Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- lm-evaluation/build/lib/lm_eval/api/__init__.py +0 -0
- lm-evaluation/build/lib/lm_eval/api/filter.py +56 -0
- lm-evaluation/build/lib/lm_eval/api/instance.py +38 -0
- lm-evaluation/build/lib/lm_eval/api/metrics.py +509 -0
- lm-evaluation/build/lib/lm_eval/api/model.py +346 -0
- lm-evaluation/build/lib/lm_eval/api/registry.py +172 -0
- lm-evaluation/build/lib/lm_eval/api/samplers.py +114 -0
- lm-evaluation/build/lib/lm_eval/api/task.py +1498 -0
- lm-evaluation/build/lib/lm_eval/decontamination/decontaminate.py +166 -0
- lm-evaluation/build/lib/lm_eval/decontamination/janitor.py +328 -0
- lm-evaluation/build/lib/lm_eval/filters/__init__.py +48 -0
- lm-evaluation/build/lib/lm_eval/filters/decontamination.py +24 -0
- lm-evaluation/build/lib/lm_eval/filters/extraction.py +183 -0
- lm-evaluation/build/lib/lm_eval/filters/selection.py +52 -0
- lm-evaluation/build/lib/lm_eval/filters/transformation.py +52 -0
- lm-evaluation/build/lib/lm_eval/models/__init__.py +26 -0
- lm-evaluation/build/lib/lm_eval/models/anthropic_llms.py +360 -0
- lm-evaluation/build/lib/lm_eval/models/dummy.py +41 -0
- lm-evaluation/build/lib/lm_eval/models/gguf.py +130 -0
- lm-evaluation/build/lib/lm_eval/models/huggingface.py +1243 -0
- lm-evaluation/build/lib/lm_eval/models/mamba_lm.py +126 -0
- lm-evaluation/build/lib/lm_eval/models/nemo_lm.py +537 -0
- lm-evaluation/build/lib/lm_eval/models/neuron_optimum.py +736 -0
- lm-evaluation/build/lib/lm_eval/models/openai_completions.py +481 -0
- lm-evaluation/build/lib/lm_eval/models/optimum_lm.py +69 -0
- lm-evaluation/build/lib/lm_eval/models/textsynth.py +171 -0
- lm-evaluation/build/lib/lm_eval/models/utils.py +615 -0
- lm-evaluation/build/lib/lm_eval/models/vllm_causallms.py +487 -0
- lm-evaluation/build/lib/lm_eval/prompts/__init__.py +126 -0
- lm-evaluation/build/lib/lm_eval/tasks/arc/README.md +54 -0
- lm-evaluation/build/lib/lm_eval/tasks/arc/arc_challenge.yaml +3 -0
- lm-evaluation/build/lib/lm_eval/tasks/arc/arc_easy.yaml +23 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_proficiency/README.md +48 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_proficiency/eus_proficiency.yaml +16 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_reading/README.md +48 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_reading/eus_reading.yaml +16 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_reading/utils.py +41 -0
- lm-evaluation/build/lib/lm_eval/tasks/haerae/README.md +49 -0
- lm-evaluation/build/lib/lm_eval/tasks/haerae/_default_haerae_yaml +17 -0
- lm-evaluation/build/lib/lm_eval/tasks/haerae/haerae_gk.yaml +3 -0
- lm-evaluation/build/lib/lm_eval/tasks/haerae/haerae_hi.yaml +3 -0
- lm-evaluation/build/lib/lm_eval/tasks/haerae/haerae_lw.yaml +3 -0
- lm-evaluation/build/lib/lm_eval/tasks/haerae/haerae_rw.yaml +3 -0
- lm-evaluation/build/lib/lm_eval/tasks/haerae/haerae_sn.yaml +3 -0
- lm-evaluation/build/lib/lm_eval/tasks/lambada_cloze/README.md +56 -0
- lm-evaluation/build/lib/lm_eval/tasks/lambada_cloze/lambada_openai_cloze.yaml +20 -0
- lm-evaluation/build/lib/lm_eval/tasks/lambada_cloze/lambada_standard_cloze.yaml +21 -0
- lm-evaluation/build/lib/lm_eval/tasks/logiqa/README.md +52 -0
- lm-evaluation/build/lib/lm_eval/tasks/logiqa/logiqa.yaml +23 -0
- lm-evaluation/build/lib/lm_eval/tasks/logiqa/utils_logiqa.py +24 -0
lm-evaluation/build/lib/lm_eval/api/__init__.py
ADDED
File without changes
|
lm-evaluation/build/lib/lm_eval/api/filter.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Callable, Iterable, List, Union
|
4 |
+
|
5 |
+
from lm_eval.api.instance import Instance
|
6 |
+
|
7 |
+
|
8 |
+
class Filter(ABC):
|
9 |
+
"""
|
10 |
+
Filter classes operate on a per-task level.
|
11 |
+
They take all model outputs (`instance.resps` for all `task.instances`)
|
12 |
+
across all instances of a task, and perform operations.
|
13 |
+
In a single run, one can configure any number of separate filters or lists of filters.
|
14 |
+
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self, **kwargs) -> None:
|
18 |
+
"""
|
19 |
+
Can define custom behavior here, if an individual instantiation of a Filter class should have state.
|
20 |
+
"""
|
21 |
+
|
22 |
+
@abstractmethod
|
23 |
+
def apply(self, resps: Union[List, Iterable], docs: List[dict]) -> Iterable:
|
24 |
+
"""
|
25 |
+
Defines the operation to perform on a list of the `inst.resps` properties of `Instance` objects.
|
26 |
+
Should return the list of (filtered) response lists *in the same order as they were input*, e.g.
|
27 |
+
if pass in [<inst.resps for instance 0>, <inst.resps for instance 1>] should return
|
28 |
+
[<filtered resps for instance 0>, <filtered resps for instance 1>]
|
29 |
+
"""
|
30 |
+
return resps
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class FilterEnsemble:
|
35 |
+
"""
|
36 |
+
FilterEnsemble creates a pipeline applying multiple filters.
|
37 |
+
Its intended usage is to stack multiple post-processing steps in order.
|
38 |
+
`task.apply_filters` should use a list of FilterEnsemble classes that it stores, to apply each
|
39 |
+
pipeline separately.
|
40 |
+
"""
|
41 |
+
|
42 |
+
name: str
|
43 |
+
filters: List[Callable[[], Filter]]
|
44 |
+
|
45 |
+
def apply(self, instances: List[Instance]) -> None:
|
46 |
+
resps, docs = zip(*((inst.resps, inst.doc) for inst in instances))
|
47 |
+
resps, docs = list(resps), list(docs)
|
48 |
+
|
49 |
+
for f in self.filters:
|
50 |
+
# apply filters in sequence
|
51 |
+
resps = f().apply(resps, docs)
|
52 |
+
|
53 |
+
# add the end results after filtering to filtered_requests of their respective source instances.
|
54 |
+
# has key `self.name`: each FilterEnsemble applied in a given run should use a different name.
|
55 |
+
for inst, resp in zip(instances, resps):
|
56 |
+
inst.filtered_resps[self.name] = resp
|
lm-evaluation/build/lib/lm_eval/api/instance.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from typing import Literal, Optional, Tuple
|
3 |
+
|
4 |
+
|
5 |
+
OutputType = Literal[
|
6 |
+
"loglikelihood", "loglikelihood_rolling", "generate_until", "multiple_choice"
|
7 |
+
]
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class Instance:
|
12 |
+
request_type: OutputType
|
13 |
+
doc: dict
|
14 |
+
arguments: tuple
|
15 |
+
idx: int
|
16 |
+
metadata: Tuple[Optional[str], Optional[int], Optional[int]] = field(
|
17 |
+
default_factory=lambda: (None, None, None)
|
18 |
+
)
|
19 |
+
resps: list = field(default_factory=list)
|
20 |
+
filtered_resps: dict = field(default_factory=dict)
|
21 |
+
|
22 |
+
# initialized after init
|
23 |
+
task_name: Optional[str] = None
|
24 |
+
doc_id: Optional[int] = None
|
25 |
+
repeats: Optional[int] = None
|
26 |
+
|
27 |
+
def __post_init__(self) -> None:
|
28 |
+
# unpack metadata field
|
29 |
+
self.task_name, self.doc_id, self.repeats = self.metadata
|
30 |
+
|
31 |
+
@property
|
32 |
+
def args(self):
|
33 |
+
"""
|
34 |
+
Returns (string,) where `string` is the string to calculate loglikelihood over
|
35 |
+
"""
|
36 |
+
return (
|
37 |
+
self.arguments if isinstance(self.arguments, tuple) else (self.arguments,)
|
38 |
+
)
|
lm-evaluation/build/lib/lm_eval/api/metrics.py
ADDED
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
from collections.abc import Iterable
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
import evaluate as hf_evaluate
|
8 |
+
import numpy as np
|
9 |
+
import sacrebleu
|
10 |
+
import sklearn.metrics
|
11 |
+
|
12 |
+
from lm_eval.api.registry import register_aggregation, register_metric
|
13 |
+
|
14 |
+
|
15 |
+
eval_logger = logging.getLogger("lm-eval")
|
16 |
+
|
17 |
+
|
18 |
+
# Register Aggregations First
|
19 |
+
@register_aggregation("bypass")
|
20 |
+
def bypass_agg(arr):
|
21 |
+
return 999
|
22 |
+
|
23 |
+
|
24 |
+
@register_aggregation("mean")
|
25 |
+
def mean(arr):
|
26 |
+
return sum(arr) / len(arr)
|
27 |
+
|
28 |
+
|
29 |
+
@register_aggregation("median")
|
30 |
+
def median(arr):
|
31 |
+
return arr[len(arr) // 2]
|
32 |
+
|
33 |
+
|
34 |
+
# Certain metrics must be calculated across all documents in a benchmark.
|
35 |
+
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
|
36 |
+
@register_aggregation("perplexity")
|
37 |
+
def perplexity(items):
|
38 |
+
return math.exp(-mean(items))
|
39 |
+
|
40 |
+
|
41 |
+
@register_aggregation("weighted_perplexity")
|
42 |
+
def weighted_perplexity(items):
|
43 |
+
return math.exp(-weighted_mean(items))
|
44 |
+
|
45 |
+
|
46 |
+
@register_aggregation("bits_per_byte")
|
47 |
+
def bits_per_byte(items):
|
48 |
+
return -weighted_mean(items) / math.log(2)
|
49 |
+
|
50 |
+
|
51 |
+
@register_aggregation("f1")
|
52 |
+
def f1_score(items):
|
53 |
+
unzipped_list = list(zip(*items))
|
54 |
+
golds = unzipped_list[0]
|
55 |
+
preds = unzipped_list[1]
|
56 |
+
fscore = sklearn.metrics.f1_score(golds, preds)
|
57 |
+
|
58 |
+
return np.max(fscore)
|
59 |
+
|
60 |
+
|
61 |
+
@register_aggregation("matthews_corrcoef")
|
62 |
+
def matthews_corrcoef(items):
|
63 |
+
unzipped_list = list(zip(*items))
|
64 |
+
golds = unzipped_list[0]
|
65 |
+
preds = unzipped_list[1]
|
66 |
+
# print(preds)
|
67 |
+
return sklearn.metrics.matthews_corrcoef(golds, preds)
|
68 |
+
|
69 |
+
|
70 |
+
@register_aggregation("bleu")
|
71 |
+
def bleu(items):
|
72 |
+
"""The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
|
73 |
+
for evaluating a generated sentence to a reference sentence. It counts matching
|
74 |
+
n-grams in the candidate translation to n-grams in the reference text, where
|
75 |
+
1-gram or unigram would be each token and a bigram comparison would be each
|
76 |
+
word pair. The comparison is made regardless of word order
|
77 |
+
Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
|
78 |
+
Paper: https://www.aclweb.org/anthology/P02-1040/
|
79 |
+
|
80 |
+
Higher is better
|
81 |
+
"""
|
82 |
+
refs = list(zip(*items))[0]
|
83 |
+
preds = list(zip(*items))[1]
|
84 |
+
refs, preds = _sacreformat(refs, preds)
|
85 |
+
return sacrebleu.corpus_bleu(preds, refs).score
|
86 |
+
|
87 |
+
|
88 |
+
@register_aggregation("chrf")
|
89 |
+
def chrf(items):
|
90 |
+
"""chrF++ is a tool for automatic evaluation of machine translation output
|
91 |
+
based on character n-gram precision and recall enhanced with word n-grams.
|
92 |
+
Source: https://github.com/m-popovic/chrF
|
93 |
+
Paper: https://www.aclweb.org/anthology/W15-3049.pdf
|
94 |
+
|
95 |
+
Higher is better # TODO I think
|
96 |
+
"""
|
97 |
+
refs = list(zip(*items))[0]
|
98 |
+
preds = list(zip(*items))[1]
|
99 |
+
refs, preds = _sacreformat(refs, preds)
|
100 |
+
return sacrebleu.corpus_chrf(preds, refs).score
|
101 |
+
|
102 |
+
|
103 |
+
@register_aggregation("ter")
|
104 |
+
def ter(items):
|
105 |
+
"""Translation Error Rate is an error metric for machine translation that
|
106 |
+
measures the number of edits required to change a system output into one
|
107 |
+
of the references
|
108 |
+
Source: http://www.cs.umd.edu/~snover/tercom/
|
109 |
+
Paper: http://mt-archive.info/AMTA-2006-Snover.pdf
|
110 |
+
|
111 |
+
Lower is better
|
112 |
+
"""
|
113 |
+
refs = list(zip(*items))[0]
|
114 |
+
preds = list(zip(*items))[1]
|
115 |
+
refs, preds = _sacreformat(refs, preds)
|
116 |
+
return sacrebleu.corpus_ter(preds, refs).score
|
117 |
+
|
118 |
+
|
119 |
+
@register_aggregation("brier_score")
|
120 |
+
def brier_score(items): # This is a passthrough function
|
121 |
+
gold, predictions = list(zip(*items))
|
122 |
+
gold = list(gold)
|
123 |
+
gold_one_hot = np.eye(np.max(gold) + 1)[gold]
|
124 |
+
predictions = list(zip(*items))[1]
|
125 |
+
return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))
|
126 |
+
|
127 |
+
|
128 |
+
@register_metric(
|
129 |
+
metric="brier_score",
|
130 |
+
higher_is_better=False,
|
131 |
+
output_type=["multiple_choice"],
|
132 |
+
aggregation="brier_score",
|
133 |
+
)
|
134 |
+
def brier_score_fn(items): # This is a passthrough function
|
135 |
+
return items
|
136 |
+
|
137 |
+
|
138 |
+
@register_metric(
|
139 |
+
metric="acc",
|
140 |
+
higher_is_better=True,
|
141 |
+
output_type=["loglikelihood", "multiple_choice"],
|
142 |
+
aggregation="mean",
|
143 |
+
)
|
144 |
+
def acc_fn(items): # This is a passthrough function
|
145 |
+
return items
|
146 |
+
|
147 |
+
|
148 |
+
@register_metric(
|
149 |
+
metric="acc_norm",
|
150 |
+
higher_is_better=True,
|
151 |
+
output_type=["loglikelihood", "multiple_choice"],
|
152 |
+
aggregation="mean",
|
153 |
+
)
|
154 |
+
def acc_norm_fn(items): # This is a passthrough function
|
155 |
+
return items
|
156 |
+
|
157 |
+
|
158 |
+
@register_metric(
|
159 |
+
metric="acc_mutual_info",
|
160 |
+
higher_is_better=True,
|
161 |
+
output_type="multiple_choice",
|
162 |
+
aggregation="mean",
|
163 |
+
)
|
164 |
+
def acc_mutual_info_fn(items): # This is a passthrough function
|
165 |
+
return items
|
166 |
+
|
167 |
+
|
168 |
+
exact_match = hf_evaluate.load("exact_match")
|
169 |
+
|
170 |
+
|
171 |
+
@register_metric(
|
172 |
+
metric="exact_match",
|
173 |
+
higher_is_better=True,
|
174 |
+
output_type="generate_until",
|
175 |
+
aggregation="mean",
|
176 |
+
)
|
177 |
+
def exact_match_fn(**kwargs):
|
178 |
+
return exact_match.compute(**kwargs)
|
179 |
+
|
180 |
+
|
181 |
+
@register_metric(
|
182 |
+
metric="perplexity",
|
183 |
+
higher_is_better=False,
|
184 |
+
output_type="loglikelihood",
|
185 |
+
aggregation="perplexity",
|
186 |
+
)
|
187 |
+
def perplexity_fn(items): # This is a passthrough function
|
188 |
+
return items
|
189 |
+
|
190 |
+
|
191 |
+
@register_metric(
|
192 |
+
metric="word_perplexity",
|
193 |
+
higher_is_better=False,
|
194 |
+
output_type="loglikelihood_rolling",
|
195 |
+
aggregation="weighted_perplexity",
|
196 |
+
)
|
197 |
+
def word_perplexity_fn(items): # This is a passthrough function
|
198 |
+
return items
|
199 |
+
|
200 |
+
|
201 |
+
@register_metric(
|
202 |
+
metric="byte_perplexity",
|
203 |
+
higher_is_better=False,
|
204 |
+
output_type="loglikelihood_rolling",
|
205 |
+
aggregation="weighted_perplexity",
|
206 |
+
)
|
207 |
+
def byte_perplexity_fn(items): # This is a passthrough function
|
208 |
+
return items
|
209 |
+
|
210 |
+
|
211 |
+
@register_metric(
|
212 |
+
metric="bits_per_byte",
|
213 |
+
higher_is_better=False,
|
214 |
+
output_type="loglikelihood_rolling",
|
215 |
+
aggregation="bits_per_byte",
|
216 |
+
)
|
217 |
+
def bits_per_byte_fn(items): # This is a passthrough function
|
218 |
+
return items
|
219 |
+
|
220 |
+
|
221 |
+
def pop_stddev(arr):
|
222 |
+
mu = mean(arr)
|
223 |
+
return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))
|
224 |
+
|
225 |
+
|
226 |
+
def sample_stddev(arr):
|
227 |
+
mu = mean(arr)
|
228 |
+
return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))
|
229 |
+
|
230 |
+
|
231 |
+
def mean_stderr(arr):
|
232 |
+
return sample_stddev(arr) / math.sqrt(len(arr))
|
233 |
+
|
234 |
+
|
235 |
+
@register_metric(
|
236 |
+
metric="bypass",
|
237 |
+
higher_is_better=True,
|
238 |
+
output_type=["loglikelihood", "multiple_choice", "generate_until"],
|
239 |
+
aggregation="bypass",
|
240 |
+
)
|
241 |
+
def bypass(items):
|
242 |
+
return None
|
243 |
+
|
244 |
+
|
245 |
+
@register_metric(
|
246 |
+
metric="mcc",
|
247 |
+
higher_is_better=True,
|
248 |
+
output_type="multiple_choice",
|
249 |
+
aggregation="matthews_corrcoef",
|
250 |
+
)
|
251 |
+
def mcc_fn(items): # This is a passthrough function
|
252 |
+
return items
|
253 |
+
|
254 |
+
|
255 |
+
@register_metric(
|
256 |
+
metric="f1",
|
257 |
+
higher_is_better=True,
|
258 |
+
output_type="multiple_choice",
|
259 |
+
aggregation="f1",
|
260 |
+
)
|
261 |
+
def f1_fn(items): # This is a passthrough function
|
262 |
+
return items
|
263 |
+
|
264 |
+
|
265 |
+
@register_metric(
|
266 |
+
metric="bleu",
|
267 |
+
higher_is_better=True,
|
268 |
+
output_type="generate_until",
|
269 |
+
aggregation="bleu",
|
270 |
+
)
|
271 |
+
def bleu_fn(items): # This is a passthrough function
|
272 |
+
return items
|
273 |
+
|
274 |
+
|
275 |
+
@register_metric(
|
276 |
+
metric="chrf",
|
277 |
+
higher_is_better=True,
|
278 |
+
output_type="generate_until",
|
279 |
+
aggregation="chrf",
|
280 |
+
)
|
281 |
+
def chrf_fn(items): # This is a passthrough function
|
282 |
+
return items
|
283 |
+
|
284 |
+
|
285 |
+
@register_metric(
|
286 |
+
metric="ter",
|
287 |
+
higher_is_better=True,
|
288 |
+
output_type="generate_until",
|
289 |
+
aggregation="ter",
|
290 |
+
)
|
291 |
+
def ter_fn(items): # This is a passthrough function
|
292 |
+
return items
|
293 |
+
|
294 |
+
|
295 |
+
@register_metric(
|
296 |
+
metric="acc_all",
|
297 |
+
higher_is_better=True,
|
298 |
+
output_type="loglikelihood",
|
299 |
+
aggregation="mean",
|
300 |
+
)
|
301 |
+
def acc_all(items):
|
302 |
+
# Only count as correct if all answers are labeled correctly for each question
|
303 |
+
question_scoring_dict = {}
|
304 |
+
preds = list(zip(*items))[0]
|
305 |
+
docs = list(zip(*items))[1]
|
306 |
+
|
307 |
+
for doc, pred in zip(docs, preds):
|
308 |
+
paragraph_id = doc["idx"]["paragraph"]
|
309 |
+
question_id = doc["idx"]["question"]
|
310 |
+
if (paragraph_id, question_id) not in question_scoring_dict:
|
311 |
+
question_scoring_dict[(paragraph_id, question_id)] = []
|
312 |
+
|
313 |
+
gold_label = doc["label"] == 1
|
314 |
+
|
315 |
+
question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
|
316 |
+
acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
|
317 |
+
return acc
|
318 |
+
|
319 |
+
|
320 |
+
def acc_all_stderr(items):
|
321 |
+
# Only count as correct if all answers are labeled correctly for each question
|
322 |
+
question_scoring_dict = {}
|
323 |
+
preds = list(zip(*items))[0]
|
324 |
+
docs = list(zip(*items))[1]
|
325 |
+
|
326 |
+
for doc, pred in zip(docs, preds):
|
327 |
+
question_id = doc["idx"]["question"]
|
328 |
+
if question_id not in question_scoring_dict:
|
329 |
+
question_scoring_dict[question_id] = []
|
330 |
+
|
331 |
+
gold_label = doc["label"] == 1
|
332 |
+
question_scoring_dict[question_id].append(gold_label == pred)
|
333 |
+
|
334 |
+
acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
|
335 |
+
return acc
|
336 |
+
|
337 |
+
|
338 |
+
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
|
339 |
+
"""Compute max metric between prediction and each ground truth."""
|
340 |
+
scores_for_ground_truths = []
|
341 |
+
for ground_truth in ground_truths:
|
342 |
+
score = metric_fn(prediction, ground_truth)
|
343 |
+
scores_for_ground_truths.append(score)
|
344 |
+
return max(scores_for_ground_truths)
|
345 |
+
|
346 |
+
|
347 |
+
def weighted_mean(items):
|
348 |
+
a, b = zip(*items)
|
349 |
+
return sum(a) / sum(b)
|
350 |
+
|
351 |
+
|
352 |
+
def is_non_str_iterable(obj):
|
353 |
+
return isinstance(obj, Iterable) and not isinstance(obj, str)
|
354 |
+
|
355 |
+
|
356 |
+
def _sacreformat(refs, preds):
|
357 |
+
"""Format refs and preds for sacrebleu corpus calculation. It is very particular"""
|
358 |
+
# Sacrebleu expects (List[str], List[List[str])
|
359 |
+
# e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])
|
360 |
+
|
361 |
+
# Note [ref1_stream] is the first reference for each pred.
|
362 |
+
# So lists are size N and (M, N) for N preds and M possible refs for each pred
|
363 |
+
# This is a different order of dimensions that I would expect
|
364 |
+
|
365 |
+
# We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
|
366 |
+
# Must become List[List[str]] with the inner list corresponding to preds
|
367 |
+
if not is_non_str_iterable(refs):
|
368 |
+
refs = list(refs)
|
369 |
+
if not is_non_str_iterable(refs[0]):
|
370 |
+
refs = [[ref] for ref in refs]
|
371 |
+
refs = list(zip(*refs))
|
372 |
+
# Note the number of refs in each ref list much match the number of preds
|
373 |
+
|
374 |
+
# We expect preds to be List[str] or List[List[str]]. Must become List[str]
|
375 |
+
if not is_non_str_iterable(preds):
|
376 |
+
preds = list(preds)
|
377 |
+
if is_non_str_iterable(preds[0]):
|
378 |
+
assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
|
379 |
+
preds = [pred[0] for pred in preds]
|
380 |
+
|
381 |
+
return refs, preds
|
382 |
+
|
383 |
+
|
384 |
+
# stderr stuff
|
385 |
+
|
386 |
+
|
387 |
+
class _bootstrap_internal:
|
388 |
+
def __init__(self, f, n) -> None:
|
389 |
+
self.f = f
|
390 |
+
self.n = n
|
391 |
+
|
392 |
+
def __call__(self, v):
|
393 |
+
i, xs = v
|
394 |
+
rnd = random.Random()
|
395 |
+
rnd.seed(i)
|
396 |
+
res = []
|
397 |
+
for _ in range(self.n):
|
398 |
+
res.append(self.f(rnd.choices(xs, k=len(xs))))
|
399 |
+
return res
|
400 |
+
|
401 |
+
|
402 |
+
def bootstrap_stderr(f, xs, iters):
|
403 |
+
import multiprocessing as mp
|
404 |
+
|
405 |
+
pool = mp.Pool(mp.cpu_count())
|
406 |
+
# this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
|
407 |
+
# equivalent to stderr calculated without Bessel's correction in the stddev.
|
408 |
+
# Unfortunately, I haven't been able to figure out what the right correction is
|
409 |
+
# to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
|
410 |
+
# that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
|
411 |
+
# Thankfully, shouldn't matter because our samples are pretty big usually anyways
|
412 |
+
res = []
|
413 |
+
chunk_size = min(1000, iters)
|
414 |
+
from tqdm import tqdm
|
415 |
+
|
416 |
+
print("bootstrapping for stddev:", f.__name__)
|
417 |
+
for bootstrap in tqdm(
|
418 |
+
pool.imap(
|
419 |
+
_bootstrap_internal(f, chunk_size),
|
420 |
+
[(i, xs) for i in range(iters // chunk_size)],
|
421 |
+
),
|
422 |
+
total=iters // chunk_size,
|
423 |
+
):
|
424 |
+
# sample w replacement
|
425 |
+
res.extend(bootstrap)
|
426 |
+
|
427 |
+
pool.close()
|
428 |
+
return sample_stddev(res)
|
429 |
+
|
430 |
+
|
431 |
+
def stderr_for_metric(metric, bootstrap_iters):
|
432 |
+
bootstrappable = [
|
433 |
+
median,
|
434 |
+
matthews_corrcoef,
|
435 |
+
f1_score,
|
436 |
+
perplexity,
|
437 |
+
bleu,
|
438 |
+
chrf,
|
439 |
+
ter,
|
440 |
+
]
|
441 |
+
|
442 |
+
if metric in bootstrappable:
|
443 |
+
return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
|
444 |
+
|
445 |
+
stderr = {mean: mean_stderr, acc_all: acc_all_stderr}
|
446 |
+
|
447 |
+
return stderr.get(metric, None)
|
448 |
+
|
449 |
+
|
450 |
+
def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
|
451 |
+
# Used to aggregate bootstrapped stderrs across subtasks in a group,
|
452 |
+
# when we are weighting by the size of each subtask.
|
453 |
+
#
|
454 |
+
|
455 |
+
assert len(stderrs) == len(sizes)
|
456 |
+
|
457 |
+
# formula source: https://en.wikipedia.org/wiki/Pooled_variance
|
458 |
+
# and: https://stats.stackexchange.com/a/4841331
|
459 |
+
# this empirically seems to match running `stderr_for_metric` on all instances
|
460 |
+
# from the subtasks concatenated with each other.
|
461 |
+
pooled_sample_var = (
|
462 |
+
sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
|
463 |
+
) / (sum(sizes) - len(sizes))
|
464 |
+
|
465 |
+
return np.sqrt(pooled_sample_var / sum(sizes))
|
466 |
+
|
467 |
+
|
468 |
+
def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
|
469 |
+
assert (
|
470 |
+
metrics is not None
|
471 |
+
), "Need to pass a list of each subtask's metric for this stderr aggregation"
|
472 |
+
assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)
|
473 |
+
|
474 |
+
# See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
|
475 |
+
# This formula depends on sample means.
|
476 |
+
# removed because it seems to give erroneously huge stderrs for groupings of tasks
|
477 |
+
# and does not seem to match up with bootstrap-calculated stderrs for groups.
|
478 |
+
|
479 |
+
### don't use this unless a statistician has told you it's the right thing to do ###
|
480 |
+
|
481 |
+
# accumulators: we'll aggregate pairwise N - 1 times
|
482 |
+
variance = stderrs[0] ** 2
|
483 |
+
curr_size = sizes[0]
|
484 |
+
curr_score = metrics[0]
|
485 |
+
|
486 |
+
for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
|
487 |
+
curr_score = ((curr_score * curr_size) + (score * size)) / (
|
488 |
+
curr_size + size
|
489 |
+
) # NOTE: this assumes our aggregation fn is "mean"
|
490 |
+
|
491 |
+
variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
|
492 |
+
curr_size + size - 1
|
493 |
+
) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
|
494 |
+
curr_score - score
|
495 |
+
) ** 2
|
496 |
+
|
497 |
+
return np.sqrt(variance)
|
498 |
+
|
499 |
+
|
500 |
+
def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
|
501 |
+
# A helper function that is used to aggregate
|
502 |
+
# subtask scores cross-task.
|
503 |
+
# TODO: does not hold for non-mean aggregations
|
504 |
+
if not weight_by_size:
|
505 |
+
sizes = [1] * len(sizes)
|
506 |
+
|
507 |
+
assert len(metrics) == len(sizes)
|
508 |
+
|
509 |
+
return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)
|
lm-evaluation/build/lib/lm_eval/api/model.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
import hashlib
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
from typing import List, Optional, Tuple, Type, TypeVar
|
7 |
+
|
8 |
+
import transformers
|
9 |
+
from sqlitedict import SqliteDict
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from lm_eval import utils
|
13 |
+
|
14 |
+
|
15 |
+
eval_logger = logging.getLogger("lm-eval")
|
16 |
+
|
17 |
+
T = TypeVar("T", bound="LM")
|
18 |
+
|
19 |
+
|
20 |
+
class LM(abc.ABC):
|
21 |
+
def __init__(self) -> None:
|
22 |
+
"""Defines the interface that should be implemented by all LM subclasses.
|
23 |
+
LMs are assumed to take text (strings) as input and yield strings as output
|
24 |
+
(inputs/outputs should be tokenization-agnostic.)
|
25 |
+
|
26 |
+
"""
|
27 |
+
# set rank and world size to a single process, by default.
|
28 |
+
self._rank = 0
|
29 |
+
self._world_size = 1
|
30 |
+
self.cache_hook = CacheHook(None)
|
31 |
+
|
32 |
+
@abc.abstractmethod
|
33 |
+
def loglikelihood(self, requests) -> List[Tuple[float, bool]]:
|
34 |
+
"""Compute log-likelihood of generating a continuation from a context.
|
35 |
+
Downstream tasks should attempt to use loglikelihood instead of other
|
36 |
+
LM calls whenever possible.
|
37 |
+
|
38 |
+
:param requests: list[Instance]
|
39 |
+
A list of Instance objects, with property `args` which returns a tuple (context, continuation).
|
40 |
+
`context: str`
|
41 |
+
Context string. Implementations of LM must be able to handle an
|
42 |
+
empty context string.
|
43 |
+
`continuation: str`
|
44 |
+
The continuation over which log likelihood will be calculated. If
|
45 |
+
there is a word boundary, the space should be in the continuation.
|
46 |
+
For example, context="hello" continuation=" world" is correct.
|
47 |
+
|
48 |
+
:return: list[tuple[float, bool]]
|
49 |
+
A list of pairs (logprob, isgreedy)
|
50 |
+
`logprob: float`
|
51 |
+
The log probability of `continuation`.
|
52 |
+
`isgreedy`:
|
53 |
+
Whether `continuation` would be generated by greedy sampling from `context`.
|
54 |
+
"""
|
55 |
+
pass
|
56 |
+
|
57 |
+
@abc.abstractmethod
|
58 |
+
def loglikelihood_rolling(self, requests) -> List[Tuple[float]]:
|
59 |
+
"""Compute full log-likelihood of a string, with no truncation, for perplexity computation
|
60 |
+
- We will use the full max context length of the model.
|
61 |
+
- For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
|
62 |
+
the max context length.
|
63 |
+
- IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
|
64 |
+
which may simply concatenate multiple documents together.
|
65 |
+
- IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
|
66 |
+
multiple chunks, the last input will still a full-sized context.
|
67 |
+
Example:
|
68 |
+
Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
|
69 |
+
Prefix: BOS/EOS
|
70 |
+
Max context length: 4
|
71 |
+
Resulting input/prediction pairs:
|
72 |
+
|
73 |
+
INPUT: BOS 0 1 2
|
74 |
+
PRED: 0 1 2 3
|
75 |
+
|
76 |
+
INPUT: 3 4 5 6
|
77 |
+
PRED: 4 5 6 7
|
78 |
+
|
79 |
+
INPUT: 5 6 7 8
|
80 |
+
PRED: 8 9
|
81 |
+
|
82 |
+
Observe that:
|
83 |
+
1. Each token is predicted exactly once
|
84 |
+
2. For the last pair, we provide the full context, but only score the last two tokens
|
85 |
+
|
86 |
+
:param requests: list[Instance]
|
87 |
+
A list of Instance objects with property `args` which returns a tuple (context,).
|
88 |
+
string: str
|
89 |
+
String for which we are computing overall loglikelihood
|
90 |
+
:return: list[tuple[float]]
|
91 |
+
A list of tuples (logprob,)
|
92 |
+
logprob: float
|
93 |
+
The log probability of `context` conditioned on the BOS/EOS token.
|
94 |
+
Can also be overridden for custom cases by `prefix_token_id`.
|
95 |
+
"""
|
96 |
+
pass
|
97 |
+
|
98 |
+
# TODO: Add an optional max length
|
99 |
+
@abc.abstractmethod
|
100 |
+
def generate_until(self, requests) -> List[str]:
|
101 |
+
"""Generate greedily until a stopping sequence
|
102 |
+
|
103 |
+
:param requests: list[Instance]
|
104 |
+
A list of Instance objects with property `args` which returns a tuple (context, until).
|
105 |
+
context: str
|
106 |
+
Context string
|
107 |
+
until: [str]
|
108 |
+
The string sequences to generate until. These string sequences
|
109 |
+
may each span across multiple tokens, or may be part of one token.
|
110 |
+
:return: list[str]
|
111 |
+
A list of strings continuation
|
112 |
+
continuation: str
|
113 |
+
The generated continuation.
|
114 |
+
"""
|
115 |
+
pass
|
116 |
+
|
117 |
+
@classmethod
|
118 |
+
def create_from_arg_string(
|
119 |
+
cls: Type[T], arg_string: str, additional_config: Optional[dict] = None
|
120 |
+
) -> T:
|
121 |
+
"""
|
122 |
+
Creates an instance of the LM class using the given argument string and additional config.
|
123 |
+
|
124 |
+
Parameters:
|
125 |
+
- arg_string: A string containing arguments in the format key1=value1,key2=value2.
|
126 |
+
- additional_config: Optional dictionary containing additional configuration parameters.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
- Instance of the LM class.
|
130 |
+
"""
|
131 |
+
additional_config = {} if additional_config is None else additional_config
|
132 |
+
args = utils.simple_parse_args_string(arg_string)
|
133 |
+
args2 = {k: v for k, v in additional_config.items() if v is not None}
|
134 |
+
return cls(**args, **args2)
|
135 |
+
|
136 |
+
@classmethod
|
137 |
+
def create_from_arg_obj(
|
138 |
+
cls: Type[T], arg_dict: dict, additional_config: Optional[dict] = None
|
139 |
+
) -> T:
|
140 |
+
"""
|
141 |
+
Creates an instance of the LM class using the given arg_obj
|
142 |
+
|
143 |
+
Parameters:
|
144 |
+
- arg_obj: A dict containing arguments in the format key1=value1,key2=value2.
|
145 |
+
- additional_config: Optional dictionary containing additional configuration parameters.
