(t):
+ if isinstance(t, str):
+ # Strings are fine
+ return True
+ elif isinstance(t, (list, tuple)):
+ # List are fine as long as they are...
+ if len(t) == 0:
+ # ... empty
+ return True
+ elif isinstance(t[0], str):
+ # ... list of strings
+ return True
+ elif isinstance(t[0], (list, tuple)):
+ # ... list with an empty list or with a list of strings
+ return len(t[0]) == 0 or isinstance(t[0][0], str)
+ else:
+ return False
+ else:
+ return False
+
+ if text_pair is not None:
+ # in case text + text_pair are provided, text = questions, text_pair = nodes
+ if not _is_valid_text_input(text):
+ raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
+ if not isinstance(text_pair, (list, tuple)):
+ raise ValueError(
+ "Nodes must be of type `List[str]` (single pretokenized example), "
+ "or `List[List[str]]` (batch of pretokenized examples)."
+ )
+ else:
+ # in case only text is provided => must be nodes
+ if not isinstance(text, (list, tuple)):
+ raise ValueError(
+ "Nodes must be of type `List[str]` (single pretokenized example), "
+ "or `List[List[str]]` (batch of pretokenized examples)."
+ )
+
+ if text_pair is not None:
+ is_batched = isinstance(text, (list, tuple))
+ else:
+ is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
+
+ nodes = text if text_pair is None else text_pair
+ assert xpaths is not None, "You must provide corresponding xpaths"
+ if is_batched:
+ assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples"
+ for nodes_example, xpaths_example in zip(nodes, xpaths):
+ assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths"
+ else:
+ assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths"
+
+ if is_batched:
+ if text_pair is not None and len(text) != len(text_pair):
+ raise ValueError(
+ f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
+ f" {len(text_pair)}."
+ )
+ batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
+ is_pair = bool(text_pair is not None)
+ return self.batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ xpaths=xpaths,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+ else:
+ return self.encode_plus(
+ text=text,
+ text_pair=text_pair,
+ xpaths=xpaths,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[
+ List[TextInput],
+ List[TextInputPair],
+ List[PreTokenizedInput],
+ ],
+ is_pair: bool = None,
+ xpaths: Optional[List[List[List[int]]]] = None,
+ node_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return self._batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ xpaths=xpaths,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ def _batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[
+ List[TextInput],
+ List[TextInputPair],
+ List[PreTokenizedInput],
+ ],
+ is_pair: bool = None,
+ xpaths: Optional[List[List[List[int]]]] = None,
+ node_labels: Optional[List[List[int]]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ if return_offsets_mapping:
+ raise NotImplementedError(
+ "return_offset_mapping is not available when using Python tokenizers. "
+ "To use this feature, change your tokenizer to one deriving from "
+ "transformers.PreTrainedTokenizerFast."
+ )
+
+ batch_outputs = self._batch_prepare_for_model(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ xpaths=xpaths,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ return_tensors=return_tensors,
+ verbose=verbose,
+ )
+
+ return BatchEncoding(batch_outputs)
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def _batch_prepare_for_model(
+ self,
+ batch_text_or_text_pairs,
+ is_pair: bool = None,
+ xpaths: Optional[List[List[int]]] = None,
+ node_labels: Optional[List[List[int]]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[str] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ ) -> BatchEncoding:
+ """
+ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
+ adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
+ manages a moving window (with user defined stride) for overflowing tokens.
+
+ Args:
+ batch_ids_pairs: list of tokenized input ids or input ids pairs
+ """
+
+ batch_outputs = {}
+ for idx, example in enumerate(zip(batch_text_or_text_pairs, xpaths)):
+ batch_text_or_text_pair, xpaths_example = example
+ outputs = self.prepare_for_model(
+ batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
+ batch_text_or_text_pair[1] if is_pair else None,
+ xpaths_example,
+ node_labels=node_labels[idx] if node_labels is not None else None,
+ add_special_tokens=add_special_tokens,
+ padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
+ truncation=truncation_strategy.value,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=None, # we pad in batch afterward
+ return_attention_mask=False, # we pad in batch afterward
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ return_tensors=None, # We convert the whole batch to tensors at the end
+ prepend_batch_axis=False,
+ verbose=verbose,
+ )
+
+ for key, value in outputs.items():
+ if key not in batch_outputs:
+ batch_outputs[key] = []
+ batch_outputs[key].append(value)
+
+ batch_outputs = self.pad(
+ batch_outputs,
+ padding=padding_strategy.value,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
+
+ return batch_outputs
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING)
+ def encode(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ xpaths: Optional[List[List[int]]] = None,
+ node_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> List[int]:
+ encoded_inputs = self.encode_plus(
+ text=text,
+ text_pair=text_pair,
+ xpaths=xpaths,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return encoded_inputs["input_ids"]
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def encode_plus(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ xpaths: Optional[List[List[int]]] = None,
+ node_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
+ `__call__` should be used instead.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
+ text_pair (`List[str]` or `List[int]`, *optional*):
+ Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a
+ list of list of strings (nodes of a batch of examples).
+ """
+
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return self._encode_plus(
+ text=text,
+ xpaths=xpaths,
+ text_pair=text_pair,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ def _encode_plus(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ xpaths: Optional[List[List[int]]] = None,
+ node_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ if return_offsets_mapping:
+ raise NotImplementedError(
+ "return_offset_mapping is not available when using Python tokenizers. "
+ "To use this feature, change your tokenizer to one deriving from "
+ "transformers.PreTrainedTokenizerFast. "
+ "More information on available tokenizers at "
+ "https://github.com/huggingface/transformers/pull/2674"
+ )
+
+ return self.prepare_for_model(
+ text=text,
+ text_pair=text_pair,
+ xpaths=xpaths,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding_strategy.value,
+ truncation=truncation_strategy.value,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ prepend_batch_axis=True,
+ return_attention_mask=return_attention_mask,
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ verbose=verbose,
+ )
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def prepare_for_model(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ xpaths: Optional[List[List[int]]] = None,
+ node_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ prepend_batch_axis: bool = False,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
+ truncates sequences if overflowing while taking into account the special tokens and manages a moving window
+ (with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and
+ *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a
+ combination of arguments will raise an error.
+
+ Node-level `xpaths` are turned into token-level `xpath_tags_seq` and `xpath_subs_seq`. If provided, node-level
+ `node_labels` are turned into token-level `labels`. The node label is used for the first token of the node,
+ while remaining tokens are labeled with -100, such that they will be ignored by the loss function.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
+ text_pair (`List[str]` or `List[int]`, *optional*):
+ Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a
+ list of list of strings (nodes of a batch of examples).
+ """
+
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ tokens = []
+ pair_tokens = []
+ xpath_tags_seq = []
+ xpath_subs_seq = []
+ pair_xpath_tags_seq = []
+ pair_xpath_subs_seq = []
+ labels = []
+
+ if text_pair is None:
+ if node_labels is None:
+ # CASE 1: web page classification (training + inference) + CASE 2: token classification (inference)
+ for word, xpath in zip(text, xpaths):
+ if len(word) < 1: # skip empty nodes
+ continue
+ word_tokens = self.tokenize(word)
+ tokens.extend(word_tokens)
+ xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath)
+ xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens))
+ xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens))
+ else:
+ # CASE 2: token classification (training)
+ for word, xpath, label in zip(text, xpaths, node_labels):
+ if len(word) < 1: # skip empty nodes
+ continue
+ word_tokens = self.tokenize(word)
+ tokens.extend(word_tokens)
+ xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath)
+ xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens))
+ xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens))
+ if self.only_label_first_subword:
+ # Use the real label id for the first token of the word, and padding ids for the remaining tokens
+ labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
+ else:
+ labels.extend([label] * len(word_tokens))
+ else:
+ # CASE 3: web page question answering (inference)
+ # text = question
+ # text_pair = nodes
+ tokens = self.tokenize(text)
+ xpath_tags_seq = [self.pad_xpath_tags_seq for _ in range(len(tokens))]
+ xpath_subs_seq = [self.pad_xpath_subs_seq for _ in range(len(tokens))]
+
+ for word, xpath in zip(text_pair, xpaths):
+ if len(word) < 1: # skip empty nodes
+ continue
+ word_tokens = self.tokenize(word)
+ pair_tokens.extend(word_tokens)
+ xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath)
+ pair_xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens))
+ pair_xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens))
+
+ # Create ids + pair_ids
+ ids = self.convert_tokens_to_ids(tokens)
+ pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
+
+ if (
+ return_overflowing_tokens
+ and truncation_strategy == TruncationStrategy.LONGEST_FIRST
+ and pair_ids is not None
+ ):
+ raise ValueError(
+ "Not possible to return overflowing tokens for pair of sequences with the "
+ "`longest_first`. Please select another truncation strategy than `longest_first`, "
+ "for instance `only_second` or `only_first`."
+ )
+
+ # Compute the total size of the returned encodings
+ pair = bool(pair_ids is not None)
+ len_ids = len(ids)
+ len_pair_ids = len(pair_ids) if pair else 0
+ total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
+
+ # Truncation: Handle max sequence length
+ overflowing_tokens = []
+ overflowing_xpath_tags_seq = []
+ overflowing_xpath_subs_seq = []
+ overflowing_labels = []
+ if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
+ (
+ ids,
+ xpath_tags_seq,
+ xpath_subs_seq,
+ pair_ids,
+ pair_xpath_tags_seq,
+ pair_xpath_subs_seq,
+ labels,
+ overflowing_tokens,
+ overflowing_xpath_tags_seq,
+ overflowing_xpath_subs_seq,
+ overflowing_labels,
+ ) = self.truncate_sequences(
+ ids,
+ xpath_tags_seq=xpath_tags_seq,
+ xpath_subs_seq=xpath_subs_seq,
+ pair_ids=pair_ids,
+ pair_xpath_tags_seq=pair_xpath_tags_seq,
+ pair_xpath_subs_seq=pair_xpath_subs_seq,
+ labels=labels,
+ num_tokens_to_remove=total_len - max_length,
+ truncation_strategy=truncation_strategy,
+ stride=stride,
+ )
+
+ if return_token_type_ids and not add_special_tokens:
+ raise ValueError(
+ "Asking to return token_type_ids while setting add_special_tokens to False "
+ "results in an undefined behavior. Please set add_special_tokens to True or "
+ "set return_token_type_ids to None."
+ )
+
+ # Load from model defaults
+ if return_token_type_ids is None:
+ return_token_type_ids = "token_type_ids" in self.model_input_names
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ encoded_inputs = {}
+
+ if return_overflowing_tokens:
+ encoded_inputs["overflowing_tokens"] = overflowing_tokens
+ encoded_inputs["overflowing_xpath_tags_seq"] = overflowing_xpath_tags_seq
+ encoded_inputs["overflowing_xpath_subs_seq"] = overflowing_xpath_subs_seq
+ encoded_inputs["overflowing_labels"] = overflowing_labels
+ encoded_inputs["num_truncated_tokens"] = total_len - max_length
+
+ # Add special tokens
+ if add_special_tokens:
+ sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
+ token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
+ xpath_tags_ids = self.build_xpath_tags_with_special_tokens(xpath_tags_seq, pair_xpath_tags_seq)
+ xpath_subs_ids = self.build_xpath_subs_with_special_tokens(xpath_subs_seq, pair_xpath_subs_seq)
+ if labels:
+ labels = [self.pad_token_label] + labels + [self.pad_token_label]
+ else:
+ sequence = ids + pair_ids if pair else ids
+ token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
+ xpath_tags_ids = xpath_tags_seq + pair_xpath_tags_seq if pair else xpath_tags_seq
+ xpath_subs_ids = xpath_subs_seq + pair_xpath_subs_seq if pair else xpath_subs_seq
+
+ # Build output dictionary
+ encoded_inputs["input_ids"] = sequence
+ encoded_inputs["xpath_tags_seq"] = xpath_tags_ids
+ encoded_inputs["xpath_subs_seq"] = xpath_subs_ids
+ if return_token_type_ids:
+ encoded_inputs["token_type_ids"] = token_type_ids
+ if return_special_tokens_mask:
+ if add_special_tokens:
+ encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
+ else:
+ encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
+
+ if labels:
+ encoded_inputs["labels"] = labels
+
+ # Check lengths
+ self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
+
+ # Padding
+ if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
+ encoded_inputs = self.pad(
+ encoded_inputs,
+ max_length=max_length,
+ padding=padding_strategy.value,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ if return_length:
+ encoded_inputs["length"] = len(encoded_inputs["input_ids"])
+
+ batch_outputs = BatchEncoding(
+ encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
+ )
+
+ return batch_outputs
+
+ def truncate_sequences(
+ self,
+ ids: List[int],
+ xpath_tags_seq: List[List[int]],
+ xpath_subs_seq: List[List[int]],
+ pair_ids: Optional[List[int]] = None,
+ pair_xpath_tags_seq: Optional[List[List[int]]] = None,
+ pair_xpath_subs_seq: Optional[List[List[int]]] = None,
+ labels: Optional[List[int]] = None,
+ num_tokens_to_remove: int = 0,
+ truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
+ stride: int = 0,
+ ) -> Tuple[List[int], List[int], List[int]]:
+ """
+ Args:
+ Truncates a sequence pair in-place following the strategy.
+ ids (`List[int]`):
+ Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
+ `convert_tokens_to_ids` methods.
+ xpath_tags_seq (`List[List[int]]`):
+ XPath tag IDs of the first sequence.
+ xpath_subs_seq (`List[List[int]]`):
+ XPath sub IDs of the first sequence.
+ pair_ids (`List[int]`, *optional*):
+ Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
+ and `convert_tokens_to_ids` methods.
+ pair_xpath_tags_seq (`List[List[int]]`, *optional*):
+ XPath tag IDs of the second sequence.
+ pair_xpath_subs_seq (`List[List[int]]`, *optional*):
+ XPath sub IDs of the second sequence.
+ num_tokens_to_remove (`int`, *optional*, defaults to 0):
+ Number of tokens to remove using the truncation strategy.
+ truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to
+ `False`):
+ The strategy to follow for truncation. Can be:
+ - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will truncate
+ token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
+ batch of pairs) is provided.
+ - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will only
+ truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
+ - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will only
+ truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
+ - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
+ than the model maximum admissible input size).
+ stride (`int`, *optional*, defaults to 0):
+ If set to a positive number, the overflowing tokens returned will contain some tokens from the main
+ sequence returned. The value of this argument defines the number of additional tokens.
+ Returns:
+ `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
+ overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
+ of sequences (or a batch of pairs) is provided.
+ """
+ if num_tokens_to_remove <= 0:
+ return ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, [], [], []
+
+ if not isinstance(truncation_strategy, TruncationStrategy):
+ truncation_strategy = TruncationStrategy(truncation_strategy)
+
+ overflowing_tokens = []
+ overflowing_xpath_tags_seq = []
+ overflowing_xpath_subs_seq = []
+ overflowing_labels = []
+ if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
+ truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
+ ):
+ if len(ids) > num_tokens_to_remove:
+ window_len = min(len(ids), stride + num_tokens_to_remove)
+ overflowing_tokens = ids[-window_len:]
+ overflowing_xpath_tags_seq = xpath_tags_seq[-window_len:]
+ overflowing_xpath_subs_seq = xpath_subs_seq[-window_len:]
+ ids = ids[:-num_tokens_to_remove]
+ xpath_tags_seq = xpath_tags_seq[:-num_tokens_to_remove]
+ xpath_subs_seq = xpath_subs_seq[:-num_tokens_to_remove]
+ labels = labels[:-num_tokens_to_remove]
+ else:
+ error_msg = (
+ f"We need to remove {num_tokens_to_remove} to truncate the input "
+ f"but the first sequence has a length {len(ids)}. "
+ )
+ if truncation_strategy == TruncationStrategy.ONLY_FIRST:
+ error_msg = (
+ error_msg + "Please select another truncation strategy than "
+ f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
+ )
+ logger.error(error_msg)
+ elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
+ logger.warning(
+ "Be aware, overflowing tokens are not returned for the setting you have chosen,"
+ f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
+ "truncation strategy. So the returned list will always be empty even if some "
+ "tokens have been removed."
+ )
+ for _ in range(num_tokens_to_remove):
+ if pair_ids is None or len(ids) > len(pair_ids):
+ ids = ids[:-1]
+ xpath_tags_seq = xpath_tags_seq[:-1]
+ xpath_subs_seq = xpath_subs_seq[:-1]
+ labels = labels[:-1]
+ else:
+ pair_ids = pair_ids[:-1]
+ pair_xpath_tags_seq = pair_xpath_tags_seq[:-1]
+ pair_xpath_subs_seq = pair_xpath_subs_seq[:-1]
+ elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
+ if len(pair_ids) > num_tokens_to_remove:
+ window_len = min(len(pair_ids), stride + num_tokens_to_remove)
+ overflowing_tokens = pair_ids[-window_len:]
+ overflowing_xpath_tags_seq = pair_xpath_tags_seq[-window_len:]
+ overflowing_xpath_subs_seq = pair_xpath_subs_seq[-window_len:]
+ pair_ids = pair_ids[:-num_tokens_to_remove]
+ pair_xpath_tags_seq = pair_xpath_tags_seq[:-num_tokens_to_remove]
+ pair_xpath_subs_seq = pair_xpath_subs_seq[:-num_tokens_to_remove]
+ else:
+ logger.error(
+ f"We need to remove {num_tokens_to_remove} to truncate the input "
+ f"but the second sequence has a length {len(pair_ids)}. "
+ f"Please select another truncation strategy than {truncation_strategy}, "
+ "for instance 'longest_first' or 'only_first'."
+ )
+
+ return (
+ ids,
+ xpath_tags_seq,
+ xpath_subs_seq,
+ pair_ids,
+ pair_xpath_tags_seq,
+ pair_xpath_subs_seq,
+ labels,
+ overflowing_tokens,
+ overflowing_xpath_tags_seq,
+ overflowing_xpath_subs_seq,
+ overflowing_labels,
+ )
+
+ def _pad(
+ self,
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
+ max_length: Optional[int] = None,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ ) -> dict:
+ """
+ Args:
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
+ encoded_inputs:
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
+ max_length: maximum length of the returned list and optionally padding length (see below).
+ Will truncate by taking into account the special tokens.
+ padding_strategy: PaddingStrategy to use for padding.
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
+ The tokenizer padding sides are defined in self.padding_side:
+ - 'left': pads on the left of the sequences
+ - 'right': pads on the right of the sequences
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta).
+ return_attention_mask:
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
+ """
+ # Load from model defaults
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ required_input = encoded_inputs[self.model_input_names[0]]
+
+ if padding_strategy == PaddingStrategy.LONGEST:
+ max_length = len(required_input)
+
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
+
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
+
+ # Initialize attention mask if not present.
+ if return_attention_mask and "attention_mask" not in encoded_inputs:
+ encoded_inputs["attention_mask"] = [1] * len(required_input)
+
+ if needs_to_be_padded:
+ difference = max_length - len(required_input)
+ if self.padding_side == "right":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = (
+ encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
+ )
+ if "xpath_tags_seq" in encoded_inputs:
+ encoded_inputs["xpath_tags_seq"] = (
+ encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference
+ )
+ if "xpath_subs_seq" in encoded_inputs:
+ encoded_inputs["xpath_subs_seq"] = (
+ encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference
+ )
+ if "labels" in encoded_inputs:
+ encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
+ encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
+ elif self.padding_side == "left":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
+ "token_type_ids"
+ ]
+ if "xpath_tags_seq" in encoded_inputs:
+ encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[
+ "xpath_tags_seq"
+ ]
+ if "xpath_subs_seq" in encoded_inputs:
+ encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[
+ "xpath_subs_seq"
+ ]
+ if "labels" in encoded_inputs:
+ encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
+ else:
+ raise ValueError("Invalid padding strategy:" + str(self.padding_side))
+
+ return encoded_inputs
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..ff0e4ffeb56e9f1b0721e86f2e82324b14a3f477
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm_fast.py
@@ -0,0 +1,918 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Fast tokenization class for MarkupLM. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus
+and _encode_plus, in which the Rust tokenizer is used.
+"""
+
+import json
+from functools import lru_cache
+from typing import Dict, List, Optional, Tuple, Union
+
+from tokenizers import pre_tokenizers, processors
+
+from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings
+from ...tokenization_utils_base import (
+ ENCODE_KWARGS_DOCSTRING,
+ AddedToken,
+ BatchEncoding,
+ EncodedInput,
+ PreTokenizedInput,
+ TextInput,
+ TextInputPair,
+ TruncationStrategy,
+)
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+from .tokenization_markuplm import MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, MarkupLMTokenizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
+
+
+@lru_cache()
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
+ characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large #
+ of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset
+ you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe
+ vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
+ """
+ bs = (
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
+ )
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8 + n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+
+def get_pairs(word):
+ """
+ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length
+ strings).
+ """
+ pairs = set()
+ prev_char = word[0]
+ for char in word[1:]:
+ pairs.add((prev_char, char))
+ prev_char = char
+ return pairs
+
+
+class MarkupLMTokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE).
+
+ [`MarkupLMTokenizerFast`] can be used to turn HTML strings into to token-level `input_ids`, `attention_mask`,
+ `token_type_ids`, `xpath_tags_seq` and `xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which
+ contains most of the main methods.
+
+ Users should refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = MarkupLMTokenizer
+
+ def __init__(
+ self,
+ vocab_file,
+ merges_file,
+ tags_dict,
+ tokenizer_file=None,
+ errors="replace",
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ add_prefix_space=False,
+ max_depth=50,
+ max_width=1000,
+ pad_width=1001,
+ pad_token_label=-100,
+ only_label_first_subword=True,
+ trim_offsets=False,
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
+ sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
+ cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
+
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ super().__init__(
+ vocab_file=vocab_file,
+ merges_file=merges_file,
+ tags_dict=tags_dict,
+ tokenizer_file=tokenizer_file,
+ errors=errors,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ add_prefix_space=add_prefix_space,
+ trim_offsets=trim_offsets,
+ max_depth=max_depth,
+ max_width=max_width,
+ pad_width=pad_width,
+ pad_token_label=pad_token_label,
+ only_label_first_subword=only_label_first_subword,
+ **kwargs,
+ )
+ if trim_offsets:
+ # Not implemented yet, because we need to chain two post processors which is not possible yet
+ # We need to wait for https://github.com/huggingface/tokenizers/pull/1005
+ # With `trim_offsets=False` we don't need to do add `processors.ByteLevel(trim_offsets=False)`
+ # because it's not doing anything
+ raise NotImplementedError(
+ "`trim_offsets=True` is not implemented for MarkupLMTokenizerFast. Please set it to False."
+ )
+
+ self.tags_dict = tags_dict
+
+ pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
+ if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
+ pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
+ pre_tok_state["add_prefix_space"] = add_prefix_space
+ self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
+
+ self.add_prefix_space = add_prefix_space
+
+ tokenizer_component = "post_processor"
+ tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
+ if tokenizer_component_instance:
+ state = json.loads(tokenizer_component_instance.__getstate__())
+
+ # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
+ if "sep" in state:
+ state["sep"] = tuple(state["sep"])
+ if "cls" in state:
+ state["cls"] = tuple(state["cls"])
+
+ changes_to_apply = False
+
+ if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
+ state["add_prefix_space"] = add_prefix_space
+ changes_to_apply = True
+
+ if changes_to_apply:
+ component_class = getattr(processors, state.pop("type"))
+ new_value = component_class(**state)
+ setattr(self.backend_tokenizer, tokenizer_component, new_value)
+
+ # additional properties
+ self.max_depth = max_depth
+ self.max_width = max_width
+ self.pad_width = pad_width
+ self.unk_tag_id = len(self.tags_dict)
+ self.pad_tag_id = self.unk_tag_id + 1
+ self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth
+ self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth
+ self.pad_token_label = pad_token_label
+ self.only_label_first_subword = only_label_first_subword
+
+ def get_xpath_seq(self, xpath):
+ """
+ Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of
+ tag IDs and corresponding subscripts, taking into account max depth.
+ """
+ xpath_tags_list = []
+ xpath_subs_list = []
+
+ xpath_units = xpath.split("/")
+ for unit in xpath_units:
+ if not unit.strip():
+ continue
+ name_subs = unit.strip().split("[")
+ tag_name = name_subs[0]
+ sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1])
+ xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id))
+ xpath_subs_list.append(min(self.max_width, sub))
+
+ xpath_tags_list = xpath_tags_list[: self.max_depth]
+ xpath_subs_list = xpath_subs_list[: self.max_depth]
+ xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list))
+ xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list))
+
+ return xpath_tags_list, xpath_subs_list
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def __call__(
+ self,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
+ text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
+ xpaths: Union[List[List[int]], List[List[List[int]]]] = None,
+ node_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
+ sequences with nodes, xpaths and optional labels.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
+ (words of a single example or questions of a batch of examples) or a list of list of strings (batch of
+ words).
+ text_pair (`List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
+ (pretokenized string).
+ xpaths (`List[List[int]]`, `List[List[List[int]]]`):
+ Node-level xpaths. Each bounding box should be normalized to be on a 0-1000 scale.
+ node_labels (`List[int]`, `List[List[int]]`, *optional*):
+ Node-level integer labels (for token classification tasks).
+ """
+
+ # Input type checking for clearer error
+ def _is_valid_text_input(t):
+ if isinstance(t, str):
+ # Strings are fine
+ return True
+ elif isinstance(t, (list, tuple)):
+ # List are fine as long as they are...
+ if len(t) == 0:
+ # ... empty
+ return True
+ elif isinstance(t[0], str):
+ # ... list of strings
+ return True
+ elif isinstance(t[0], (list, tuple)):
+ # ... list with an empty list or with a list of strings
+ return len(t[0]) == 0 or isinstance(t[0][0], str)
+ else:
+ return False
+ else:
+ return False
+
+ if text_pair is not None:
+ # in case text + text_pair are provided, text = questions, text_pair = nodes
+ if not _is_valid_text_input(text):
+ raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
+ if not isinstance(text_pair, (list, tuple)):
+ raise ValueError(
+ "Nodes must be of type `List[str]` (single pretokenized example), "
+ "or `List[List[str]]` (batch of pretokenized examples)."
+ )
+ else:
+ # in case only text is provided => must be nodes
+ if not isinstance(text, (list, tuple)):
+ raise ValueError(
+ "Nodes must be of type `List[str]` (single pretokenized example), "
+ "or `List[List[str]]` (batch of pretokenized examples)."
+ )
+
+ if text_pair is not None:
+ is_batched = isinstance(text, (list, tuple))
+ else:
+ is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
+
+ nodes = text if text_pair is None else text_pair
+ assert xpaths is not None, "You must provide corresponding xpaths"
+ if is_batched:
+ assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples"
+ for nodes_example, xpaths_example in zip(nodes, xpaths):
+ assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths"
+ else:
+ assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths"
+
+ if is_batched:
+ if text_pair is not None and len(text) != len(text_pair):
+ raise ValueError(
+ f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
+ f" {len(text_pair)}."
+ )
+ batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
+ is_pair = bool(text_pair is not None)
+ return self.batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ xpaths=xpaths,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+ else:
+ return self.encode_plus(
+ text=text,
+ text_pair=text_pair,
+ xpaths=xpaths,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[
+ List[TextInput],
+ List[TextInputPair],
+ List[PreTokenizedInput],
+ ],
+ is_pair: bool = None,
+ xpaths: Optional[List[List[List[int]]]] = None,
+ node_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return self._batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ xpaths=xpaths,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
+ batched_input = [(text, pair)] if pair else [text]
+ encodings = self._tokenizer.encode_batch(
+ batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
+ )
+
+ return encodings[0].tokens
+
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def encode_plus(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ xpaths: Optional[List[List[int]]] = None,
+ node_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
+ `__call__` should be used instead.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
+ text_pair (`List[str]` or `List[int]`, *optional*):
+ Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
+ list of list of strings (words of a batch of examples).
+ """
+
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return self._encode_plus(
+ text=text,
+ xpaths=xpaths,
+ text_pair=text_pair,
+ node_labels=node_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ def _batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[
+ List[TextInput],
+ List[TextInputPair],
+ List[PreTokenizedInput],
+ ],
+ is_pair: bool = None,
+ xpaths: Optional[List[List[List[int]]]] = None,
+ node_labels: Optional[List[List[int]]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[str] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ ) -> BatchEncoding:
+ if not isinstance(batch_text_or_text_pairs, list):
+ raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
+
+ # Set the truncation and padding strategy and restore the initial configuration
+ self.set_truncation_and_padding(
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ )
+
+ if is_pair:
+ batch_text_or_text_pairs = [([text], text_pair) for text, text_pair in batch_text_or_text_pairs]
+
+ encodings = self._tokenizer.encode_batch(
+ batch_text_or_text_pairs,
+ add_special_tokens=add_special_tokens,
+ is_pretokenized=True, # we set this to True as MarkupLM always expects pretokenized inputs
+ )
+
+ # Convert encoding to dict
+ # `Tokens` is a tuple of (List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
+ # List[EncodingFast]) with nested dimensions corresponding to batch, overflows, sequence length
+ tokens_and_encodings = [
+ self._convert_encoding(
+ encoding=encoding,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=True
+ if node_labels is not None
+ else return_offsets_mapping, # we use offsets to create the labels
+ return_length=return_length,
+ verbose=verbose,
+ )
+ for encoding in encodings
+ ]
+
+ # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
+ # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
+ # (we say ~ because the number of overflow varies with the example in the batch)
+ #
+ # To match each overflowing sample with the original sample in the batch
+ # we add an overflow_to_sample_mapping array (see below)
+ sanitized_tokens = {}
+ for key in tokens_and_encodings[0][0].keys():
+ stack = [e for item, _ in tokens_and_encodings for e in item[key]]
+ sanitized_tokens[key] = stack
+ sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
+
+ # If returning overflowing tokens, we need to return a mapping
+ # from the batch idx to the original sample
+ if return_overflowing_tokens:
+ overflow_to_sample_mapping = []
+ for i, (toks, _) in enumerate(tokens_and_encodings):
+ overflow_to_sample_mapping += [i] * len(toks["input_ids"])
+ sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
+
+ for input_ids in sanitized_tokens["input_ids"]:
+ self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
+
+ # create the token-level xpaths tags and subscripts
+ xpath_tags_seq = []
+ xpath_subs_seq = []
+ for batch_index in range(len(sanitized_tokens["input_ids"])):
+ if return_overflowing_tokens:
+ original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
+ else:
+ original_index = batch_index
+ xpath_tags_seq_example = []
+ xpath_subs_seq_example = []
+ for id, sequence_id, word_id in zip(
+ sanitized_tokens["input_ids"][batch_index],
+ sanitized_encodings[batch_index].sequence_ids,
+ sanitized_encodings[batch_index].word_ids,
+ ):
+ if word_id is not None:
+ if is_pair and sequence_id == 0:
+ xpath_tags_seq_example.append(self.pad_xpath_tags_seq)
+ xpath_subs_seq_example.append(self.pad_xpath_subs_seq)
+ else:
+ xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpaths[original_index][word_id])
+ xpath_tags_seq_example.extend([xpath_tags_list])
+ xpath_subs_seq_example.extend([xpath_subs_list])
+ else:
+ if id in [self.cls_token_id, self.sep_token_id, self.pad_token_id]:
+ xpath_tags_seq_example.append(self.pad_xpath_tags_seq)
+ xpath_subs_seq_example.append(self.pad_xpath_subs_seq)
+ else:
+ raise ValueError("Id not recognized")
+ xpath_tags_seq.append(xpath_tags_seq_example)
+ xpath_subs_seq.append(xpath_subs_seq_example)
+
+ sanitized_tokens["xpath_tags_seq"] = xpath_tags_seq
+ sanitized_tokens["xpath_subs_seq"] = xpath_subs_seq
+
+ # optionally, create the labels
+ if node_labels is not None:
+ labels = []
+ for batch_index in range(len(sanitized_tokens["input_ids"])):
+ if return_overflowing_tokens:
+ original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
+ else:
+ original_index = batch_index
+ labels_example = []
+ for id, offset, word_id in zip(
+ sanitized_tokens["input_ids"][batch_index],
+ sanitized_tokens["offset_mapping"][batch_index],
+ sanitized_encodings[batch_index].word_ids,
+ ):
+ if word_id is not None:
+ if self.only_label_first_subword:
+ if offset[0] == 0:
+ # Use the real label id for the first token of the word, and padding ids for the remaining tokens
+ labels_example.append(node_labels[original_index][word_id])
+ else:
+ labels_example.append(self.pad_token_label)
+ else:
+ labels_example.append(node_labels[original_index][word_id])
+ else:
+ labels_example.append(self.pad_token_label)
+ labels.append(labels_example)
+
+ sanitized_tokens["labels"] = labels
+ # finally, remove offsets if the user didn't want them
+ if not return_offsets_mapping:
+ del sanitized_tokens["offset_mapping"]
+
+ return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
+
+ def _encode_plus(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ xpaths: Optional[List[List[int]]] = None,
+ node_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[bool] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ # make it a batched input
+ # 2 options:
+ # 1) only text, in case text must be a list of str
+ # 2) text + text_pair, in which case text = str and text_pair a list of str
+ batched_input = [(text, text_pair)] if text_pair else [text]
+ batched_xpaths = [xpaths]
+ batched_node_labels = [node_labels] if node_labels is not None else None
+ batched_output = self._batch_encode_plus(
+ batched_input,
+ is_pair=bool(text_pair is not None),
+ xpaths=batched_xpaths,
+ node_labels=batched_node_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ # Return tensor is None, then we can remove the leading batch axis
+ # Overflowing tokens are returned as a batch of output so we keep them in this case
+ if return_tensors is None and not return_overflowing_tokens:
+ batched_output = BatchEncoding(
+ {
+ key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
+ for key, value in batched_output.items()
+ },
+ batched_output.encodings,
+ )
+
+ self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
+
+ return batched_output
+
+ def _pad(
+ self,
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
+ max_length: Optional[int] = None,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ ) -> dict:
+ """
+ Args:
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
+ encoded_inputs:
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
+ max_length: maximum length of the returned list and optionally padding length (see below).
+ Will truncate by taking into account the special tokens.
+ padding_strategy: PaddingStrategy to use for padding.
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
+ The tokenizer padding sides are defined in self.padding_side:
+ - 'left': pads on the left of the sequences
+ - 'right': pads on the right of the sequences
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta).
+ return_attention_mask:
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
+ """
+ # Load from model defaults
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ required_input = encoded_inputs[self.model_input_names[0]]
+
+ if padding_strategy == PaddingStrategy.LONGEST:
+ max_length = len(required_input)
+
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
+
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
+
+ # Initialize attention mask if not present.
+ if return_attention_mask and "attention_mask" not in encoded_inputs:
+ encoded_inputs["attention_mask"] = [1] * len(required_input)
+
+ if needs_to_be_padded:
+ difference = max_length - len(required_input)
+ if self.padding_side == "right":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = (
+ encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
+ )
+ if "xpath_tags_seq" in encoded_inputs:
+ encoded_inputs["xpath_tags_seq"] = (
+ encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference
+ )
+ if "xpath_subs_seq" in encoded_inputs:
+ encoded_inputs["xpath_subs_seq"] = (
+ encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference
+ )
+ if "labels" in encoded_inputs:
+ encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
+ encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
+ elif self.padding_side == "left":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
+ "token_type_ids"
+ ]
+ if "xpath_tags_seq" in encoded_inputs:
+ encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[
+ "xpath_tags_seq"
+ ]
+ if "xpath_subs_seq" in encoded_inputs:
+ encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[
+ "xpath_subs_seq"
+ ]
+ if "labels" in encoded_inputs:
+ encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
+ else:
+ raise ValueError("Invalid padding strategy:" + str(self.padding_side))
+
+ return encoded_inputs
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A RoBERTa sequence has the following format:
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..01bbaa1398142c3cca8800450ee52ea58295719f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__init__.py
@@ -0,0 +1,73 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
+
+
+_import_structure = {
+ "configuration_oneformer": ["ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "OneFormerConfig"],
+ "processing_oneformer": ["OneFormerProcessor"],
+}
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["image_processing_oneformer"] = ["OneFormerImageProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_oneformer"] = [
+ "ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "OneFormerForUniversalSegmentation",
+ "OneFormerModel",
+ "OneFormerPreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_oneformer import ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, OneFormerConfig
+ from .processing_oneformer import OneFormerProcessor
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .image_processing_oneformer import OneFormerImageProcessor
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_oneformer import (
+ ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ OneFormerForUniversalSegmentation,
+ OneFormerModel,
+ OneFormerPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..39c384ff7a037b3a3a667b6c8aa01a8840f53f0a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/configuration_oneformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/configuration_oneformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6636618588d833e0d7c3ee9c8d74dbc234ae2a62
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/configuration_oneformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/convert_to_hf_oneformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/convert_to_hf_oneformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..43ece4512a73d8f3f43a0f0a49326a945c822901
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/convert_to_hf_oneformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/image_processing_oneformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/image_processing_oneformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..54de0b93b963aed037aa27771cbeee03b44b6a07
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/image_processing_oneformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/modeling_oneformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/modeling_oneformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a2cf3caba3154fa441ecb980e64ca18ef2c3c9dc
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/modeling_oneformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/processing_oneformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/processing_oneformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2701b9e257c7898643ae459d9269f905fd56c44c
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/processing_oneformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/configuration_oneformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/configuration_oneformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..1cbd2ab7dbc18f098d872cb556cb49655fe85a25
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/configuration_oneformer.py
@@ -0,0 +1,276 @@
+# coding=utf-8
+# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""OneFormer model configuration"""
+from typing import Dict, Optional
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+from ..auto import CONFIG_MAPPING
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class OneFormerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`OneFormerModel`]. It is used to instantiate a
+ OneFormer model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the OneFormer
+ [shi-labs/oneformer_ade20k_swin_tiny](https://huggingface.co/shi-labs/oneformer_ade20k_swin_tiny) architecture
+ trained on [ADE20k-150](https://huggingface.co/datasets/scene_parse_150).
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ backbone_config (`PretrainedConfig`, *optional*, defaults to `SwinConfig`):
+ The configuration of the backbone model.
+ backbone (`str`, *optional*):
+ Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
+ will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
+ is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
+ use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
+ Whether to use pretrained weights for the backbone.
+ use_timm_backbone (`bool`, *optional*, defaults to `False`):
+ Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
+ library.
+ backbone_kwargs (`dict`, *optional*):
+ Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
+ e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
+ ignore_value (`int`, *optional*, defaults to 255):
+ Values to be ignored in GT label while calculating loss.
+ num_queries (`int`, *optional*, defaults to 150):
+ Number of object queries.
+ no_object_weight (`float`, *optional*, defaults to 0.1):
+ Weight for no-object class predictions.
+ class_weight (`float`, *optional*, defaults to 2.0):
+ Weight for Classification CE loss.
+ mask_weight (`float`, *optional*, defaults to 5.0):
+ Weight for binary CE loss.
+ dice_weight (`float`, *optional*, defaults to 5.0):
+ Weight for dice loss.
+ contrastive_weight (`float`, *optional*, defaults to 0.5):
+ Weight for contrastive loss.
+ contrastive_temperature (`float`, *optional*, defaults to 0.07):
+ Initial value for scaling the contrastive logits.
+ train_num_points (`int`, *optional*, defaults to 12544):
+ Number of points to sample while calculating losses on mask predictions.
+ oversample_ratio (`float`, *optional*, defaults to 3.0):
+ Ratio to decide how many points to oversample.
+ importance_sample_ratio (`float`, *optional*, defaults to 0.75):
+ Ratio of points that are sampled via importance sampling.
+ init_std (`float`, *optional*, defaults to 0.02):
+ Standard deviation for normal intialization.
+ init_xavier_std (`float`, *optional*, defaults to 1.0):
+ Standard deviation for xavier uniform initialization.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
+ Epsilon for layer normalization.
+ is_training (`bool`, *optional*, defaults to `False`):
+ Whether to run in training or inference mode.
+ use_auxiliary_loss (`bool`, *optional*, defaults to `True`):
+ Whether to calculate loss using intermediate predictions from transformer decoder.
+ output_auxiliary_logits (`bool`, *optional*, defaults to `True`):
+ Whether to return intermediate predictions from transformer decoder.
+ strides (`list`, *optional*, defaults to `[4, 8, 16, 32]`):
+ List containing the strides for feature maps in the encoder.
+ task_seq_len (`int`, *optional*, defaults to 77):
+ Sequence length for tokenizing text list input.
+ text_encoder_width (`int`, *optional*, defaults to 256):
+ Hidden size for text encoder.
+ text_encoder_context_length (`int`, *optional*, defaults to 77):
+ Input sequence length for text encoder.
+ text_encoder_num_layers (`int`, *optional*, defaults to 6):
+ Number of layers for transformer in text encoder.
+ text_encoder_vocab_size (`int`, *optional*, defaults to 49408):
+ Vocabulary size for tokenizer.
+ text_encoder_proj_layers (`int`, *optional*, defaults to 2):
+ Number of layers in MLP for project text queries.
+ text_encoder_n_ctx (`int`, *optional*, defaults to 16):
+ Number of learnable text context queries.
+ conv_dim (`int`, *optional*, defaults to 256):
+ Feature map dimension to map outputs from the backbone.
+ mask_dim (`int`, *optional*, defaults to 256):
+ Dimension for feature maps in pixel decoder.
+ hidden_dim (`int`, *optional*, defaults to 256):
+ Dimension for hidden states in transformer decoder.
+ encoder_feedforward_dim (`int`, *optional*, defaults to 1024):
+ Dimension for FFN layer in pixel decoder.
+ norm (`str`, *optional*, defaults to `"GN"`):
+ Type of normalization.
+ encoder_layers (`int`, *optional*, defaults to 6):
+ Number of layers in pixel decoder.
+ decoder_layers (`int`, *optional*, defaults to 10):
+ Number of layers in transformer decoder.
+ use_task_norm (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the task token.
+ num_attention_heads (`int`, *optional*, defaults to 8):
+ Number of attention heads in transformer layers in the pixel and transformer decoders.
+ dropout (`float`, *optional*, defaults to 0.1):
+ Dropout probability for pixel and transformer decoders.
+ dim_feedforward (`int`, *optional*, defaults to 2048):
+ Dimension for FFN layer in transformer decoder.
+ pre_norm (`bool`, *optional*, defaults to `False`):
+ Whether to normalize hidden states before attention layers in transformer decoder.
+ enforce_input_proj (`bool`, *optional*, defaults to `False`):
+ Whether to project hidden states in transformer decoder.
+ query_dec_layers (`int`, *optional*, defaults to 2):
+ Number of layers in query transformer.