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
- Instance of the LM class.
|
149 |
+
"""
|
150 |
+
|
151 |
+
additional_config = {} if additional_config is None else additional_config
|
152 |
+
additional_config = {
|
153 |
+
k: v for k, v in additional_config.items() if v is not None
|
154 |
+
}
|
155 |
+
|
156 |
+
return cls(**arg_dict, **additional_config)
|
157 |
+
|
158 |
+
@property
|
159 |
+
def rank(self):
|
160 |
+
# used in the case of parallelism. Hardcoded to
|
161 |
+
# ensure no errors arise using API models which do
|
162 |
+
# not support multi-device parallelism nor expect it.
|
163 |
+
return self._rank
|
164 |
+
|
165 |
+
@property
|
166 |
+
def world_size(self):
|
167 |
+
# used in the case of parallelism. Hardcoded to
|
168 |
+
# ensure no errors arise using API models which do
|
169 |
+
# not support multi-device parallelism nor expect it.
|
170 |
+
return self._world_size
|
171 |
+
|
172 |
+
def set_cache_hook(self, cache_hook) -> None:
|
173 |
+
self.cache_hook = cache_hook
|
174 |
+
|
175 |
+
|
176 |
+
### SQLite-based caching of LM responses
|
177 |
+
def hash_args(attr, args):
|
178 |
+
dat = json.dumps([attr] + list(args))
|
179 |
+
return hashlib.sha256(dat.encode("utf-8")).hexdigest()
|
180 |
+
|
181 |
+
|
182 |
+
class CacheHook:
|
183 |
+
def __init__(self, cachinglm) -> None:
|
184 |
+
if cachinglm is None:
|
185 |
+
self.dbdict = None
|
186 |
+
return
|
187 |
+
|
188 |
+
self.dbdict = cachinglm.dbdict
|
189 |
+
|
190 |
+
def add_partial(self, attr, req, res) -> None:
|
191 |
+
if self.dbdict is None:
|
192 |
+
return
|
193 |
+
hsh = hash_args(attr, req)
|
194 |
+
self.dbdict[hsh] = res
|
195 |
+
|
196 |
+
|
197 |
+
class CachingLM:
|
198 |
+
def __init__(self, lm, cache_db) -> None:
|
199 |
+
"""LM wrapper that returns cached results if they exist, and uses the underlying LM if not.
|
200 |
+
|
201 |
+
:param lm: LM
|
202 |
+
Underlying LM
|
203 |
+
:param cache_db: str
|
204 |
+
Path to cache db
|
205 |
+
"""
|
206 |
+
self.lm = lm
|
207 |
+
self.cache_db = cache_db
|
208 |
+
if os.path.dirname(cache_db):
|
209 |
+
os.makedirs(os.path.dirname(cache_db), exist_ok=True)
|
210 |
+
self.dbdict = SqliteDict(cache_db, autocommit=True)
|
211 |
+
|
212 |
+
# add hook to lm
|
213 |
+
lm.set_cache_hook(self.get_cache_hook())
|
214 |
+
|
215 |
+
def __getattr__(self, attr):
|
216 |
+
lm_attr = getattr(self.lm, attr)
|
217 |
+
if not callable(lm_attr):
|
218 |
+
return lm_attr
|
219 |
+
|
220 |
+
def fn(requests):
|
221 |
+
res = []
|
222 |
+
remaining_reqs = []
|
223 |
+
warned = False
|
224 |
+
# figure out which ones are cached and which ones are new
|
225 |
+
eval_logger.info(
|
226 |
+
f"Loading '{attr}' responses from cache '{self.cache_db}' where possible..."
|
227 |
+
)
|
228 |
+
for req in tqdm(requests, desc="Checking cached requests"):
|
229 |
+
hsh = hash_args(attr, req.args)
|
230 |
+
if attr == "generate_until" and req.args[1].get("do_sample", False):
|
231 |
+
# when we are doing non-greedy generation, don't use the cache
|
232 |
+
# (else every "randomly sampled" generation would be identical for repeats > 1).
|
233 |
+
if not warned:
|
234 |
+
eval_logger.warning(
|
235 |
+
f"Arguments to lm.generate_until() '{req.args[1]}' include non-deterministic sampling. Caching will not be performed for such requests."
|
236 |
+
)
|
237 |
+
warned = True
|
238 |
+
res.append(None)
|
239 |
+
remaining_reqs.append(req)
|
240 |
+
elif hsh in self.dbdict:
|
241 |
+
ob = self.dbdict[hsh]
|
242 |
+
|
243 |
+
assert ob is not None
|
244 |
+
|
245 |
+
res.append(ob)
|
246 |
+
else:
|
247 |
+
res.append(None)
|
248 |
+
remaining_reqs.append(req)
|
249 |
+
eval_logger.info(
|
250 |
+
f"Cached requests: {len(requests) - len(remaining_reqs)}, Requests remaining: {len(remaining_reqs)}"
|
251 |
+
)
|
252 |
+
# actually run the LM on the requests that do not have cached results
|
253 |
+
rem_res = getattr(self.lm, attr)(remaining_reqs)
|
254 |
+
|
255 |
+
# stick the new ones back into the list and also cache any of the new ones
|
256 |
+
resptr = 0
|
257 |
+
for req, r in zip(remaining_reqs, rem_res):
|
258 |
+
while res[resptr] is not None:
|
259 |
+
resptr += 1
|
260 |
+
|
261 |
+
res[resptr] = r
|
262 |
+
|
263 |
+
# caching
|
264 |
+
hsh = hash_args(attr, req.args)
|
265 |
+
self.dbdict[hsh] = r
|
266 |
+
self.dbdict.commit()
|
267 |
+
|
268 |
+
return res
|
269 |
+
|
270 |
+
return fn
|
271 |
+
|
272 |
+
def get_cache_hook(self):
|
273 |
+
return CacheHook(self)
|
274 |
+
|
275 |
+
|
276 |
+
class TemplateLM(LM):
|
277 |
+
"""
|
278 |
+
A class acting as intermediary between the LM base class
|
279 |
+
and boilerplate often included in other LM subclasses.
|
280 |
+
"""
|
281 |
+
|
282 |
+
@property
|
283 |
+
@abc.abstractmethod
|
284 |
+
def eot_token_id(self):
|
285 |
+
pass
|
286 |
+
|
287 |
+
@property
|
288 |
+
def prefix_token_id(self):
|
289 |
+
# it is used as prefix for loglikelihood
|
290 |
+
return self.eot_token_id
|
291 |
+
|
292 |
+
@abc.abstractmethod
|
293 |
+
def tok_encode(self, string: str, **kwargs):
|
294 |
+
pass
|
295 |
+
|
296 |
+
@abc.abstractmethod
|
297 |
+
def _loglikelihood_tokens(self, requests, **kwargs):
|
298 |
+
pass
|
299 |
+
|
300 |
+
def _encode_pair(self, context, continuation):
|
301 |
+
n_spaces = len(context) - len(context.rstrip())
|
302 |
+
if n_spaces > 0:
|
303 |
+
continuation = context[-n_spaces:] + continuation
|
304 |
+
context = context[:-n_spaces]
|
305 |
+
|
306 |
+
model_class = getattr(self, "AUTO_MODEL_CLASS", None)
|
307 |
+
|
308 |
+
if model_class == transformers.AutoModelForSeq2SeqLM:
|
309 |
+
context_enc = self.tok_encode(context)
|
310 |
+
continuation_enc = self.tok_encode(continuation, add_special_tokens=False)
|
311 |
+
else:
|
312 |
+
whole_enc = self.tok_encode(context + continuation)
|
313 |
+
context_enc = self.tok_encode(context)
|
314 |
+
|
315 |
+
context_enc_len = len(context_enc)
|
316 |
+
continuation_enc = whole_enc[context_enc_len:]
|
317 |
+
|
318 |
+
return context_enc, continuation_enc
|
319 |
+
|
320 |
+
def loglikelihood(
|
321 |
+
self, requests, disable_tqdm: bool = False
|
322 |
+
) -> List[Tuple[float, bool]]:
|
323 |
+
new_reqs = []
|
324 |
+
for context, continuation in [req.args for req in requests]:
|
325 |
+
if context == "":
|
326 |
+
# BOS or EOS as context
|
327 |
+
context_enc, continuation_enc = (
|
328 |
+
[self.prefix_token_id],
|
329 |
+
self.tok_encode(continuation),
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
context_enc, continuation_enc = self._encode_pair(context, continuation)
|
333 |
+
|
334 |
+
new_reqs.append(((context, continuation), context_enc, continuation_enc))
|
335 |
+
|
336 |
+
return self._loglikelihood_tokens(new_reqs, disable_tqdm=disable_tqdm)
|
337 |
+
|
338 |
+
@abc.abstractmethod
|
339 |
+
def loglikelihood_rolling(
|
340 |
+
self, requests, disable_tqdm: bool = False
|
341 |
+
) -> List[Tuple[float, bool]]:
|
342 |
+
pass
|
343 |
+
|
344 |
+
@abc.abstractmethod
|
345 |
+
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
346 |
+
pass
|
lm-evaluation/build/lib/lm_eval/api/registry.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Callable, Dict
|
3 |
+
|
4 |
+
import evaluate as hf_evaluate
|
5 |
+
|
6 |
+
from lm_eval.api.model import LM
|
7 |
+
|
8 |
+
|
9 |
+
eval_logger = logging.getLogger("lm-eval")
|
10 |
+
|
11 |
+
MODEL_REGISTRY = {}
|
12 |
+
|
13 |
+
|
14 |
+
def register_model(*names):
|
15 |
+
# either pass a list or a single alias.
|
16 |
+
# function receives them as a tuple of strings
|
17 |
+
|
18 |
+
def decorate(cls):
|
19 |
+
for name in names:
|
20 |
+
assert issubclass(
|
21 |
+
cls, LM
|
22 |
+
), f"Model '{name}' ({cls.__name__}) must extend LM class"
|
23 |
+
|
24 |
+
assert (
|
25 |
+
name not in MODEL_REGISTRY
|
26 |
+
), f"Model named '{name}' conflicts with existing model! Please register with a non-conflicting alias instead."
|
27 |
+
|
28 |
+
MODEL_REGISTRY[name] = cls
|
29 |
+
return cls
|
30 |
+
|
31 |
+
return decorate
|
32 |
+
|
33 |
+
|
34 |
+
def get_model(model_name):
|
35 |
+
try:
|
36 |
+
return MODEL_REGISTRY[model_name]
|
37 |
+
except KeyError:
|
38 |
+
raise ValueError(
|
39 |
+
f"Attempted to load model '{model_name}', but no model for this name found! Supported model names: {', '.join(MODEL_REGISTRY.keys())}"
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
TASK_REGISTRY = {}
|
44 |
+
GROUP_REGISTRY = {}
|
45 |
+
ALL_TASKS = set()
|
46 |
+
func2task_index = {}
|
47 |
+
|
48 |
+
|
49 |
+
def register_task(name):
|
50 |
+
def decorate(fn):
|
51 |
+
assert (
|
52 |
+
name not in TASK_REGISTRY
|
53 |
+
), f"task named '{name}' conflicts with existing registered task!"
|
54 |
+
|
55 |
+
TASK_REGISTRY[name] = fn
|
56 |
+
ALL_TASKS.add(name)
|
57 |
+
func2task_index[fn.__name__] = name
|
58 |
+
return fn
|
59 |
+
|
60 |
+
return decorate
|
61 |
+
|
62 |
+
|
63 |
+
def register_group(name):
|
64 |
+
def decorate(fn):
|
65 |
+
func_name = func2task_index[fn.__name__]
|
66 |
+
if name in GROUP_REGISTRY:
|
67 |
+
GROUP_REGISTRY[name].append(func_name)
|
68 |
+
else:
|
69 |
+
GROUP_REGISTRY[name] = [func_name]
|
70 |
+
ALL_TASKS.add(name)
|
71 |
+
return fn
|
72 |
+
|
73 |
+
return decorate
|
74 |
+
|
75 |
+
|
76 |
+
OUTPUT_TYPE_REGISTRY = {}
|
77 |
+
METRIC_REGISTRY = {}
|
78 |
+
METRIC_AGGREGATION_REGISTRY = {}
|
79 |
+
AGGREGATION_REGISTRY: Dict[str, Callable[[], Dict[str, Callable]]] = {}
|
80 |
+
HIGHER_IS_BETTER_REGISTRY = {}
|
81 |
+
|
82 |
+
DEFAULT_METRIC_REGISTRY = {
|
83 |
+
"loglikelihood": [
|
84 |
+
"perplexity",
|
85 |
+
"acc",
|
86 |
+
],
|
87 |
+
"loglikelihood_rolling": ["word_perplexity", "byte_perplexity", "bits_per_byte"],
|
88 |
+
"multiple_choice": ["acc", "acc_norm"],
|
89 |
+
"generate_until": ["exact_match"],
|
90 |
+
}
|
91 |
+
|
92 |
+
|
93 |
+
def register_metric(**args):
|
94 |
+
# TODO: do we want to enforce a certain interface to registered metrics?
|
95 |
+
def decorate(fn):
|
96 |
+
assert "metric" in args
|
97 |
+
name = args["metric"]
|
98 |
+
|
99 |
+
for key, registry in [
|
100 |
+
("metric", METRIC_REGISTRY),
|
101 |
+
("higher_is_better", HIGHER_IS_BETTER_REGISTRY),
|
102 |
+
("aggregation", METRIC_AGGREGATION_REGISTRY),
|
103 |
+
]:
|
104 |
+
if key in args:
|
105 |
+
value = args[key]
|
106 |
+
assert (
|
107 |
+
value not in registry
|
108 |
+
), f"{key} named '{value}' conflicts with existing registered {key}!"
|
109 |
+
|
110 |
+
if key == "metric":
|
111 |
+
registry[name] = fn
|
112 |
+
elif key == "aggregation":
|
113 |
+
registry[name] = AGGREGATION_REGISTRY[value]
|
114 |
+
else:
|
115 |
+
registry[name] = value
|
116 |
+
|
117 |
+
return fn
|
118 |
+
|
119 |
+
return decorate
|
120 |
+
|
121 |
+
|
122 |
+
def get_metric(name: str, hf_evaluate_metric=False) -> Callable:
|
123 |
+
if not hf_evaluate_metric:
|
124 |
+
if name in METRIC_REGISTRY:
|
125 |
+
return METRIC_REGISTRY[name]
|
126 |
+
else:
|
127 |
+
eval_logger.warning(
|
128 |
+
f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library..."
|
129 |
+
)
|
130 |
+
|
131 |
+
try:
|
132 |
+
metric_object = hf_evaluate.load(name)
|
133 |
+
return metric_object.compute
|
134 |
+
except Exception:
|
135 |
+
eval_logger.error(
|
136 |
+
f"{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric",
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
def register_aggregation(name: str):
|
141 |
+
def decorate(fn):
|
142 |
+
assert (
|
143 |
+
name not in AGGREGATION_REGISTRY
|
144 |
+
), f"aggregation named '{name}' conflicts with existing registered aggregation!"
|
145 |
+
|
146 |
+
AGGREGATION_REGISTRY[name] = fn
|
147 |
+
return fn
|
148 |
+
|
149 |
+
return decorate
|
150 |
+
|
151 |
+
|
152 |
+
def get_aggregation(name: str) -> Callable[[], Dict[str, Callable]]:
|
153 |
+
try:
|
154 |
+
return AGGREGATION_REGISTRY[name]
|
155 |
+
except KeyError:
|
156 |
+
eval_logger.warning(f"{name} not a registered aggregation metric!")
|
157 |
+
|
158 |
+
|
159 |
+
def get_metric_aggregation(name: str) -> Callable[[], Dict[str, Callable]]:
|
160 |
+
try:
|
161 |
+
return METRIC_AGGREGATION_REGISTRY[name]
|
162 |
+
except KeyError:
|
163 |
+
eval_logger.warning(f"{name} metric is not assigned a default aggregation!")
|
164 |
+
|
165 |
+
|
166 |
+
def is_higher_better(metric_name) -> bool:
|
167 |
+
try:
|
168 |
+
return HIGHER_IS_BETTER_REGISTRY[metric_name]
|
169 |
+
except KeyError:
|
170 |
+
eval_logger.warning(
|
171 |
+
f"higher_is_better not specified for metric '{metric_name}'!"
|
172 |
+
)
|
lm-evaluation/build/lib/lm_eval/api/samplers.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class ContextSampler:
|
2 |
+
def __init__(self, docs, task, fewshot_indices=None, rnd=None) -> None:
|
3 |
+
self.rnd = rnd
|
4 |
+
assert self.rnd, "must pass rnd to FewShotSampler!"
|
5 |
+
|
6 |
+
self.task = task
|
7 |
+
self.config = task._config
|
8 |
+
|
9 |
+
self.target_delimiter = self.config.target_delimiter
|
10 |
+
self.fewshot_delimiter = self.config.fewshot_delimiter
|
11 |
+
|
12 |
+
self.doc_to_text = self.task.doc_to_text
|
13 |
+
self.doc_to_target = self.task.doc_to_target
|
14 |
+
self.doc_to_choice = self.task.doc_to_choice
|
15 |
+
|
16 |
+
self.docs = docs # HF dataset split, provided by task._fewshot_docs()
|
17 |
+
if fewshot_indices: # subset few-shot docs from
|
18 |
+
self.docs = self.docs.select(fewshot_indices)
|
19 |
+
|
20 |
+
def get_context(self, doc, num_fewshot):
|
21 |
+
# draw an extra fewshot sample if using same split as evaluating on
|
22 |
+
n_samples = (
|
23 |
+
num_fewshot + 1
|
24 |
+
if self.config.fewshot_split == self.config.test_split
|
25 |
+
else num_fewshot
|
26 |
+
)
|
27 |
+
|
28 |
+
# draw `n_samples` docs from fewshot_docs
|
29 |
+
fewshotex = self.sample(n_samples)
|
30 |
+
|
31 |
+
# get rid of the doc that's the one we're evaluating, if it's in the fewshot
|
32 |
+
# TODO: should we just stop people from using fewshot from same split as evaluating?
|
33 |
+
selected_docs = [x for x in fewshotex if x != doc][:num_fewshot]
|
34 |
+
|
35 |
+
labeled_examples = (
|
36 |
+
self.fewshot_delimiter.join(
|
37 |
+
[
|
38 |
+
# TODO: is separating doc_to_text and doc_to_target by one space always desired?
|
39 |
+
(
|
40 |
+
self.doc_to_text(doc)
|
41 |
+
if (
|
42 |
+
self.config.doc_to_choice is None
|
43 |
+
or isinstance(self.doc_to_text(doc), str)
|
44 |
+
)
|
45 |
+
else self.doc_to_choice(doc)[self.doc_to_text(doc)]
|
46 |
+
)
|
47 |
+
+ self.target_delimiter
|
48 |
+
+ (
|
49 |
+
str(self.doc_to_target(doc)[0])
|
50 |
+
if isinstance(self.doc_to_target(doc), list)
|
51 |
+
else self.doc_to_target(doc)
|
52 |
+
if (
|
53 |
+
self.config.doc_to_choice is None
|
54 |
+
or isinstance(self.doc_to_target(doc), str)
|
55 |
+
)
|
56 |
+
else str(self.doc_to_choice(doc)[self.doc_to_target(doc)])
|
57 |
+
)
|
58 |
+
for doc in selected_docs
|
59 |
+
]
|
60 |
+
)
|
61 |
+
+ self.fewshot_delimiter
|
62 |
+
)
|
63 |
+
|
64 |
+
return labeled_examples
|
65 |
+
|
66 |
+
def sample(self, n):
|
67 |
+
"""
|
68 |
+
Draw `n` samples from our fewshot docs. This method should be overridden by subclasses.
|
69 |
+
"""
|
70 |
+
|
71 |
+
return self.rnd.sample(self.docs, n)
|
72 |
+
|
73 |
+
|
74 |
+
class FirstNSampler(ContextSampler):
|
75 |
+
def sample(self, n) -> None:
|
76 |
+
"""
|
77 |
+
Draw the first `n` samples in order from the specified split.
|
78 |
+
Used for tasks with "canonical" ordered fewshot examples, such as MMLU and CMMLU.
|
79 |
+
"""
|
80 |
+
assert (
|
81 |
+
n <= len(self.docs)
|
82 |
+
), f"Error: number of fewshot samples requested exceeds the {len(self.docs)} that are available."
|
83 |
+
return self.docs[:n]
|
84 |
+
|
85 |
+
|
86 |
+
class BalancedSampler(ContextSampler):
|
87 |
+
def sample(self, n) -> None:
|
88 |
+
"""
|
89 |
+
TODO: this should return approximately class-balanced samples from our fewshot examples.
|
90 |
+
TODO: what order should they be in? maybe random?
|
91 |
+
"""
|
92 |
+
|
93 |
+
pass
|
94 |
+
|
95 |
+
|
96 |
+
class ManualSampler(ContextSampler):
|
97 |
+
def sample(self, n) -> None:
|
98 |
+
""" """
|
99 |
+
pass
|
100 |
+
|
101 |
+
|
102 |
+
SAMPLER_REGISTRY = {
|
103 |
+
"default": ContextSampler,
|
104 |
+
"first_n": FirstNSampler,
|
105 |
+
}
|
106 |
+
|
107 |
+
|
108 |
+
def get_sampler(name):
|
109 |
+
try:
|
110 |
+
return SAMPLER_REGISTRY[name]
|
111 |
+
except KeyError:
|
112 |
+
raise ValueError(
|
113 |
+
f"Attempted to use contextsampler '{name}', but no sampling strategy for this name found! Supported model names: {', '.join(SAMPLER_REGISTRY.keys())}"
|
114 |
+
)
|
lm-evaluation/build/lib/lm_eval/api/task.py
ADDED
@@ -0,0 +1,1498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
import ast
|
3 |
+
import logging
|
4 |
+
import random
|
5 |
+
import re
|
6 |
+
from collections.abc import Callable
|
7 |
+
from copy import deepcopy
|
8 |
+
from dataclasses import asdict, dataclass
|
9 |
+
from inspect import getsource
|
10 |
+
from typing import (
|
11 |
+
Any,
|
12 |
+
Dict,
|
13 |
+
Iterable,
|
14 |
+
Iterator,
|
15 |
+
List,
|
16 |
+
Literal,
|
17 |
+
Mapping,
|
18 |
+
Optional,
|
19 |
+
Tuple,
|
20 |
+
Union,
|
21 |
+
)
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
import numpy as np
|
25 |
+
from tqdm import tqdm
|
26 |
+
|
27 |
+
from lm_eval import utils
|
28 |
+
from lm_eval.api import samplers
|
29 |
+
from lm_eval.api.instance import Instance, OutputType
|
30 |
+
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
|
31 |
+
from lm_eval.api.registry import (
|
32 |
+
AGGREGATION_REGISTRY,
|
33 |
+
DEFAULT_METRIC_REGISTRY,
|
34 |
+
get_aggregation,
|
35 |
+
get_metric,
|
36 |
+
get_metric_aggregation,
|
37 |
+
is_higher_better,
|
38 |
+
)
|
39 |
+
from lm_eval.caching.cache import load_from_cache, save_to_cache
|
40 |
+
from lm_eval.filters import build_filter_ensemble
|
41 |
+
from lm_eval.prompts import get_prompt
|
42 |
+
|
43 |
+
|
44 |
+
ALL_OUTPUT_TYPES = [
|
45 |
+
"loglikelihood",
|
46 |
+
"multiple_choice",
|
47 |
+
"loglikelihood_rolling",
|
48 |
+
"generate_until",
|
49 |
+
]
|
50 |
+
|
51 |
+
eval_logger = logging.getLogger("lm-eval")
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
class TaskConfig(dict):
|
56 |
+
# task naming/registry
|
57 |
+
task: Optional[str] = None
|
58 |
+
task_alias: Optional[str] = None
|
59 |
+
group: Optional[Union[str, list]] = None
|
60 |
+
group_alias: Optional[Union[str, list]] = None
|
61 |
+
# HF dataset options.
|
62 |
+
# which dataset to use,
|
63 |
+
# and what splits for what purpose
|
64 |
+
dataset_path: Optional[str] = None
|
65 |
+
dataset_name: Optional[str] = None
|
66 |
+
dataset_kwargs: Optional[dict] = None
|
67 |
+
training_split: Optional[str] = None
|
68 |
+
validation_split: Optional[str] = None
|
69 |
+
test_split: Optional[str] = None
|
70 |
+
fewshot_split: Optional[
|
71 |
+
str
|
72 |
+
] = None # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
|
73 |
+
# formatting / prompting options.
|
74 |
+
# see docs/advanced_task_guide.md for more info
|
75 |
+
process_docs: Optional[Callable] = None
|
76 |
+
doc_to_text: Optional[Union[Callable, str]] = None
|
77 |
+
doc_to_target: Optional[Union[Callable, str]] = None
|
78 |
+
doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
|
79 |
+
process_results: Optional[Union[Callable, str]] = None
|
80 |
+
use_prompt: Optional[str] = None
|
81 |
+
description: str = ""
|
82 |
+
target_delimiter: str = " "
|
83 |
+
fewshot_delimiter: str = "\n\n"
|
84 |
+
fewshot_config: Optional[dict] = None
|
85 |
+
# runtime configuration options
|
86 |
+
num_fewshot: Optional[int] = None
|
87 |
+
# scoring options
|
88 |
+
metric_list: Optional[list] = None
|
89 |
+
output_type: OutputType = "generate_until"
|
90 |
+
generation_kwargs: Optional[dict] = None
|
91 |
+
repeats: int = 1
|
92 |
+
filter_list: Optional[Union[str, list]] = None
|
93 |
+
should_decontaminate: bool = False
|
94 |
+
doc_to_decontamination_query: Optional[str] = None
|
95 |
+
metadata: Optional[
|
96 |
+
dict
|
97 |
+
] = None # by default, not used in the code. allows for users to pass arbitrary info to tasks
|
98 |
+
|
99 |
+
def __post_init__(self) -> None:
|
100 |
+
if self.generation_kwargs is not None:
|
101 |
+
if self.output_type != "generate_until":
|
102 |
+
raise ValueError(
|
103 |
+
f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
|
104 |
+
)
|
105 |
+
|
106 |
+
if "temperature" in self.generation_kwargs:
|
107 |
+
self.generation_kwargs["temperature"] = float(
|
108 |
+
self.generation_kwargs["temperature"]
|
109 |
+
)
|
110 |
+
|
111 |
+
if "until" not in self.generation_kwargs:
|
112 |
+
self.generation_kwargs["until"] = [self.fewshot_delimiter]
|
113 |
+
else:
|
114 |
+
if self.output_type == "generate_until":
|
115 |
+
# ensure that we greedily generate in absence of explicit arguments otherwise
|
116 |
+
self.generation_kwargs = {
|
117 |
+
"until": (
|
118 |
+
None
|
119 |
+
if self.fewshot_delimiter is None
|
120 |
+
else [self.fewshot_delimiter]
|
121 |
+
),
|
122 |
+
"do_sample": False,
|
123 |
+
}
|
124 |
+
|
125 |
+
def __getitem__(self, item):
|
126 |
+
return getattr(self, item)
|
127 |
+
|
128 |
+
def __setitem__(self, item, value):
|
129 |
+
return setattr(self, item, value)
|
130 |
+
|
131 |
+
def to_dict(self, keep_callable: bool = False) -> dict:
|
132 |
+
"""dumps the current config as a dictionary object, as a printable format.
|
133 |
+
null fields will not be printed.
|
134 |
+
Used for dumping results alongside full task configuration
|
135 |
+
|
136 |
+
:return: dict
|
137 |
+
A printable dictionary version of the TaskConfig object.
|
138 |
+
|
139 |
+
# TODO: should any default value in the TaskConfig not be printed?
|
140 |
+
"""
|
141 |
+
cfg_dict = asdict(self)
|
142 |
+
# remove values that are `None`
|
143 |
+
for k, v in list(cfg_dict.items()):
|
144 |
+
if v is None:
|
145 |
+
cfg_dict.pop(k)
|
146 |
+
elif k == "metric_list":
|
147 |
+
for metric_dict in v:
|
148 |
+
for metric_key, metric_value in metric_dict.items():
|
149 |
+
if callable(metric_value):
|
150 |
+
metric_dict[metric_key] = self.serialize_function(
|
151 |
+
metric_value, keep_callable=keep_callable
|
152 |
+
)
|
153 |
+
cfg_dict[k] = v
|
154 |
+
elif callable(v):
|
155 |
+
cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
|
156 |
+
return cfg_dict
|
157 |
+
|
158 |
+
def serialize_function(
|
159 |
+
self, value: Union[Callable, str], keep_callable=False
|
160 |
+
) -> Union[Callable, str]:
|
161 |
+
"""Serializes a given function or string.
|
162 |
+
|
163 |
+
If 'keep_callable' is True, the original callable is returned.
|
164 |
+
Otherwise, attempts to return the source code of the callable using 'getsource'.
|
165 |
+
"""
|
166 |
+
if keep_callable:
|
167 |
+
return value
|
168 |
+
else:
|
169 |
+
try:
|
170 |
+
return getsource(value)
|
171 |
+
except (TypeError, OSError):
|
172 |
+
return str(value)
|
173 |
+
|
174 |
+
|
175 |
+
class Task(abc.ABC):
|
176 |
+
"""A task represents an entire benchmark including its dataset, problems,
|
177 |
+
answers, and evaluation methods. See BoolQ for a simple example implementation
|
178 |
+
|
179 |
+
A `doc` can be any python object which represents one instance of evaluation.
|
180 |
+
This is usually a dictionary e.g.
|
181 |
+
{"question": ..., "answer": ...} or
|
182 |
+
{"question": ..., question, answer)
|
183 |
+
"""
|
184 |
+
|
185 |
+
VERSION: Optional[Union[int, str]] = None
|
186 |
+
|
187 |
+
# The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
|
188 |
+
# or a path to a custom `datasets` loading script.
|
189 |
+
DATASET_PATH: Optional[str] = None
|
190 |
+
|
191 |
+
# The name of a subset within `DATASET_PATH`.
|
192 |
+
DATASET_NAME: Optional[str] = None
|
193 |
+
|
194 |
+
OUTPUT_TYPE: Optional[OutputType] = None
|
195 |
+
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
data_dir: Optional[str] = None,
|
199 |
+
cache_dir: Optional[str] = None,
|
200 |
+
download_mode: Optional[datasets.DownloadMode] = None,
|
201 |
+
config: Optional[Mapping] = None, # Union[dict, TaskConfig]
|
202 |
+
) -> None:
|
203 |
+
"""
|
204 |
+
:param data_dir: str
|
205 |
+
Stores the path to a local folder containing the `Task`'s data files.
|
206 |
+
Use this to specify the path to manually downloaded data (usually when
|
207 |
+
the dataset is not publicly accessible).
|
208 |
+
:param cache_dir: str
|
209 |
+
The directory to read/write the `Task` dataset. This follows the
|
210 |
+
HuggingFace `datasets` API with the default cache directory located at:
|
211 |
+
`~/.cache/huggingface/datasets`
|
212 |
+
NOTE: You can change the cache location globally for a given process
|
213 |
+
to another directory:
|
214 |
+
`export HF_DATASETS_CACHE="/path/to/another/directory"`
|
215 |
+
:param download_mode: datasets.DownloadMode
|
216 |
+
How to treat pre-existing `Task` downloads and data.
|
217 |
+
- `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
|
218 |
+
Reuse download and reuse dataset.
|
219 |
+
- `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
|
220 |
+
Reuse download with fresh dataset.
|
221 |
+
- `datasets.DownloadMode.FORCE_REDOWNLOAD`
|
222 |
+
Fresh download and fresh dataset.
|
223 |
+
"""
|
224 |
+
self.download(data_dir, cache_dir, download_mode)
|
225 |
+
self._training_docs: Optional[list] = None
|
226 |
+
self._fewshot_docs: Optional[list] = None
|
227 |
+
self._instances: Optional[List[Instance]] = None
|
228 |
+
|
229 |
+
self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
|
230 |
+
|
231 |
+
self._filters = [build_filter_ensemble("none", [["take_first", None]])]
|
232 |
+
|
233 |
+
def download(
|
234 |
+
self,
|
235 |
+
data_dir: Optional[str] = None,
|
236 |
+
cache_dir: Optional[str] = None,
|
237 |
+
download_mode=None,
|
238 |
+
) -> None:
|
239 |
+
"""Downloads and returns the task dataset.
|
240 |
+
Override this method to download the dataset from a custom API.
|
241 |
+
|
242 |
+
:param data_dir: str
|
243 |
+
Stores the path to a local folder containing the `Task`'s data files.
|
244 |
+
Use this to specify the path to manually downloaded data (usually when
|
245 |
+
the dataset is not publicly accessible).
|
246 |
+
:param cache_dir: str
|
247 |
+
The directory to read/write the `Task` dataset. This follows the
|
248 |
+
HuggingFace `datasets` API with the default cache directory located at:
|
249 |
+
`~/.cache/huggingface/datasets`
|
250 |
+
NOTE: You can change the cache location globally for a given process
|
251 |
+
by setting the shell environment variable, `HF_DATASETS_CACHE`,
|
252 |
+
to another directory:
|
253 |
+
`export HF_DATASETS_CACHE="/path/to/another/directory"`
|
254 |
+
:param download_mode: datasets.DownloadMode
|
255 |
+
How to treat pre-existing `Task` downloads and data.
|
256 |
+
- `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
|
257 |
+
Reuse download and reuse dataset.
|
258 |
+
- `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
|
259 |
+
Reuse download with fresh dataset.
|
260 |
+
- `datasets.DownloadMode.FORCE_REDOWNLOAD`
|
261 |
+
Fresh download and fresh dataset.
|
262 |
+
"""
|
263 |
+
self.dataset = datasets.load_dataset(
|
264 |
+
path=self.DATASET_PATH,
|
265 |
+
name=self.DATASET_NAME,
|
266 |
+
data_dir=data_dir,
|
267 |
+
cache_dir=cache_dir,
|
268 |
+
download_mode=download_mode,
|
269 |
+
)
|
270 |
+
|
271 |
+
@property
|
272 |
+
def config(self) -> TaskConfig:
|
273 |
+
"""Returns the TaskConfig associated with this class."""
|
274 |
+
return self._config
|
275 |
+
|
276 |
+
@abc.abstractmethod
|
277 |
+
def has_training_docs(self):
|
278 |
+
"""Whether the task has a training set"""
|
279 |
+
pass
|
280 |
+
|
281 |
+
@abc.abstractmethod
|
282 |
+
def has_validation_docs(self):
|
283 |
+
"""Whether the task has a validation set"""
|
284 |
+
pass
|
285 |
+
|
286 |
+
@abc.abstractmethod
|
287 |
+
def has_test_docs(self):
|
288 |
+
"""Whether the task has a test set"""
|
289 |
+
pass
|
290 |
+
|
291 |
+
def training_docs(self) -> Iterable:
|
292 |
+
"""
|
293 |
+
:return: Iterable[obj]
|
294 |
+
A iterable of any object, that doc_to_text can handle
|
295 |
+
"""
|
296 |
+
return []
|
297 |
+
|
298 |
+
def validation_docs(self) -> Iterable:
|
299 |
+
"""
|
300 |
+
:return: Iterable[obj]
|
301 |
+
A iterable of any object, that doc_to_text can handle
|
302 |
+
"""
|
303 |
+
return []
|
304 |
+
|
305 |
+
def test_docs(self) -> Iterable:
|
306 |
+
"""
|
307 |
+
:return: Iterable[obj]
|
308 |
+
A iterable of any object, that doc_to_text can handle
|
309 |
+
"""
|
310 |
+
return []
|
311 |
+
|
312 |
+
def fewshot_docs(self) -> Iterable:
|
313 |
+
"""
|
314 |
+
:return: Iterable[obj]
|
315 |
+
A iterable of any object, that doc_to_text can handle
|
316 |
+
"""
|
317 |
+
if self.has_training_docs():
|
318 |
+
return self.training_docs()
|
319 |
+
elif self.has_validation_docs():
|
320 |
+
return self.validation_docs()
|
321 |
+
else:
|
322 |
+
eval_logger.warning(
|
323 |
+
f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
|
324 |
+
", using test_docs as fewshot_docs but this is not recommended."
|
325 |
+
)
|
326 |
+
return self.test_docs()
|
327 |
+
|
328 |
+
def _process_doc(self, doc: dict) -> dict:
|
329 |
+
"""
|
330 |
+
Override this to process (detokenize, strip, replace, etc.) individual
|
331 |
+
documents. This can be used in a map over documents of a data split.
|
332 |
+
E.g. `map(self._process_doc, self.dataset["validation"])`
|
333 |
+
|
334 |
+
:return: dict
|
335 |
+
The processed version of the specified `doc`.
|
336 |
+
"""
|
337 |
+
return doc
|
338 |
+
|
339 |
+
@property
|
340 |
+
def instances(self) -> List[Instance]:
|
341 |
+
"""After calling `task.build_all_requests()`, tasks
|
342 |
+
maintain a list of the dataset instances which will be evaluated.
|
343 |
+
"""
|
344 |
+
return self._instances
|
345 |
+
|
346 |
+
def fewshot_examples(self, k, rnd):
|
347 |
+
if self._training_docs is None:
|
348 |
+
self._training_docs = list(self.training_docs())
|
349 |
+
|
350 |
+
return rnd.sample(self._training_docs, k)
|
351 |
+
|
352 |
+
def doc_to_decontamination_query(self, doc):
|
353 |
+
raise NotImplementedError(
|
354 |
+
"Override doc_to_decontamination_query with document specific decontamination query."
|
355 |
+
)
|
356 |
+
|
357 |
+
@abc.abstractmethod
|
358 |
+
def doc_to_text(self, doc):
|
359 |
+
pass
|
360 |
+
|
361 |
+
@abc.abstractmethod
|
362 |
+
def doc_to_target(self, doc):
|
363 |
+
pass
|
364 |
+
|
365 |
+
def build_all_requests(
|
366 |
+
self,
|
367 |
+
*,
|
368 |
+
limit=None,
|
369 |
+
rank=None,
|
370 |
+
world_size=None,
|
371 |
+
cache_requests=False,
|
372 |
+
rewrite_requests_cache=False,
|
373 |
+
) -> None:
|
374 |
+
"""Build a set of Instances for a task, and store them in task.instances"""
|
375 |
+
|
376 |
+
# used with caching
|
377 |
+
og_limit = limit
|
378 |
+
|
379 |
+
cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
|
380 |
+
|
381 |
+
cached_instances = load_from_cache(file_name=cache_key)
|
382 |
+
|
383 |
+
if cache_requests and cached_instances and not rewrite_requests_cache:
|
384 |
+
cached_instances = cached_instances[:limit]
|
385 |
+
|
386 |
+
flattened_instances = [
|
387 |
+
instance
|
388 |
+
for instance_group in cached_instances
|
389 |
+
for instance in instance_group
|
390 |
+
]
|
391 |
+
|
392 |
+
self._instances = flattened_instances
|
393 |
+
return
|
394 |
+
|
395 |
+
eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
|
396 |
+
|
397 |
+
instances = []
|
398 |
+
|
399 |
+
# process all documents when caching is specified for simplicity
|
400 |
+
if (
|
401 |
+
cache_requests
|
402 |
+
and (not cached_instances or rewrite_requests_cache)
|
403 |
+
and limit is not None
|
404 |
+
):
|
405 |
+
limit = None
|
406 |
+
|
407 |
+
doc_id_docs = list(
|
408 |
+
self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
|
409 |
+
)
|
410 |
+
|
411 |
+
num_docs = len(doc_id_docs)
|
412 |
+
|
413 |
+
for doc_id, doc in tqdm(
|
414 |
+
doc_id_docs,
|
415 |
+
total=num_docs,
|
416 |
+
):
|
417 |
+
# sample fewshot context #TODO: need to offset doc_id by rank now!
|
418 |
+
fewshot_ctx = self.fewshot_context(
|
419 |
+
doc,
|
420 |
+
0 if self.config.num_fewshot is None else self.config.num_fewshot,
|
421 |
+
)
|
422 |
+
|
423 |
+
# TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
|
424 |
+
inst = self.construct_requests(
|
425 |
+
doc=doc,
|
426 |
+
ctx=fewshot_ctx,
|
427 |
+
metadata=(self.config["task"], doc_id, self.config.repeats),
|
428 |
+
)
|
429 |
+
|
430 |
+
if not isinstance(inst, list):
|
431 |
+
inst = [inst]
|
432 |
+
|
433 |
+
instances.append(inst)
|
434 |
+
|
435 |
+
# now flatten, this is to allow slicing to work with pickles
|
436 |
+
|
437 |
+
sliced_instances = instances[:og_limit]
|
438 |
+
|
439 |
+
flattened_instances = [
|
440 |
+
instance
|
441 |
+
for instance_group in sliced_instances
|
442 |
+
for instance in instance_group
|
443 |
+
]
|
444 |
+
|
445 |
+
self._instances = flattened_instances
|
446 |
+
|
447 |
+
if len(self._instances) == 0:
|
448 |
+
raise ValueError("task.build_requests() did not find any docs!")
|
449 |
+
|
450 |
+
if cache_requests and (not cached_instances or rewrite_requests_cache):
|
451 |
+
save_to_cache(file_name=cache_key, obj=instances)
|
452 |
+
|
453 |
+
@abc.abstractmethod
|
454 |
+
def construct_requests(self, doc, ctx, **kwargs):
|
455 |
+
"""Uses RequestFactory to construct Requests and returns an iterable of
|
456 |
+
Requests which will be sent to the LM.
|
457 |
+
|
458 |
+
:param doc:
|
459 |
+
The document as returned from training_docs, validation_docs, or test_docs.
|
460 |
+
:param ctx: str
|
461 |
+
The context string, generated by fewshot_context. This includes the natural
|
462 |
+
language description, as well as the few shot examples, and the question
|
463 |
+
part of the document for `doc`.
|
464 |
+
:param doc_idx: int
|
465 |
+
The index of a document within `self.test_docs()` or `self.validation_docs()`,
|
466 |
+
whichever is the main split used.
|
467 |
+
:param repeats: int
|
468 |
+
TODO: update this docstring
|
469 |
+
The number of times each instance in a dataset is inferred on. Defaults to 1,
|
470 |
+
can be increased for techniques like majority voting.
|
471 |
+
"""
|
472 |
+
pass
|
473 |
+
|
474 |
+
@abc.abstractmethod
|
475 |
+
def process_results(self, doc, results):
|
476 |
+
"""Take a single document and the LM results and evaluates, returning a
|
477 |
+
dict where keys are the names of submetrics and values are the values of
|
478 |
+
the metric for that one document
|
479 |
+
|
480 |
+
:param doc:
|
481 |
+
The document as returned from training_docs, validation_docs, or test_docs.
|
482 |
+
:param results:
|
483 |
+
The results of the requests created in construct_requests.
|
484 |
+
"""
|
485 |
+
pass
|
486 |
+
|
487 |
+
@abc.abstractmethod
|
488 |
+
def aggregation(self):
|
489 |
+
"""
|
490 |
+
:returns: {str: [metric_score] -> float}
|
491 |
+
A dictionary where keys are the names of submetrics and values are
|
492 |
+
functions that aggregate a list of metric scores
|
493 |
+
"""
|
494 |
+
pass
|
495 |
+
|
496 |
+
@abc.abstractmethod
|
497 |
+
def higher_is_better(self):
|
498 |
+
"""
|
499 |
+
:returns: {str: bool}
|
500 |
+
A dictionary where keys are the names of submetrics and values are
|
501 |
+
whether a higher value of the submetric is better
|
502 |
+
"""
|
503 |
+
pass
|
504 |
+
|
505 |
+
def get_config(self, key: str) -> Any:
|
506 |
+
return getattr(self._config, key, None)
|
507 |
+
|
508 |
+
@classmethod
|
509 |
+
def count_bytes(cls, doc):
|
510 |
+
"""Used for byte-level perplexity metrics in rolling loglikelihood"""
|
511 |
+
return len(doc.encode("utf-8"))
|
512 |
+
|
513 |
+
@classmethod
|
514 |
+
def count_words(cls, doc):
|
515 |
+
"""Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
|
516 |
+
return len(re.split(r"\s+", doc))
|
517 |
+
|
518 |
+
@utils.positional_deprecated
|
519 |
+
def fewshot_context(
|
520 |
+
self,
|
521 |
+
doc,
|
522 |
+
num_fewshot,
|
523 |
+
rnd=random.Random(1234),
|
524 |
+
description=None,
|
525 |
+
):
|
526 |
+
"""Returns a fewshot context string that is made up of a prepended description
|
527 |
+
(if provided), the `num_fewshot` number of examples, and an appended prompt example.
|
528 |
+
|
529 |
+
:param doc: str
|
530 |
+
The document as returned from training_docs, validation_docs, or test_docs.
|
531 |
+
:param num_fewshot: int
|
532 |
+
The number of fewshot examples to provide in the returned context string.
|
533 |
+
:param rnd: random.Random
|
534 |
+
The pseudo-random number generator used to randomly sample examples.
|
535 |
+
WARNING: This is currently a required arg although it's optionalized with a default `None`.
|
536 |
+
:param description: str
|
537 |
+
The task's description that will be prepended to the fewshot examples.
|
538 |
+
:returns: str
|
539 |
+
The fewshot context.
|
540 |
+
"""
|
541 |
+
if rnd is None:
|
542 |
+
raise ValueError(
|
543 |
+
"A `random.Random` generator argument must be provided to `rnd`"
|
544 |
+
)
|
545 |
+
|
546 |
+
description = description if description else ""
|
547 |
+
|
548 |
+
if num_fewshot == 0:
|
549 |
+
labeled_examples = ""
|
550 |
+
else:
|
551 |
+
# for sets with no training docs, draw from other set *but ensure no overlap with current doc*
|
552 |
+
if self.has_training_docs():
|
553 |
+
fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
|
554 |
+
else:
|
555 |
+
if self._fewshot_docs is None:
|
556 |
+
self._fewshot_docs = list(
|
557 |
+
self.validation_docs()
|
558 |
+
if self.has_validation_docs()
|
559 |
+
else self.test_docs()
|
560 |
+
)
|
561 |
+
|
562 |
+
fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
|
563 |
+
|
564 |
+
# get rid of the doc that's the one we're evaluating, if it's in the fewshot
|
565 |
+
fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
|
566 |
+
|
567 |
+
labeled_examples = (
|
568 |
+
"\n\n".join(
|
569 |
+
[
|
570 |
+
self.doc_to_text(doc) + self.doc_to_target(doc)
|
571 |
+
for doc in fewshotex
|
572 |
+
]
|
573 |
+
)
|
574 |
+
+ "\n\n"
|
575 |
+
)
|
576 |
+
|
577 |
+
example = self.doc_to_text(doc)
|
578 |
+
return description + labeled_examples + example
|
579 |
+
|
580 |
+
def apply_filters(self) -> Optional[List[Instance]]:
|
581 |
+
"""Iterates over FilterEnsembles and applies them to instances"""
|
582 |
+
if hasattr(self, "_filters"):
|
583 |
+
for f in self._filters:
|
584 |
+
f.apply(self._instances)
|
585 |
+
else:
|
586 |
+
eval_logger.warning("No filter defined, passing through instances")
|
587 |
+
return self._instances
|
588 |
+
|
589 |
+
def dump_config(self) -> dict:
|
590 |
+
"""Returns the config as a dictionary."""
|
591 |
+
# TODO: this should only return the overrides applied to a non-YAML task's configuration.
|
592 |
+
# (num_fewshot)
|
593 |
+
return self.config.to_dict()
|
594 |
+
|
595 |
+
def set_config(self, key: str, value: Any, update: bool = False) -> None:
|
596 |
+
"""Set or update the configuration for a given key."""
|
597 |
+
if key is None:
|
598 |
+
raise ValueError("Key must be provided.")
|
599 |
+
|
600 |
+
if update:
|
601 |
+
current_value = getattr(self._config, key, {})
|
602 |
+
if not isinstance(current_value, dict):
|
603 |
+
raise TypeError(
|
604 |
+
f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
|
605 |
+
)
|
606 |
+
current_value.update(value)
|
607 |
+
else:
|
608 |
+
setattr(self._config, key, value)
|
609 |
+
|
610 |
+
def override_metric(self, metric_name: str) -> None:
|
611 |
+
"""
|
612 |
+
Override the default metrics used for evaluation with custom metrics.
|
613 |
+
|
614 |
+
Parameters:
|
615 |
+
- metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
|
616 |
+
"""
|
617 |
+
(
|
618 |
+
self._metric_fn_list,
|
619 |
+
self._aggregation_list,
|
620 |
+
self._metric_fn_kwargs,
|
621 |
+
self._higher_is_better,
|
622 |
+
) = ({}, {}, {}, {})
|
623 |
+
self._metric_fn_list[metric_name] = get_metric(metric_name)
|
624 |
+
self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
|
625 |
+
self._higher_is_better[metric_name] = is_higher_better(metric_name)
|
626 |
+
self._metric_fn_kwargs[metric_name] = {}
|
627 |
+
if not isinstance(self, ConfigurableTask):
|
628 |
+
self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
|
629 |
+
self.aggregation = lambda: {
|
630 |
+
metric_name: get_metric_aggregation(metric_name)
|
631 |
+
}
|
632 |
+
setattr(self._config, "metric_list", [{"metric": metric_name}])
|
633 |
+
setattr(self._config, "process_results", None)
|
634 |
+
|
635 |
+
@property
|
636 |
+
def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
|
637 |
+
if self.has_test_docs():
|
638 |
+
return self.test_docs()
|
639 |
+
elif self.has_validation_docs():
|
640 |
+
return self.validation_docs()
|
641 |
+
else:
|
642 |
+
raise ValueError(
|
643 |
+
f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
|
644 |
+
)
|
645 |
+
|
646 |
+
def doc_iterator(
|
647 |
+
self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
|
648 |
+
) -> Iterator[Tuple[int, Any]]:
|
649 |
+
limit = int(limit) if limit else None
|
650 |
+
doc_iterator = utils.create_iterator(
|
651 |
+
enumerate(self.eval_docs),
|
652 |
+
rank=int(rank),
|
653 |
+
limit=limit,
|
654 |
+
world_size=int(world_size),
|
655 |
+
)
|
656 |
+
return doc_iterator
|
657 |
+
|
658 |
+
|
659 |
+
class ConfigurableTask(Task):
|
660 |
+
VERSION = "Yaml"
|
661 |
+
OUTPUT_TYPE = None
|
662 |
+
CONFIG = None
|
663 |
+
|
664 |
+
def __init__(
|
665 |
+
self,
|
666 |
+
data_dir=None,
|
667 |
+
cache_dir=None,
|
668 |
+
download_mode=None,
|
669 |
+
config: Optional[dict] = None,
|
670 |
+
) -> None: # TODO no super() call here
|
671 |
+
# Get pre-configured attributes
|
672 |
+
self._config = self.CONFIG
|
673 |
+
|
674 |
+
# Use new configurations if there was no preconfiguration
|
675 |
+
if self.config is None:
|
676 |
+
self._config = TaskConfig(**config)
|
677 |
+
# Overwrite configs
|
678 |
+
else:
|
679 |
+
if config is not None:
|
680 |
+
self._config.__dict__.update(config)
|
681 |
+
|
682 |
+
if self.config is None:
|
683 |
+
raise ValueError(
|
684 |
+
"Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
|
685 |
+
)
|
686 |
+
|
687 |
+
if isinstance(self.config.metadata, dict):
|
688 |
+
if "version" in self.config.metadata:
|
689 |
+
self.VERSION = self.config.metadata["version"]
|
690 |
+
|
691 |
+
if self.config.output_type is not None:
|
692 |
+
if self.config.output_type not in ALL_OUTPUT_TYPES:
|
693 |
+
raise ValueError(
|
694 |
+
f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
|
695 |
+
)
|
696 |
+
self.OUTPUT_TYPE = self.config.output_type
|
697 |
+
|
698 |
+
if self.config.dataset_path is not None:
|
699 |
+
self.DATASET_PATH = self.config.dataset_path
|
700 |
+
|
701 |
+
if self.config.dataset_name is not None:
|
702 |
+
self.DATASET_NAME = self.config.dataset_name
|
703 |
+
|
704 |
+
self._metric_fn_list = {}
|
705 |
+
self._metric_fn_kwargs = {}
|
706 |
+
self._aggregation_list = {}
|
707 |
+
self._higher_is_better = {}
|
708 |
+
|
709 |
+
if self.config.metric_list is None:
|
710 |
+
# TODO: handle this in TaskConfig.__post_init__ ?
|
711 |
+
_metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]
|
712 |
+
|
713 |
+
for metric_name in _metric_list:
|
714 |
+
self._metric_fn_list[metric_name] = get_metric(metric_name)
|
715 |
+
self._metric_fn_kwargs[metric_name] = {}
|
716 |
+
self._aggregation_list[metric_name] = get_metric_aggregation(
|
717 |
+
metric_name
|
718 |
+
)
|
719 |
+
self._higher_is_better[metric_name] = is_higher_better(metric_name)
|
720 |
+
else:
|
721 |
+
for metric_config in self.config.metric_list:
|
722 |
+
if "metric" not in metric_config:
|
723 |
+
raise ValueError(
|
724 |
+
"'metric' key not provided for an entry in 'metric_list', must be specified!"
|
725 |
+
)
|
726 |
+
metric_name = metric_config["metric"]
|
727 |
+
kwargs = {
|
728 |
+
key: metric_config[key]
|
729 |
+
for key in metric_config
|
730 |
+
if key
|
731 |
+
not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
|
732 |
+
}
|
733 |
+
hf_evaluate_metric = (
|
734 |
+
"hf_evaluate" in metric_config
|
735 |
+
and metric_config["hf_evaluate"] is True
|
736 |
+
)
|
737 |
+
|
738 |
+
if self.config.process_results is not None:
|
739 |
+
self._metric_fn_list[metric_name] = None
|
740 |
+
self._metric_fn_kwargs[metric_name] = {}
|
741 |
+
elif callable(metric_name):
|
742 |
+
metric_fn = metric_name.__call__
|
743 |
+
metric_name = metric_name.__name__
|
744 |
+
self._metric_fn_list[metric_name] = metric_fn
|
745 |
+
self._metric_fn_kwargs[metric_name] = kwargs
|
746 |
+
else:
|
747 |
+
self._metric_fn_list[metric_name] = get_metric(
|
748 |
+
metric_name, hf_evaluate_metric
|
749 |
+
)
|
750 |
+
self._metric_fn_kwargs[metric_name] = kwargs
|
751 |
+
|
752 |
+
if "aggregation" in metric_config:
|
753 |
+
agg_name = metric_config["aggregation"]
|
754 |
+
if isinstance(agg_name, str):
|
755 |
+
self._aggregation_list[metric_name] = get_aggregation(agg_name)
|
756 |
+
elif callable(agg_name): # noqa: E721
|
757 |
+
self._aggregation_list[metric_name] = metric_config[
|
758 |
+
"aggregation"
|
759 |
+
]
|
760 |
+
else:
|
761 |
+
INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
|
762 |
+
metric_agg = get_metric_aggregation(metric_name)
|
763 |
+
eval_logger.warning(
|
764 |
+
f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
|
765 |
+
f"using default "
|
766 |
+
f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
|
767 |
+
)
|
768 |
+
self._aggregation_list[metric_name] = metric_agg
|
769 |
+
|
770 |
+
if "higher_is_better" in metric_config:
|
771 |
+
self._higher_is_better[metric_name] = metric_config[
|
772 |
+
"higher_is_better"
|
773 |
+
]
|
774 |
+
else:
|
775 |
+
eval_logger.warning(
|
776 |
+
f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
|
777 |
+
f"using default "
|
778 |
+
f"higher_is_better={is_higher_better(metric_name)}"
|
779 |
+
)
|
780 |
+
self._higher_is_better[metric_name] = is_higher_better(metric_name)
|
781 |
+
|
782 |
+
self.download(self.config.dataset_kwargs)
|
783 |
+
self._training_docs = None
|
784 |
+
self._fewshot_docs = None
|
785 |
+
|
786 |
+
if self.config.filter_list is not None:
|
787 |
+
self._filters = []
|
788 |
+
for filter_config in self.config.filter_list:
|
789 |
+
filter_name = filter_config["name"]
|
790 |
+
filter_functions = filter_config["filter"]
|
791 |
+
components = []
|
792 |
+
for function in filter_functions:
|
793 |
+
kwargs = {
|
794 |
+
key: function[key] for key in function if key != "function"
|
795 |
+
}
|
796 |
+
components.append([function["function"], kwargs])
|
797 |
+
filter_pipeline = build_filter_ensemble(filter_name, components)
|
798 |
+
self._filters.append(filter_pipeline)
|
799 |
+
else:
|
800 |
+
self._filters = [build_filter_ensemble("none", [["take_first", None]])]
|
801 |
+
|
802 |
+
if self.config.use_prompt is not None:
|
803 |
+
eval_logger.info(f"loading prompt {self.config.use_prompt}")
|
804 |
+
self.prompt = get_prompt(
|
805 |
+
self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
|
806 |
+
)
|
807 |
+
else:
|
808 |
+
self.prompt = None
|
809 |
+
|
810 |
+
if self.fewshot_docs() is not None:
|
811 |
+
self.sampler = samplers.get_sampler(
|
812 |
+
self.config.fewshot_config.get("sampler", "default")
|
813 |
+
if self.config.fewshot_config
|
814 |
+
else "default"
|
815 |
+
)(list(self.fewshot_docs()), self, rnd=random.Random(1234))
|
816 |
+
|
817 |
+
self.task_docs = self.eval_docs
|
818 |
+
|
819 |
+
# Test One Doc
|
820 |
+
self.features = list(self.task_docs.features.keys())
|
821 |
+
self.multiple_input = 0
|
822 |
+
self.multiple_target = 0
|
823 |
+
test_doc = self.task_docs[0]
|
824 |
+
test_text = self.doc_to_text(test_doc)
|
825 |
+
test_target = self.doc_to_target(test_doc)
|
826 |
+
|
827 |
+
if self.config.doc_to_choice is not None:
|
828 |
+
test_choice = self.doc_to_choice(test_doc)
|
829 |
+
if not isinstance(test_choice, list):
|
830 |
+
eval_logger.error("doc_to_choice must return list")
|
831 |
+
else:
|
832 |
+
num_choice = len(test_choice)
|
833 |
+
|
834 |
+
if isinstance(test_text, int):
|
835 |
+
self.multiple_input = num_choice
|
836 |
+
else:
|
837 |
+
test_choice = None
|
838 |
+
|
839 |
+
if isinstance(test_target, list):
|
840 |
+
self.multiple_target = len(test_target)
|
841 |
+
else:
|
842 |
+
if (isinstance(test_target, int)) and (test_choice is not None):
|
843 |
+
test_target = test_choice[test_target]
|
844 |
+
else:
|
845 |
+
test_target = str(test_target)
|
846 |
+
|
847 |
+
if test_choice is not None:
|
848 |
+
check_choices = test_choice
|
849 |
+
else:
|
850 |
+
check_choices = [test_target]
|
851 |
+
if self.config.doc_to_choice is not None:
|
852 |
+
for choice in check_choices:
|
853 |
+
choice_has_whitespace = True if choice[0].isspace() else False
|
854 |
+
delimiter_has_whitespace = (
|
855 |
+
True
|
856 |
+
if self.config.target_delimiter.rstrip()
|
857 |
+
!= self.config.target_delimiter
|
858 |
+
else False
|
859 |
+
)
|
860 |
+
|
861 |
+
if delimiter_has_whitespace and choice_has_whitespace:
|
862 |
+
eval_logger.debug(
|
863 |
+
f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
|
864 |
+
)
|
865 |
+
elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
|
866 |
+
eval_logger.debug(
|
867 |
+
f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
|
868 |
+
)
|
869 |
+
|
870 |
+
def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
|
871 |
+
self.dataset = datasets.load_dataset(
|
872 |
+
path=self.DATASET_PATH,
|
873 |
+
name=self.DATASET_NAME,
|
874 |
+
**dataset_kwargs if dataset_kwargs is not None else {},
|
875 |
+
)
|
876 |
+
|
877 |
+
def has_training_docs(self) -> bool:
|
878 |
+
if self.config.training_split is not None:
|
879 |
+
return True
|
880 |
+
else:
|
881 |
+
return False
|
882 |
+
|
883 |
+
def has_validation_docs(self) -> bool:
|
884 |
+
if self.config.validation_split is not None:
|
885 |
+
return True
|
886 |
+
else:
|
887 |
+
return False
|
888 |
+
|
889 |
+
def has_test_docs(self) -> bool:
|
890 |
+
if self.config.test_split is not None:
|
891 |
+
return True
|
892 |
+
else:
|
893 |
+
return False
|
894 |
+
|
895 |
+
def training_docs(self) -> datasets.Dataset:
|
896 |
+
if self.has_training_docs():
|
897 |
+
if self.config.process_docs is not None:
|
898 |
+
return self.config.process_docs(
|
899 |
+
self.dataset[self.config.training_split]
|
900 |
+
)
|
901 |
+
return self.dataset[self.config.training_split]
|
902 |
+
|
903 |
+
def validation_docs(self) -> datasets.Dataset:
|
904 |
+
if self.has_validation_docs():
|
905 |
+
if self.config.process_docs is not None:
|
906 |
+
return self.config.process_docs(
|
907 |
+
self.dataset[self.config.validation_split]
|
908 |
+
)
|
909 |
+
return self.dataset[self.config.validation_split]
|
910 |
+
|
911 |
+
def test_docs(self) -> datasets.Dataset:
|
912 |
+
if self.has_test_docs():
|
913 |
+
if self.config.process_docs is not None:
|
914 |
+
return self.config.process_docs(self.dataset[self.config.test_split])
|
915 |
+
return self.dataset[self.config.test_split]
|
916 |
+
|
917 |
+
def fewshot_docs(self):
|
918 |
+
if self.config.fewshot_split is not None:
|
919 |
+
if self.config.process_docs is not None:
|
920 |
+
return self.config.process_docs(self.dataset[self.config.fewshot_split])
|
921 |
+
return self.dataset[self.config.fewshot_split]
|
922 |
+
else:
|
923 |
+
if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
|
924 |
+
eval_logger.warning(
|
925 |
+
f"Task '{self.config.task}': "
|
926 |
+
"num_fewshot > 0 but fewshot_split is None. "
|
927 |
+
"using preconfigured rule."
|
928 |
+
)
|
929 |
+
return super().fewshot_docs()
|
930 |
+
|
931 |
+
@utils.positional_deprecated
|
932 |
+
def fewshot_context(self, doc: str, num_fewshot: int) -> str:
|
933 |
+
"""Returns a fewshot context string that is made up of a prepended description
|
934 |
+
(if provided), the `num_fewshot` number of examples, and an appended prompt example.
|
935 |
+
|
936 |
+
:param doc: str
|
937 |
+
The document as returned from training_docs, validation_docs, or test_docs.
|
938 |
+
:param num_fewshot: int
|
939 |
+
The number of fewshot examples to provide in the returned context string.
|
940 |
+
:returns: str
|
941 |
+
The fewshot context.
|
942 |
+
"""
|
943 |
+
if description := self.config.description:
|
944 |
+
description = utils.apply_template(self.config.description, doc)
|
945 |
+
|
946 |
+
if num_fewshot == 0:
|
947 |
+
# always prepend the (possibly empty) task description
|
948 |
+
labeled_examples = description
|
949 |
+
else:
|
950 |
+
labeled_examples = description + self.sampler.get_context(doc, num_fewshot)
|
951 |
+
|
952 |
+
example = self.doc_to_text(doc)
|
953 |
+
if self.multiple_input:
|
954 |
+
return labeled_examples
|
955 |
+
else:
|
956 |
+
if isinstance(example, str):
|
957 |
+
return labeled_examples + example
|
958 |
+
elif isinstance(example, list):
|
959 |
+
return [labeled_examples + ex for ex in example]
|
960 |
+
elif isinstance(example, int):
|
961 |
+
if self.config.doc_to_choice is not None:
|
962 |
+
choices = self.doc_to_choice(doc)
|
963 |
+
return labeled_examples + choices[example]
|
964 |
+
else:
|
965 |
+
return labeled_examples + str(example)
|
966 |
+
|
967 |
+
def apply_filters(self):
|
968 |
+
"""Iterates over FilterEnsembles and applies them to instances"""
|
969 |
+
if hasattr(self, "_filters"):
|
970 |
+
for f in self._filters:
|
971 |
+
f.apply(self._instances)
|
972 |
+
else:
|
973 |
+
eval_logger.warning("No filter defined, passing through instances")
|
974 |
+
return self._instances
|
975 |
+
|
976 |
+
def should_decontaminate(self):
|
977 |
+
return self.config.should_decontaminate
|
978 |
+
|
979 |
+
def doc_to_decontamination_query(self, doc):
|
980 |
+
if self.config.should_decontaminate:
|
981 |
+
if self.config.doc_to_decontamination_query is None:
|
982 |
+
return self.doc_to_text(doc)
|
983 |
+
else:
|
984 |
+
doc_to_decontamination_query = self.config.doc_to_decontamination_query
|
985 |
+
if doc_to_decontamination_query in self.features:
|
986 |
+
return doc[doc_to_decontamination_query]
|
987 |
+
elif callable(doc_to_decontamination_query):
|
988 |
+
return doc_to_decontamination_query(doc)
|
989 |
+
else:
|
990 |
+
return ast.literal_eval(
|
991 |
+
utils.apply_template(
|
992 |
+
self.config.doc_to_decontamination_query, doc
|
993 |
+
)
|
994 |
+
)
|
995 |
+
|
996 |
+
def _process_doc(self, doc: dict) -> dict:
|
997 |
+
"""
|
998 |
+
Override this to process (detokenize, strip, replace, etc.) individual
|
999 |
+
documents. This can be used in a map over documents of a data split.
|
1000 |
+
E.g. `map(self._process_doc, self.dataset["validation"])`
|
1001 |
+
|
1002 |
+
:return: dict
|
1003 |
+
The processed version of the specified `doc`.
|
1004 |
+
"""
|
1005 |
+
return doc
|
1006 |
+
|
1007 |
+
def doc_to_text(self, doc):
|
1008 |
+
if self.prompt is not None:
|
1009 |
+
doc_to_text = self.prompt
|
1010 |
+
else:
|
1011 |
+
doc_to_text = self.config.doc_to_text
|
1012 |
+
|
1013 |
+
if isinstance(doc_to_text, int):
|
1014 |
+
return doc_to_text
|
1015 |
+
elif isinstance(doc_to_text, str):
|
1016 |
+
if doc_to_text in self.features:
|
1017 |
+
# if self.config.doc_to_choice is not None:
|
1018 |
+
# return self.doc_to_choice(doc)[doc[doc_to_text]]
|
1019 |
+
# else:
|
1020 |
+
return doc[doc_to_text]
|
1021 |
+
else:
|
1022 |
+
text_string = utils.apply_template(doc_to_text, doc)
|
1023 |
+
if text_string.isdigit() and self._config.doc_to_choice is not None:
|
1024 |
+
return ast.literal_eval(text_string)
|
1025 |
+
else:
|
1026 |
+
return text_string
|
1027 |
+
elif callable(doc_to_text):
|
1028 |
+
return doc_to_text(doc)
|
1029 |
+
# Used when applying a Promptsource template
|
1030 |
+
elif hasattr(doc_to_text, "apply"):
|
1031 |
+
applied_prompt = doc_to_text.apply(doc)
|
1032 |
+
if len(applied_prompt) == 2:
|
1033 |
+
return applied_prompt[0]
|
1034 |
+
else:
|
1035 |
+
eval_logger.warning("Applied prompt returns empty string")
|
1036 |
+
return self.config.fewshot_delimiter
|
1037 |
+
else:
|
1038 |
+
print(type(doc_to_text))
|
1039 |
+
raise TypeError
|
1040 |
+
|
1041 |
+
def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
|
1042 |
+
if self.prompt is not None:
|
1043 |
+
doc_to_target = self.prompt
|
1044 |
+
else:
|
1045 |
+
doc_to_target = self.config.doc_to_target
|
1046 |
+
|
1047 |
+
if isinstance(doc_to_target, int):
|
1048 |
+
return doc_to_target
|
1049 |
+
elif isinstance(doc_to_target, str):
|
1050 |
+
if doc_to_target in self.features:
|
1051 |
+
# if self.config.doc_to_choice is not None:
|
1052 |
+
# return self.doc_to_choice(doc)[doc[doc_to_target]]
|
1053 |
+
# else:
|
1054 |
+
return doc[doc_to_target]
|
1055 |
+
else:
|
1056 |
+
target_string = utils.apply_template(doc_to_target, doc)
|
1057 |
+
if target_string.isdigit() and self._config.doc_to_choice is not None:
|
1058 |
+
return ast.literal_eval(target_string)
|
1059 |
+
elif (
|
1060 |
+
len(target_string) >= 2
|
1061 |
+
and (target_string[0] == "[")
|
1062 |
+
and (target_string[-1] == "]")
|
1063 |
+
):
|
1064 |
+
try:
|
1065 |
+
return ast.literal_eval(target_string)
|
1066 |
+
except (SyntaxError, ValueError):
|
1067 |
+
return target_string
|
1068 |
+
else:
|
1069 |
+
return target_string
|
1070 |
+
elif isinstance(doc_to_target, list):
|
1071 |
+
return doc_to_target
|
1072 |
+
elif callable(doc_to_target):
|
1073 |
+
return doc_to_target(doc)
|
1074 |
+
# Used when applying a Promptsource template
|
1075 |
+
elif hasattr(doc_to_target, "apply"):
|
1076 |
+
applied_prompt = doc_to_target.apply(doc)
|
1077 |
+
if len(applied_prompt) == 2:
|
1078 |
+
return applied_prompt[1]
|
1079 |
+
else:
|
1080 |
+
eval_logger.warning("Applied prompt returns empty string")
|
1081 |
+
return self.config.fewshot_delimiter
|
1082 |
+
else:
|
1083 |
+
raise TypeError
|
1084 |
+
|
1085 |
+
def doc_to_choice(self, doc: Any) -> List[str]:
|
1086 |
+
if self.prompt is not None:
|
1087 |
+
doc_to_choice = self.prompt
|
1088 |
+
elif self.config.doc_to_choice is None:
|
1089 |
+
eval_logger.error("doc_to_choice was called but not set in config")
|
1090 |
+
else:
|
1091 |
+
doc_to_choice = self.config.doc_to_choice
|
1092 |
+
|
1093 |
+
if isinstance(doc_to_choice, str):
|
1094 |
+
if doc_to_choice in self.features:
|
1095 |
+
return doc[doc_to_choice]
|
1096 |
+
else:
|
1097 |
+
return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
|
1098 |
+
elif isinstance(doc_to_choice, list):
|
1099 |
+
return doc_to_choice
|
1100 |
+
elif isinstance(doc_to_choice, dict):
|
1101 |
+
return list(doc_to_choice.values())
|
1102 |
+
elif callable(doc_to_choice):
|
1103 |
+
return doc_to_choice(doc)
|
1104 |
+
elif hasattr(doc_to_choice, "get_answer_choices_list"):
|
1105 |
+
return doc_to_choice.get_answer_choices_list(doc)
|
1106 |
+
else:
|
1107 |
+
raise TypeError
|
1108 |
+
|
1109 |
+
def construct_requests(
|
1110 |
+
self, doc: dict, ctx: str, **kwargs
|
1111 |
+
) -> Union[List[Instance], Instance]:
|
1112 |
+
if self.OUTPUT_TYPE == "loglikelihood":
|
1113 |
+
arguments = (ctx, self.doc_to_target(doc))
|
1114 |
+
elif self.OUTPUT_TYPE == "loglikelihood_rolling":
|
1115 |
+
arguments = (self.doc_to_target(doc),)
|
1116 |
+
elif self.OUTPUT_TYPE == "multiple_choice":
|
1117 |
+
choices = self.doc_to_choice(doc)
|
1118 |
+
target_delimiter = self.config.target_delimiter
|
1119 |
+
if self.multiple_input:
|
1120 |
+
# If there are multiple inputs, choices are placed in the ctx
|
1121 |
+
cont = self.doc_to_target(doc)
|
1122 |
+
arguments = [
|
1123 |
+
(ctx + choice, f"{target_delimiter}{cont}") for choice in choices
|
1124 |
+
]
|
1125 |
+
else:
|
1126 |
+
# Otherwise they are placed in the continuation
|
1127 |
+
arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
|
1128 |
+
|
1129 |
+
request_list = [
|
1130 |
+
Instance(
|
1131 |
+
request_type="loglikelihood",
|
1132 |
+
doc=doc,
|
1133 |
+
arguments=arg,
|
1134 |
+
idx=i,
|
1135 |
+
**kwargs,
|
1136 |
+
)
|
1137 |
+
for i, arg in enumerate(arguments)
|
1138 |
+
]
|
1139 |
+
# TODO: we should raise a warning telling users this will at most ~2x runtime.
|
1140 |
+
if "acc_mutual_info" in self._metric_fn_list.keys():
|
1141 |
+
# if we are calculating multiple choice accuracy
|
1142 |
+
# using mutual information instead of raw loglikelihood as metric, need unconditional lls.
|
1143 |
+
|
1144 |
+
# here mutual info refers to calculating
|
1145 |
+
# log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
|
1146 |
+
# in other words normalizing by subtracting the unconditional logprob of each choice.
|
1147 |
+
request_list.extend(
|
1148 |
+
[
|
1149 |
+
Instance(
|
1150 |
+
request_type="loglikelihood",
|
1151 |
+
doc=doc,
|
1152 |
+
arguments=("", "{}".format(choice)),
|
1153 |
+
idx=i,
|
1154 |
+
**kwargs,
|
1155 |
+
)
|
1156 |
+
for i, choice in enumerate(choices)
|
1157 |
+
]
|
1158 |
+
)
|
1159 |
+
return request_list
|
1160 |
+
|
1161 |
+
elif self.OUTPUT_TYPE == "generate_until":
|
1162 |
+
arguments = (ctx, deepcopy(self.config.generation_kwargs))
|
1163 |
+
|
1164 |
+
return Instance(
|
1165 |
+
request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
def process_results(self, doc, results):
|
1169 |
+
if callable(self.config.process_results):
|
1170 |
+
return self.config.process_results(doc, results)
|
1171 |
+
|
1172 |
+
result_dict = {}
|
1173 |
+
use_metric = list(self._metric_fn_list.keys())
|
1174 |
+
if self.OUTPUT_TYPE == "loglikelihood":
|
1175 |
+
results = results[0]
|
1176 |
+
ll, is_greedy = results
|
1177 |
+
return {
|
1178 |
+
**({"perplexity": ll} if "perplexity" in use_metric else {}),
|
1179 |
+
**({"acc": int(is_greedy)} if "acc" in use_metric else {}),
|
1180 |
+
}
|
1181 |
+
elif self.OUTPUT_TYPE == "loglikelihood_rolling":
|
1182 |
+
(loglikelihood,) = results
|
1183 |
+
_words = self.count_words(self.doc_to_target(doc))
|
1184 |
+
_bytes = self.count_bytes(self.doc_to_target(doc))
|
1185 |
+
return {
|
1186 |
+
**(
|
1187 |
+
{"word_perplexity": (loglikelihood, _words)}
|
1188 |
+
if "word_perplexity" in use_metric
|
1189 |
+
else {}
|
1190 |
+
),
|
1191 |
+
**(
|
1192 |
+
{"byte_perplexity": (loglikelihood, _bytes)}
|
1193 |
+
if "byte_perplexity" in use_metric
|
1194 |
+
else {}
|
1195 |
+
),
|
1196 |
+
**(
|
1197 |
+
{"bits_per_byte": (loglikelihood, _bytes)}
|
1198 |
+
if "bits_per_byte" in use_metric
|
1199 |
+
else {}
|
1200 |
+
),
|
1201 |
+
}
|
1202 |
+
elif self.OUTPUT_TYPE == "multiple_choice":
|
1203 |
+
lls, is_greedy = zip(*results)
|
1204 |
+
|
1205 |
+
# retrieve choices in List[str] form, to compute choice lengths, etc.
|
1206 |
+
choices = self.doc_to_choice(doc)
|
1207 |
+
completion_len = np.array([float(len(i)) for i in choices])
|
1208 |
+
|
1209 |
+
if (
|
1210 |
+
2 * len(choices) == len(lls)
|
1211 |
+
and "acc_mutual_info" in self._metric_fn_list.keys()
|
1212 |
+
):
|
1213 |
+
# then we are doing mutual info.
|
1214 |
+
# this stores the "dryrun" / unconditional answer loglikelihoods
|
1215 |
+
lls_unconditional = lls[1::2]
|
1216 |
+
if len(lls_unconditional) != len(choices):
|
1217 |
+
raise ValueError
|
1218 |
+
# and this stores our "regular" conditional loglikelihoods
|
1219 |
+
lls = lls[::2]
|
1220 |
+
|
1221 |
+
pred = np.argmax(lls)
|
1222 |
+
pred_norm = np.argmax(lls / completion_len)
|
1223 |
+
|
1224 |
+
if self.multiple_input:
|
1225 |
+
gold = self.doc_to_text(doc)
|
1226 |
+
else:
|
1227 |
+
gold = self.doc_to_target(doc)
|
1228 |
+
|
1229 |
+
gold_index_error = False
|
1230 |
+
if isinstance(gold, list):
|
1231 |
+
gold = [i if i < len(choices) else -100 for i in gold]
|
1232 |
+
if -100 in gold:
|
1233 |
+
gold_index_error = True
|
1234 |
+
else:
|
1235 |
+
if isinstance(gold, int):
|
1236 |
+
gold = gold if gold < len(choices) else -100
|
1237 |
+
elif isinstance(gold, str):
|
1238 |
+
gold = choices.index(gold) if gold in choices else -100
|
1239 |
+
|
1240 |
+
if gold == -100:
|
1241 |
+
gold_index_error = True
|
1242 |
+
|
1243 |
+
if gold_index_error:
|
1244 |
+
eval_logger.warning(
|
1245 |
+
f"Label index was not in within range of available choices,"
|
1246 |
+
f"Sample:\n\n{doc}\n\n"
|
1247 |
+
)
|
1248 |
+
|
1249 |
+
if self.multiple_target:
|
1250 |
+
acc = 1.0 if pred in gold else 0.0
|
1251 |
+
acc_norm = 1.0 if pred_norm in gold else 0.0
|
1252 |
+
exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
|
1253 |
+
else:
|
1254 |
+
acc = 1.0 if pred == gold else 0.0
|
1255 |
+
acc_norm = 1.0 if pred_norm == gold else 0.0
|
1256 |
+
# TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
|
1257 |
+
exact_match = int(is_greedy[gold]) if gold != -100 else 0
|
1258 |
+
|
1259 |
+
prob_norm = utils.softmax(lls)
|
1260 |
+
|
1261 |
+
# TODO use keyword arguments to the metric?
|
1262 |
+
# gold, pred, norm stuff, the original lls,
|
1263 |
+
result_dict = {
|
1264 |
+
**({"acc": acc} if "acc" in use_metric else {}),
|
1265 |
+
**({"f1": (gold, pred)} if "f1" in use_metric else {}),
|
1266 |
+
**({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
|
1267 |
+
**({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
|
1268 |
+
**({"exact_match": exact_match} if "exact_match" in use_metric else {}),
|
1269 |
+
**(
|
1270 |
+
{"brier_score": (gold, prob_norm)}
|
1271 |
+
if "brier_score" in use_metric
|
1272 |
+
else {}
|
1273 |
+
),
|
1274 |
+
}
|
1275 |
+
|
1276 |
+
if "acc_mutual_info" in use_metric:
|
1277 |
+
lls_mutual_info = [
|
1278 |
+
ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
|
1279 |
+
]
|
1280 |
+
acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
|
1281 |
+
result_dict["acc_mutual_info"] = acc_mutual_info
|
1282 |
+
|
1283 |
+
elif self.OUTPUT_TYPE == "generate_until":
|
1284 |
+
gold = self.doc_to_target(doc)
|
1285 |
+
result = results[0]
|
1286 |
+
if self.config.doc_to_choice is not None:
|
1287 |
+
# If you set doc_to_choice,
|
1288 |
+
# it assumes that doc_to_target returns a number.
|
1289 |
+
choices = self.doc_to_choice(doc)
|
1290 |
+
gold = choices[gold]
|
1291 |
+
# we expect multiple_targets to be a list.
|
1292 |
+
elif self.multiple_target:
|
1293 |
+
gold = list(gold)
|
1294 |
+
elif type(gold) != type(result):
|
1295 |
+
# cast gold to the same type as result
|
1296 |
+
gold = type(result)(gold)
|
1297 |
+
|
1298 |
+
for metric in self._metric_fn_list.keys():
|
1299 |
+
if self.multiple_target:
|
1300 |
+
# in the case where we have multiple targets,
|
1301 |
+
# return true if any are true
|
1302 |
+
# TODO: this may break for multipLe_target, non zero-or-1 metrics
|
1303 |
+
scores = []
|
1304 |
+
if not isinstance(gold, list):
|
1305 |
+
# sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
|
1306 |
+
# print(gold)
|
1307 |
+
gold = [gold]
|
1308 |
+
if metric == "exact_match":
|
1309 |
+
result = [result for _ in range(len(gold))]
|
1310 |
+
scores = self._metric_fn_list[metric](
|
1311 |
+
references=gold,
|
1312 |
+
predictions=result,
|
1313 |
+
**self._metric_fn_kwargs[metric],
|
1314 |
+
)[metric]
|
1315 |
+
result_score = 1.0 if scores > 0.0 else 0.0
|
1316 |
+
else:
|
1317 |
+
for gold_option in gold:
|
1318 |
+
try:
|
1319 |
+
result_score = self._metric_fn_list[metric](
|
1320 |
+
references=[gold_option],
|
1321 |
+
predictions=[result],
|
1322 |
+
**self._metric_fn_kwargs[metric],
|
1323 |
+
)
|
1324 |
+
except (
|
1325 |
+
TypeError
|
1326 |
+
): # TODO: this is hacky and I don't want to do it
|
1327 |
+
result_score = self._metric_fn_list[metric](
|
1328 |
+
[gold_option, result]
|
1329 |
+
)
|
1330 |
+
if isinstance(result_score, dict):
|
1331 |
+
# TODO: this handles the case where HF evaluate returns a dict.
|
1332 |
+
result_score = result_score[metric]
|
1333 |
+
scores.append(result_score)
|
1334 |
+
if any(scores):
|
1335 |
+
result_score = 1.0
|
1336 |
+
else:
|
1337 |
+
result_score = 0.0
|
1338 |
+
else:
|
1339 |
+
try:
|
1340 |
+
result_score = self._metric_fn_list[metric](
|
1341 |
+
references=[gold],
|
1342 |
+
predictions=[result],
|
1343 |
+
**self._metric_fn_kwargs[metric],
|
1344 |
+
)
|
1345 |
+
except TypeError: # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
|
1346 |
+
result_score = self._metric_fn_list[metric]([gold, result])
|
1347 |
+
if isinstance(result_score, dict):
|
1348 |
+
# TODO: this handles the case where HF evaluate returns a dict.
|
1349 |
+
result_score = result_score[metric]
|
1350 |
+
result_dict[metric] = result_score
|
1351 |
+
else:
|
1352 |
+
raise ValueError(
|
1353 |
+
f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
|
1354 |
+
"'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
return result_dict
|
1358 |
+
|
1359 |
+
def aggregation(self) -> dict:
|
1360 |
+
return self._aggregation_list
|
1361 |
+
|
1362 |
+
def higher_is_better(self) -> dict:
|
1363 |
+
return self._higher_is_better
|
1364 |
+
|
1365 |
+
def get_config(self, key: str) -> Any:
|
1366 |
+
return getattr(self._config, key, None)
|
1367 |
+
|
1368 |
+
def __repr__(self):
|
1369 |
+
return (
|
1370 |
+
f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
|
1371 |
+
f"group_name={getattr(self.config, 'group', None)},"
|
1372 |
+
f"output_type={self.OUTPUT_TYPE},"
|
1373 |
+
f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
|
1374 |
+
f"num_samples={len(self.eval_docs)})"
|
1375 |
+
)
|
1376 |
+
|
1377 |
+
|
1378 |
+
class MultipleChoiceTask(Task):
|
1379 |
+
OUTPUT_TYPE = "loglikelihood"
|
1380 |
+
|
1381 |
+
def doc_to_target(self, doc: dict) -> str:
|
1382 |
+
return " " + doc["choices"][doc["gold"]]
|
1383 |
+
|
1384 |
+
def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
|
1385 |
+
# TODO: add mutual info here?
|
1386 |
+
return [
|
1387 |
+
Instance(
|
1388 |
+
request_type="loglikelihood",
|
1389 |
+
doc=doc,
|
1390 |
+
arguments=(ctx, " {}".format(choice)),
|
1391 |
+
idx=i,
|
1392 |
+
**kwargs,
|
1393 |
+
)
|
1394 |
+
for i, choice in enumerate(doc["choices"])
|
1395 |
+
]
|
1396 |
+
|
1397 |
+
def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
|
1398 |
+
results = [
|
1399 |
+
res[0] for res in results
|
1400 |
+
] # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
|
1401 |
+
gold = doc["gold"]
|
1402 |
+
|
1403 |
+
acc = 1.0 if np.argmax(results) == gold else 0.0
|
1404 |
+
completion_len = np.array([float(len(i)) for i in doc["choices"]])
|
1405 |
+
acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
|
1406 |
+
|
1407 |
+
return {
|
1408 |
+
"acc": acc,
|
1409 |
+
"acc_norm": acc_norm,
|
1410 |
+
}
|
1411 |
+
|
1412 |
+
def higher_is_better(self) -> dict:
|
1413 |
+
return {
|
1414 |
+
"acc": True,
|
1415 |
+
"acc_norm": True,
|
1416 |
+
}
|
1417 |
+
|
1418 |
+
def aggregation(self) -> dict:
|
1419 |
+
return {
|
1420 |
+
"acc": mean,
|
1421 |
+
"acc_norm": mean,
|
1422 |
+
}
|
1423 |
+
|
1424 |
+
|
1425 |
+
class PerplexityTask(Task):
|
1426 |
+
OUTPUT_TYPE = "loglikelihood_rolling"
|
1427 |
+
|
1428 |
+
def has_training_docs(self) -> bool:
|
1429 |
+
return False
|
1430 |
+
|
1431 |
+
def fewshot_examples(self, k: int, rnd) -> List:
|
1432 |
+
if k != 0:
|
1433 |
+
raise ValueError(
|
1434 |
+
"The number of fewshot examples must be 0 for perplexity tasks."
|
1435 |
+
)
|
1436 |
+
return []
|
1437 |
+
|
1438 |
+
def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
|
1439 |
+
if num_fewshot != 0:
|
1440 |
+
raise ValueError(
|
1441 |
+
"The number of fewshot examples must be 0 for perplexity tasks."
|
1442 |
+
)
|
1443 |
+
|
1444 |
+
return ""
|
1445 |
+
|
1446 |
+
def higher_is_better(self) -> dict:
|
1447 |
+
return {
|
1448 |
+
"word_perplexity": False,
|
1449 |
+
"byte_perplexity": False,
|
1450 |
+
"bits_per_byte": False,
|
1451 |
+
}
|
1452 |
+
|
1453 |
+
def doc_to_decontamination_query(self, doc):
|
1454 |
+
return doc
|
1455 |
+
|
1456 |
+
def doc_to_text(self, doc) -> str:
|
1457 |
+
return ""
|
1458 |
+
|
1459 |
+
def doc_to_target(self, doc):
|
1460 |
+
return doc
|
1461 |
+
|
1462 |
+
def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
|
1463 |
+
if bool(ctx):
|
1464 |
+
raise ValueError
|
1465 |
+
|
1466 |
+
return Instance(
|
1467 |
+
request_type=self.OUTPUT_TYPE,
|
1468 |
+
doc=doc,
|
1469 |
+
arguments=(self.doc_to_target(doc),),
|
1470 |
+
idx=0,
|
1471 |
+
**kwargs,
|
1472 |
+
)
|
1473 |
+
|
1474 |
+
def process_results(self, doc: dict, results: Tuple[float]) -> dict:
|
1475 |
+
(loglikelihood,) = results
|
1476 |
+
words = self.count_words(self.doc_to_target(doc))
|
1477 |
+
bytes_ = self.count_bytes(self.doc_to_target(doc))
|
1478 |
+
return {
|
1479 |
+
"word_perplexity": (loglikelihood, words),
|
1480 |
+
"byte_perplexity": (loglikelihood, bytes_),
|
1481 |
+
"bits_per_byte": (loglikelihood, bytes_),
|
1482 |
+
}
|
1483 |
+
|
1484 |
+
def aggregation(self) -> dict:
|
1485 |
+
return {
|
1486 |
+
"word_perplexity": weighted_perplexity,
|
1487 |
+
"byte_perplexity": weighted_perplexity,
|
1488 |
+
"bits_per_byte": bits_per_byte,
|
1489 |
+
}
|
1490 |
+
|
1491 |
+
@classmethod
|
1492 |
+
def count_bytes(cls, doc) -> int:
|
1493 |
+
return len(doc.encode("utf-8"))
|
1494 |
+
|
1495 |
+
@classmethod
|
1496 |
+
def count_words(cls, doc) -> int:
|
1497 |
+
"""Downstream tasks with custom word boundaries should override this!"""