+ common_stride (`int`, *optional*, defaults to 4):
+ Common stride used for features in pixel decoder.
+
+ Examples:
+ ```python
+ >>> from transformers import OneFormerConfig, OneFormerModel
+
+ >>> # Initializing a OneFormer shi-labs/oneformer_ade20k_swin_tiny configuration
+ >>> configuration = OneFormerConfig()
+ >>> # Initializing a model (with random weights) from the shi-labs/oneformer_ade20k_swin_tiny style configuration
+ >>> model = OneFormerModel(configuration)
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```
+ """
+
+ model_type = "oneformer"
+ attribute_map = {"hidden_size": "hidden_dim"}
+
+ def __init__(
+ self,
+ backbone_config: Optional[Dict] = None,
+ backbone: Optional[str] = None,
+ use_pretrained_backbone: bool = False,
+ use_timm_backbone: bool = False,
+ backbone_kwargs: Optional[Dict] = None,
+ ignore_value: int = 255,
+ num_queries: int = 150,
+ no_object_weight: int = 0.1,
+ class_weight: float = 2.0,
+ mask_weight: float = 5.0,
+ dice_weight: float = 5.0,
+ contrastive_weight: float = 0.5,
+ contrastive_temperature: float = 0.07,
+ train_num_points: int = 12544,
+ oversample_ratio: float = 3.0,
+ importance_sample_ratio: float = 0.75,
+ init_std: float = 0.02,
+ init_xavier_std: float = 1.0,
+ layer_norm_eps: float = 1e-05,
+ is_training: bool = False,
+ use_auxiliary_loss: bool = True,
+ output_auxiliary_logits: bool = True,
+ strides: Optional[list] = [4, 8, 16, 32],
+ task_seq_len: int = 77,
+ text_encoder_width: int = 256,
+ text_encoder_context_length: int = 77,
+ text_encoder_num_layers: int = 6,
+ text_encoder_vocab_size: int = 49408,
+ text_encoder_proj_layers: int = 2,
+ text_encoder_n_ctx: int = 16,
+ conv_dim: int = 256,
+ mask_dim: int = 256,
+ hidden_dim: int = 256,
+ encoder_feedforward_dim: int = 1024,
+ norm: str = "GN",
+ encoder_layers: int = 6,
+ decoder_layers: int = 10,
+ use_task_norm: bool = True,
+ num_attention_heads: int = 8,
+ dropout: float = 0.1,
+ dim_feedforward: int = 2048,
+ pre_norm: bool = False,
+ enforce_input_proj: bool = False,
+ query_dec_layers: int = 2,
+ common_stride: int = 4,
+ **kwargs,
+ ):
+ if use_pretrained_backbone:
+ raise ValueError("Pretrained backbones are not supported yet.")
+
+ if backbone_config is not None and backbone is not None:
+ raise ValueError("You can't specify both `backbone` and `backbone_config`.")
+
+ if backbone_config is None and backbone is None:
+ logger.info("`backbone_config` is unset. Initializing the config with the default `Swin` backbone.")
+ backbone_config = CONFIG_MAPPING["swin"](
+ image_size=224,
+ in_channels=3,
+ patch_size=4,
+ embed_dim=96,
+ depths=[2, 2, 6, 2],
+ num_heads=[3, 6, 12, 24],
+ window_size=7,
+ drop_path_rate=0.3,
+ use_absolute_embeddings=False,
+ out_features=["stage1", "stage2", "stage3", "stage4"],
+ )
+ elif isinstance(backbone_config, dict):
+ backbone_model_type = backbone_config.get("model_type")
+ config_class = CONFIG_MAPPING[backbone_model_type]
+ backbone_config = config_class.from_dict(backbone_config)
+
+ if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
+ raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
+
+ self.backbone_config = backbone_config
+ self.backbone = backbone
+ self.use_pretrained_backbone = use_pretrained_backbone
+ self.use_timm_backbone = use_timm_backbone
+ self.backbone_kwargs = backbone_kwargs
+ self.ignore_value = ignore_value
+ self.num_queries = num_queries
+ self.no_object_weight = no_object_weight
+ self.class_weight = class_weight
+ self.mask_weight = mask_weight
+ self.dice_weight = dice_weight
+ self.contrastive_weight = contrastive_weight
+ self.contrastive_temperature = contrastive_temperature
+ self.train_num_points = train_num_points
+ self.oversample_ratio = oversample_ratio
+ self.importance_sample_ratio = importance_sample_ratio
+ self.init_std = init_std
+ self.init_xavier_std = init_xavier_std
+ self.layer_norm_eps = layer_norm_eps
+ self.is_training = is_training
+ self.use_auxiliary_loss = use_auxiliary_loss
+ self.output_auxiliary_logits = output_auxiliary_logits
+ self.strides = strides
+ self.task_seq_len = task_seq_len
+ self.text_encoder_width = text_encoder_width
+ self.text_encoder_context_length = text_encoder_context_length
+ self.text_encoder_num_layers = text_encoder_num_layers
+ self.text_encoder_vocab_size = text_encoder_vocab_size
+ self.text_encoder_proj_layers = text_encoder_proj_layers
+ self.text_encoder_n_ctx = text_encoder_n_ctx
+ self.conv_dim = conv_dim
+ self.mask_dim = mask_dim
+ self.hidden_dim = hidden_dim
+ self.encoder_feedforward_dim = encoder_feedforward_dim
+ self.norm = norm
+ self.encoder_layers = encoder_layers
+ self.decoder_layers = decoder_layers
+ self.use_task_norm = use_task_norm
+ self.num_attention_heads = num_attention_heads
+ self.dropout = dropout
+ self.dim_feedforward = dim_feedforward
+ self.pre_norm = pre_norm
+ self.enforce_input_proj = enforce_input_proj
+ self.query_dec_layers = query_dec_layers
+ self.common_stride = common_stride
+ self.num_hidden_layers = decoder_layers
+
+ super().__init__(**kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/convert_to_hf_oneformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/convert_to_hf_oneformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..6e88d8a0555fa2a6d283720e528232de3d999274
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/convert_to_hf_oneformer.py
@@ -0,0 +1,1191 @@
+# coding=utf-8
+# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Convert OneFormer checkpoints from the original repository. URL: https://github.com/SHI-Labs/OneFormer"""
+
+import os
+import sys
+from argparse import ArgumentParser
+from dataclasses import dataclass
+from pathlib import Path
+from pprint import pformat
+from typing import Any, Dict, Iterator, List, Set, Tuple
+
+import requests
+import torch
+import torchvision.transforms as T
+from PIL import Image
+from torch import Tensor, nn
+
+
+try:
+ from detectron2.checkpoint import DetectionCheckpointer
+ from detectron2.config import get_cfg
+ from detectron2.data import MetadataCatalog
+ from detectron2.projects.deeplab import add_deeplab_config
+except ImportError:
+ pass
+from transformers import CLIPTokenizer, DinatConfig, SwinConfig
+from transformers.models.oneformer.image_processing_oneformer import OneFormerImageProcessor
+from transformers.models.oneformer.modeling_oneformer import (
+ OneFormerConfig,
+ OneFormerForUniversalSegmentation,
+ OneFormerForUniversalSegmentationOutput,
+ OneFormerModel,
+ OneFormerModelOutput,
+)
+from transformers.models.oneformer.processing_oneformer import OneFormerProcessor
+from transformers.utils import logging
+
+
+StateDict = Dict[str, Tensor]
+
+logging.set_verbosity_info()
+logger = logging.get_logger()
+
+torch.manual_seed(0)
+
+
+class TrackedStateDict:
+ def __init__(self, to_track: Dict):
+ """This class "tracks" a python dictionary by keeping track of which item is accessed.
+
+ Args:
+ to_track (Dict): The dictionary we wish to track
+ """
+ self.to_track = to_track
+ self._seen: Set[str] = set()
+
+ def __getitem__(self, key: str) -> Any:
+ return self.to_track[key]
+
+ def __setitem__(self, key: str, item: Any):
+ self._seen.add(key)
+ self.to_track[key] = item
+
+ def diff(self) -> List[str]:
+ """This method returns a set difference between the keys in the tracked state dict and the one we have access so far.
+ This is an effective method to check if we have update all the keys
+
+ Returns:
+ List[str]: List of keys not yet updated
+ """
+ return set(self.to_track.keys()) - self._seen
+
+ def copy(self) -> Dict:
+ # proxy the call to the internal dictionary
+ return self.to_track.copy()
+
+
+# Image to verify the result
+def prepare_img():
+ url = "https://praeclarumjj3.github.io/files/coco.jpeg"
+ img_data = requests.get(url, stream=True).raw
+ im = Image.open(img_data)
+ return im
+
+
+@dataclass
+class Args:
+ """Fake command line arguments needed by oneformer/detectron2 implementation"""
+
+ config_file: str
+
+
+def setup_cfg(args: Args):
+ # load config from file and command-line arguments
+ cfg = get_cfg()
+ add_deeplab_config(cfg)
+ add_common_config(cfg)
+ add_oneformer_config(cfg)
+ add_swin_config(cfg)
+ add_dinat_config(cfg)
+ cfg.merge_from_file(args.config_file)
+ cfg.freeze()
+ return cfg
+
+
+class OriginalOneFormerConfigToOursConverter:
+ def __call__(self, original_config: object, is_swin: bool) -> OneFormerConfig:
+ model = original_config.MODEL
+
+ dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0])
+ id2label = dict(enumerate(dataset_catalog.stuff_classes))
+ label2id = {label: idx for idx, label in id2label.items()}
+
+ if is_swin:
+ if model.SWIN.EMBED_DIM == 96:
+ backbone_config = SwinConfig.from_pretrained(
+ "microsoft/swin-tiny-patch4-window7-224",
+ drop_path_rate=model.SWIN.DROP_PATH_RATE,
+ out_features=["stage1", "stage2", "stage3", "stage4"],
+ )
+ elif model.SWIN.EMBED_DIM == 192:
+ backbone_config = SwinConfig.from_pretrained(
+ "microsoft/swin-large-patch4-window12-384",
+ drop_path_rate=model.SWIN.DROP_PATH_RATE,
+ out_features=["stage1", "stage2", "stage3", "stage4"],
+ )
+ else:
+ raise ValueError(f"embed dim {model.SWIN.EMBED_DIM} not supported for Swin!")
+ else:
+ backbone_config = DinatConfig.from_pretrained(
+ "shi-labs/dinat-large-11x11-in22k-in1k-384",
+ dilations=model.DiNAT.DILATIONS,
+ kernel_size=model.DiNAT.KERNEL_SIZE,
+ out_features=["stage1", "stage2", "stage3", "stage4"],
+ )
+
+ config: OneFormerConfig = OneFormerConfig(
+ backbone_config=backbone_config,
+ output_attentions=True,
+ output_hidden_states=True,
+ return_dict=True,
+ ignore_value=model.SEM_SEG_HEAD.IGNORE_VALUE,
+ num_classes=model.SEM_SEG_HEAD.NUM_CLASSES,
+ num_queries=model.ONE_FORMER.NUM_OBJECT_QUERIES,
+ no_object_weight=model.ONE_FORMER.NO_OBJECT_WEIGHT,
+ class_weight=model.ONE_FORMER.CLASS_WEIGHT,
+ mask_weight=model.ONE_FORMER.MASK_WEIGHT,
+ dice_weight=model.ONE_FORMER.DICE_WEIGHT,
+ contrastive_weight=model.ONE_FORMER.CONTRASTIVE_WEIGHT,
+ contrastive_temperature=model.ONE_FORMER.CONTRASTIVE_TEMPERATURE,
+ train_num_points=model.ONE_FORMER.TRAIN_NUM_POINTS,
+ oversample_ratio=model.ONE_FORMER.OVERSAMPLE_RATIO,
+ importance_sample_ratio=model.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO,
+ init_std=0.02,
+ init_xavier_std=1.0,
+ layer_norm_eps=1e-05,
+ is_training=False,
+ use_auxiliary_loss=model.ONE_FORMER.DEEP_SUPERVISION,
+ output_auxiliary_logits=True,
+ strides=[4, 8, 16, 32],
+ task_seq_len=original_config.INPUT.TASK_SEQ_LEN,
+ max_seq_len=original_config.INPUT.MAX_SEQ_LEN,
+ text_encoder_width=model.TEXT_ENCODER.WIDTH,
+ text_encoder_context_length=model.TEXT_ENCODER.CONTEXT_LENGTH,
+ text_encoder_num_layers=model.TEXT_ENCODER.NUM_LAYERS,
+ text_encoder_vocab_size=model.TEXT_ENCODER.VOCAB_SIZE,
+ text_encoder_proj_layers=model.TEXT_ENCODER.PROJ_NUM_LAYERS,
+ text_encoder_n_ctx=model.TEXT_ENCODER.N_CTX,
+ conv_dim=model.SEM_SEG_HEAD.CONVS_DIM,
+ mask_dim=model.SEM_SEG_HEAD.MASK_DIM,
+ hidden_dim=model.ONE_FORMER.HIDDEN_DIM,
+ norm=model.SEM_SEG_HEAD.NORM,
+ encoder_layers=model.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS,
+ encoder_feedforward_dim=1024,
+ decoder_layers=model.ONE_FORMER.DEC_LAYERS,
+ use_task_norm=model.ONE_FORMER.USE_TASK_NORM,
+ num_attention_heads=model.ONE_FORMER.NHEADS,
+ dropout=model.ONE_FORMER.DROPOUT,
+ dim_feedforward=model.ONE_FORMER.DIM_FEEDFORWARD,
+ pre_norm=model.ONE_FORMER.PRE_NORM,
+ enforce_input_proj=model.ONE_FORMER.ENFORCE_INPUT_PROJ,
+ query_dec_layers=model.ONE_FORMER.CLASS_DEC_LAYERS,
+ common_stride=model.SEM_SEG_HEAD.COMMON_STRIDE,
+ id2label=id2label,
+ label2id=label2id,
+ )
+
+ return config
+
+
+class OriginalOneFormerConfigToProcessorConverter:
+ def __call__(self, original_config: object, model_repo: str) -> OneFormerProcessor:
+ model = original_config.MODEL
+ model_input = original_config.INPUT
+ dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0])
+
+ if "ade20k" in model_repo:
+ class_info_file = "ade20k_panoptic.json"
+ elif "coco" in model_repo:
+ class_info_file = "coco_panoptic.json"
+ elif "cityscapes" in model_repo:
+ class_info_file = "cityscapes_panoptic.json"
+ else:
+ raise ValueError("Invalid Dataset!")
+
+ image_processor = OneFormerImageProcessor(
+ image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(),
+ image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(),
+ size=model_input.MIN_SIZE_TEST,
+ max_size=model_input.MAX_SIZE_TEST,
+ num_labels=model.SEM_SEG_HEAD.NUM_CLASSES,
+ ignore_index=dataset_catalog.ignore_label,
+ class_info_file=class_info_file,
+ )
+
+ tokenizer = CLIPTokenizer.from_pretrained(model_repo)
+
+ return OneFormerProcessor(
+ image_processor=image_processor,
+ tokenizer=tokenizer,
+ task_seq_length=original_config.INPUT.TASK_SEQ_LEN,
+ max_seq_length=original_config.INPUT.MAX_SEQ_LEN,
+ )
+
+
+class OriginalOneFormerCheckpointToOursConverter:
+ def __init__(self, original_model: nn.Module, config: OneFormerConfig):
+ self.original_model = original_model
+ self.config = config
+
+ def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict):
+ for src_key, dst_key in renamed_keys:
+ dst_state_dict[dst_key] = src_state_dict.pop(src_key)
+
+ # Swin Backbone
+ def replace_swin_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig):
+ dst_prefix: str = "pixel_level_module.encoder"
+ src_prefix: str = "backbone"
+
+ renamed_keys = [
+ (
+ f"{src_prefix}.patch_embed.proj.weight",
+ f"{dst_prefix}.embeddings.patch_embeddings.projection.weight",
+ ),
+ (f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.embeddings.patch_embeddings.projection.bias"),
+ (f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.embeddings.norm.weight"),
+ (f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.embeddings.norm.bias"),
+ ]
+ num_layers = len(config.backbone_config.depths)
+ for layer_idx in range(num_layers):
+ for block_idx in range(config.backbone_config.depths[layer_idx]):
+ renamed_keys.extend(
+ [ # src, dst
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight",
+ ),
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias",
+ ),
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table",
+ ),
+ ]
+ )
+ # now we need to handle the attentions
+ # read in weights + bias of input projection layer of cross-attention
+
+ src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
+ src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
+
+ size = src_att_weight.shape[0]
+ offset = size // 3
+ dst_state_dict[
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight"
+ ] = src_att_weight[:offset, :]
+ dst_state_dict[
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias"
+ ] = src_att_bias[:offset]
+
+ dst_state_dict[
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight"
+ ] = src_att_weight[offset : offset * 2, :]
+ dst_state_dict[
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias"
+ ] = src_att_bias[offset : offset * 2]
+
+ dst_state_dict[
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight"
+ ] = src_att_weight[-offset:, :]
+ dst_state_dict[
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias"
+ ] = src_att_bias[-offset:]
+
+ # let's pop them
+ src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
+ src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
+ # proj
+ renamed_keys.extend(
+ [
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight",
+ ),
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias",
+ ),
+ ]
+ )
+
+ # second norm
+ renamed_keys.extend(
+ [
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight",
+ ),
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias",
+ ),
+ ]
+ )
+
+ # mlp
+ renamed_keys.extend(
+ [
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight",
+ ),
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias",
+ ),
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight",
+ ),
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias",
+ ),
+ ]
+ )
+
+ renamed_keys.extend(
+ [
+ (
+ f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index",
+ )
+ ]
+ )
+
+ if layer_idx < num_layers - 1:
+ # patch merging
+ renamed_keys.extend(
+ [
+ (
+ f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.reduction.weight",
+ ),
+ (
+ f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.weight",
+ ),
+ (
+ f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias",
+ f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.bias",
+ ),
+ ]
+ )
+
+ # hidden states norms
+ renamed_keys.extend(
+ [
+ (
+ f"{src_prefix}.norm{layer_idx}.weight",
+ f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
+ ),
+ (
+ f"{src_prefix}.norm{layer_idx}.bias",
+ f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
+ ),
+ ]
+ )
+
+ self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
+
+ # Dinat Backbone
+ def replace_dinat_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig):
+ dst_prefix: str = "pixel_level_module.encoder"
+ src_prefix: str = "backbone"
+
+ def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
+ return [
+ (f"{src_prefix}.weight", f"{dst_prefix}.weight"),
+ (f"{src_prefix}.bias", f"{dst_prefix}.bias"),
+ ]
+
+ renamed_keys = rename_keys_for_weight_bias(f"{src_prefix}.patch_embed.norm", f"{dst_prefix}.embeddings.norm")
+
+ for i in range(2):
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(
+ f"{src_prefix}.patch_embed.proj.{i}",
+ f"{dst_prefix}.embeddings.patch_embeddings.projection.{i}",
+ )
+ )
+
+ num_layers = len(config.backbone_config.depths)
+ for layer_idx in range(num_layers):
+ for block_idx in range(config.backbone_config.depths[layer_idx]):
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(
+ f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm1",
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_before",
+ )
+ )
+
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(
+ f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm2",
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_after",
+ )
+ )
+
+ renamed_keys.extend(
+ [ # src, dst
+ (
+ f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.rpb",
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.rpb",
+ ),
+ ]
+ )
+ # now we need to handle the attentions
+ # read in weights + bias of input projection layer of cross-attention
+
+ src_att_weight = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
+ src_att_bias = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
+
+ size = src_att_weight.shape[0]
+ offset = size // 3
+ dst_state_dict[
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.weight"
+ ] = src_att_weight[:offset, :]
+ dst_state_dict[
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.bias"
+ ] = src_att_bias[:offset]
+
+ dst_state_dict[
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.weight"
+ ] = src_att_weight[offset : offset * 2, :]
+ dst_state_dict[
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.bias"
+ ] = src_att_bias[offset : offset * 2]
+
+ dst_state_dict[
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.weight"
+ ] = src_att_weight[-offset:, :]
+ dst_state_dict[
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.bias"
+ ] = src_att_bias[-offset:]
+
+ # let's pop them
+ src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
+ src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
+ # proj
+
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(
+ f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.proj",
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.output.dense",
+ )
+ )
+
+ # mlp
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(
+ f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc1",
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.intermediate.dense",
+ )
+ )
+
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(
+ f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc2",
+ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.output.dense",
+ )
+ )
+
+ if layer_idx < num_layers - 1:
+ # patch merging
+ renamed_keys.extend(
+ [
+ (
+ f"{src_prefix}.levels.{layer_idx}.downsample.reduction.weight",
+ f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.reduction.weight",
+ ),
+ (
+ f"{src_prefix}.levels.{layer_idx}.downsample.norm.weight",
+ f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.weight",
+ ),
+ (
+ f"{src_prefix}.levels.{layer_idx}.downsample.norm.bias",
+ f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.bias",
+ ),
+ ]
+ )
+
+ # hidden states norms
+ renamed_keys.extend(
+ [
+ (
+ f"{src_prefix}.norm{layer_idx}.weight",
+ f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
+ ),
+ (
+ f"{src_prefix}.norm{layer_idx}.bias",
+ f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
+ ),
+ ]
+ )
+
+ self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
+
+ # Backbone + Pixel Decoder
+ def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict, is_swin: bool):
+ dst_prefix: str = "pixel_level_module.decoder"
+ src_prefix: str = "sem_seg_head.pixel_decoder"
+
+ if is_swin:
+ self.replace_swin_backbone(dst_state_dict, src_state_dict, self.config)
+ else:
+ self.replace_dinat_backbone(dst_state_dict, src_state_dict, self.config)
+
+ def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
+ return [
+ (f"{src_prefix}.weight", f"{dst_prefix}.weight"),
+ (f"{src_prefix}.bias", f"{dst_prefix}.bias"),
+ ]
+
+ def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str):
+ self_attn_keys = []
+ self_attn_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.attention_weights", f"{dst_prefix}.attention_weights")
+ )
+ self_attn_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.output_proj", f"{dst_prefix}.output_proj")
+ )
+ self_attn_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.sampling_offsets", f"{dst_prefix}.sampling_offsets")
+ )
+ self_attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.value_proj", f"{dst_prefix}.value_proj"))
+
+ return self_attn_keys
+
+ def rename_keys_for_encoder_layer(src_prefix: str, dst_prefix: str):
+ encoder_keys = []
+ encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.fc1"))
+ encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.fc2"))
+ encoder_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.self_attn_layer_norm")
+ )
+ encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.final_layer_norm"))
+ encoder_keys.extend(rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn"))
+
+ return encoder_keys
+
+ # convolution layer for final features
+ renamed_keys = [
+ (f"{src_prefix}.adapter_1.weight", f"{dst_prefix}.adapter_1.0.weight"),
+ (f"{src_prefix}.adapter_1.norm.weight", f"{dst_prefix}.adapter_1.1.weight"),
+ (f"{src_prefix}.adapter_1.norm.bias", f"{dst_prefix}.adapter_1.1.bias"),
+ ]
+
+ renamed_keys.extend(
+ [
+ (f"{src_prefix}.layer_1.weight", f"{dst_prefix}.layer_1.0.weight"),
+ (f"{src_prefix}.layer_1.norm.weight", f"{dst_prefix}.layer_1.1.weight"),
+ (f"{src_prefix}.layer_1.norm.bias", f"{dst_prefix}.layer_1.1.bias"),
+ ]
+ )
+
+ # proj layers
+ for i in range(3):
+ for j in range(2):
+ renamed_keys.extend(
+ [
+ (f"{src_prefix}.input_proj.{i}.{j}.weight", f"{dst_prefix}.input_projections.{i}.{j}.weight"),
+ (f"{src_prefix}.input_proj.{i}.{j}.bias", f"{dst_prefix}.input_projections.{i}.{j}.bias"),
+ ]
+ )
+
+ renamed_keys.extend([(f"{src_prefix}.transformer.level_embed", f"{dst_prefix}.level_embed")])
+
+ # layers
+ for layer_idx in range(self.config.encoder_layers):
+ renamed_keys.extend(
+ rename_keys_for_encoder_layer(
+ f"{src_prefix}.transformer.encoder.layers.{layer_idx}", f"{dst_prefix}.encoder.layers.{layer_idx}"
+ )
+ )
+
+ # proj
+ renamed_keys.extend(
+ [
+ (f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"),
+ (f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"),
+ ]
+ )
+
+ self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
+
+ # Transformer Decoder
+ def replace_keys_qkv_transformer_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
+ dst_prefix: str = "transformer_module.decoder.layers"
+ src_prefix: str = "sem_seg_head.predictor"
+ for i in range(self.config.decoder_layers - 1):
+ # read in weights + bias of input projection layer of self-attention
+ in_proj_weight = src_state_dict.pop(
+ f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_weight"
+ )
+ in_proj_bias = src_state_dict.pop(
+ f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_bias"
+ )
+ # next, add query, keys and values (in that order) to the state dict
+ dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
+ dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.bias"] = in_proj_bias[:256]
+ dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
+ dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.bias"] = in_proj_bias[256:512]
+ dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
+ dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.bias"] = in_proj_bias[-256:]
+
+ def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
+ dst_prefix: str = "transformer_module"
+ src_prefix: str = "sem_seg_head.predictor"
+
+ def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
+ return [
+ (f"{src_prefix}.weight", f"{dst_prefix}.weight"),
+ (f"{src_prefix}.bias", f"{dst_prefix}.bias"),
+ ]
+
+ def rename_keys_for_attn(src_prefix: str, dst_prefix: str):
+ attn_keys = [
+ (f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"),
+ (f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"),
+ ]
+ attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
+
+ return attn_keys
+
+ def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str):
+ attn_keys = []
+ attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
+
+ return attn_keys
+
+ def rename_keys_for_query_transformer_layer(src_prefix: str, dst_prefix: str):
+ query_transformer_layer_keys = []
+
+ query_transformer_layer_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1")
+ )
+ query_transformer_layer_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2")
+ )
+ query_transformer_layer_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.norm1")
+ )
+ query_transformer_layer_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.norm2")
+ )
+ query_transformer_layer_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.norm3", f"{dst_prefix}.norm3")
+ )
+
+ query_transformer_layer_keys.extend(
+ rename_keys_for_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")
+ )
+
+ query_transformer_layer_keys.extend(
+ rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn")
+ )
+
+ return query_transformer_layer_keys
+
+ def rename_keys_for_cross_attn_layer(src_prefix: str, dst_prefix: str):
+ cross_attn_layer_keys = []
+
+ cross_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
+ cross_attn_layer_keys.extend(
+ rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn")
+ )
+
+ return cross_attn_layer_keys
+
+ def rename_keys_for_self_attn_layer(src_prefix: str, dst_prefix: str):
+ self_attn_layer_keys = []
+
+ self_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
+ self_attn_layer_keys.extend(
+ rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")
+ )
+
+ return self_attn_layer_keys
+
+ def rename_keys_for_ffn_layer(src_prefix: str, dst_prefix: str):
+ ffn_layer_keys = []
+
+ ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1"))
+ ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2"))
+ ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
+
+ return ffn_layer_keys
+
+ def rename_keys_for_transformer_decoder_layer(src_prefix: str, dst_prefix: str, idx: int):
+ transformer_decoder_layer_keys = []
+
+ transformer_decoder_layer_keys.extend(
+ rename_keys_for_cross_attn_layer(
+ f"{src_prefix}.transformer_cross_attention_layers.{idx}", f"{dst_prefix}.{idx}.cross_attn"
+ )
+ )
+
+ transformer_decoder_layer_keys.extend(
+ rename_keys_for_self_attn_layer(
+ f"{src_prefix}.transformer_self_attention_layers.{idx}", f"{dst_prefix}.{idx}.self_attn"
+ )
+ )
+
+ transformer_decoder_layer_keys.extend(
+ rename_keys_for_ffn_layer(f"{src_prefix}.transformer_ffn_layers.{idx}", f"{dst_prefix}.{idx}.ffn")
+ )
+
+ return transformer_decoder_layer_keys
+
+ # positional embedding for object queries
+ renamed_keys = [
+ (f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"),
+ (f"{src_prefix}.level_embed.weight", f"{dst_prefix}.level_embed.weight"),
+ ]
+
+ # norm
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.decoder_norm", f"{dst_prefix}.decoder.decoder_norm")
+ )
+
+ # proj
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(
+ f"{src_prefix}.class_input_proj", f"{dst_prefix}.decoder.query_input_projection"
+ )
+ )
+
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.class_embed", f"{dst_prefix}.decoder.class_embed")
+ )
+
+ for i in range(3):
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(
+ f"{src_prefix}.mask_embed.layers.{i}", f"{dst_prefix}.decoder.mask_embed.layers.{i}.0"
+ )
+ )
+
+ # norm
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(
+ f"{src_prefix}.class_transformer.decoder.norm", f"{dst_prefix}.decoder.query_transformer.decoder.norm"
+ )
+ )
+
+ # transformer to update queries with task tokens
+ for i in range(self.config.query_dec_layers):
+ renamed_keys.extend(
+ rename_keys_for_query_transformer_layer(
+ f"{src_prefix}.class_transformer.decoder.layers.{i}",
+ f"{dst_prefix}.decoder.query_transformer.decoder.layers.{i}",
+ )
+ )
+
+ # decoder layers
+ for i in range(self.config.decoder_layers - 1):
+ renamed_keys.extend(
+ rename_keys_for_transformer_decoder_layer(
+ f"{src_prefix}",
+ f"{dst_prefix}.decoder.layers",
+ i,
+ )
+ )
+
+ self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
+ self.replace_keys_qkv_transformer_decoder(dst_state_dict, src_state_dict)
+
+ def replace_task_mlp(self, dst_state_dict: StateDict, src_state_dict: StateDict):
+ dst_prefix: str = "task_encoder"
+ src_prefix: str = "task_mlp"
+
+ def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
+ return [
+ (f"{src_prefix}.weight", f"{dst_prefix}.weight"),
+ (f"{src_prefix}.bias", f"{dst_prefix}.bias"),
+ ]
+
+ renamed_keys = []
+
+ for i in range(2):
+ renamed_keys.extend(
+ rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.task_mlp.layers.{i}.0")
+ )
+
+ self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
+
+ def replace_text_projector(self, dst_state_dict: StateDict, src_state_dict: StateDict):
+ dst_prefix: str = "text_mapper.text_projector"
+ src_prefix: str = "text_projector"
+
+ def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
+ return [
+ (f"{src_prefix}.weight", f"{dst_prefix}.weight"),
+ (f"{src_prefix}.bias", f"{dst_prefix}.bias"),
+ ]
+
+ renamed_keys = []
+
+ for i in range(self.config.text_encoder_config["text_encoder_proj_layers"]):
+ renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.{i}.0"))
+
+ self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
+
+ def replace_text_mapper(self, dst_state_dict: StateDict, src_state_dict: StateDict):
+ dst_prefix: str = "text_mapper.text_encoder"
+ src_prefix: str = "text_encoder"
+
+ self.replace_text_projector(dst_state_dict, src_state_dict)
+
+ def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
+ return [
+ (f"{src_prefix}.weight", f"{dst_prefix}.weight"),
+ (f"{src_prefix}.bias", f"{dst_prefix}.bias"),
+ ]
+
+ def rename_keys_for_attn(src_prefix: str, dst_prefix: str):
+ attn_keys = [
+ (f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"),
+ (f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"),
+ ]
+ attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
+
+ return attn_keys
+
+ def rename_keys_for_layer(src_prefix: str, dst_prefix: str):
+ resblock_keys = []
+
+ resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_fc", f"{dst_prefix}.mlp.fc1"))
+ resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_proj", f"{dst_prefix}.mlp.fc2"))
+ resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_1", f"{dst_prefix}.layer_norm1"))
+ resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_2", f"{dst_prefix}.layer_norm2"))
+ resblock_keys.extend(rename_keys_for_attn(f"{src_prefix}.attn", f"{dst_prefix}.self_attn"))
+
+ return resblock_keys
+
+ renamed_keys = [
+ ("prompt_ctx.weight", "text_mapper.prompt_ctx.weight"),
+ ]
+
+ renamed_keys.extend(
+ [
+ (f"{src_prefix}.positional_embedding", f"{dst_prefix}.positional_embedding"),
+ (f"{src_prefix}.token_embedding.weight", f"{dst_prefix}.token_embedding.weight"),
+ ]
+ )
+
+ renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_final", f"{dst_prefix}.ln_final"))
+
+ for i in range(self.config.text_encoder_config["text_encoder_num_layers"]):
+ renamed_keys.extend(
+ rename_keys_for_layer(
+ f"{src_prefix}.transformer.resblocks.{i}", f"{dst_prefix}.transformer.layers.{i}"
+ )
+ )
+
+ self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
+
+ def convert(self, oneformer: OneFormerModel, is_swin: bool) -> OneFormerModel:
+ dst_state_dict = TrackedStateDict(oneformer.state_dict())
+ src_state_dict = self.original_model.state_dict()
+
+ self.replace_pixel_module(dst_state_dict, src_state_dict, is_swin)
+ self.replace_transformer_module(dst_state_dict, src_state_dict)
+ self.replace_task_mlp(dst_state_dict, src_state_dict)
+ if self.config.is_training:
+ self.replace_text_mapper(dst_state_dict, src_state_dict)
+
+ logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}")
+ logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}")
+ logger.info("🙌 Done")
+
+ oneformer.load_state_dict(dst_state_dict)
+
+ return oneformer
+
+ @staticmethod
+ def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]:
+ checkpoints: List[Path] = checkpoints_dir.glob("**/*.pth")
+
+ for checkpoint in checkpoints:
+ logger.info(f"💪 Converting {checkpoint.stem}")
+ # find associated config file
+ config: Path = config_dir / f"{checkpoint.stem}.yaml"
+
+ yield config, checkpoint
+
+
+def post_process_sem_seg_output(outputs: OneFormerForUniversalSegmentationOutput, target_size: Tuple[int, int]):
+ # class_queries_logits has shape [BATCH, QUERIES, CLASSES + 1]
+ class_queries_logits = outputs.class_queries_logits
+ # masks_queries_logits has shape [BATCH, QUERIES, HEIGHT, WIDTH]
+ masks_queries_logits = outputs.masks_queries_logits
+ if target_size is not None:
+ masks_queries_logits = torch.nn.functional.interpolate(
+ masks_queries_logits,
+ size=target_size,
+ mode="bilinear",
+ align_corners=False,
+ )
+ # remove the null class `[..., :-1]`
+ masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
+ # mask probs has shape [BATCH, QUERIES, HEIGHT, WIDTH]
+ masks_probs = masks_queries_logits.sigmoid()
+ # now we want to sum over the queries,
+ # $ out_{c,h,w} = \sum_q p_{q,c} * m_{q,h,w} $
+ # where $ softmax(p) \in R^{q, c} $ is the mask classes
+ # and $ sigmoid(m) \in R^{q, h, w}$ is the mask probabilities
+ # b(atch)q(uery)c(lasses), b(atch)q(uery)h(eight)w(idth)
+ segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
+
+ return segmentation
+
+
+def test(
+ original_model,
+ our_model: OneFormerForUniversalSegmentation,
+ processor: OneFormerProcessor,
+ model_repo: str,
+):
+ def _preprocess_text(text_list=None, max_length=77):
+ if text_list is None:
+ raise ValueError("tokens cannot be None.")
+
+ tokens = tokenizer(text_list, padding="max_length", max_length=max_length, truncation=True)
+
+ attention_masks, input_ids = tokens["attention_mask"], tokens["input_ids"]
+
+ token_inputs = []
+ for attn_mask, input_id in zip(attention_masks, input_ids):
+ token = torch.tensor(attn_mask) * torch.tensor(input_id)
+ token_inputs.append(token.unsqueeze(0))
+
+ token_inputs = torch.cat(token_inputs, dim=0)
+ return token_inputs
+
+ with torch.no_grad():
+ tokenizer = CLIPTokenizer.from_pretrained(model_repo)
+ original_model = original_model.eval()
+ our_model = our_model.eval()
+
+ im = prepare_img()
+
+ tr = T.Compose(
+ [
+ T.Resize((640, 640)),
+ T.ToTensor(),
+ T.Normalize(
+ mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0,
+ std=torch.tensor([58.395, 57.120, 57.375]) / 255.0,
+ ),
+ ],
+ )
+
+ x = tr(im).unsqueeze(0)
+
+ task_input = ["the task is semantic"]
+ task_token = _preprocess_text(task_input, max_length=processor.task_seq_length)
+
+ original_model_backbone_features = original_model.backbone(x.clone())
+
+ our_model_output: OneFormerModelOutput = our_model.model(x.clone(), task_token, output_hidden_states=True)
+
+ for original_model_feature, our_model_feature in zip(
+ original_model_backbone_features.values(), our_model_output.encoder_hidden_states
+ ):
+ assert torch.allclose(
+ original_model_feature, our_model_feature, atol=3e-3
+ ), "The backbone features are not the same."
+ mask_features, _, multi_scale_features, _, _ = original_model.sem_seg_head.pixel_decoder.forward_features(
+ original_model_backbone_features
+ )
+
+ original_pixel_decoder_features = []
+ original_pixel_decoder_features.append(mask_features)
+ for i in range(len(multi_scale_features)):
+ original_pixel_decoder_features.append(multi_scale_features[i])
+
+ for original_model_feature, our_model_feature in zip(
+ original_pixel_decoder_features, our_model_output.pixel_decoder_hidden_states
+ ):
+ assert torch.allclose(
+ original_model_feature, our_model_feature, atol=3e-4
+ ), "The pixel decoder feature are not the same"
+
+ tr_complete = T.Compose(
+ [
+ T.Resize((640, 640)),
+ T.ToTensor(),
+ ],
+ )
+
+ y = (tr_complete(im) * 255.0).to(torch.int).float()
+
+ # let's test the full model
+ original_model_out = original_model([{"image": y.clone(), "task": "The task is semantic"}])
+
+ original_segmentation = original_model_out[0]["sem_seg"]
+
+ our_model_out: OneFormerForUniversalSegmentationOutput = our_model(
+ x.clone(), task_token, output_hidden_states=True
+ )
+
+ our_segmentation = post_process_sem_seg_output(our_model_out, target_size=(640, 640))[0]
+
+ assert torch.allclose(
+ original_segmentation, our_segmentation, atol=1e-3
+ ), "The segmentation image is not the same."
+
+ logger.info("✅ Test passed!")
+
+
+def get_name(checkpoint_file: Path):
+ model_name_raw: str = checkpoint_file.stem
+
+ backbone = "swin" if "swin" in model_name_raw else "dinat"
+ dataset = ""
+ if "coco" in model_name_raw:
+ dataset = "coco"
+ elif "ade20k" in model_name_raw:
+ dataset = "ade20k"
+ elif "cityscapes" in model_name_raw:
+ dataset = "cityscapes"
+ else:
+ raise ValueError(
+ f"{model_name_raw} must be wrong since we didn't find 'coco' or 'ade20k' or 'cityscapes' in it "
+ )
+
+ backbone_types = ["tiny", "large"]
+
+ backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0]
+
+ model_name = f"oneformer_{dataset}_{backbone}_{backbone_type}"
+
+ return model_name
+
+
+if __name__ == "__main__":
+ parser = ArgumentParser(
+ description=(
+ "Command line to convert the original oneformer models (with swin backbone) to transformers"
+ " implementation."
+ )
+ )
+
+ parser.add_argument(
+ "--checkpoints_dir",
+ type=Path,
+ help=(
+ "A directory containing the model's checkpoints. The directory has to have the following structure:"
+ " structure: //.pth; where name must follow the"
+ " following nomenclature nomenclature: oneformer___"
+ ),
+ )
+ parser.add_argument(
+ "--configs_dir",
+ type=Path,
+ help=(
+ "A directory containing the model's configs, see detectron2 doc. The directory has to have the following"
+ " structure: //.yaml; where name must follow the"
+ " following nomenclature nomenclature: oneformer___"
+ ),
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path",
+ required=True,
+ type=Path,
+ help="Path to the folder to output PyTorch models.",
+ )
+ parser.add_argument(
+ "--oneformer_dir",
+ required=True,
+ type=Path,
+ help=(
+ "A path to OneFormer's original implementation directory. You can download from here: "
+ "https://github.com/SHI-Labs/OneFormer"
+ ),
+ )
+
+ args = parser.parse_args()
+
+ checkpoints_dir: Path = args.checkpoints_dir
+ config_dir: Path = args.configs_dir
+ save_directory: Path = args.pytorch_dump_folder_path
+ oneformer_dir: Path = args.oneformer_dir
+ # append the path to the parents to oneformer dir
+ sys.path.append(str(oneformer_dir.parent))
+ # and import what's needed
+ from OneFormer.oneformer import add_common_config, add_dinat_config, add_oneformer_config, add_swin_config
+ from OneFormer.oneformer.oneformer_model import OneFormer as OriginalOneFormer
+
+ if not save_directory.exists():
+ save_directory.mkdir(parents=True)
+
+ for config_file, checkpoint_file in OriginalOneFormerCheckpointToOursConverter.using_dirs(
+ checkpoints_dir, config_dir
+ ):
+ processor = OriginalOneFormerConfigToProcessorConverter()(
+ setup_cfg(Args(config_file=config_file)), os.path.join("shi-labs", config_file.stem)
+ )
+
+ original_config = setup_cfg(Args(config_file=config_file))
+ oneformer_kwargs = OriginalOneFormer.from_config(original_config)
+
+ original_model = OriginalOneFormer(**oneformer_kwargs).eval()
+
+ DetectionCheckpointer(original_model).load(str(checkpoint_file))
+
+ is_swin = "swin" in config_file.stem
+
+ config: OneFormerConfig = OriginalOneFormerConfigToOursConverter()(original_config, is_swin)
+
+ oneformer = OneFormerModel(config=config).eval()
+
+ converter = OriginalOneFormerCheckpointToOursConverter(original_model, config)
+
+ oneformer = converter.convert(oneformer, is_swin)
+
+ oneformer_for_universal_segmentation = OneFormerForUniversalSegmentation(config=config).eval()
+
+ oneformer_for_universal_segmentation.model = oneformer
+
+ test(
+ original_model,
+ oneformer_for_universal_segmentation,
+ processor,
+ os.path.join("shi-labs", config_file.stem),
+ )
+
+ model_name = get_name(checkpoint_file)
+ logger.info(f"🪄 Saving {model_name}")
+
+ processor.save_pretrained(save_directory / model_name)
+ oneformer_for_universal_segmentation.save_pretrained(save_directory / model_name)
+
+ processor.push_to_hub(
+ repo_id=os.path.join("shi-labs", config_file.stem),
+ commit_message="Add configs",
+ use_temp_dir=True,
+ )
+ oneformer_for_universal_segmentation.push_to_hub(
+ repo_id=os.path.join("shi-labs", config_file.stem),
+ commit_message="Add model",
+ use_temp_dir=True,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/image_processing_oneformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/image_processing_oneformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..9f865f8efd9b9497232fb5bd78a4c2f04f512115
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/image_processing_oneformer.py
@@ -0,0 +1,1372 @@
+# coding=utf-8
+# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for OneFormer."""