|
1498 |
+
return len(re.split(r"\s+", doc))
|
lm-evaluation/build/lib/lm_eval/decontamination/decontaminate.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import pickle
|
6 |
+
import random
|
7 |
+
import time
|
8 |
+
|
9 |
+
from .archiver import ZStdTextReader
|
10 |
+
from .janitor import Janitor, word_ngrams
|
11 |
+
|
12 |
+
|
13 |
+
# Was used for testing the evaluator decoupled from the full logic below
|
14 |
+
def get_train_overlap_stub(docs: dict, ngrams_path: str, ngrams_n_size: str):
|
15 |
+
simulated_overlap = 0.1
|
16 |
+
contaminated = int(len(docs) * simulated_overlap)
|
17 |
+
return random.sample(range(len(docs)), contaminated)
|
18 |
+
|
19 |
+
|
20 |
+
# Returns a dictionary containing all overlapping documents in each
|
21 |
+
# task. In the standard use case, an overlap occurs when any of the 13-grams
|
22 |
+
# found in the task document exist in the training set documents.
|
23 |
+
#
|
24 |
+
# To generate 13-grams for the pile see scripts/clean_training_data. The final output of these
|
25 |
+
# scripts are an info.json file containing the n_gram_size (13) and a bunch of "ngrams_{x}.bkt.txt.sorted.zst"
|
26 |
+
# files. These should exist in the "ngrams_path" provided to this function.
|
27 |
+
|
28 |
+
|
29 |
+
# Algorithm:
|
30 |
+
# 1. Build lookups for each dataset {ngram: list(document_ids)}
|
31 |
+
# 2. Merge into an overall lookup {ngram: [(task_name, task_set, doc_ids),]}
|
32 |
+
# 3. Full scan the 13-grams from the training set against the merged lookup,
|
33 |
+
# saving matches in the "duplicates" dictionary {(task_name, task_set): set(doc_ids)}
|
34 |
+
# 4. Strip the task_set from the dictionary keys and return
|
35 |
+
#
|
36 |
+
# We cache the task+set lookups as well as the overlaps.
|
37 |
+
def get_train_overlap(docs_by_task_set: dict, ngrams_path: str, limit: int) -> dict:
|
38 |
+
# return get_train_overlap_stub(docs, ngrams_path, ngrams_n_size)
|
39 |
+
|
40 |
+
info_dict_path = os.path.join(ngrams_path, "info.json")
|
41 |
+
info_dict = json.load(open(info_dict_path, "r", encoding="utf-8"))
|
42 |
+
ngrams_n_size = info_dict["ngram_size"]
|
43 |
+
|
44 |
+
janitor = Janitor()
|
45 |
+
|
46 |
+
# Build lookup for each dataset first in case we use different task combinations later
|
47 |
+
print("Building Lookups...")
|
48 |
+
start = time.perf_counter()
|
49 |
+
|
50 |
+
def get_overlaps_dump_path(task_name, task_set, ngrams_n_size, limit) -> str:
|
51 |
+
return f"data/{task_name}/{task_set}_{ngrams_n_size}grams_limit{limit}.overlaps"
|
52 |
+
|
53 |
+
lookups = {}
|
54 |
+
duplicates = {} # (task_name, task_set): set(doc_ids)}
|
55 |
+
sets_to_decontaminate = len(docs_by_task_set.keys())
|
56 |
+
|
57 |
+
for (task_name, task_set), docs in docs_by_task_set.items():
|
58 |
+
if not os.path.exists(f"data/{task_name}"):
|
59 |
+
os.mkdir(f"data/{task_name}")
|
60 |
+
|
61 |
+
# Check if we've decontaminated this combination before
|
62 |
+
overlaps_dump_path = get_overlaps_dump_path(
|
63 |
+
task_name, task_set, ngrams_n_size, limit
|
64 |
+
)
|
65 |
+
if os.path.exists(overlaps_dump_path):
|
66 |
+
duplicates[(task_name, task_set)] = pickle.load(
|
67 |
+
open(overlaps_dump_path, "rb")
|
68 |
+
)
|
69 |
+
sets_to_decontaminate -= 1
|
70 |
+
continue
|
71 |
+
else:
|
72 |
+
duplicates[(task_name, task_set)] = set()
|
73 |
+
|
74 |
+
# Build/load the task lookup {ngram: set(documents)}.
|
75 |
+
task_set_lookup_path = (
|
76 |
+
f"data/{task_name}/{task_set}_{ngrams_n_size}grams_limit{limit}.lookup"
|
77 |
+
)
|
78 |
+
if os.path.exists(task_set_lookup_path):
|
79 |
+
print(f"{task_set_lookup_path} available, loading...")
|
80 |
+
lookups[(task_name, task_set)] = pickle.load(
|
81 |
+
open(task_set_lookup_path, "rb")
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
print(f"{task_set_lookup_path} not available, building...")
|
85 |
+
lookup = collections.defaultdict(set)
|
86 |
+
|
87 |
+
for doc_id, document in enumerate(docs):
|
88 |
+
ngrams = word_ngrams(janitor.normalize_string(document), ngrams_n_size)
|
89 |
+
for ngram in ngrams:
|
90 |
+
lookup[ngram].add(doc_id)
|
91 |
+
|
92 |
+
pickle.dump(lookup, open(task_set_lookup_path, "wb"))
|
93 |
+
lookups[(task_name, task_set)] = lookup
|
94 |
+
|
95 |
+
elapsed = time.perf_counter() - start
|
96 |
+
print(f"Building lookups took {elapsed:0.5f} seconds.")
|
97 |
+
|
98 |
+
matched_ngrams = []
|
99 |
+
|
100 |
+
if sets_to_decontaminate > 0:
|
101 |
+
print("Merging lookups...")
|
102 |
+
start = time.perf_counter()
|
103 |
+
merged_lookup = collections.defaultdict(list)
|
104 |
+
for (task_name, task_set), lookup in lookups.items():
|
105 |
+
for ngram, doc_ids in lookup.items():
|
106 |
+
merged_lookup[ngram].append((task_name, task_set, doc_ids))
|
107 |
+
|
108 |
+
elapsed = time.perf_counter() - start
|
109 |
+
print(f"Merging lookups took {elapsed:0.5f} seconds.")
|
110 |
+
|
111 |
+
print(f"{ngrams_n_size} grams files found in {ngrams_path}:")
|
112 |
+
files = glob.glob(os.path.join(ngrams_path, "*.sorted.zst"))
|
113 |
+
print(files)
|
114 |
+
|
115 |
+
for file in files:
|
116 |
+
start = time.perf_counter()
|
117 |
+
print(f"Scanning {file}")
|
118 |
+
reader = ZStdTextReader(file)
|
119 |
+
total_ngrams = 0
|
120 |
+
unique_ngrams = 0
|
121 |
+
matching_unique = 0
|
122 |
+
non_matching_unique = 0
|
123 |
+
|
124 |
+
current_ngram = ""
|
125 |
+
for line in reader.read_tqdm(): # Scan training set ngrams file
|
126 |
+
total_ngrams += 1
|
127 |
+
[ngram, document_id] = line.rsplit(" ", 1)
|
128 |
+
if (
|
129 |
+
ngram != current_ngram
|
130 |
+
): # Only need to match the ngram once in training set
|
131 |
+
unique_ngrams += 1
|
132 |
+
current_ngram = ngram
|
133 |
+
if ngram in merged_lookup:
|
134 |
+
matched_ngrams.append(ngram) # For logging
|
135 |
+
matching_unique += 1
|
136 |
+
for task_name, task_set, doc_ids in merged_lookup[ngram]:
|
137 |
+
task_doc_set = duplicates[(task_name, task_set)]
|
138 |
+
for doc_id in doc_ids: # Record contamination across all relevant task/set combos
|
139 |
+
task_doc_set.add(doc_id)
|
140 |
+
del merged_lookup[ngram] # No point matching again
|
141 |
+
else:
|
142 |
+
non_matching_unique += 1
|
143 |
+
|
144 |
+
print(f"Total Ngrams: {total_ngrams}")
|
145 |
+
print(f"Unique Ngrams: {unique_ngrams}")
|
146 |
+
print(f"Unique Matching: {matching_unique}")
|
147 |
+
print(f"Unique Non Matching: {non_matching_unique}")
|
148 |
+
print("Matched ngrams:")
|
149 |
+
for ngram in matched_ngrams:
|
150 |
+
print(ngram)
|
151 |
+
|
152 |
+
elapsed = time.perf_counter() - start
|
153 |
+
print(f"Read took {elapsed:0.5f} seconds.")
|
154 |
+
print(f"Speed: {(os.path.getsize(file)/1000000.0)/elapsed}MB/second")
|
155 |
+
|
156 |
+
print(duplicates)
|
157 |
+
|
158 |
+
# Dump overlaps separately
|
159 |
+
for (task_name, task_set), doc_ids in duplicates.items():
|
160 |
+
overlaps_dump_path = get_overlaps_dump_path(
|
161 |
+
task_name, task_set, ngrams_n_size, limit
|
162 |
+
)
|
163 |
+
pickle.dump(doc_ids, open(overlaps_dump_path, "wb"))
|
164 |
+
|
165 |
+
# Strip task set and return
|
166 |
+
return {task_name: doc_ids for (task_name, task_set), doc_ids in duplicates.items()}
|
lm-evaluation/build/lib/lm_eval/decontamination/janitor.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import re
|
3 |
+
import string
|
4 |
+
import traceback
|
5 |
+
from typing import Iterator, List, Sequence, Tuple, TypeVar
|
6 |
+
|
7 |
+
|
8 |
+
# This is a cpp module. Compile janitor_util.cpp with:
|
9 |
+
# c++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) janitor_util.cpp -o janitor_util$(python3-config --extension-suffix) -undefined dynamic_lookup
|
10 |
+
try:
|
11 |
+
import janitor_util
|
12 |
+
|
13 |
+
JANITOR_CPP = True
|
14 |
+
except Exception:
|
15 |
+
print("WARNING: C++ module could not be loaded. Janitor running in python mode")
|
16 |
+
traceback.print_exc()
|
17 |
+
JANITOR_CPP = False
|
18 |
+
|
19 |
+
T = TypeVar("T")
|
20 |
+
|
21 |
+
|
22 |
+
# Implementation from nltk source
|
23 |
+
# https://www.nltk.org/_modules/nltk/util.html
|
24 |
+
def form_ngrams(sequence: Iterator[T], n: int) -> Iterator[Tuple[T, ...]]:
|
25 |
+
history = []
|
26 |
+
while n > 1:
|
27 |
+
# PEP 479, prevent RuntimeError from being raised when StopIteration bubbles out of generator
|
28 |
+
try:
|
29 |
+
next_item = next(sequence)
|
30 |
+
except StopIteration:
|
31 |
+
# no more data, terminate the generator
|
32 |
+
return
|
33 |
+
history.append(next_item)
|
34 |
+
n -= 1
|
35 |
+
for item in sequence:
|
36 |
+
history.append(item)
|
37 |
+
yield tuple(history)
|
38 |
+
del history[0]
|
39 |
+
|
40 |
+
|
41 |
+
def word_ngrams(s: str, n: int) -> Iterator[str]:
|
42 |
+
"""Splits a string into ngram words"""
|
43 |
+
tokens = s.split() # not a generator :(
|
44 |
+
ngram_seqs = form_ngrams(iter(tokens), n)
|
45 |
+
return (" ".join(ngram) for ngram in ngram_seqs)
|
46 |
+
|
47 |
+
|
48 |
+
# Does character sequences only - combined faster function to play around with later
|
49 |
+
# def word_ngrams_indices_combined(sequence, n):
|
50 |
+
# current_word = ""
|
51 |
+
# history = []
|
52 |
+
# gap = False;
|
53 |
+
# start = 0
|
54 |
+
# end = 0
|
55 |
+
# for character in sequence:
|
56 |
+
# if character == " ":
|
57 |
+
# if not gap:
|
58 |
+
# gap = True
|
59 |
+
# history.append(current_word)
|
60 |
+
# end += len(current_word) - 1
|
61 |
+
# current_word = ""
|
62 |
+
# if len(history) == n:
|
63 |
+
# yield (tuple(history), start, end)
|
64 |
+
# del history[0]
|
65 |
+
# start = end + 1
|
66 |
+
# end = start
|
67 |
+
# else:
|
68 |
+
# gap = False
|
69 |
+
# current_word += character
|
70 |
+
|
71 |
+
|
72 |
+
# https://stackoverflow.com/questions/13734451/string-split-with-indices-in-python
|
73 |
+
def split_indices(s: str) -> Iterator[Tuple[str, Tuple[int, int]]]:
|
74 |
+
"""Splits a string on whitespaces and records the indices of each in the original string.
|
75 |
+
@:return generator((word, (start_idx, end_idx)), ...)
|
76 |
+
"""
|
77 |
+
return ((m.group(0), (m.start(), m.end() - 1)) for m in re.finditer(r"\S+", s))
|
78 |
+
|
79 |
+
|
80 |
+
def word_ngrams_indices(s: str, n: int) -> Iterator[Tuple[str, Tuple[int, int]]]:
|
81 |
+
"""Splits a string into pairs of (ngram words, their start/end indices)"""
|
82 |
+
tokens_with_indices = split_indices(s)
|
83 |
+
|
84 |
+
# Generator of ngrams of (word, idx_pairs)
|
85 |
+
# (
|
86 |
+
# [(word, (start,end)), (word, (start, end))...],
|
87 |
+
# [(word, (start, end)), ...],
|
88 |
+
# ...
|
89 |
+
# )
|
90 |
+
ngram_seqs_with_indices = form_ngrams(tokens_with_indices, n)
|
91 |
+
|
92 |
+
# Generator of pairs of word and index ngrams
|
93 |
+
# (
|
94 |
+
# ([word, word, ...], [(start,end), (start,end), ...]),
|
95 |
+
# ...
|
96 |
+
# )
|
97 |
+
ngram_indices_pairs = (
|
98 |
+
zip(*ngram_with_indices) for ngram_with_indices in ngram_seqs_with_indices
|
99 |
+
)
|
100 |
+
|
101 |
+
# Generator of ( (word_ngram, (start, end)), (word_ngram, start, end)), ...)
|
102 |
+
return (
|
103 |
+
(" ".join(ngram_seq), (indices[0][0], indices[-1][1]))
|
104 |
+
for ngram_seq, indices in ngram_indices_pairs
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
class Janitor:
|
109 |
+
# FIXME delete_chars: Should anything else go here? Special chars?
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
ngram_n: int = 13,
|
113 |
+
window_to_remove: int = 200,
|
114 |
+
too_dirty_cutoff: int = 10,
|
115 |
+
minimum_slice_length: int = 200,
|
116 |
+
delete_chars: str = string.punctuation,
|
117 |
+
) -> None:
|
118 |
+
self.ngram_n = ngram_n
|
119 |
+
self.window_to_remove = window_to_remove
|
120 |
+
self.too_dirty_cutoff = too_dirty_cutoff
|
121 |
+
self.minimum_slice_length = minimum_slice_length
|
122 |
+
self.delete_chars = delete_chars
|
123 |
+
|
124 |
+
self.dirt_ngrams = set()
|
125 |
+
|
126 |
+
# If in python, we'll translate uppercase to lowercase and delete naughty characters.
|
127 |
+
# This is fast by python standards
|
128 |
+
# https://stackoverflow.com/questions/638893/what-is-the-most-efficient-way-in-python-to-convert-a-string-to-all-lowercase-st
|
129 |
+
self.translation_table = str.maketrans(
|
130 |
+
string.ascii_lowercase + string.ascii_uppercase, # These characters
|
131 |
+
string.ascii_lowercase * 2, # Become these characters
|
132 |
+
self.delete_chars, # These are deleted
|
133 |
+
)
|
134 |
+
|
135 |
+
##############
|
136 |
+
# I/O for saving contamination ngrams
|
137 |
+
##############
|
138 |
+
|
139 |
+
def save_contamination_ngrams(self, filename: str) -> None:
|
140 |
+
with open(filename, "wb") as fp:
|
141 |
+
pickle.dump(filename, fp)
|
142 |
+
|
143 |
+
def load_contamination_ngrams(self, filename: str) -> None:
|
144 |
+
with open(filename, "rb") as fp:
|
145 |
+
self.dirt_ngrams = pickle.load(fp)
|
146 |
+
|
147 |
+
##############
|
148 |
+
# Call these :)
|
149 |
+
##############
|
150 |
+
|
151 |
+
def register_contaminant(self, dirt_string: str) -> None:
|
152 |
+
"""Register a string as contamination to be removed, e.g. a test set
|
153 |
+
This breaks the dirt_string into ngrams to store for future cleaning"""
|
154 |
+
if JANITOR_CPP:
|
155 |
+
return self.register_contaminant_cpp(dirt_string)
|
156 |
+
else:
|
157 |
+
print("WARNING: Janitor running in python mode")
|
158 |
+
return self.register_contaminant_python(dirt_string)
|
159 |
+
|
160 |
+
def clean(self, dirty_string: str) -> List[str]:
|
161 |
+
"""Clean a string (e.g. a training set) by removing all ngrams previously
|
162 |
+
registered as contaminants. Returns a list of clean chunks, or empty if
|
163 |
+
the string was too dirty"""
|
164 |
+
if JANITOR_CPP:
|
165 |
+
return self.clean_cpp(dirty_string)
|
166 |
+
else:
|
167 |
+
print("WARNING: Janitor running in python mode")
|
168 |
+
return self.clean_python(dirty_string)
|
169 |
+
|
170 |
+
def _split_chunks(
|
171 |
+
self, dirty_string: str, dirty_parts: Sequence[Tuple]
|
172 |
+
) -> List[str]:
|
173 |
+
clean_chunks = []
|
174 |
+
splice_idx = 0
|
175 |
+
end = -1
|
176 |
+
for i, (ngram, start, end) in enumerate(dirty_parts):
|
177 |
+
if i >= self.too_dirty_cutoff:
|
178 |
+
return []
|
179 |
+
start = max(0, start - self.window_to_remove)
|
180 |
+
end = min(len(dirty_string), end + self.window_to_remove)
|
181 |
+
|
182 |
+
if start - splice_idx > self.minimum_slice_length:
|
183 |
+
clean_chunks.append(dirty_string[splice_idx:start])
|
184 |
+
splice_idx = end
|
185 |
+
|
186 |
+
if end < len(dirty_string) - self.minimum_slice_length:
|
187 |
+
clean_chunks.append(dirty_string[end + 1 :])
|
188 |
+
|
189 |
+
return clean_chunks
|
190 |
+
|
191 |
+
##############
|
192 |
+
# Fast C++
|
193 |
+
##############
|
194 |
+
|
195 |
+
def register_contaminant_cpp(self, dirt_string) -> None:
|
196 |
+
self.dirt_ngrams.update(
|
197 |
+
janitor_util.clean_ngram(dirt_string, self.delete_chars, self.ngram_n)
|
198 |
+
)
|
199 |
+
|
200 |
+
def clean_cpp(self, dirty_string: str) -> List[str]:
|
201 |
+
contamination_indices = janitor_util.clean_ngram_with_indices(
|
202 |
+
dirty_string, self.delete_chars, self.ngram_n
|
203 |
+
)
|
204 |
+
return self._split_chunks(dirty_string, contamination_indices)
|
205 |
+
|
206 |
+
##############
|
207 |
+
# Slow python
|
208 |
+
##############
|
209 |
+
|
210 |
+
def normalize_string(self, s: str) -> str:
|
211 |
+
return s.translate(self.translation_table)
|
212 |
+
|
213 |
+
def register_contaminant_python(self, dirt_string: str) -> None:
|
214 |
+
self.dirt_ngrams.update(
|
215 |
+
word_ngrams(self.normalize_string(dirt_string), self.ngram_n)
|
216 |
+
)
|
217 |
+
|
218 |
+
def clean_python(self, dirty_string: str) -> List[str]:
|
219 |
+
contamination_indices = (
|
220 |
+
(None, *idx_pair)
|
221 |
+
for dirty_ngram, idx_pair in word_ngrams_indices(dirty_string, self.ngram_n)
|
222 |
+
if self.normalize_string(dirty_ngram) in self.dirt_ngrams
|
223 |
+
)
|
224 |
+
return self._split_chunks(dirty_string, contamination_indices)
|
225 |
+
|
226 |
+
|
227 |
+
##################################################################
|
228 |
+
# Tests
|
229 |
+
#################################################################
|
230 |
+
|
231 |
+
# def print_cpp():
|
232 |
+
# source = """ ,, I'm a very !dirty,, ,, dirty boy. Clean me daddy. \n\nhe he he hehe heh. lastword """ * 2
|
233 |
+
|
234 |
+
# for i in range(1, 10, 2):
|
235 |
+
# pprint(janitor_util.clean_ngram(source, string.punctuation, i))
|
236 |
+
# for ngram, start, end in \
|
237 |
+
# janitor_util.clean_ngram_with_indices(source, string.punctuation, i):
|
238 |
+
# print(ngram, "\t", start, end, source[start:end].replace("\n", "\\n"))
|
239 |
+
|
240 |
+
|
241 |
+
# def test_cpp():
|
242 |
+
# source = """ ,, I'm a very !dirty,, ,, dirty boy. Clean me daddy. \n\nhe he he hehe heh. lastword """ * 2
|
243 |
+
# contaminant = "dirty boy. Clean he he"
|
244 |
+
|
245 |
+
# jan_python = Janitor()
|
246 |
+
# jan_cpp = Janitor()
|
247 |
+
|
248 |
+
# jan_python.register_contaminant_python(contaminant)
|
249 |
+
# jan_cpp.register_contaminant(contaminant)
|
250 |
+
|
251 |
+
# assert jan_python.dirt_ngrams == jan_cpp.dirt_ngrams, (jan_python.dirt_ngrams, jan_cpp.dirt_ngrams)
|
252 |
+
|
253 |
+
# assert jan_python.clean_python(source) == jan_cpp.clean(source), \
|
254 |
+
# (jan_python.clean_python(source), jan_cpp.clean(source))
|
255 |
+
|
256 |
+
# print("Passed test, python==cpp")
|
257 |
+
|
258 |
+
|
259 |
+
# def benchmark():
|
260 |
+
# # Download and put in data folder: enwik8 (100 MB) from https://cs.fit.edu/~mmahoney/compression/textdata.html
|
261 |
+
# setup = \
|
262 |
+
# """
|
263 |
+
# with open("data/enwik8", "r") as f:
|
264 |
+
# data = f.read()
|
265 |
+
# jan = Janitor(too_dirty_cutoff=1000)
|
266 |
+
# jan.register_contaminant('''
|
267 |
+
# theories is that there is a connection between "geekdom" and autism.
|
268 |
+
# This is hinted, for instance, by a ''Wired Magazine'' article in 2001 entitled "
|
269 |
+
# The [[Geek]] Syndrome", which is a point argued by many in the autism rights
|
270 |
+
# movement{{ref|Wired}}. This article, many professionals assert, is just one example of
|
271 |
+
# the media's application of mental disease labels to what is actually variant normal behavior
|
272 |
+
# &mdash;they argue that shyness, lack of athletic ability or social skills, and intellectual
|
273 |
+
# interests, even when they seem unusual to others, are not in themselves signs of autism or
|
274 |
+
# Asperger's syndrome. Others assert that it is actually the medical profession which is applying
|
275 |
+
# mental disease labels to children who in the past would have simply been accepted as a little
|
276 |
+
# different or even labeled 'gifted'. See [[clinomorphism]] for further discussion of this issue.
|
277 |
+
# Due to the recent publicity surrounding autism and autis
|
278 |
+
# ultan Al Nahyan]] granted [[Petroleum]] concessions, and oil was first found in 1958. At first,
|
279 |
+
# oil money had a marginal impact. A few lowrise concete buildings were erected, and the first
|
280 |
+
# paved road was completed in 1961, but Sheikh Shakbut, uncertain whether the new oil royalties
|
281 |
+
# would last, took a cautious approach, preferring to save the revenue rather than investing it in
|
282 |
+
# development. His brother, [[Zayed bin Sultan Al Nahayan]], saw that oil wealth had the potential
|
283 |
+
# to transform Abu Dhabi. The ruling Al Nahayan family decided that Sheikh Zayed should replace his
|
284 |
+
# brother as Ruler and carry out his vision of developing the country. On [[August 6]], [[1966]],
|
285 |
+
# with the assistance of the British, Sheikh Zayed became the new ruler. See generally, Al-Fahim, M,
|
286 |
+
# ''From Rags to Riches: A Story of Abu Dhabi'', Chapter Six (London Centre of Arab Studies, 1995),
|
287 |
+
# ISBN 1 900404 00 1. With the announcement by Britain in 1968 that it would withdraw from the
|
288 |
+
# Gulf area by 1971, Sheikh Zayed became the main driving force behind the formation of the
|
289 |
+
# [[United Arab Emirates]]. After the Emirates gained independence in 1971,
|
290 |
+
# ''')
|
291 |
+
# """
|
292 |
+
|
293 |
+
# n = 1
|
294 |
+
# print(f"Timing {n} run on 100 MB")
|
295 |
+
# print("Register contaminant")
|
296 |
+
# # print("\tPython", timeit.timeit("jan.register_contaminant_python(data)", setup=setup, globals=globals(), number=n))
|
297 |
+
# print("\tCpp", timeit.timeit("jan.register_contaminant(data)", setup=setup, globals=globals(), number=n))
|
298 |
+
|
299 |
+
# print("Clean")
|
300 |
+
# # print("\tPython", timeit.timeit("jan.clean_python(data)", setup=setup, globals=globals(), number=n))
|
301 |
+
# print("\tCpp", timeit.timeit("jan.clean(data)", setup=setup, globals=globals(), number=n))
|
302 |
+
|
303 |
+
|
304 |
+
# def test_janitor_general():
|
305 |
+
# source = """ ,, I'm a very !dirty,, ,, dirty boy. Clean me daddy. \n\nhe he he hehe heh. lastword """ * 2
|
306 |
+
# contaminant = "dirty boy. Clean he he"
|
307 |
+
|
308 |
+
# jan = Janitor(ngram_n=3)
|
309 |
+
# jan.register_contaminant(contaminant)
|
310 |
+
# cleaned = " ".join(jan.clean(source))
|
311 |
+
# for contam in jan.dirt_ngrams:
|
312 |
+
# assert contam not in cleaned, contam
|
313 |
+
|
314 |
+
# filename = "data/saved_contam"
|
315 |
+
# jan.save_contamination_ngrams(filename)
|
316 |
+
|
317 |
+
# jan = Janitor(ngram_n=3)
|
318 |
+
# jan.load_contamination_ngrams(filename)
|
319 |
+
# cleaned = " ".join(jan.clean(source))
|
320 |
+
# for contam in jan.dirt_ngrams:
|
321 |
+
# assert contam not in cleaned, contam
|
322 |
+
|
323 |
+
|
324 |
+
# if __name__ == "__main__":
|
325 |
+
# test()
|
326 |
+
# # print_cpp()
|
327 |
+
# # test_cpp()
|
328 |
+
# # benchmark()
|
lm-evaluation/build/lib/lm_eval/filters/__init__.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
from typing import List, Union
|
3 |
+
|
4 |
+
from lm_eval.api.filter import FilterEnsemble
|
5 |
+
|
6 |
+
from . import extraction, selection, transformation
|
7 |
+
|
8 |
+
|
9 |
+
FILTER_REGISTRY = {
|
10 |
+
"take_first": selection.TakeFirstFilter,
|
11 |
+
"regex": extraction.RegexFilter,
|
12 |
+
"majority_vote": selection.MajorityVoteFilter,
|
13 |
+
"take_first_k": selection.TakeKFilter,
|
14 |
+
"remove_whitespace": extraction.WhitespaceFilter,
|
15 |
+
"lowercase": transformation.LowercaseFilter,
|
16 |
+
"uppercase": transformation.UppercaseFilter,
|
17 |
+
"map": transformation.MapFilter,
|
18 |
+
"multi_choice_regex": extraction.MultiChoiceRegexFilter,
|
19 |
+
# TODO: implement this filter. either it should take in an arbitrary "scoring"/reward function
|
20 |
+
# that takes an input and returns a scalar and then should select the max reward,
|
21 |
+
# or should implement different filters for different ways of handling a reward model's inference.
|
22 |
+
# "arg_max": selection.ArgMaxFilter,
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
def get_filter(filter_name: str) -> Union[type, str]:
|
27 |
+
if filter_name in FILTER_REGISTRY:
|
28 |
+
return FILTER_REGISTRY[filter_name]
|
29 |
+
else:
|
30 |
+
return filter_name
|
31 |
+
|
32 |
+
|
33 |
+
def build_filter_ensemble(
|
34 |
+
filter_name: str, components: List[List[str]]
|
35 |
+
) -> FilterEnsemble:
|
36 |
+
"""
|
37 |
+
Create a filtering pipeline.
|
38 |
+
"""
|
39 |
+
filters = []
|
40 |
+
for function, kwargs in components:
|
41 |
+
if kwargs is None:
|
42 |
+
kwargs = {}
|
43 |
+
# create a filter given its name in the registry
|
44 |
+
f = partial(get_filter(function), **kwargs)
|
45 |
+
# add the filter as a pipeline step
|
46 |
+
filters.append(f)
|
47 |
+
|
48 |
+
return FilterEnsemble(name=filter_name, filters=filters)
|
lm-evaluation/build/lib/lm_eval/filters/decontamination.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from lm_eval.api.filter import Filter
|
2 |
+
|
3 |
+
|
4 |
+
class DecontaminationFilter(Filter):
|
5 |
+
|
6 |
+
"""
|
7 |
+
A filter which evaluates
|
8 |
+
"""
|
9 |
+
|
10 |
+
name = "track_decontamination"
|
11 |
+
|
12 |
+
def __init__(self, path) -> None:
|
13 |
+
"""
|
14 |
+
|
15 |
+
TODO: make sure only ever run one time on the train set (should this be cached as a class var? keyed by value for "path").
|
16 |
+
should further cache result on a given (task_name, doc_id)
|
17 |
+
"""
|
18 |
+
self._decontam_results = None
|
19 |
+
|
20 |
+
def apply(self, resps, docs) -> None:
|
21 |
+
"""
|
22 |
+
Return {"no_contamination", "only_contamination"} keys for the 2 different subsets
|
23 |
+
"""
|
24 |
+
pass
|
lm-evaluation/build/lib/lm_eval/filters/extraction.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import sys
|
3 |
+
import unicodedata
|
4 |
+
|
5 |
+
from lm_eval.api.filter import Filter
|
6 |
+
|
7 |
+
|
8 |
+
class RegexFilter(Filter):
|
9 |
+
""" """
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
regex_pattern: str = r"#### (\-?[0-9\.\,]+)",
|
14 |
+
group_select=0,
|
15 |
+
fallback: str = "[invalid]",
|
16 |
+
) -> None:
|
17 |
+
"""
|
18 |
+
pass a string `regex` to run `re.compile(r"regex")` on.
|
19 |
+
`fallback` defines the output returned if no matches for the regex are located.
|
20 |
+
"""
|
21 |
+
self.regex_pattern = regex_pattern
|
22 |
+
self.regex = re.compile(regex_pattern)
|
23 |
+
self.group_select = group_select
|
24 |
+
self.fallback = fallback
|
25 |
+
|
26 |
+
def apply(self, resps, docs):
|
27 |
+
# here, we assume we have a list, in which each element is
|
28 |
+
# a list of model responses for some particular input/target pair.
|
29 |
+
# so we process each of these (same input/target response sets)
|
30 |
+
# independently (and keep them a list.)
|
31 |
+
def filter_set(inst):
|
32 |
+
filtered = []
|
33 |
+
for resp in inst:
|
34 |
+
match = self.regex.findall(resp)
|
35 |
+
if match:
|
36 |
+
match = match[self.group_select]
|
37 |
+
if isinstance(match, tuple):
|
38 |
+
match = [m for m in match if m][0]
|
39 |
+
match = match.strip()
|
40 |
+
else:
|
41 |
+
match = self.fallback
|
42 |
+
filtered.append(match)
|
43 |
+
return filtered
|
44 |
+
|
45 |
+
# print(resps)
|
46 |
+
filtered_resps = list(map(lambda x: filter_set(x), resps))
|
47 |
+
# print(filtered_resps)
|
48 |
+
|
49 |
+
return filtered_resps
|
50 |
+
|
51 |
+
|
52 |
+
class WhitespaceFilter(Filter):
|
53 |
+
""" """
|
54 |
+
|
55 |
+
def __init__(self) -> None:
|
56 |
+
pass
|
57 |
+
|
58 |
+
def apply(self, resps, docs):
|
59 |
+
def filter_set(inst):
|
60 |
+
filtered_resp = []
|
61 |
+
for resp in inst:
|
62 |
+
if resp.startswith(" "):
|
63 |
+
resp = resp[1:]
|
64 |
+
|
65 |
+
filtered_resp.append(resp)
|
66 |
+
|
67 |
+
return filtered_resp
|
68 |
+
|
69 |
+
filtered_resps = [filter_set(resp) for resp in resps]
|
70 |
+
|
71 |
+
return filtered_resps
|
72 |
+
|
73 |
+
|
74 |
+
class MultiChoiceRegexFilter(RegexFilter):
|
75 |
+
"""
|
76 |
+
A filter used to extract a model's answer on multiple choice questions with
|
77 |
+
letter answers. assumes each document has a "choices" field
|
78 |
+
containing the list of answer choices and that the answer label symbols
|
79 |
+
are of the form (A), (B), (C), ... or A, B, C.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
regex_pattern: str = r"#### (\-?[0-9\.\,]+)",
|
85 |
+
group_select=0,
|
86 |
+
fallback: str = "[invalid]",
|
87 |
+
ignore_case=False,
|
88 |
+
ignore_punctuation=False,
|
89 |
+
regexes_to_ignore=None,
|
90 |
+
) -> None:
|
91 |
+
"""
|
92 |
+
regex_pattern: The basic regex pattern to use. If fails to match, we will use the customized match procedure
|
93 |
+
- step 1 : We parse the choices between ([A-Z])s then try to find these choices in the response.
|
94 |
+
- step 2 : We parse the choice with regex :[\s]*([A-?]), where ? varies by number of choices.
|
95 |
+
group_select: Selects the (group_select)th match from the findall result.
|
96 |
+
ignore_case: Ignores the case during step 1 matching
|
97 |
+
ignore_punctuation: Remove the punctuation during step 1 matching
|
98 |
+
regexes_to_ignore: Remove these regexes during step 1 matching
|
99 |
+
"""
|
100 |
+
super().__init__(regex_pattern, group_select, fallback)
|
101 |
+
self.ignore_case = ignore_case
|
102 |
+
self.ignore_punctuation = ignore_punctuation
|
103 |
+
self.regexes_to_ignore = regexes_to_ignore
|
104 |
+
|
105 |
+
def apply(self, resps, docs):
|
106 |
+
# here, we assume we have a list, in which each element is
|
107 |
+
# a list of model responses for some particular input/target pair.
|
108 |
+
# so we process each of these (same input/target response sets)
|
109 |
+
# independently (and keep them a list.)
|
110 |
+
|
111 |
+
def find_match(regex, resp, convert_dict={}):
|
112 |
+
match = regex.findall(resp)
|
113 |
+
if match:
|
114 |
+
match = match[self.group_select]
|
115 |
+
if isinstance(match, tuple):
|
116 |
+
match = [m for m in match if m][0]
|
117 |
+
match = match.strip()
|
118 |
+
if match and match in convert_dict:
|
119 |
+
match = convert_dict[match]
|
120 |
+
return match
|
121 |
+
|
122 |
+
punct_tbl = dict.fromkeys(
|
123 |
+
i
|
124 |
+
for i in range(sys.maxunicode)
|
125 |
+
if unicodedata.category(chr(i)).startswith("P")
|
126 |
+
)
|
127 |
+
|
128 |
+
def filter_ignores(st):
|
129 |
+
if self.regexes_to_ignore is not None:
|
130 |
+
for s in self.regexes_to_ignore:
|
131 |
+
st = re.sub(s, "", st)
|
132 |
+
|
133 |
+
if self.ignore_case:
|
134 |
+
st = st.lower()
|
135 |
+
|
136 |
+
if self.ignore_punctuation:
|
137 |
+
# https://stackoverflow.com/a/266162
|
138 |
+
st = st.translate(punct_tbl)
|
139 |
+
return st
|
140 |
+
|
141 |
+
filtered_resps = []
|
142 |
+
|
143 |
+
for r, doc in zip(resps, docs):
|
144 |
+
fallback_regexes = []
|
145 |
+
choice_to_alpha = {}
|
146 |
+
next_alpha = "A"
|
147 |
+
|
148 |
+
without_paren_fallback_regexes = []
|
149 |
+
without_paren_to_target = {}
|
150 |
+
|
151 |
+
choices = doc["choices"]
|
152 |
+
for c in choices:
|
153 |
+
m = filter_ignores(c.strip())
|
154 |
+
fallback_regexes.append(f"{re.escape(m)}")
|
155 |
+
choice_to_alpha[m] = f"({next_alpha})"
|
156 |
+
|
157 |
+
without_paren_fallback_regexes.append(next_alpha)
|
158 |
+
without_paren_to_target[next_alpha] = f"({next_alpha})"
|
159 |
+
|
160 |
+
next_alpha = chr(ord(next_alpha) + 1)
|
161 |
+
fallback_regex = re.compile("|".join(fallback_regexes))
|
162 |
+
without_paren_fallback_regex = "|".join(without_paren_fallback_regexes)
|
163 |
+
without_paren_fallback_regex = re.compile(
|
164 |
+
f":[\s]*({without_paren_fallback_regex})"
|
165 |
+
)
|
166 |
+
|
167 |
+
filtered = []
|
168 |
+
for resp in r:
|
169 |
+
match = find_match(self.regex, resp)
|
170 |
+
if not match:
|
171 |
+
match = find_match(
|
172 |
+
fallback_regex, filter_ignores(resp), choice_to_alpha
|
173 |
+
)
|
174 |
+
if not match:
|
175 |
+
match = find_match(
|
176 |
+
without_paren_fallback_regex, resp, without_paren_to_target
|
177 |
+
)
|
178 |
+
if not match:
|
179 |
+
match = self.fallback
|
180 |
+
filtered.append(match)
|
181 |
+
filtered_resps.append(filtered)
|
182 |
+
|
183 |
+
return filtered_resps
|
lm-evaluation/build/lib/lm_eval/filters/selection.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import Counter
|
2 |
+
|
3 |
+
from lm_eval.api.filter import Filter
|
4 |
+
|
5 |
+
|
6 |
+
class TakeFirstFilter(Filter):
|
7 |
+
def __init__(self) -> None:
|
8 |
+
"""
|
9 |
+
Can define custom behavior here, if an individual instantiation of a Filter class should have state.
|
10 |
+
"""
|
11 |
+
|
12 |
+
def apply(self, resps, docs):
|
13 |
+
"""
|
14 |
+
Assuming each entry of `resps` is a list of model responses, we discard all but the first response.
|
15 |
+
"""
|
16 |
+
return map(lambda r: r[0], resps)
|
17 |
+
|
18 |
+
|
19 |
+
class TakeKFilter(Filter):
|
20 |
+
def __init__(self, **kwargs) -> None:
|
21 |
+
self.k = kwargs.pop("k")
|
22 |
+
|
23 |
+
super().__init__(**kwargs)
|
24 |
+
|
25 |
+
def apply(self, resps, docs):
|
26 |
+
# need resp to be subscriptable to check below
|
27 |
+
resps = list(resps)
|
28 |
+
# check we have at least k responses per doc, else we can't take the first k
|
29 |
+
assert (
|
30 |
+
len(resps[0]) >= self.k
|
31 |
+
), f"Need at least {self.k} responses per doc to take first {self.k}, but got {len(resps[0])} only! Please increase TaskConfig.repeats ."
|
32 |
+
return map(lambda r: r[: self.k], resps)
|
33 |
+
|
34 |
+
|
35 |
+
class MajorityVoteFilter(Filter):
|
36 |
+
def __init__(self) -> None:
|
37 |
+
"""
|
38 |
+
Can define custom behavior here, if an individual instantiation of a Filter class should have state.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def apply(self, resps, docs):
|
42 |
+
"""
|
43 |
+
Each entry of `resps` is a list of model responses.
|
44 |
+
We select the response that occurs most frequently in each entry of `resps`.
|
45 |
+
"""
|
46 |
+
|
47 |
+
def select_majority(resp):
|
48 |
+
counts = Counter(resp)
|
49 |
+
vote = counts.most_common(1)[0][0]
|
50 |
+
return vote
|
51 |
+
|
52 |
+
return map(lambda r: [select_majority(r)], resps)
|
lm-evaluation/build/lib/lm_eval/filters/transformation.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from lm_eval.api.filter import Filter
|
2 |
+
|
3 |
+
|
4 |
+
class LowercaseFilter(Filter):
|
5 |
+
def __init__(self) -> None:
|
6 |
+
pass
|
7 |
+
|
8 |
+
def apply(self, resps, docs):
|
9 |
+
def filter_set(inst):
|
10 |
+
return [resp.lower() for resp in inst]
|
11 |
+
|
12 |
+
return [filter_set(resp) for resp in resps]
|
13 |
+
|
14 |
+
|
15 |
+
class UppercaseFilter(Filter):
|
16 |
+
def __init__(self) -> None:
|
17 |
+
pass
|
18 |
+
|
19 |
+
def apply(self, resps, docs):
|
20 |
+
def filter_set(inst):
|
21 |
+
return [resp.upper() for resp in inst]
|
22 |
+
|
23 |
+
return [filter_set(resp) for resp in resps]
|
24 |
+
|
25 |
+
|
26 |
+
class MapFilter(Filter):
|
27 |
+
def __init__(self, mapping_dict: dict = None, default_value=None) -> None:
|
28 |
+
"""
|
29 |
+
Initializes the MapFilter with a given mapping dictionary and default value.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
- mapping_dict (dict): A dictionary containing the key-value mappings.
|
33 |
+
Default is an empty dictionary.
|
34 |
+
- default_value (Any): The value to be returned when a key is not found in the mapping_dict.
|
35 |
+
Default is None.
|
36 |
+
|
37 |
+
Example:
|
38 |
+
mapper = MapFilter({'A': 1, 'B': 2}, default_value=0)
|
39 |
+
"""
|
40 |
+
if mapping_dict is None:
|
41 |
+
mapping_dict = {}
|
42 |
+
assert isinstance(
|
43 |
+
mapping_dict, dict
|
44 |
+
), "Provided mapping_dict is not a dictionary"
|
45 |
+
self.mapping_dict = mapping_dict
|
46 |
+
self.default_value = default_value
|
47 |
+
|
48 |
+
def apply(self, resps, docs):
|
49 |
+
def filter_set(inst):
|
50 |
+
return [self.mapping_dict.get(resp, self.default_value) for resp in inst]
|
51 |
+
|
52 |
+
return [filter_set(resp) for resp in resps]
|
lm-evaluation/build/lib/lm_eval/models/__init__.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import (
|
2 |
+
anthropic_llms,
|
3 |
+
dummy,
|
4 |
+
gguf,
|
5 |
+
huggingface,
|
6 |
+
mamba_lm,
|
7 |
+
nemo_lm,
|
8 |
+
neuron_optimum,
|
9 |
+
openai_completions,
|
10 |
+
optimum_lm,
|
11 |
+
textsynth,
|
12 |
+
vllm_causallms,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
# TODO: implement __all__
|
17 |
+
|
18 |
+
|
19 |
+
try:
|
20 |
+
# enable hf hub transfer if available
|
21 |
+
import hf_transfer # type: ignore # noqa
|
22 |
+
import huggingface_hub.constants # type: ignore
|
23 |
+
|
24 |
+
huggingface_hub.constants.HF_HUB_ENABLE_HF_TRANSFER = True
|
25 |
+
except ImportError:
|
26 |
+
pass
|
lm-evaluation/build/lib/lm_eval/models/anthropic_llms.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List, Tuple
|
2 |
+
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
from lm_eval import utils
|
6 |
+
from lm_eval.api.model import LM
|
7 |
+
from lm_eval.api.registry import register_model
|
8 |
+
from lm_eval.models.utils import retry_on_specific_exceptions
|
9 |
+
|
10 |
+
|
11 |
+
eval_logger = utils.eval_logger
|
12 |
+
|
13 |
+
|
14 |
+
def anthropic_completion(
|
15 |
+
client, #: anthropic.Anthropic,
|
16 |
+
model: str,
|
17 |
+
prompt: str,
|
18 |
+
max_tokens_to_sample: int,
|
19 |
+
temperature: float,
|
20 |
+
stop: List[str],
|
21 |
+
**kwargs: Any,
|
22 |
+
) -> str:
|
23 |
+
"""Wrapper function around the Anthropic completion API client with exponential back-off
|
24 |
+
in case of RateLimitError.