+
+import json
+import os
+import warnings
+from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union
+
+import numpy as np
+from huggingface_hub import hf_hub_download
+from huggingface_hub.utils import RepositoryNotFoundError
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import (
+ PaddingMode,
+ get_resize_output_image_size,
+ pad,
+ rescale,
+ resize,
+ to_channel_dimension_format,
+)
+from ...image_utils import (
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ get_image_size,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import (
+ IMAGENET_DEFAULT_MEAN,
+ IMAGENET_DEFAULT_STD,
+ TensorType,
+ is_torch_available,
+ is_torch_tensor,
+ logging,
+)
+
+
+logger = logging.get_logger(__name__)
+
+
+if is_torch_available():
+ import torch
+ from torch import nn
+
+
+# Copied from transformers.models.detr.image_processing_detr.max_across_indices
+def max_across_indices(values: Iterable[Any]) -> List[Any]:
+ """
+ Return the maximum value across all indices of an iterable of values.
+ """
+ return [max(values_i) for values_i in zip(*values)]
+
+
+# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
+def get_max_height_width(
+ images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
+) -> List[int]:
+ """
+ Get the maximum height and width across all images in a batch.
+ """
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if input_data_format == ChannelDimension.FIRST:
+ _, max_height, max_width = max_across_indices([img.shape for img in images])
+ elif input_data_format == ChannelDimension.LAST:
+ max_height, max_width, _ = max_across_indices([img.shape for img in images])
+ else:
+ raise ValueError(f"Invalid channel dimension format: {input_data_format}")
+ return (max_height, max_width)
+
+
+# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
+def make_pixel_mask(
+ image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
+) -> np.ndarray:
+ """
+ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
+
+ Args:
+ image (`np.ndarray`):
+ Image to make the pixel mask for.
+ output_size (`Tuple[int, int]`):
+ Output size of the mask.
+ """
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
+ mask = np.zeros(output_size, dtype=np.int64)
+ mask[:input_height, :input_width] = 1
+ return mask
+
+
+# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle
+def binary_mask_to_rle(mask):
+ """
+ Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
+
+ Args:
+ mask (`torch.Tensor` or `numpy.array`):
+ A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
+ segment_id or class_id.
+ Returns:
+ `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
+ format.
+ """
+ if is_torch_tensor(mask):
+ mask = mask.numpy()
+
+ pixels = mask.flatten()
+ pixels = np.concatenate([[0], pixels, [0]])
+ runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
+ runs[1::2] -= runs[::2]
+ return list(runs)
+
+
+# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle
+def convert_segmentation_to_rle(segmentation):
+ """
+ Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
+
+ Args:
+ segmentation (`torch.Tensor` or `numpy.array`):
+ A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
+ Returns:
+ `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
+ """
+ segment_ids = torch.unique(segmentation)
+
+ run_length_encodings = []
+ for idx in segment_ids:
+ mask = torch.where(segmentation == idx, 1, 0)
+ rle = binary_mask_to_rle(mask)
+ run_length_encodings.append(rle)
+
+ return run_length_encodings
+
+
+# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects
+def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
+ """
+ Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
+ `labels`.
+
+ Args:
+ masks (`torch.Tensor`):
+ A tensor of shape `(num_queries, height, width)`.
+ scores (`torch.Tensor`):
+ A tensor of shape `(num_queries)`.
+ labels (`torch.Tensor`):
+ A tensor of shape `(num_queries)`.
+ object_mask_threshold (`float`):
+ A number between 0 and 1 used to binarize the masks.
+ Raises:
+ `ValueError`: Raised when the first dimension doesn't match in all input tensors.
+ Returns:
+ `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
+ < `object_mask_threshold`.
+ """
+ if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
+ raise ValueError("mask, scores and labels must have the same shape!")
+
+ to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
+
+ return masks[to_keep], scores[to_keep], labels[to_keep]
+
+
+# Copied from transformers.models.detr.image_processing_detr.check_segment_validity
+def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
+ # Get the mask associated with the k class
+ mask_k = mask_labels == k
+ mask_k_area = mask_k.sum()
+
+ # Compute the area of all the stuff in query k
+ original_area = (mask_probs[k] >= mask_threshold).sum()
+ mask_exists = mask_k_area > 0 and original_area > 0
+
+ # Eliminate disconnected tiny segments
+ if mask_exists:
+ area_ratio = mask_k_area / original_area
+ if not area_ratio.item() > overlap_mask_area_threshold:
+ mask_exists = False
+
+ return mask_exists, mask_k
+
+
+# Copied from transformers.models.detr.image_processing_detr.compute_segments
+def compute_segments(
+ mask_probs,
+ pred_scores,
+ pred_labels,
+ mask_threshold: float = 0.5,
+ overlap_mask_area_threshold: float = 0.8,
+ label_ids_to_fuse: Optional[Set[int]] = None,
+ target_size: Tuple[int, int] = None,
+):
+ height = mask_probs.shape[1] if target_size is None else target_size[0]
+ width = mask_probs.shape[2] if target_size is None else target_size[1]
+
+ segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
+ segments: List[Dict] = []
+
+ if target_size is not None:
+ mask_probs = nn.functional.interpolate(
+ mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
+ )[0]
+
+ current_segment_id = 0
+
+ # Weigh each mask by its prediction score
+ mask_probs *= pred_scores.view(-1, 1, 1)
+ mask_labels = mask_probs.argmax(0) # [height, width]
+
+ # Keep track of instances of each class
+ stuff_memory_list: Dict[str, int] = {}
+ for k in range(pred_labels.shape[0]):
+ pred_class = pred_labels[k].item()
+ should_fuse = pred_class in label_ids_to_fuse
+
+ # Check if mask exists and large enough to be a segment
+ mask_exists, mask_k = check_segment_validity(
+ mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
+ )
+
+ if mask_exists:
+ if pred_class in stuff_memory_list:
+ current_segment_id = stuff_memory_list[pred_class]
+ else:
+ current_segment_id += 1
+
+ # Add current object segment to final segmentation map
+ segmentation[mask_k] = current_segment_id
+ segment_score = round(pred_scores[k].item(), 6)
+ segments.append(
+ {
+ "id": current_segment_id,
+ "label_id": pred_class,
+ "was_fused": should_fuse,
+ "score": segment_score,
+ }
+ )
+ if should_fuse:
+ stuff_memory_list[pred_class] = current_segment_id
+
+ return segmentation, segments
+
+
+# Copied from transformers.models.maskformer.image_processing_maskformer.convert_segmentation_map_to_binary_masks
+def convert_segmentation_map_to_binary_masks(
+ segmentation_map: "np.ndarray",
+ instance_id_to_semantic_id: Optional[Dict[int, int]] = None,
+ ignore_index: Optional[int] = None,
+ reduce_labels: bool = False,
+):
+ if reduce_labels and ignore_index is None:
+ raise ValueError("If `reduce_labels` is True, `ignore_index` must be provided.")
+
+ if reduce_labels:
+ segmentation_map = np.where(segmentation_map == 0, ignore_index, segmentation_map - 1)
+
+ # Get unique ids (class or instance ids based on input)
+ all_labels = np.unique(segmentation_map)
+
+ # Drop background label if applicable
+ if ignore_index is not None:
+ all_labels = all_labels[all_labels != ignore_index]
+
+ # Generate a binary mask for each object instance
+ binary_masks = [(segmentation_map == i) for i in all_labels]
+ binary_masks = np.stack(binary_masks, axis=0) # (num_labels, height, width)
+
+ # Convert instance ids to class ids
+ if instance_id_to_semantic_id is not None:
+ labels = np.zeros(all_labels.shape[0])
+
+ for label in all_labels:
+ class_id = instance_id_to_semantic_id[label + 1 if reduce_labels else label]
+ labels[all_labels == label] = class_id - 1 if reduce_labels else class_id
+ else:
+ labels = all_labels
+
+ return binary_masks.astype(np.float32), labels.astype(np.int64)
+
+
+def get_oneformer_resize_output_image_size(
+ image: np.ndarray,
+ size: Union[int, Tuple[int, int], List[int], Tuple[int]],
+ max_size: Optional[int] = None,
+ default_to_square: bool = True,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+) -> tuple:
+ """
+ Computes the output size given the desired size.
+
+ Args:
+ image (`np.ndarray`):
+ The input image.
+ size (`int` or `Tuple[int, int]` or `List[int]` or `Tuple[int]`):
+ The size of the output image.
+ max_size (`int`, *optional*):
+ The maximum size of the output image.
+ default_to_square (`bool`, *optional*, defaults to `True`):
+ Whether to default to square if no size is provided.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If unset, will use the inferred format from the input.
+
+ Returns:
+ `Tuple[int, int]`: The output size.
+ """
+ output_size = get_resize_output_image_size(
+ input_image=image,
+ size=size,
+ default_to_square=default_to_square,
+ max_size=max_size,
+ input_data_format=input_data_format,
+ )
+ return output_size
+
+
+def prepare_metadata(class_info):
+ metadata = {}
+ class_names = []
+ thing_ids = []
+ for key, info in class_info.items():
+ metadata[key] = info["name"]
+ class_names.append(info["name"])
+ if info["isthing"]:
+ thing_ids.append(int(key))
+ metadata["thing_ids"] = thing_ids
+ metadata["class_names"] = class_names
+ return metadata
+
+
+def load_metadata(repo_id, class_info_file):
+ fname = os.path.join("" if repo_id is None else repo_id, class_info_file)
+
+ if not os.path.exists(fname) or not os.path.isfile(fname):
+ if repo_id is None:
+ raise ValueError(f"Could not file {fname} locally. repo_id must be defined if loading from the hub")
+ # We try downloading from a dataset by default for backward compatibility
+ try:
+ fname = hf_hub_download(repo_id, class_info_file, repo_type="dataset")
+ except RepositoryNotFoundError:
+ fname = hf_hub_download(repo_id, class_info_file)
+
+ with open(fname, "r") as f:
+ class_info = json.load(f)
+
+ return class_info
+
+
+class OneFormerImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a OneFormer image processor. The image processor can be used to prepare image(s), task input(s) and
+ optional text inputs and targets for the model.
+
+ This image processor inherits from [`BaseImageProcessor`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the input to a certain `size`.
+ size (`int`, *optional*, defaults to 800):
+ Resize the input to the given size. Only has an effect if `do_resize` is set to `True`. If size is a
+ sequence like `(width, height)`, output size will be matched to this. If size is an int, smaller edge of
+ the image will be matched to this number. i.e, if `height > width`, then image will be rescaled to `(size *
+ height / width, size)`.
+ resample (`int`, *optional*, defaults to `Resampling.BILINEAR`):
+ An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
+ `PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
+ `PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
+ to `True`.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the input to a certain `scale`.
+ rescale_factor (`float`, *optional*, defaults to `1/ 255`):
+ Rescale the input by the given factor. Only has an effect if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether or not to normalize the input with mean and standard deviation.
+ image_mean (`int`, *optional*, defaults to `[0.485, 0.456, 0.406]`):
+ The sequence of means for each channel, to be used when normalizing images. Defaults to the ImageNet mean.
+ image_std (`int`, *optional*, defaults to `[0.229, 0.224, 0.225]`):
+ The sequence of standard deviations for each channel, to be used when normalizing images. Defaults to the
+ ImageNet std.
+ ignore_index (`int`, *optional*):
+ Label to be assigned to background pixels in segmentation maps. If provided, segmentation map pixels
+ denoted with 0 (background) will be replaced with `ignore_index`.
+ do_reduce_labels (`bool`, *optional*, defaults to `False`):
+ Whether or not to decrement all label values of segmentation maps by 1. Usually used for datasets where 0
+ is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k).
+ The background label will be replaced by `ignore_index`.
+ repo_path (`str`, *optional*, defaults to `"shi-labs/oneformer_demo"`):
+ Path to hub repo or local directory containing the JSON file with class information for the dataset.
+ If unset, will look for `class_info_file` in the current working directory.
+ class_info_file (`str`, *optional*):
+ JSON file containing class information for the dataset. See `shi-labs/oneformer_demo/cityscapes_panoptic.json` for an example.
+ num_text (`int`, *optional*):
+ Number of text entries in the text input list.
+ """
+
+ model_input_names = ["pixel_values", "pixel_mask", "task_inputs"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ do_rescale: bool = True,
+ rescale_factor: float = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Union[float, List[float]] = None,
+ image_std: Union[float, List[float]] = None,
+ ignore_index: Optional[int] = None,
+ do_reduce_labels: bool = False,
+ repo_path: Optional[str] = "shi-labs/oneformer_demo",
+ class_info_file: str = None,
+ num_text: Optional[int] = None,
+ **kwargs,
+ ):
+ if "max_size" in kwargs:
+ self._max_size = kwargs.pop("max_size")
+ else:
+ self._max_size = 1333
+
+ size = size if size is not None else {"shortest_edge": 800, "longest_edge": self._max_size}
+ size = get_size_dict(size, max_size=self._max_size, default_to_square=False)
+
+ if "reduce_labels" in kwargs:
+ warnings.warn(
+ "The `reduce_labels` argument is deprecated and will be removed in v4.27. "
+ "Please use `do_reduce_labels` instead.",
+ FutureWarning,
+ )
+ do_reduce_labels = kwargs.pop("reduce_labels")
+
+ if class_info_file is None:
+ raise ValueError("You must provide a `class_info_file`")
+
+ super().__init__(**kwargs)
+ self.do_resize = do_resize
+ self.size = size
+ self.resample = resample
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_normalize = do_normalize
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
+ self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
+ self.ignore_index = ignore_index
+ self.do_reduce_labels = do_reduce_labels
+ self.class_info_file = class_info_file
+ self.repo_path = repo_path
+ self.metadata = prepare_metadata(load_metadata(repo_path, class_info_file))
+ self.num_text = num_text
+ self._valid_processor_keys = [
+ "images",
+ "task_inputs",
+ "segmentation_maps",
+ "instance_id_to_semantic_id",
+ "do_resize",
+ "size",
+ "resample",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "ignore_index",
+ "do_reduce_labels",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ data_format=None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize the image to the given size. Size can be min_size (scalar) or `(height, width)` tuple. If size is an
+ int, smaller edge of the image will be matched to this number.
+ """
+ if "max_size" in kwargs:
+ warnings.warn(
+ "The `max_size` parameter is deprecated and will be removed in v4.27. "
+ "Please specify in `size['longest_edge'] instead`.",
+ FutureWarning,
+ )
+ max_size = kwargs.pop("max_size")
+ else:
+ max_size = None
+ size = get_size_dict(size, max_size=max_size, default_to_square=False)
+ if "shortest_edge" in size and "longest_edge" in size:
+ size, max_size = size["shortest_edge"], size["longest_edge"]
+ elif "height" in size and "width" in size:
+ size = (size["height"], size["width"])
+ max_size = None
+ else:
+ raise ValueError(
+ "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
+ f" {size.keys()}."
+ )
+ size = get_oneformer_resize_output_image_size(
+ image=image, size=size, max_size=max_size, default_to_square=False, input_data_format=input_data_format
+ )
+ image = resize(
+ image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format
+ )
+ return image
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
+ def rescale(
+ self,
+ image: np.ndarray,
+ rescale_factor: float,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """
+ Rescale the image by the given factor. image = image * rescale_factor.
+
+ Args:
+ image (`np.ndarray`):
+ Image to rescale.
+ rescale_factor (`float`):
+ The value to use for rescaling.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
+ image is used. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format for the input image. If unset, is inferred from the input image. Can be
+ one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ """
+ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
+
+ # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.convert_segmentation_map_to_binary_masks
+ def convert_segmentation_map_to_binary_masks(
+ self,
+ segmentation_map: "np.ndarray",
+ instance_id_to_semantic_id: Optional[Dict[int, int]] = None,
+ ignore_index: Optional[int] = None,
+ reduce_labels: bool = False,
+ ):
+ reduce_labels = reduce_labels if reduce_labels is not None else self.reduce_labels
+ ignore_index = ignore_index if ignore_index is not None else self.ignore_index
+ return convert_segmentation_map_to_binary_masks(
+ segmentation_map=segmentation_map,
+ instance_id_to_semantic_id=instance_id_to_semantic_id,
+ ignore_index=ignore_index,
+ reduce_labels=reduce_labels,
+ )
+
+ def __call__(self, images, task_inputs=None, segmentation_maps=None, **kwargs) -> BatchFeature:
+ return self.preprocess(images, task_inputs=task_inputs, segmentation_maps=segmentation_maps, **kwargs)
+
+ def _preprocess(
+ self,
+ image: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ):
+ if do_resize:
+ image = self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
+ if do_rescale:
+ image = self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format)
+ if do_normalize:
+ image = self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+ return image
+
+ def _preprocess_image(
+ self,
+ image: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """Preprocesses a single image."""
+ # All transformations expect numpy arrays.
+ image = to_numpy_array(image)
+ if is_scaled_image(image) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(image)
+ image = self._preprocess(
+ image=image,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ input_data_format=input_data_format,
+ )
+ if data_format is not None:
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
+ return image
+
+ def _preprocess_mask(
+ self,
+ segmentation_map: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """Preprocesses a single mask."""
+ segmentation_map = to_numpy_array(segmentation_map)
+ # Add channel dimension if missing - needed for certain transformations
+ if segmentation_map.ndim == 2:
+ added_channel_dim = True
+ segmentation_map = segmentation_map[None, ...]
+ input_data_format = ChannelDimension.FIRST
+ else:
+ added_channel_dim = False
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
+ # TODO: (Amy)
+ # Remork segmentation map processing to include reducing labels and resizing which doesn't
+ # drop segment IDs > 255.
+ segmentation_map = self._preprocess(
+ image=segmentation_map,
+ do_resize=do_resize,
+ resample=PILImageResampling.NEAREST,
+ size=size,
+ do_rescale=False,
+ do_normalize=False,
+ input_data_format=input_data_format,
+ )
+ # Remove extra channel dimension if added for processing
+ if added_channel_dim:
+ segmentation_map = segmentation_map.squeeze(0)
+ return segmentation_map
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ task_inputs: Optional[List[str]] = None,
+ segmentation_maps: Optional[ImageInput] = None,
+ instance_id_to_semantic_id: Optional[Dict[int, int]] = None,
+ do_resize: Optional[bool] = None,
+ size: Optional[Dict[str, int]] = None,
+ resample: PILImageResampling = None,
+ do_rescale: Optional[bool] = None,
+ rescale_factor: Optional[float] = None,
+ do_normalize: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ ignore_index: Optional[int] = None,
+ do_reduce_labels: Optional[bool] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> BatchFeature:
+ if "pad_and_return_pixel_mask" in kwargs:
+ warnings.warn(
+ "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in v4.27",
+ FutureWarning,
+ )
+ if "reduce_labels" in kwargs:
+ warnings.warn(
+ "The `reduce_labels` argument is deprecated and will be removed in a v4.27. Please use"
+ " `do_reduce_labels` instead.",
+ FutureWarning,
+ )
+ if do_reduce_labels is not None:
+ raise ValueError(
+ "You cannot use both `reduce_labels` and `do_reduce_labels` arguments. Please use"
+ " `do_reduce_labels` instead."
+ )
+ do_reduce_labels = kwargs.pop("reduce_labels")
+
+ if task_inputs is None:
+ # Default value
+ task_inputs = ["panoptic"]
+
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ size = size if size is not None else self.size
+ size = get_size_dict(size, default_to_square=False, max_size=self._max_size)
+ resample = resample if resample is not None else self.resample
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+ ignore_index = ignore_index if ignore_index is not None else self.ignore_index
+ do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ if segmentation_maps is not None and not valid_images(segmentation_maps):
+ raise ValueError(
+ "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ images = make_list_of_images(images)
+ if segmentation_maps is not None:
+ segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
+
+ if segmentation_maps is not None and len(images) != len(segmentation_maps):
+ raise ValueError("Images and segmentation maps must have the same length.")
+
+ images = [
+ self._preprocess_image(
+ image,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ for image in images
+ ]
+
+ if segmentation_maps is not None:
+ segmentation_maps = [
+ self._preprocess_mask(segmentation_map, do_resize, size, input_data_format=input_data_format)
+ for segmentation_map in segmentation_maps
+ ]
+ encoded_inputs = self.encode_inputs(
+ images,
+ task_inputs,
+ segmentation_maps,
+ instance_id_to_semantic_id,
+ ignore_index,
+ do_reduce_labels,
+ return_tensors,
+ input_data_format=input_data_format,
+ )
+ return encoded_inputs
+
+ # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor._pad_image
+ def _pad_image(
+ self,
+ image: np.ndarray,
+ output_size: Tuple[int, int],
+ constant_values: Union[float, Iterable[float]] = 0,
+ data_format: Optional[ChannelDimension] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """
+ Pad an image with zeros to the given size.
+ """
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
+ output_height, output_width = output_size
+
+ pad_bottom = output_height - input_height
+ pad_right = output_width - input_width
+ padding = ((0, pad_bottom), (0, pad_right))
+ padded_image = pad(
+ image,
+ padding,
+ mode=PaddingMode.CONSTANT,
+ constant_values=constant_values,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ return padded_image
+
+ # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.pad
+ def pad(
+ self,
+ images: List[np.ndarray],
+ constant_values: Union[float, Iterable[float]] = 0,
+ return_pixel_mask: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Optional[ChannelDimension] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> BatchFeature:
+ """
+ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
+ in the batch and optionally returns their corresponding pixel mask.
+
+ Args:
+ image (`np.ndarray`):
+ Image to pad.
+ constant_values (`float` or `Iterable[float]`, *optional*):
+ The value to use for the padding if `mode` is `"constant"`.
+ return_pixel_mask (`bool`, *optional*, defaults to `True`):
+ Whether to return a pixel mask.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ pad_size = get_max_height_width(images, input_data_format=input_data_format)
+
+ padded_images = [
+ self._pad_image(
+ image,
+ pad_size,
+ constant_values=constant_values,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ for image in images
+ ]
+ data = {"pixel_values": padded_images}
+
+ if return_pixel_mask:
+ masks = [
+ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
+ for image in images
+ ]
+ data["pixel_mask"] = masks
+
+ return BatchFeature(data=data, tensor_type=return_tensors)
+
+ def get_semantic_annotations(self, label, num_class_obj):
+ annotation_classes = label["classes"]
+ annotation_masks = label["masks"]
+
+ texts = ["a semantic photo"] * self.num_text
+ classes = []
+ masks = []
+
+ for idx in range(len(annotation_classes)):
+ class_id = annotation_classes[idx]
+ mask = annotation_masks[idx]
+ if not np.all(mask is False):
+ if class_id not in classes:
+ cls_name = self.metadata[str(class_id)]
+ classes.append(class_id)
+ masks.append(mask)
+ num_class_obj[cls_name] += 1
+ else:
+ idx = classes.index(class_id)
+ masks[idx] += mask
+ masks[idx] = np.clip(masks[idx], 0, 1)
+
+ num = 0
+ for i, cls_name in enumerate(self.metadata["class_names"]):
+ if num_class_obj[cls_name] > 0:
+ for _ in range(num_class_obj[cls_name]):
+ if num >= len(texts):
+ break
+ texts[num] = f"a photo with a {cls_name}"
+ num += 1
+
+ classes = np.array(classes)
+ masks = np.array(masks)
+ return classes, masks, texts
+
+ def get_instance_annotations(self, label, num_class_obj):
+ annotation_classes = label["classes"]
+ annotation_masks = label["masks"]
+
+ texts = ["an instance photo"] * self.num_text
+ classes = []
+ masks = []
+
+ for idx in range(len(annotation_classes)):
+ class_id = annotation_classes[idx]
+ mask = annotation_masks[idx]
+
+ if class_id in self.metadata["thing_ids"]:
+ if not np.all(mask is False):
+ cls_name = self.metadata[str(class_id)]
+ classes.append(class_id)
+ masks.append(mask)
+ num_class_obj[cls_name] += 1
+
+ num = 0
+ for i, cls_name in enumerate(self.metadata["class_names"]):
+ if num_class_obj[cls_name] > 0:
+ for _ in range(num_class_obj[cls_name]):
+ if num >= len(texts):
+ break
+ texts[num] = f"a photo with a {cls_name}"
+ num += 1
+
+ classes = np.array(classes)
+ masks = np.array(masks)
+ return classes, masks, texts
+
+ def get_panoptic_annotations(self, label, num_class_obj):
+ annotation_classes = label["classes"]
+ annotation_masks = label["masks"]
+
+ texts = ["an panoptic photo"] * self.num_text
+ classes = []
+ masks = []
+
+ for idx in range(len(annotation_classes)):
+ class_id = annotation_classes[idx]
+ mask = annotation_masks[idx].data
+ if not np.all(mask is False):
+ cls_name = self.metadata[str(class_id)]
+ classes.append(class_id)
+ masks.append(mask)
+ num_class_obj[cls_name] += 1
+
+ num = 0
+ for i, cls_name in enumerate(self.metadata["class_names"]):
+ if num_class_obj[cls_name] > 0:
+ for _ in range(num_class_obj[cls_name]):
+ if num >= len(texts):
+ break
+ texts[num] = f"a photo with a {cls_name}"
+ num += 1
+
+ classes = np.array(classes)
+ masks = np.array(masks)
+ return classes, masks, texts
+
+ def encode_inputs(
+ self,
+ pixel_values_list: List[ImageInput],
+ task_inputs: List[str],
+ segmentation_maps: ImageInput = None,
+ instance_id_to_semantic_id: Optional[Union[List[Dict[int, int]], Dict[int, int]]] = None,
+ ignore_index: Optional[int] = None,
+ reduce_labels: bool = False,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ):
+ """
+ Pad images up to the largest image in a batch and create a corresponding `pixel_mask`.
+
+ OneFormer addresses semantic segmentation with a mask classification paradigm, thus input segmentation maps
+ will be converted to lists of binary masks and their respective labels. Let's see an example, assuming
+ `segmentation_maps = [[2,6,7,9]]`, the output will contain `mask_labels =
+ [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]` (four binary masks) and `class_labels = [2,6,7,9]`, the labels for
+ each mask.
+
+ Args:
+ pixel_values_list (`List[ImageInput]`):
+ List of images (pixel values) to be padded. Each image should be a tensor of shape `(channels, height,
+ width)`.
+
+ task_inputs (`List[str]`):
+ List of task values.
+
+ segmentation_maps (`ImageInput`, *optional*):
+ The corresponding semantic segmentation maps with the pixel-wise annotations.
+
+ (`bool`, *optional*, defaults to `True`):
+ Whether or not to pad images up to the largest image in a batch and create a pixel mask.
+
+ If left to the default, will return a pixel mask that is:
+
+ - 1 for pixels that are real (i.e. **not masked**),
+ - 0 for pixels that are padding (i.e. **masked**).
+
+ instance_id_to_semantic_id (`List[Dict[int, int]]` or `Dict[int, int]`, *optional*):
+ A mapping between object instance ids and class ids. If passed, `segmentation_maps` is treated as an
+ instance segmentation map where each pixel represents an instance id. Can be provided as a single
+ dictionary with a global/dataset-level mapping or as a list of dictionaries (one per image), to map
+ instance ids in each image separately.
+
+ return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
+ If set, will return tensors instead of NumPy arrays. If set to `'pt'`, return PyTorch `torch.Tensor`
+ objects.
+
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred from the input
+ image.
+
+ Returns:
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
+
+ - **pixel_values** -- Pixel values to be fed to a model.
+ - **pixel_mask** -- Pixel mask to be fed to a model (when `=True` or if `pixel_mask` is in
+ `self.model_input_names`).
+ - **mask_labels** -- Optional list of mask labels of shape `(labels, height, width)` to be fed to a model
+ (when `annotations` are provided).
+ - **class_labels** -- Optional list of class labels of shape `(labels)` to be fed to a model (when
+ `annotations` are provided). They identify the labels of `mask_labels`, e.g. the label of
+ `mask_labels[i][j]` if `class_labels[i][j]`.
+ - **text_inputs** -- Optional list of text string entries to be fed to a model (when `annotations` are
+ provided). They identify the binary masks present in the image.
+ """
+ ignore_index = self.ignore_index if ignore_index is None else ignore_index
+ reduce_labels = self.do_reduce_labels if reduce_labels is None else reduce_labels
+ pixel_values_list = [to_numpy_array(pixel_values) for pixel_values in pixel_values_list]
+
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(pixel_values_list[0])
+
+ pad_size = get_max_height_width(pixel_values_list, input_data_format=input_data_format)
+ encoded_inputs = self.pad(
+ pixel_values_list, return_tensors=return_tensors, input_data_format=input_data_format
+ )
+
+ annotations = None
+ if segmentation_maps is not None:
+ segmentation_maps = map(np.array, segmentation_maps)
+ annotations = []
+ for idx, segmentation_map in enumerate(segmentation_maps):
+ # Use instance2class_id mapping per image
+ if isinstance(instance_id_to_semantic_id, list):
+ instance_id = instance_id_to_semantic_id[idx]
+ else:
+ instance_id = instance_id_to_semantic_id
+ # Use instance2class_id mapping per image
+ masks, classes = self.convert_segmentation_map_to_binary_masks(
+ segmentation_map, instance_id, ignore_index=ignore_index, reduce_labels=reduce_labels
+ )
+ annotations.append({"masks": masks, "classes": classes})
+
+ if annotations is not None:
+ mask_labels = []
+ class_labels = []
+ text_inputs = []
+
+ num_class_obj = {}
+ for cls_name in self.metadata["class_names"]:
+ num_class_obj[cls_name] = 0
+
+ for i, label in enumerate(annotations):
+ task = task_inputs[i]
+ if task == "semantic":
+ classes, masks, texts = self.get_semantic_annotations(label, num_class_obj)
+ elif task == "instance":
+ classes, masks, texts = self.get_instance_annotations(label, num_class_obj)
+ elif task == "panoptic":
+ classes, masks, texts = self.get_panoptic_annotations(label, num_class_obj)
+ else:
+ raise ValueError(f"{task} was not expected, expected `semantic`, `instance` or `panoptic`")
+
+ # we cannot batch them since they don't share a common class size
+ masks = [mask[None, ...] for mask in masks]
+ masks = [
+ self._pad_image(image=mask, output_size=pad_size, constant_values=ignore_index) for mask in masks
+ ]
+ masks = np.concatenate(masks, axis=0)
+ mask_labels.append(torch.from_numpy(masks))
+ class_labels.append(torch.from_numpy(classes).long())
+ text_inputs.append(texts)
+
+ encoded_inputs["mask_labels"] = mask_labels
+ encoded_inputs["class_labels"] = class_labels
+ encoded_inputs["text_inputs"] = text_inputs
+
+ # This needs to be tokenized before sending to the model.
+ encoded_inputs["task_inputs"] = [f"the task is {task_input}" for task_input in task_inputs]
+
+ return encoded_inputs
+
+ # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.post_process_semantic_segmentation
+ def post_process_semantic_segmentation(
+ self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None
+ ) -> "torch.Tensor":
+ """
+ Converts the output of [`MaskFormerForInstanceSegmentation`] into semantic segmentation maps. Only supports
+ PyTorch.
+
+ Args:
+ outputs ([`MaskFormerForInstanceSegmentation`]):
+ Raw outputs of the model.
+ target_sizes (`List[Tuple[int, int]]`, *optional*):
+ List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
+ final size (height, width) of each prediction. If left to None, predictions will not be resized.
+ Returns:
+ `List[torch.Tensor]`:
+ A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
+ corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
+ `torch.Tensor` correspond to a semantic class id.
+ """
+ class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1]
+ masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width]
+
+ # Remove the null class `[..., :-1]`
+ masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
+ masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
+
+ # Semantic segmentation logits of shape (batch_size, num_classes, height, width)
+ segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
+ batch_size = class_queries_logits.shape[0]
+
+ # Resize logits and compute semantic segmentation maps
+ if target_sizes is not None:
+ if batch_size != len(target_sizes):
+ raise ValueError(
+ "Make sure that you pass in as many target sizes as the batch dimension of the logits"
+ )
+
+ semantic_segmentation = []
+ for idx in range(batch_size):
+ resized_logits = torch.nn.functional.interpolate(
+ segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
+ )
+ semantic_map = resized_logits[0].argmax(dim=0)
+ semantic_segmentation.append(semantic_map)
+ else:
+ semantic_segmentation = segmentation.argmax(dim=1)
+ semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
+
+ return semantic_segmentation
+
+ def post_process_instance_segmentation(
+ self,
+ outputs,
+ task_type: str = "instance",
+ is_demo: bool = True,
+ threshold: float = 0.5,
+ mask_threshold: float = 0.5,
+ overlap_mask_area_threshold: float = 0.8,
+ target_sizes: Optional[List[Tuple[int, int]]] = None,
+ return_coco_annotation: Optional[bool] = False,
+ ):
+ """
+ Converts the output of [`OneFormerForUniversalSegmentationOutput`] into image instance segmentation
+ predictions. Only supports PyTorch.
+
+ Args:
+ outputs ([`OneFormerForUniversalSegmentationOutput`]):
+ The outputs from [`OneFormerForUniversalSegmentationOutput`].
+ task_type (`str`, *optional)*, defaults to "instance"):
+ The post processing depends on the task token input. If the `task_type` is "panoptic", we need to
+ ignore the stuff predictions.
+ is_demo (`bool`, *optional)*, defaults to `True`):
+ Whether the model is in demo mode. If true, use threshold to predict final masks.
+ threshold (`float`, *optional*, defaults to 0.5):
+ The probability score threshold to keep predicted instance masks.
+ mask_threshold (`float`, *optional*, defaults to 0.5):
+ Threshold to use when turning the predicted masks into binary values.
+ overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
+ The overlap mask area threshold to merge or discard small disconnected parts within each binary
+ instance mask.
+ target_sizes (`List[Tuple]`, *optional*):
+ List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
+ final size (height, width) of each prediction in batch. If left to None, predictions will not be
+ resized.
+ return_coco_annotation (`bool`, *optional)*, defaults to `False`):
+ Whether to return predictions in COCO format.
+
+ Returns:
+ `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
+ - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set
+ to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized
+ to the corresponding `target_sizes` entry.
+ - **segments_info** -- A dictionary that contains additional information on each segment.
+ - **id** -- an integer representing the `segment_id`.
+ - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
+ - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise.
+ Multiple instances of the same class / label were fused and assigned a single `segment_id`.
+ - **score** -- Prediction score of segment with `segment_id`.
+ """
+ class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1]
+ masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width]
+
+ device = masks_queries_logits.device
+ batch_size = class_queries_logits.shape[0]
+ num_queries = class_queries_logits.shape[1]
+ num_classes = class_queries_logits.shape[-1] - 1
+
+ # Loop over items in batch size
+ results: List[Dict[str, torch.Tensor]] = []
+
+ for i in range(batch_size):
+ # [Q, K]
+ scores = torch.nn.functional.softmax(class_queries_logits[i], dim=-1)[:, :-1]
+ labels = torch.arange(num_classes, device=device).unsqueeze(0).repeat(num_queries, 1).flatten(0, 1)
+
+ # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
+ scores_per_image, topk_indices = scores.flatten(0, 1).topk(num_queries, sorted=False)
+ labels_per_image = labels[topk_indices]
+
+ topk_indices = torch.div(topk_indices, num_classes, rounding_mode="floor")
+ # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
+ mask_pred = masks_queries_logits[i][topk_indices]
+
+ # Only consider scores with confidence over [threshold] for demo
+ if is_demo:
+ keep = scores_per_image > threshold
+ scores_per_image = scores_per_image[keep]
+ labels_per_image = labels_per_image[keep]
+ mask_pred = mask_pred[keep]
+
+ # if this is panoptic segmentation, we only keep the "thing" classes
+ if task_type == "panoptic":
+ keep = torch.zeros_like(scores_per_image).bool()
+ for j, lab in enumerate(labels_per_image):
+ keep[j] = lab in self.metadata["thing_ids"]
+
+ scores_per_image = scores_per_image[keep]
+ labels_per_image = labels_per_image[keep]
+ mask_pred = mask_pred[keep]
+
+ if mask_pred.shape[0] <= 0:
+ height, width = target_sizes[i] if target_sizes is not None else mask_pred.shape[1:]
+ segmentation = torch.zeros((height, width)) - 1
+ results.append({"segmentation": segmentation, "segments_info": []})
+ continue
+
+ if "ade20k" in self.class_info_file and not is_demo and "instance" in task_type:
+ for j in range(labels_per_image.shape[0]):
+ labels_per_image[j] = self.metadata["thing_ids"].index(labels_per_image[j].item())
+
+ # Get segmentation map and segment information of batch item
+ target_size = target_sizes[i] if target_sizes is not None else None
+ segmentation, segments = compute_segments(
+ mask_pred,
+ scores_per_image,
+ labels_per_image,
+ mask_threshold,
+ overlap_mask_area_threshold,
+ set(),
+ target_size,
+ )
+
+ # Return segmentation map in run-length encoding (RLE) format
+ if return_coco_annotation:
+ segmentation = convert_segmentation_to_rle(segmentation)
+
+ results.append({"segmentation": segmentation, "segments_info": segments})
+ return results
+
+ # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.post_process_panoptic_segmentation
+ def post_process_panoptic_segmentation(
+ self,
+ outputs,
+ threshold: float = 0.5,
+ mask_threshold: float = 0.5,
+ overlap_mask_area_threshold: float = 0.8,
+ label_ids_to_fuse: Optional[Set[int]] = None,
+ target_sizes: Optional[List[Tuple[int, int]]] = None,
+ ) -> List[Dict]:
+ """
+ Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into image panoptic segmentation
+ predictions. Only supports PyTorch.
+
+ Args:
+ outputs ([`MaskFormerForInstanceSegmentationOutput`]):
+ The outputs from [`MaskFormerForInstanceSegmentation`].
+ threshold (`float`, *optional*, defaults to 0.5):
+ The probability score threshold to keep predicted instance masks.
+ mask_threshold (`float`, *optional*, defaults to 0.5):
+ Threshold to use when turning the predicted masks into binary values.
+ overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
+ The overlap mask area threshold to merge or discard small disconnected parts within each binary
+ instance mask.
+ label_ids_to_fuse (`Set[int]`, *optional*):
+ The labels in this state will have all their instances be fused together. For instance we could say
+ there can only be one sky in an image, but several persons, so the label ID for sky would be in that
+ set, but not the one for person.
+ target_sizes (`List[Tuple]`, *optional*):
+ List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
+ final size (height, width) of each prediction in batch. If left to None, predictions will not be
+ resized.
+
+ Returns:
+ `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
+ - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set
+ to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized
+ to the corresponding `target_sizes` entry.
+ - **segments_info** -- A dictionary that contains additional information on each segment.
+ - **id** -- an integer representing the `segment_id`.
+ - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
+ - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise.
+ Multiple instances of the same class / label were fused and assigned a single `segment_id`.
+ - **score** -- Prediction score of segment with `segment_id`.
+ """
+
+ if label_ids_to_fuse is None:
+ logger.warning("`label_ids_to_fuse` unset. No instance will be fused.")
+ label_ids_to_fuse = set()
+
+ class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1]
+ masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width]
+
+ batch_size = class_queries_logits.shape[0]
+ num_labels = class_queries_logits.shape[-1] - 1
+
+ mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
+
+ # Predicted label and score of each query (batch_size, num_queries)
+ pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
+
+ # Loop over items in batch size
+ results: List[Dict[str, TensorType]] = []
+
+ for i in range(batch_size):
+ mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
+ mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
+ )
+
+ # No mask found
+ if mask_probs_item.shape[0] <= 0:
+ height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
+ segmentation = torch.zeros((height, width)) - 1
+ results.append({"segmentation": segmentation, "segments_info": []})
+ continue
+
+ # Get segmentation map and segment information of batch item
+ target_size = target_sizes[i] if target_sizes is not None else None
+ segmentation, segments = compute_segments(
+ mask_probs=mask_probs_item,
+ pred_scores=pred_scores_item,
+ pred_labels=pred_labels_item,
+ mask_threshold=mask_threshold,
+ overlap_mask_area_threshold=overlap_mask_area_threshold,
+ label_ids_to_fuse=label_ids_to_fuse,
+ target_size=target_size,
+ )
+
+ results.append({"segmentation": segmentation, "segments_info": segments})
+ return results
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/modeling_oneformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/modeling_oneformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..6af4226995bfa1405425cede88b883d58218ccb5
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/modeling_oneformer.py
@@ -0,0 +1,3259 @@
+# coding=utf-8
+# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch OneFormer model."""
+import copy
+import math
+import warnings
+from dataclasses import dataclass
+from typing import Dict, List, Optional, Tuple
+
+import numpy as np
+import torch
+from torch import Tensor, nn
+from torch.cuda.amp import autocast
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BaseModelOutput
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_accelerate_available,
+ is_scipy_available,
+ logging,
+ replace_return_docstrings,
+ requires_backends,
+)
+from ...utils.backbone_utils import load_backbone
+from .configuration_oneformer import OneFormerConfig
+
+
+if is_accelerate_available():
+ from accelerate import PartialState
+ from accelerate.utils import reduce
+
+logger = logging.get_logger(__name__)
+
+
+_CONFIG_FOR_DOC = "OneFormerConfig"
+_CHECKPOINT_FOR_DOC = "shi-labs/oneformer_ade20k_swin_tiny"
+
+
+from ..deprecated._archive_maps import ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+if is_scipy_available():
+ from scipy.optimize import linear_sum_assignment
+
+
+def _get_clones(module, N):
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
+
+
+# Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention
+def multi_scale_deformable_attention(
+ value: Tensor, value_spatial_shapes: Tensor, sampling_locations: Tensor, attention_weights: Tensor
+) -> Tensor:
+ batch_size, _, num_heads, hidden_dim = value.shape
+ _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
+ value_list = value.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=1)
+ sampling_grids = 2 * sampling_locations - 1
+ sampling_value_list = []
+ for level_id, (height, width) in enumerate(value_spatial_shapes):
+ # batch_size, height*width, num_heads, hidden_dim
+ # -> batch_size, height*width, num_heads*hidden_dim
+ # -> batch_size, num_heads*hidden_dim, height*width
+ # -> batch_size*num_heads, hidden_dim, height, width
+ value_l_ = (
+ value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width)
+ )
+ # batch_size, num_queries, num_heads, num_points, 2
+ # -> batch_size, num_heads, num_queries, num_points, 2
+ # -> batch_size*num_heads, num_queries, num_points, 2
+ sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
+ # batch_size*num_heads, hidden_dim, num_queries, num_points
+ sampling_value_l_ = nn.functional.grid_sample(
+ value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
+ )
+ sampling_value_list.append(sampling_value_l_)
+ # (batch_size, num_queries, num_heads, num_levels, num_points)
+ # -> (batch_size, num_heads, num_queries, num_levels, num_points)
+ # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
+ attention_weights = attention_weights.transpose(1, 2).reshape(
+ batch_size * num_heads, 1, num_queries, num_levels * num_points
+ )
+ output = (
+ (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
+ .sum(-1)
+ .view(batch_size, num_heads * hidden_dim, num_queries)
+ )
+ return output.transpose(1, 2).contiguous()
+
+
+# Copied from transformers.models.maskformer.modeling_maskformer.dice_loss
+def dice_loss(inputs: Tensor, labels: Tensor, num_masks: int) -> Tensor:
+ r"""
+ Compute the DICE loss, similar to generalized IOU for masks as follows:
+
+ $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x \cap y }{x \cup y + 1}} $$
+
+ In practice, since `labels` is a binary mask, (only 0s and 1s), dice can be computed as follow
+
+ $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x * y }{x + y + 1}} $$
+
+ Args:
+ inputs (`torch.Tensor`):
+ A tensor representing a mask.