|
25 |
+
|
26 |
+
params:
|
27 |
+
client: anthropic.Anthropic
|
28 |
+
Anthropic API client
|
29 |
+
model: str
|
30 |
+
Anthropic model e.g. 'claude-instant-v1', 'claude-2'
|
31 |
+
prompt: str
|
32 |
+
Prompt to feed to the model
|
33 |
+
max_tokens_to_sample: int
|
34 |
+
Maximum number of tokens to sample from the model
|
35 |
+
temperature: float
|
36 |
+
Sampling temperature
|
37 |
+
stop: List[str]
|
38 |
+
List of stop sequences
|
39 |
+
kwargs: Any
|
40 |
+
Additional model_args to pass to the API client
|
41 |
+
"""
|
42 |
+
|
43 |
+
try:
|
44 |
+
import anthropic
|
45 |
+
except ModuleNotFoundError:
|
46 |
+
raise Exception(
|
47 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
48 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
49 |
+
)
|
50 |
+
|
51 |
+
def _exception_callback(e: Exception, sleep_time: float) -> None:
|
52 |
+
eval_logger.warning(
|
53 |
+
f"RateLimitError occurred: {e.__cause__}\n Retrying in {sleep_time} seconds"
|
54 |
+
)
|
55 |
+
|
56 |
+
@retry_on_specific_exceptions(
|
57 |
+
on_exceptions=[anthropic.RateLimitError],
|
58 |
+
max_retries=None, # retry forever, consider changing
|
59 |
+
on_exception_callback=_exception_callback,
|
60 |
+
)
|
61 |
+
def completion():
|
62 |
+
response = client.completions.create(
|
63 |
+
prompt=f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}",
|
64 |
+
model=model,
|
65 |
+
# NOTE: Claude really likes to do CoT, and overly aggressive stop sequences
|
66 |
+
# (e.g. gsm8k's ":") may truncate a lot of the input.
|
67 |
+
stop_sequences=[anthropic.HUMAN_PROMPT] + stop,
|
68 |
+
max_tokens_to_sample=max_tokens_to_sample,
|
69 |
+
temperature=temperature,
|
70 |
+
**kwargs,
|
71 |
+
)
|
72 |
+
return response.completion
|
73 |
+
|
74 |
+
return completion()
|
75 |
+
|
76 |
+
|
77 |
+
def anthropic_chat(
|
78 |
+
client, #: anthropic.Anthropic,
|
79 |
+
model: str,
|
80 |
+
prompt: str,
|
81 |
+
max_tokens: int,
|
82 |
+
temperature: float,
|
83 |
+
stop: List[str],
|
84 |
+
**kwargs: Any,
|
85 |
+
) -> str:
|
86 |
+
"""Wrapper function around the Anthropic completion API client with exponential back-off
|
87 |
+
in case of RateLimitError.
|
88 |
+
|
89 |
+
params:
|
90 |
+
client: anthropic.Anthropic
|
91 |
+
Anthropic API client
|
92 |
+
model: str
|
93 |
+
Anthropic model e.g. 'claude-3-opus-20240229', 'claude-3-sonnet-20240229'
|
94 |
+
prompt: str
|
95 |
+
Prompt to feed to the model
|
96 |
+
max_tokens: int
|
97 |
+
Maximum number of tokens to sample from the model
|
98 |
+
temperature: float
|
99 |
+
Sampling temperature
|
100 |
+
stop: List[str]
|
101 |
+
List of stop sequences
|
102 |
+
kwargs: Any
|
103 |
+
Additional model_args to pass to the API client
|
104 |
+
"""
|
105 |
+
|
106 |
+
try:
|
107 |
+
import anthropic
|
108 |
+
except ModuleNotFoundError:
|
109 |
+
raise Exception(
|
110 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
111 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
112 |
+
)
|
113 |
+
|
114 |
+
def _exception_callback(e: Exception, sleep_time: float) -> None:
|
115 |
+
eval_logger.warning(
|
116 |
+
f"RateLimitError occurred: {e.__cause__}\n Retrying in {sleep_time} seconds"
|
117 |
+
)
|
118 |
+
|
119 |
+
@retry_on_specific_exceptions(
|
120 |
+
on_exceptions=[
|
121 |
+
anthropic.RateLimitError,
|
122 |
+
anthropic.APIConnectionError,
|
123 |
+
anthropic.APIStatusError,
|
124 |
+
],
|
125 |
+
max_retries=None, # retry forever, consider changing
|
126 |
+
on_exception_callback=_exception_callback,
|
127 |
+
)
|
128 |
+
def messages():
|
129 |
+
response = client.messages.create(
|
130 |
+
model=model,
|
131 |
+
max_tokens=max_tokens,
|
132 |
+
temperature=temperature,
|
133 |
+
messages=[{"role": "user", "content": f"{prompt}"}],
|
134 |
+
**kwargs,
|
135 |
+
)
|
136 |
+
return response.content[0].text
|
137 |
+
|
138 |
+
return messages()
|
139 |
+
|
140 |
+
|
141 |
+
@register_model("anthropic")
|
142 |
+
class AnthropicLM(LM):
|
143 |
+
REQ_CHUNK_SIZE = 20 # TODO: not used
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
batch_size: int = 1,
|
148 |
+
model: str = "claude-2.0",
|
149 |
+
max_tokens_to_sample: int = 256,
|
150 |
+
temperature: float = 0, # defaults to 1
|
151 |
+
**kwargs, # top_p, top_k, etc.
|
152 |
+
) -> None:
|
153 |
+
"""Anthropic API wrapper.
|
154 |
+
|
155 |
+
:param model: str
|
156 |
+
Anthropic model e.g. 'claude-instant-v1', 'claude-2'
|
157 |
+
:param max_tokens_to_sample: int
|
158 |
+
Maximum number of tokens to sample from the model
|
159 |
+
:param temperature: float
|
160 |
+
Sampling temperature
|
161 |
+
:param kwargs: Any
|
162 |
+
Additional model_args to pass to the API client
|
163 |
+
"""
|
164 |
+
super().__init__()
|
165 |
+
|
166 |
+
try:
|
167 |
+
import anthropic
|
168 |
+
except ModuleNotFoundError:
|
169 |
+
raise Exception(
|
170 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
171 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
172 |
+
)
|
173 |
+
|
174 |
+
self.model = model
|
175 |
+
# defaults to os.environ.get("ANTHROPIC_API_KEY")
|
176 |
+
self.client = anthropic.Anthropic()
|
177 |
+
self.temperature = temperature
|
178 |
+
self.max_tokens_to_sample = max_tokens_to_sample
|
179 |
+
self.tokenizer = self.client.get_tokenizer()
|
180 |
+
self.kwargs = kwargs
|
181 |
+
|
182 |
+
@property
|
183 |
+
def eot_token_id(self):
|
184 |
+
# Not sure but anthropic.HUMAN_PROMPT ?
|
185 |
+
raise NotImplementedError("No idea about anthropic tokenization.")
|
186 |
+
|
187 |
+
@property
|
188 |
+
def max_length(self) -> int:
|
189 |
+
return 2048
|
190 |
+
|
191 |
+
@property
|
192 |
+
def max_gen_toks(self) -> int:
|
193 |
+
return self.max_tokens_to_sample
|
194 |
+
|
195 |
+
@property
|
196 |
+
def batch_size(self):
|
197 |
+
# Isn't used because we override _loglikelihood_tokens
|
198 |
+
raise NotImplementedError("No support for logits.")
|
199 |
+
|
200 |
+
@property
|
201 |
+
def device(self):
|
202 |
+
# Isn't used because we override _loglikelihood_tokens
|
203 |
+
raise NotImplementedError("No support for logits.")
|
204 |
+
|
205 |
+
def tok_encode(self, string: str) -> List[int]:
|
206 |
+
return self.tokenizer.encode(string).ids
|
207 |
+
|
208 |
+
def tok_decode(self, tokens: List[int]) -> str:
|
209 |
+
return self.tokenizer.decode(tokens)
|
210 |
+
|
211 |
+
def _loglikelihood_tokens(self, requests, disable_tqdm: bool = False):
|
212 |
+
raise NotImplementedError("No support for logits.")
|
213 |
+
|
214 |
+
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
215 |
+
try:
|
216 |
+
import anthropic
|
217 |
+
except ModuleNotFoundError:
|
218 |
+
raise Exception(
|
219 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
220 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
221 |
+
)
|
222 |
+
|
223 |
+
if not requests:
|
224 |
+
return []
|
225 |
+
|
226 |
+
_requests: List[Tuple[str, dict]] = [req.args for req in requests]
|
227 |
+
|
228 |
+
res = []
|
229 |
+
for request in tqdm(_requests, disable=disable_tqdm):
|
230 |
+
try:
|
231 |
+
inp = request[0]
|
232 |
+
request_args = request[1]
|
233 |
+
# generation_kwargs
|
234 |
+
until = request_args.get("until")
|
235 |
+
max_gen_toks = request_args.get("max_gen_toks", self.max_length)
|
236 |
+
temperature = request_args.get("temperature", self.temperature)
|
237 |
+
response = anthropic_completion(
|
238 |
+
client=self.client,
|
239 |
+
model=self.model,
|
240 |
+
prompt=inp,
|
241 |
+
max_tokens_to_sample=max_gen_toks,
|
242 |
+
temperature=temperature, # TODO: implement non-greedy sampling for Anthropic
|
243 |
+
stop=until, # type: ignore
|
244 |
+
**self.kwargs,
|
245 |
+
)
|
246 |
+
res.append(response)
|
247 |
+
|
248 |
+
self.cache_hook.add_partial("generate_until", request, response)
|
249 |
+
except anthropic.APIConnectionError as e: # type: ignore # noqa: F821
|
250 |
+
eval_logger.critical(f"Server unreachable: {e.__cause__}")
|
251 |
+
break
|
252 |
+
except anthropic.APIStatusError as e: # type: ignore # noqa: F821
|
253 |
+
eval_logger.critical(f"API error {e.status_code}: {e.message}")
|
254 |
+
break
|
255 |
+
|
256 |
+
return res
|
257 |
+
|
258 |
+
def _model_call(self, inps):
|
259 |
+
# Isn't used because we override _loglikelihood_tokens
|
260 |
+
raise NotImplementedError()
|
261 |
+
|
262 |
+
def _model_generate(self, context, max_length, eos_token_id):
|
263 |
+
# Isn't used because we override generate_until
|
264 |
+
raise NotImplementedError()
|
265 |
+
|
266 |
+
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
267 |
+
raise NotImplementedError("No support for logits.")
|
268 |
+
|
269 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
270 |
+
raise NotImplementedError("No support for logits.")
|
271 |
+
|
272 |
+
|
273 |
+
@register_model("anthropic-chat", "anthropic-chat-completions")
|
274 |
+
class AnthropicChatLM(AnthropicLM):
|
275 |
+
REQ_CHUNK_SIZE = 20 # TODO: not used
|
276 |
+
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
model: str,
|
280 |
+
batch_size: int = 1,
|
281 |
+
max_tokens: int = 256,
|
282 |
+
temperature: float = 0, # defaults to 1
|
283 |
+
**kwargs, # top_p, top_k, etc.
|
284 |
+
) -> None:
|
285 |
+
"""Anthropic API wrapper.
|
286 |
+
|
287 |
+
:param model: str
|
288 |
+
Anthropic model e.g. 'claude-3-opus-20240229', 'claude-3-sonnet-20240229'
|
289 |
+
:param max_tokens: int
|
290 |
+
Maximum number of tokens to sample from the model
|
291 |
+
:param temperature: float
|
292 |
+
Sampling temperature
|
293 |
+
:param kwargs: Any
|
294 |
+
Additional model_args to pass to the API client
|
295 |
+
"""
|
296 |
+
super().__init__()
|
297 |
+
|
298 |
+
try:
|
299 |
+
import anthropic
|
300 |
+
except ModuleNotFoundError:
|
301 |
+
raise Exception(
|
302 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
303 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
304 |
+
)
|
305 |
+
|
306 |
+
self.model = model
|
307 |
+
# defaults to os.environ.get("ANTHROPIC_API_KEY")
|
308 |
+
self.client = anthropic.Anthropic()
|
309 |
+
self.temperature = temperature
|
310 |
+
self.max_token = max_tokens
|
311 |
+
self.tokenizer = self.client.get_tokenizer()
|
312 |
+
self.kwargs = kwargs
|
313 |
+
|
314 |
+
@property
|
315 |
+
def max_gen_toks(self) -> int:
|
316 |
+
return self.max_tokens
|
317 |
+
|
318 |
+
def generate_until(self, requests) -> List[str]:
|
319 |
+
try:
|
320 |
+
import anthropic
|
321 |
+
except ModuleNotFoundError:
|
322 |
+
raise Exception(
|
323 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
324 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
325 |
+
)
|
326 |
+
|
327 |
+
if not requests:
|
328 |
+
return []
|
329 |
+
|
330 |
+
_requests: List[Tuple[str, dict]] = [req.args for req in requests]
|
331 |
+
|
332 |
+
res = []
|
333 |
+
for request in tqdm(_requests):
|
334 |
+
try:
|
335 |
+
inp = request[0]
|
336 |
+
request_args = request[1]
|
337 |
+
# generation_kwargs
|
338 |
+
until = request_args.get("until")
|
339 |
+
max_tokens = request_args.get("max_gen_toks", self.max_length)
|
340 |
+
temperature = request_args.get("temperature", self.temperature)
|
341 |
+
response = anthropic_chat(
|
342 |
+
client=self.client,
|
343 |
+
model=self.model,
|
344 |
+
prompt=inp,
|
345 |
+
max_tokens=max_tokens,
|
346 |
+
temperature=temperature, # TODO: implement non-greedy sampling for Anthropic
|
347 |
+
stop=until, # type: ignore
|
348 |
+
**self.kwargs,
|
349 |
+
)
|
350 |
+
res.append(response)
|
351 |
+
|
352 |
+
self.cache_hook.add_partial("generate_until", request, response)
|
353 |
+
except anthropic.APIConnectionError as e: # type: ignore # noqa: F821
|
354 |
+
eval_logger.critical(f"Server unreachable: {e.__cause__}")
|
355 |
+
break
|
356 |
+
except anthropic.APIStatusError as e: # type: ignore # noqa: F821
|
357 |
+
eval_logger.critical(f"API error {e.status_code}: {e.message}")
|
358 |
+
break
|
359 |
+
|
360 |
+
return res
|
lm-evaluation/build/lib/lm_eval/models/dummy.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
from lm_eval.api.model import LM
|
6 |
+
from lm_eval.api.registry import register_model
|
7 |
+
|
8 |
+
|
9 |
+
@register_model("dummy")
|
10 |
+
class DummyLM(LM):
|
11 |
+
def __init__(self) -> None:
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
@classmethod
|
15 |
+
def create_from_arg_string(cls, arg_string, additional_config=None):
|
16 |
+
return cls()
|
17 |
+
|
18 |
+
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
19 |
+
res = []
|
20 |
+
|
21 |
+
for _ in tqdm(requests, disable=disable_tqdm):
|
22 |
+
res.append((-random.random(), False))
|
23 |
+
|
24 |
+
return res
|
25 |
+
|
26 |
+
def generate_until(self, requests, disable_tqdm: bool = False):
|
27 |
+
res = []
|
28 |
+
|
29 |
+
for ctx, _ in tqdm(requests, disable=disable_tqdm):
|
30 |
+
res.append("lol")
|
31 |
+
assert ctx.strip() != ""
|
32 |
+
|
33 |
+
return res
|
34 |
+
|
35 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
36 |
+
res = []
|
37 |
+
|
38 |
+
for _ in tqdm(requests, disable=disable_tqdm):
|
39 |
+
res.append(-random.random())
|
40 |
+
|
41 |
+
return res
|
lm-evaluation/build/lib/lm_eval/models/gguf.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import time
|
3 |
+
|
4 |
+
import requests
|
5 |
+
from requests.exceptions import RequestException
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
from lm_eval.api.model import LM
|
9 |
+
from lm_eval.api.registry import register_model
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
def get_result(logprobs, context_length):
|
16 |
+
is_greedy = True
|
17 |
+
offsets = logprobs["text_offset"]
|
18 |
+
tokens = logprobs["tokens"]
|
19 |
+
tokens_logprobs = logprobs["token_logprobs"]
|
20 |
+
|
21 |
+
idx = 0
|
22 |
+
while offsets[idx] < context_length:
|
23 |
+
idx += 1
|
24 |
+
continuation_logprobs = sum(tokens_logprobs[idx:-1])
|
25 |
+
for i in range(idx, len(tokens)):
|
26 |
+
token = tokens[i]
|
27 |
+
top_tokens = logprobs["top_logprobs"][i]
|
28 |
+
top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
|
29 |
+
if top_token != token:
|
30 |
+
is_greedy = False
|
31 |
+
break
|
32 |
+
|
33 |
+
return continuation_logprobs, is_greedy
|
34 |
+
|
35 |
+
|
36 |
+
@register_model("gguf", "ggml")
|
37 |
+
class GGUFLM(LM):
|
38 |
+
def __init__(self, base_url=None, max_length=2048, **kwargs):
|
39 |
+
super().__init__()
|
40 |
+
self.base_url = base_url
|
41 |
+
assert self.base_url, "must pass `base_url` to use GGUF LM!"
|
42 |
+
self.logprobs = 10
|
43 |
+
self.temperature = 0.0
|
44 |
+
self.max_length = max_length
|
45 |
+
|
46 |
+
def gguf_completion(
|
47 |
+
self, context, continuation=None, stop=None, retries=3, delay=5, **kwargs
|
48 |
+
):
|
49 |
+
for _ in range(retries):
|
50 |
+
try:
|
51 |
+
prompt = context
|
52 |
+
request = {
|
53 |
+
"prompt": prompt,
|
54 |
+
"logprobs": self.logprobs,
|
55 |
+
"temperature": self.temperature,
|
56 |
+
}
|
57 |
+
if continuation:
|
58 |
+
prompt += continuation
|
59 |
+
request.update({"prompt": prompt, "max_tokens": 1, "echo": True})
|
60 |
+
if stop is not None:
|
61 |
+
request["stop"] = stop
|
62 |
+
response = requests.post(
|
63 |
+
f"{self.base_url}/v1/completions", json=request
|
64 |
+
)
|
65 |
+
response.raise_for_status()
|
66 |
+
return response.json()
|
67 |
+
except RequestException as e:
|
68 |
+
logger.error(f"RequestException: {e}")
|
69 |
+
time.sleep(delay) # wait before retrying
|
70 |
+
else:
|
71 |
+
raise Exception(f"Failed to get a valid response after {retries} retries.")
|
72 |
+
|
73 |
+
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
74 |
+
if not requests:
|
75 |
+
return []
|
76 |
+
res = []
|
77 |
+
for context, continuation in tqdm(
|
78 |
+
[req.args for req in requests], disable=disable_tqdm
|
79 |
+
):
|
80 |
+
response = self.gguf_completion(context=context, continuation=continuation)
|
81 |
+
if response and "choices" in response and response["choices"]:
|
82 |
+
choice = response["choices"][0]
|
83 |
+
logprobs = choice.get("logprobs")
|
84 |
+
if (
|
85 |
+
logprobs
|
86 |
+
and "token_logprobs" in logprobs
|
87 |
+
and logprobs["token_logprobs"]
|
88 |
+
):
|
89 |
+
logprob, is_greedy = get_result(logprobs, len(context))
|
90 |
+
res.append((logprob, is_greedy))
|
91 |
+
else:
|
92 |
+
logger.warning(
|
93 |
+
"Invalid logprobs data. Expected 'logprobs' to contain 'token_logprobs' list."
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
logger.error(
|
97 |
+
f"Invalid response for loglikelihood. Response: {response}"
|
98 |
+
)
|
99 |
+
assert False
|
100 |
+
return res
|
101 |
+
|
102 |
+
def generate_until(self, requests, disable_tqdm: bool = False):
|
103 |
+
if not requests:
|
104 |
+
return []
|
105 |
+
|
106 |
+
res = []
|
107 |
+
for request in tqdm([req.args for req in requests], disable=disable_tqdm):
|
108 |
+
inp = request[0]
|
109 |
+
request_args = request[1]
|
110 |
+
until = request_args.get("until", ["</s>"])
|
111 |
+
response = self.gguf_completion(context=inp, stop=until)
|
112 |
+
if response and "choices" in response and response["choices"]:
|
113 |
+
choice = response["choices"][0]
|
114 |
+
if "text" in choice:
|
115 |
+
generated_text = choice["text"].strip()
|
116 |
+
res.append(generated_text)
|
117 |
+
else:
|
118 |
+
logger.error(
|
119 |
+
f"Invalid response for greedy_until. Response: {response}"
|
120 |
+
)
|
121 |
+
res.append(None) # Add default value in case of error
|
122 |
+
else:
|
123 |
+
logger.error(f"Invalid response for greedy_until. Response: {response}")
|
124 |
+
res.append(None) # Add default value in case of error
|
125 |
+
return res
|
126 |
+
|
127 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
128 |
+
raise NotImplementedError(
|
129 |
+
"loglikelihood_rolling not yet supported for GGUF models"
|
130 |
+
)
|
lm-evaluation/build/lib/lm_eval/models/huggingface.py
ADDED
@@ -0,0 +1,1243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
from datetime import timedelta
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import List, Literal, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import transformers
|
10 |
+
from accelerate import (
|
11 |
+
Accelerator,
|
12 |
+
DistributedType,
|
13 |
+
InitProcessGroupKwargs,
|
14 |
+
find_executable_batch_size,
|
15 |
+
)
|
16 |
+
from packaging import version
|
17 |
+
from peft import PeftModel
|
18 |
+
from peft import __version__ as PEFT_VERSION
|
19 |
+
from tqdm import tqdm
|
20 |
+
from transformers.models.auto.modeling_auto import (
|
21 |
+
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
|
22 |
+
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
|
23 |
+
)
|
24 |
+
|
25 |
+
from lm_eval import utils
|
26 |
+
from lm_eval.api.instance import Instance
|
27 |
+
from lm_eval.api.model import TemplateLM
|
28 |
+
from lm_eval.api.registry import register_model
|
29 |
+
from lm_eval.models.utils import (
|
30 |
+
Collator,
|
31 |
+
clear_torch_cache,
|
32 |
+
get_dtype,
|
33 |
+
pad_and_concat,
|
34 |
+
stop_sequences_criteria,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
eval_logger = utils.eval_logger
|
39 |
+
|
40 |
+
|
41 |
+
def _get_accelerate_args(
|
42 |
+
device_map_option: Optional[str] = "auto",
|
43 |
+
max_memory_per_gpu: Optional[Union[int, str]] = None,
|
44 |
+
max_cpu_memory: Optional[Union[int, str]] = None,
|
45 |
+
offload_folder: Optional[str] = "./offload",
|
46 |
+
) -> dict:
|
47 |
+
"""Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
|
48 |
+
max_memory = {}
|
49 |
+
if max_memory_per_gpu is not None:
|
50 |
+
max_memory_per_gpu_map = {
|
51 |
+
device_idx: max_memory_per_gpu
|
52 |
+
for device_idx in range(torch.cuda.device_count())
|
53 |
+
}
|
54 |
+
max_memory.update(max_memory_per_gpu_map)
|
55 |
+
if max_cpu_memory is not None:
|
56 |
+
max_memory["cpu"] = max_cpu_memory
|
57 |
+
|
58 |
+
args = {}
|
59 |
+
if max_memory:
|
60 |
+
args["max_memory"] = max_memory
|
61 |
+
args["device_map"] = device_map_option
|
62 |
+
args["offload_folder"] = offload_folder
|
63 |
+
return args
|
64 |
+
|
65 |
+
|
66 |
+
@register_model("hf-auto", "hf", "huggingface")
|
67 |
+
class HFLM(TemplateLM):
|
68 |
+
"""
|
69 |
+
An abstracted Huggingface model class. Enables usage with both models of
|
70 |
+
`transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.
|
71 |
+
|
72 |
+
Supports data-parallel multi-GPU with HF Accelerate.
|
73 |
+
"""
|
74 |
+
|
75 |
+
AUTO_MODEL_CLASS = None
|
76 |
+
_DEFAULT_MAX_LENGTH = 2048
|
77 |
+
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
pretrained: Optional[Union[str, transformers.PreTrainedModel]] = "gpt2",
|
81 |
+
backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
|
82 |
+
# override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
|
83 |
+
revision: Optional[str] = "main",
|
84 |
+
subfolder: Optional[str] = None,
|
85 |
+
tokenizer: Optional[
|
86 |
+
Union[
|
87 |
+
str,
|
88 |
+
transformers.PreTrainedTokenizer,
|
89 |
+
transformers.PreTrainedTokenizerFast,
|
90 |
+
]
|
91 |
+
] = None,
|
92 |
+
truncation: Optional[bool] = False,
|
93 |
+
logits_cache: bool = True,
|
94 |
+
max_length: Optional[int] = None,
|
95 |
+
device: Optional[str] = "cuda",
|
96 |
+
dtype: Optional[Union[str, torch.dtype]] = "auto",
|
97 |
+
batch_size: Optional[Union[int, str]] = 1,
|
98 |
+
max_batch_size: Optional[int] = 64,
|
99 |
+
trust_remote_code: Optional[bool] = False,
|
100 |
+
use_fast_tokenizer: Optional[bool] = True,
|
101 |
+
add_bos_token: Optional[bool] = False,
|
102 |
+
prefix_token_id: Optional[int] = None,
|
103 |
+
# arguments used for splitting a model across GPUs naively.
|
104 |
+
# only used if `parallelize=True`.
|
105 |
+
parallelize: Optional[bool] = False,
|
106 |
+
device_map_option: Optional[str] = "auto",
|
107 |
+
max_memory_per_gpu: Optional[Union[int, str]] = None,
|
108 |
+
max_cpu_memory: Optional[Union[int, str]] = None,
|
109 |
+
offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
|
110 |
+
# PEFT and quantization options
|
111 |
+
peft: Optional[str] = None,
|
112 |
+
autogptq: Optional[Union[bool, str]] = False,
|
113 |
+
**kwargs,
|
114 |
+
) -> None:
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
# optionally: take in an already-initialized transformers.PreTrainedModel
|
118 |
+
if not isinstance(pretrained, str):
|
119 |
+
eval_logger.warning(
|
120 |
+
"`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
|
121 |
+
)
|
122 |
+
assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
|
123 |
+
self._model = pretrained
|
124 |
+
self._device = self._model.device
|
125 |
+
self._config = self._model.config
|
126 |
+
gpus = 0
|
127 |
+
|
128 |
+
if tokenizer:
|
129 |
+
assert isinstance(
|
130 |
+
tokenizer, transformers.PreTrainedTokenizer
|
131 |
+
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
|
132 |
+
self.tokenizer = tokenizer
|
133 |
+
else:
|
134 |
+
# Get tokenizer
|
135 |
+
model_name = self._model.name_or_path
|
136 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
137 |
+
model_name,
|
138 |
+
revision=revision,
|
139 |
+
trust_remote_code=trust_remote_code,
|
140 |
+
use_fast=use_fast_tokenizer,
|
141 |
+
)
|
142 |
+
|
143 |
+
else:
|
144 |
+
assert isinstance(device, str)
|
145 |
+
assert isinstance(pretrained, str)
|
146 |
+
assert isinstance(batch_size, (int, str))
|
147 |
+
|
148 |
+
gpus = torch.cuda.device_count()
|
149 |
+
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
|
150 |
+
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
|
151 |
+
if accelerator.num_processes > 1:
|
152 |
+
self.accelerator = accelerator
|
153 |
+
|
154 |
+
if not (parallelize or accelerator.num_processes > 1):
|
155 |
+
# use user-passed device
|
156 |
+
device_list = set(
|
157 |
+
["cuda", "cpu"]
|
158 |
+
+ [f"cuda:{i}" for i in range(torch.cuda.device_count())]
|
159 |
+
+ ["mps", "mps:0"]
|
160 |
+
)
|
161 |
+
if device and device in device_list:
|
162 |
+
self._device = torch.device(device)
|
163 |
+
eval_logger.info(f"Using device '{device}'")
|
164 |
+
if device in ("mps", "mps:0") and version.parse(
|
165 |
+
torch.__version__
|
166 |
+
) < version.parse("2.1"):
|
167 |
+
raise RuntimeError(
|
168 |
+
f"mps requires torch >= 2.1. You have {torch.__version__}"
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
eval_logger.info("Device not specified")
|
172 |
+
eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
|
173 |
+
self._device = (
|
174 |
+
torch.device("cuda")
|
175 |
+
if torch.cuda.is_available()
|
176 |
+
else torch.device("cpu")
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
if device != "cuda":
|
180 |
+
eval_logger.info(
|
181 |
+
f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
|
182 |
+
)
|
183 |
+
# TODO: include in warning that `load_in_8bit` etc. affect this too
|
184 |
+
self._device = torch.device(device)
|
185 |
+
|
186 |
+
# TODO: update this to be less of a hack once subfolder is fixed in HF
|
187 |
+
revision = revision + ("/" + subfolder if subfolder is not None else "")
|
188 |
+
|
189 |
+
self._get_config(
|
190 |
+
pretrained,
|
191 |
+
revision=revision,
|
192 |
+
trust_remote_code=trust_remote_code,
|
193 |
+
)
|
194 |
+
|
195 |
+
# determine which of 'causal' and 'seq2seq' backends to use
|
196 |
+
self._get_backend(
|
197 |
+
config=self.config, backend=backend, trust_remote_code=trust_remote_code
|
198 |
+
)
|
199 |
+
|
200 |
+
# if we passed `pretrained` as a string, initialize our model now
|
201 |
+
if isinstance(pretrained, str):
|
202 |
+
self._create_model(
|
203 |
+
pretrained=pretrained,
|
204 |
+
revision=revision,
|
205 |
+
dtype=dtype,
|
206 |
+
trust_remote_code=trust_remote_code,
|
207 |
+
parallelize=parallelize,
|
208 |
+
device_map_option=device_map_option,
|
209 |
+
max_memory_per_gpu=max_memory_per_gpu,
|
210 |
+
max_cpu_memory=max_cpu_memory,
|
211 |
+
offload_folder=offload_folder,
|
212 |
+
peft=peft,
|
213 |
+
autogptq=autogptq,
|
214 |
+
**kwargs,
|
215 |
+
)
|
216 |
+
|
217 |
+
# access self._model through self.model property outside this method
|
218 |
+
if isinstance(self.model, torch.nn.Module):
|
219 |
+
self.model.eval()
|
220 |
+
self.model.tie_weights()
|
221 |
+
|
222 |
+
if isinstance(pretrained, str) and (gpus >= 1 or str(self.device) == "mps"):
|
223 |
+
# TODO: can remove this whole snippet except in the mps case, perhaps?
|
224 |
+
if not (parallelize or autogptq or hasattr(self, "accelerator")):
|
225 |
+
# place model onto device requested manually,
|
226 |
+
# if not using HF Accelerate or device_map
|
227 |
+
# or any other option that preloads model onto device
|
228 |
+
try:
|
229 |
+
self.model.to(self.device)
|
230 |
+
except ValueError:
|
231 |
+
eval_logger.debug(
|
232 |
+
"Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
|
233 |
+
)
|
234 |
+
|
235 |
+
self._create_tokenizer(
|
236 |
+
pretrained,
|
237 |
+
tokenizer,
|
238 |
+
revision=revision,
|
239 |
+
trust_remote_code=trust_remote_code,
|
240 |
+
use_fast_tokenizer=use_fast_tokenizer,
|
241 |
+
)
|
242 |
+
|
243 |
+
self.truncation = truncation
|
244 |
+
self.logits_cache = logits_cache
|
245 |
+
self.vocab_size = self.tokenizer.vocab_size
|
246 |
+
# select (or create) a pad token to use
|
247 |
+
if self.tokenizer.pad_token:
|
248 |
+
pass
|
249 |
+
elif self.tokenizer.unk_token:
|
250 |
+
self.tokenizer.pad_token_id = self.tokenizer.unk_token_id
|
251 |
+
elif self.tokenizer.eos_token:
|
252 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
253 |
+
else:
|
254 |
+
if getattr(self.config, "model_type", None) == "qwen":
|
255 |
+
# Qwen's trust_remote_code tokenizer does not allow for adding special tokens
|
256 |
+
self.tokenizer.pad_token = "<|endoftext|>"
|
257 |
+
elif (
|
258 |
+
self.tokenizer.__class__.__name__ == "RWKVWorldTokenizer"
|
259 |
+
or self.tokenizer.__class__.__name__ == "Rwkv5Tokenizer"
|
260 |
+
):
|
261 |
+
# The RWKV world tokenizer, does not allow for adding special tokens / setting the pad token (which is set as 0)
|
262 |
+
# The additional tokenizer name check is needed, as there exists rwkv4 models with neox tokenizer
|
263 |
+
# ---
|
264 |
+
# Note that the world tokenizer class name, might change in the future for the final huggingface merge
|
265 |
+
# https://github.com/huggingface/transformers/pull/26963
|
266 |
+
assert self.tokenizer.pad_token_id == 0
|
267 |
+
else:
|
268 |
+
self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
|
269 |
+
|
270 |
+
# TODO: override this for Gemma
|
271 |
+
self.add_bos_token = add_bos_token
|
272 |
+
if getattr(self.config, "model_type", None) == "gemma":
|
273 |
+
self.add_bos_token = True
|
274 |
+
eval_logger.info(
|
275 |
+
f"Model type is '{self.config.model_type}', a BOS token will be used as Gemma underperforms without it."
|
276 |
+
)
|
277 |
+
|
278 |
+
self._max_length = max_length
|
279 |
+
|
280 |
+
self.batch_schedule = 1
|
281 |
+
self.batch_sizes = {}
|
282 |
+
self.max_batch_size = max_batch_size
|
283 |
+
|
284 |
+
if str(batch_size).startswith("auto"):
|
285 |
+
batch_size = batch_size.split(":")
|
286 |
+
self.batch_size_per_gpu = batch_size[0]
|
287 |
+
self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
|
288 |
+
else:
|
289 |
+
self.batch_size_per_gpu = int(batch_size)
|
290 |
+
|
291 |
+
if isinstance(pretrained, str):
|
292 |
+
# multigpu data-parallel support when launched with accelerate
|
293 |
+
if gpus > 1:
|
294 |
+
if parallelize:
|
295 |
+
if accelerator.num_processes > 1:
|
296 |
+
raise RuntimeError(
|
297 |
+
"Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
pass
|
301 |
+
elif accelerator.num_processes == 1:
|
302 |
+
# if we aren't launching via accelerate, ditch
|
303 |
+
self._rank = 0
|
304 |
+
self._world_size = 1
|
305 |
+
else:
|
306 |
+
if gpus > accelerator.num_processes:
|
307 |
+
eval_logger.warning(
|
308 |
+
"WARNING: The number of total system GPUs does not match the number of spawned processes. "
|
309 |
+
"If you would like to use data parallelism, please launch the script "
|
310 |
+
"with 'accelerate launch *script*'. "
|
311 |
+
f"Current run will proceed with {accelerator.num_processes} devices."
|
312 |
+
)
|
313 |
+
assert (
|
314 |
+
accelerator.distributed_type
|
315 |
+
in [
|
316 |
+
DistributedType.FSDP,
|
317 |
+
DistributedType.MULTI_GPU,
|
318 |
+
]
|
319 |
+
), "Unsupported distributed type provided. Only DDP and FSDP are supported."
|
320 |
+
if accelerator.distributed_type == DistributedType.FSDP:
|
321 |
+
self._model = accelerator.prepare(self.model)
|
322 |
+
else:
|
323 |
+
self._model = accelerator.prepare_model(
|
324 |
+
self.model, evaluation_mode=True
|
325 |
+
)
|
326 |
+
self._device = torch.device(
|
327 |
+
f"cuda:{accelerator.local_process_index}"
|
328 |
+
)
|
329 |
+
self.accelerator = accelerator
|
330 |
+
|
331 |
+
if self.accelerator.is_local_main_process:
|
332 |
+
eval_logger.info(f"Using {gpus} devices with data parallelism")
|
333 |
+
|
334 |
+
self._rank = self.accelerator.local_process_index
|
335 |
+
self._world_size = self.accelerator.num_processes
|
336 |
+
else:
|
337 |
+
# if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
|
338 |
+
eval_logger.warning(
|
339 |
+
"Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
|
340 |
+
)
|
341 |
+
self._rank = 0
|
342 |
+
self._world_size = 1
|
343 |
+
|
344 |
+
self.custom_prefix_token_id = prefix_token_id
|
345 |
+
if prefix_token_id is not None:
|
346 |
+
eval_logger.info(
|
347 |
+
f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
|
348 |
+
)
|
349 |
+
|
350 |
+
@property
|
351 |
+
def config(self):
|
352 |
+
# return the associated transformers.AutoConfig for the given pretrained model.
|
353 |
+
return self._config
|
354 |
+
|
355 |
+
@property
|
356 |
+
def model(self):
|
357 |
+
# returns the model, unwrapping it if using Accelerate
|
358 |
+
if hasattr(self, "accelerator"):
|
359 |
+
return self.accelerator.unwrap_model(self._model)
|
360 |
+
else:
|
361 |
+
return self._model
|
362 |
+
|
363 |
+
@property
|
364 |
+
def eot_token_id(self):
|
365 |
+
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
366 |
+
return self.tokenizer.eos_token_id
|
367 |
+
|
368 |
+
@property
|
369 |
+
def prefix_token_id(self):
|
370 |
+
# it is used as prefix for loglikelihood
|
371 |
+
if self.custom_prefix_token_id is not None:
|
372 |
+
return self.custom_prefix_token_id
|
373 |
+
if self.tokenizer.bos_token_id is not None:
|
374 |
+
return self.tokenizer.bos_token_id
|
375 |
+
return self.tokenizer.eos_token_id
|
376 |
+
|
377 |
+
@property
|
378 |
+
def max_length(self):
|
379 |
+
if self._max_length: # if max length manually set, return it
|
380 |
+
return self._max_length
|
381 |
+
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
|
382 |
+
for attr in seqlen_config_attrs:
|
383 |
+
if hasattr(self.model.config, attr):
|
384 |
+
return getattr(self.model.config, attr)
|
385 |
+
if hasattr(self.tokenizer, "model_max_length"):
|
386 |
+
if self.tokenizer.model_max_length == 1000000000000000019884624838656:
|
387 |
+
return self._DEFAULT_MAX_LENGTH
|
388 |
+
return self.tokenizer.model_max_length
|
389 |
+
return self._DEFAULT_MAX_LENGTH
|
390 |
+
|
391 |
+
@property
|
392 |
+
def max_gen_toks(self) -> int:
|
393 |
+
return 256
|
394 |
+
|
395 |
+
@property
|
396 |
+
def batch_size(self):
|
397 |
+
return self.batch_size_per_gpu
|
398 |
+
|
399 |
+
@property
|
400 |
+
def device(self):
|
401 |
+
return self._device
|
402 |
+
|
403 |
+
@property
|
404 |
+
def rank(self):
|
405 |
+
return self._rank
|
406 |
+
|
407 |
+
@property
|
408 |
+
def world_size(self):
|
409 |
+
return self._world_size
|
410 |
+
|
411 |
+
def _get_backend(
|
412 |
+
self,
|
413 |
+
config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
|
414 |
+
backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
|
415 |
+
trust_remote_code: Optional[bool] = False,
|
416 |
+
) -> None:
|
417 |
+
"""
|
418 |
+
Helper method during initialization.
|
419 |
+
Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
|
420 |
+
model type to be used.