+ labels (`torch.Tensor`):
+ A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
+ (0 for the negative class and 1 for the positive class).
+ num_masks (`int`):
+ The number of masks present in the current batch, used for normalization.
+
+ Returns:
+ `torch.Tensor`: The computed loss.
+ """
+ probs = inputs.sigmoid().flatten(1)
+ numerator = 2 * (probs * labels).sum(-1)
+ denominator = probs.sum(-1) + labels.sum(-1)
+ loss = 1 - (numerator + 1) / (denominator + 1)
+ loss = loss.sum() / num_masks
+ return loss
+
+
+# Copied from transformers.models.mask2former.modeling_mask2former.sigmoid_cross_entropy_loss
+def sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor, num_masks: int) -> torch.Tensor:
+ r"""
+ Args:
+ inputs (`torch.Tensor`):
+ A float tensor of arbitrary shape.
+ labels (`torch.Tensor`):
+ A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
+ (0 for the negative class and 1 for the positive class).
+
+ Returns:
+ loss (`torch.Tensor`): The computed loss.
+ """
+ criterion = nn.BCEWithLogitsLoss(reduction="none")
+ cross_entropy_loss = criterion(inputs, labels)
+
+ loss = cross_entropy_loss.mean(1).sum() / num_masks
+ return loss
+
+
+# Copied from transformers.models.maskformer.modeling_maskformer.pair_wise_dice_loss
+def pair_wise_dice_loss(inputs: Tensor, labels: Tensor) -> Tensor:
+ """
+ A pair wise version of the dice loss, see `dice_loss` for usage.
+
+ Args:
+ inputs (`torch.Tensor`):
+ A tensor representing a mask
+ labels (`torch.Tensor`):
+ A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
+ (0 for the negative class and 1 for the positive class).
+
+ Returns:
+ `torch.Tensor`: The computed loss between each pairs.
+ """
+ inputs = inputs.sigmoid().flatten(1)
+ numerator = 2 * torch.matmul(inputs, labels.T)
+ # using broadcasting to get a [num_queries, NUM_CLASSES] matrix
+ denominator = inputs.sum(-1)[:, None] + labels.sum(-1)[None, :]
+ loss = 1 - (numerator + 1) / (denominator + 1)
+ return loss
+
+
+# Copied from transformers.models.mask2former.modeling_mask2former.pair_wise_sigmoid_cross_entropy_loss
+def pair_wise_sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
+ r"""
+ A pair wise version of the cross entropy loss, see `sigmoid_cross_entropy_loss` for usage.
+
+ Args:
+ inputs (`torch.Tensor`):
+ A tensor representing a mask.
+ labels (`torch.Tensor`):
+ A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
+ (0 for the negative class and 1 for the positive class).
+
+ Returns:
+ loss (`torch.Tensor`): The computed loss between each pairs.
+ """
+
+ height_and_width = inputs.shape[1]
+
+ criterion = nn.BCEWithLogitsLoss(reduction="none")
+ cross_entropy_loss_pos = criterion(inputs, torch.ones_like(inputs))
+ cross_entropy_loss_neg = criterion(inputs, torch.zeros_like(inputs))
+
+ loss_pos = torch.matmul(cross_entropy_loss_pos / height_and_width, labels.T)
+ loss_neg = torch.matmul(cross_entropy_loss_neg / height_and_width, (1 - labels).T)
+ loss = loss_pos + loss_neg
+ return loss
+
+
+# Copied from transformers.models.mask2former.modeling_mask2former.sample_point
+def sample_point(
+ input_features: torch.Tensor, point_coordinates: torch.Tensor, add_dim=False, **kwargs
+) -> torch.Tensor:
+ """
+ A wrapper around `torch.nn.functional.grid_sample` to support 3D point_coordinates tensors.
+
+ Args:
+ input_features (`torch.Tensor` of shape (batch_size, channels, height, width)):
+ A tensor that contains features map on a height * width grid
+ point_coordinates (`torch.Tensor` of shape (batch_size, num_points, 2) or (batch_size, grid_height, grid_width,:
+ 2)):
+ A tensor that contains [0, 1] * [0, 1] normalized point coordinates
+ add_dim (`bool`):
+ boolean value to keep track of added dimension
+
+ Returns:
+ point_features (`torch.Tensor` of shape (batch_size, channels, num_points) or (batch_size, channels,
+ height_grid, width_grid):
+ A tensor that contains features for points in `point_coordinates`.
+ """
+ if point_coordinates.dim() == 3:
+ add_dim = True
+ point_coordinates = point_coordinates.unsqueeze(2)
+
+ # use nn.function.grid_sample to get features for points in `point_coordinates` via bilinear interpolation
+ point_features = torch.nn.functional.grid_sample(input_features, 2.0 * point_coordinates - 1.0, **kwargs)
+ if add_dim:
+ point_features = point_features.squeeze(3)
+
+ return point_features
+
+
+# Refactored from https://github.com/SHI-Labs/OneFormer/blob/33ebb56ed34f970a30ae103e786c0cb64c653d9a/oneformer/modeling/matcher.py#L93
+class OneFormerHungarianMatcher(nn.Module):
+ def __init__(
+ self, cost_class: float = 1.0, cost_mask: float = 1.0, cost_dice: float = 1.0, num_points: int = 12544
+ ):
+ """This class computes an assignment between the labels and the predictions of the network.
+
+ For efficiency reasons, the labels don't include the no_object. Because of this, in general, there are more
+ predictions than labels. In this case, we do a 1-to-1 matching of the best predictions, while the others are
+ un-matched (and thus treated as non-objects).
+
+ Params:
+ cost_class (float, *optional*, defaults to 1.0):
+ This is the relative weight of the classification error in the matching cost.
+ cost_mask (float, *optional*, defaults to 1.0):
+ This is the relative weight of the sigmoid ce loss of the binary mask in the matching cost.
+ cost_dice (float, *optional*, defaults to 1.0):
+ This is the relative weight of the dice loss of the binary mask in the matching cost
+ num_points (int, *optional*, defaults to 12544):
+ Number of points to be sampled for dice and mask loss matching cost.
+ """
+ super().__init__()
+ if cost_class == 0 and cost_mask == 0 and cost_dice == 0:
+ raise ValueError("All costs cant be 0")
+ self.cost_class = cost_class
+ self.cost_mask = cost_mask
+ self.cost_dice = cost_dice
+ self.num_points = num_points
+
+ @torch.no_grad()
+ def forward(self, masks_queries_logits, class_queries_logits, mask_labels, class_labels) -> List[Tuple[Tensor]]:
+ """Performs the matching
+
+ Params:
+ masks_queries_logits (`torch.Tensor`):
+ A tensor` of dim `batch_size, num_queries, num_labels` with the
+ classification logits.
+ class_queries_logits (`torch.Tensor`):
+ A tensor` of dim `batch_size, num_queries, height, width` with the
+ predicted masks.
+
+ class_labels (`torch.Tensor`):
+ A tensor` of dim `num_target_boxes` (where num_target_boxes is the number
+ of ground-truth objects in the target) containing the class labels.
+ mask_labels (`torch.Tensor`):
+ A tensor` of dim `num_target_boxes, height, width` containing the target
+ masks.
+
+ Returns:
+ `List[Tuple[Tensor]]`: A list of size batch_size, containing tuples of (index_i, index_j) where:
+ - index_i is the indices of the selected predictions (in order)
+ - index_j is the indices of the corresponding selected labels (in order)
+ For each batch element, it holds:
+ len(index_i) = len(index_j) = min(num_queries, num_targets).
+ """
+ indices: List[Tuple[np.array]] = []
+
+ num_queries = class_queries_logits.shape[1]
+
+ preds_masks = masks_queries_logits
+ preds_probs = class_queries_logits
+ # iterate through batch size
+ for pred_probs, pred_mask, target_mask, labels in zip(preds_probs, preds_masks, mask_labels, class_labels):
+ pred_probs = pred_probs.softmax(-1)
+ # Compute the classification cost. Contrary to the loss, we don't use the NLL,
+ # but approximate it in 1 - proba[target class].
+ # The 1 is a constant that doesn't change the matching, it can be ommitted.
+ cost_class = -pred_probs[:, labels]
+
+ pred_mask = pred_mask[:, None]
+ target_mask = target_mask[:, None].to(pred_mask.device)
+
+ # all masks share the same set of points for efficient matching!
+ point_coords = torch.rand(1, self.num_points, 2, device=pred_mask.device)
+
+ # get ground truth labels
+ target_mask = sample_point(
+ target_mask,
+ point_coords.repeat(target_mask.shape[0], 1, 1),
+ align_corners=False,
+ ).squeeze(1)
+
+ pred_mask = sample_point(
+ pred_mask,
+ point_coords.repeat(pred_mask.shape[0], 1, 1),
+ align_corners=False,
+ ).squeeze(1)
+
+ with autocast(enabled=False):
+ pred_mask = pred_mask.float()
+ target_mask = target_mask.float()
+
+ # compute the sigmoid ce loss
+ cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask)
+ # Compute the dice loss
+ cost_dice = pair_wise_dice_loss(pred_mask, target_mask)
+ # final cost matrix
+ cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice
+ cost_matrix = cost_matrix.reshape(num_queries, -1).cpu()
+ # do the assigmented using the hungarian algorithm in scipy
+ assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.cpu())
+ indices.append(assigned_indices)
+
+ # It could be stacked in one tensor
+ matched_indices = [
+ (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices
+ ]
+ return matched_indices
+
+
+class OneFormerLoss(nn.Module):
+ def __init__(
+ self,
+ num_classes: int,
+ matcher: OneFormerHungarianMatcher,
+ weight_dict: Dict[str, float],
+ eos_coef: float,
+ num_points: int,
+ oversample_ratio: float,
+ importance_sample_ratio: float,
+ contrastive_temperature: float = None,
+ ):
+ """
+ This class computes the losses using the class predictions, mask predictions and the contrastive queries.
+
+ Oneformer calculates the classification CE loss on the class predictions. Mask predictions are used for
+ calculating the binary CE loss and dice loss. The contrastive queries are used for calculating the contrastive
+ loss.
+
+ Args:
+ num_labels (`int`):
+ The number of classes.
+ matcher (`OneFormerHungarianMatcher`):
+ A torch module that computes the assigments between the predictions and labels.
+ weight_dict (`Dict[str, float]`):
+ A dictionary of weights to be applied to the different losses.
+ eos_coef (`float`):
+ Weight to apply to the null class.
+ num_points (`int`):
+ Number of points to be sampled for dice and mask loss calculations.
+ oversample_ratio (`float`):
+ Required for pointwise loss calculation.
+ importance_sample_ratio (`float`):
+ Required for pointwise loss calculation.
+ contrastive_temperature (`float`):
+ Temperature for scaling the contrastive logits.
+ """
+ requires_backends(self, ["scipy"])
+ super().__init__()
+ self.num_classes = num_classes
+ self.matcher = matcher
+ self.weight_dict = weight_dict
+ self.eos_coef = eos_coef
+ empty_weight = torch.ones(self.num_classes + 1)
+ empty_weight[-1] = self.eos_coef
+ self.register_buffer("empty_weight", empty_weight)
+
+ # pointwise mask loss parameters
+ self.num_points = num_points
+ self.oversample_ratio = oversample_ratio
+ self.importance_sample_ratio = importance_sample_ratio
+ self.contrastive_temperature = contrastive_temperature
+ if self.contrastive_temperature is not None:
+ self.logit_scale = nn.Parameter(torch.tensor(np.log(1 / contrastive_temperature)))
+
+ def _max_by_axis(self, the_list: List[List[int]]) -> List[int]:
+ maxes = the_list[0]
+ for sublist in the_list[1:]:
+ for index, item in enumerate(sublist):
+ maxes[index] = max(maxes[index], item)
+ return maxes
+
+ def _pad_images_to_max_in_batch(self, tensors: List[Tensor]) -> Tuple[Tensor, Tensor]:
+ # get the maximum size in the batch
+ max_size = self._max_by_axis([list(tensor.shape) for tensor in tensors])
+ batch_size = len(tensors)
+ # compute finel size
+ batch_shape = [batch_size] + max_size
+ b, _, h, w = batch_shape
+ # get metadata
+ dtype = tensors[0].dtype
+ device = tensors[0].device
+ padded_tensors = torch.zeros(batch_shape, dtype=dtype, device=device)
+ padding_masks = torch.ones((b, h, w), dtype=torch.bool, device=device)
+ # pad the tensors to the size of the biggest one
+ for tensor, padded_tensor, padding_mask in zip(tensors, padded_tensors, padding_masks):
+ padded_tensor[: tensor.shape[0], : tensor.shape[1], : tensor.shape[2]].copy_(tensor)
+ padding_mask[: tensor.shape[1], : tensor.shape[2]] = False
+
+ return padded_tensors, padding_masks
+
+ def loss_contrastive(self, contrastive_queries_logits: Tensor, text_queries: Tensor):
+ """Compute the query-text contrastive loss.
+
+ Args:
+ contrastive_queries_logits (`torch.Tensor`):
+ A tensor of shape `batch_size, num_queries, hidden_dim`
+ text_queries (`torch.Tensor`):
+ A tensor of shape `batch_size, num_queries, hidden_dim`
+ Returns:
+ `Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key:
+ - **loss_contrastive** -- The query-text contrastive loss computed using task-guided queries
+ and text queries derived from input text list.
+ """
+
+ image_queries = contrastive_queries_logits.float()
+
+ # [batch_size, hidden_dim]
+ image_queries = nn.functional.normalize(image_queries.flatten(1), dim=-1)
+ text_queries = nn.functional.normalize(text_queries.flatten(1), dim=-1)
+
+ logit_scale = torch.clamp(self.logit_scale.exp(), max=100)
+
+ logits_per_text = torch.matmul(text_queries, image_queries.t()) * logit_scale
+ logits_per_img = logits_per_text.t()
+
+ loss_img = nn.functional.cross_entropy(
+ logits_per_img, torch.arange(len(logits_per_img), device=logits_per_text.device)
+ )
+ loss_text = nn.functional.cross_entropy(
+ logits_per_text, torch.arange(len(logits_per_text), device=logits_per_text.device)
+ )
+
+ loss_contrastive = loss_img + loss_text
+
+ losses = {"loss_contrastive": loss_contrastive}
+ return losses
+
+ def loss_labels(
+ self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array]
+ ) -> Dict[str, Tensor]:
+ """Compute the losses related to the labels using cross entropy.
+
+ Args:
+ class_queries_logits (`torch.Tensor`):
+ A tensor of shape `batch_size, num_queries, num_labels`
+ class_labels (`List[torch.Tensor]`):
+ List of class labels of shape `(labels)`.
+ indices (`Tuple[np.array])`:
+ The indices computed by the Hungarian matcher.
+
+ Returns:
+ `Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key:
+ - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels.
+ """
+ pred_logits = class_queries_logits
+ batch_size, num_queries, _ = pred_logits.shape
+ criterion = nn.CrossEntropyLoss(weight=self.empty_weight)
+ idx = self._get_predictions_permutation_indices(indices)
+
+ # shape = (batch_size, num_queries)
+ target_classes_o = torch.cat([target[j] for target, (_, j) in zip(class_labels, indices)])
+ # shape = (batch_size, num_queries)
+ target_classes = torch.full(
+ (batch_size, num_queries), fill_value=self.num_classes, dtype=torch.int64, device=pred_logits.device
+ )
+ target_classes[idx] = target_classes_o
+ # permute pred_logits (batch_size, num_queries, num_labels) -> (batch_size, num_labels, num_queries)
+ pred_logits_transposed = pred_logits.transpose(1, 2)
+ loss_ce = criterion(pred_logits_transposed, target_classes)
+ losses = {"loss_cross_entropy": loss_ce}
+ return losses
+
+ def loss_masks(
+ self, masks_queries_logits: Tensor, mask_labels: List[Tensor], indices: Tuple[np.array], num_masks: int
+ ) -> Dict[str, Tensor]:
+ """Compute the losses related to the masks using focal and dice loss.
+
+ Args:
+ masks_queries_logits (`torch.Tensor`):
+ A tensor of shape `batch_size, num_queries, height, width`
+ mask_labels (`torch.Tensor`):
+ List of mask labels of shape `(labels, height, width)`.
+ indices (`Tuple[np.array])`:
+ The indices computed by the Hungarian matcher.
+ num_masks (`int)`:
+ The number of masks, used for normalization.
+
+ Returns:
+ `Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys:
+ - **loss_mask** -- The loss computed using sigmoid ce loss on the predicted and ground truth masks.
+ - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth
+ masks.
+ """
+ src_idx = self._get_predictions_permutation_indices(indices)
+ tgt_idx = self._get_targets_permutation_indices(indices)
+ # shape (batch_size * num_queries, height, width)
+ pred_masks = masks_queries_logits[src_idx]
+ # shape (batch_size, num_queries, height, width)
+ # pad all and stack the targets to the num_labels dimension
+ # upsample predictions to the target size, we have to add one dim to use interpolate
+ target_masks, _ = self._pad_images_to_max_in_batch(mask_labels)
+ target_masks = target_masks[tgt_idx]
+
+ pred_masks = pred_masks[:, None]
+ target_masks = target_masks[:, None]
+
+ with torch.no_grad():
+ # sample point_coords
+ point_coords = self.sample_points_using_uncertainty(
+ pred_masks,
+ self.calculate_uncertainty,
+ self.num_points,
+ self.oversample_ratio,
+ self.importance_sample_ratio,
+ )
+ # get ground-truth labels
+ point_labels = sample_point(target_masks, point_coords, align_corners=False).squeeze(1)
+
+ point_logits = sample_point(pred_masks, point_coords, align_corners=False).squeeze(1)
+
+ losses = {
+ "loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks),
+ "loss_dice": dice_loss(point_logits, point_labels, num_masks),
+ }
+
+ del pred_masks
+ del target_masks
+ return losses
+
+ # Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerLoss.calculate_uncertainty
+ def calculate_uncertainty(self, logits: torch.Tensor) -> torch.Tensor:
+ """
+ In Mask2Former paper, uncertainty is estimated as L1 distance between 0.0 and the logit prediction in 'logits'
+ for the foreground class in `classes`.
+
+ Args:
+ logits (`torch.Tensor`):
+ A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is:
+ the number of foreground classes. The values are logits.
+
+ Returns:
+ scores (`torch.Tensor`): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most
+ uncertain locations having the highest uncertainty score.
+ """
+ uncertainty_scores = -(torch.abs(logits))
+ return uncertainty_scores
+
+ # Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerLoss.sample_points_using_uncertainty
+ def sample_points_using_uncertainty(
+ self,
+ logits: torch.Tensor,
+ uncertainty_function,
+ num_points: int,
+ oversample_ratio: int,
+ importance_sample_ratio: float,
+ ) -> torch.Tensor:
+ """
+ This function is meant for sampling points in [0, 1] * [0, 1] coordinate space based on their uncertainty. The
+ uncertainty is calculated for each point using the passed `uncertainty function` that takes points logit
+ prediction as input.
+
+ Args:
+ logits (`float`):
+ Logit predictions for P points.
+ uncertainty_function:
+ A function that takes logit predictions for P points and returns their uncertainties.
+ num_points (`int`):
+ The number of points P to sample.
+ oversample_ratio (`int`):
+ Oversampling parameter.
+ importance_sample_ratio (`float`):
+ Ratio of points that are sampled via importance sampling.
+
+ Returns:
+ point_coordinates (`torch.Tensor`):
+ Coordinates for P sampled points.
+ """
+
+ num_boxes = logits.shape[0]
+ num_points_sampled = int(num_points * oversample_ratio)
+
+ # Get random point coordinates
+ point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device)
+ # Get sampled prediction value for the point coordinates
+ point_logits = sample_point(logits, point_coordinates, align_corners=False)
+ # Calculate the uncertainties based on the sampled prediction values of the points
+ point_uncertainties = uncertainty_function(point_logits)
+
+ num_uncertain_points = int(importance_sample_ratio * num_points)
+ num_random_points = num_points - num_uncertain_points
+
+ idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
+ shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device)
+ idx += shift[:, None]
+ point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2)
+
+ if num_random_points > 0:
+ point_coordinates = torch.cat(
+ [point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)],
+ dim=1,
+ )
+ return point_coordinates
+
+ def _get_predictions_permutation_indices(self, indices):
+ # permute predictions following indices
+ batch_indices = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
+ predictions_indices = torch.cat([src for (src, _) in indices])
+ return batch_indices, predictions_indices
+
+ def _get_targets_permutation_indices(self, indices):
+ # permute labels following indices
+ batch_indices = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
+ target_indices = torch.cat([tgt for (_, tgt) in indices])
+ return batch_indices, target_indices
+
+ def forward(
+ self,
+ masks_queries_logits: Tensor,
+ class_queries_logits: Tensor,
+ contrastive_queries_logits: Tensor,
+ mask_labels: List[Tensor],
+ class_labels: List[Tensor],
+ text_queries: Tensor,
+ auxiliary_predictions: Optional[Dict[str, Tensor]] = None,
+ calculate_contrastive_loss: bool = True,
+ ) -> Dict[str, Tensor]:
+ """
+ This performs the loss computation.
+
+ Args:
+ masks_queries_logits (`torch.Tensor`):
+ A tensor of shape `batch_size, num_queries, height, width`
+ class_queries_logits (`torch.Tensor`):
+ A tensor of shape `batch_size, num_queries, num_labels`
+ contrastive_queries_logits (`torch.Tensor`):
+ A tensor of shape `batch_size, num_queries, hidden_dim`
+ mask_labels (`torch.Tensor`):
+ List of mask labels of shape `(labels, height, width)`.
+ class_labels (`List[torch.Tensor]`):
+ List of class labels of shape `(labels)`.
+ text_queries (`torch.Tensor`):
+ A tensor of shape `batch_size, num_queries, hidden_dim`
+ auxiliary_predictions (`Dict[str, torch.Tensor]`, *optional*):
+ if `use_auxiliary_loss` was set to `true` in [`OneFormerConfig`], then it contains the logits from the
+ inner layers of the Detr's Decoder.
+ calculate_contrastive_loss (`bool`, *optional*, defaults to `True`):
+ Whether or not to calculate the contrastive loss.
+
+ Returns:
+ `Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys:
+ - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels.
+ - **loss_mask** -- The loss computed using sigmoid ce loss on the predicted and ground truth masks.
+ - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth
+ masks.
+ - **loss_contrastive** -- The query-text contrstive loss computed using object and text queries.
+ if `use_auxiliary_loss` was set to `true` in [`OneFormerConfig`], the dictionary contains addional losses
+ for each auxiliary predictions.
+ """
+
+ # retrieve the matching between the outputs of the last layer and the labels
+ indices = self.matcher(masks_queries_logits, class_queries_logits, mask_labels, class_labels)
+ # compute the average number of target masks for normalization purposes
+ num_masks = self.get_num_masks(class_labels, device=class_labels[0].device)
+ # get all the losses
+ losses: Dict[str, Tensor] = {
+ **self.loss_masks(masks_queries_logits, mask_labels, indices, num_masks),
+ **self.loss_labels(class_queries_logits, class_labels, indices),
+ }
+ if calculate_contrastive_loss:
+ losses = {**losses, **self.loss_contrastive(contrastive_queries_logits, text_queries)}
+
+ # in case of auxiliary losses, we repeat this process with the output of each intermediate layer.
+ if auxiliary_predictions is not None:
+ for idx, aux_outputs in enumerate(auxiliary_predictions):
+ masks_queries_logits = aux_outputs["masks_queries_logits"]
+ class_queries_logits = aux_outputs["class_queries_logits"]
+ loss_dict = self.forward(
+ masks_queries_logits,
+ class_queries_logits,
+ None,
+ mask_labels,
+ class_labels,
+ None,
+ calculate_contrastive_loss=False,
+ )
+ loss_dict = {f"{key}_{idx}": value for key, value in loss_dict.items()}
+ losses.update(loss_dict)
+
+ return losses
+
+ def get_num_masks(self, class_labels: torch.Tensor, device: torch.device) -> torch.Tensor:
+ """
+ Computes the average number of target masks across the batch, for normalization purposes.
+ """
+ num_masks = sum([len(classes) for classes in class_labels])
+ num_masks = torch.as_tensor([num_masks], dtype=torch.float, device=device)
+ world_size = 1
+ if is_accelerate_available():
+ if PartialState._shared_state != {}:
+ num_masks = reduce(num_masks)
+ world_size = PartialState().num_processes
+
+ num_masks = torch.clamp(num_masks / world_size, min=1)
+ return num_masks
+
+
+@dataclass
+class OneFormerTransformerDecoderOutput(BaseModelOutput):
+ """
+ Base class for outputs of the Transformer decoder. This class adds attributes for class predictions, mask
+ predictions and contrastive logits to BaseModelOutputWithCrossAttentions.
+
+ Args:
+ object_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`):
+ Queries representation for the region proposals.
+ contrastive_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`):
+ Queries representation for the contrastive loss.
+ prediction_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`):
+ Mask predictions from last layer of the transformer decoder.
+ prediction_class (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`):
+ Class predictions from last layer of the transformer decoder.
+ auxiliary_predictions (Tuple of Dict of `str, torch.FloatTensor`, *optional*):
+ Tuple of class and mask predictions from each layer of the transformer decoder.
+ """
+
+ object_queries: torch.FloatTensor = None
+ contrastive_logits: Optional[torch.FloatTensor] = None
+ prediction_masks: torch.FloatTensor = None
+ prediction_class: torch.FloatTensor = None
+ auxiliary_predictions: Optional[Tuple[Dict[str, torch.FloatTensor]]] = None
+
+
+@dataclass
+# Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelDecoderOutput with Mask2->One
+class OneFormerPixelDecoderOutput(ModelOutput):
+ """
+ OneFormer's pixel decoder module output, practically a Multi-Scale Deformable Attention based decoder. It returns
+ the mask features and the multiscale features.
+
+ Args:
+ multi_scale_features (`tuple(torch.FloatTensor)`):
+ Tuple of multi-scale features of scales [1/8, 1/16, 1/32] and shape `(batch_size, num_channels, height,
+ width)`from the Multi-Scale Deformable Attenntion based Pixel Decoder.
+ mask_features (`torch.FloatTensor`):
+ Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel Decoder
+ Layer.
+ attentions (`tuple(torch.FloatTensor)`, *optional*):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights from pixel decoder. Returned when `output_attentions=True` is passed
+ or when `config.output_attentions=True`
+ """
+
+ multi_scale_features: Tuple[torch.FloatTensor] = None
+ mask_features: torch.FloatTensor = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class OneFormerPixelLevelModuleOutput(ModelOutput):
+ """
+ OneFormer's pixel level module output. It returns both the last and (optionally) the hidden states from the
+ `encoder` and `decoder`. By default, the `encoder` is a Swin/Dinat Backbone and the `decoder` is a Multi-Scale
+ Deformable Attention based decoder.
+
+ Args:
+ encoder_features (List of `(torch.FloatTensor)`):
+ List of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden-states (also
+ called feature maps) of the model at the output of each stage.
+ decoder_features (List of `(torch.FloatTensor)`):
+ List of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden-states (also
+ called feature maps) of the model at the output of each stage.
+ decoder_last_feature (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)):
+ 1/4 scale features from the last Pixel Decoder Layer.
+ """
+
+ encoder_features: List[torch.FloatTensor] = None
+ decoder_features: List[torch.FloatTensor] = None
+ decoder_last_feature: torch.FloatTensor = None
+
+
+@dataclass
+class OneFormerModelOutput(ModelOutput):
+ """
+ Class for outputs of [`OneFormerModel`]. This class returns all the needed hidden states to compute the logits.
+
+ Args:
+ encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
+ shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
+ model at the output of each stage.
+ pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
+ shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
+ decoder model at the output of each stage.
+ transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
+ transformer decoder at the output of each stage.
+ transformer_decoder_object_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
+ Output object queries from the last layer in the transformer decoder.
+ transformer_decoder_contrastive_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
+ Contrastive queries from the transformer decoder.
+ transformer_decoder_mask_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`)
+ Mask Predictions from the last layer in the transformer decoder.
+ transformer_decoder_class_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`):
+ Class Predictions from the last layer in the transformer decoder.
+ transformer_decoder_auxiliary_predictions (Tuple of Dict of `str, torch.FloatTensor`, *optional*):
+ Tuple of class and mask predictions from each layer of the transformer decoder.
+ text_queries (`torch.FloatTensor`, *optional* of shape `(batch_size, num_queries, hidden_dim)`)
+ Text queries derived from the input text list used for calculating contrastive loss during training.
+ task_token (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`)
+ 1D task token to condition the queries.
+ attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Self and Cross Attentions weights from transformer decoder.
+ """
+
+ encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None
+ transformer_decoder_object_queries: torch.FloatTensor = None
+ transformer_decoder_contrastive_queries: Optional[torch.FloatTensor] = None
+ transformer_decoder_mask_predictions: torch.FloatTensor = None
+ transformer_decoder_class_predictions: torch.FloatTensor = None
+ transformer_decoder_auxiliary_predictions: Optional[Tuple[Dict[str, torch.FloatTensor]]] = None
+ text_queries: Optional[torch.FloatTensor] = None
+ task_token: torch.FloatTensor = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class OneFormerForUniversalSegmentationOutput(ModelOutput):
+ """
+ Class for outputs of [`OneFormerForUniversalSegmentationOutput`].
+
+ This output can be directly passed to [`~OneFormerImageProcessor.post_process_semantic_segmentation`] or
+ [`~OneFormerImageProcessor.post_process_instance_segmentation`] or
+ [`~OneFormerImageProcessor.post_process_panoptic_segmentation`] depending on the task. Please, see
+ [`~OneFormerImageProcessor] for details regarding usage.
+
+ Args:
+ loss (`torch.Tensor`, *optional*):
+ The computed loss, returned when labels are present.
+ class_queries_logits (`torch.FloatTensor`):
+ A tensor of shape `(batch_size, num_queries, num_labels + 1)` representing the proposed classes for each
+ query. Note the `+ 1` is needed because we incorporate the null class.
+ masks_queries_logits (`torch.FloatTensor`):
+ A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each
+ query.
+ auxiliary_predictions (List of Dict of `str, torch.FloatTensor`, *optional*):
+ List of class and mask predictions from each layer of the transformer decoder.
+ encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
+ shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
+ model at the output of each stage.
+ pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
+ shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
+ decoder model at the output of each stage.
+ transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
+ transformer decoder at the output of each stage.
+ transformer_decoder_object_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
+ Output object queries from the last layer in the transformer decoder.
+ transformer_decoder_contrastive_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
+ Contrastive queries from the transformer decoder.
+ transformer_decoder_mask_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`)
+ Mask Predictions from the last layer in the transformer decoder.
+ transformer_decoder_class_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`):
+ Class Predictions from the last layer in the transformer decoder.
+ transformer_decoder_auxiliary_predictions (List of Dict of `str, torch.FloatTensor`, *optional*):
+ List of class and mask predictions from each layer of the transformer decoder.
+ text_queries (`torch.FloatTensor`, *optional* of shape `(batch_size, num_queries, hidden_dim)`)
+ Text queries derived from the input text list used for calculating contrastive loss during training.
+ task_token (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`)
+ 1D task token to condition the queries.
+ attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Self and Cross Attentions weights from transformer decoder.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ class_queries_logits: torch.FloatTensor = None
+ masks_queries_logits: torch.FloatTensor = None
+ auxiliary_predictions: List[Dict[str, torch.FloatTensor]] = None
+ encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ pixel_decoder_hidden_states: Optional[List[torch.FloatTensor]] = None
+ transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None
+ transformer_decoder_object_queries: torch.FloatTensor = None
+ transformer_decoder_contrastive_queries: Optional[torch.FloatTensor] = None
+ transformer_decoder_mask_predictions: torch.FloatTensor = None
+ transformer_decoder_class_predictions: torch.FloatTensor = None
+ transformer_decoder_auxiliary_predictions: Optional[List[Dict[str, torch.FloatTensor]]] = None
+ text_queries: Optional[torch.FloatTensor] = None
+ task_token: torch.FloatTensor = None
+ attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
+
+
+# Modified from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrFrozenBatchNorm2d with DeformableDetr->OneFormerPixelDecoder
+class OneFormerPixelDecoderFrozenBatchNorm2d(nn.Module):
+ """
+ BatchNorm2d where the batch statistics and the affine parameters are fixed.
+
+ Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
+ torchvision.models.resnet[18,34,50,101] produce nans.
+ """
+
+ def __init__(self, n):
+ super().__init__()
+ self.register_buffer("weight", torch.ones(n))
+ self.register_buffer("bias", torch.zeros(n))
+ self.register_buffer("running_mean", torch.zeros(n))
+ self.register_buffer("running_var", torch.ones(n))
+
+ def _load_from_state_dict(
+ self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
+ ):
+ num_batches_tracked_key = prefix + "num_batches_tracked"
+ if num_batches_tracked_key in state_dict:
+ del state_dict[num_batches_tracked_key]
+
+ super()._load_from_state_dict(
+ state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
+ )
+
+ def forward(self, x):
+ weight = self.weight.reshape(1, -1, 1, 1)
+ bias = self.bias.reshape(1, -1, 1, 1)
+ running_var = self.running_var.reshape(1, -1, 1, 1)
+ running_mean = self.running_mean.reshape(1, -1, 1, 1)
+ epsilon = 1e-5
+ scale = weight * (running_var + epsilon).rsqrt()
+ bias = bias - running_mean * scale
+ return x * scale + bias
+
+
+# Modified from transformers.models.detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention with DeformableDetr->OneFormerPixelDecoderEncoder
+class OneFormerPixelDecoderEncoderMultiscaleDeformableAttention(nn.Module):
+ """
+ Multiscale deformable attention as proposed in Deformable DETR.
+ """
+
+ def __init__(self, embed_dim: int, num_heads: int, n_levels: int, n_points: int):
+ super().__init__()
+ if embed_dim % num_heads != 0:
+ raise ValueError(
+ f"embed_dim (d_model) must be divisible by num_heads, but got {embed_dim} and {num_heads}"
+ )
+ dim_per_head = embed_dim // num_heads
+ # check if dim_per_head is power of 2
+ if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
+ warnings.warn(
+ "You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the"
+ " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
+ " implementation."
+ )
+
+ self.im2col_step = 128
+
+ self.d_model = embed_dim
+ self.n_levels = n_levels
+ self.n_heads = num_heads
+ self.n_points = n_points
+
+ self.sampling_offsets = nn.Linear(embed_dim, num_heads * n_levels * n_points * 2)
+ self.attention_weights = nn.Linear(embed_dim, num_heads * n_levels * n_points)
+ self.value_proj = nn.Linear(embed_dim, embed_dim)
+ self.output_proj = nn.Linear(embed_dim, embed_dim)
+
+ def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
+ return tensor if position_embeddings is None else tensor + position_embeddings
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ position_embeddings: Optional[torch.Tensor] = None,
+ reference_points=None,
+ spatial_shapes=None,
+ level_start_index=None,
+ output_attentions: bool = False,
+ ):
+ # add position embeddings to the hidden states before projecting to queries and keys
+ if position_embeddings is not None:
+ hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
+
+ batch_size, num_queries, _ = hidden_states.shape
+ batch_size, sequence_length, _ = encoder_hidden_states.shape
+ if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
+ raise ValueError(
+ "Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
+ )
+
+ value = self.value_proj(encoder_hidden_states)
+ if attention_mask is not None:
+ # we invert the attention_mask
+ value = value.masked_fill(attention_mask[..., None], float(0))
+ value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
+ sampling_offsets = self.sampling_offsets(hidden_states).view(
+ batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
+ )
+ attention_weights = self.attention_weights(hidden_states).view(
+ batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
+ )
+ attention_weights = nn.functional.softmax(attention_weights, -1).view(
+ batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
+ )
+ # batch_size, num_queries, n_heads, n_levels, n_points, 2
+ if reference_points.shape[-1] == 2:
+ offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
+ sampling_locations = (
+ reference_points[:, :, None, :, None, :]
+ + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
+ )
+ elif reference_points.shape[-1] == 4:
+ sampling_locations = (
+ reference_points[:, :, None, :, None, :2]
+ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
+ )
+ else:
+ raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
+ # PyTorch implementation
+ output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
+ output = self.output_proj(output)
+
+ return output, attention_weights
+
+
+class OneFormerPixelDecoderEncoderLayer(nn.Module):
+ def __init__(self, config: OneFormerConfig):
+ super().__init__()
+ self.embed_dim = config.conv_dim
+ self.self_attn = OneFormerPixelDecoderEncoderMultiscaleDeformableAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.num_attention_heads,
+ n_levels=3,
+ n_points=4,
+ )
+
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
+ self.dropout = config.dropout
+ self.activation_fn = nn.functional.relu
+ self.activation_dropout = config.dropout
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_feedforward_dim)
+ self.fc2 = nn.Linear(config.encoder_feedforward_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
+
+ self.is_training = config.is_training
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: torch.Tensor,
+ position_embeddings: torch.Tensor = None,
+ reference_points=None,
+ spatial_shapes=None,
+ level_start_index=None,
+ output_attentions: bool = False,
+ ):
+ """
+ Args:
+ hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Input to the layer.
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Attention mask.
+ position_embeddings (`torch.FloatTensor`, *optional*):
+ Position embeddings, to be added to `hidden_states`.
+ reference_points (`torch.FloatTensor`, *optional*):
+ Reference points.
+ spatial_shapes (`torch.LongTensor`, *optional*):
+ Spatial shapes of the backbone feature maps.
+ level_start_index (`torch.LongTensor`, *optional*):
+ Level start index.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+
+ # Apply Multi-scale Deformable Attention Module on the multi-scale feature maps.
+ hidden_states, attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=hidden_states,
+ encoder_attention_mask=attention_mask,
+ position_embeddings=position_embeddings,
+ reference_points=reference_points,
+ spatial_shapes=spatial_shapes,
+ level_start_index=level_start_index,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.is_training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.is_training)
+
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.is_training)
+
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ if self.is_training:
+ if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrEncoder with DeformableDetrEncoder->OneFormerPixelDecoderEncoderOnly
+class OneFormerPixelDecoderEncoderOnly(nn.Module):
+ """
+ Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
+ [`OneFormerPixelDecoderEncoderLayer`].
+
+ The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers.
+
+ Args:
+ config: OneFormerConfig
+ """
+
+ def __init__(self, config: OneFormerConfig):
+ super().__init__()
+
+ self.config = config
+ self.dropout = config.dropout
+ self.layers = nn.ModuleList([OneFormerPixelDecoderEncoderLayer(config) for _ in range(config.encoder_layers)])
+
+ @staticmethod
+ def get_reference_points(spatial_shapes, valid_ratios, device):
+ """
+ Get reference points for each feature map. Used in decoder.
+
+ Args:
+ spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
+ Spatial shapes of each feature map.
+ valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
+ Valid ratios of each feature map.
+ device (`torch.device`):
+ Device on which to create the tensors.
+ Returns:
+ `torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
+ """
+ reference_points_list = []
+ for lvl, (height, width) in enumerate(spatial_shapes):
+ ref_y, ref_x = torch.meshgrid(
+ torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device),
+ torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device),
+ )
+ ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * height)
+ ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * width)
+ ref = torch.stack((ref_x, ref_y), -1)
+ reference_points_list.append(ref)
+ reference_points = torch.cat(reference_points_list, 1)
+ reference_points = reference_points[:, :, None] * valid_ratios[:, None]
+ return reference_points
+
+ def forward(
+ self,
+ inputs_embeds=None,
+ attention_mask=None,
+ position_embeddings=None,
+ spatial_shapes=None,
+ level_start_index=None,
+ valid_ratios=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ r"""
+ Args:
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
+ - 1 for pixel features that are real (i.e. **not masked**),
+ - 0 for pixel features that are padding (i.e. **masked**).
+ [What are attention masks?](../glossary#attention-mask)
+ position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Position embeddings that are added to the queries and keys in each self-attention layer.
+ spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
+ Spatial shapes of each feature map.
+ level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
+ Starting index of each feature map.
+ valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
+ Ratio of valid area in each feature level.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ hidden_states = inputs_embeds
+ reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=inputs_embeds.device)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+ for i, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ position_embeddings=position_embeddings,
+ reference_points=reference_points,
+ spatial_shapes=spatial_shapes,
+ level_start_index=level_start_index,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+# Modified from from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelDecoder with Mask2->One
+class OneFormerPixelDecoder(nn.Module):
+ def __init__(self, config: OneFormerConfig, feature_channels):
+ super().__init__()
+
+ self.config = config
+
+ # positional encoding
+ self.position_embedding = OneFormerSinePositionEmbedding(num_pos_feats=config.conv_dim // 2, normalize=True)
+ self.num_feature_levels = 3
+ transformer_in_channels = feature_channels[-self.num_feature_levels :]
+ self.transformer_feature_strides = config.strides[-self.num_feature_levels :]
+ self.feature_channels = feature_channels
+ self.level_embed = nn.Parameter(torch.Tensor(self.num_feature_levels, config.conv_dim))
+
+ # Create input projection layers
+ if self.num_feature_levels > 1:
+ input_projections_list = []
+ for in_channels in transformer_in_channels[::-1]:
+ input_projections_list.append(
+ nn.Sequential(
+ nn.Conv2d(in_channels, config.conv_dim, kernel_size=1),
+ nn.GroupNorm(32, config.conv_dim),
+ )
+ )
+ self.input_projections = nn.ModuleList(input_projections_list)
+ else:
+ self.input_projections = nn.ModuleList(
+ [
+ nn.Sequential(
+ nn.Conv2d(transformer_in_channels[-1], config.conv_dim, kernel_size=1),
+ nn.GroupNorm(32, config.conv_dim),
+ )
+ ]
+ )
+
+ self.encoder = OneFormerPixelDecoderEncoderOnly(config)
+
+ self.mask_projection = nn.Conv2d(
+ config.conv_dim,
+ config.mask_dim,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+
+ self.common_stride = config.common_stride
+
+ # extra fpn levels
+ stride = min(self.transformer_feature_strides)
+ self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride))
+
+ lateral_convs = []
+ output_convs = []
+
+ for idx, in_channels in enumerate(self.feature_channels[: self.num_fpn_levels]):
+ lateral_conv = nn.Sequential(
+ nn.Conv2d(
+ in_channels,
+ config.conv_dim,
+ kernel_size=1,
+ bias=False,
+ ),
+ nn.GroupNorm(32, config.conv_dim),
+ )
+ output_conv = nn.Sequential(
+ nn.Conv2d(
+ config.conv_dim,
+ config.conv_dim,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=False,
+ ),
+ nn.GroupNorm(32, config.conv_dim),
+ nn.ReLU(),
+ )
+ self.add_module("adapter_{}".format(idx + 1), lateral_conv)
+ self.add_module("layer_{}".format(idx + 1), output_conv)
+
+ lateral_convs.append(lateral_conv)
+ output_convs.append(output_conv)
+ # Place convs into top-down order (from low to high resolution)
+ # to make the top-down computation in forward clearer.
+ self.lateral_convs = lateral_convs[::-1]
+ self.output_convs = output_convs[::-1]
+
+ def get_valid_ratio(self, mask, dtype=torch.float32):
+ """Get the valid ratio of all feature maps."""
+
+ _, height, width = mask.shape
+ valid_height = torch.sum(~mask[:, :, 0], 1)
+ valid_width = torch.sum(~mask[:, 0, :], 1)
+ valid_ratio_heigth = valid_height.to(dtype) / height
+ valid_ratio_width = valid_width.to(dtype) / width
+ valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1)
+ return valid_ratio
+
+ def forward(
+ self,
+ features,
+ encoder_outputs=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+
+ # Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
+ sources = []
+ position_embeddings_list = []
+ for level, source in enumerate(features[::-1][: self.num_feature_levels]):
+ sources.append(self.input_projections[level](source))
+ position_embeddings_list.append(self.position_embedding(source))
+
+ masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in sources]
+
+ # Prepare encoder inputs (by flattening)
+ source_flatten = []
+ mask_flatten = []
+ lvl_pos_embed_flatten = []
+ spatial_shapes = []
+ for level, (source, mask, pos_embed) in enumerate(zip(sources, masks, position_embeddings_list)):
+ batch_size, num_channels, height, width = source.shape
+ spatial_shape = (height, width)
+ spatial_shapes.append(spatial_shape)
+ source = source.flatten(2).transpose(1, 2)
+ mask = mask.flatten(1)
+ pos_embed = pos_embed.flatten(2).transpose(1, 2)
+ lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1)
+ lvl_pos_embed_flatten.append(lvl_pos_embed)
+ source_flatten.append(source)
+ mask_flatten.append(mask)
+ source_flatten = torch.cat(source_flatten, 1)
+ mask_flatten = torch.cat(mask_flatten, 1)
+ lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
+ spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=source_flatten.device)
+ level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
+ valid_ratios = torch.stack([self.get_valid_ratio(m, dtype=source_flatten.dtype) for m in masks], 1)
+
+ # Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder
+ # Also provide spatial_shapes, level_start_index and valid_ratios
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ inputs_embeds=source_flatten,
+ attention_mask=mask_flatten,
+ position_embeddings=lvl_pos_embed_flatten,
+ spatial_shapes=spatial_shapes,
+ level_start_index=level_start_index,
+ valid_ratios=valid_ratios,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ y = encoder_outputs.last_hidden_state
+ bs = y.shape[0]
+
+ split_size_or_sections = [None] * self.num_feature_levels
+ for i in range(self.num_feature_levels):
+ if i < self.num_feature_levels - 1:
+ split_size_or_sections[i] = level_start_index[i + 1] - level_start_index[i]
+ else:
+ split_size_or_sections[i] = y.shape[1] - level_start_index[i]
+ y = torch.split(y, split_size_or_sections, dim=1)
+
+ out = []
+ multi_scale_features = []
+ num_cur_levels = 0
+ for i, z in enumerate(y):
+ out.append(z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0], spatial_shapes[i][1]))
+
+ # append `out` with extra FPN levels
+ # Reverse feature maps into top-down order (from low to high resolution)
+ for idx, feats in enumerate(features[: self.num_fpn_levels][::-1]):
+ lateral_conv = self.lateral_convs[idx]
+ output_conv = self.output_convs[idx]
+ cur_fpn = lateral_conv(feats)
+ # Following FPN implementation, we use nearest upsampling here
+ y = cur_fpn + nn.functional.interpolate(
+ out[-1], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False
+ )
+ y = output_conv(y)
+ out.append(y)
+
+ for o in out:
+ if num_cur_levels < self.num_feature_levels:
+ multi_scale_features.append(o)
+ num_cur_levels += 1
+
+ return OneFormerPixelDecoderOutput(
+ mask_features=self.mask_projection(out[-1]),
+ multi_scale_features=multi_scale_features,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+# Modified from from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelLevelModule with Mask2->One
+class OneFormerPixelLevelModule(nn.Module):
+ def __init__(self, config: OneFormerConfig):
+ """
+ Pixel Level Module proposed in [Masked-attention Mask Transformer for Universal Image
+ Segmentation](https://arxiv.org/abs/2112.01527). It runs the input image through a backbone and a pixel
+ decoder, generating multi-scale feature maps and pixel embeddings.
+
+ Args:
+ config ([`OneFormerConfig`]):
+ The configuration used to instantiate this model.
+ """
+ super().__init__()
+ self.encoder = load_backbone(config)
+ self.decoder = OneFormerPixelDecoder(config, feature_channels=self.encoder.channels)
+
+ def forward(self, pixel_values: Tensor, output_hidden_states: bool = False) -> OneFormerPixelLevelModuleOutput:
+ features: List[Tensor] = self.encoder(pixel_values).feature_maps
+ decoder_output: OneFormerPixelDecoderOutput = self.decoder(features, output_hidden_states=output_hidden_states)
+ return OneFormerPixelLevelModuleOutput(
+ encoder_features=tuple(features),
+ decoder_features=decoder_output.multi_scale_features,
+ decoder_last_feature=decoder_output.mask_features,
+ )
+
+
+# Modified from transformers.models.detr.modeling_detr.DetrAttention with Detr->OneFormer
+class OneFormerAttention(nn.Module):
+ """
+ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and
+ keys (as explained in the DETR paper).
+ """
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ if self.head_dim * num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
+ return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
+ return tensor if position_embeddings is None else tensor + position_embeddings
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_embeddings: Optional[torch.Tensor] = None,
+ key_value_states: Optional[torch.Tensor] = None,
+ key_value_position_embeddings: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ hidden_states = hidden_states.permute(1, 0, 2) if hidden_states is not None else None
+ position_embeddings = position_embeddings.permute(1, 0, 2) if position_embeddings is not None else None
+ key_value_states = key_value_states.permute(1, 0, 2) if key_value_states is not None else None
+ key_value_position_embeddings = (
+ key_value_position_embeddings.permute(1, 0, 2) if key_value_position_embeddings is not None else None
+ )
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ batch_size, target_len, embed_dim = hidden_states.size()
+
+ # add position embeddings to the hidden states before projecting to queries and keys
+ if position_embeddings is not None:
+ hidden_states_original = hidden_states
+ hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
+
+ # add key-value position embeddings to the key value states
+ if key_value_position_embeddings is not None:
+ key_value_states_original = key_value_states
+ key_value_states = self.with_pos_embed(key_value_states, key_value_position_embeddings)
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ if is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
+ value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
+ value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
+
+ proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
+ key_states = key_states.view(*proj_shape)
+ value_states = value_states.view(*proj_shape)
+
+ source_len = key_states.size(1)
+
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
+ raise ValueError(
+ f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (batch_size * self.num_heads, target_len, source_len):
+ raise ValueError(
+ f"Attention mask should be of size {(target_len, batch_size * self.num_heads, source_len)}, but is"
+ f" {attention_mask.size()}"
+ )
+ attn_weights += attention_mask
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
+ attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+ attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
+
+ attn_output = self.out_proj(attn_output).permute(1, 0, 2)
+
+ return attn_output, attn_weights_reshaped
+
+
+class OneFormerTransformerDecoderSelfAttentionLayer(nn.Module):
+ def __init__(
+ self, embed_dim, num_heads, dropout=0.0, activation="relu", normalize_before=False, layer_norm_eps=1e-05
+ ):
+ super().__init__()
+ self.self_attn = OneFormerAttention(embed_dim=embed_dim, num_heads=num_heads, dropout=dropout, is_decoder=True)
+
+ self.norm = nn.LayerNorm(embed_dim, eps=layer_norm_eps)
+ self.dropout = nn.Dropout(dropout)
+
+ self.activation = ACT2FN[activation]
+ self.normalize_before = normalize_before
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(
+ self,
+ output,
+ output_mask: Optional[Tensor] = None,
+ output_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ output2, attention_weights = self.self_attn(
+ hidden_states=output, position_embeddings=query_pos, attention_mask=output_mask, output_attentions=True
+ )
+ output = output + self.dropout(output2)
+ output = self.norm(output)
+
+ return output, attention_weights
+
+ def forward_pre(
+ self,
+ output,
+ output_mask: Optional[Tensor] = None,
+ output_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ output2 = self.norm(output)
+ output2, attention_weights = self.self_attn(
+ hidden_states=output2, position_embeddings=query_pos, attention_mask=output_mask, output_attentions=True
+ )
+ output = output + self.dropout(output2)
+
+ return output, attention_weights
+
+ def forward(
+ self,
+ output,
+ output_mask: Optional[Tensor] = None,
+ output_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ if self.normalize_before:
+ return self.forward_pre(output, output_mask, output_key_padding_mask, query_pos)
+ return self.forward_post(output, output_mask, output_key_padding_mask, query_pos)
+
+
+class OneFormerTransformerDecoderCrossAttentionLayer(nn.Module):
+ def __init__(
+ self, embed_dim, num_heads, dropout=0.0, activation="relu", normalize_before=False, layer_norm_eps=1e-05
+ ):
+ super().__init__()
+ self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
+
+ self.norm = nn.LayerNorm(embed_dim, eps=layer_norm_eps)
+ self.dropout = nn.Dropout(dropout)
+
+ self.activation = ACT2FN[activation]
+ self.normalize_before = normalize_before
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(
+ self,
+ output,
+ memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ output2, attention_weights = self.multihead_attn(
+ query=self.with_pos_embed(output, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory,
+ attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask,
+ )
+ output = output + self.dropout(output2)
+ output = self.norm(output)
+
+ return output, attention_weights
+
+ def forward_pre(
+ self,
+ output,
+ memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ output2 = self.norm(output)
+ output2, attention_weights = self.multihead_attn(
+ query=self.with_pos_embed(output2, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory,
+ attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask,
+ )
+ output = output + self.dropout(output2)
+
+ return output, attention_weights
+
+ def forward(
+ self,
+ output,
+ memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ if self.normalize_before:
+ return self.forward_pre(output, memory, memory_mask, memory_key_padding_mask, pos, query_pos)
+ return self.forward_post(output, memory, memory_mask, memory_key_padding_mask, pos, query_pos)
+
+
+class OneFormerTransformerDecoderFFNLayer(nn.Module):
+ def __init__(
+ self,
+ d_model,
+ dim_feedforward=2048,
+ dropout=0.0,
+ activation="relu",
+ normalize_before=False,
+ layer_norm_eps=1e-05,
+ ):
+ super().__init__()
+ # Implementation of Feedforward model
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
+ self.dropout = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+ self.norm = nn.LayerNorm(d_model, eps=layer_norm_eps)
+
+ self.activation = ACT2FN[activation]
+ self.normalize_before = normalize_before
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(self, output):
+ output2 = self.linear2(self.dropout(self.activation(self.linear1(output))))
+ output = output + self.dropout(output2)
+ output = self.norm(output)
+ return output
+
+ def forward_pre(self, output):
+ output2 = self.norm(output)
+ output2 = self.linear2(self.dropout(self.activation(self.linear1(output2))))
+ output = output + self.dropout(output2)
+ return output
+
+ def forward(self, output):
+ if self.normalize_before:
+ return self.forward_pre(output)
+ return self.forward_post(output)
+
+
+class OneFormerMLPPredictionHead(nn.Module):
+ def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int = 3):
+ """
+ A classic Multi Layer Perceptron (MLP).
+
+ Args:
+ input_dim (`int`):
+ The input dimensions.
+ hidden_dim (`int`):
+ The hidden dimensions.
+ output_dim (`int`):
+ The output dimensions.
+ num_layers (int, *optional*, defaults to 3):
+ The number of layers.
+ """
+ super().__init__()
+ in_dims = [input_dim] + [hidden_dim] * (num_layers - 1)
+ out_dims = [hidden_dim] * (num_layers - 1) + [output_dim]
+
+ layers = []
+ for i, (in_dim, out_dim) in enumerate(zip(in_dims, out_dims)):
+ layers.append(
+ PredictionBlock(in_dim, out_dim, activation=nn.ReLU() if i < num_layers - 1 else nn.Identity())
+ )
+
+ self.layers = nn.Sequential(*layers)
+
+ def forward(self, input: Tensor) -> Tensor:
+ return self.layers(input)
+
+
+# refactored from original implementation
+class OneFormerTransformerDecoderLayer(nn.Module):
+ def __init__(self, config: OneFormerConfig):
+ super().__init__()
+ self.embed_dim = config.hidden_dim
+ self.num_feature_levels = 3
+
+ self.cross_attn = OneFormerTransformerDecoderCrossAttentionLayer(
+ embed_dim=self.embed_dim,
+ num_heads=config.num_attention_heads,
+ dropout=0.0,
+ normalize_before=config.pre_norm,
+ layer_norm_eps=config.layer_norm_eps,
+ )
+
+ self.self_attn = OneFormerTransformerDecoderSelfAttentionLayer(
+ embed_dim=self.embed_dim,
+ num_heads=config.num_attention_heads,
+ dropout=0.0,
+ normalize_before=config.pre_norm,
+ layer_norm_eps=config.layer_norm_eps,
+ )
+
+ self.ffn = OneFormerTransformerDecoderFFNLayer(
+ d_model=self.embed_dim,
+ dim_feedforward=config.dim_feedforward,
+ dropout=0.0,
+ normalize_before=config.pre_norm,
+ layer_norm_eps=config.layer_norm_eps,
+ )
+
+ def forward(
+ self,
+ index: int,
+ output: torch.Tensor,
+ multi_stage_features: List[torch.Tensor],
+ multi_stage_positional_embeddings: List[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ query_embeddings: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ ):
+ """
+ Args:
+ index (`int`): index of the layer in the Transformer decoder.
+ output (`torch.FloatTensor`): the object queries of shape `(N, batch, hidden_dim)`
+ multi_stage_features (`List[torch.Tensor]`): the multi-scale features from the pixel decoder.
+ multi_stage_positional_embeddings (`List[torch.Tensor]`):
+ positional embeddings for the multi_stage_features
+ attention_mask (`torch.FloatTensor`): attention mask for the masked cross attention layer
+ query_embeddings (`torch.FloatTensor`, *optional*):
+ position embeddings that are added to the queries and keys in the self-attention layer.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+
+ level_index = index % self.num_feature_levels
+ attention_mask[torch.where(attention_mask.sum(-1) == attention_mask.shape[-1])] = False
+
+ # Masked Cross Attention
+ output, cross_attn_weights = self.cross_attn(
+ output,
+ multi_stage_features[level_index],
+ memory_mask=attention_mask,
+ memory_key_padding_mask=None, # here we do not apply masking on padded region
+ pos=multi_stage_positional_embeddings[level_index],
+ query_pos=query_embeddings,
+ )
+
+ # Self Attention
+ output, self_attn_weights = self.self_attn(
+ output,
+ output_mask=None,
+ output_key_padding_mask=None,
+ query_pos=query_embeddings,
+ )
+
+ # Fully Connected
+ output = self.ffn(output)
+
+ outputs = (output,)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ return outputs
+
+
+class OneFormerTransformerDecoderQueryTransformerDecoder(nn.Module):
+ def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
+ super().__init__()
+ self.layers = _get_clones(decoder_layer, num_layers)
+ self.num_layers = num_layers
+ self.norm = norm
+ self.return_intermediate = return_intermediate
+
+ def forward(
+ self,
+ output,
+ memory,
+ output_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ output_key_padding_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ intermediate = []
+
+ for layer in self.layers:
+ output = layer(
+ output,
+ memory,
+ output_mask=output_mask,
+ memory_mask=memory_mask,
+ output_key_padding_mask=output_key_padding_mask,
+ memory_key_padding_mask=memory_key_padding_mask,
+ pos=pos,
+ query_pos=query_pos,
+ )
+ if self.return_intermediate:
+ intermediate.append(self.norm(output))
+
+ if self.norm is not None:
+ output = self.norm(output)
+ if self.return_intermediate:
+ intermediate.pop()
+ intermediate.append(output)
+
+ if self.return_intermediate:
+ return torch.stack(intermediate)
+
+ return output.unsqueeze(0)
+
+
+class OneFormerTransformerDecoderQueryTransformerDecoderLayer(nn.Module):
+ def __init__(
+ self,
+ d_model,
+ nhead,
+ dim_feedforward=2048,
+ dropout=0.1,
+ activation="relu",
+ normalize_before=False,
+ layer_norm_eps=1e-05,
+ ):
+ super().__init__()
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+ self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+ # Implementation of Feedforward model
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
+ self.dropout = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+ self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
+ self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
+ self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps)
+ self.dropout1 = nn.Dropout(dropout)
+ self.dropout2 = nn.Dropout(dropout)
+ self.dropout3 = nn.Dropout(dropout)
+
+ self.activation = ACT2FN[activation]
+ self.normalize_before = normalize_before
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(
+ self,
+ output,
+ memory,
+ output_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ output_key_padding_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ q = k = self.with_pos_embed(output, query_pos)
+ output2 = self.self_attn(q, k, value=output, attn_mask=output_mask, key_padding_mask=output_key_padding_mask)
+ output2 = output2[0]
+ output = output + self.dropout1(output2)
+ output = self.norm1(output)
+ output2 = self.multihead_attn(
+ query=self.with_pos_embed(output, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory,
+ attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask,
+ )
+ output2 = output2[0]
+ output = output + self.dropout2(output2)
+ output = self.norm2(output)
+ output2 = self.linear2(self.dropout(self.activation(self.linear1(output))))
+ output = output + self.dropout3(output2)
+ output = self.norm3(output)
+ return output
+
+ def forward_pre(
+ self,
+ output,
+ memory,
+ output_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ output_key_padding_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ output2 = self.norm1(output)
+ q = k = self.with_pos_embed(output2, query_pos)
+ output2 = self.self_attn(q, k, value=output2, attn_mask=output_mask, key_padding_mask=output_key_padding_mask)
+ output2 = output2[0]
+ output = output + self.dropout1(output2)
+ output2 = self.norm2(output)
+ output2 = self.multihead_attn(
+ query=self.with_pos_embed(output2, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory,
+ attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask,
+ )
+ output2 = output2[0]
+ output = output + self.dropout2(output2)
+ output2 = self.norm3(output)
+ output2 = self.linear2(self.dropout(self.activation(self.linear1(output2))))
+ output = output + self.dropout3(output2)
+ return output
+
+ def forward(
+ self,
+ output,
+ memory,
+ output_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ output_key_padding_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ if self.normalize_before:
+ return self.forward_pre(
+ output,
+ memory,
+ output_mask,
+ memory_mask,
+ output_key_padding_mask,
+ memory_key_padding_mask,
+ pos,
+ query_pos,
+ )
+ return self.forward_post(
+ output,
+ memory,
+ output_mask,
+ memory_mask,
+ output_key_padding_mask,
+ memory_key_padding_mask,
+ pos,
+ query_pos,
+ )
+
+
+class OneFormerTransformerDecoderQueryTransformer(nn.Module):
+ def __init__(
+ self,
+ d_model=512,
+ nhead=8,
+ num_decoder_layers=6,
+ dim_feedforward=2048,
+ dropout=0.1,
+ activation="relu",
+ normalize_before=False,
+ return_intermediate_dec=False,
+ layer_norm_eps=1e-05,
+ ):
+ super().__init__()
+
+ decoder_layer = OneFormerTransformerDecoderQueryTransformerDecoderLayer(
+ d_model, nhead, dim_feedforward, dropout, activation, normalize_before, layer_norm_eps
+ )
+ decoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps)
+ self.decoder = OneFormerTransformerDecoderQueryTransformerDecoder(
+ decoder_layer,
+ num_decoder_layers,
+ decoder_norm,
+ return_intermediate=return_intermediate_dec,
+ )
+
+ self.d_model = d_model
+ self.nhead = nhead
+
+ def forward(self, src, mask, query_embed, pos_embed, task_token=None):
+ batch_size = src.shape[0]
+ src = src.flatten(2).permute(2, 0, 1)
+ pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
+ query_embed = query_embed.unsqueeze(1).repeat(1, batch_size, 1)
+ if mask is not None:
+ mask = mask.flatten(1)
+
+ if task_token is None:
+ queries = torch.zeros_like(query_embed)
+ else:
+ queries = task_token.repeat(query_embed.shape[0], 1, 1)
+
+ queries = self.decoder(queries, src, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed)
+ return queries.transpose(1, 2)
+
+
+class OneFormerTransformerDecoder(nn.Module):
+ """
+ Transformer decoder
+ """
+
+ def __init__(self, in_channels: int, config: OneFormerConfig):
+ super().__init__()
+ self.config = config
+
+ self.dropout = config.dropout
+ self.num_heads = config.num_attention_heads
+ self.is_training = config.is_training
+ self.use_task_norm = config.use_task_norm
+ self.use_auxiliary_loss = config.use_auxiliary_loss
+
+ self.query_transformer = OneFormerTransformerDecoderQueryTransformer(
+ d_model=config.hidden_dim,
+ dropout=config.dropout,
+ nhead=config.num_attention_heads,
+ dim_feedforward=config.dim_feedforward,
+ num_decoder_layers=config.query_dec_layers,
+ normalize_before=config.pre_norm,
+ return_intermediate_dec=False,
+ layer_norm_eps=config.layer_norm_eps,
+ )
+
+ self.decoder_norm = nn.LayerNorm(config.hidden_dim, eps=config.layer_norm_eps)
+
+ self.num_feature_levels = 3
+
+ self.layers = nn.ModuleList(
+ [OneFormerTransformerDecoderLayer(config) for _ in range(config.decoder_layers - 1)]
+ )
+
+ self.query_input_projection = nn.Conv2d(in_channels, config.hidden_dim, kernel_size=1)
+
+ self.class_embed = nn.Linear(config.hidden_dim, config.num_labels + 1)
+ self.mask_embed = OneFormerMLPPredictionHead(
+ config.hidden_dim,
+ config.hidden_dim,
+ config.mask_dim,
+ 3,
+ )
+
+ def forward(
+ self,
+ task_token=None,
+ multi_stage_features=None,
+ multi_stage_positional_embeddings=None,
+ mask_features=None,
+ query_features=None,
+ query_embeddings=None,
+ query_embedder=None,
+ size_list=None,
+ output_attentions=None,
+ ):
+ if self.use_task_norm:
+ task_token = self.decoder_norm(task_token)
+
+ object_queries = self.query_transformer(
+ query_features,
+ None,
+ query_embedder.weight[:-1],
+ self.query_input_projection(mask_features),
+ task_token if self.use_task_norm else None,
+ )
+
+ object_queries = object_queries[0].permute(1, 0, 2)
+
+ queries = torch.cat([object_queries, task_token], dim=0)
+
+ output = queries.clone()
+
+ intermediate_class_predictions = []
+ intermediate_mask_predictions = []
+
+ # prediction heads on learnable query features
+ outputs_class, outputs_mask, attention_mask = self.forward_prediction_heads(
+ output, mask_features, attention_mask_target_size=size_list[0]
+ )
+ intermediate_class_predictions.append(outputs_class)
+ intermediate_mask_predictions.append(outputs_mask)
+
+ attentions = ()
+
+ for index, layer in enumerate(self.layers):
+ layer_outputs = layer(
+ index=index,
+ output=output,
+ multi_stage_features=multi_stage_features,
+ multi_stage_positional_embeddings=multi_stage_positional_embeddings,
+ attention_mask=attention_mask,
+ query_embeddings=query_embeddings,
+ output_attentions=output_attentions,
+ )
+
+ output = layer_outputs[0]
+ attentions += (layer_outputs[1:],)
+
+ outputs_class, outputs_mask, attention_mask = self.forward_prediction_heads(
+ output, mask_features, attention_mask_target_size=size_list[(index + 1) % self.num_feature_levels]
+ )
+ intermediate_class_predictions.append(outputs_class)
+ intermediate_mask_predictions.append(outputs_mask)
+
+ if not len(intermediate_mask_predictions) == len(self.layers) + 1:
+ raise ValueError(
+ "Intermediate predictions in the transformer decoder must have the same number of elements as number"
+ " of layers"
+ )
+
+ object_queries = layer_outputs[0].permute(1, 0, 2)
+
+ contrastive_logits = queries.permute(1, 0, 2)
+
+ return OneFormerTransformerDecoderOutput(
+ object_queries=object_queries,
+ contrastive_logits=contrastive_logits,
+ prediction_masks=intermediate_mask_predictions[-1],
+ prediction_class=intermediate_class_predictions[-1],
+ auxiliary_predictions=self._get_aux_predictions(
+ intermediate_class_predictions, intermediate_mask_predictions
+ )
+ if self.use_auxiliary_loss
+ else None,
+ attentions=attentions,
+ )
+
+ def forward_prediction_heads(self, output, mask_features, attention_mask_target_size):
+ decoder_output = self.decoder_norm(output)
+ decoder_output = decoder_output.transpose(0, 1)
+ outputs_class = self.class_embed(decoder_output)
+ mask_embed = self.mask_embed(decoder_output)
+ outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
+
+ attention_mask = nn.functional.interpolate(
+ outputs_mask, size=attention_mask_target_size, mode="bilinear", align_corners=False
+ )
+
+ # must use bool type
+ # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
+ attention_mask = (
+ attention_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5
+ ).bool()
+ attention_mask = attention_mask.detach()
+
+ return outputs_class, outputs_mask, attention_mask
+
+ @torch.jit.unused
+ def _get_aux_predictions(self, outputs_class, outputs_seg_masks):
+ # this is a workaround to make torchscript happy, as torchscript
+ # doesn't support dictionary with non-homogeneous values, such
+ # as a dict having both a Tensor and a list.
+ aux_list = [
+ {"class_queries_logits": a, "masks_queries_logits": b}
+ for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1])
+ ]
+ return tuple(aux_list)
+
+
+class OneFormerTransformerModule(nn.Module):
+ """
+ The OneFormer's transformer module.
+ """
+
+ def __init__(self, in_features: int, config: OneFormerConfig):
+ super().__init__()
+ hidden_dim = config.hidden_dim
+ self.num_feature_levels = 3
+ self.position_embedder = OneFormerSinePositionEmbedding(num_pos_feats=hidden_dim // 2, normalize=True)
+ self.queries_embedder = nn.Embedding(config.num_queries, hidden_dim)
+ self.input_projections = []
+
+ for _ in range(self.num_feature_levels):
+ if in_features != hidden_dim or config.enforce_input_proj:
+ self.input_projections.append(nn.Conv2d(in_features, hidden_dim, kernel_size=1))
+ else:
+ self.input_projections.append(nn.Sequential())
+
+ self.decoder = OneFormerTransformerDecoder(in_channels=in_features, config=config)
+ self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
+
+ def forward(
+ self,
+ multi_scale_features: List[Tensor],
+ mask_features: Tensor,
+ task_token: Tensor,
+ output_attentions: bool = False,
+ ) -> OneFormerTransformerDecoderOutput:
+ if not len(multi_scale_features) == self.num_feature_levels:
+ raise ValueError(
+ f"Number of elements in multi_scale_features ({len(multi_scale_features)}) and num_feature_levels"
+ f" ({self.num_feature_levels}) do not match!"
+ )
+ multi_stage_features = []
+ multi_stage_positional_embeddings = []
+ size_list = []
+
+ for i in range(self.num_feature_levels):
+ size_list.append(multi_scale_features[i].shape[-2:])
+ multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
+ multi_stage_features.append(
+ self.input_projections[i](multi_scale_features[i]).flatten(2)
+ + self.level_embed.weight[i][None, :, None]
+ )
+
+ # flatten NxCxHxW to HWxNxC
+ multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
+ multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)
+
+ _, batch_size, _ = multi_stage_features[0].shape
+
+ # QxNxC
+ query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
+ task_token = task_token.unsqueeze(0)
+
+ query_features = self.position_embedder(mask_features, None)
+
+ return self.decoder(
+ task_token=task_token,
+ multi_stage_features=multi_stage_features,
+ multi_stage_positional_embeddings=multi_stage_positional_embeddings,
+ mask_features=mask_features,
+ query_features=query_features,
+ query_embeddings=query_embeddings,
+ query_embedder=self.queries_embedder,
+ size_list=size_list,
+ output_attentions=output_attentions,
+ )
+
+
+# Copied from transformers.models.maskformer.modeling_maskformer.MaskFormerSinePositionEmbedding with Mask->One
+class OneFormerSinePositionEmbedding(nn.Module):
+ """
+ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
+ need paper, generalized to work on images.
+ """
+
+ def __init__(
+ self, num_pos_feats: int = 64, temperature: int = 10000, normalize: bool = False, scale: Optional[float] = None
+ ):
+ super().__init__()
+ if scale is not None and normalize is False:
+ raise ValueError("normalize should be True if scale is passed")
+ self.num_pos_feats = num_pos_feats
+ self.temperature = temperature
+ self.normalize = normalize
+ self.scale = 2 * math.pi if scale is None else scale
+
+ def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor:
+ if mask is None:
+ mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
+ not_mask = (~mask).to(x.dtype)
+ y_embed = not_mask.cumsum(1)
+ x_embed = not_mask.cumsum(2)
+ if self.normalize:
+ eps = 1e-6
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
+
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.int64, device=x.device).type_as(x)
+ dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats)
+
+ pos_x = x_embed[:, :, :, None] / dim_t
+ pos_y = y_embed[:, :, :, None] / dim_t
+ pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
+ pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
+ return pos
+
+
+# Copied from transformers.models.maskformer.modeling_maskformer.PredictionBlock
+class PredictionBlock(nn.Module):
+ def __init__(self, in_dim: int, out_dim: int, activation: nn.Module) -> None:
+ super().__init__()
+ self.layers = [nn.Linear(in_dim, out_dim), activation]
+ # Maintain submodule indexing as if part of a Sequential block
+ for i, layer in enumerate(self.layers):
+ self.add_module(str(i), layer)
+
+ def forward(self, input: Tensor) -> Tensor:
+ hidden_state = input
+ for layer in self.layers:
+ hidden_state = layer(hidden_state)
+ return hidden_state
+
+
+class OneFormerTextMapperAttention(nn.Module):
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
+ super().__init__()
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
+ self.scale = qk_scale or head_dim**-0.5
+
+ self.q_proj = nn.Linear(dim, dim, bias=qkv_bias)
+ self.k_proj = nn.Linear(dim, dim, bias=qkv_bias)
+ self.v_proj = nn.Linear(dim, dim, bias=qkv_bias)
+
+ self.attn_drop = nn.Dropout(attn_drop)
+ self.proj = nn.Linear(dim, dim)
+ self.proj_drop = nn.Dropout(proj_drop)
+
+ def forward(self, q, k, v):
+ batch_size, q_sequence_length, num_channels = q.shape
+ if not k.shape == v.shape:
+ raise ValueError(f"keys ({list(k.shape)}) and values ({list(v.shape)}) have different shapes!")
+ batch_size, k_sequence_length, num_channels = k.shape
+ q = self.q_proj(q).reshape(batch_size, q_sequence_length, self.num_heads, num_channels // self.num_heads)
+ k = self.k_proj(k).reshape(batch_size, k_sequence_length, self.num_heads, num_channels // self.num_heads)
+ v = self.v_proj(v).reshape(batch_size, k_sequence_length, self.num_heads, num_channels // self.num_heads)
+
+ attn = torch.einsum("bnkc,bmkc->bknm", q, k) * self.scale
+
+ attn = attn.softmax(dim=-1)
+
+ output = torch.einsum("bknm,bmkc->bnkc", attn, v).reshape(batch_size, q_sequence_length, num_channels)
+
+ output = self.proj(output)
+ output = self.proj_drop(output)
+ return output
+
+
+class OneFormerTextTransformerDecoderLayer(nn.Module):
+ def __init__(
+ self,
+ d_model,
+ nhead,
+ dropout=0.1,
+ layer_norm_eps=1e-05,
+ ):
+ super().__init__()
+ self.self_attn = OneFormerTextMapperAttention(d_model, nhead, proj_drop=dropout)
+ self.cross_attn = OneFormerTextMapperAttention(d_model, nhead, proj_drop=dropout)
+
+ self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
+ self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
+ self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps)
+ self.dropout = nn.Dropout(dropout)
+
+ self.mlp = nn.Sequential(
+ nn.Linear(d_model, d_model * 4), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_model * 4, d_model)
+ )
+
+ def forward(self, hidden_state, mem):
+ q = k = v = self.norm1(hidden_state)
+ hidden_state = hidden_state + self.self_attn(q, k, v)
+ q = self.norm2(hidden_state)
+ hidden_state = hidden_state + self.cross_attn(q, mem, mem)
+ hidden_state = hidden_state + self.dropout(self.mlp(self.norm3(hidden_state)))
+ return hidden_state
+
+
+class OneFormerTextContextDecoder(nn.Module):
+ def __init__(
+ self,
+ transformer_width=256,
+ transformer_heads=4,
+ transformer_layers=6,
+ visual_dim=1024,
+ dropout=0.1,
+ layer_norm_eps=1e-05,
+ **kwargs,
+ ):
+ super().__init__()
+
+ self.memory_proj = nn.Sequential(
+ nn.LayerNorm(visual_dim, eps=layer_norm_eps),
+ nn.Linear(visual_dim, transformer_width),
+ nn.LayerNorm(transformer_width, eps=layer_norm_eps),
+ )
+
+ self.text_proj = nn.Sequential(
+ nn.LayerNorm(visual_dim, eps=layer_norm_eps),
+ nn.Linear(visual_dim, transformer_width),
+ )
+
+ self.decoder = nn.ModuleList(
+ [
+ OneFormerTextTransformerDecoderLayer(transformer_width, transformer_heads, dropout, layer_norm_eps)
+ for _ in range(transformer_layers)
+ ]
+ )
+
+ self.out_proj = nn.Sequential(
+ nn.LayerNorm(transformer_width, eps=layer_norm_eps), nn.Linear(transformer_width, visual_dim)
+ )
+
+ def forward(self, text, visual):
+ visual = self.memory_proj(visual)
+ hidden_state = self.text_proj(text)
+
+ for layer in self.decoder:
+ hidden_state = layer(hidden_state, visual)
+
+ return self.out_proj(hidden_state)
+
+
+class OneFormerTextMLP(nn.Module):
+ def __init__(
+ self,
+ hidden_size: Optional[int] = None,
+ intermediate_size: Optional[int] = None,
+ output_size: Optional[int] = None,
+ ):
+ super().__init__()
+ self.activation_fn = ACT2FN["quick_gelu"]
+ hidden_size = hidden_size
+ intermediate_size = intermediate_size
+ output_size = output_size
+ self.fc1 = nn.Linear(hidden_size, intermediate_size)
+ self.fc2 = nn.Linear(intermediate_size, output_size)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.activation_fn(hidden_states)
+ hidden_states = self.fc2(hidden_states)
+ return hidden_states
+
+
+class OneFormerTextTransformerLayer(nn.Module):
+ def __init__(self, width: int, heads: int, attn_mask: torch.Tensor, layer_norm_eps=1e-05):
+ super().__init__()
+ self.self_attn = nn.MultiheadAttention(width, heads)
+ self.layer_norm1 = nn.LayerNorm(width, eps=layer_norm_eps)
+ self.mlp = OneFormerTextMLP(width, width * 4, width)
+ self.layer_norm2 = nn.LayerNorm(width, eps=layer_norm_eps)
+ self.attn_mask = attn_mask
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_padding_mask: Optional[torch.Tensor] = None,
+ ) -> torch.FloatTensor:
+ residual = hidden_states
+
+ hidden_states = self.layer_norm1(hidden_states)
+ hidden_states = self.self_attn(
+ hidden_states,
+ hidden_states,
+ hidden_states,
+ need_weights=False,
+ key_padding_mask=key_padding_mask,
+ )[0]
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.layer_norm2(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + hidden_states
+
+ return hidden_states
+
+
+class OneFormerTextTransformer(nn.Module):
+ def __init__(
+ self,
+ width: int,
+ layers: int,
+ heads: int,
+ attn_mask: torch.Tensor = None,
+ use_checkpoint=False,
+ layer_norm_eps=1e-05,
+ ):
+ super().__init__()
+ self.width = width
+ self.num_layers = layers
+ self.layers = nn.Sequential(
+ *[OneFormerTextTransformerLayer(width, heads, attn_mask, layer_norm_eps) for _ in range(layers)]
+ )
+ self.use_checkpoint = use_checkpoint
+
+ def forward(self, hidden_states: torch.Tensor):
+ for layer in self.layers:
+ if self.use_checkpoint:
+ hidden_states = self._gradient_checkpointing_func(layer, hidden_states)
+ else:
+ hidden_states = layer(hidden_states)
+ return hidden_states
+
+
+class OneFormerTextEncoder(nn.Module):
+ def __init__(
+ self,
+ context_length: int,
+ width: int,
+ layers: int,
+ vocab_size,
+ use_checkpoint=False,
+ layer_norm_eps=1e-05,
+ ):
+ super().__init__()
+ heads = width // 64
+ self.context_length = context_length
+ self.width = width
+ self.transformer = OneFormerTextTransformer(
+ width=width,
+ layers=layers,
+ heads=heads,
+ attn_mask=self.build_attention_mask(),
+ use_checkpoint=use_checkpoint,
+ layer_norm_eps=layer_norm_eps,
+ )
+
+ self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
+ self.ln_final = nn.LayerNorm(width, eps=layer_norm_eps)
+ self.token_embedding = nn.Embedding(vocab_size, width)
+
+ def build_attention_mask(self):
+ # lazily create causal attention mask, with full attention between the vision tokens
+ # pytorch uses additive attention mask; fill with -inf
+ mask = torch.empty(self.context_length, self.context_length)
+ mask.fill_(float("-inf"))
+ mask.triu_(1) # zero out the lower diagonal
+ return mask
+
+ def forward(self, text):
+ hidden_state = self.token_embedding(text)
+ hidden_state = hidden_state + self.positional_embedding
+ hidden_state = hidden_state.permute(1, 0, 2)
+ hidden_state = self.transformer(hidden_state)
+ hidden_state = hidden_state.permute(1, 0, 2)
+ hidden_state = self.ln_final(hidden_state)
+ hidden_state = hidden_state[torch.arange(hidden_state.shape[0]), text.argmax(dim=-1)]
+
+ return hidden_state
+
+
+class OneFormerTextMapper(nn.Module):
+ def __init__(self, config: OneFormerConfig):
+ super().__init__()
+ self.text_encoder = OneFormerTextEncoder(
+ context_length=config.text_encoder_context_length,
+ width=config.text_encoder_width,
+ layers=config.text_encoder_num_layers,
+ vocab_size=config.text_encoder_vocab_size,
+ layer_norm_eps=config.layer_norm_eps,
+ )
+
+ self.text_projector = OneFormerMLPPredictionHead(
+ config.text_encoder_width,
+ config.hidden_dim,
+ config.hidden_dim,
+ config.text_encoder_proj_layers,
+ )
+ if config.text_encoder_n_ctx > 0:
+ self.prompt_ctx = nn.Embedding(
+ config.text_encoder_n_ctx,
+ config.text_encoder_width,
+ )
+ else:
+ self.prompt_ctx = None
+
+ def forward(
+ self,
+ inputs: Tensor,
+ ) -> Tensor:
+ text_queries = self.encode_text(inputs)
+
+ return text_queries
+
+ def encode_text(self, text):
+ if text.ndim is None:
+ raise ValueError("text must not be NoneType")
+ if text.ndim not in [2, 3]:
+ raise ValueError("Number of dimensions in text must be 2 or 3")
+ squeeze_dim = False
+ num_text = 1
+ if text.ndim == 3:
+ num_text = text.shape[1]
+ batch_size, num_text, hidden_dim = text.shape
+ text = text.reshape(batch_size * num_text, hidden_dim)
+ squeeze_dim = True
+
+ # [batch_size, num_channels]
+ encoded_text = self.text_encoder(text)
+
+ text_queries = self.text_projector(encoded_text)
+
+ if squeeze_dim:
+ _, hidden_dim = text_queries.shape
+ text_queries = text_queries.reshape(batch_size, num_text, hidden_dim)
+ if self.prompt_ctx is not None:
+ text_queries_ctx = self.prompt_ctx.weight.unsqueeze(0).repeat(text_queries.shape[0], 1, 1)
+ text_queries = torch.cat([text_queries, text_queries_ctx], dim=1)
+
+ return text_queries
+
+
+class OneFormerTaskModel(nn.Module):
+ def __init__(self, config: OneFormerConfig):
+ super().__init__()
+ self.task_mlp = OneFormerMLPPredictionHead(
+ config.task_seq_len,
+ config.hidden_dim,
+ config.hidden_dim,
+ 2,
+ )
+
+ def forward(self, inputs: Tensor) -> Tensor:
+ task_tokens = self.task_mlp(inputs)
+ return task_tokens
+
+
+ONEFORMER_START_DOCSTRING = r"""
+ This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a
+ regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
+
+ Parameters:
+ config ([`OneFormerConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ONEFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`OneFormerProcessor`]. See
+ [`OneFormerProcessor.__call__`] for details.
+ task_inputs (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Task inputs. Task inputs can be obtained using [`AutoImageProcessor`]. See [`OneFormerProcessor.__call__`]
+ for details.
+ pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
+ Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
+
+ - 1 for pixels that are real (i.e. **not masked**),
+ - 0 for pixels that are padding (i.e. **masked**).
+
+ [What are attention masks?](../glossary#attention-mask)
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of Detr's decoder attention layers.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~OneFormerModelOutput`] instead of a plain tuple.
+"""
+
+
+class OneFormerPreTrainedModel(PreTrainedModel):
+ config_class = OneFormerConfig
+ base_model_prefix = "model"
+ main_input_name = "pixel_values"
+
+ def _init_weights(self, module: nn.Module):
+ xavier_std = self.config.init_xavier_std
+ std = self.config.init_std
+ if isinstance(module, OneFormerTransformerModule):
+ if module.input_projections is not None:
+ for input_projection in module.input_projections:
+ if not isinstance(input_projection, nn.Sequential):
+ nn.init.xavier_uniform_(input_projection.weight, gain=xavier_std)
+ nn.init.constant_(input_projection.bias, 0)
+ elif isinstance(module, OneFormerTransformerDecoder):
+ nn.init.xavier_uniform_(module.query_input_projection.weight, gain=xavier_std)
+ nn.init.constant_(module.query_input_projection.bias, 0)
+ module.query_input_projection._is_hf_initialized = True
+ elif isinstance(module, OneFormerPixelDecoderEncoderMultiscaleDeformableAttention):
+ nn.init.constant_(module.sampling_offsets.weight.data, 0.0)
+ thetas = torch.arange(module.n_heads, dtype=torch.int64).float() * (2.0 * math.pi / module.n_heads)
+ grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
+ grid_init = (
+ (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
+ .view(module.n_heads, 1, 1, 2)
+ .repeat(1, module.n_levels, module.n_points, 1)
+ )
+ for i in range(module.n_points):
+ grid_init[:, :, i, :] *= i + 1
+ with torch.no_grad():
+ module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
+ nn.init.constant_(module.attention_weights.weight.data, 0.0)
+ nn.init.constant_(module.attention_weights.bias.data, 0.0)
+ nn.init.xavier_uniform_(module.value_proj.weight.data)
+ nn.init.constant_(module.value_proj.bias.data, 0.0)
+ nn.init.xavier_uniform_(module.output_proj.weight.data)
+ nn.init.constant_(module.output_proj.bias.data, 0.0)
+ elif isinstance(module, OneFormerPixelDecoderEncoderOnly):
+ for p in module.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+ elif isinstance(module, OneFormerPixelDecoder):
+ for p in module.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+ nn.init.normal_(module.level_embed, std=0)
+ elif isinstance(module, OneFormerTransformerDecoderSelfAttentionLayer):
+ for p in module.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p, gain=xavier_std)
+ elif isinstance(module, OneFormerTransformerDecoderCrossAttentionLayer):
+ for p in module.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p, gain=xavier_std)
+ elif isinstance(module, OneFormerTransformerDecoderFFNLayer):
+ for p in module.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p, gain=xavier_std)
+ elif isinstance(module, OneFormerTransformerDecoderQueryTransformer):
+ for p in module.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p, gain=xavier_std)
+ elif isinstance(module, OneFormerPixelLevelModule):
+ for submodule in module.modules():
+ if isinstance(submodule, (nn.Conv2d, nn.Linear)):
+ submodule.weight.data.normal_(mean=0.0, std=std)
+ if submodule.bias is not None:
+ submodule.bias.data.zero_()
+ elif isinstance(module, OneFormerTextContextDecoder):
+ for submodule in module.modules():
+ if isinstance(submodule, nn.Linear):
+ nn.init.trunc_normal_(submodule.weight, std=0.02)
+ if isinstance(submodule, nn.Linear) and submodule.bias is not None:
+ nn.init.constant_(submodule.bias, 0)
+ elif isinstance(submodule, nn.LayerNorm):
+ nn.init.constant_(submodule.bias, 0)
+ nn.init.constant_(submodule.weight, 1.0)
+ elif isinstance(module, OneFormerTextTransformer):
+ proj_std = (module.width**-0.5) * ((2 * module.num_layers) ** -0.5)
+ attn_std = module.width**-0.5
+ fc_std = (2 * module.width) ** -0.5
+ for layer in module.layers:
+ nn.init.normal_(layer.self_attn.in_proj_weight, std=attn_std)
+ nn.init.normal_(layer.self_attn.out_proj.weight, std=proj_std)
+ nn.init.normal_(layer.mlp.fc1.weight, std=fc_std)
+ nn.init.normal_(layer.mlp.fc2.weight, std=proj_std)
+ elif isinstance(module, OneFormerTextEncoder):
+ nn.init.normal_(module.token_embedding.weight, std=0.02)
+ nn.init.normal_(module.positional_embedding, std=0.01)
+ if hasattr(module, "reference_points"):
+ nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0)
+ nn.init.constant_(module.reference_points.bias.data, 0.0)
+ elif isinstance(module, OneFormerTaskModel):
+ for submodule in module.modules():
+ if isinstance(module, OneFormerMLPPredictionHead):
+ for submodule in module.modules():
+ if isinstance(submodule, nn.Linear):
+ nn.init.xavier_uniform_(submodule.weight, gain=xavier_std)
+ nn.init.constant_(submodule.bias, 0)
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, nn.MultiheadAttention):
+ module.in_proj_weight.data.normal_(mean=0.0, std=std)
+ module.in_proj_bias.data.zero_()
+ elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+@add_start_docstrings(
+ "The bare OneFormer Model outputting raw hidden-states without any specific head on top.",
+ ONEFORMER_START_DOCSTRING,
+)
+class OneFormerModel(OneFormerPreTrainedModel):
+ main_input_name = ["pixel_values", "task_inputs"]
+
+ def __init__(self, config: OneFormerConfig):
+ super().__init__(config)
+ self.pixel_level_module = OneFormerPixelLevelModule(config)
+ self.transformer_module = OneFormerTransformerModule(in_features=config.conv_dim, config=config)
+ self.task_encoder = OneFormerTaskModel(config)
+ self.is_training = config.is_training
+
+ if self.is_training:
+ self.text_mapper = OneFormerTextMapper(config)
+ else:
+ self.text_mapper = None
+
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ONEFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=OneFormerModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: Tensor,
+ task_inputs: Tensor,
+ text_inputs: Optional[Tensor] = None,
+ pixel_mask: Optional[Tensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> OneFormerModelOutput:
+ r"""
+ Returns:
+ `OneFormerModelOutput`
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import OneFormerProcessor, OneFormerModel
+
+ >>> # download texting image
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> # load processor for preprocessing the inputs
+ >>> processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
+ >>> model = OneFormerModel.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
+ >>> inputs = processor(image, ["semantic"], return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... outputs = model(**inputs)
+
+ >>> mask_predictions = outputs.transformer_decoder_mask_predictions
+ >>> class_predictions = outputs.transformer_decoder_class_predictions
+
+ >>> f"👉 Mask Predictions Shape: {list(mask_predictions.shape)}, Class Predictions Shape: {list(class_predictions.shape)}"
+ '👉 Mask Predictions Shape: [1, 150, 128, 171], Class Predictions Shape: [1, 150, 151]'
+ ```"""
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ batch_size, _, height, width = pixel_values.shape
+
+ if pixel_mask is None:
+ pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)
+
+ pixel_level_module_output = self.pixel_level_module(pixel_values, output_hidden_states)
+
+ multi_scale_features = pixel_level_module_output.decoder_features
+ mask_features = pixel_level_module_output.decoder_last_feature
+
+ task_token = self.task_encoder(task_inputs.to(self.dtype))
+
+ if self.is_training:
+ text_queries = self.text_mapper(text_inputs)
+ else:
+ text_queries = None
+
+ transformer_module_output = self.transformer_module(
+ multi_scale_features=multi_scale_features,
+ mask_features=mask_features,
+ task_token=task_token,
+ output_attentions=output_attentions,
+ )
+
+ queries = transformer_module_output.object_queries
+
+ encoder_hidden_states = None
+ pixel_decoder_hidden_states = None
+ transformer_decoder_hidden_states = None
+
+ if output_hidden_states:
+ encoder_hidden_states = pixel_level_module_output.encoder_features
+ pixel_decoder_hidden_states = (pixel_level_module_output.decoder_last_feature,)
+ for f in pixel_level_module_output.decoder_features:
+ pixel_decoder_hidden_states += (f,)
+ transformer_decoder_hidden_states = transformer_module_output.auxiliary_predictions
+
+ output = OneFormerModelOutput(
+ encoder_hidden_states=encoder_hidden_states,
+ pixel_decoder_hidden_states=pixel_decoder_hidden_states,
+ transformer_decoder_hidden_states=transformer_decoder_hidden_states,
+ transformer_decoder_object_queries=queries,
+ transformer_decoder_contrastive_queries=transformer_module_output.contrastive_logits,
+ transformer_decoder_mask_predictions=transformer_module_output.prediction_masks,
+ transformer_decoder_class_predictions=transformer_module_output.prediction_class,
+ transformer_decoder_auxiliary_predictions=transformer_module_output.auxiliary_predictions,
+ text_queries=text_queries,
+ task_token=task_token,
+ attentions=transformer_module_output.attentions,
+ )
+
+ if not return_dict:
+ output = tuple(v for v in output.values())
+
+ return output
+
+
+@add_start_docstrings(
+ "OneFormer Model for instance, semantic and panoptic image segmentation.",
+ ONEFORMER_START_DOCSTRING,
+)
+class OneFormerForUniversalSegmentation(OneFormerPreTrainedModel):
+ main_input_name = ["pixel_values", "task_inputs"]
+
+ def __init__(self, config: OneFormerConfig):
+ super().__init__(config)
+ self.model = OneFormerModel(config)
+
+ self.matcher = OneFormerHungarianMatcher(
+ cost_class=config.class_weight,
+ cost_dice=config.dice_weight,
+ cost_mask=config.mask_weight,
+ num_points=config.train_num_points,
+ )
+
+ self.weight_dict: Dict[str, float] = {
+ "loss_cross_entropy": config.class_weight,
+ "loss_mask": config.mask_weight,
+ "loss_dice": config.dice_weight,
+ "loss_contrastive": config.contrastive_weight,
+ }
+
+ self.criterion = OneFormerLoss(
+ num_classes=config.num_labels,
+ matcher=self.matcher,
+ weight_dict=self.weight_dict,
+ eos_coef=config.no_object_weight,
+ num_points=config.train_num_points,
+ oversample_ratio=config.oversample_ratio,
+ importance_sample_ratio=config.importance_sample_ratio,
+ contrastive_temperature=config.contrastive_temperature,
+ )
+
+ self.post_init()
+
+ def get_loss_dict(
+ self,
+ masks_queries_logits: Tensor,
+ class_queries_logits: Tensor,
+ contrastive_queries_logits: Tensor,
+ mask_labels: Tensor,
+ class_labels: Tensor,
+ text_queries: Tensor,
+ auxiliary_predictions: Dict[str, Tensor],
+ calculate_contrastive_loss: bool,
+ ) -> Dict[str, Tensor]:
+ loss_dict: Dict[str, Tensor] = self.criterion(
+ masks_queries_logits=masks_queries_logits,
+ class_queries_logits=class_queries_logits,
+ contrastive_queries_logits=contrastive_queries_logits,
+ mask_labels=mask_labels,
+ class_labels=class_labels,
+ text_queries=text_queries,
+ auxiliary_predictions=auxiliary_predictions,
+ calculate_contrastive_loss=calculate_contrastive_loss,
+ )
+
+ # weight each loss by `self.weight_dict[]` including auxiliary losses
+ for key, weight in self.weight_dict.items():
+ for loss_key, loss in loss_dict.items():
+ if key in loss_key:
+ loss *= weight
+
+ return loss_dict
+
+ def get_loss(self, loss_dict: Dict[str, Tensor]) -> Tensor:
+ return sum(loss_dict.values())
+
+ @add_start_docstrings_to_model_forward(ONEFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=OneFormerForUniversalSegmentationOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: Tensor,
+ task_inputs: Tensor,
+ text_inputs: Optional[Tensor] = None,
+ mask_labels: Optional[List[Tensor]] = None,
+ class_labels: Optional[List[Tensor]] = None,
+ pixel_mask: Optional[Tensor] = None,
+ output_auxiliary_logits: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> OneFormerForUniversalSegmentationOutput:
+ r"""
+ text_inputs (`List[torch.Tensor]`, *optional*):
+ Tensor fof shape `(num_queries, sequence_length)` to be fed to a model
+ mask_labels (`List[torch.Tensor]`, *optional*):
+ List of mask labels of shape `(num_labels, height, width)` to be fed to a model
+ class_labels (`List[torch.LongTensor]`, *optional*):
+ list of target class labels of shape `(num_labels, height, width)` to be fed to a model. They identify the
+ labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`.
+
+ Returns:
+ `OneFormerUniversalSegmentationOutput`
+ Example:
+
+ Universal segmentation example:
+
+ ```python
+ >>> from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
+ >>> from PIL import Image
+ >>> import requests
+ >>> import torch
+
+ >>> # load OneFormer fine-tuned on ADE20k for universal segmentation
+ >>> processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
+ >>> model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
+
+ >>> url = (
+ ... "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
+ ... )
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> # Semantic Segmentation
+ >>> inputs = processor(image, ["semantic"], return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... outputs = model(**inputs)
+ >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
+ >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
+ >>> class_queries_logits = outputs.class_queries_logits
+ >>> masks_queries_logits = outputs.masks_queries_logits
+
+ >>> # you can pass them to processor for semantic postprocessing
+ >>> predicted_semantic_map = processor.post_process_semantic_segmentation(
+ ... outputs, target_sizes=[image.size[::-1]]
+ ... )[0]
+ >>> f"👉 Semantic Predictions Shape: {list(predicted_semantic_map.shape)}"
+ '👉 Semantic Predictions Shape: [512, 683]'
+
+ >>> # Instance Segmentation
+ >>> inputs = processor(image, ["instance"], return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... outputs = model(**inputs)
+ >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
+ >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
+ >>> class_queries_logits = outputs.class_queries_logits
+ >>> masks_queries_logits = outputs.masks_queries_logits
+
+ >>> # you can pass them to processor for instance postprocessing
+ >>> predicted_instance_map = processor.post_process_instance_segmentation(
+ ... outputs, target_sizes=[image.size[::-1]]
+ ... )[0]["segmentation"]
+ >>> f"👉 Instance Predictions Shape: {list(predicted_instance_map.shape)}"
+ '👉 Instance Predictions Shape: [512, 683]'
+
+ >>> # Panoptic Segmentation
+ >>> inputs = processor(image, ["panoptic"], return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... outputs = model(**inputs)
+ >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
+ >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
+ >>> class_queries_logits = outputs.class_queries_logits
+ >>> masks_queries_logits = outputs.masks_queries_logits
+
+ >>> # you can pass them to processor for panoptic postprocessing
+ >>> predicted_panoptic_map = processor.post_process_panoptic_segmentation(
+ ... outputs, target_sizes=[image.size[::-1]]
+ ... )[0]["segmentation"]
+ >>> f"👉 Panoptic Predictions Shape: {list(predicted_panoptic_map.shape)}"
+ '👉 Panoptic Predictions Shape: [512, 683]'
+ ```
+ """
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.model(
+ pixel_values=pixel_values,
+ task_inputs=task_inputs,
+ text_inputs=text_inputs,
+ pixel_mask=pixel_mask,
+ output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
+ output_attentions=output_attentions,
+ return_dict=True,
+ )
+
+ loss, loss_dict, auxiliary_predictions = None, None, None
+
+ class_queries_logits = outputs.transformer_decoder_class_predictions
+ masks_queries_logits = outputs.transformer_decoder_mask_predictions
+ contrastive_queries_logits = outputs.transformer_decoder_contrastive_queries
+ auxiliary_predictions = outputs.transformer_decoder_auxiliary_predictions
+ text_queries = outputs.text_queries
+
+ if mask_labels is not None and class_labels is not None:
+ loss_dict: Dict[str, Tensor] = self.get_loss_dict(
+ masks_queries_logits=masks_queries_logits,
+ class_queries_logits=class_queries_logits,
+ contrastive_queries_logits=contrastive_queries_logits,
+ mask_labels=mask_labels,
+ class_labels=class_labels,
+ text_queries=text_queries,
+ auxiliary_predictions=auxiliary_predictions,
+ calculate_contrastive_loss=self.config.contrastive_temperature is not None,
+ )
+ loss = self.get_loss(loss_dict)
+
+ output_auxiliary_logits = (
+ self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits
+ )
+ if not output_auxiliary_logits:
+ auxiliary_predictions = None
+
+ output = OneFormerForUniversalSegmentationOutput(
+ class_queries_logits=class_queries_logits,
+ masks_queries_logits=masks_queries_logits,
+ auxiliary_predictions=auxiliary_predictions,
+ loss=loss,
+ **outputs,
+ )
+
+ if not return_dict:
+ output = tuple(v for v in output.values())
+ if loss is not None:
+ output = (loss) + output
+ return output
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/processing_oneformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/processing_oneformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..9e55be5d6731c57b32bb4b4b2d11646d9842e921
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/processing_oneformer.py
@@ -0,0 +1,204 @@
+# coding=utf-8
+# Copyright 2022 SHI Labs and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Image/Text processor class for OneFormer
+"""
+
+from typing import List
+
+from ...processing_utils import ProcessorMixin
+from ...utils import is_torch_available
+
+
+if is_torch_available():
+ import torch
+
+
+class OneFormerProcessor(ProcessorMixin):
+ r"""
+ Constructs an OneFormer processor which wraps [`OneFormerImageProcessor`] and
+ [`CLIPTokenizer`]/[`CLIPTokenizerFast`] into a single processor that inherits both the image processor and
+ tokenizer functionalities.
+
+ Args:
+ image_processor ([`OneFormerImageProcessor`]):
+ The image processor is a required input.
+ tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`]):
+ The tokenizer is a required input.
+ max_seq_len (`int`, *optional*, defaults to 77)):
+ Sequence length for input text list.
+ task_seq_len (`int`, *optional*, defaults to 77):
+ Sequence length for input task token.
+ """
+
+ attributes = ["image_processor", "tokenizer"]
+ image_processor_class = "OneFormerImageProcessor"
+ tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
+
+ def __init__(
+ self, image_processor=None, tokenizer=None, max_seq_length: int = 77, task_seq_length: int = 77, **kwargs
+ ):
+ if image_processor is None:
+ raise ValueError("You need to specify an `image_processor`.")
+ if tokenizer is None:
+ raise ValueError("You need to specify a `tokenizer`.")
+
+ self.max_seq_length = max_seq_length
+ self.task_seq_length = task_seq_length
+
+ super().__init__(image_processor, tokenizer)
+
+ def _preprocess_text(self, text_list=None, max_length=77):
+ if text_list is None:
+ raise ValueError("tokens cannot be None.")
+
+ tokens = self.tokenizer(text_list, padding="max_length", max_length=max_length, truncation=True)
+
+ attention_masks, input_ids = tokens["attention_mask"], tokens["input_ids"]
+
+ token_inputs = []
+ for attn_mask, input_id in zip(attention_masks, input_ids):
+ token = torch.tensor(attn_mask) * torch.tensor(input_id)
+ token_inputs.append(token.unsqueeze(0))
+
+ token_inputs = torch.cat(token_inputs, dim=0)
+ return token_inputs
+
+ def __call__(self, images=None, task_inputs=None, segmentation_maps=None, **kwargs):
+ """
+ Main method to prepare for the model one or several task input(s) and image(s). This method forwards the
+ `task_inputs` and `kwargs` arguments to CLIPTokenizer's [`~CLIPTokenizer.__call__`] if `task_inputs` is not
+ `None` to encode. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
+ OneFormerImageProcessor's [`~OneFormerImageProcessor.__call__`] if `images` is not `None`. Please refer to the
+ doctsring of the above two methods for more information.
+
+ Args:
+ task_inputs (`str`, `List[str]`):
+ The sequence or batch of task_inputs sequences to be encoded. Each sequence can be a string or a list
+ of strings of the template "the task is {task}".
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
+ `List[torch.Tensor]`):
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
+ tensor. Both channels-first and channels-last formats are supported.
+ segmentation_maps (`ImageInput`, *optional*):
+ The corresponding semantic segmentation maps with the pixel-wise annotations.
+
+ (`bool`, *optional*, defaults to `True`):
+ Whether or not to pad images up to the largest image in a batch and create a pixel mask.
+
+ If left to the default, will return a pixel mask that is:
+
+ - 1 for pixels that are real (i.e. **not masked**),
+ - 0 for pixels that are padding (i.e. **masked**).
+ Returns:
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
+ - **task_inputs** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
+ """
+
+ if task_inputs is None:
+ raise ValueError("You have to specify the task_input. Found None.")
+ elif images is None:
+ raise ValueError("You have to specify the image. Found None.")
+
+ if not all(task in ["semantic", "instance", "panoptic"] for task in task_inputs):
+ raise ValueError("task_inputs must be semantic, instance, or panoptic.")
+
+ encoded_inputs = self.image_processor(images, task_inputs, segmentation_maps, **kwargs)
+
+ if isinstance(task_inputs, str):
+ task_inputs = [task_inputs]
+
+ if isinstance(task_inputs, List) and all(isinstance(task_input, str) for task_input in task_inputs):
+ task_token_inputs = []
+ for task in task_inputs:
+ task_input = f"the task is {task}"
+ task_token_inputs.append(task_input)
+ encoded_inputs["task_inputs"] = self._preprocess_text(task_token_inputs, max_length=self.task_seq_length)
+ else:
+ raise TypeError("Task Inputs should be a string or a list of strings.")
+
+ if hasattr(encoded_inputs, "text_inputs"):
+ texts_list = encoded_inputs.text_inputs
+
+ text_inputs = []
+ for texts in texts_list:
+ text_input_list = self._preprocess_text(texts, max_length=self.max_seq_length)
+ text_inputs.append(text_input_list.unsqueeze(0))
+
+ encoded_inputs["text_inputs"] = torch.cat(text_inputs, dim=0)
+
+ return encoded_inputs
+
+ def encode_inputs(self, images=None, task_inputs=None, segmentation_maps=None, **kwargs):
+ """
+ This method forwards all its arguments to [`OneFormerImageProcessor.encode_inputs`] and then tokenizes the
+ task_inputs. Please refer to the docstring of this method for more information.
+ """
+
+ if task_inputs is None:
+ raise ValueError("You have to specify the task_input. Found None.")
+ elif images is None:
+ raise ValueError("You have to specify the image. Found None.")
+
+ if not all(task in ["semantic", "instance", "panoptic"] for task in task_inputs):
+ raise ValueError("task_inputs must be semantic, instance, or panoptic.")
+
+ encoded_inputs = self.image_processor.encode_inputs(images, task_inputs, segmentation_maps, **kwargs)
+
+ if isinstance(task_inputs, str):
+ task_inputs = [task_inputs]
+
+ if isinstance(task_inputs, List) and all(isinstance(task_input, str) for task_input in task_inputs):
+ task_token_inputs = []
+ for task in task_inputs:
+ task_input = f"the task is {task}"
+ task_token_inputs.append(task_input)
+ encoded_inputs["task_inputs"] = self._preprocess_text(task_token_inputs, max_length=self.task_seq_length)
+ else:
+ raise TypeError("Task Inputs should be a string or a list of strings.")
+
+ if hasattr(encoded_inputs, "text_inputs"):
+ texts_list = encoded_inputs.text_inputs
+
+ text_inputs = []
+ for texts in texts_list:
+ text_input_list = self._preprocess_text(texts, max_length=self.max_seq_length)
+ text_inputs.append(text_input_list.unsqueeze(0))
+
+ encoded_inputs["text_inputs"] = torch.cat(text_inputs, dim=0)
+
+ return encoded_inputs
+
+ def post_process_semantic_segmentation(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to [`OneFormerImageProcessor.post_process_semantic_segmentation`].
+ Please refer to the docstring of this method for more information.
+ """
+ return self.image_processor.post_process_semantic_segmentation(*args, **kwargs)
+
+ def post_process_instance_segmentation(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to [`OneFormerImageProcessor.post_process_instance_segmentation`].
+ Please refer to the docstring of this method for more information.
+ """
+ return self.image_processor.post_process_instance_segmentation(*args, **kwargs)
+
+ def post_process_panoptic_segmentation(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to [`OneFormerImageProcessor.post_process_panoptic_segmentation`].
+ Please refer to the docstring of this method for more information.
+ """
+ return self.image_processor.post_process_panoptic_segmentation(*args, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..db1c9300824b3825c8fa752ef4599f542d148076
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__init__.py
@@ -0,0 +1,101 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_opt"] = [
+ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "OPTForCausalLM",
+ "OPTModel",
+ "OPTPreTrainedModel",
+ "OPTForSequenceClassification",
+ "OPTForQuestionAnswering",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_opt"] = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_opt"] = [
+ "FlaxOPTForCausalLM",
+ "FlaxOPTModel",
+ "FlaxOPTPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_opt import (
+ OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ OPTForCausalLM,
+ OPTForQuestionAnswering,
+ OPTForSequenceClassification,
+ OPTModel,
+ OPTPreTrainedModel,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bdb90cfaff7b9f31238f41faeb8a6e038021a9ff
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/configuration_opt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/configuration_opt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fd868bdad6007d5118577eebb92e67f161e4da9b
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/configuration_opt.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/convert_opt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/convert_opt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c2d7ad64aeaaa8f1f347fb29809ea00d2feb497f
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/convert_opt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_flax_opt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_flax_opt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8ac9bf38bd3075113849bdedc6679b087f24be44
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_flax_opt.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_opt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_opt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ec704a4645596b5e7005311619b500ad7e3cea30
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_opt.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_tf_opt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_tf_opt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9eea7dd4c1d0a59ea9439ea03675d51b52fd45f8
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_tf_opt.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/configuration_opt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/configuration_opt.py
new file mode 100644
index 0000000000000000000000000000000000000000..a9802d2ef337c85cd4f32530b14844d423823917
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/configuration_opt.py
@@ -0,0 +1,142 @@
+# coding=utf-8
+# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" OPT model configuration"""
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class OPTConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the OPT
+ [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50272):
+ Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`OPTModel`]
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of decoder layers.
+ ffn_dim (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ do_layer_norm_before (`bool`, *optional*, defaults to `True`):
+ Whether to perform layer normalization before the attention block.
+ word_embed_proj_dim (`int`, *optional*):
+ `word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to
+ `hidden_size`.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
+ details.
+ init_std (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ enable_bias (`bool`, *optional*, defaults to `True`):
+ Whether or not if the linear layers in the attention blocks should use the bias term.
+ layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
+ Whether or not if the layer norms should have learnable parameters.
+
+ Example:
+
+ ```python
+ >>> from transformers import OPTConfig, OPTModel
+
+ >>> # Initializing a OPT facebook/opt-large style configuration
+ >>> configuration = OPTConfig()
+
+ >>> # Initializing a model (with random weights) from the facebook/opt-large style configuration
+ >>> model = OPTModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "opt"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size=50272,
+ hidden_size=768,
+ num_hidden_layers=12,
+ ffn_dim=3072,
+ max_position_embeddings=2048,
+ do_layer_norm_before=True,
+ _remove_final_layer_norm=False,
+ word_embed_proj_dim=None,
+ dropout=0.1,
+ attention_dropout=0.0,
+ num_attention_heads=12,
+ activation_function="relu",
+ layerdrop=0.0,
+ init_std=0.02,
+ use_cache=True,
+ pad_token_id=1,
+ bos_token_id=2,
+ eos_token_id=2,
+ enable_bias=True,
+ layer_norm_elementwise_affine=True,
+ **kwargs,
+ ):
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ **kwargs,
+ )
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.num_attention_heads = num_attention_heads
+ self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size
+ self.ffn_dim = ffn_dim
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_function = activation_function
+ self.init_std = init_std
+ self.layerdrop = layerdrop
+ self.use_cache = use_cache
+ self.do_layer_norm_before = do_layer_norm_before
+ # We keep these variables at `True` for backward compatibility.
+ self.enable_bias = enable_bias
+ self.layer_norm_elementwise_affine = layer_norm_elementwise_affine
+
+ # Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility
+ # with checkpoints that have been fine-tuned before transformers v4.20.1
+ # see https://github.com/facebookresearch/metaseq/pull/164
+ self._remove_final_layer_norm = _remove_final_layer_norm
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..3f302b2ec3f44c86c81b0452951e9b9e894a2713
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py
@@ -0,0 +1,114 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert OPT checkpoint."""
+
+
+import argparse
+from pathlib import Path
+
+import torch
+
+from transformers import OPTConfig, OPTModel
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+def load_checkpoint(checkpoint_path):
+ """Checkpoint path should end in model.pt"""
+ sd = torch.load(checkpoint_path, map_location="cpu")
+ if "model" in sd.keys():
+ sd = torch.load(checkpoint_path, map_location="cpu")["model"]
+
+ # pop unnecessary weights
+ keys_to_delete = [
+ "decoder.version",
+ "decoder.output_projection.weight",
+ ]
+ for key in keys_to_delete:
+ if key in sd:
+ sd.pop(key)
+
+ keys_to_rename = {
+ "decoder.project_in_dim.weight": "decoder.project_in.weight",
+ "decoder.project_out_dim.weight": "decoder.project_out.weight",
+ "decoder.layer_norm.weight": "decoder.final_layer_norm.weight",
+ "decoder.layer_norm.bias": "decoder.final_layer_norm.bias",
+ }
+ for old_key, new_key in keys_to_rename.items():
+ if old_key in sd:
+ sd[new_key] = sd.pop(old_key)
+
+ keys = list(sd.keys())
+ for key in keys:
+ if ".qkv_proj." in key:
+ value = sd[key]
+ # We split QKV in separate Q,K,V
+
+ q_name = key.replace(".qkv_proj.", ".q_proj.")
+ k_name = key.replace(".qkv_proj.", ".k_proj.")
+ v_name = key.replace(".qkv_proj.", ".v_proj.")
+
+ depth = value.shape[0]
+ assert depth % 3 == 0
+ # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
+ # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
+ k, v, q = torch.split(value, depth // 3, dim=0)
+
+ sd[q_name] = q
+ sd[k_name] = k
+ sd[v_name] = v
+ del sd[key]
+
+ return sd
+
+
+@torch.no_grad()
+def convert_opt_checkpoint(checkpoint_path, pytorch_dump_folder_path, config=None):
+ """
+ Copy/paste/tweak model's weights to our BERT structure.
+ """
+ state_dict = load_checkpoint(checkpoint_path)
+
+ if config is not None:
+ config = OPTConfig.from_pretrained(config)
+ else:
+ config = OPTConfig()
+
+ model = OPTModel(config).half().eval()
+ model.load_state_dict(state_dict)
+
+ # Check results
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ model.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--fairseq_path",
+ type=str,
+ help=(
+ "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"
+ " https://huggingface.co/models?other=opt_metasq"
+ ),
+ )
+ parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
+ parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.")
+ args = parser.parse_args()
+ convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/modeling_flax_opt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/modeling_flax_opt.py
new file mode 100644
index 0000000000000000000000000000000000000000..5d9839f1204860b72ced4e1573ea4b8d0a8fac8a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/modeling_flax_opt.py
@@ -0,0 +1,799 @@
+# coding=utf-8
+# Copyright 2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Flax OPT model."""
+
+from functools import partial
+from typing import Optional, Tuple
+
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen import combine_masks, make_causal_mask
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+from jax.random import PRNGKey
+
+from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxMaskedLMOutput
+from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
+from ...utils import add_start_docstrings, logging
+from .configuration_opt import OPTConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
+_CONFIG_FOR_DOC = "OPTConfig"
+
+
+OPT_START_DOCSTRING = r"""
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a Flax Linen
+ [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
+ regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`OPTConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
+ `jax.numpy.bfloat16` (on TPUs).
+
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
+ specified all the computation will be performed with the given `dtype`.
+
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
+ parameters.**
+
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
+ [`~FlaxPreTrainedModel.to_bf16`].
+"""
+
+OPT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->OPT
+class FlaxOPTAttention(nn.Module):
+ config: OPTConfig
+ embed_dim: int
+ num_heads: int
+ dropout: float = 0.0
+ causal: bool = False
+ bias: bool = True
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self) -> None:
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {self.num_heads})."
+ )
+
+ dense = partial(
+ nn.Dense,
+ self.embed_dim,
+ use_bias=self.bias,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+
+ self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
+ self.out_proj = dense()
+
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
+
+ if self.causal:
+ self.causal_mask = make_causal_mask(
+ jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
+ )
+
+ def _split_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
+
+ def _merge_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
+
+ @nn.compact
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
+ """
+ This function takes projected key, value states from a single input token and concatenates the states to cached
+ states from previous steps. This function is slighly adapted from the official Flax repository:
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
+ """
+ # detect if we're initializing by absence of existing cache data.
+ is_initialized = self.has_variable("cache", "cached_key")
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
+
+ if is_initialized:
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
+ # update key, value caches with our new 1d spatial slices
+ cur_index = cache_index.value
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
+ cached_key.value = key
+ cached_value.value = value
+ num_updated_cache_vectors = query.shape[1]
+ cache_index.value = cache_index.value + num_updated_cache_vectors
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
+ pad_mask = jnp.broadcast_to(
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
+ )
+ attention_mask = combine_masks(pad_mask, attention_mask)
+ return key, value, attention_mask
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ key_value_states: Optional[jnp.ndarray] = None,
+ attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ batch_size = hidden_states.shape[0]
+
+ # get query proj
+ query_states = self.q_proj(hidden_states)
+ # get key, value proj
+ if is_cross_attention:
+ # cross_attentions
+ key_states = self.k_proj(key_value_states)
+ value_states = self.v_proj(key_value_states)
+ else:
+ # self_attention
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = self._split_heads(query_states)
+ key_states = self._split_heads(key_states)
+ value_states = self._split_heads(value_states)
+
+ # handle cache prepare causal attention mask
+ if self.causal:
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
+ if self.has_variable("cache", "cached_key"):
+ mask_shift = self.variables["cache"]["cache_index"]
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
+ causal_mask = lax.dynamic_slice(
+ self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
+ )
+ else:
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
+
+ # combine masks if needed
+ if attention_mask is not None and self.causal:
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
+ attention_mask = combine_masks(attention_mask, causal_mask)
+ elif self.causal:
+ attention_mask = causal_mask
+ elif attention_mask is not None:
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+
+ # During fast autoregressive decoding, we feed one position at a time,
+ # and cache the keys and values step by step.
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
+ key_states, value_states, query_states, attention_mask
+ )
+
+ # Convert the boolean attention mask to an attention bias.
+ if attention_mask is not None:
+ # attention mask in the form of attention bias
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
+ )
+ else:
+ attention_bias = None
+
+ dropout_rng = None
+ if not deterministic and self.dropout > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.dropout,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = self._merge_heads(attn_output)
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights
+
+
+class FlaxOPTDecoderLayer(nn.Module):
+ config: OPTConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self) -> None:
+ self.embed_dim = self.config.hidden_size
+ self.self_attn = FlaxOPTAttention(
+ config=self.config,
+ embed_dim=self.embed_dim,
+ num_heads=self.config.num_attention_heads,
+ dropout=self.config.attention_dropout,
+ causal=True,
+ dtype=self.dtype,
+ )
+ self.do_layer_norm_before = self.config.do_layer_norm_before
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+ self.activation_fn = ACT2FN[self.config.activation_function]
+
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ self.fc1 = nn.Dense(
+ self.config.ffn_dim,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.fc2 = nn.Dense(
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
+ )
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ attention_mask: jnp.ndarray,
+ init_cache: bool = False,
+ output_attentions: bool = True,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ residual = hidden_states
+
+ # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
+ if self.do_layer_norm_before:
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ )
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+ # 350m applies layer norm AFTER attention
+ if not self.do_layer_norm_before:
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Fully Connected
+ hidden_states_shape = hidden_states.shape
+ hidden_states = hidden_states.reshape(-1, hidden_states.shape[-1])
+ residual = hidden_states
+
+ # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
+ if self.do_layer_norm_before:
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.activation_fn(hidden_states)
+
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+
+ hidden_states = (residual + hidden_states).reshape(hidden_states_shape)
+
+ # 350m applies layer norm AFTER attention
+ if not self.do_layer_norm_before:
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ return outputs
+
+
+class FlaxOPTDecoderLayerCollection(nn.Module):
+ config: OPTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxOPTDecoderLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.num_hidden_layers)
+ ]
+ self.layerdrop = self.config.layerdrop
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic: bool = True,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ ):
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+
+ for decoder_layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ deterministic=deterministic,
+ )
+
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ outputs = [hidden_states, all_hidden_states, all_self_attns]
+ return outputs
+
+
+class FlaxOPTLearnedPositionalEmbedding(nn.Embed):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def setup(self):
+ self.offset = 2
+ self.embedding = self.param(
+ "embedding", self.embedding_init, (self.num_embeddings + self.offset, self.features), self.param_dtype
+ )
+
+ def __call__(self, positions):
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
+
+ return super().__call__(positions + self.offset)
+
+
+class FlaxOPTDecoder(nn.Module):
+ config: OPTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ offset: int = 2
+
+ def setup(self):
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+
+ embed_dim = self.config.hidden_size
+ self.padding_idx = self.config.pad_token_id
+ self.max_target_positions = self.config.max_position_embeddings
+
+ self.embed_tokens = nn.Embed(
+ self.config.vocab_size,
+ self.config.word_embed_proj_dim,
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
+ dtype=self.dtype,
+ )
+
+ self.embed_positions = FlaxOPTLearnedPositionalEmbedding(
+ self.config.max_position_embeddings,
+ embed_dim,
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
+ dtype=self.dtype,
+ )
+
+ if self.config.word_embed_proj_dim != self.config.hidden_size:
+ self.project_in = nn.Dense(self.config.hidden_size, use_bias=False)
+ self.project_out = nn.Dense(self.config.word_embed_proj_dim, use_bias=False)
+
+ else:
+ self.project_in = None
+ self.project_out = None
+
+ # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
+ # with checkpoints that have been fine-tuned before transformers v4.20.1
+ # see https://github.com/facebookresearch/metaseq/pull/164
+ if self.config.do_layer_norm_before and not self.config._remove_final_layer_norm:
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ else:
+ self.final_layer_norm = None
+
+ self.layers = FlaxOPTDecoderLayerCollection(self.config, self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ input_shape = input_ids.shape
+ input_ids = input_ids.reshape(-1, input_shape[-1])
+
+ inputs_embeds = self.embed_tokens(input_ids)
+ if self.project_in is not None:
+ inputs_embeds = self.project_in(inputs_embeds)
+
+ positions = self.embed_positions(position_ids)
+
+ hidden_states = inputs_embeds + positions
+
+ hidden_state, all_hidden_states, attentions = self.layers(
+ hidden_states,
+ attention_mask,
+ deterministic=deterministic,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ )
+
+ if self.final_layer_norm is not None:
+ hidden_state = self.final_layer_norm(hidden_state)
+
+ if self.project_out is not None:
+ hidden_state = self.project_out(hidden_state)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_state,)
+
+ outputs = [hidden_state, all_hidden_states, attentions]
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=hidden_state,
+ hidden_states=all_hidden_states,
+ attentions=attentions,
+ )
+
+
+class FlaxOPTPreTrainedModel(FlaxPreTrainedModel):
+ config_class = OPTConfig
+ base_model_prefix: str = "model"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: OPTConfig,
+ input_shape: Tuple[int] = (1, 1),
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ attention_mask = jnp.ones_like(input_ids)
+
+ batch_size, sequence_length = input_ids.shape
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ module_init_outputs = self.module.init(
+ rngs,
+ input_ids,
+ attention_mask,
+ position_ids,
+ return_dict=False,
+ )
+
+ random_params = module_init_outputs["params"]
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ def init_cache(self, batch_size, max_length):
+ r"""
+ Args:
+ batch_size (`int`):
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
+ max_length (`int`):
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
+ cache.
+ """
+ # init input variables to retrieve cache
+ input_ids = jnp.ones((batch_size, max_length), dtype="i4")
+ attention_mask = jnp.ones_like(input_ids, dtype="i4")
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ init_variables = self.module.init(
+ jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
+ )
+ return unfreeze(init_variables["cache"])
+
+ def __call__(
+ self,
+ input_ids: jnp.ndarray,
+ attention_mask: Optional[jnp.ndarray] = None,
+ position_ids: Optional[jnp.ndarray] = None,
+ params: dict = None,
+ past_key_values: dict = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ dropout_rng: PRNGKey = None,
+ deterministic: bool = True,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+
+ if position_ids is None:
+ position_ids = (attention_mask.cumsum(axis=1) * attention_mask) - 1
+
+ # Handle any PRNG if needed
+ rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
+
+ inputs = {"params": params or self.params}
+
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
+ # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
+ # changed by FlaxOPTAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ outputs = self.module.apply(
+ inputs,
+ input_ids=jnp.array(input_ids, dtype="i4"),
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ rngs=rngs,
+ mutable=mutable,
+ )
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs, past_key_values = outputs
+ outputs["past_key_values"] = unfreeze(past_key_values["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs, past_key_values = outputs
+ outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
+
+ return outputs
+
+
+class FlaxOPTModule(nn.Module):
+ config: OPTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.decoder = FlaxOPTDecoder(self.config, dtype=self.dtype)
+
+ def _get_decoder_module(self):
+ return self.decoder
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ init_cache=False,
+ ):
+ decoder_outputs = self.decoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ init_cache=init_cache,
+ )
+
+ if not return_dict:
+ return decoder_outputs
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ hidden_states=decoder_outputs.hidden_states,
+ attentions=decoder_outputs.attentions,
+ )
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModel with Bart->OPT
+class FlaxOPTModel(FlaxOPTPreTrainedModel):
+ config: OPTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ module_class = FlaxOPTModule
+
+
+append_call_sample_docstring(FlaxOPTModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
+
+
+@add_start_docstrings(
+ "The bare OPT Model transformer outputting raw hidden-states without any specific head on top.",
+ OPT_START_DOCSTRING,
+)
+class FlaxOPTForCausalLMModule(nn.Module):
+ config: OPTConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.model = FlaxOPTModule(config=self.config, dtype=self.dtype)
+ self.lm_head = nn.Dense(
+ self.config.vocab_size,
+ use_bias=False,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ outputs = self.model(
+ input_ids,
+ attention_mask,
+ position_ids,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ )
+
+ hidden_states = outputs[0]
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"]
+ lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ lm_logits = self.lm_head(hidden_states)
+
+ if not return_dict:
+ return (lm_logits,) + outputs[1:]
+
+ return FlaxMaskedLMOutput(
+ logits=lm_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ OPT Model with a language modeling head on top (linear layer with weights tied to the input embeddings) e.g for
+ autoregressive tasks.