|
421 |
+
"""
|
422 |
+
assert backend in ["default", "causal", "seq2seq"]
|
423 |
+
|
424 |
+
if backend != "default":
|
425 |
+
# if we've settled on non-default backend, use that manually
|
426 |
+
if backend == "causal":
|
427 |
+
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
|
428 |
+
elif backend == "seq2seq":
|
429 |
+
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
|
430 |
+
eval_logger.info(
|
431 |
+
f"Overrode HF model backend type, and using type '{backend}'"
|
432 |
+
)
|
433 |
+
else:
|
434 |
+
# determine and use the default HF backend for this model, based on its config + metadata.
|
435 |
+
if (
|
436 |
+
getattr(config, "model_type")
|
437 |
+
in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
|
438 |
+
):
|
439 |
+
# first check if model type is listed under seq2seq models, since some
|
440 |
+
# models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
|
441 |
+
# these special cases should be treated as seq2seq models.
|
442 |
+
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
|
443 |
+
elif (
|
444 |
+
getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
445 |
+
):
|
446 |
+
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
|
447 |
+
else:
|
448 |
+
if not trust_remote_code:
|
449 |
+
eval_logger.warning(
|
450 |
+
"HF model type is neither marked as CausalLM or Seq2SeqLM. \
|
451 |
+
This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
|
452 |
+
)
|
453 |
+
# if model type is neither in HF transformers causal or seq2seq model registries
|
454 |
+
# then we default to AutoModelForCausalLM
|
455 |
+
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
|
456 |
+
|
457 |
+
assert self.AUTO_MODEL_CLASS in [
|
458 |
+
transformers.AutoModelForCausalLM,
|
459 |
+
transformers.AutoModelForSeq2SeqLM,
|
460 |
+
]
|
461 |
+
return None
|
462 |
+
|
463 |
+
def _get_config(
|
464 |
+
self,
|
465 |
+
pretrained: str,
|
466 |
+
revision: str = "main",
|
467 |
+
trust_remote_code: bool = False,
|
468 |
+
) -> None:
|
469 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
470 |
+
pretrained,
|
471 |
+
revision=revision,
|
472 |
+
trust_remote_code=trust_remote_code,
|
473 |
+
)
|
474 |
+
|
475 |
+
def _create_model(
|
476 |
+
self,
|
477 |
+
pretrained: str,
|
478 |
+
revision: Optional[str] = "main",
|
479 |
+
dtype: Optional[Union[str, torch.dtype]] = "auto",
|
480 |
+
trust_remote_code: Optional[bool] = False,
|
481 |
+
# arguments used for splitting a model across GPUs naively.
|
482 |
+
# only used if `parallelize=True`.
|
483 |
+
# (accelerate naive PP (device_map) options)
|
484 |
+
parallelize: Optional[bool] = False,
|
485 |
+
device_map_option: Optional[str] = "auto",
|
486 |
+
max_memory_per_gpu: Optional[Union[int, str]] = None,
|
487 |
+
max_cpu_memory: Optional[Union[int, str]] = None,
|
488 |
+
offload_folder: Optional[str] = "./offload",
|
489 |
+
# PEFT and quantization options
|
490 |
+
peft: Optional[str] = None,
|
491 |
+
autogptq: Optional[Union[bool, str]] = False,
|
492 |
+
**kwargs,
|
493 |
+
) -> None:
|
494 |
+
"""
|
495 |
+
Initializes an HF or HF-compatible PreTrainedModel from scratch
|
496 |
+
inside HFLM, using the kwargs passed into self.__init__().
|
497 |
+
|
498 |
+
Also handles functionality such as AutoGPTQ usage and PEFT wrapping.
|
499 |
+
|
500 |
+
For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
|
501 |
+
(such as PyTorch models that are nearly, but not quite, fully mirroring
|
502 |
+
HF's public interface relied on in this HFLM class)
|
503 |
+
please consider subclassing HFLM and overriding this and other methods as needed.
|
504 |
+
"""
|
505 |
+
|
506 |
+
model_kwargs = kwargs if kwargs else {}
|
507 |
+
|
508 |
+
if parallelize:
|
509 |
+
model_kwargs.update(
|
510 |
+
_get_accelerate_args(
|
511 |
+
device_map_option, # TODO: phase out device_map_option?
|
512 |
+
max_memory_per_gpu,
|
513 |
+
max_cpu_memory,
|
514 |
+
offload_folder,
|
515 |
+
)
|
516 |
+
)
|
517 |
+
elif "device_map" not in model_kwargs:
|
518 |
+
# set a device_map to initialize model on the right GPU.
|
519 |
+
# this is needed because it seems that the default behavior
|
520 |
+
# for quantized models now seems to be device_map="auto"
|
521 |
+
# which breaks data-parallel mode.
|
522 |
+
if hasattr(self, "accelerator"):
|
523 |
+
model_kwargs.update(
|
524 |
+
{"device_map": {"": f"cuda:{self.accelerator.local_process_index}"}}
|
525 |
+
)
|
526 |
+
else:
|
527 |
+
model_kwargs.update({"device_map": {"": str(self.device)}})
|
528 |
+
|
529 |
+
if not autogptq:
|
530 |
+
if model_kwargs.get("load_in_4bit", None):
|
531 |
+
assert (
|
532 |
+
transformers.__version__ >= "4.30.0"
|
533 |
+
), "load_in_4bit requires transformers >= 4.30.0"
|
534 |
+
if transformers.__version__ >= "4.30.0":
|
535 |
+
if model_kwargs.get("load_in_4bit", None):
|
536 |
+
if model_kwargs.get("bnb_4bit_compute_dtype", None):
|
537 |
+
model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
|
538 |
+
model_kwargs["bnb_4bit_compute_dtype"]
|
539 |
+
)
|
540 |
+
self._model = self.AUTO_MODEL_CLASS.from_pretrained(
|
541 |
+
pretrained,
|
542 |
+
revision=revision,
|
543 |
+
torch_dtype=get_dtype(dtype),
|
544 |
+
trust_remote_code=trust_remote_code,
|
545 |
+
**model_kwargs,
|
546 |
+
)
|
547 |
+
else:
|
548 |
+
try:
|
549 |
+
from auto_gptq import AutoGPTQForCausalLM
|
550 |
+
except ModuleNotFoundError:
|
551 |
+
raise Exception(
|
552 |
+
"Tried to load auto_gptq, but auto-gptq is not installed ",
|
553 |
+
"please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
|
554 |
+
)
|
555 |
+
|
556 |
+
self._model = AutoGPTQForCausalLM.from_quantized(
|
557 |
+
pretrained,
|
558 |
+
trust_remote_code=trust_remote_code,
|
559 |
+
model_basename=None if autogptq is True else Path(autogptq).stem,
|
560 |
+
use_safetensors=True
|
561 |
+
if autogptq is True
|
562 |
+
else autogptq.endswith(".safetensors"),
|
563 |
+
**model_kwargs,
|
564 |
+
)
|
565 |
+
|
566 |
+
if peft:
|
567 |
+
if model_kwargs.get("load_in_4bit", None):
|
568 |
+
if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
|
569 |
+
raise AssertionError("load_in_4bit requires peft >= 0.4.0")
|
570 |
+
self._model = PeftModel.from_pretrained(
|
571 |
+
self._model, peft, revision=revision
|
572 |
+
)
|
573 |
+
|
574 |
+
return None
|
575 |
+
|
576 |
+
def _create_tokenizer(
|
577 |
+
self,
|
578 |
+
pretrained: Union[str, transformers.PreTrainedModel],
|
579 |
+
tokenizer: Optional[
|
580 |
+
Union[
|
581 |
+
str,
|
582 |
+
transformers.PreTrainedTokenizer,
|
583 |
+
transformers.PreTrainedTokenizerFast,
|
584 |
+
]
|
585 |
+
],
|
586 |
+
revision: Optional[str] = "main",
|
587 |
+
trust_remote_code: Optional[bool] = False,
|
588 |
+
use_fast_tokenizer: Optional[bool] = True,
|
589 |
+
) -> None:
|
590 |
+
"""
|
591 |
+
Helper method during initialization.
|
592 |
+
|
593 |
+
Create a tokenizer object corresponding to the correct
|
594 |
+
tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
|
595 |
+
"""
|
596 |
+
|
597 |
+
if tokenizer:
|
598 |
+
if isinstance(tokenizer, str):
|
599 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
600 |
+
tokenizer,
|
601 |
+
revision=revision,
|
602 |
+
trust_remote_code=trust_remote_code,
|
603 |
+
use_fast=use_fast_tokenizer,
|
604 |
+
)
|
605 |
+
else:
|
606 |
+
assert isinstance(
|
607 |
+
tokenizer, transformers.PreTrainedTokenizer
|
608 |
+
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
|
609 |
+
self.tokenizer = tokenizer
|
610 |
+
else:
|
611 |
+
# Get tokenizer based on 'pretrained'
|
612 |
+
if isinstance(pretrained, str):
|
613 |
+
model_name = pretrained
|
614 |
+
else:
|
615 |
+
# get the HF hub name via accessor on model
|
616 |
+
model_name = self.model.name_or_path
|
617 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
618 |
+
model_name,
|
619 |
+
revision=revision,
|
620 |
+
trust_remote_code=trust_remote_code,
|
621 |
+
use_fast=use_fast_tokenizer,
|
622 |
+
)
|
623 |
+
return None
|
624 |
+
|
625 |
+
def _detect_batch_size(self, requests=None, pos: int = 0):
|
626 |
+
if requests:
|
627 |
+
_, context_enc, continuation_enc = requests[pos]
|
628 |
+
max_length = len(
|
629 |
+
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
|
630 |
+
)
|
631 |
+
max_context_enc = len(context_enc[-(self.max_length + 1) :])
|
632 |
+
max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
|
633 |
+
else:
|
634 |
+
max_length = self.max_length
|
635 |
+
|
636 |
+
# if OOM, then halves batch_size and tries again
|
637 |
+
@find_executable_batch_size(starting_batch_size=self.max_batch_size)
|
638 |
+
def forward_batch(batch_size):
|
639 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
640 |
+
length = max(max_context_enc, max_cont_enc)
|
641 |
+
batched_conts = torch.ones(
|
642 |
+
(batch_size, length), device=self.device
|
643 |
+
).long()
|
644 |
+
test_batch = torch.ones((batch_size, length), device=self.device).long()
|
645 |
+
call_kwargs = {
|
646 |
+
"attn_mask": test_batch,
|
647 |
+
"labels": batched_conts,
|
648 |
+
}
|
649 |
+
else:
|
650 |
+
call_kwargs = {}
|
651 |
+
test_batch = torch.ones(
|
652 |
+
(batch_size, max_length), device=self.device
|
653 |
+
).long()
|
654 |
+
for _ in range(5):
|
655 |
+
out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1) # noqa: F841
|
656 |
+
|
657 |
+
return batch_size
|
658 |
+
|
659 |
+
try:
|
660 |
+
batch_size = forward_batch()
|
661 |
+
except RuntimeError as e:
|
662 |
+
if "No executable batch size found" in str(e):
|
663 |
+
batch_size = 1
|
664 |
+
else:
|
665 |
+
raise
|
666 |
+
|
667 |
+
if self.world_size > 1:
|
668 |
+
# if multi-GPU, always take minimum over all selected batch sizes
|
669 |
+
max_rnk_bs = torch.tensor([batch_size], device=self.device)
|
670 |
+
gathered = (
|
671 |
+
self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
|
672 |
+
)
|
673 |
+
batch_size = min(gathered)
|
674 |
+
clear_torch_cache()
|
675 |
+
return batch_size
|
676 |
+
|
677 |
+
clear_torch_cache()
|
678 |
+
return batch_size
|
679 |
+
|
680 |
+
def tok_encode(
|
681 |
+
self, string: str, left_truncate_len=None, add_special_tokens=None
|
682 |
+
) -> List[int]:
|
683 |
+
""" """
|
684 |
+
# default for None - empty dict, use predefined tokenizer param
|
685 |
+
# used for all models except for CausalLM or predefined value
|
686 |
+
special_tokens_kwargs = {}
|
687 |
+
|
688 |
+
# by default for CausalLM - false or self.add_bos_token is set
|
689 |
+
if add_special_tokens is None:
|
690 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
691 |
+
special_tokens_kwargs = {
|
692 |
+
"add_special_tokens": False or self.add_bos_token
|
693 |
+
}
|
694 |
+
# otherwise the method explicitly defines the value
|
695 |
+
else:
|
696 |
+
special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
|
697 |
+
|
698 |
+
encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
|
699 |
+
|
700 |
+
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
|
701 |
+
if left_truncate_len:
|
702 |
+
encoding = encoding[-left_truncate_len:]
|
703 |
+
|
704 |
+
return encoding
|
705 |
+
|
706 |
+
def tok_batch_encode(
|
707 |
+
self,
|
708 |
+
strings: List[str],
|
709 |
+
padding_side: str = "left",
|
710 |
+
left_truncate_len: int = None,
|
711 |
+
truncation: bool = False,
|
712 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
713 |
+
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
|
714 |
+
old_padding_side = self.tokenizer.padding_side
|
715 |
+
self.tokenizer.padding_side = padding_side
|
716 |
+
|
717 |
+
add_special_tokens = {}
|
718 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
719 |
+
add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
|
720 |
+
|
721 |
+
encoding = self.tokenizer(
|
722 |
+
strings,
|
723 |
+
truncation=truncation,
|
724 |
+
padding="longest",
|
725 |
+
return_tensors="pt",
|
726 |
+
**add_special_tokens,
|
727 |
+
)
|
728 |
+
if left_truncate_len:
|
729 |
+
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
|
730 |
+
encoding["attention_mask"] = encoding["attention_mask"][
|
731 |
+
:, -left_truncate_len:
|
732 |
+
]
|
733 |
+
self.tokenizer.padding_side = old_padding_side
|
734 |
+
|
735 |
+
return encoding["input_ids"], encoding["attention_mask"]
|
736 |
+
|
737 |
+
def tok_decode(self, tokens, skip_special_tokens=True):
|
738 |
+
return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
|
739 |
+
|
740 |
+
def _model_call(self, inps, attn_mask=None, labels=None):
|
741 |
+
"""
|
742 |
+
:param inps: torch.Tensor
|
743 |
+
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
|
744 |
+
[batch, sequence_ctx]. the size of sequence may vary from call to call
|
745 |
+
:param attn_mask: torch.Tensor, optional
|
746 |
+
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
|
747 |
+
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
|
748 |
+
:param labels: torch.Tensor, optional
|
749 |
+
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
|
750 |
+
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
|
751 |
+
:return
|
752 |
+
A torch tensor of shape [batch, sequence, vocab] with the
|
753 |
+
logits returned from the model's decoder
|
754 |
+
"""
|
755 |
+
with torch.no_grad():
|
756 |
+
if attn_mask is not None or labels is not None:
|
757 |
+
assert attn_mask is not None and labels is not None
|
758 |
+
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
|
759 |
+
return self.model(
|
760 |
+
input_ids=inps, attention_mask=attn_mask, labels=labels
|
761 |
+
).logits
|
762 |
+
else:
|
763 |
+
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
|
764 |
+
return self.model(inps).logits
|
765 |
+
|
766 |
+
def _model_generate(self, context, max_length, stop, **generation_kwargs):
|
767 |
+
# temperature = 0.0 if not set
|
768 |
+
# if do_sample is false and temp==0.0:
|
769 |
+
# remove temperature, as do_sample=False takes care of this
|
770 |
+
# and we don't want a warning from HF
|
771 |
+
generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
|
772 |
+
do_sample = generation_kwargs.get("do_sample", None)
|
773 |
+
|
774 |
+
# The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
|
775 |
+
if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
|
776 |
+
generation_kwargs["do_sample"] = do_sample = False
|
777 |
+
|
778 |
+
if do_sample is False and generation_kwargs.get("temperature") == 0.0:
|
779 |
+
generation_kwargs.pop("temperature")
|
780 |
+
# build stopping criteria
|
781 |
+
stopping_criteria = stop_sequences_criteria(
|
782 |
+
self.tokenizer, stop, context.shape[1], context.shape[0]
|
783 |
+
)
|
784 |
+
return self.model.generate(
|
785 |
+
input_ids=context,
|
786 |
+
max_length=max_length,
|
787 |
+
stopping_criteria=stopping_criteria,
|
788 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
789 |
+
use_cache=True,
|
790 |
+
**generation_kwargs,
|
791 |
+
)
|
792 |
+
|
793 |
+
def _select_cont_toks(
|
794 |
+
self, logits: torch.Tensor, contlen: int = None, inplen: int = None
|
795 |
+
) -> torch.Tensor:
|
796 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
797 |
+
assert (
|
798 |
+
contlen and inplen
|
799 |
+
), "Must pass input len and cont. len to select scored logits for causal LM"
|
800 |
+
# discard right-padding.
|
801 |
+
# also discard the input/context tokens. we'll only score continuations.
|
802 |
+
logits = logits[inplen - contlen : inplen]
|
803 |
+
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
804 |
+
assert (
|
805 |
+
contlen and not inplen
|
806 |
+
), "Selecting scored logits for Seq2SeqLM requires only cont. len"
|
807 |
+
# only discard right-padding.
|
808 |
+
# the logits input to this fn only contain decoder-side tokens.
|
809 |
+
logits = logits[:contlen]
|
810 |
+
|
811 |
+
return logits
|
812 |
+
|
813 |
+
def loglikelihood_rolling(
|
814 |
+
self, requests: List[Instance], disable_tqdm: bool = False
|
815 |
+
) -> List[float]:
|
816 |
+
loglikelihoods = []
|
817 |
+
|
818 |
+
adaptive_batch_size = None
|
819 |
+
if self.batch_size == "auto":
|
820 |
+
# using rolling window with maximum context
|
821 |
+
print("Passed argument batch_size = auto. Detecting largest batch size")
|
822 |
+
batch_size = self._detect_batch_size()
|
823 |
+
print(f"Determined Largest batch size: {batch_size}")
|
824 |
+
adaptive_batch_size = batch_size
|
825 |
+
|
826 |
+
for (string,) in tqdm(
|
827 |
+
[req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
|
828 |
+
):
|
829 |
+
rolling_token_windows = list(
|
830 |
+
map(
|
831 |
+
utils.make_disjoint_window,
|
832 |
+
utils.get_rolling_token_windows(
|
833 |
+
token_list=self.tok_encode(string),
|
834 |
+
prefix_token=self.prefix_token_id,
|
835 |
+
max_seq_len=self.max_length,
|
836 |
+
context_len=1,
|
837 |
+
),
|
838 |
+
)
|
839 |
+
)
|
840 |
+
|
841 |
+
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
|
842 |
+
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
|
843 |
+
|
844 |
+
pad_amnt = 0
|
845 |
+
if self.world_size > 1:
|
846 |
+
# We pad out the external document-level iterator so the inner iterator doesn't hang
|
847 |
+
mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
|
848 |
+
gathered = (
|
849 |
+
self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
|
850 |
+
)
|
851 |
+
|
852 |
+
pad_amnt = max(gathered) - gathered[self.rank]
|
853 |
+
if pad_amnt > 0:
|
854 |
+
rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
|
855 |
+
|
856 |
+
string_nll = self._loglikelihood_tokens(
|
857 |
+
requests=rolling_token_windows,
|
858 |
+
disable_tqdm=True,
|
859 |
+
override_bs=adaptive_batch_size,
|
860 |
+
)
|
861 |
+
|
862 |
+
if (self.world_size > 1) and (pad_amnt > 0):
|
863 |
+
string_nll = [x[0] for x in string_nll[:-pad_amnt]]
|
864 |
+
else:
|
865 |
+
# discard is_greedy
|
866 |
+
string_nll = [x[0] for x in string_nll]
|
867 |
+
|
868 |
+
string_nll = sum(string_nll)
|
869 |
+
loglikelihoods.append(string_nll)
|
870 |
+
|
871 |
+
return loglikelihoods
|
872 |
+
|
873 |
+
def _batch_scheduler(self, pos, n_reordered_requests):
|
874 |
+
sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
|
875 |
+
if sched in self.batch_sizes:
|
876 |
+
return self.batch_sizes[sched]
|
877 |
+
if (len(self.batch_sizes) > 1) and (
|
878 |
+
self.batch_sizes[sched - 1] == self.max_batch_size
|
879 |
+
):
|
880 |
+
# if previous batch size is already maximal, skip recomputation
|
881 |
+
self.batch_sizes[sched] = self.max_batch_size
|
882 |
+
return self.batch_sizes[sched]
|
883 |
+
print(
|
884 |
+
f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
|
885 |
+
)
|
886 |
+
self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
|
887 |
+
print(f"Determined largest batch size: {self.batch_sizes[sched]}")
|
888 |
+
return self.batch_sizes[sched]
|
889 |
+
|
890 |
+
def _loglikelihood_tokens(
|
891 |
+
self,
|
892 |
+
requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
|
893 |
+
disable_tqdm: bool = False,
|
894 |
+
override_bs: int = None,
|
895 |
+
) -> List[Tuple[float, bool]]:
|
896 |
+
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
|
897 |
+
res = []
|
898 |
+
|
899 |
+
def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
|
900 |
+
"""Defines the key for the sorted method"""
|
901 |
+
# the negative sign on len(toks) sorts descending - this has a few advantages:
|
902 |
+
# - time estimates will always be over not underestimates, which is more useful for planning
|
903 |
+
# - to know the size of a batch when going through the list, you know the first one is always the batch
|
904 |
+
# padded context length. this is useful to simplify the batching logic and more importantly to make
|
905 |
+
# automatic adaptive batches much much easier to implement
|
906 |
+
# - any OOMs will happen right away rather than near the end
|
907 |
+
|
908 |
+
toks = req[1] + req[2]
|
909 |
+
return -len(toks), tuple(toks)
|
910 |
+
|
911 |
+
def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
|
912 |
+
"""Defines the key to group and lookup one-token continuations"""
|
913 |
+
# Use with group_by="contexts" (optional)"
|
914 |
+
# allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
|
915 |
+
# speeds up some multiple-choice tasks proportionally to the number of choices.
|
916 |
+
# groups requests by context+continuation[:-1] and infer on one request/group.
|
917 |
+
return req[-2] + req[-1][:-1]
|
918 |
+
|
919 |
+
re_ord = Collator(
|
920 |
+
requests,
|
921 |
+
sort_fn=_collate,
|
922 |
+
group_by="contexts"
|
923 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
|
924 |
+
and self.logits_cache
|
925 |
+
else None,
|
926 |
+
group_fn=_lookup_one_token_cont,
|
927 |
+
)
|
928 |
+
|
929 |
+
# automatic (variable) batch size detection for vectorization
|
930 |
+
# pull longest context sample from request
|
931 |
+
n_reordered_requests = len(re_ord)
|
932 |
+
batch_size = (
|
933 |
+
self.batch_size
|
934 |
+
if self.batch_size != "auto"
|
935 |
+
else override_bs
|
936 |
+
if override_bs is not None
|
937 |
+
else 0
|
938 |
+
)
|
939 |
+
batch_fn = (
|
940 |
+
self._batch_scheduler
|
941 |
+
if self.batch_size == "auto"
|
942 |
+
and n_reordered_requests > 0
|
943 |
+
and not override_bs
|
944 |
+
else None
|
945 |
+
)
|
946 |
+
|
947 |
+
chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
|
948 |
+
pbar = tqdm(
|
949 |
+
total=len(requests),
|
950 |
+
disable=(disable_tqdm or (self.rank != 0)),
|
951 |
+
desc="Running loglikelihood requests",
|
952 |
+
)
|
953 |
+
for chunk in chunks:
|
954 |
+
inps = []
|
955 |
+
cont_toks_list = []
|
956 |
+
inplens = []
|
957 |
+
|
958 |
+
conts = []
|
959 |
+
encoder_attns = []
|
960 |
+
|
961 |
+
padding_len_inp = None
|
962 |
+
padding_len_cont = None
|
963 |
+
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
|
964 |
+
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
|
965 |
+
# again because vectorizing is annoying
|
966 |
+
|
967 |
+
for _, context_enc, continuation_enc in chunk:
|
968 |
+
# sanity check
|
969 |
+
assert len(context_enc) > 0
|
970 |
+
assert len(continuation_enc) > 0
|
971 |
+
assert len(continuation_enc) <= self.max_length
|
972 |
+
|
973 |
+
# how this all works (illustrated on a causal decoder-only setup):
|
974 |
+
# CTX CONT
|
975 |
+
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
|
976 |
+
# model \ \
|
977 |
+
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
|
978 |
+
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
|
979 |
+
|
980 |
+
# when too long to fit in context, truncate from the left
|
981 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
982 |
+
inp = torch.tensor(
|
983 |
+
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
|
984 |
+
dtype=torch.long,
|
985 |
+
device=self.device,
|
986 |
+
)
|
987 |
+
(inplen,) = inp.shape
|
988 |
+
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
989 |
+
inp = torch.tensor(
|
990 |
+
(context_enc)[-self.max_length :],
|
991 |
+
dtype=torch.long,
|
992 |
+
device=self.device,
|
993 |
+
)
|
994 |
+
(inplen,) = inp.shape
|
995 |
+
|
996 |
+
# build encoder attn masks
|
997 |
+
encoder_attns.append(torch.ones_like(inp))
|
998 |
+
|
999 |
+
cont = torch.tensor(
|
1000 |
+
(continuation_enc)[-self.max_length :],
|
1001 |
+
# TODO: left-shift these?
|
1002 |
+
# TODO: our code assumes we never end up truncating conts for either model type
|
1003 |
+
dtype=torch.long,
|
1004 |
+
device=self.device,
|
1005 |
+
)
|
1006 |
+
(contlen,) = cont.shape
|
1007 |
+
|
1008 |
+
conts.append(cont)
|
1009 |
+
|
1010 |
+
padding_len_cont = (
|
1011 |
+
max(padding_len_cont, contlen)
|
1012 |
+
if padding_len_cont is not None
|
1013 |
+
else contlen
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
padding_len_inp = (
|
1017 |
+
max(padding_len_inp, inplen)
|
1018 |
+
if padding_len_inp is not None
|
1019 |
+
else inplen
|
1020 |
+
)
|
1021 |
+
|
1022 |
+
inps.append(inp) # [1, inp_length]
|
1023 |
+
cont_toks_list.append(continuation_enc)
|
1024 |
+
inplens.append(inplen)
|
1025 |
+
|
1026 |
+
# create encoder attn mask and batched conts, if seq2seq
|
1027 |
+
call_kwargs = {}
|
1028 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
1029 |
+
batched_inps = pad_and_concat(
|
1030 |
+
padding_len_inp, inps, padding_side="right"
|
1031 |
+
) # [batch, padding_len_inp]
|
1032 |
+
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
1033 |
+
# TODO: left-pad encoder inps and mask?
|
1034 |
+
batched_inps = pad_and_concat(
|
1035 |
+
padding_len_inp, inps
|
1036 |
+
) # [batch, padding_len_inp]
|
1037 |
+
batched_conts = pad_and_concat(
|
1038 |
+
padding_len_cont, conts
|
1039 |
+
) # [batch, padding_len_cont]
|
1040 |
+
batched_encoder_mask = pad_and_concat(
|
1041 |
+
padding_len_inp, encoder_attns
|
1042 |
+
) # [batch, padding_len_inp]
|
1043 |
+
call_kwargs = {
|
1044 |
+
"attn_mask": batched_encoder_mask,
|
1045 |
+
"labels": batched_conts,
|
1046 |
+
}
|
1047 |
+
|
1048 |
+
multi_logits = F.log_softmax(
|
1049 |
+
self._model_call(batched_inps, **call_kwargs), dim=-1
|
1050 |
+
) # [batch, padding_length (inp or cont), vocab]
|
1051 |
+
|
1052 |
+
for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
|
1053 |
+
chunk, multi_logits, inplens, cont_toks_list
|
1054 |
+
):
|
1055 |
+
# Slice to original seq length
|
1056 |
+
contlen = len(cont_toks)
|
1057 |
+
# take only logits in the continuation
|
1058 |
+
# (discard context toks if decoder-only ; discard right-padding)
|
1059 |
+
# also discards + checks for "virtual tokens" in the causal LM's input window
|
1060 |
+
# from prompt/prefix tuning tokens, if applicable
|
1061 |
+
ctx_len = (
|
1062 |
+
inplen + (logits.shape[0] - padding_len_inp)
|
1063 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
|
1064 |
+
else None
|
1065 |
+
)
|
1066 |
+
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
|
1067 |
+
logits = logits.unsqueeze(0) # [1, seq, vocab]
|
1068 |
+
|
1069 |
+
# Check if per-token argmax is exactly equal to continuation
|
1070 |
+
greedy_tokens = logits.argmax(dim=-1)
|
1071 |
+
|
1072 |
+
# check for one-token continuation cache hits.
|
1073 |
+
# noop in case group_by != "contexts" or no cache hit and returns the
|
1074 |
+
# original args. Otherwise, expands the logits batch dimension and yields each
|
1075 |
+
# batch along with matching continuation tokens and prompt strings.
|
1076 |
+
# logits -> [1, seq, vocab]
|
1077 |
+
for request_str, cont_toks, logits in re_ord.get_cache(
|
1078 |
+
req_str=request_str,
|
1079 |
+
cxt_toks=ctx_tokens,
|
1080 |
+
cont_toks=cont_toks,
|
1081 |
+
logits=logits,
|
1082 |
+
):
|
1083 |
+
cont_toks = torch.tensor(
|
1084 |
+
cont_toks, dtype=torch.long, device=self.device
|
1085 |
+
).unsqueeze(0) # [1, seq]
|
1086 |
+
max_equal = (greedy_tokens == cont_toks).all()
|
1087 |
+
|
1088 |
+
# Obtain log-probs at the corresponding continuation token indices
|
1089 |
+
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
|
1090 |
+
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
|
1091 |
+
-1
|
1092 |
+
) # [1, seq]
|
1093 |
+
|
1094 |
+
# Answer: (log prob, is-exact-match)
|
1095 |
+
answer = (float(logits.sum()), bool(max_equal))
|
1096 |
+
|
1097 |
+
res.append(answer)
|
1098 |
+
|
1099 |
+
self.cache_hook.add_partial("loglikelihood", request_str, answer)
|
1100 |
+
pbar.update(1)
|
1101 |
+
|
1102 |
+
pbar.close()
|
1103 |
+
|
1104 |
+
return re_ord.get_original(res)
|
1105 |
+
|
1106 |
+
def generate_until(
|
1107 |
+
self, requests: List[Instance], disable_tqdm: bool = False
|
1108 |
+
) -> List[str]:
|
1109 |
+
res = []
|
1110 |
+
|
1111 |
+
def _collate(req: Tuple[str, dict]):
|
1112 |
+
"""Defines the key for the sorted method"""
|
1113 |
+
# the negative sign on len(toks) sorts descending - this has a few advantages:
|
1114 |
+
# - time estimates will always be over not underestimates, which is more useful for planning
|
1115 |
+
# - to know the size of a batch when going through the list, you know the first one is always the batch
|
1116 |
+
# padded context length. this is useful to simplify the batching logic and more importantly to make
|
1117 |
+
# automatic adaptive batches much much easier to implement
|
1118 |
+
# - any OOMs will happen right away rather than near the end
|
1119 |
+
toks = self.tok_encode(req[0])
|
1120 |
+
return -len(toks), req[0]
|
1121 |
+
|
1122 |
+
pbar = tqdm(
|
1123 |
+
total=len(requests),
|
1124 |
+
disable=(disable_tqdm or (self.rank != 0)),
|
1125 |
+
desc="Running generate_until requests",
|
1126 |
+
)
|
1127 |
+
adaptive_batch_size = None
|
1128 |
+
if self.batch_size == "auto":
|
1129 |
+
# using rolling window with maximum context
|
1130 |
+
print("Passed argument batch_size = auto. Detecting largest batch size")
|
1131 |
+
batch_size = self._detect_batch_size()
|
1132 |
+
print(f"Determined Largest batch size: {batch_size}")
|
1133 |
+
adaptive_batch_size = batch_size
|
1134 |
+
# for each different set of kwargs, we execute all requests, by batch.
|
1135 |
+
batch_size = (
|
1136 |
+
self.batch_size
|
1137 |
+
if self.batch_size != "auto"
|
1138 |
+
else adaptive_batch_size
|
1139 |
+
if adaptive_batch_size is not None
|
1140 |
+
else 0
|
1141 |
+
)
|
1142 |
+
batch_fn = (
|
1143 |
+
self._batch_scheduler
|
1144 |
+
if self.batch_size == "auto" and not adaptive_batch_size
|
1145 |
+
else None
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
# we group requests by their generation_kwargs,
|
1149 |
+
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
|
1150 |
+
# in the same batch.
|
1151 |
+
# group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
|
1152 |
+
re_ords = Collator(
|
1153 |
+
[reg.args for reg in requests],
|
1154 |
+
sort_fn=_collate,
|
1155 |
+
group_by="gen_kwargs",
|
1156 |
+
group_fn=lambda x: x[1],
|
1157 |
+
)
|
1158 |
+
chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
|
1159 |
+
for chunk in chunks:
|
1160 |
+
contexts, all_gen_kwargs = zip(*chunk)
|
1161 |
+
# we assume all gen kwargs in the batch are the same
|
1162 |
+
# this is safe to assume because the `grouper` object ensures it.
|
1163 |
+
gen_kwargs = all_gen_kwargs[0]
|
1164 |
+
# unpack our keyword arguments.
|
1165 |
+
until = None
|
1166 |
+
if isinstance(gen_kwargs, dict):
|
1167 |
+
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
|
1168 |
+
if "until" in kwargs.keys():
|
1169 |
+
until = kwargs.pop("until")
|
1170 |
+
if isinstance(until, str):
|
1171 |
+
until = [until]
|
1172 |
+
elif not isinstance(until, list):
|
1173 |
+
raise ValueError(
|
1174 |
+
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
|
1175 |
+
)
|
1176 |
+
else:
|
1177 |
+
raise ValueError(
|
1178 |
+
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
|
1179 |
+
)
|
1180 |
+
# add EOS token to stop sequences
|
1181 |
+
eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
|
1182 |
+
if not until:
|
1183 |
+
until = [eos]
|
1184 |
+
else:
|
1185 |
+
until.append(eos)
|
1186 |
+
if "max_gen_toks" in kwargs.keys():
|
1187 |
+
max_gen_toks = kwargs.pop("max_gen_toks")
|
1188 |
+
else:
|
1189 |
+
max_gen_toks = self.max_gen_toks
|
1190 |
+
|
1191 |
+
# set the max length in tokens of inputs ("context_enc")
|
1192 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
1193 |
+
# max len for inputs = max length, minus room to generate the max new tokens
|
1194 |
+
max_ctx_len = self.max_length - max_gen_toks
|
1195 |
+
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
1196 |
+
# max len for inputs = encoder's whole max_length
|
1197 |
+
max_ctx_len = self.max_length
|
1198 |
+
|
1199 |
+
# encode, pad, and truncate contexts for this batch
|
1200 |
+
context_enc, attn_masks = self.tok_batch_encode(
|
1201 |
+
contexts,
|
1202 |
+
left_truncate_len=max_ctx_len,
|
1203 |
+
truncation=self.truncation,
|
1204 |
+
)
|
1205 |
+
context_enc = context_enc.to(self.device)
|
1206 |
+
attn_masks = attn_masks.to(self.device)
|
1207 |
+
|
1208 |
+
if "max_length" not in kwargs:
|
1209 |
+
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
|
1210 |
+
|
1211 |
+
# perform batched generation
|
1212 |
+
cont = self._model_generate(
|
1213 |
+
context=context_enc,
|
1214 |
+
attention_mask=attn_masks,
|
1215 |
+
stop=until,
|
1216 |
+
**kwargs,
|
1217 |
+
)
|
1218 |
+
|
1219 |
+
cont_toks_list = cont.tolist()
|
1220 |
+
for cont_toks, context in zip(cont_toks_list, contexts):
|
1221 |
+
# discard context + left-padding toks if using causal decoder-only LM
|
1222 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
1223 |
+
cont_toks = cont_toks[context_enc.shape[1] :]
|
1224 |
+
|
1225 |
+
s = self.tok_decode(cont_toks)
|
1226 |
+
|
1227 |
+
# use secondary stop seqs to cut off should-have-been-stopped content post-hoc
|
1228 |
+
for term in until:
|
1229 |
+
if len(term) > 0:
|
1230 |
+
# ignore '' separator,
|
1231 |
+
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
|
1232 |
+
s = s.split(term)[0]
|
1233 |
+
|
1234 |
+
res.append(s)
|
1235 |
+
|
1236 |
+
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
|
1237 |
+
pbar.update(1)
|
1238 |
+
# reorder this group of results back to original unsorted form
|
1239 |
+
res = re_ords.get_original(res)
|
1240 |
+
|
1241 |
+
pbar.close()
|
1242 |
+
|
1243 |
+
return res
|
lm-evaluation/build/lib/lm_eval/models/mamba_lm.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import lm_eval.models.utils
|
6 |
+
from lm_eval.api.registry import register_model
|
7 |
+
from lm_eval.models.huggingface import HFLM
|
8 |
+
|
9 |
+
|
10 |
+
@register_model("mamba_ssm")
|
11 |
+
class MambaLMWrapper(HFLM):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
pretrained="state-spaces/mamba-130m",
|
15 |
+
**kwargs,
|
16 |
+
) -> None:
|
17 |
+
"""
|
18 |
+
Mamba (via the `mamba_ssm` package) supports the following args:
|
19 |
+
```
|
20 |
+
d_model: int,
|
21 |
+
n_layer: int,
|
22 |
+
vocab_size: int,
|
23 |
+
initializer_cfg=None,
|
24 |
+
pad_vocab_size_multiple: int = 1,
|
25 |
+
ssm_cfg=None,
|
26 |
+
norm_epsilon: float = 1e-5,
|
27 |
+
rms_norm: bool = False,
|
28 |
+
initializer_cfg=None,
|
29 |
+
fused_add_norm=False,
|
30 |
+
residual_in_fp32=False,
|
31 |
+
```
|
32 |
+
|
33 |
+
See https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py#L175 for more info.
|
34 |
+
The above can all be passed via `--model_args` or to this __init__() directly
|
35 |
+
but we recommend placing many of these within the config.json file uploaded alongside your
|
36 |
+
Mamba model to the HF Hub instead.
|
37 |
+
All other HuggingFace from_pretrained() kwargs
|
38 |
+
such as those related to
|
39 |
+
`parallelize=True`, PEFT, autoGPTQ,
|
40 |
+
or any sub-configurations of these advanced args,
|
41 |
+
are unsupported by the `mamba_ssm` package.
|
42 |
+
|
43 |
+
The HFLM arguments
|
44 |
+
|
45 |
+
`backend`, `tokenizer`, `truncation`, `max_length`,
|
46 |
+
`device`, `dtype`, `batch_size`, `max_batch_size`, `trust_remote_code`, `use_fast_tokenizer`
|
47 |
+
|
48 |
+
Are all supported by Mamba where they do not conflict
|
49 |
+
with Mamba-specific restrictions such as causal LMs only.