+ """,
+ OPT_START_DOCSTRING,
+)
+class FlaxOPTForCausalLM(FlaxOPTPreTrainedModel):
+ module_class = FlaxOPTForCausalLMModule
+
+ def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
+ # initializing the cache
+ batch_size, seq_length = input_ids.shape
+
+ past_key_values = self.init_cache(batch_size, max_length)
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
+ # But since the decoder uses a causal mask, those positions are masked anyway.
+ # Thus, we can create a single static attention_mask here, which is more efficient for compilation
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
+
+ if attention_mask is not None:
+ position_ids = attention_mask.cumsum(axis=1) - 1
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
+ else:
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
+
+ return {
+ "past_key_values": past_key_values,
+ "attention_mask": extended_attention_mask,
+ "position_ids": position_ids,
+ }
+
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
+ model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
+ return model_kwargs
+
+
+append_call_sample_docstring(
+ FlaxOPTForCausalLM,
+ _CHECKPOINT_FOR_DOC,
+ FlaxBaseModelOutput,
+ _CONFIG_FOR_DOC,
+)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/modeling_opt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/modeling_opt.py
new file mode 100644
index 0000000000000000000000000000000000000000..5e9e53a2ac3251cc4dabd0306293f362c9c92bab
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/modeling_opt.py
@@ -0,0 +1,1456 @@
+# coding=utf-8
+# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch OPT model."""
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.nn.functional as F
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
+from ...modeling_outputs import (
+ BaseModelOutputWithPast,
+ CausalLMOutputWithPast,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutputWithPast,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_flash_attn_2_available,
+ is_flash_attn_greater_or_equal_2_10,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_opt import OPTConfig
+
+
+if is_flash_attn_2_available():
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
+_CONFIG_FOR_DOC = "OPTConfig"
+
+# Base model docstring
+_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
+
+# SequenceClassification docstring
+_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc"
+_SEQ_CLASS_EXPECTED_LOSS = 1.71
+_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"
+
+
+from ..deprecated._archive_maps import OPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# Copied from transformers.models.llama.modeling_llama._get_unpad_data
+def _get_unpad_data(attention_mask):
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
+ return (
+ indices,
+ cu_seqlens,
+ max_seqlen_in_batch,
+ )
+
+
+class OPTLearnedPositionalEmbedding(nn.Embedding):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def __init__(self, num_embeddings: int, embedding_dim: int):
+ # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
+ # and adjust num_embeddings appropriately. Other models don't have this hack
+ self.offset = 2
+ super().__init__(num_embeddings + self.offset, embedding_dim)
+
+ def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0):
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
+ attention_mask = attention_mask.long()
+
+ # create positions depending on attention_mask
+ positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1
+
+ # cut positions if `past_key_values_length` is > 0
+ positions = positions[:, past_key_values_length:]
+
+ return super().forward(positions + self.offset)
+
+
+class OPTAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(
+ self,
+ config: OPTConfig,
+ is_decoder: bool = False,
+ **kwargs,
+ ):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.dropout = config.attention_dropout
+ self.enable_bias = config.enable_bias
+
+ self.head_dim = self.embed_dim // self.num_heads
+ self.is_causal = True
+
+ if (self.head_dim * self.num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {self.num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, tgt_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.view(*proj_shape)
+ value_states = value_states.view(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = torch.max(
+ attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
+ )
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
+ if attn_weights.dtype == torch.float16:
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16)
+ else:
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if layer_head_mask is not None:
+ if layer_head_mask.size() != (self.num_heads,):
+ raise ValueError(
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
+ f" {layer_head_mask.size()}"
+ )
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to be reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+ # partitioned aross GPUs when using tensor-parallelism.
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped, past_key_value
+
+
+class OptFlashAttention2(OPTAttention):
+ """
+ OPT flash attention module. This module inherits from `OPTAttention` as the weights of the module stays untouched.
+ The only required change would be on the forward pass where it needs to correctly call the public API of flash
+ attention and deal with padding tokens in case the input contains any of them.
+ """
+
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, _, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states)
+ # get key, value proj
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ query_length = query_states.shape[1]
+ tgt_len = key_states.shape[-2]
+
+ # Flash attention requires the input to have the shape
+ # batch_size x seq_length x head_dim x hidden_dim
+ query_states = query_states.view(bsz, query_length, self.num_heads, self.head_dim)
+ key_states = key_states.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
+ value_states = value_states.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
+
+ attn_dropout = self.dropout if self.training else 0.0
+
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
+ # cast them back in float16 just to be sure everything works as expected.
+ input_dtype = query_states.dtype
+ if input_dtype == torch.float32:
+ if torch.is_autocast_enabled():
+ target_dtype = torch.get_autocast_gpu_dtype()
+ # Handle the case where the model is quantized
+ elif hasattr(self.config, "_pre_quantization_dtype"):
+ target_dtype = self.config._pre_quantization_dtype
+ else:
+ target_dtype = self.q_proj.weight.dtype
+
+ logger.warning_once(
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
+ f" {target_dtype}."
+ )
+
+ query_states = query_states.to(target_dtype)
+ key_states = key_states.to(target_dtype)
+ value_states = value_states.to(target_dtype)
+
+ attn_output = self._flash_attention_forward(
+ query_states, key_states, value_states, attention_mask, query_length, dropout=attn_dropout
+ )
+
+ attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim)
+ attn_output = self.out_proj(attn_weights_reshaped)
+
+ if not output_attentions:
+ attn_weights_reshaped = None
+
+ return attn_output, attn_weights_reshaped, past_key_value
+
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
+ def _flash_attention_forward(
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
+ ):
+ """
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
+ first unpad the input, then computes the attention scores and pad the final attention scores.
+
+ Args:
+ query_states (`torch.Tensor`):
+ Input query states to be passed to Flash Attention API
+ key_states (`torch.Tensor`):
+ Input key states to be passed to Flash Attention API
+ value_states (`torch.Tensor`):
+ Input value states to be passed to Flash Attention API
+ attention_mask (`torch.Tensor`):
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
+ position of padding tokens and 1 for the position of non-padding tokens.
+ dropout (`float`):
+ Attention dropout
+ softmax_scale (`float`, *optional*):
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
+ """
+ if not self._flash_attn_uses_top_left_mask:
+ causal = self.is_causal
+ else:
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
+ causal = self.is_causal and query_length != 1
+
+ # Contains at least one padding token in the sequence
+ if attention_mask is not None:
+ batch_size = query_states.shape[0]
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
+ query_states, key_states, value_states, attention_mask, query_length
+ )
+
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
+
+ attn_output_unpad = flash_attn_varlen_func(
+ query_states,
+ key_states,
+ value_states,
+ cu_seqlens_q=cu_seqlens_q,
+ cu_seqlens_k=cu_seqlens_k,
+ max_seqlen_q=max_seqlen_in_batch_q,
+ max_seqlen_k=max_seqlen_in_batch_k,
+ dropout_p=dropout,
+ softmax_scale=softmax_scale,
+ causal=causal,
+ )
+
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
+ else:
+ attn_output = flash_attn_func(
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
+ )
+
+ return attn_output
+
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
+
+ key_layer = index_first_axis(
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
+ )
+ value_layer = index_first_axis(
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
+ )
+ if query_length == kv_seq_len:
+ query_layer = index_first_axis(
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
+ )
+ cu_seqlens_q = cu_seqlens_k
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
+ indices_q = indices_k
+ elif query_length == 1:
+ max_seqlen_in_batch_q = 1
+ cu_seqlens_q = torch.arange(
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
+ ) # There is a memcpy here, that is very bad.
+ indices_q = cu_seqlens_q[:-1]
+ query_layer = query_layer.squeeze(1)
+ else:
+ # The -q_len: slice assumes left padding.
+ attention_mask = attention_mask[:, -query_length:]
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
+
+ return (
+ query_layer,
+ key_layer,
+ value_layer,
+ indices_q,
+ (cu_seqlens_q, cu_seqlens_k),
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
+ )
+
+
+OPT_ATTENTION_CLASSES = {
+ "eager": OPTAttention,
+ "flash_attention_2": OptFlashAttention2,
+}
+
+
+class OPTDecoderLayer(nn.Module):
+ def __init__(self, config: OPTConfig):
+ super().__init__()
+ self.embed_dim = config.hidden_size
+
+ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True)
+
+ self.do_layer_norm_before = config.do_layer_norm_before
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+
+ self.self_attn_layer_norm = nn.LayerNorm(
+ self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine
+ )
+ self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias)
+ self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=config.enable_bias)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
+ """
+
+ residual = hidden_states
+
+ # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
+ if self.do_layer_norm_before:
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ # 350m applies layer norm AFTER attention
+ if not self.do_layer_norm_before:
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Fully Connected
+ hidden_states_shape = hidden_states.shape
+ hidden_states = hidden_states.reshape(-1, hidden_states.size(-1))
+ residual = hidden_states
+
+ # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
+ if self.do_layer_norm_before:
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.activation_fn(hidden_states)
+
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ hidden_states = (residual + hidden_states).view(hidden_states_shape)
+
+ # 350m applies layer norm AFTER attention
+ if not self.do_layer_norm_before:
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ return outputs
+
+
+OPT_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`OPTConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings(
+ "The bare OPT Model outputting raw hidden-states without any specific head on top.",
+ OPT_START_DOCSTRING,
+)
+class OPTPreTrainedModel(PreTrainedModel):
+ config_class = OPTConfig
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["OPTDecoderLayer"]
+ _supports_flash_attn_2 = True
+
+ def _init_weights(self, module):
+ std = self.config.init_std
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+OPT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class OPTDecoder(OPTPreTrainedModel):
+ """
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`]
+
+ Args:
+ config: OPTConfig
+ """
+
+ def __init__(self, config: OPTConfig):
+ super().__init__(config)
+ self.dropout = config.dropout
+ self.layerdrop = config.layerdrop
+ self.padding_idx = config.pad_token_id
+ self.max_target_positions = config.max_position_embeddings
+ self.vocab_size = config.vocab_size
+
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
+ self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
+
+ if config.word_embed_proj_dim != config.hidden_size:
+ self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
+ else:
+ self.project_out = None
+
+ if config.word_embed_proj_dim != config.hidden_size:
+ self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
+ else:
+ self.project_in = None
+
+ # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
+ # with checkpoints that have been fine-tuned before transformers v4.20.1
+ # see https://github.com/facebookresearch/metaseq/pull/164
+ if config.do_layer_norm_before and not config._remove_final_layer_norm:
+ self.final_layer_norm = nn.LayerNorm(
+ config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
+ )
+ else:
+ self.final_layer_norm = None
+
+ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ batch_size, seq_length = input_shape
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+ # required mask seq length can be calculated via length of past
+ mask_seq_length = past_key_values_length + seq_length
+
+ # embed positions
+ if self._use_flash_attention_2:
+ # 2d mask is passed through the layers
+ causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
+ attention_mask = (
+ torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
+ if attention_mask is None
+ else attention_mask
+ )
+ else:
+ # 4d mask is passed through the layers
+ if attention_mask is None:
+ attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
+ elif attention_mask.shape[1] != mask_seq_length:
+ raise ValueError(
+ f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
+ f"{mask_seq_length} (sum of the lengths of current and past inputs)"
+ )
+ causal_attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
+ )
+
+ pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
+
+ if self.project_in is not None:
+ inputs_embeds = self.project_in(inputs_embeds)
+
+ hidden_states = inputs_embeds + pos_embeds
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ next_decoder_cache = () if use_cache else None
+
+ # check if head_mask has a correct number of layers specified if desired
+ for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
+ if attn_mask is not None:
+ if attn_mask.size()[0] != (len(self.layers)):
+ raise ValueError(
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop:
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ causal_attention_mask,
+ head_mask[idx] if head_mask is not None else None,
+ None,
+ output_attentions,
+ use_cache,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=causal_attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if self.final_layer_norm is not None:
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ if self.project_out is not None:
+ hidden_states = self.project_out(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if not return_dict:
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
+ return BaseModelOutputWithPast(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ )
+
+
+@add_start_docstrings(
+ "The bare OPT Model outputting raw hidden-states without any specific head on top.",
+ OPT_START_DOCSTRING,
+)
+class OPTModel(OPTPreTrainedModel):
+ def __init__(self, config: OPTConfig):
+ super().__init__(config)
+ self.decoder = OPTDecoder(config)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.decoder.embed_tokens = value
+
+ def get_decoder(self):
+ return self.decoder
+
+ @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPast,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.decoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return decoder_outputs
+
+ return BaseModelOutputWithPast(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ past_key_values=decoder_outputs.past_key_values,
+ hidden_states=decoder_outputs.hidden_states,
+ attentions=decoder_outputs.attentions,
+ )
+
+
+class OPTForCausalLM(OPTPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = OPTModel(config)
+
+ # the lm_head weight is automatically tied to the embed tokens weight
+ self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.decoder.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model.decoder = decoder
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
+ tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, OPTForCausalLM
+
+ >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model.decoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ logits = self.lm_head(outputs[0]).contiguous()
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutputWithPast(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
+ ):
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and past_key_values is None:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "attention_mask": attention_mask,
+ }
+ )
+ return model_inputs
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+
+@add_start_docstrings(
+ """
+ The OPT Model transformer with a sequence classification head on top (linear layer).
+
+ [`OPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models
+ (e.g. GPT-2) do.
+
+ Since it does classification on the last token, it requires to know the position of the last token. If a
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
+ each row of the batch).
+ """,
+ OPT_START_DOCSTRING,
+)
+class OPTForSequenceClassification(OPTPreTrainedModel):
+ def __init__(self, config: OPTConfig):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.model = OPTModel(config)
+ self.score = nn.Linear(config.word_embed_proj_dim, self.num_labels, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
+ output_type=SequenceClassifierOutputWithPast,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
+ expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.model(
+ input_ids,
+ past_key_values=past_key_values,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = transformer_outputs[0]
+ logits = self.score(hidden_states)
+
+ if input_ids is not None:
+ batch_size, sequence_length = input_ids.shape[:2]
+ else:
+ batch_size, sequence_length = inputs_embeds.shape[:2]
+
+ if self.config.pad_token_id is None:
+ sequence_lengths = -1
+ else:
+ if input_ids is not None:
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
+ sequence_lengths = sequence_lengths.to(logits.device)
+ else:
+ sequence_lengths = -1
+ logger.warning(
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
+ )
+
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(pooled_logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(pooled_logits, labels)
+ if not return_dict:
+ output = (pooled_logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutputWithPast(
+ loss=loss,
+ logits=pooled_logits,
+ past_key_values=transformer_outputs.past_key_values,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+ def get_input_embeddings(self):
+ return self.model.decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.decoder.embed_tokens = value
+
+
+@add_start_docstrings(
+ """
+ The OPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD
+ (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ OPT_START_DOCSTRING,
+)
+class OPTForQuestionAnswering(OPTPreTrainedModel):
+ def __init__(self, config: OPTConfig):
+ super().__init__(config)
+ self.model = OPTModel(config)
+ self.qa_outputs = nn.Linear(config.word_embed_proj_dim, 2)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, OPTForQuestionAnswering
+ >>> import torch
+
+ >>> torch.manual_seed(4) # doctest: +IGNORE_RESULT
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
+
+ >>> # note: we are loading a OPTForQuestionAnswering from the hub here,
+ >>> # so the head will be randomly initialized, hence the predictions will be random
+ >>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m")
+
+ >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
+
+ >>> inputs = tokenizer(question, text, return_tensors="pt")
+ >>> with torch.no_grad():
+ ... outputs = model(**inputs)
+
+ >>> answer_start_index = outputs.start_logits.argmax()
+ >>> answer_end_index = outputs.end_logits.argmax()
+
+ >>> answer_offset = len(tokenizer(question)[0])
+
+ >>> predict_answer_tokens = inputs.input_ids[
+ ... 0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1
+ ... ]
+ >>> predicted = tokenizer.decode(predict_answer_tokens)
+ >>> predicted
+ ' a nice puppet'
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.model(
+ input_ids,
+ past_key_values=past_key_values,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = transformer_outputs[0]
+
+ logits = self.qa_outputs(hidden_states)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + transformer_outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+ def get_input_embeddings(self):
+ return self.model.decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.decoder.embed_tokens = value
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/modeling_tf_opt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/modeling_tf_opt.py
new file mode 100644
index 0000000000000000000000000000000000000000..8dbad97e08b651dbf44a071eb16965f1c0047f16
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/opt/modeling_tf_opt.py
@@ -0,0 +1,1095 @@
+# coding=utf-8
+# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 OPT model."""
+
+
+from __future__ import annotations
+
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast
+
+# Public API
+from ...modeling_tf_utils import (
+ TFCausalLanguageModelingLoss,
+ TFModelInputType,
+ TFPreTrainedModel,
+ TFSharedEmbeddings,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_opt import OPTConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
+_CONFIG_FOR_DOC = "OPTConfig"
+
+# Base model docstring
+_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
+
+# Causal LM output
+_CAUSAL_LM_EXPECTED_OUTPUT = (
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
+)
+
+LARGE_NEGATIVE = -1e8
+
+
+def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
+ """
+ Make causal mask used for bi-directional self-attention.
+ """
+ bsz = input_ids_shape[0]
+ tgt_len = input_ids_shape[1]
+ # We need triu with k = 1 but TF expects known compile-time dims for that, so we hack around it
+ mask = tf.fill((tgt_len, tgt_len), tf.cast(LARGE_NEGATIVE, tf.float32))
+ mask = tf.linalg.band_part(mask, 0, -1) - tf.linalg.band_part(mask, 0, 0)
+
+ if past_key_values_length > 0:
+ mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
+
+ return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
+
+
+# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
+def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
+ """
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
+ """
+ src_len = shape_list(mask)[1]
+ tgt_len = tgt_len if tgt_len is not None else src_len
+ one_cst = tf.constant(1.0)
+ mask = tf.cast(mask, dtype=one_cst.dtype)
+ expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
+
+ return (one_cst - expanded_mask) * LARGE_NEGATIVE
+
+
+class TFOPTLearnedPositionalEmbedding(keras.layers.Embedding):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
+ # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
+ # and adjust num_embeddings appropriately. Other models don't have this hack
+ self.offset = 2
+ super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs)
+
+ def call(self, attention_mask, past_key_values_length: int = 0):
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
+ attention_mask = tf.cast(attention_mask, tf.int64)
+
+ # create positions depending on attention_mask
+ positions = tf.math.cumsum(attention_mask, axis=1) * attention_mask - 1
+
+ # cut positions if `past_key_values_length` is > 0
+ positions = positions[:, past_key_values_length:]
+
+ return super().call(positions + self.offset)
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->OPT
+class TFOPTAttention(keras.layers.Layer):
+ """Multi-headed attention from "Attention Is All You Need"""
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.embed_dim = embed_dim
+
+ self.num_heads = num_heads
+ self.dropout = keras.layers.Dropout(dropout)
+ self.head_dim = embed_dim // num_heads
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+
+ self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
+ self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
+ self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
+ self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
+
+ def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
+ return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ key_value_states: tf.Tensor | None = None,
+ past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
+ attention_mask: tf.Tensor | None = None,
+ layer_head_mask: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Tuple[tf.Tensor, tf.Tensor | None]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ bsz, tgt_len, embed_dim = shape_list(hidden_states)
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = tf.concat([past_key_value[0], key_states], axis=2)
+ value_states = tf.concat([past_key_value[1], value_states], axis=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
+ key_states = tf.reshape(key_states, proj_shape)
+ value_states = tf.reshape(value_states, proj_shape)
+
+ src_len = shape_list(key_states)[1]
+ attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
+
+ tf.debugging.assert_equal(
+ shape_list(attn_weights),
+ [bsz * self.num_heads, tgt_len, src_len],
+ message=(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {shape_list(attn_weights)}"
+ ),
+ )
+
+ if attention_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(attention_mask),
+ [bsz, 1, tgt_len, src_len],
+ message=(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
+ f" {shape_list(attention_mask)}"
+ ),
+ )
+
+ attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
+ attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
+
+ attn_weights = stable_softmax(attn_weights, axis=-1)
+
+ if layer_head_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(layer_head_mask),
+ [self.num_heads],
+ message=(
+ f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
+ f" {shape_list(layer_head_mask)}"
+ ),
+ )
+
+ attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
+ attn_weights, (bsz, self.num_heads, tgt_len, src_len)
+ )
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
+
+ attn_probs = self.dropout(attn_weights, training=training)
+ attn_output = tf.matmul(attn_probs, value_states)
+
+ tf.debugging.assert_equal(
+ shape_list(attn_output),
+ [bsz * self.num_heads, tgt_len, self.head_dim],
+ message=(
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {shape_list(attn_output)}"
+ ),
+ )
+
+ attn_output = tf.transpose(
+ tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
+ )
+ attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
+
+ attn_output = self.out_proj(attn_output)
+ attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
+
+ return attn_output, attn_weights, past_key_value
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "k_proj", None) is not None:
+ with tf.name_scope(self.k_proj.name):
+ self.k_proj.build([None, None, self.embed_dim])
+ if getattr(self, "q_proj", None) is not None:
+ with tf.name_scope(self.q_proj.name):
+ self.q_proj.build([None, None, self.embed_dim])
+ if getattr(self, "v_proj", None) is not None:
+ with tf.name_scope(self.v_proj.name):
+ self.v_proj.build([None, None, self.embed_dim])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.embed_dim])
+
+
+class TFOPTDecoderLayer(keras.layers.Layer):
+ def __init__(self, config: OPTConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.do_layer_norm_before = config.do_layer_norm_before
+ self.embed_dim = config.hidden_size
+ self.self_attn = TFOPTAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.num_attention_heads,
+ dropout=config.attention_dropout,
+ name="self_attn",
+ is_decoder=True,
+ )
+ self.dropout = keras.layers.Dropout(config.dropout)
+ self.activation_fn = get_tf_activation(config.activation_function)
+
+ self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
+ self.fc1 = keras.layers.Dense(config.ffn_dim, name="fc1")
+ self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
+ self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
+ self.config = config
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ layer_head_mask: tf.Tensor | None = None,
+ past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ training: Optional[bool] = False,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
+ """
+ Args:
+ hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`tf.Tensor`, *optional*): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`tf.Tensor`, *optional*): mask for attention heads in a given layer of size
+ `(decoder_attention_heads,)`
+ past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+ """
+ residual = hidden_states
+
+ # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
+ if self.do_layer_norm_before:
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ )
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ # 350m applies layer norm AFTER attention
+ if not self.do_layer_norm_before:
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Fully Connected
+ residual = hidden_states
+ # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
+ if self.do_layer_norm_before:
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.activation_fn(hidden_states)
+
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ # 350m applies layer norm AFTER attention
+ if not self.do_layer_norm_before:
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ return (hidden_states, self_attn_weights, present_key_value)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attn", None) is not None:
+ with tf.name_scope(self.self_attn.name):
+ self.self_attn.build(None)
+ if getattr(self, "self_attn_layer_norm", None) is not None:
+ with tf.name_scope(self.self_attn_layer_norm.name):
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
+ if getattr(self, "fc1", None) is not None:
+ with tf.name_scope(self.fc1.name):
+ self.fc1.build([None, None, self.embed_dim])
+ if getattr(self, "fc2", None) is not None:
+ with tf.name_scope(self.fc2.name):
+ self.fc2.build([None, None, self.config.ffn_dim])
+ if getattr(self, "final_layer_norm", None) is not None:
+ with tf.name_scope(self.final_layer_norm.name):
+ self.final_layer_norm.build([None, None, self.embed_dim])
+
+
+OPT_START_DOCSTRING = r"""
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Args:
+ config ([`OPTConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings(
+ "The bare OPT Model outputting raw hidden-states without any specific head on top.",
+ OPT_START_DOCSTRING,
+)
+class TFOPTPreTrainedModel(TFPreTrainedModel):
+ """
+ TFOPT Pretrained Model that inheritates from transformers.TFPreTrainedModel
+
+ Args:
+ config: OPTConfig
+ """
+
+ config_class = OPTConfig
+ base_model_prefix = "model"
+
+
+OPT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`). Set to `False` during training, `True` during generation
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@keras_serializable
+class TFOPTDecoder(keras.layers.Layer):
+ config_class = OPTConfig
+
+ def __init__(self, config: OPTConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.padding_idx = config.pad_token_id
+ self.layerdrop = config.layerdrop
+ num_embeddings = config.max_position_embeddings
+ self.embed_tokens = TFSharedEmbeddings(
+ config.vocab_size, config.word_embed_proj_dim, config.pad_token_id, name="embed_tokens"
+ )
+ self.embed_positions = TFOPTLearnedPositionalEmbedding(
+ num_embeddings,
+ config.hidden_size,
+ name="embed_positions",
+ )
+
+ # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
+ # with checkpoints that have been fine-tuned before transformers v4.20.1
+ # see https://github.com/facebookresearch/metaseq/pull/164
+ if config.do_layer_norm_before and not config._remove_final_layer_norm:
+ self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
+ else:
+ self.final_layer_norm = None
+
+ if config.word_embed_proj_dim != config.hidden_size:
+ self.project_out = keras.layers.Dense(config.word_embed_proj_dim, name="project_out", use_bias=False)
+ self.project_in = keras.layers.Dense(config.hidden_size, name="project_in", use_bias=False)
+
+ else:
+ self.project_in = None
+ self.project_out = None
+
+ self.layers = [TFOPTDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)]
+ self.dropout = keras.layers.Dropout(config.dropout)
+
+ def get_embed_tokens(self):
+ return self.embed_tokens
+
+ def set_embed_tokens(self, embed_tokens):
+ self.embed_tokens = embed_tokens
+
+ def set_input_embeddings(self, new_embeddings):
+ self.embed_tokens.vocab_size = new_embeddings.shape[0]
+ self.embed_tokens.weight = new_embeddings
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length):
+ # create causal mask
+ # # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ _, seq_length = input_shape
+ tf.debugging.assert_equal(
+ seq_length + past_key_values_length,
+ shape_list(attention_mask)[1],
+ message="Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
+ f" but is {shape_list(attention_mask)[1]} with input_ids shape {input_shape} and past length"
+ f" {past_key_values_length}.",
+ )
+
+ expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1])
+ if seq_length > 1:
+ combined_attention_mask = (
+ _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + expanded_attn_mask
+ )
+ else:
+ combined_attention_mask = expanded_attn_mask
+
+ return combined_attention_mask
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
+ r"""
+ Args:
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
+ decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`tf.Tensor` of
+ shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
+ `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
+ control over how to convert `input_ids` indices into associated vectors than the model's internal
+ embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
+
+ if inputs_embeds is None:
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size)
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ if attention_mask is None:
+ attention_mask = tf.ones((input_shape[0], input_shape[1] + past_key_values_length), dtype=tf.bool)
+ else:
+ tf.debugging.assert_equal(
+ shape_list(attention_mask)[1],
+ past_key_values_length + input_shape[1],
+ message=(
+ f"The provided attention mask has length {tf.shape(attention_mask)[1]}, but its length should be "
+ f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)"
+ ),
+ )
+ pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
+
+ attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length)
+
+ if self.project_in is not None:
+ inputs_embeds = self.project_in(inputs_embeds)
+
+ hidden_states = inputs_embeds + pos_embeds
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ present_key_values = () if use_cache else None
+
+ # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
+ for attn_mask_name, attn_mask in [("head_mask", head_mask)]:
+ if attn_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(attn_mask)[0],
+ len(self.layers),
+ message=(
+ f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
+ f" {shape_list(attn_mask)[0]}."
+ ),
+ )
+
+ for idx, decoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ hidden_states, layer_self_attn, present_key_value = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=head_mask[idx] if head_mask is not None else None,
+ past_key_value=past_key_value,
+ )
+
+ if use_cache:
+ present_key_values += (present_key_value,)
+
+ if output_attentions:
+ all_self_attns += (layer_self_attn,)
+
+ if self.final_layer_norm is not None:
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ if self.project_out is not None:
+ hidden_states = self.project_out(hidden_states)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v for v in [hidden_states, present_key_values, all_hidden_states, all_self_attns] if v is not None
+ )
+
+ else:
+ return TFBaseModelOutputWithPast(
+ last_hidden_state=hidden_states,
+ past_key_values=present_key_values,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embed_tokens", None) is not None:
+ with tf.name_scope(self.embed_tokens.name):
+ self.embed_tokens.build(None)
+ if getattr(self, "embed_positions", None) is not None:
+ with tf.name_scope(self.embed_positions.name):
+ self.embed_positions.build(None)
+ if getattr(self, "final_layer_norm", None) is not None:
+ with tf.name_scope(self.final_layer_norm.name):
+ self.final_layer_norm.build([None, None, self.config.hidden_size])
+ if getattr(self, "project_out", None) is not None:
+ with tf.name_scope(self.project_out.name):
+ self.project_out.build([None, None, self.config.hidden_size])
+ if getattr(self, "project_in", None) is not None:
+ with tf.name_scope(self.project_in.name):
+ self.project_in.build([None, None, self.config.word_embed_proj_dim])
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFOPTMainLayer(keras.layers.Layer):
+ config_class = OPTConfig
+
+ def __init__(self, config: OPTConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.decoder = TFOPTDecoder(config, name="decoder")
+
+ def get_input_embeddings(self):
+ return self.decoder.embed_tokens
+
+ def set_input_embeddings(self, new_embeddings):
+ self.decoder.set_input_embeddings(new_embeddings)
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ **kwargs,
+ ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.decoder(
+ input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ if not return_dict:
+ return outputs
+
+ return TFBaseModelOutputWithPast(
+ last_hidden_state=outputs.last_hidden_state,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "decoder", None) is not None:
+ with tf.name_scope(self.decoder.name):
+ self.decoder.build(None)
+
+
+@add_start_docstrings(
+ "The bare TF OPT Model outputting raw hidden-states without any specific head on top.",
+ OPT_START_DOCSTRING,
+)
+@keras_serializable
+class TFOPTModel(TFOPTPreTrainedModel):
+ config_class = OPTConfig
+
+ def __init__(self, config: OPTConfig, **kwargs):
+ super().__init__(config, **kwargs)
+ self.config = config
+ self.model = TFOPTMainLayer(config, name="model")
+
+ def get_input_embeddings(self):
+ return self.model.decoder.embed_tokens
+
+ def set_input_embeddings(self, new_embeddings):
+ self.model.set_input_embeddings(new_embeddings)
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutputWithPast,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ **kwargs,
+ ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ if not return_dict:
+ return outputs
+
+ return TFBaseModelOutputWithPast(
+ last_hidden_state=outputs.last_hidden_state,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def serving_output(self, output):
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
+ hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
+ attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
+
+ return TFBaseModelOutputWithPast(
+ last_hidden_state=output.last_hidden_state,
+ past_key_values=pkv,
+ hidden_states=hs,
+ attentions=attns,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "model", None) is not None:
+ with tf.name_scope(self.model.name):
+ self.model.build(None)
+
+
+@add_start_docstrings(
+ """
+ The OPT Model transformer with a language modeling head on top.
+ """,
+ OPT_START_DOCSTRING,
+)
+@keras_serializable
+class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss):
+ config_class = OPTConfig
+
+ def __init__(self, config: OPTConfig, **kwargs):
+ super().__init__(config, **kwargs)
+ self.config = config
+ self.model = TFOPTMainLayer(config, name="model")
+
+ def get_output_embeddings(self):
+ return self.model.get_input_embeddings()
+
+ def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
+ attention_mask = kwargs.get("attention_mask", None)
+
+ # only last token for inputs_ids if past is defined in kwargs
+ if past_key_values:
+ inputs = tf.expand_dims(inputs[:, -1], -1)
+
+ return {
+ "input_ids": inputs,
+ "attention_mask": attention_mask,
+ "past_key_values": past_key_values,
+ "use_cache": use_cache,
+ }
+
+ @unpack_inputs
+ @replace_return_docstrings(output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFCausalLMOutputWithPast,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_CAUSAL_LM_EXPECTED_OUTPUT,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ **kwargs,
+ ) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
+ tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.model(
+ input_ids=input_ids,
+ past_key_values=past_key_values,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ logits = self.model.decoder.embed_tokens(outputs[0], mode="linear")
+ loss = None
+ if labels is not None:
+ # shift labels to the left and cut last logit token
+ shifted_logits = logits[:, :-1]
+ labels = labels[:, 1:]
+ loss = self.hf_compute_loss(labels, shifted_logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFCausalLMOutputWithPast(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def serving_output(self, output):
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
+ hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
+ attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
+
+ return TFCausalLMOutputWithPast(
+ past_key_values=pkv,
+ hidden_states=hs,
+ attentions=attns,
+ loss=output.loss,
+ logits=output.logits,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "model", None) is not None:
+ with tf.name_scope(self.model.name):
+ self.model.build(None)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..cab5af9af7c99775651e2f4a322265670676b8da
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/__init__.py
@@ -0,0 +1,80 @@
+# coding=utf-8
+# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
+# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
+# All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_torch_available,
+ is_vision_available,
+)
+
+
+_import_structure = {
+ "configuration_pvt": ["PVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "PvtConfig", "PvtOnnxConfig"],
+}
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["image_processing_pvt"] = ["PvtImageProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_pvt"] = [
+ "PVT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "PvtForImageClassification",
+ "PvtModel",
+ "PvtPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_pvt import PVT_PRETRAINED_CONFIG_ARCHIVE_MAP, PvtConfig, PvtOnnxConfig
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .image_processing_pvt import PvtImageProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_pvt import (
+ PVT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ PvtForImageClassification,
+ PvtModel,
+ PvtPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bcf51710f60ff0cae3dfae8d9774d268b699f459
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/configuration_pvt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/configuration_pvt.py
new file mode 100644
index 0000000000000000000000000000000000000000..7fc99b49cf0d78be841d90fbd0fc5e99f4dab192
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/configuration_pvt.py
@@ -0,0 +1,162 @@
+# coding=utf-8
+# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
+# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
+# All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Pvt model configuration"""
+
+from collections import OrderedDict
+from typing import Callable, List, Mapping
+
+from packaging import version
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import PVT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class PvtConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`PvtModel`]. It is used to instantiate an Pvt
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the Pvt
+ [Xrenya/pvt-tiny-224](https://huggingface.co/Xrenya/pvt-tiny-224) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ image_size (`int`, *optional*, defaults to 224):
+ The input image size
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ num_encoder_blocks (`int`, *optional*, defaults to 4):
+ The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
+ depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
+ The number of layers in each encoder block.
+ sequence_reduction_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
+ Sequence reduction ratios in each encoder block.
+ hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`):
+ Dimension of each of the encoder blocks.
+ patch_sizes (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
+ Patch size before each encoder block.
+ strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
+ Stride before each encoder block.
+ num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
+ Number of attention heads for each attention layer in each block of the Transformer encoder.
+ mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`):
+ Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
+ encoder blocks.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
+ The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the layer normalization layers.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether or not a learnable bias should be added to the queries, keys and values.
+ num_labels ('int', *optional*, defaults to 1000):
+ The number of classes.
+ Example:
+
+ ```python
+ >>> from transformers import PvtModel, PvtConfig
+
+ >>> # Initializing a PVT Xrenya/pvt-tiny-224 style configuration
+ >>> configuration = PvtConfig()
+
+ >>> # Initializing a model from the Xrenya/pvt-tiny-224 style configuration
+ >>> model = PvtModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "pvt"
+
+ def __init__(
+ self,
+ image_size: int = 224,
+ num_channels: int = 3,
+ num_encoder_blocks: int = 4,
+ depths: List[int] = [2, 2, 2, 2],
+ sequence_reduction_ratios: List[int] = [8, 4, 2, 1],
+ hidden_sizes: List[int] = [64, 128, 320, 512],
+ patch_sizes: List[int] = [4, 2, 2, 2],
+ strides: List[int] = [4, 2, 2, 2],
+ num_attention_heads: List[int] = [1, 2, 5, 8],
+ mlp_ratios: List[int] = [8, 8, 4, 4],
+ hidden_act: Mapping[str, Callable] = "gelu",
+ hidden_dropout_prob: float = 0.0,
+ attention_probs_dropout_prob: float = 0.0,
+ initializer_range: float = 0.02,
+ drop_path_rate: float = 0.0,
+ layer_norm_eps: float = 1e-6,
+ qkv_bias: bool = True,
+ num_labels: int = 1000,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.image_size = image_size
+ self.num_channels = num_channels
+ self.num_encoder_blocks = num_encoder_blocks
+ self.depths = depths
+ self.sequence_reduction_ratios = sequence_reduction_ratios
+ self.hidden_sizes = hidden_sizes
+ self.patch_sizes = patch_sizes
+ self.strides = strides
+ self.mlp_ratios = mlp_ratios
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.drop_path_rate = drop_path_rate
+ self.layer_norm_eps = layer_norm_eps
+ self.num_labels = num_labels
+ self.qkv_bias = qkv_bias
+
+
+class PvtOnnxConfig(OnnxConfig):
+ torch_onnx_minimum_version = version.parse("1.11")
+
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ return OrderedDict(
+ [
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
+ ]
+ )
+
+ @property
+ def atol_for_validation(self) -> float:
+ return 1e-4
+
+ @property
+ def default_onnx_opset(self) -> int:
+ return 12
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/convert_pvt_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/convert_pvt_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..187f3200d608a57a473b429c8dae81560863cd31
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/convert_pvt_to_pytorch.py
@@ -0,0 +1,227 @@
+# coding=utf-8
+# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
+# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
+# All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Pvt checkpoints from the original library."""
+
+
+import argparse
+from pathlib import Path
+
+import requests
+import torch
+from PIL import Image
+
+from transformers import PvtConfig, PvtForImageClassification, PvtImageProcessor
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+# here we list all keys to be renamed (original name on the left, our name on the right)
+def create_rename_keys(config):
+ rename_keys = []
+ for i in range(config.num_encoder_blocks):
+ # Remane embedings' paramters
+ rename_keys.append((f"pos_embed{i + 1}", f"pvt.encoder.patch_embeddings.{i}.position_embeddings"))
+
+ rename_keys.append((f"patch_embed{i + 1}.proj.weight", f"pvt.encoder.patch_embeddings.{i}.projection.weight"))
+ rename_keys.append((f"patch_embed{i + 1}.proj.bias", f"pvt.encoder.patch_embeddings.{i}.projection.bias"))
+ rename_keys.append((f"patch_embed{i + 1}.norm.weight", f"pvt.encoder.patch_embeddings.{i}.layer_norm.weight"))
+ rename_keys.append((f"patch_embed{i + 1}.norm.bias", f"pvt.encoder.patch_embeddings.{i}.layer_norm.bias"))
+
+ for j in range(config.depths[i]):
+ # Rename blocks' parameters
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.q.weight", f"pvt.encoder.block.{i}.{j}.attention.self.query.weight")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.q.bias", f"pvt.encoder.block.{i}.{j}.attention.self.query.bias")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.kv.weight", f"pvt.encoder.block.{i}.{j}.attention.self.kv.weight")
+ )
+ rename_keys.append((f"block{i + 1}.{j}.attn.kv.bias", f"pvt.encoder.block.{i}.{j}.attention.self.kv.bias"))
+
+ if config.sequence_reduction_ratios[i] > 1:
+ rename_keys.append(
+ (
+ f"block{i + 1}.{j}.attn.norm.weight",
+ f"pvt.encoder.block.{i}.{j}.attention.self.layer_norm.weight",
+ )
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.norm.bias", f"pvt.encoder.block.{i}.{j}.attention.self.layer_norm.bias")
+ )
+ rename_keys.append(
+ (
+ f"block{i + 1}.{j}.attn.sr.weight",
+ f"pvt.encoder.block.{i}.{j}.attention.self.sequence_reduction.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"block{i + 1}.{j}.attn.sr.bias",
+ f"pvt.encoder.block.{i}.{j}.attention.self.sequence_reduction.bias",
+ )
+ )
+
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.proj.weight", f"pvt.encoder.block.{i}.{j}.attention.output.dense.weight")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.proj.bias", f"pvt.encoder.block.{i}.{j}.attention.output.dense.bias")
+ )
+
+ rename_keys.append((f"block{i + 1}.{j}.norm1.weight", f"pvt.encoder.block.{i}.{j}.layer_norm_1.weight"))
+ rename_keys.append((f"block{i + 1}.{j}.norm1.bias", f"pvt.encoder.block.{i}.{j}.layer_norm_1.bias"))
+
+ rename_keys.append((f"block{i + 1}.{j}.norm2.weight", f"pvt.encoder.block.{i}.{j}.layer_norm_2.weight"))
+ rename_keys.append((f"block{i + 1}.{j}.norm2.bias", f"pvt.encoder.block.{i}.{j}.layer_norm_2.bias"))
+
+ rename_keys.append((f"block{i + 1}.{j}.mlp.fc1.weight", f"pvt.encoder.block.{i}.{j}.mlp.dense1.weight"))
+ rename_keys.append((f"block{i + 1}.{j}.mlp.fc1.bias", f"pvt.encoder.block.{i}.{j}.mlp.dense1.bias"))
+ rename_keys.append((f"block{i + 1}.{j}.mlp.fc2.weight", f"pvt.encoder.block.{i}.{j}.mlp.dense2.weight"))
+ rename_keys.append((f"block{i + 1}.{j}.mlp.fc2.bias", f"pvt.encoder.block.{i}.{j}.mlp.dense2.bias"))
+
+ # Rename cls token
+ rename_keys.extend(
+ [
+ ("cls_token", "pvt.encoder.patch_embeddings.3.cls_token"),
+ ]
+ )
+ # Rename norm layer and classifier layer
+ rename_keys.extend(
+ [
+ ("norm.weight", "pvt.encoder.layer_norm.weight"),
+ ("norm.bias", "pvt.encoder.layer_norm.bias"),
+ ("head.weight", "classifier.weight"),
+ ("head.bias", "classifier.bias"),
+ ]
+ )
+
+ return rename_keys
+
+
+# we split up the matrix of each encoder layer into queries, keys and values
+def read_in_k_v(state_dict, config):
+ # for each of the encoder blocks:
+ for i in range(config.num_encoder_blocks):
+ for j in range(config.depths[i]):
+ # read in weights + bias of keys and values (which is a single matrix in the original implementation)
+ kv_weight = state_dict.pop(f"pvt.encoder.block.{i}.{j}.attention.self.kv.weight")
+ kv_bias = state_dict.pop(f"pvt.encoder.block.{i}.{j}.attention.self.kv.bias")
+ # next, add keys and values (in that order) to the state dict
+ state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[: config.hidden_sizes[i], :]
+ state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]]
+
+ state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[
+ config.hidden_sizes[i] :, :
+ ]
+ state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[config.hidden_sizes[i] :]
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+# We will verify our results on an image of cute cats
+def prepare_img():
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ im = Image.open(requests.get(url, stream=True).raw)
+ return im
+
+
+@torch.no_grad()
+def convert_pvt_checkpoint(pvt_size, pvt_checkpoint, pytorch_dump_folder_path):
+ """
+ Copy/paste/tweak model's weights to our PVT structure.