|
50 |
+
"""
|
51 |
+
|
52 |
+
if "backend" in kwargs:
|
53 |
+
# mamba currently only supports causal models
|
54 |
+
assert kwargs["backend"] == "causal"
|
55 |
+
|
56 |
+
super().__init__(
|
57 |
+
pretrained=pretrained,
|
58 |
+
# set appropriate defaults for tokenizer, max length, etc
|
59 |
+
backend=kwargs.pop("backend", "causal"),
|
60 |
+
tokenizer=kwargs.pop("tokenizer", "EleutherAI/gpt-neox-20b"),
|
61 |
+
max_length=kwargs.pop("max_length", 2048),
|
62 |
+
**kwargs,
|
63 |
+
)
|
64 |
+
|
65 |
+
def _get_config(
|
66 |
+
self,
|
67 |
+
pretrained: str,
|
68 |
+
**kwargs,
|
69 |
+
) -> None:
|
70 |
+
try:
|
71 |
+
from mamba_ssm.utils.hf import load_config_hf # noqa: F811
|
72 |
+
except ModuleNotFoundError:
|
73 |
+
raise Exception(
|
74 |
+
"attempted to use 'mamba_ssm' LM type, but package `mamba_ssm` is not installed. \
|
75 |
+
please install mamba via `pip install lm-eval[mamba]` or `pip install -e .[mamba]`",
|
76 |
+
)
|
77 |
+
|
78 |
+
self._config = load_config_hf(pretrained)
|
79 |
+
|
80 |
+
def _create_model(
|
81 |
+
self,
|
82 |
+
pretrained: str,
|
83 |
+
dtype: Optional[Union[str, torch.dtype]] = "float16",
|
84 |
+
# no `parallelize=True` options
|
85 |
+
# no PEFT and quantization options
|
86 |
+
# Mamba does not support arbitrary HF from_pretrained() args
|
87 |
+
**kwargs,
|
88 |
+
) -> None:
|
89 |
+
try:
|
90 |
+
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel # noqa: F811
|
91 |
+
except ModuleNotFoundError:
|
92 |
+
raise Exception(
|
93 |
+
"attempted to use 'mamba_ssm' LM type, but package `mamba_ssm` is not installed. \
|
94 |
+
please install mamba via `pip install lm-eval[mamba]` or `pip install -e .[mamba]`",
|
95 |
+
)
|
96 |
+
|
97 |
+
self._model = MambaLMHeadModel.from_pretrained(
|
98 |
+
pretrained,
|
99 |
+
device=self._device,
|
100 |
+
dtype=torch.float16
|
101 |
+
if dtype == "auto"
|
102 |
+
else lm_eval.models.utils.get_dtype(dtype),
|
103 |
+
)
|
104 |
+
|
105 |
+
def _model_generate(self, context, max_length, stop, **generation_kwargs):
|
106 |
+
for key in ("do_sample", "attention_mask"):
|
107 |
+
if key in generation_kwargs:
|
108 |
+
generation_kwargs.pop(key)
|
109 |
+
|
110 |
+
# mamba's custom GenerationMixin currently does not support
|
111 |
+
# passing stopping criteria.
|
112 |
+
# for the time being, we simply generate to max length,
|
113 |
+
# then truncate (equivalent result)
|
114 |
+
# -- this should be revisited to speed up generation
|
115 |
+
# stopping_criteria = stop_sequences_criteria(
|
116 |
+
# self.tokenizer, stop, 1, context.shape[0]
|
117 |
+
# )
|
118 |
+
|
119 |
+
return self.model.generate(
|
120 |
+
input_ids=context,
|
121 |
+
max_length=max_length,
|
122 |
+
# stopping_criteria=stopping_criteria,
|
123 |
+
# pad_token_id=self.tokenizer.pad_token_id,
|
124 |
+
# use_cache=True,
|
125 |
+
**generation_kwargs,
|
126 |
+
)
|
lm-evaluation/build/lib/lm_eval/models/nemo_lm.py
ADDED
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib
|
16 |
+
import pathlib
|
17 |
+
from copy import deepcopy
|
18 |
+
from typing import List, Literal
|
19 |
+
|
20 |
+
import filelock
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from tqdm import tqdm
|
24 |
+
|
25 |
+
from lm_eval.api.instance import Instance
|
26 |
+
from lm_eval.api.model import LM
|
27 |
+
from lm_eval.api.registry import register_model
|
28 |
+
from lm_eval.models.utils import Collator
|
29 |
+
from lm_eval.utils import (
|
30 |
+
eval_logger,
|
31 |
+
get_rolling_token_windows,
|
32 |
+
make_disjoint_window,
|
33 |
+
simple_parse_args_string,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def _patch_pretrained_cfg(
|
38 |
+
pretrained_cfg, trainer, tensor_model_parallel_size, pipeline_model_parallel_size
|
39 |
+
):
|
40 |
+
try:
|
41 |
+
import omegaconf
|
42 |
+
except ModuleNotFoundError:
|
43 |
+
raise Exception(
|
44 |
+
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
|
45 |
+
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
|
46 |
+
"or installing nemo following https://github.com/NVIDIA/NeMo.",
|
47 |
+
)
|
48 |
+
|
49 |
+
omegaconf.OmegaConf.set_struct(pretrained_cfg, True)
|
50 |
+
with omegaconf.open_dict(pretrained_cfg):
|
51 |
+
attributes_to_update = {
|
52 |
+
"sequence_parallel": False,
|
53 |
+
"activations_checkpoint_granularity": None,
|
54 |
+
"activations_checkpoint_method": None,
|
55 |
+
"precision": trainer.precision,
|
56 |
+
"global_batch_size": None,
|
57 |
+
"tensor_model_parallel_size": tensor_model_parallel_size,
|
58 |
+
"pipeline_model_parallel_size": pipeline_model_parallel_size,
|
59 |
+
"apply_rope_fusion": False,
|
60 |
+
}
|
61 |
+
for name, value in attributes_to_update.items():
|
62 |
+
if hasattr(pretrained_cfg, name):
|
63 |
+
pretrained_cfg[name] = value
|
64 |
+
return pretrained_cfg
|
65 |
+
|
66 |
+
|
67 |
+
def _get_target_from_class(target_class) -> str:
|
68 |
+
return f"{target_class.__module__}.{target_class.__name__}"
|
69 |
+
|
70 |
+
|
71 |
+
def load_model(
|
72 |
+
model_path: str,
|
73 |
+
trainer,
|
74 |
+
tensor_model_parallel_size: int,
|
75 |
+
pipeline_model_parallel_size: int,
|
76 |
+
) -> torch.nn.Module:
|
77 |
+
try:
|
78 |
+
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import (
|
79 |
+
MegatronGPTModel,
|
80 |
+
)
|
81 |
+
from nemo.collections.nlp.parts.nlp_overrides import NLPSaveRestoreConnector
|
82 |
+
except ModuleNotFoundError:
|
83 |
+
raise Exception(
|
84 |
+
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
|
85 |
+
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
|
86 |
+
"or installing nemo following https://github.com/NVIDIA/NeMo.",
|
87 |
+
)
|
88 |
+
model_path = pathlib.Path(model_path)
|
89 |
+
|
90 |
+
save_restore_connector = NLPSaveRestoreConnector()
|
91 |
+
if model_path.is_dir():
|
92 |
+
save_restore_connector.model_extracted_dir = model_path.as_posix()
|
93 |
+
pretrained_cfg = save_restore_connector.restore_from(
|
94 |
+
None, model_path.as_posix(), return_config=True, trainer=trainer
|
95 |
+
)
|
96 |
+
if not hasattr(pretrained_cfg, "target"):
|
97 |
+
pretrained_cfg["target"] = _get_target_from_class(MegatronGPTModel)
|
98 |
+
|
99 |
+
pretrained_cfg = _patch_pretrained_cfg(
|
100 |
+
pretrained_cfg,
|
101 |
+
trainer,
|
102 |
+
tensor_model_parallel_size=tensor_model_parallel_size,
|
103 |
+
pipeline_model_parallel_size=pipeline_model_parallel_size,
|
104 |
+
)
|
105 |
+
|
106 |
+
model_to_load_path = model_path
|
107 |
+
override_config = pretrained_cfg
|
108 |
+
|
109 |
+
module_name, class_name = override_config.target.rsplit(".", 1)
|
110 |
+
model_class = getattr(importlib.import_module(module_name), class_name)
|
111 |
+
|
112 |
+
# monkeypatch _build_tokenizer method to be process-safe
|
113 |
+
tokenizer_lock = filelock.FileLock(f"/tmp/{model_path.name}.tokenizer.lock")
|
114 |
+
|
115 |
+
def _synced_build_tokenizer(self):
|
116 |
+
with tokenizer_lock:
|
117 |
+
self._original_build_tokenizer()
|
118 |
+
|
119 |
+
model_class._original_build_tokenizer = model_class._build_tokenizer
|
120 |
+
model_class._build_tokenizer = _synced_build_tokenizer
|
121 |
+
|
122 |
+
model = model_class.restore_from(
|
123 |
+
restore_path=model_to_load_path.as_posix(),
|
124 |
+
trainer=trainer,
|
125 |
+
override_config_path=override_config,
|
126 |
+
save_restore_connector=save_restore_connector,
|
127 |
+
map_location=f"cuda:{trainer.local_rank}",
|
128 |
+
)
|
129 |
+
|
130 |
+
model.freeze()
|
131 |
+
model.training = False
|
132 |
+
try:
|
133 |
+
# Have to turn off activations_checkpoint_method for inference
|
134 |
+
model.model.language_model.encoder.activations_checkpoint_method = None
|
135 |
+
except AttributeError:
|
136 |
+
pass
|
137 |
+
return model
|
138 |
+
|
139 |
+
|
140 |
+
def setup_distributed_environment(trainer):
|
141 |
+
try:
|
142 |
+
from nemo.utils.app_state import AppState
|
143 |
+
except ModuleNotFoundError:
|
144 |
+
raise Exception(
|
145 |
+
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
|
146 |
+
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
|
147 |
+
"or installing nemo following https://github.com/NVIDIA/NeMo.",
|
148 |
+
)
|
149 |
+
|
150 |
+
def dummy():
|
151 |
+
return
|
152 |
+
|
153 |
+
if trainer.strategy.launcher is not None:
|
154 |
+
trainer.strategy.launcher.launch(dummy, trainer=trainer)
|
155 |
+
trainer.strategy.setup_environment()
|
156 |
+
|
157 |
+
app_state = AppState()
|
158 |
+
|
159 |
+
return app_state
|
160 |
+
|
161 |
+
|
162 |
+
@register_model("nemo_lm")
|
163 |
+
class NeMoLM(LM):
|
164 |
+
def __init__(
|
165 |
+
self,
|
166 |
+
path: str,
|
167 |
+
max_length: int = 4096,
|
168 |
+
batch_size: int = 1,
|
169 |
+
max_gen_toks: int = 256,
|
170 |
+
devices: int = 1,
|
171 |
+
num_nodes: int = 1,
|
172 |
+
tensor_model_parallel_size: int = 1,
|
173 |
+
pipeline_model_parallel_size: int = 1,
|
174 |
+
precision: Literal[
|
175 |
+
"16-mixed",
|
176 |
+
"bf16-mixed",
|
177 |
+
"32-true",
|
178 |
+
"64-true",
|
179 |
+
64,
|
180 |
+
32,
|
181 |
+
16,
|
182 |
+
"64",
|
183 |
+
"32",
|
184 |
+
"16",
|
185 |
+
"bf16",
|
186 |
+
] = "bf16",
|
187 |
+
**kwargs,
|
188 |
+
):
|
189 |
+
try:
|
190 |
+
from nemo.collections.nlp.modules.common.text_generation_utils import (
|
191 |
+
generate,
|
192 |
+
)
|
193 |
+
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy
|
194 |
+
from pytorch_lightning.trainer.trainer import Trainer
|
195 |
+
|
196 |
+
self.generate = generate
|
197 |
+
except ModuleNotFoundError:
|
198 |
+
raise Exception(
|
199 |
+
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
|
200 |
+
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
|
201 |
+
"or installing nemo following https://github.com/NVIDIA/NeMo.",
|
202 |
+
)
|
203 |
+
|
204 |
+
super().__init__()
|
205 |
+
|
206 |
+
if (
|
207 |
+
tensor_model_parallel_size == 1
|
208 |
+
and pipeline_model_parallel_size == 1
|
209 |
+
and devices > 1
|
210 |
+
):
|
211 |
+
eval_logger.info(
|
212 |
+
f"The number of data replicas for evaluation is {devices}."
|
213 |
+
)
|
214 |
+
eval_logger.info(f"The total number of devices is {devices}.")
|
215 |
+
eval_logger.info(
|
216 |
+
"No tensor parallelism or pipeline parallelism is applied."
|
217 |
+
)
|
218 |
+
|
219 |
+
elif tensor_model_parallel_size * pipeline_model_parallel_size == devices:
|
220 |
+
eval_logger.info(
|
221 |
+
f"Setting tensor parallelism to {tensor_model_parallel_size} and pipeline parallelism to {pipeline_model_parallel_size}."
|
222 |
+
)
|
223 |
+
eval_logger.info(f"The total number of devices is {devices}.")
|
224 |
+
eval_logger.info("No data parallelism is applied.")
|
225 |
+
|
226 |
+
else:
|
227 |
+
raise ValueError(
|
228 |
+
"Please set the product of tensor_model_parallel_size and pipeline_model_parallel_size"
|
229 |
+
"equal to the specified number of devices."
|
230 |
+
)
|
231 |
+
|
232 |
+
if num_nodes > 1:
|
233 |
+
raise ValueError(
|
234 |
+
"A number of nodes greater than 1 is not supported yet. Please set num_nodes as 1."
|
235 |
+
)
|
236 |
+
|
237 |
+
trainer = Trainer(
|
238 |
+
strategy=NLPDDPStrategy(),
|
239 |
+
devices=devices,
|
240 |
+
accelerator="gpu",
|
241 |
+
num_nodes=num_nodes,
|
242 |
+
precision=precision,
|
243 |
+
logger=False,
|
244 |
+
enable_checkpointing=False,
|
245 |
+
use_distributed_sampler=False,
|
246 |
+
)
|
247 |
+
# Modify the following flags only for data replication
|
248 |
+
if (
|
249 |
+
tensor_model_parallel_size == 1
|
250 |
+
and pipeline_model_parallel_size == 1
|
251 |
+
and devices > 1
|
252 |
+
):
|
253 |
+
self._device = torch.device(f"cuda:{trainer.global_rank}")
|
254 |
+
self._rank = trainer.global_rank
|
255 |
+
self._world_size = trainer.world_size
|
256 |
+
self.model = load_model(
|
257 |
+
path,
|
258 |
+
trainer,
|
259 |
+
tensor_model_parallel_size=tensor_model_parallel_size,
|
260 |
+
pipeline_model_parallel_size=pipeline_model_parallel_size,
|
261 |
+
).cuda()
|
262 |
+
self.tokenizer = self.model.tokenizer
|
263 |
+
self.app_state = setup_distributed_environment(trainer)
|
264 |
+
|
265 |
+
self._max_length = max_length
|
266 |
+
self._batch_size = int(batch_size)
|
267 |
+
self._max_gen_toks = max_gen_toks
|
268 |
+
|
269 |
+
@classmethod
|
270 |
+
def create_from_arg_string(cls, arg_string, additional_config=None):
|
271 |
+
args = simple_parse_args_string(arg_string)
|
272 |
+
if additional_config:
|
273 |
+
args["batch_size"] = additional_config.get("batch_size", 1)
|
274 |
+
|
275 |
+
return cls(**args)
|
276 |
+
|
277 |
+
@property
|
278 |
+
def eot_token_id(self):
|
279 |
+
try:
|
280 |
+
return self.tokenizer.eos_id
|
281 |
+
except AttributeError:
|
282 |
+
return None
|
283 |
+
|
284 |
+
@property
|
285 |
+
def max_length(self):
|
286 |
+
return self._max_length
|
287 |
+
|
288 |
+
@property
|
289 |
+
def max_gen_toks(self):
|
290 |
+
return self._max_gen_toks
|
291 |
+
|
292 |
+
@property
|
293 |
+
def batch_size(self):
|
294 |
+
return self._batch_size
|
295 |
+
|
296 |
+
@property
|
297 |
+
def device(self):
|
298 |
+
return self._device
|
299 |
+
|
300 |
+
@property
|
301 |
+
def rank(self):
|
302 |
+
return self._rank
|
303 |
+
|
304 |
+
@property
|
305 |
+
def world_size(self):
|
306 |
+
return self._world_size
|
307 |
+
|
308 |
+
@property
|
309 |
+
def accelerator(self):
|
310 |
+
return self._Accelerator(self.world_size)
|
311 |
+
|
312 |
+
class _Accelerator:
|
313 |
+
def __init__(self, world_size):
|
314 |
+
self.world_size = world_size
|
315 |
+
|
316 |
+
def wait_for_everyone(self):
|
317 |
+
torch.distributed.barrier()
|
318 |
+
|
319 |
+
def gather(self, local_tensor):
|
320 |
+
gathered_tensors = [
|
321 |
+
torch.zeros(1, dtype=local_tensor.dtype).cuda()
|
322 |
+
for _ in range(self.world_size)
|
323 |
+
]
|
324 |
+
torch.distributed.all_gather(gathered_tensors, local_tensor)
|
325 |
+
return torch.cat(gathered_tensors)
|
326 |
+
|
327 |
+
def tok_encode(self, string: str):
|
328 |
+
return self.tokenizer.text_to_ids(string)
|
329 |
+
|
330 |
+
def tok_decode(self, tokens):
|
331 |
+
return self.tokenizer.ids_to_text(tokens)
|
332 |
+
|
333 |
+
def _encode_pair(self, context, continuation):
|
334 |
+
n_spaces = len(context) - len(context.rstrip())
|
335 |
+
if n_spaces > 0:
|
336 |
+
continuation = context[-n_spaces:] + continuation
|
337 |
+
context = context[:-n_spaces]
|
338 |
+
whole_enc = self.tok_encode(context + continuation)
|
339 |
+
context_enc = self.tok_encode(context)
|
340 |
+
context_enc_len = len(context_enc)
|
341 |
+
continuation_enc = whole_enc[context_enc_len:]
|
342 |
+
return context_enc, continuation_enc
|
343 |
+
|
344 |
+
def loglikelihood(self, requests):
|
345 |
+
new_reqs = []
|
346 |
+
for context, continuation in [req.args for req in requests]:
|
347 |
+
if context == "":
|
348 |
+
# end of text as context
|
349 |
+
context_enc, continuation_enc = (
|
350 |
+
[self.eot_token_id],
|
351 |
+
self.tok_encode(continuation),
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
context_enc, continuation_enc = self._encode_pair(context, continuation)
|
355 |
+
|
356 |
+
new_reqs.append(((context, continuation), context_enc, continuation_enc))
|
357 |
+
|
358 |
+
return self._loglikelihood_tokens(new_reqs)
|
359 |
+
|
360 |
+
def loglikelihood_rolling(
|
361 |
+
self, requests: List[Instance], disable_tqdm: bool = False
|
362 |
+
) -> List[float]:
|
363 |
+
loglikelihoods = []
|
364 |
+
|
365 |
+
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
|
366 |
+
rolling_token_windows = list(
|
367 |
+
map(
|
368 |
+
make_disjoint_window,
|
369 |
+
get_rolling_token_windows(
|
370 |
+
token_list=self.tok_encode(string),
|
371 |
+
prefix_token=self.eot_token_id,
|
372 |
+
max_seq_len=self.max_length - 1,
|
373 |
+
context_len=1,
|
374 |
+
),
|
375 |
+
)
|
376 |
+
)
|
377 |
+
|
378 |
+
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
|
379 |
+
|
380 |
+
string_nll = self._loglikelihood_tokens(
|
381 |
+
rolling_token_windows,
|
382 |
+
)
|
383 |
+
|
384 |
+
# discard is_greedy
|
385 |
+
string_nll = [x[0] for x in string_nll]
|
386 |
+
|
387 |
+
string_nll = sum(string_nll)
|
388 |
+
loglikelihoods.append(string_nll)
|
389 |
+
return loglikelihoods
|
390 |
+
|
391 |
+
def _loglikelihood_tokens(self, requests, disable_tqdm=False):
|
392 |
+
res = []
|
393 |
+
|
394 |
+
def _collate(x):
|
395 |
+
toks = x[1] + x[2]
|
396 |
+
return -len(toks), tuple(toks)
|
397 |
+
|
398 |
+
re_ord = Collator(requests, sort_fn=_collate)
|
399 |
+
chunks = re_ord.get_batched(n=self.batch_size, batch_fn=None)
|
400 |
+
pbar = tqdm(
|
401 |
+
total=len(requests),
|
402 |
+
disable=(disable_tqdm or (self.rank != 0)),
|
403 |
+
desc="Running loglikelihood requests",
|
404 |
+
)
|
405 |
+
for chunk in chunks:
|
406 |
+
inps = []
|
407 |
+
ctxlens = []
|
408 |
+
contlens = []
|
409 |
+
|
410 |
+
for _, context_enc, continuation_enc in chunk:
|
411 |
+
# Leave one token for generation. Tokens_to_generate = 0 breaks NeMo.
|
412 |
+
inp = (context_enc + continuation_enc)[-(self.max_length - 1) :]
|
413 |
+
|
414 |
+
ctxlen = len(context_enc) - max(
|
415 |
+
0, len(context_enc) + len(continuation_enc) - (self.max_length - 1)
|
416 |
+
)
|
417 |
+
ctxlens.append(ctxlen)
|
418 |
+
contlens.append(len(continuation_enc))
|
419 |
+
|
420 |
+
inps.append(self.tok_decode(inp))
|
421 |
+
|
422 |
+
output = self.generate(
|
423 |
+
self.model,
|
424 |
+
inputs=inps,
|
425 |
+
tokens_to_generate=1,
|
426 |
+
min_tokens_to_generate=1,
|
427 |
+
compute_logprob=True,
|
428 |
+
all_probs=True,
|
429 |
+
)
|
430 |
+
|
431 |
+
batch_token_ids = np.asarray(output["token_ids"])[:, :-1]
|
432 |
+
batch_logprobs = output["logprob"][:, :-1]
|
433 |
+
batch_full_logprob = output["full_logprob"][:, :-1, :]
|
434 |
+
|
435 |
+
# Compute greedy tokens for entire batch rather than calling it with proper ctxlen for each sample.
|
436 |
+
# Additional tokens for each sample will be trimmed later.
|
437 |
+
min_ctxlen = min(ctxlens)
|
438 |
+
|
439 |
+
# Use min_ctxlen-1 instead of min_ctxlen since full_logprobs are not returns for the first token.
|
440 |
+
batch_greedy_tokens = (
|
441 |
+
torch.argmax(batch_full_logprob[:, min_ctxlen - 1 :, :], -1)
|
442 |
+
.cpu()
|
443 |
+
.numpy()
|
444 |
+
)
|
445 |
+
|
446 |
+
for token_ids, greedy_tokens, logprobs, ctxlen, contlen, (
|
447 |
+
cache_key,
|
448 |
+
_,
|
449 |
+
_,
|
450 |
+
) in zip(
|
451 |
+
batch_token_ids,
|
452 |
+
batch_greedy_tokens,
|
453 |
+
batch_logprobs,
|
454 |
+
ctxlens,
|
455 |
+
contlens,
|
456 |
+
chunk,
|
457 |
+
):
|
458 |
+
# Trim at contlen since shorter contexts in a batch will have more than one token generated.
|
459 |
+
# Use ctxlen-1 instead of ctxlen same as for full_logprob in batch_greedy_tokens calculation
|
460 |
+
logprobs = (logprobs[ctxlen - 1 :])[:contlen]
|
461 |
+
logprob = sum(logprobs).tolist()
|
462 |
+
|
463 |
+
continuation_tokens = (token_ids[ctxlen:])[:contlen]
|
464 |
+
len_diff = ctxlen - min_ctxlen
|
465 |
+
is_greedy = continuation_tokens == (greedy_tokens[len_diff:])[:contlen]
|
466 |
+
if not isinstance(is_greedy, bool):
|
467 |
+
is_greedy = is_greedy.all()
|
468 |
+
answer = (logprob, is_greedy)
|
469 |
+
|
470 |
+
if cache_key is not None:
|
471 |
+
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
|
472 |
+
|
473 |
+
res.append(answer)
|
474 |
+
pbar.update(1)
|
475 |
+
|
476 |
+
pbar.close()
|
477 |
+
|
478 |
+
return re_ord.get_original(res)
|
479 |
+
|
480 |
+
def generate_until(self, requests):
|
481 |
+
if not requests:
|
482 |
+
return []
|
483 |
+
res = []
|
484 |
+
|
485 |
+
def get_until(req_args):
|
486 |
+
until = req_args.get("until", [])
|
487 |
+
until = deepcopy(until) # prevent from modifying req_args for cache_key
|
488 |
+
if self.eot_token_id not in until:
|
489 |
+
until.append(self.eot_token_id)
|
490 |
+
return until
|
491 |
+
|
492 |
+
def _collate(x):
|
493 |
+
toks = self.tok_encode(x[0])
|
494 |
+
return len(toks), x[0]
|
495 |
+
|
496 |
+
re_ords = Collator(
|
497 |
+
[reg.args for reg in requests], sort_fn=_collate, group_by="gen_kwargs"
|
498 |
+
)
|
499 |
+
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
|
500 |
+
for chunk in chunks:
|
501 |
+
contexts, all_gen_kwargs = zip(*chunk)
|
502 |
+
# we assume all gen kwargs in the batch are the same
|
503 |
+
# this is safe to assume because the `grouper` object ensures it.
|
504 |
+
req_args = all_gen_kwargs[0]
|
505 |
+
# unpack our keyword arguments.
|
506 |
+
until = get_until(req_args)
|
507 |
+
max_gen_toks = req_args.get("max_gen_toks", self.max_gen_toks)
|
508 |
+
|
509 |
+
remaining_length = self.max_length - max_gen_toks
|
510 |
+
contexts = []
|
511 |
+
for context, _ in chunk:
|
512 |
+
encoded_context = self.tok_encode(context)
|
513 |
+
encoded_context = encoded_context[-remaining_length:]
|
514 |
+
contexts.append(self.tok_decode(encoded_context))
|
515 |
+
|
516 |
+
output = self.generate(
|
517 |
+
self.model,
|
518 |
+
inputs=contexts,
|
519 |
+
tokens_to_generate=max_gen_toks,
|
520 |
+
end_strings=until,
|
521 |
+
greedy=True,
|
522 |
+
)
|
523 |
+
|
524 |
+
answers = output["sentences"]
|
525 |
+
|
526 |
+
continuations = []
|
527 |
+
for context, answer in zip(contexts, answers):
|
528 |
+
continuations.append(answer[len(context) :])
|
529 |
+
|
530 |
+
for term in until:
|
531 |
+
continuations = [answer.split(term)[0] for answer in continuations]
|
532 |
+
|
533 |
+
for request, answer in zip(chunk, continuations):
|
534 |
+
self.cache_hook.add_partial("greedy_until", request, answer)
|
535 |
+
res.append(answer)
|
536 |
+
|
537 |
+
return re_ords.get_original(res)
|
lm-evaluation/build/lib/lm_eval/models/neuron_optimum.py
ADDED
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import subprocess
|
5 |
+
from collections import defaultdict
|
6 |
+
from typing import List, Optional, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import transformers
|
11 |
+
from packaging import version
|
12 |
+
from tqdm import tqdm
|
13 |
+
from transformers import GenerationConfig
|
14 |
+
from transformers.generation import StoppingCriteriaList
|
15 |
+
|
16 |
+
import lm_eval.models.utils
|
17 |
+
from lm_eval import utils
|
18 |
+
from lm_eval.api.model import TemplateLM
|
19 |
+
from lm_eval.api.registry import register_model
|
20 |
+
from lm_eval.models.utils import stop_sequences_criteria
|
21 |
+
|
22 |
+
|
23 |
+
try:
|
24 |
+
NEURON_AVAILABLE = True
|
25 |
+
from optimum.neuron import NeuronModelForCausalLM
|
26 |
+
from optimum.neuron.generation import TokenSelector
|
27 |
+
from optimum.neuron.version import __version__ as optimum_neuron_version
|
28 |
+
except ImportError:
|
29 |
+
NeuronModelForCausalLM = object
|
30 |
+
NEURON_AVAILABLE = False
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
def get_nc_count() -> Union[int, None]:
|
37 |
+
"""Returns the number of neuron cores on the current instance."""
|
38 |
+
try:
|
39 |
+
cmd = "neuron-ls --json-output"
|
40 |
+
result = subprocess.run(cmd, shell=True, capture_output=True)
|
41 |
+
print(f"inferring nc_count from `neuron-ls` {result.stdout}")
|
42 |
+
json_output = json.loads(result.stdout)
|
43 |
+
count = sum([x["nc_count"] for x in json_output])
|
44 |
+
print(f"nc_count={count}")
|
45 |
+
return count
|
46 |
+
except Exception:
|
47 |
+
return None
|
48 |
+
|
49 |
+
|
50 |
+
def wrap_constant_batch_size(func):
|
51 |
+
def _decorator(self, input_ids):
|
52 |
+
"""input_ids a 2D array with batch_size on dim=0
|
53 |
+
|
54 |
+
makes sure the func runs with self.batch_size
|
55 |
+
"""
|
56 |
+
# access a from TestSample
|
57 |
+
batch_size = input_ids.shape[0]
|
58 |
+
|
59 |
+
if batch_size < self.batch_size:
|
60 |
+
# handle the event of input_ids.shape[0] != batch_size
|
61 |
+
# Neuron cores expect constant batch_size
|
62 |
+
input_ids = torch.concat(
|
63 |
+
(
|
64 |
+
input_ids,
|
65 |
+
# add missing_batch_size dummy
|
66 |
+
torch.zeros(
|
67 |
+
[self.batch_size - batch_size, *input_ids.size()[1:]],
|
68 |
+
dtype=input_ids.dtype,
|
69 |
+
device=input_ids.device,
|
70 |
+
),
|
71 |
+
),
|
72 |
+
dim=0,
|
73 |
+
)
|
74 |
+
elif batch_size > self.batch_size:
|
75 |
+
raise ValueError(
|
76 |
+
f"The specified batch_size ({batch_size}) exceeds the model static batch size ({self.batch_size})"
|
77 |
+
)
|
78 |
+
# return the forward pass that requires constant batch size
|
79 |
+
return func(self, input_ids)[:batch_size]
|
80 |
+
|
81 |
+
return _decorator
|
82 |
+
|
83 |
+
|
84 |
+
class CustomNeuronModelForCausalLM(NeuronModelForCausalLM):
|
85 |
+
"""NeuronModelForCausalLM with `stopping_criteria` in `generate`"""
|
86 |
+
|
87 |
+
def generate(
|
88 |
+
self,
|
89 |
+
input_ids: torch.Tensor,
|
90 |
+
attention_mask: Optional[torch.Tensor] = None,
|
91 |
+
stopping_criteria: Optional["StoppingCriteriaList"] = None,
|
92 |
+
generation_config: Optional["GenerationConfig"] = None,
|
93 |
+
**kwargs,
|
94 |
+
) -> torch.LongTensor:
|
95 |
+
r"""
|
96 |
+
A streamlined generate() method overriding the transformers.GenerationMixin.generate() method.
|
97 |
+
|
98 |
+
This method uses the same logits processors/warpers and stopping criteria as the transformers library
|
99 |
+
`generate()` method but restricts the generation to greedy search and sampling.
|
100 |
+
|
101 |
+
It does not support transformers `generate()` advanced options.
|
102 |
+
|
103 |
+
Please refer to https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationMixin.generate
|
104 |
+
for details on generation configuration.
|
105 |
+
|
106 |
+
Parameters:
|
107 |
+
input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`):
|
108 |
+
The sequence used as a prompt for the generation.
|
109 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
110 |
+
Mask to avoid performing attention on padding token indices.
|
111 |
+
generation_config (`~transformers.generation.GenerationConfig`, *optional*):
|
112 |
+
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
113 |
+
passed to generate matching the attributes of `generation_config` will override them. If
|
114 |
+
`generation_config` is not provided, default will be used, which had the following loading
|
115 |
+
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
116 |
+
configuration. Please note that unspecified parameters will inherit [`~transformers.generation.GenerationConfig`]'s
|
117 |
+
default values, whose documentation should be checked to parameterize generation.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
`torch.Tensor`: A `torch.FloatTensor`.
|
121 |
+
"""
|
122 |
+
# The actual generation configuration is a combination of config and parameters
|
123 |
+
generation_config = copy.deepcopy(
|
124 |
+
self.generation_config if generation_config is None else generation_config
|
125 |
+
)
|
126 |
+
model_kwargs = generation_config.update(
|
127 |
+
**kwargs
|
128 |
+
) # All unused kwargs must be model kwargs
|
129 |
+
# Check model kwargs are actually used by either prepare_inputs_for_generation or forward
|
130 |
+
self._validate_model_kwargs(model_kwargs)
|
131 |
+
|
132 |
+
# Instantiate a TokenSelector for the specified configuration
|
133 |
+
selector = TokenSelector.create(
|
134 |
+
input_ids, generation_config, self, self.max_length
|
135 |
+
)
|
136 |
+
selector.stopping_criteria.append(stopping_criteria)
|
137 |
+
# Verify that the inputs are compatible with the model static input dimensions
|
138 |
+
batch_size, sequence_length = input_ids.shape
|
139 |
+
if sequence_length > self.max_length:
|
140 |
+
raise ValueError(
|
141 |
+
f"The input sequence length ({sequence_length}) exceeds the model static sequence length ({self.max_length})"
|
142 |
+
)
|
143 |
+
padded_input_ids = input_ids
|
144 |
+
padded_attention_mask = attention_mask
|
145 |
+
if batch_size > self.batch_size:
|
146 |
+
raise ValueError(
|
147 |
+
f"The specified batch_size ({batch_size}) exceeds the model static batch size ({self.batch_size})"
|
148 |
+
)
|
149 |
+
elif batch_size < self.batch_size:
|
150 |
+
logger.warning(
|
151 |
+
"Inputs will be padded to match the model static batch size. This will increase latency."
|
152 |
+
)
|
153 |
+
padding_shape = [self.batch_size - batch_size, sequence_length]
|
154 |
+
padding = torch.full(
|
155 |
+
padding_shape, fill_value=self.config.eos_token_id, dtype=torch.int64
|
156 |
+
)
|
157 |
+
padded_input_ids = torch.cat([input_ids, padding])
|
158 |
+
if attention_mask is not None:
|
159 |
+
padding = torch.zeros(padding_shape, dtype=torch.int64)
|
160 |
+
padded_attention_mask = torch.cat([attention_mask, padding])
|
161 |
+
# Drop the current generation context and clear the Key/Value cache
|
162 |
+
self.reset_generation()
|
163 |
+
|
164 |
+
output_ids = self.generate_tokens(
|
165 |
+
padded_input_ids,
|
166 |
+
selector,
|
167 |
+
batch_size,
|
168 |
+
attention_mask=padded_attention_mask,
|
169 |
+
**model_kwargs,
|
170 |
+
)
|
171 |
+
return output_ids[:batch_size, :]
|
172 |
+
|
173 |
+
|
174 |
+
@register_model("neuronx")
|
175 |
+
class NEURON_HF(TemplateLM):
|
176 |
+
"""
|
177 |
+
Enables usage with on AWS Neuron
|
178 |
+
using the HuggingFace Transformers + Transformers neuronx library.
|
179 |
+
Tested with neuron 2.17.0
|
180 |
+
"""
|
181 |
+
|
182 |
+
_DEFAULT_MAX_LENGTH = 2048
|
183 |
+
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
pretrained: Optional[str] = "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
187 |
+
revision: Optional[str] = "main",
|
188 |
+
tp_degree: Optional[int] = None,
|
189 |
+
subfolder: Optional[str] = None,
|
190 |
+
tokenizer: Optional[str] = None,
|
191 |
+
truncation: Optional[bool] = False,
|
192 |
+
max_length: Optional[int] = None,
|
193 |
+
dtype: Optional[Union[str, torch.dtype]] = "auto",
|
194 |
+
batch_size: Optional[int] = 1,
|
195 |
+
low_cpu_mem_usage: Optional[bool] = True,
|
196 |
+
trust_remote_code: Optional[bool] = False,
|
197 |
+
use_fast_tokenizer: Optional[bool] = True,
|
198 |
+
add_bos_token: Optional[bool] = False,
|
199 |
+
) -> None:
|
200 |
+
if not NEURON_AVAILABLE:
|
201 |
+
raise Exception(
|
202 |
+
"Tried to load neuron model, but neuron is not installed ",
|
203 |
+
"please install neuron via pip install transformers-neuron ",
|
204 |
+
"also make sure you are running on an AWS inf2 instance",
|
205 |
+
)
|
206 |
+
if version.parse(optimum_neuron_version) != version.parse("0.0.17"):
|
207 |
+
logger.warning(
|
208 |
+
'`optimum-neuron` model requires `pip install "optimum[neuronx]>=0.0.17" '
|
209 |
+
"preferably using the Hugging Face Neuron Deep Learning AMI (Ubuntu 22.04) "
|
210 |
+
"https://aws.amazon.com/marketplace/pp/prodview-gr3e6yiscria2 "
|
211 |
+
f"You are using optimum-neuron={optimum_neuron_version}"
|
212 |
+
)
|
213 |
+
super().__init__()
|
214 |
+
|
215 |
+
assert isinstance(pretrained, str)
|
216 |
+
assert isinstance(batch_size, (int, str))
|
217 |
+
|
218 |
+
self.batch_size_per_gpu = int(batch_size)
|
219 |
+
batch_size = int(batch_size)
|
220 |
+
if tp_degree is None:
|
221 |
+
# execute `neuron-ls --json-output | jq '.[0].nc_count'``
|
222 |
+
# to get the number of neuron cores on your instance
|
223 |
+
tp_degree = get_nc_count()
|
224 |
+
|
225 |
+
assert isinstance(tp_degree, int), (
|
226 |
+
f"model_args must include tp_degree. tp_degree must be set to an integer,"
|
227 |
+
f" but is tp_degree=`{tp_degree}` with type=`{type(tp_degree)}`."
|
228 |
+
"Set it to number of neuron cores on your instance."
|
229 |
+
" For inf2.xlarge and inf2.8xlarge, set it to `2`."
|
230 |
+
" For inf2.24xlarge, set it to `12`."
|
231 |
+
" For inf2.48xlarge, set it to `24`."
|
232 |
+
)
|
233 |
+
|
234 |
+
# TODO: update this to be less of a hack once subfolder is fixed in HF
|
235 |
+
revision = revision + ("/" + subfolder if subfolder is not None else "")
|
236 |
+
|
237 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
238 |
+
pretrained,
|
239 |
+
revision=revision,
|
240 |
+
trust_remote_code=trust_remote_code,
|
241 |
+
)
|
242 |
+
torch_dtype = lm_eval.models.utils.get_dtype(dtype)
|
243 |
+
|
244 |
+
assert torch_dtype in [
|
245 |
+
torch.float16,
|
246 |
+
torch.bfloat16,
|
247 |
+
], "Only float16 and bfloat16 are supported"
|
248 |
+
|
249 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
250 |
+
pretrained if tokenizer is None else tokenizer,
|
251 |
+
revision=revision,
|
252 |
+
trust_remote_code=trust_remote_code,
|
253 |
+
use_fast=use_fast_tokenizer,
|
254 |
+
)
|
255 |
+
|
256 |
+
# Neuron specific code
|
257 |
+
if torch_dtype == torch.float16:
|
258 |
+
self.amp_dtype = "f16"
|
259 |
+
elif torch_dtype == torch.bfloat16:
|
260 |
+
self.amp_dtype = "bf16"
|
261 |
+
elif torch_dtype == torch.float32:
|
262 |
+
self.amp_dtype = "f32"
|
263 |
+
else:
|
264 |
+
raise NotImplementedError("Only float16 and bfloat16 are implemented.")
|
265 |
+
|
266 |
+
compiler_args = {"num_cores": tp_degree, "auto_cast_type": self.amp_dtype}
|
267 |
+
input_shapes = {
|
268 |
+
"batch_size": batch_size,
|
269 |
+
"sequence_length": self._DEFAULT_MAX_LENGTH,
|
270 |
+
}
|
271 |
+
|
272 |
+
print(
|
273 |
+
f"{'='*20} \n loading model to neuron with"
|
274 |
+
f" {compiler_args}, {input_shapes}..."
|
275 |
+
)
|
276 |
+
self.model = CustomNeuronModelForCausalLM.from_pretrained(
|
277 |
+
pretrained,
|
278 |
+
revision=revision,
|
279 |
+
trust_remote_code=trust_remote_code,
|
280 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
281 |
+
export=True,
|
282 |
+
**compiler_args,
|
283 |
+
**input_shapes,
|
284 |
+
)
|
285 |
+
print(f"SUCCESS: neuron model compiled. \n {'='*20}")
|
286 |
+
|
287 |
+
self.truncation = truncation
|
288 |
+
|
289 |
+
self.vocab_size = self.tokenizer.vocab_size
|
290 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
291 |
+
self.add_bos_token = self.add_bos_token
|
292 |
+
|
293 |
+
self._max_length = max_length
|
294 |
+
|
295 |
+
self.batch_schedule = 1
|
296 |
+
self.batch_sizes = {}
|
297 |
+
|
298 |
+
@property
|
299 |
+
def config(self):
|
300 |
+
# return the associated transformers.AutoConfig for the given pretrained model.
|
301 |
+
return self._config
|
302 |
+
|
303 |
+
@property
|
304 |
+
def eot_token_id(self):
|
305 |
+
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
306 |
+
return self.tokenizer.eos_token_id
|
307 |
+
|
308 |
+
@property
|
309 |
+
def prefix_token_id(self):
|
310 |
+
# it is used as prefix for loglikelihood
|
311 |
+
return self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
|
312 |
+
|
313 |
+
@property
|
314 |
+
def max_length(self):
|
315 |
+
if self._max_length: # if max length manually set, return it
|
316 |
+
return self._max_length
|
317 |
+
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
|
318 |
+
for attr in seqlen_config_attrs:
|
319 |
+
if hasattr(self.model.config, attr):
|
320 |
+
return getattr(self.model.config, attr)
|
321 |
+
if hasattr(self.tokenizer, "model_max_length"):
|
322 |
+
if self.tokenizer.model_max_length == 1000000000000000019884624838656:
|
323 |
+
return self._DEFAULT_MAX_LENGTH
|
324 |
+
return self.tokenizer.model_max_length
|
325 |
+
return self._DEFAULT_MAX_LENGTH
|
326 |
+
|
327 |
+
@property
|
328 |
+
def max_gen_toks(self) -> int:
|
329 |
+
return 256
|
330 |
+
|
331 |
+
@property
|
332 |
+
def batch_size(self):
|
333 |
+
return self.batch_size_per_gpu
|
334 |
+
|
335 |
+
@property
|
336 |
+
def device(self):
|
337 |
+
"""device are neuron cores, but the created tensors are on CPU."""