+ """
+
+ # define default Pvt configuration
+ if pvt_size == "tiny":
+ config_path = "Zetatech/pvt-tiny-224"
+ elif pvt_size == "small":
+ config_path = "Zetatech/pvt-small-224"
+ elif pvt_size == "medium":
+ config_path = "Zetatech/pvt-medium-224"
+ elif pvt_size == "large":
+ config_path = "Zetatech/pvt-large-224"
+ else:
+ raise ValueError(f"Available model's size: 'tiny', 'small', 'medium', 'large', but " f"'{pvt_size}' was given")
+ config = PvtConfig(name_or_path=config_path)
+ # load original model from https://github.com/whai362/PVT
+ state_dict = torch.load(pvt_checkpoint, map_location="cpu")
+
+ rename_keys = create_rename_keys(config)
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+ read_in_k_v(state_dict, config)
+
+ # load HuggingFace model
+ model = PvtForImageClassification(config).eval()
+ model.load_state_dict(state_dict)
+
+ # Check outputs on an image, prepared by PVTFeatureExtractor
+ image_processor = PvtImageProcessor(size=config.image_size)
+ encoding = image_processor(images=prepare_img(), return_tensors="pt")
+ pixel_values = encoding["pixel_values"]
+ outputs = model(pixel_values)
+ logits = outputs.logits.detach().cpu()
+
+ if pvt_size == "tiny":
+ expected_slice_logits = torch.tensor([-1.4192, -1.9158, -0.9702])
+ elif pvt_size == "small":
+ expected_slice_logits = torch.tensor([0.4353, -0.1960, -0.2373])
+ elif pvt_size == "medium":
+ expected_slice_logits = torch.tensor([-0.2914, -0.2231, 0.0321])
+ elif pvt_size == "large":
+ expected_slice_logits = torch.tensor([0.3740, -0.7739, -0.4214])
+ else:
+ raise ValueError(f"Available model's size: 'tiny', 'small', 'medium', 'large', but " f"'{pvt_size}' was given")
+
+ assert torch.allclose(logits[0, :3], expected_slice_logits, atol=1e-4)
+
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ print(f"Saving model pytorch_model.bin to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--pvt_size",
+ default="tiny",
+ type=str,
+ help="Size of the PVT pretrained model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pvt_checkpoint",
+ default="pvt_tiny.pth",
+ type=str,
+ help="Checkpoint of the PVT pretrained model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
+ )
+
+ args = parser.parse_args()
+ convert_pvt_checkpoint(args.pvt_size, args.pvt_checkpoint, args.pytorch_dump_folder_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/image_processing_pvt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/image_processing_pvt.py
new file mode 100644
index 0000000000000000000000000000000000000000..f3907edf3af09394acbacb2db992c7a3a71ef091
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/image_processing_pvt.py
@@ -0,0 +1,290 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for Pvt."""
+
+from typing import Dict, List, Optional, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import resize, to_channel_dimension_format
+from ...image_utils import (
+ IMAGENET_DEFAULT_MEAN,
+ IMAGENET_DEFAULT_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import TensorType, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class PvtImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a PVT image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
+ size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
+ size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
+ Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
+ method.
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
+ Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
+ `preprocess` method.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
+ parameter in the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
+ `preprocess` method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
+ method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Optional[Dict[str, int]] = None,
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ size = size if size is not None else {"height": 224, "width": 224}
+ size = get_size_dict(size)
+ self.do_resize = do_resize
+ self.do_rescale = do_rescale
+ self.do_normalize = do_normalize
+ self.size = size
+ self.resample = resample
+ self.rescale_factor = rescale_factor
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
+ self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
+ self._valid_processor_keys = [
+ "images",
+ "do_resize",
+ "size",
+ "resample",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize an image to `(size["height"], size["width"])`.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
+ `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
+ data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
+ image is used. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+
+ Returns:
+ `np.ndarray`: The resized image.
+ """
+ size = get_size_dict(size)
+ if "height" not in size or "width" not in size:
+ raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
+ output_size = (size["height"], size["width"])
+ return resize(
+ image,
+ size=output_size,
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ do_resize: Optional[bool] = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_rescale: Optional[bool] = None,
+ rescale_factor: Optional[float] = None,
+ do_normalize: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ):
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
+ resizing.
+ resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
+ `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
+ an effect if `do_resize` is set to `True`.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image values between [0 - 1].
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to use if `do_normalize` is set to `True`.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to use if `do_normalize` is set to `True`.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ resample = resample if resample is not None else self.resample
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+
+ size = size if size is not None else self.size
+ size_dict = get_size_dict(size)
+
+ images = make_list_of_images(images)
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if do_resize:
+ images = [
+ self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_rescale:
+ images = [
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_normalize:
+ images = [
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ images = [
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
+ ]
+
+ data = {"pixel_values": images}
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/modeling_pvt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/modeling_pvt.py
new file mode 100644
index 0000000000000000000000000000000000000000..b169af0cbd5668ba975d0a80c3b83d99131c687f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt/modeling_pvt.py
@@ -0,0 +1,668 @@
+# coding=utf-8
+# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
+# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
+# All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch PVT model."""
+
+import collections
+import math
+from typing import Iterable, Optional, Tuple, Union
+
+import torch
+import torch.nn.functional as F
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+)
+from .configuration_pvt import PvtConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "PvtConfig"
+
+_CHECKPOINT_FOR_DOC = "Zetatech/pvt-tiny-224"
+_EXPECTED_OUTPUT_SHAPE = [1, 50, 512]
+
+_IMAGE_CLASS_CHECKPOINT = "Zetatech/pvt-tiny-224"
+_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
+
+
+from ..deprecated._archive_maps import PVT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# Copied from transformers.models.beit.modeling_beit.drop_path
+def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
+ """
+ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+
+ Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
+ however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
+ layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
+ argument.
+ """
+ if drop_prob == 0.0 or not training:
+ return input
+ keep_prob = 1 - drop_prob
+ shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
+ random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
+ random_tensor.floor_() # binarize
+ output = input.div(keep_prob) * random_tensor
+ return output
+
+
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Pvt
+class PvtDropPath(nn.Module):
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
+
+ def __init__(self, drop_prob: Optional[float] = None) -> None:
+ super().__init__()
+ self.drop_prob = drop_prob
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ return drop_path(hidden_states, self.drop_prob, self.training)
+
+ def extra_repr(self) -> str:
+ return "p={}".format(self.drop_prob)
+
+
+class PvtPatchEmbeddings(nn.Module):
+ """
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
+ Transformer.
+ """
+
+ def __init__(
+ self,
+ config: PvtConfig,
+ image_size: Union[int, Iterable[int]],
+ patch_size: Union[int, Iterable[int]],
+ stride: int,
+ num_channels: int,
+ hidden_size: int,
+ cls_token: bool = False,
+ ):
+ super().__init__()
+ self.config = config
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_patches = num_patches
+
+ self.position_embeddings = nn.Parameter(
+ torch.randn(1, num_patches + 1 if cls_token else num_patches, hidden_size)
+ )
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) if cls_token else None
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=stride, stride=patch_size)
+ self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
+
+ def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
+ num_patches = height * width
+ if num_patches == self.config.image_size * self.config.image_size:
+ return self.position_embeddings
+ embeddings = embeddings.reshape(1, height, width, -1).permute(0, 3, 1, 2)
+ interpolated_embeddings = F.interpolate(embeddings, size=(height, width), mode="bilinear")
+ interpolated_embeddings = interpolated_embeddings.reshape(1, -1, height * width).permute(0, 2, 1)
+ return interpolated_embeddings
+
+ def forward(self, pixel_values: torch.Tensor) -> Tuple[torch.Tensor, int, int]:
+ batch_size, num_channels, height, width = pixel_values.shape
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ patch_embed = self.projection(pixel_values)
+ *_, height, width = patch_embed.shape
+ patch_embed = patch_embed.flatten(2).transpose(1, 2)
+ embeddings = self.layer_norm(patch_embed)
+ if self.cls_token is not None:
+ cls_token = self.cls_token.expand(batch_size, -1, -1)
+ embeddings = torch.cat((cls_token, embeddings), dim=1)
+ position_embeddings = self.interpolate_pos_encoding(self.position_embeddings[:, 1:], height, width)
+ position_embeddings = torch.cat((self.position_embeddings[:, :1], position_embeddings), dim=1)
+ else:
+ position_embeddings = self.interpolate_pos_encoding(self.position_embeddings, height, width)
+ embeddings = self.dropout(embeddings + position_embeddings)
+
+ return embeddings, height, width
+
+
+class PvtSelfOutput(nn.Module):
+ def __init__(self, config: PvtConfig, hidden_size: int):
+ super().__init__()
+ self.dense = nn.Linear(hidden_size, hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ return hidden_states
+
+
+class PvtEfficientSelfAttention(nn.Module):
+ """Efficient self-attention mechanism with reduction of the sequence [PvT paper](https://arxiv.org/abs/2102.12122)."""
+
+ def __init__(
+ self, config: PvtConfig, hidden_size: int, num_attention_heads: int, sequences_reduction_ratio: float
+ ):
+ super().__init__()
+ self.hidden_size = hidden_size
+ self.num_attention_heads = num_attention_heads
+
+ if self.hidden_size % self.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({self.num_attention_heads})"
+ )
+
+ self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ self.sequences_reduction_ratio = sequences_reduction_ratio
+ if sequences_reduction_ratio > 1:
+ self.sequence_reduction = nn.Conv2d(
+ hidden_size, hidden_size, kernel_size=sequences_reduction_ratio, stride=sequences_reduction_ratio
+ )
+ self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
+
+ def transpose_for_scores(self, hidden_states: int) -> torch.Tensor:
+ new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ hidden_states = hidden_states.view(new_shape)
+ return hidden_states.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ height: int,
+ width: int,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor]:
+ query_layer = self.transpose_for_scores(self.query(hidden_states))
+
+ if self.sequences_reduction_ratio > 1:
+ batch_size, seq_len, num_channels = hidden_states.shape
+ # Reshape to (batch_size, num_channels, height, width)
+ hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
+ # Apply sequence reduction
+ hidden_states = self.sequence_reduction(hidden_states)
+ # Reshape back to (batch_size, seq_len, num_channels)
+ hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1)
+ hidden_states = self.layer_norm(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+class PvtAttention(nn.Module):
+ def __init__(
+ self, config: PvtConfig, hidden_size: int, num_attention_heads: int, sequences_reduction_ratio: float
+ ):
+ super().__init__()
+ self.self = PvtEfficientSelfAttention(
+ config,
+ hidden_size=hidden_size,
+ num_attention_heads=num_attention_heads,
+ sequences_reduction_ratio=sequences_reduction_ratio,
+ )
+ self.output = PvtSelfOutput(config, hidden_size=hidden_size)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(hidden_states, height, width, output_attentions)
+
+ attention_output = self.output(self_outputs[0])
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class PvtFFN(nn.Module):
+ def __init__(
+ self,
+ config: PvtConfig,
+ in_features: int,
+ hidden_features: Optional[int] = None,
+ out_features: Optional[int] = None,
+ ):
+ super().__init__()
+ out_features = out_features if out_features is not None else in_features
+ self.dense1 = nn.Linear(in_features, hidden_features)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.dense2 = nn.Linear(hidden_features, out_features)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense1(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.dense2(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ return hidden_states
+
+
+class PvtLayer(nn.Module):
+ def __init__(
+ self,
+ config: PvtConfig,
+ hidden_size: int,
+ num_attention_heads: int,
+ drop_path: float,
+ sequences_reduction_ratio: float,
+ mlp_ratio: float,
+ ):
+ super().__init__()
+ self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
+ self.attention = PvtAttention(
+ config=config,
+ hidden_size=hidden_size,
+ num_attention_heads=num_attention_heads,
+ sequences_reduction_ratio=sequences_reduction_ratio,
+ )
+ self.drop_path = PvtDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+ self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
+ mlp_hidden_size = int(hidden_size * mlp_ratio)
+ self.mlp = PvtFFN(config=config, in_features=hidden_size, hidden_features=mlp_hidden_size)
+
+ def forward(self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False):
+ self_attention_outputs = self.attention(
+ hidden_states=self.layer_norm_1(hidden_states),
+ height=height,
+ width=width,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:]
+
+ attention_output = self.drop_path(attention_output)
+ hidden_states = attention_output + hidden_states
+
+ mlp_output = self.mlp(self.layer_norm_2(hidden_states))
+
+ mlp_output = self.drop_path(mlp_output)
+ layer_output = hidden_states + mlp_output
+
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+
+class PvtEncoder(nn.Module):
+ def __init__(self, config: PvtConfig):
+ super().__init__()
+ self.config = config
+
+ # stochastic depth decay rule
+ drop_path_decays = torch.linspace(0, config.drop_path_rate, sum(config.depths)).tolist()
+
+ # patch embeddings
+ embeddings = []
+
+ for i in range(config.num_encoder_blocks):
+ embeddings.append(
+ PvtPatchEmbeddings(
+ config=config,
+ image_size=config.image_size if i == 0 else self.config.image_size // (2 ** (i + 1)),
+ patch_size=config.patch_sizes[i],
+ stride=config.strides[i],
+ num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
+ hidden_size=config.hidden_sizes[i],
+ cls_token=i == config.num_encoder_blocks - 1,
+ )
+ )
+ self.patch_embeddings = nn.ModuleList(embeddings)
+
+ # Transformer blocks
+ blocks = []
+ cur = 0
+ for i in range(config.num_encoder_blocks):
+ # each block consists of layers
+ layers = []
+ if i != 0:
+ cur += config.depths[i - 1]
+ for j in range(config.depths[i]):
+ layers.append(
+ PvtLayer(
+ config=config,
+ hidden_size=config.hidden_sizes[i],
+ num_attention_heads=config.num_attention_heads[i],
+ drop_path=drop_path_decays[cur + j],
+ sequences_reduction_ratio=config.sequence_reduction_ratios[i],
+ mlp_ratio=config.mlp_ratios[i],
+ )
+ )
+ blocks.append(nn.ModuleList(layers))
+
+ self.block = nn.ModuleList(blocks)
+
+ # Layer norms
+ self.layer_norm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple, BaseModelOutput]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ batch_size = pixel_values.shape[0]
+ num_blocks = len(self.block)
+ hidden_states = pixel_values
+ for idx, (embedding_layer, block_layer) in enumerate(zip(self.patch_embeddings, self.block)):
+ # first, obtain patch embeddings
+ hidden_states, height, width = embedding_layer(hidden_states)
+ # second, send embeddings through blocks
+ for block in block_layer:
+ layer_outputs = block(hidden_states, height, width, output_attentions)
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+ if idx != num_blocks - 1:
+ hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
+ hidden_states = self.layer_norm(hidden_states)
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class PvtPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = PvtConfig
+ base_model_prefix = "pvt"
+ main_input_name = "pixel_values"
+
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
+ # `trunc_normal_cpu` not implemented in `half` issues
+ module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, PvtPatchEmbeddings):
+ module.position_embeddings.data = nn.init.trunc_normal_(
+ module.position_embeddings.data,
+ mean=0.0,
+ std=self.config.initializer_range,
+ )
+ if module.cls_token is not None:
+ module.cls_token.data = nn.init.trunc_normal_(
+ module.cls_token.data,
+ mean=0.0,
+ std=self.config.initializer_range,
+ )
+
+
+PVT_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`~PvtConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+PVT_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PvtImageProcessor.__call__`]
+ for details.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Pvt encoder outputting raw hidden-states without any specific head on top.",
+ PVT_START_DOCSTRING,
+)
+class PvtModel(PvtPreTrainedModel):
+ def __init__(self, config: PvtConfig):
+ super().__init__(config)
+ self.config = config
+
+ # hierarchical Transformer encoder
+ self.encoder = PvtEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(PVT_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="vision",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ encoder_outputs = self.encoder(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutput(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Pvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
+ the [CLS] token) e.g. for ImageNet.
+ """,
+ PVT_START_DOCSTRING,
+)
+class PvtForImageClassification(PvtPreTrainedModel):
+ def __init__(self, config: PvtConfig) -> None:
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.pvt = PvtModel(config)
+
+ # Classifier head
+ self.classifier = (
+ nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(PVT_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
+ @add_code_sample_docstrings(
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
+ output_type=ImageClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
+ )
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor],
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, ImageClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.pvt(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.classifier(sequence_output[:, 0, :])
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ImageClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..611688f6a683e73fa1287c88bfbf7b0736657647
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__init__.py
@@ -0,0 +1,27 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+
+
+_import_structure = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]}
+
+
+if TYPE_CHECKING:
+ from .processing_wav2vec2_with_lm import Wav2Vec2ProcessorWithLM
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..54711d8ab6ae9f411ad6f0f0eb2b49d97823f656
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/processing_wav2vec2_with_lm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/processing_wav2vec2_with_lm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..774425a9d35c0051687795ee0f917162e9bbc9a7
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/__pycache__/processing_wav2vec2_with_lm.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py
new file mode 100644
index 0000000000000000000000000000000000000000..b388be245f1389f703b640bafe522d96333bb902
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py
@@ -0,0 +1,648 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Speech processor class for Wav2Vec2
+"""
+import os
+import warnings
+from contextlib import contextmanager, nullcontext
+from dataclasses import dataclass
+from multiprocessing import Pool, get_context, get_start_method
+from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Union
+
+import numpy as np
+
+from ...processing_utils import ProcessorMixin
+from ...utils import ModelOutput, logging, requires_backends
+
+
+logger = logging.get_logger(__name__)
+
+
+if TYPE_CHECKING:
+ from pyctcdecode import BeamSearchDecoderCTC
+
+ from ...feature_extraction_utils import FeatureExtractionMixin
+ from ...tokenization_utils import PreTrainedTokenizerBase
+
+
+ListOfDict = List[Dict[str, Union[int, str]]]
+
+
+@dataclass
+class Wav2Vec2DecoderWithLMOutput(ModelOutput):
+ """
+ Output type of [`Wav2Vec2DecoderWithLM`], with transcription.
+
+ Args:
+ text (list of `str` or `str`):
+ Decoded logits in text from. Usually the speech transcription.
+ logit_score (list of `float` or `float`):
+ Total logit score of the beams associated with produced text.
+ lm_score (list of `float`):
+ Fused lm_score of the beams associated with produced text.
+ word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`):
+ Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets
+ can be used to compute time stamps for each word.
+ """
+
+ text: Union[List[List[str]], List[str], str]
+ logit_score: Union[List[List[float]], List[float], float] = None
+ lm_score: Union[List[List[float]], List[float], float] = None
+ word_offsets: Union[List[List[ListOfDict]], List[ListOfDict], ListOfDict] = None
+
+
+class Wav2Vec2ProcessorWithLM(ProcessorMixin):
+ r"""
+ Constructs a Wav2Vec2 processor which wraps a Wav2Vec2 feature extractor, a Wav2Vec2 CTC tokenizer and a decoder
+ with language model support into a single processor for language model boosted speech recognition decoding.
+
+ Args:
+ feature_extractor ([`Wav2Vec2FeatureExtractor`]):
+ An instance of [`Wav2Vec2FeatureExtractor`]. The feature extractor is a required input.
+ tokenizer ([`Wav2Vec2CTCTokenizer`]):
+ An instance of [`Wav2Vec2CTCTokenizer`]. The tokenizer is a required input.
+ decoder (`pyctcdecode.BeamSearchDecoderCTC`):
+ An instance of [`pyctcdecode.BeamSearchDecoderCTC`]. The decoder is a required input.
+ """
+
+ feature_extractor_class = "Wav2Vec2FeatureExtractor"
+ tokenizer_class = "Wav2Vec2CTCTokenizer"
+
+ def __init__(
+ self,
+ feature_extractor: "FeatureExtractionMixin",
+ tokenizer: "PreTrainedTokenizerBase",
+ decoder: "BeamSearchDecoderCTC",
+ ):
+ from pyctcdecode import BeamSearchDecoderCTC
+
+ super().__init__(feature_extractor, tokenizer)
+ if not isinstance(decoder, BeamSearchDecoderCTC):
+ raise ValueError(f"`decoder` has to be of type {BeamSearchDecoderCTC.__class__}, but is {type(decoder)}")
+
+ # make sure that decoder's alphabet and tokenizer's vocab match in content
+ missing_decoder_tokens = self.get_missing_alphabet_tokens(decoder, tokenizer)
+ if len(missing_decoder_tokens) > 0:
+ raise ValueError(
+ f"The tokens {missing_decoder_tokens} are defined in the tokenizer's "
+ "vocabulary, but not in the decoder's alphabet. "
+ f"Make sure to include {missing_decoder_tokens} in the decoder's alphabet."
+ )
+
+ self.decoder = decoder
+ self.current_processor = self.feature_extractor
+ self._in_target_context_manager = False
+
+ def save_pretrained(self, save_directory):
+ super().save_pretrained(save_directory)
+ self.decoder.save_to_dir(save_directory)
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
+ r"""
+ Instantiate a [`Wav2Vec2ProcessorWithLM`] from a pretrained Wav2Vec2 processor.
+
+
+
+ This class method is simply calling Wav2Vec2FeatureExtractor's
+ [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], Wav2Vec2CTCTokenizer's
+ [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`], and
+ [`pyctcdecode.BeamSearchDecoderCTC.load_from_hf_hub`].
+
+ Please refer to the docstrings of the methods above for more information.
+
+
+
+ Args:
+ pretrained_model_name_or_path (`str` or `os.PathLike`):
+ This can be either:
+
+ - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
+ huggingface.co.
+ - a path to a *directory* containing a feature extractor file saved using the
+ [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`.
+ - a path or url to a saved feature extractor JSON *file*, e.g.,
+ `./my_model_directory/preprocessor_config.json`.
+ **kwargs
+ Additional keyword arguments passed along to both [`SequenceFeatureExtractor`] and
+ [`PreTrainedTokenizer`]
+ """
+ requires_backends(cls, "pyctcdecode")
+ from pyctcdecode import BeamSearchDecoderCTC
+
+ feature_extractor, tokenizer = super()._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
+
+ if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path):
+ decoder = BeamSearchDecoderCTC.load_from_dir(pretrained_model_name_or_path)
+ else:
+ # BeamSearchDecoderCTC has no auto class
+ kwargs.pop("_from_auto", None)
+ # snapshot_download has no `trust_remote_code` flag
+ kwargs.pop("trust_remote_code", None)
+
+ # make sure that only relevant filenames are downloaded
+ language_model_filenames = os.path.join(BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*")
+ alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME
+ allow_patterns = [language_model_filenames, alphabet_filename]
+
+ decoder = BeamSearchDecoderCTC.load_from_hf_hub(
+ pretrained_model_name_or_path, allow_patterns=allow_patterns, **kwargs
+ )
+
+ # set language model attributes
+ for attribute in ["alpha", "beta", "unk_score_offset", "score_boundary"]:
+ value = kwargs.pop(attribute, None)
+
+ if value is not None:
+ cls._set_language_model_attribute(decoder, attribute, value)
+
+ # make sure that decoder's alphabet and tokenizer's vocab match in content
+ missing_decoder_tokens = cls.get_missing_alphabet_tokens(decoder, tokenizer)
+ if len(missing_decoder_tokens) > 0:
+ raise ValueError(
+ f"The tokens {missing_decoder_tokens} are defined in the tokenizer's "
+ "vocabulary, but not in the decoder's alphabet. "
+ f"Make sure to include {missing_decoder_tokens} in the decoder's alphabet."
+ )
+
+ return cls(feature_extractor=feature_extractor, tokenizer=tokenizer, decoder=decoder)
+
+ @staticmethod
+ def _set_language_model_attribute(decoder: "BeamSearchDecoderCTC", attribute: str, value: float):
+ setattr(decoder.model_container[decoder._model_key], attribute, value)
+
+ @property
+ def language_model(self):
+ return self.decoder.model_container[self.decoder._model_key]
+
+ @staticmethod
+ def get_missing_alphabet_tokens(decoder, tokenizer):
+ from pyctcdecode.alphabet import BLANK_TOKEN_PTN, UNK_TOKEN, UNK_TOKEN_PTN
+
+ # we need to make sure that all of the tokenizer's except the special tokens
+ # are present in the decoder's alphabet. Retrieve missing alphabet token
+ # from decoder
+ tokenizer_vocab_list = list(tokenizer.get_vocab().keys())
+
+ # replace special tokens
+ for i, token in enumerate(tokenizer_vocab_list):
+ if BLANK_TOKEN_PTN.match(token):
+ tokenizer_vocab_list[i] = ""
+ if token == tokenizer.word_delimiter_token:
+ tokenizer_vocab_list[i] = " "
+ if UNK_TOKEN_PTN.match(token):
+ tokenizer_vocab_list[i] = UNK_TOKEN
+
+ # are any of the extra tokens no special tokenizer tokens?
+ missing_tokens = set(tokenizer_vocab_list) - set(decoder._alphabet.labels)
+
+ return missing_tokens
+
+ def __call__(self, *args, **kwargs):
+ """
+ When used in normal mode, this method forwards all its arguments to Wav2Vec2FeatureExtractor's
+ [`~Wav2Vec2FeatureExtractor.__call__`] and returns its output. If used in the context
+ [`~Wav2Vec2ProcessorWithLM.as_target_processor`] this method forwards all its arguments to
+ Wav2Vec2CTCTokenizer's [`~Wav2Vec2CTCTokenizer.__call__`]. Please refer to the docstring of the above two
+ methods for more information.
+ """
+ # For backward compatibility
+ if self._in_target_context_manager:
+ return self.current_processor(*args, **kwargs)
+
+ if "raw_speech" in kwargs:
+ warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
+ audio = kwargs.pop("raw_speech")
+ else:
+ audio = kwargs.pop("audio", None)
+ sampling_rate = kwargs.pop("sampling_rate", None)
+ text = kwargs.pop("text", None)
+ if len(args) > 0:
+ audio = args[0]
+ args = args[1:]
+
+ if audio is None and text is None:
+ raise ValueError("You need to specify either an `audio` or `text` input to process.")
+
+ if audio is not None:
+ inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
+ if text is not None:
+ encodings = self.tokenizer(text, **kwargs)
+
+ if text is None:
+ return inputs
+ elif audio is None:
+ return encodings
+ else:
+ inputs["labels"] = encodings["input_ids"]
+ return inputs
+
+ def pad(self, *args, **kwargs):
+ """
+ When used in normal mode, this method forwards all its arguments to Wav2Vec2FeatureExtractor's
+ [`~Wav2Vec2FeatureExtractor.pad`] and returns its output. If used in the context
+ [`~Wav2Vec2ProcessorWithLM.as_target_processor`] this method forwards all its arguments to
+ Wav2Vec2CTCTokenizer's [`~Wav2Vec2CTCTokenizer.pad`]. Please refer to the docstring of the above two methods
+ for more information.
+ """
+ # For backward compatibility
+ if self._in_target_context_manager:
+ return self.current_processor.pad(*args, **kwargs)
+
+ input_features = kwargs.pop("input_features", None)
+ labels = kwargs.pop("labels", None)
+ if len(args) > 0:
+ input_features = args[0]
+ args = args[1:]
+
+ if input_features is not None:
+ input_features = self.feature_extractor.pad(input_features, *args, **kwargs)
+ if labels is not None:
+ labels = self.tokenizer.pad(labels, **kwargs)
+
+ if labels is None:
+ return input_features
+ elif input_features is None:
+ return labels
+ else:
+ input_features["labels"] = labels["input_ids"]
+ return input_features
+
+ def batch_decode(
+ self,
+ logits: np.ndarray,
+ pool: Optional[Pool] = None,
+ num_processes: Optional[int] = None,
+ beam_width: Optional[int] = None,
+ beam_prune_logp: Optional[float] = None,
+ token_min_logp: Optional[float] = None,
+ hotwords: Optional[Iterable[str]] = None,
+ hotword_weight: Optional[float] = None,
+ alpha: Optional[float] = None,
+ beta: Optional[float] = None,
+ unk_score_offset: Optional[float] = None,
+ lm_score_boundary: Optional[bool] = None,
+ output_word_offsets: bool = False,
+ n_best: int = 1,
+ ):
+ """
+ Batch decode output logits to audio transcription with language model support.
+
+
+
+ This function makes use of Python's multiprocessing. Currently, multiprocessing is available only on Unix
+ systems (see this [issue](https://github.com/kensho-technologies/pyctcdecode/issues/65)).
+
+ If you are decoding multiple batches, consider creating a `Pool` and passing it to `batch_decode`. Otherwise,
+ `batch_decode` will be very slow since it will create a fresh `Pool` for each call. See usage example below.
+
+
+
+ Args:
+ logits (`np.ndarray`):
+ The logits output vector of the model representing the log probabilities for each token.
+ pool (`multiprocessing.Pool`, *optional*):
+ An optional user-managed pool. If not set, one will be automatically created and closed. The pool
+ should be instantiated *after* `Wav2Vec2ProcessorWithLM`. Otherwise, the LM won't be available to the
+ pool's sub-processes.
+
+
+
+ Currently, only pools created with a 'fork' context can be used. If a 'spawn' pool is passed, it will
+ be ignored and sequential decoding will be used instead.
+
+
+
+ num_processes (`int`, *optional*):
+ If `pool` is not set, number of processes on which the function should be parallelized over. Defaults
+ to the number of available CPUs.
+ beam_width (`int`, *optional*):
+ Maximum number of beams at each step in decoding. Defaults to pyctcdecode's DEFAULT_BEAM_WIDTH.
+ beam_prune_logp (`int`, *optional*):
+ Beams that are much worse than best beam will be pruned Defaults to pyctcdecode's DEFAULT_PRUNE_LOGP.
+ token_min_logp (`int`, *optional*):
+ Tokens below this logp are skipped unless they are argmax of frame Defaults to pyctcdecode's
+ DEFAULT_MIN_TOKEN_LOGP.
+ hotwords (`List[str]`, *optional*):
+ List of words with extra importance, can be OOV for LM
+ hotword_weight (`int`, *optional*):
+ Weight factor for hotword importance Defaults to pyctcdecode's DEFAULT_HOTWORD_WEIGHT.
+ alpha (`float`, *optional*):
+ Weight for language model during shallow fusion
+ beta (`float`, *optional*):
+ Weight for length score adjustment of during scoring
+ unk_score_offset (`float`, *optional*):
+ Amount of log score offset for unknown tokens
+ lm_score_boundary (`bool`, *optional*):
+ Whether to have kenlm respect boundaries when scoring
+ output_word_offsets (`bool`, *optional*, defaults to `False`):
+ Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate
+ and model downsampling rate to compute the time-stamps of transcribed words.
+ n_best (`int`, *optional*, defaults to `1`):
+ Number of best hypotheses to return. If `n_best` is greater than 1, the returned `text` will be a list
+ of lists of strings, `logit_score` will be a list of lists of floats, and `lm_score` will be a list of
+ lists of floats, where the length of the outer list will correspond to the batch size and the length of
+ the inner list will correspond to the number of returned hypotheses . The value should be >= 1.
+
+
+
+ Please take a look at the Example of [`~Wav2Vec2ProcessorWithLM.decode`] to better understand how to
+ make use of `output_word_offsets`. [`~Wav2Vec2ProcessorWithLM.batch_decode`] works the same way with
+ batched output.
+
+
+
+ Returns:
+ [`~models.wav2vec2.Wav2Vec2DecoderWithLMOutput`].
+
+ Example:
+ See [Decoding multiple audios](#decoding-multiple-audios).
+ """
+
+ from pyctcdecode.constants import (
+ DEFAULT_BEAM_WIDTH,
+ DEFAULT_HOTWORD_WEIGHT,
+ DEFAULT_MIN_TOKEN_LOGP,
+ DEFAULT_PRUNE_LOGP,
+ )
+
+ # set defaults
+ beam_width = beam_width if beam_width is not None else DEFAULT_BEAM_WIDTH
+ beam_prune_logp = beam_prune_logp if beam_prune_logp is not None else DEFAULT_PRUNE_LOGP
+ token_min_logp = token_min_logp if token_min_logp is not None else DEFAULT_MIN_TOKEN_LOGP
+ hotword_weight = hotword_weight if hotword_weight is not None else DEFAULT_HOTWORD_WEIGHT
+
+ # reset params at every forward call. It's just a `set` method in pyctcdecode
+ self.decoder.reset_params(
+ alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary
+ )
+
+ # create multiprocessing pool and list numpy arrays
+ # filter out logits padding
+ logits_list = [array[(array != -100.0).all(axis=-1)] for array in logits]
+
+ # create a pool if necessary while also using it as a context manager to close itself
+ if pool is None:
+ # fork is safe to use only on Unix, see "Contexts and start methods" section on
+ # multiprocessing's docs (https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods)
+ default_context = get_start_method()
+
+ if default_context == "fork":
+ cm = pool = get_context().Pool(num_processes)
+ else:
+ logger.warning(
+ "Parallel batch decoding is not currently supported in this platform. "
+ "Falling back to sequential decoding."
+ )
+ cm = nullcontext()
+ else:
+ # pool is managed by the user, so we don't need to close it
+ cm = nullcontext()
+
+ if num_processes is not None:
+ logger.warning(
+ "Parameter `num_process` was passed, but it will be ignored since `pool` was also specified."
+ )
+
+ # pyctcdecode
+ with cm:
+ decoded_beams = self.decoder.decode_beams_batch(
+ pool=pool,
+ logits_list=logits_list,
+ beam_width=beam_width,
+ beam_prune_logp=beam_prune_logp,
+ token_min_logp=token_min_logp,
+ hotwords=hotwords,
+ hotword_weight=hotword_weight,
+ )
+
+ # extract text and scores
+ batch_texts, logit_scores, lm_scores, word_offsets = [], [], [], []
+
+ for d in decoded_beams:
+ batch_texts.append([beam[0] for beam in d])
+ logit_scores.append([beam[-2] for beam in d])
+ lm_scores.append([beam[-1] for beam in d])
+
+ # word_offsets.append([{"word": t[0], "start_offset": t[1][0], "end_offset": t[1][1]} for t in d[0][1]])
+
+ word_offsets.append(
+ [
+ [
+ {"word": word, "start_offset": start_offset, "end_offset": end_offset}
+ for word, (start_offset, end_offset) in beam[1]
+ ]
+ for beam in d
+ ]
+ )
+
+ word_offsets = word_offsets if output_word_offsets else None
+
+ if n_best == 1:
+ return Wav2Vec2DecoderWithLMOutput(
+ text=[hyps[0] for hyps in batch_texts],
+ logit_score=[hyps[0] for hyps in logit_scores],
+ lm_score=[hyps[0] for hyps in lm_scores],
+ word_offsets=[hyps[0] for hyps in word_offsets] if word_offsets is not None else None,
+ )
+ else:
+ return Wav2Vec2DecoderWithLMOutput(
+ text=[hyps[:n_best] for hyps in batch_texts],
+ logit_score=[hyps[:n_best] for hyps in logit_scores],
+ lm_score=[hyps[:n_best] for hyps in lm_scores],
+ word_offsets=[hyps[:n_best] for hyps in word_offsets] if word_offsets is not None else None,
+ )
+
+ def decode(
+ self,
+ logits: np.ndarray,
+ beam_width: Optional[int] = None,
+ beam_prune_logp: Optional[float] = None,
+ token_min_logp: Optional[float] = None,
+ hotwords: Optional[Iterable[str]] = None,
+ hotword_weight: Optional[float] = None,
+ alpha: Optional[float] = None,
+ beta: Optional[float] = None,
+ unk_score_offset: Optional[float] = None,
+ lm_score_boundary: Optional[bool] = None,
+ output_word_offsets: bool = False,
+ n_best: int = 1,
+ ):
+ """
+ Decode output logits to audio transcription with language model support.
+
+ Args:
+ logits (`np.ndarray`):
+ The logits output vector of the model representing the log probabilities for each token.
+ beam_width (`int`, *optional*):
+ Maximum number of beams at each step in decoding. Defaults to pyctcdecode's DEFAULT_BEAM_WIDTH.
+ beam_prune_logp (`int`, *optional*):
+ A threshold to prune beams with log-probs less than best_beam_logp + beam_prune_logp. The value should
+ be <= 0. Defaults to pyctcdecode's DEFAULT_PRUNE_LOGP.
+ token_min_logp (`int`, *optional*):
+ Tokens with log-probs below token_min_logp are skipped unless they are have the maximum log-prob for an
+ utterance. Defaults to pyctcdecode's DEFAULT_MIN_TOKEN_LOGP.
+ hotwords (`List[str]`, *optional*):
+ List of words with extra importance which can be missing from the LM's vocabulary, e.g. ["huggingface"]
+ hotword_weight (`int`, *optional*):
+ Weight multiplier that boosts hotword scores. Defaults to pyctcdecode's DEFAULT_HOTWORD_WEIGHT.
+ alpha (`float`, *optional*):
+ Weight for language model during shallow fusion
+ beta (`float`, *optional*):
+ Weight for length score adjustment of during scoring
+ unk_score_offset (`float`, *optional*):
+ Amount of log score offset for unknown tokens
+ lm_score_boundary (`bool`, *optional*):
+ Whether to have kenlm respect boundaries when scoring
+ output_word_offsets (`bool`, *optional*, defaults to `False`):
+ Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate
+ and model downsampling rate to compute the time-stamps of transcribed words.
+ n_best (`int`, *optional*, defaults to `1`):
+ Number of best hypotheses to return. If `n_best` is greater than 1, the returned `text` will be a list
+ of strings, `logit_score` will be a list of floats, and `lm_score` will be a list of floats, where the
+ length of these lists will correspond to the number of returned hypotheses. The value should be >= 1.
+
+
+
+ Please take a look at the example below to better understand how to make use of `output_word_offsets`.
+
+
+
+ Returns:
+ [`~models.wav2vec2.Wav2Vec2DecoderWithLMOutput`].
+
+ Example:
+
+ ```python
+ >>> # Let's see how to retrieve time steps for a model
+ >>> from transformers import AutoTokenizer, AutoProcessor, AutoModelForCTC
+ >>> from datasets import load_dataset
+ >>> import datasets
+ >>> import torch
+
+ >>> # import model, feature extractor, tokenizer
+ >>> model = AutoModelForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm")
+ >>> processor = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm")
+
+ >>> # load first sample of English common_voice
+ >>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True)
+ >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
+ >>> dataset_iter = iter(dataset)
+ >>> sample = next(dataset_iter)
+
+ >>> # forward sample through model to get greedily predicted transcription ids
+ >>> input_values = processor(sample["audio"]["array"], return_tensors="pt").input_values
+ >>> with torch.no_grad():
+ ... logits = model(input_values).logits[0].cpu().numpy()
+
+ >>> # retrieve word stamps (analogous commands for `output_char_offsets`)
+ >>> outputs = processor.decode(logits, output_word_offsets=True)
+ >>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate
+ >>> time_offset = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
+
+ >>> word_offsets = [
+ ... {
+ ... "word": d["word"],
+ ... "start_time": round(d["start_offset"] * time_offset, 2),
+ ... "end_time": round(d["end_offset"] * time_offset, 2),
+ ... }
+ ... for d in outputs.word_offsets
+ ... ]
+ >>> # compare word offsets with audio `en_train_0/common_voice_en_19121553.mp3` online on the dataset viewer:
+ >>> # https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/en
+ >>> word_offsets[:4]
+ [{'word': 'THE', 'start_time': 0.68, 'end_time': 0.78}, {'word': 'TRACK', 'start_time': 0.88, 'end_time': 1.1}, {'word': 'APPEARS', 'start_time': 1.18, 'end_time': 1.66}, {'word': 'ON', 'start_time': 1.86, 'end_time': 1.92}]
+ ```"""
+
+ from pyctcdecode.constants import (
+ DEFAULT_BEAM_WIDTH,
+ DEFAULT_HOTWORD_WEIGHT,
+ DEFAULT_MIN_TOKEN_LOGP,
+ DEFAULT_PRUNE_LOGP,
+ )
+
+ # set defaults
+ beam_width = beam_width if beam_width is not None else DEFAULT_BEAM_WIDTH
+ beam_prune_logp = beam_prune_logp if beam_prune_logp is not None else DEFAULT_PRUNE_LOGP
+ token_min_logp = token_min_logp if token_min_logp is not None else DEFAULT_MIN_TOKEN_LOGP
+ hotword_weight = hotword_weight if hotword_weight is not None else DEFAULT_HOTWORD_WEIGHT
+
+ # reset params at every forward call. It's just a `set` method in pyctcdecode
+ self.decoder.reset_params(
+ alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary
+ )
+
+ # pyctcdecode
+ decoded_beams = self.decoder.decode_beams(
+ logits,
+ beam_width=beam_width,
+ beam_prune_logp=beam_prune_logp,
+ token_min_logp=token_min_logp,
+ hotwords=hotwords,
+ hotword_weight=hotword_weight,
+ )
+
+ word_offsets = None
+ if output_word_offsets:
+ word_offsets = [
+ [
+ {"word": word, "start_offset": start_offset, "end_offset": end_offset}
+ for word, (start_offset, end_offset) in beam[2]
+ ]
+ for beam in decoded_beams
+ ]
+ logit_scores = [beam[-2] for beam in decoded_beams]
+
+ lm_scores = [beam[-1] for beam in decoded_beams]
+
+ hypotheses = [beam[0] for beam in decoded_beams]
+
+ if n_best > len(decoded_beams):
+ logger.info(
+ "N-best size is larger than the number of generated hypotheses, all hypotheses will be returned."
+ )
+
+ if n_best == 1:
+ return Wav2Vec2DecoderWithLMOutput(
+ text=hypotheses[0],
+ logit_score=logit_scores[0],
+ lm_score=lm_scores[0],
+ word_offsets=word_offsets[0] if word_offsets is not None else None,
+ )
+ else:
+ return Wav2Vec2DecoderWithLMOutput(
+ text=hypotheses[:n_best],
+ logit_score=logit_scores[:n_best],
+ lm_score=lm_scores[:n_best],
+ word_offsets=word_offsets[:n_best] if word_offsets is not None else None,
+ )
+
+ @contextmanager
+ def as_target_processor(self):
+ """
+ Temporarily sets the processor for processing the target. Useful for encoding the labels when fine-tuning
+ Wav2Vec2.
+ """
+ warnings.warn(
+ "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
+ "labels by using the argument `text` of the regular `__call__` method (either in the same call as "
+ "your audio inputs, or in a separate call."
+ )
+ self._in_target_context_manager = True
+ self.current_processor = self.tokenizer
+ yield
+ self.current_processor = self.feature_extractor
+ self._in_target_context_manager = False