|
338 |
+
return "cpu"
|
339 |
+
|
340 |
+
@property
|
341 |
+
def rank(self):
|
342 |
+
return 0
|
343 |
+
|
344 |
+
@property
|
345 |
+
def world_size(self):
|
346 |
+
return 1
|
347 |
+
|
348 |
+
def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None):
|
349 |
+
""" """
|
350 |
+
if add_special_tokens is None:
|
351 |
+
add_special_tokens = False or self.add_bos_token
|
352 |
+
|
353 |
+
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
|
354 |
+
|
355 |
+
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
|
356 |
+
if left_truncate_len:
|
357 |
+
encoding = encoding[-left_truncate_len:]
|
358 |
+
|
359 |
+
return encoding
|
360 |
+
|
361 |
+
def tok_batch_encode(
|
362 |
+
self,
|
363 |
+
strings: List[str],
|
364 |
+
padding_side: str = "left",
|
365 |
+
left_truncate_len: int = None,
|
366 |
+
truncation: bool = False,
|
367 |
+
):
|
368 |
+
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
|
369 |
+
old_padding_side = self.tokenizer.padding_side
|
370 |
+
self.tokenizer.padding_side = padding_side
|
371 |
+
|
372 |
+
add_special_tokens = False or self.add_bos_token
|
373 |
+
|
374 |
+
encoding = self.tokenizer(
|
375 |
+
strings,
|
376 |
+
truncation=truncation,
|
377 |
+
padding="longest",
|
378 |
+
return_tensors="pt",
|
379 |
+
add_special_tokens=add_special_tokens,
|
380 |
+
)
|
381 |
+
if left_truncate_len:
|
382 |
+
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
|
383 |
+
encoding["attention_mask"] = encoding["attention_mask"][
|
384 |
+
:, -left_truncate_len:
|
385 |
+
]
|
386 |
+
self.tokenizer.padding_side = old_padding_side
|
387 |
+
|
388 |
+
return encoding["input_ids"], encoding["attention_mask"]
|
389 |
+
|
390 |
+
def tok_decode(self, tokens):
|
391 |
+
return self.tokenizer.decode(tokens)
|
392 |
+
|
393 |
+
@wrap_constant_batch_size
|
394 |
+
def _model_call(self, input_ids: torch.Tensor):
|
395 |
+
"""
|
396 |
+
get logits for the entire sequence
|
397 |
+
|
398 |
+
:param input_ids: torch.Tensor
|
399 |
+
A torch tensor of shape [batch, sequence_cont]
|
400 |
+
the size of sequence may vary from call to call
|
401 |
+
:return
|
402 |
+
A torch tensor of shape [batch, sequence, vocab] with the
|
403 |
+
logits returned from the model's decoder-lm head
|
404 |
+
"""
|
405 |
+
_, sequence_length = input_ids.shape
|
406 |
+
|
407 |
+
with torch.inference_mode():
|
408 |
+
cache_ids = torch.arange(0, sequence_length, dtype=torch.int32).split(1)
|
409 |
+
input_ids_split = input_ids.split(1, dim=1)
|
410 |
+
|
411 |
+
return torch.concat(
|
412 |
+
[
|
413 |
+
self.model.forward(
|
414 |
+
input_ids=input_id, cache_ids=cache_id, return_dict=False
|
415 |
+
)[0]
|
416 |
+
for input_id, cache_id in zip(input_ids_split, cache_ids)
|
417 |
+
],
|
418 |
+
dim=1,
|
419 |
+
)
|
420 |
+
|
421 |
+
def _model_generate(self, context, max_length, stop, **generation_kwargs):
|
422 |
+
# we require users to pass do_sample=True explicitly
|
423 |
+
# for non-greedy gen. This should be reevaluated when considering beam search.
|
424 |
+
|
425 |
+
with torch.inference_mode():
|
426 |
+
if "do_sample" not in generation_kwargs.keys():
|
427 |
+
generation_kwargs["do_sample"] = False
|
428 |
+
|
429 |
+
stopping_criteria = stop_sequences_criteria(
|
430 |
+
self.tokenizer,
|
431 |
+
stop + [self.tokenizer.decode([self.config.eos_token_id])],
|
432 |
+
1,
|
433 |
+
context.shape[0],
|
434 |
+
)
|
435 |
+
|
436 |
+
return self.model.generate(
|
437 |
+
input_ids=context,
|
438 |
+
max_length=max_length,
|
439 |
+
stopping_criteria=stopping_criteria,
|
440 |
+
pad_token_id=self.eot_token_id,
|
441 |
+
use_cache=True,
|
442 |
+
**generation_kwargs,
|
443 |
+
)
|
444 |
+
|
445 |
+
def _select_cont_toks(self, logits, contlen=None, inplen=None):
|
446 |
+
assert (
|
447 |
+
contlen and inplen
|
448 |
+
), "Must pass input len and cont. len to select scored logits for causal LM"
|
449 |
+
# discard right-padding.
|
450 |
+
# also discard the input/context tokens. we'll only score continuations.
|
451 |
+
logits = logits[inplen - contlen : inplen]
|
452 |
+
|
453 |
+
return logits
|
454 |
+
|
455 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
456 |
+
loglikelihoods = []
|
457 |
+
|
458 |
+
adaptive_batch_size = None
|
459 |
+
|
460 |
+
for (string,) in tqdm(
|
461 |
+
[req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
|
462 |
+
):
|
463 |
+
rolling_token_windows = list(
|
464 |
+
map(
|
465 |
+
utils.make_disjoint_window,
|
466 |
+
utils.get_rolling_token_windows(
|
467 |
+
token_list=self.tok_encode(string),
|
468 |
+
prefix_token=self.prefix_token_id,
|
469 |
+
max_seq_len=self.max_length,
|
470 |
+
context_len=1,
|
471 |
+
),
|
472 |
+
)
|
473 |
+
)
|
474 |
+
|
475 |
+
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
|
476 |
+
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
|
477 |
+
|
478 |
+
pad_amnt = 0
|
479 |
+
if self.world_size > 1:
|
480 |
+
# We pad out the external document-level iterator so the inner iterator doesn't hang
|
481 |
+
mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
|
482 |
+
gathered = (
|
483 |
+
self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
|
484 |
+
)
|
485 |
+
|
486 |
+
pad_amnt = max(gathered) - gathered[self.rank]
|
487 |
+
if pad_amnt > 0:
|
488 |
+
rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
|
489 |
+
|
490 |
+
string_nll = self._loglikelihood_tokens(
|
491 |
+
rolling_token_windows,
|
492 |
+
disable_tqdm=True,
|
493 |
+
override_bs=adaptive_batch_size,
|
494 |
+
)
|
495 |
+
|
496 |
+
if (self.world_size > 1) and (pad_amnt > 0):
|
497 |
+
string_nll = [x[0] for x in string_nll[:-pad_amnt]]
|
498 |
+
else:
|
499 |
+
# discard is_greedy
|
500 |
+
string_nll = [x[0] for x in string_nll]
|
501 |
+
|
502 |
+
string_nll = sum(string_nll)
|
503 |
+
loglikelihoods.append(string_nll)
|
504 |
+
|
505 |
+
return loglikelihoods
|
506 |
+
|
507 |
+
def _loglikelihood_tokens(
|
508 |
+
self, requests, disable_tqdm: bool = False, override_bs=None
|
509 |
+
):
|
510 |
+
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
|
511 |
+
res = []
|
512 |
+
|
513 |
+
def _collate(x):
|
514 |
+
# the negative sign on len(toks) sorts descending - this has a few advantages:
|
515 |
+
# - time estimates will always be over not underestimates, which is more useful for planning
|
516 |
+
# - to know the size of a batch when going through the list, you know the first one is always the batch
|
517 |
+
# padded context length. this is useful to simplify the batching logic and more importantly to make
|
518 |
+
# automatic adaptive batches much much easier to implement
|
519 |
+
# - any OOMs will happen right away rather than near the end
|
520 |
+
|
521 |
+
toks = x[1] + x[2]
|
522 |
+
return -len(toks), tuple(toks)
|
523 |
+
|
524 |
+
re_ord = utils.Reorderer(requests, _collate)
|
525 |
+
|
526 |
+
n_reordered_requests = len(re_ord.get_reordered()) # noqa
|
527 |
+
# automatic (variable) batch size detection for vectorization
|
528 |
+
# pull longest context sample from request
|
529 |
+
|
530 |
+
chunks = lm_eval.models.utils.chunks(
|
531 |
+
re_ord.get_reordered(),
|
532 |
+
n=self.batch_size,
|
533 |
+
fn=None,
|
534 |
+
)
|
535 |
+
|
536 |
+
for chunk in tqdm(chunks, disable=(disable_tqdm or (self.rank != 0))):
|
537 |
+
inps = []
|
538 |
+
cont_toks_list = []
|
539 |
+
inplens = []
|
540 |
+
|
541 |
+
conts = [] # noqa
|
542 |
+
encoder_attns = [] # noqa
|
543 |
+
|
544 |
+
padding_len_inp = None
|
545 |
+
padding_len_cont = None # noqa
|
546 |
+
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
|
547 |
+
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
|
548 |
+
# again because vectorizing is annoying
|
549 |
+
|
550 |
+
for _, context_enc, continuation_enc in chunk:
|
551 |
+
# sanity check
|
552 |
+
assert len(context_enc) > 0
|
553 |
+
assert len(continuation_enc) > 0
|
554 |
+
assert len(continuation_enc) <= self.max_length
|
555 |
+
|
556 |
+
# how this all works (illustrated on a causal decoder-only setup):
|
557 |
+
# CTX CONT
|
558 |
+
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
|
559 |
+
# model \ \
|
560 |
+
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
|
561 |
+
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
|
562 |
+
|
563 |
+
# when too long to fit in context, truncate from the left
|
564 |
+
inp = torch.tensor(
|
565 |
+
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
|
566 |
+
dtype=torch.long,
|
567 |
+
device=self.device,
|
568 |
+
)
|
569 |
+
(inplen,) = inp.shape
|
570 |
+
|
571 |
+
padding_len_inp = (
|
572 |
+
max(padding_len_inp, inplen)
|
573 |
+
if padding_len_inp is not None
|
574 |
+
else inplen
|
575 |
+
)
|
576 |
+
|
577 |
+
inps.append(inp) # [1, inp_length]
|
578 |
+
cont_toks_list.append(continuation_enc)
|
579 |
+
inplens.append(inplen)
|
580 |
+
|
581 |
+
# create encoder attn mask and batched conts, if seq2seq
|
582 |
+
call_kwargs = {}
|
583 |
+
batched_inps = lm_eval.models.utils.pad_and_concat(
|
584 |
+
padding_len_inp, inps, padding_side="right"
|
585 |
+
) # [batch, padding_len_inp]
|
586 |
+
|
587 |
+
multi_logits = F.log_softmax(
|
588 |
+
self._model_call(batched_inps, **call_kwargs), dim=-1
|
589 |
+
) # [batch, padding_length (inp or cont), vocab]
|
590 |
+
|
591 |
+
for (cache_key, _, _), logits, inplen, cont_toks in zip(
|
592 |
+
chunk, multi_logits, inplens, cont_toks_list
|
593 |
+
):
|
594 |
+
# Slice to original seq length
|
595 |
+
contlen = len(cont_toks)
|
596 |
+
# take only logits in the continuation
|
597 |
+
# (discard context toks if decoder-only ; discard right-padding)
|
598 |
+
# also discards + checks for "virtual tokens" in the causal LM's input window
|
599 |
+
# from prompt/prefix tuning tokens, if applicable
|
600 |
+
ctx_len = inplen + (logits.shape[0] - padding_len_inp)
|
601 |
+
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
|
602 |
+
logits = logits.unsqueeze(0) # [1, seq, vocab]
|
603 |
+
|
604 |
+
# Check if per-token argmax is exactly equal to continuation
|
605 |
+
greedy_tokens = logits.argmax(dim=-1)
|
606 |
+
cont_toks = torch.tensor(
|
607 |
+
cont_toks, dtype=torch.long, device=self.device
|
608 |
+
).unsqueeze(0) # [1, seq]
|
609 |
+
max_equal = (greedy_tokens == cont_toks).all()
|
610 |
+
|
611 |
+
# Obtain log-probs at the corresponding continuation token indices
|
612 |
+
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
|
613 |
+
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
|
614 |
+
-1
|
615 |
+
) # [1, seq]
|
616 |
+
|
617 |
+
# Answer: (log prob, is-exact-match)
|
618 |
+
answer = (float(logits.sum()), bool(max_equal))
|
619 |
+
|
620 |
+
res.append(answer)
|
621 |
+
|
622 |
+
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
|
623 |
+
|
624 |
+
return re_ord.get_original(res)
|
625 |
+
|
626 |
+
def generate_until(self, requests, disable_tqdm: bool = False):
|
627 |
+
res = defaultdict(list)
|
628 |
+
re_ords = {}
|
629 |
+
|
630 |
+
def _collate(x):
|
631 |
+
# the negative sign on len(toks) sorts descending - this has a few advantages:
|
632 |
+
# - time estimates will always be over not underestimates, which is more useful for planning
|
633 |
+
# - to know the size of a batch when going through the list, you know the first one is always the batch
|
634 |
+
# padded context length. this is useful to simplify the batching logic and more importantly to make
|
635 |
+
# automatic adaptive batches much much easier to implement
|
636 |
+
# - any OOMs will happen right away rather than near the end
|
637 |
+
toks = self.tok_encode(x[0])
|
638 |
+
return -len(toks), x[0]
|
639 |
+
|
640 |
+
# we group requests by their generation_kwargs,
|
641 |
+
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
|
642 |
+
# in the same batch.
|
643 |
+
grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1]))
|
644 |
+
for key, reqs in grouper.get_grouped().items():
|
645 |
+
# within each set of reqs for given kwargs, we reorder by token length, descending.
|
646 |
+
re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
|
647 |
+
|
648 |
+
pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
|
649 |
+
|
650 |
+
# for each different set of kwargs, we execute all requests, by batch.
|
651 |
+
for key, re_ord in re_ords.items():
|
652 |
+
chunks = lm_eval.models.utils.chunks(
|
653 |
+
re_ord.get_reordered(), n=self.batch_size
|
654 |
+
)
|
655 |
+
for chunk in tqdm(chunks, disable=self.rank != 0):
|
656 |
+
contexts, all_gen_kwargs = zip(*chunk)
|
657 |
+
# we assume all gen kwargs in the batch are the same
|
658 |
+
# this is safe to assume because the `grouper` object ensures it.
|
659 |
+
gen_kwargs = all_gen_kwargs[0]
|
660 |
+
# unpack our keyword arguments.
|
661 |
+
until = None
|
662 |
+
if isinstance(gen_kwargs, dict):
|
663 |
+
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
|
664 |
+
if "until" in kwargs.keys():
|
665 |
+
until = kwargs.pop("until")
|
666 |
+
if isinstance(until, str):
|
667 |
+
until = [until]
|
668 |
+
elif not isinstance(until, list):
|
669 |
+
raise ValueError(
|
670 |
+
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
|
671 |
+
)
|
672 |
+
else:
|
673 |
+
raise ValueError(
|
674 |
+
f"Expected `kwargs` to be of type `dict` but got {kwargs}"
|
675 |
+
)
|
676 |
+
# add EOS token to stop sequences
|
677 |
+
eos = self.tok_decode(self.eot_token_id)
|
678 |
+
if not until:
|
679 |
+
until = [eos]
|
680 |
+
else:
|
681 |
+
until.append(eos)
|
682 |
+
if "max_gen_toks" in kwargs.keys():
|
683 |
+
max_gen_toks = kwargs.pop("max_gen_toks")
|
684 |
+
else:
|
685 |
+
max_gen_toks = self.max_gen_toks
|
686 |
+
# first stop sequence is used to halt generation upon encountering
|
687 |
+
primary_until = [until[0]]
|
688 |
+
|
689 |
+
max_ctx_len = self.max_length - max_gen_toks
|
690 |
+
|
691 |
+
# encode, pad, and truncate contexts for this batch
|
692 |
+
context_enc, attn_masks = self.tok_batch_encode(
|
693 |
+
contexts,
|
694 |
+
left_truncate_len=max_ctx_len,
|
695 |
+
truncation=self.truncation,
|
696 |
+
)
|
697 |
+
context_enc = context_enc.to(self.device)
|
698 |
+
attn_masks = attn_masks.to(self.device)
|
699 |
+
|
700 |
+
if "max_length" not in kwargs:
|
701 |
+
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
|
702 |
+
|
703 |
+
# perform batched generation
|
704 |
+
cont = self._model_generate(
|
705 |
+
context=context_enc,
|
706 |
+
attention_mask=attn_masks,
|
707 |
+
stop=primary_until,
|
708 |
+
**kwargs,
|
709 |
+
)
|
710 |
+
|
711 |
+
cont_toks_list = cont.tolist()
|
712 |
+
for cont_toks, context in zip(cont_toks_list, contexts):
|
713 |
+
# discard context + left-padding toks if using causal decoder-only LM
|
714 |
+
cont_toks = cont_toks[context_enc.shape[1] :]
|
715 |
+
|
716 |
+
s = self.tok_decode(cont_toks)
|
717 |
+
|
718 |
+
# use secondary stop seqs to cut off should-have-been-stopped content post-hoc
|
719 |
+
for term in until:
|
720 |
+
if len(term) > 0:
|
721 |
+
# ignore '' separator,
|
722 |
+
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
|
723 |
+
s = s.split(term)[0]
|
724 |
+
|
725 |
+
res[key].append(s)
|
726 |
+
|
727 |
+
self.cache_hook.add_partial(
|
728 |
+
"generate_until", (context, gen_kwargs), s
|
729 |
+
)
|
730 |
+
pbar.update(1)
|
731 |
+
# reorder this group of results back to original unsorted form
|
732 |
+
res[key] = re_ord.get_original(res[key])
|
733 |
+
|
734 |
+
pbar.close()
|
735 |
+
|
736 |
+
return grouper.get_original(res)
|
lm-evaluation/build/lib/lm_eval/models/openai_completions.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
from collections import defaultdict
|
4 |
+
from importlib.util import find_spec
|
5 |
+
from typing import List, Literal, Optional, Tuple
|
6 |
+
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
import lm_eval.models.utils
|
10 |
+
from lm_eval import utils
|
11 |
+
from lm_eval.api.model import LM, TemplateLM
|
12 |
+
from lm_eval.api.registry import register_model
|
13 |
+
from lm_eval.models.utils import retry_on_specific_exceptions
|
14 |
+
from lm_eval.utils import eval_logger
|
15 |
+
|
16 |
+
|
17 |
+
def get_result(response, ctxlen: int) -> Tuple[float, bool]:
|
18 |
+
"""Process results from OpenAI API response.
|
19 |
+
|
20 |
+
:param response: dict
|
21 |
+
OpenAI API Response
|
22 |
+
:param ctxlen: int
|
23 |
+
Length of context (so we can slice them away and only keep the predictions)
|
24 |
+
:return:
|
25 |
+
continuation_logprobs: np.array
|
26 |
+
Log probabilities of continuation tokens
|
27 |
+
is_greedy: bool
|
28 |
+
whether argmax matches given continuation exactly
|
29 |
+
"""
|
30 |
+
is_greedy = True
|
31 |
+
logprobs = response.logprobs.token_logprobs
|
32 |
+
continuation_logprobs = sum(logprobs[ctxlen:])
|
33 |
+
|
34 |
+
for i in range(ctxlen, len(response.logprobs.token_logprobs)):
|
35 |
+
token = response.logprobs.token_logprobs[i]
|
36 |
+
top_tokens = response.logprobs.top_logprobs[i]
|
37 |
+
top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
|
38 |
+
if top_token != token:
|
39 |
+
is_greedy = False
|
40 |
+
break
|
41 |
+
|
42 |
+
return continuation_logprobs, is_greedy
|
43 |
+
|
44 |
+
|
45 |
+
def oa_completion(client, chat: bool = False, **kwargs):
|
46 |
+
"""Query OpenAI API for completion.
|
47 |
+
|
48 |
+
Retry with back-off until they respond
|
49 |
+
"""
|
50 |
+
if not find_spec("openai") or not find_spec("tiktoken"):
|
51 |
+
raise Exception(
|
52 |
+
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. "
|
53 |
+
"Please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`"
|
54 |
+
)
|
55 |
+
else:
|
56 |
+
import openai
|
57 |
+
|
58 |
+
def _exception_callback(e: Exception, sleep_time: float) -> None:
|
59 |
+
import traceback
|
60 |
+
|
61 |
+
traceback.print_exc()
|
62 |
+
|
63 |
+
@retry_on_specific_exceptions(
|
64 |
+
on_exceptions=[openai.OpenAIError],
|
65 |
+
max_retries=None, # retry forever, consider changing
|
66 |
+
on_exception_callback=_exception_callback,
|
67 |
+
)
|
68 |
+
def completion():
|
69 |
+
if chat:
|
70 |
+
return client.chat.completions.create(**kwargs)
|
71 |
+
else:
|
72 |
+
return client.completions.create(**kwargs)
|
73 |
+
|
74 |
+
return completion()
|
75 |
+
|
76 |
+
|
77 |
+
@register_model("openai-completions", "local-completions")
|
78 |
+
class OpenaiCompletionsLM(TemplateLM):
|
79 |
+
_DEFAULT_MAX_LENGTH = 2048
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
model: str,
|
84 |
+
base_url: str = None,
|
85 |
+
tokenizer: Optional[str] = None,
|
86 |
+
tokenizer_backend: Literal["tiktoken", "huggingface"] = "tiktoken",
|
87 |
+
truncate: bool = False,
|
88 |
+
max_gen_toks: int = 256,
|
89 |
+
batch_size: int = 1,
|
90 |
+
seed: int = 1234,
|
91 |
+
max_length: Optional[int] = None,
|
92 |
+
) -> None:
|
93 |
+
"""
|
94 |
+
|
95 |
+
:param engine: str
|
96 |
+
OpenAI API engine (e.g. gpt-3.5-turbo-instruct)
|
97 |
+
:param truncate: bool
|
98 |
+
Truncate input if too long (if False and input is too long, throw error)
|
99 |
+
"""
|
100 |
+
super().__init__()
|
101 |
+
self.seed = seed
|
102 |
+
try:
|
103 |
+
import openai # noqa: E401
|
104 |
+
import tiktoken
|
105 |
+
except ModuleNotFoundError:
|
106 |
+
raise Exception(
|
107 |
+
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
|
108 |
+
please install these via `pip install lm-eval[openai]` or `pip install -e .\"[openai]\"`",
|
109 |
+
)
|
110 |
+
self.model = model
|
111 |
+
self.base_url = base_url
|
112 |
+
self.tokenizer_backend = tokenizer_backend
|
113 |
+
self.truncate = truncate
|
114 |
+
self._batch_size = int(batch_size)
|
115 |
+
self._max_gen_toks = max_gen_toks
|
116 |
+
self._max_length = max_length
|
117 |
+
|
118 |
+
# if we have a local model, use HF tokenizer over tiktoken
|
119 |
+
if self.tokenizer_backend == "huggingface":
|
120 |
+
import transformers # noqa: E401
|
121 |
+
|
122 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
123 |
+
tokenizer if tokenizer else self.model
|
124 |
+
)
|
125 |
+
self.vocab_size = self.tokenizer.vocab
|
126 |
+
self.end_of_text_token_id = self.tokenizer.eos_token
|
127 |
+
elif self.tokenizer_backend == "tiktoken":
|
128 |
+
if self.base_url:
|
129 |
+
eval_logger.warning(
|
130 |
+
f"Passed `base_url={self.base_url}` but using Tiktoken tokenizer backend. "
|
131 |
+
"Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken."
|
132 |
+
)
|
133 |
+
|
134 |
+
self.tokenizer = tiktoken.encoding_for_model(self.model)
|
135 |
+
self.vocab_size = self.tokenizer.n_vocab
|
136 |
+
self.end_of_text_token_id = self.tokenizer.eot_token
|
137 |
+
else:
|
138 |
+
raise ValueError(
|
139 |
+
f"Expected tokenizer_backend to be one of ['tiktoken', 'huggingface'] but got {self.tokenizer_backend}"
|
140 |
+
)
|
141 |
+
|
142 |
+
# Read from environment variable OPENAI_API_KEY
|
143 |
+
# Set to EMPTY for local
|
144 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
145 |
+
if self.base_url:
|
146 |
+
self.client = openai.OpenAI(base_url=self.base_url)
|
147 |
+
else:
|
148 |
+
self.client = openai.OpenAI()
|
149 |
+
|
150 |
+
@property
|
151 |
+
def eot_token_id(self):
|
152 |
+
return self.end_of_text_token_id
|
153 |
+
|
154 |
+
@property
|
155 |
+
def max_length(self) -> int:
|
156 |
+
if self._max_length:
|
157 |
+
return self._max_length
|
158 |
+
else:
|
159 |
+
return self._DEFAULT_MAX_LENGTH
|
160 |
+
|
161 |
+
@property
|
162 |
+
def max_gen_toks(self) -> int:
|
163 |
+
return self._max_gen_toks
|
164 |
+
|
165 |
+
@property
|
166 |
+
def batch_size(self) -> int:
|
167 |
+
return self._batch_size
|
168 |
+
|
169 |
+
@property
|
170 |
+
def device(self):
|
171 |
+
# Isn't used because we override _loglikelihood_tokens
|
172 |
+
raise NotImplementedError()
|
173 |
+
|
174 |
+
def tok_encode(self, string: str, **kwargs) -> List[int]:
|
175 |
+
return self.tokenizer.encode(string)
|
176 |
+
|
177 |
+
def tok_decode(self, tokens: List[int]) -> str:
|
178 |
+
return self.tokenizer.decode(tokens)
|
179 |
+
|
180 |
+
def _loglikelihood_tokens(
|
181 |
+
self, requests, disable_tqdm: bool = False
|
182 |
+
) -> List[Tuple[float, bool]]:
|
183 |
+
res = []
|
184 |
+
|
185 |
+
def _collate(x):
|
186 |
+
# this doesn't efficiently handle last-token differences yet, but those are kinda annoying because
|
187 |
+
# it's not guaranteed that the 100 or so logprobs we get to see actually contain all the continuations
|
188 |
+
# we care about, and so we need some kind of backup for when it isn't
|
189 |
+
toks = x[1] + x[2]
|
190 |
+
return -len(toks), tuple(toks)
|
191 |
+
|
192 |
+
re_ord = utils.Reorderer(requests, _collate)
|
193 |
+
|
194 |
+
for chunk in tqdm(
|
195 |
+
list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)),
|
196 |
+
disable=disable_tqdm,
|
197 |
+
):
|
198 |
+
inps = []
|
199 |
+
ctxlens = []
|
200 |
+
for cache_key, context_enc, continuation_enc in chunk:
|
201 |
+
# max_length+1 because the API takes up to 2049 tokens, including the first context token
|
202 |
+
inp = (context_enc + continuation_enc)[-(self.max_length + 1) :]
|
203 |
+
# TODO: the logic is much simpler if we just look at the length of continuation tokens
|
204 |
+
ctxlen = len(context_enc) - max(
|
205 |
+
0, len(context_enc) + len(continuation_enc) - (self.max_length + 1)
|
206 |
+
)
|
207 |
+
|
208 |
+
inps.append(inp)
|
209 |
+
ctxlens.append(ctxlen)
|
210 |
+
|
211 |
+
response = oa_completion(
|
212 |
+
client=self.client,
|
213 |
+
model=self.model,
|
214 |
+
prompt=inps,
|
215 |
+
echo=True,
|
216 |
+
max_tokens=0,
|
217 |
+
temperature=0.0,
|
218 |
+
logprobs=10,
|
219 |
+
seed=self.seed,
|
220 |
+
)
|
221 |
+
|
222 |
+
for resp, ctxlen, (cache_key, context_enc, continuation_enc) in zip(
|
223 |
+
response.choices, ctxlens, chunk
|
224 |
+
):
|
225 |
+
answer = get_result(resp, ctxlen)
|
226 |
+
|
227 |
+
res.append(answer)
|
228 |
+
|
229 |
+
# partial caching
|
230 |
+
if cache_key is not None:
|
231 |
+
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
|
232 |
+
return re_ord.get_original(res)
|
233 |
+
|
234 |
+
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
235 |
+
if not requests:
|
236 |
+
return []
|
237 |
+
res = []
|
238 |
+
requests = [req.args for req in requests]
|
239 |
+
|
240 |
+
def _collate(x):
|
241 |
+
toks = self.tok_encode(x[0])
|
242 |
+
return len(toks), x[0]
|
243 |
+
|
244 |
+
re_ord = utils.Reorderer(requests, _collate)
|
245 |
+
|
246 |
+
def sameuntil_chunks(xs, size):
|
247 |
+
ret = []
|
248 |
+
lastuntil = xs[0][1]
|
249 |
+
for x in xs:
|
250 |
+
if len(ret) >= size or x[1] != lastuntil:
|
251 |
+
yield ret, lastuntil
|
252 |
+
ret = []
|
253 |
+
lastuntil = x[1]
|
254 |
+
ret.append(x)
|
255 |
+
|
256 |
+
if ret:
|
257 |
+
yield ret, lastuntil
|
258 |
+
|
259 |
+
# todo: more intelligent batching for heterogeneous `until`
|
260 |
+
for chunk, request_args in tqdm(
|
261 |
+
list(sameuntil_chunks(re_ord.get_reordered(), self.batch_size)),
|
262 |
+
disable=disable_tqdm,
|
263 |
+
):
|
264 |
+
inps = []
|
265 |
+
self._max_gen_toks = request_args.get("max_gen_toks", self.max_gen_toks)
|
266 |
+
for context, _ in chunk:
|
267 |
+
context_enc = self.tok_encode(context)
|
268 |
+
inp = context_enc[-(self.max_length - self.max_gen_toks) :]
|
269 |
+
inps.append(inp)
|
270 |
+
|
271 |
+
until = request_args.get("until", ["<|endoftext|>"])
|
272 |
+
request_args["temperature"] = request_args.get("temperature", 0)
|
273 |
+
|
274 |
+
response = oa_completion(
|
275 |
+
client=self.client,
|
276 |
+
model=self.model,
|
277 |
+
prompt=inps,
|
278 |
+
max_tokens=self.max_gen_toks,
|
279 |
+
stop=until,
|
280 |
+
seed=self.seed,
|
281 |
+
**{
|
282 |
+
k: v
|
283 |
+
for k, v in request_args.items()
|
284 |
+
if k not in {"do_sample", "max_gen_toks", "until"}
|
285 |
+
},
|
286 |
+
)
|
287 |
+
for resp, (context, args_) in zip(response.choices, chunk):
|
288 |
+
s = getattr(resp, "text")
|
289 |
+
|
290 |
+
until_ = until
|
291 |
+
|
292 |
+
for term in until_:
|
293 |
+
if len(term) > 0:
|
294 |
+
s = s.split(term)[0]
|
295 |
+
|
296 |
+
# partial caching
|
297 |
+
self.cache_hook.add_partial(
|
298 |
+
"generate_until", (context, {"until": until_}), s
|
299 |
+
)
|
300 |
+
|
301 |
+
res.append(s)
|
302 |
+
return re_ord.get_original(res)
|
303 |
+
|
304 |
+
def _model_call(self, inps):
|
305 |
+
# Isn't used because we override _loglikelihood_tokens
|
306 |
+
raise NotImplementedError()
|
307 |
+
|
308 |
+
def _model_generate(self, context, max_length, eos_token_id):
|
309 |
+
# Isn't used because we override generate_until
|
310 |
+
raise NotImplementedError()
|
311 |
+
|
312 |
+
def loglikelihood_rolling(
|
313 |
+
self, requests, disable_tqdm: bool = False
|
314 |
+
) -> List[float]:
|
315 |
+
loglikelihoods = []
|
316 |
+
|
317 |
+
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
|
318 |
+
rolling_token_windows = list(
|
319 |
+
map(
|
320 |
+
utils.make_disjoint_window,
|
321 |
+
utils.get_rolling_token_windows(
|
322 |
+
token_list=self.tok_encode(string),
|
323 |
+
prefix_token=self.eot_token_id,
|
324 |
+
max_seq_len=self.max_length,
|
325 |
+
context_len=1,
|
326 |
+
),
|
327 |
+
)
|
328 |
+
)
|
329 |
+
|
330 |
+
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
|
331 |
+
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
|
332 |
+
|
333 |
+
string_nll = self._loglikelihood_tokens(
|
334 |
+
rolling_token_windows,
|
335 |
+
disable_tqdm=True,
|
336 |
+
)
|
337 |
+
|
338 |
+
# discard is_greedy
|
339 |
+
string_nll = [x[0] for x in string_nll]
|
340 |
+
|
341 |
+
string_nll = sum(string_nll)
|
342 |
+
loglikelihoods.append(string_nll)
|
343 |
+
return loglikelihoods
|
344 |
+
|
345 |
+
|
346 |
+
@register_model("openai-chat-completions", "local-chat-completions")
|
347 |
+
class OpenaiChatCompletionsLM(LM):
|
348 |
+
def __init__(
|
349 |
+
self,
|
350 |
+
model: str = "gpt-3.5-turbo", # GPT model or Local model using HuggingFace model paths
|
351 |
+
base_url: str = None,
|
352 |
+
truncate: bool = False,
|
353 |
+
**kwargs,
|
354 |
+
) -> None:
|
355 |
+
"""
|
356 |
+
|
357 |
+
:param model: str
|
358 |
+
Implements an OpenAI-style chat completion API for
|
359 |
+
accessing both OpenAI OR locally-hosted models using
|
360 |
+
HuggingFace Tokenizer
|
361 |
+
OpenAI API model (e.g. gpt-3.5-turbo)
|
362 |
+
using the **gen_kwargs passed on init
|
363 |
+
:param truncate: bool
|
364 |
+
Truncate input if too long (if False and input is too long, throw error)
|
365 |
+
"""
|
366 |
+
super().__init__()
|
367 |
+
try:
|
368 |
+
import openai # noqa: E401
|
369 |
+
except ModuleNotFoundError:
|
370 |
+
raise Exception(
|
371 |
+
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
|
372 |
+
please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
|
373 |
+
)
|
374 |
+
self.model = model
|
375 |
+
self.base_url = base_url
|
376 |
+
self.truncate = truncate
|
377 |
+
|
378 |
+
# Read from environment variable OPENAI_API_KEY
|
379 |
+
# Set to EMPTY for local
|
380 |
+
if self.base_url:
|
381 |
+
self.client = openai.OpenAI(base_url=self.base_url)
|
382 |
+
else:
|
383 |
+
self.client = openai.OpenAI() # openai.AsyncOpenAI()
|
384 |
+
|
385 |
+
@property
|
386 |
+
def max_length(self) -> int:
|
387 |
+
# Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token
|
388 |
+
return 2048
|
389 |
+
|
390 |
+
@property
|
391 |
+
def max_gen_toks(self) -> int:
|
392 |
+
return 256
|
393 |
+
|
394 |
+
@property
|
395 |
+
def batch_size(self):
|
396 |
+
# Isn't used because we override _loglikelihood_tokens
|
397 |
+
raise NotImplementedError()
|
398 |
+
|
399 |
+
@property
|
400 |
+
def device(self):
|
401 |
+
# Isn't used because we override _loglikelihood_tokens
|
402 |
+
raise NotImplementedError()
|
403 |
+
|
404 |
+
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
405 |
+
res = defaultdict(list)
|
406 |
+
re_ords = {}
|
407 |
+
|
408 |
+
# we group requests by their generation_kwargs,
|
409 |
+
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
|
410 |
+
# in the same batch.
|
411 |
+
grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1]))
|
412 |
+
for key, reqs in grouper.get_grouped().items():
|
413 |
+
# within each set of reqs for given kwargs, we reorder by token length, descending.
|
414 |
+
re_ords[key] = utils.Reorderer(
|
415 |
+
[req.args for req in reqs], lambda x: (-len(x[0]), x[0])
|
416 |
+
)
|
417 |
+
|
418 |
+
pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
|
419 |
+
for key, re_ord in re_ords.items():
|
420 |
+
# n needs to be 1 because messages in
|
421 |
+
# chat completion are not batch but
|
422 |
+
# is regarded as a single conversation.
|
423 |
+
chunks = lm_eval.models.utils.chunks(re_ord.get_reordered(), n=1)
|
424 |
+
for chunk in chunks:
|
425 |
+
contexts, all_gen_kwargs = zip(*chunk)
|
426 |
+
inps = [{"role": "user", "content": context} for context in contexts]
|
427 |
+
|
428 |
+
gen_kwargs = all_gen_kwargs[0]
|
429 |
+
until = None
|
430 |
+
if isinstance(kwargs := copy.deepcopy(gen_kwargs), dict):
|
431 |
+
if "do_sample" in kwargs.keys():
|
432 |
+
kwargs.pop("do_sample")
|
433 |
+
if "until" in kwargs.keys():
|
434 |
+
until = kwargs.pop("until")
|
435 |
+
if isinstance(until, str):
|
436 |
+
until = [kwargs]
|
437 |
+
elif not isinstance(until, list):
|
438 |
+
raise ValueError(
|
439 |
+
f"Expected repr(kwargs['until']) to be of type Union[str, list] but got {until}"
|
440 |
+
)
|
441 |
+
kwargs["stop"] = until
|
442 |
+
kwargs["max_tokens"] = kwargs.pop("max_gen_toks", self.max_gen_toks)
|
443 |
+
else:
|
444 |
+
raise ValueError(
|
445 |
+
f"Expected repr(kwargs) to be of type repr(dict) but got {kwargs}"
|
446 |
+
)
|
447 |
+
|
448 |
+
response = oa_completion(
|
449 |
+
client=self.client,
|
450 |
+
chat=True,
|
451 |
+
messages=inps,
|
452 |
+
model=self.model,
|
453 |
+
**kwargs,
|
454 |
+
)
|
455 |
+
|
456 |
+
for resp, (context, args_) in zip(response.choices, chunk):
|
457 |
+
s = resp.message.content
|
458 |
+
|
459 |
+
if until is not None:
|
460 |
+
for term in until:
|
461 |
+
if len(term) > 0:
|
462 |
+
s = s.split(term)[0]
|
463 |
+
|
464 |
+
res[key].append(s)
|
465 |
+
|
466 |
+
self.cache_hook.add_partial(
|
467 |
+
"generate_until", (context, {"until": until}), s
|
468 |
+
)
|
469 |
+
pbar.update(1)
|
470 |
+
# reorder this group of results back to original unsorted form
|
471 |
+
res[key] = re_ord.get_original(res[key])
|
472 |
+
|
473 |
+
pbar.close()
|
474 |
+
|
475 |
+
return grouper.get_original(res)
|
476 |
+
|
477 |
+
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
478 |
+
raise NotImplementedError("No support for logits.")
|
479 |
+
|
480 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
481 |
+
raise NotImplementedError("No support for logits.")
|
lm-evaluation/build/lib/lm_eval/models/optimum_lm.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from importlib.util import find_spec
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
from lm_eval.api.registry import register_model
|
5 |
+
from lm_eval.models.huggingface import HFLM
|
6 |
+
|
7 |
+
|
8 |
+
@register_model("openvino")
|
9 |
+
class OptimumLM(HFLM):
|
10 |
+
"""
|
11 |
+
Optimum Intel provides a simple interface to optimize Transformer models and convert them to \
|
12 |
+
OpenVINO™ Intermediate Representation (IR) format to accelerate end-to-end pipelines on \
|
13 |
+
Intel® architectures using OpenVINO™ runtime.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
device="cpu",
|
19 |
+
**kwargs,
|
20 |
+
) -> None:
|
21 |
+
if "backend" in kwargs:
|
22 |
+
# optimum currently only supports causal models
|
23 |
+
assert (
|
24 |
+
kwargs["backend"] == "causal"
|
25 |
+
), "Currently, only OVModelForCausalLM is supported."
|
26 |
+
|
27 |
+
self.openvino_device = device
|
28 |
+
|
29 |
+
super().__init__(
|
30 |
+
device=self.openvino_device,
|
31 |
+
backend=kwargs.pop("backend", "causal"),
|
32 |
+
**kwargs,
|
33 |
+
)
|
34 |
+
|
35 |
+
def _create_model(
|
36 |
+
self,
|
37 |
+
pretrained: str,
|
38 |
+
revision="main",
|
39 |
+
dtype="auto",
|
40 |
+
trust_remote_code=False,
|
41 |
+
**kwargs,
|
42 |
+
) -> None:
|
43 |
+
if not find_spec("optimum"):
|
44 |
+
raise Exception(
|
45 |
+
"package `optimum` is not installed. Please install it via `pip install optimum[openvino]`"
|
46 |
+
)
|
47 |
+
else:
|
48 |
+
from optimum.intel.openvino import OVModelForCausalLM
|
49 |
+
|
50 |
+
model_kwargs = kwargs if kwargs else {}
|
51 |
+
model_file = Path(pretrained) / "openvino_model.xml"
|
52 |
+
if model_file.exists():
|
53 |
+
export = False
|
54 |
+
else:
|
55 |
+
export = True
|
56 |
+
kwargs["ov_config"] = {
|
57 |
+
"PERFORMANCE_HINT": "LATENCY",
|
58 |
+
"NUM_STREAMS": "1",
|
59 |
+
"CACHE_DIR": "",
|
60 |
+
}
|
61 |
+
|
62 |
+
self._model = OVModelForCausalLM.from_pretrained(
|
63 |
+
pretrained,
|
64 |
+
revision=revision,
|
65 |
+
trust_remote_code=trust_remote_code,
|
66 |
+
export=export,
|
67 |
+
device=self.openvino_device.upper(),
|
68 |
+
**model_kwargs,
|
69 |
+
)
|
lm-evaluation/build/lib/lm_eval/models/textsynth.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" TextSynth API
|
2 |
+
Implementation provided by Fabrice Bellard:
|
3 |
+
https://github.com/EleutherAI/lm-evaluation-harness/issues/295
|
4 |
+
|
5 |
+
In order to use the API, you must have a valid TextSynth account and
|
6 |
+
enough credits.
|
7 |
+
|
8 |
+
Example usage:
|
9 |
+
|
10 |
+
python main.py --model textsynth --model_args engine=gptj_6B --no_cache --tasks piqa
|
11 |
+
|
12 |
+
Homepage: https://textsynth.com/index.html
|
13 |
+
"""
|
14 |
+
import logging
|
15 |
+
import os
|
16 |
+
|
17 |
+
import requests as _requests
|
18 |
+
from tqdm import tqdm
|
19 |
+
|
20 |
+
from lm_eval.api.model import LM
|
21 |
+
from lm_eval.api.registry import register_model
|
22 |
+
from lm_eval.models.utils import retry_on_specific_exceptions
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
def textsynth_completion(**kwargs):
|
29 |
+
"""Query TextSynth API for completion.
|
30 |
+
Retry with back-off until they respond.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def _exception_callback(e: Exception, sleep_time: float) -> None:
|
34 |
+
import traceback
|
35 |
+
|
36 |
+
traceback.print_exc()
|
37 |
+
|
38 |
+
@retry_on_specific_exceptions(
|
39 |
+
on_exceptions=[_requests.exceptions.RequestException],
|
40 |
+
max_retries=None, # retry forever, consider changing
|
41 |
+
on_exception_callback=_exception_callback,
|
42 |
+
)
|
43 |
+
def completion():
|
44 |
+
return _requests.post(**kwargs)
|
45 |
+
|
46 |
+
return completion()
|
47 |
+
|
48 |
+
|
49 |
+
@register_model("textsynth")
|
50 |
+
class TextSynthLM(LM):
|
51 |
+
def __init__(self, engine, truncate: bool = False, **kwargs) -> None:
|
52 |
+
"""
|
53 |
+
:param engine: str
|
54 |
+
TextSynth API engine (e.g. `gptj_6B`)
|
55 |
+
:param truncate: bool
|
56 |
+
Truncate input if too long (if False and input is too long, throw error)
|
57 |
+
"""
|
58 |
+
super().__init__()
|
59 |
+
|
60 |
+
self.engine = engine
|
61 |
+
self.truncate = truncate
|
62 |
+
self.api_url = "https://api.textsynth.com"
|
63 |
+
# Read from environment variable TEXTSYNTH_API_SECRET_KEY
|
64 |
+
self.api_key = os.environ["TEXTSYNTH_API_SECRET_KEY"]
|
65 |
+
|
66 |
+
@property
|
67 |
+
def eot_token_id(self):
|
68 |
+
# Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until
|
69 |
+
raise NotImplementedError()
|
70 |
+
|
71 |
+
@property
|
72 |
+
def max_length(self) -> int:
|
73 |
+
# NOTE: Turn on truncation to avoid errors on long inputs.
|
74 |
+
return 2048
|
75 |
+
|
76 |
+
@property
|
77 |
+
def max_gen_toks(self) -> int:
|
78 |
+
return 256
|
79 |
+
|
80 |
+
@property
|
81 |
+
def batch_size(self):
|
82 |
+
# Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until
|
83 |
+
raise NotImplementedError()
|
84 |
+
|
85 |
+
@property
|
86 |
+
def device(self):
|
87 |
+
# Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until
|
88 |
+
raise NotImplementedError()
|
89 |
+
|
90 |
+
def tok_encode(self, string: str):
|
91 |
+
# Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until
|
92 |
+
raise NotImplementedError()
|
93 |
+
|
94 |
+
def tok_decode(self, tokens):
|
95 |
+
# Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until
|
96 |
+
raise NotImplementedError()
|
97 |
+
|
98 |
+
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
99 |
+
res = []
|
100 |
+
for context, continuation in tqdm(requests, disable=disable_tqdm):
|
101 |
+
response = textsynth_completion(
|
102 |
+
url=self.api_url + "/v1/engines/" + self.engine + "/logprob",
|
103 |
+
headers={"Authorization": "Bearer " + self.api_key},
|
104 |
+
json={"context": context, "continuation": continuation},
|
105 |
+
)
|
106 |
+
resp = response.json()
|
107 |
+
if "logprob" in resp:
|
108 |
+
logprob = resp["logprob"]
|
109 |
+
is_greedy = resp["is_greedy"]
|
110 |
+
res.append((logprob, is_greedy))
|
111 |
+
|
112 |
+
self.cache_hook.add_partial(
|
113 |
+
"loglikelihood", (context, continuation), (logprob, is_greedy)
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
logger.error(
|
117 |
+
f"The following response does not contain `logprobs`. Got:\n{resp}"
|
118 |
+
)
|
119 |
+
assert False
|
120 |
+
return res
|
121 |
+
|
122 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
123 |
+
# TODO: The TextSynth API does not support tokenized inputs so we cannot
|
124 |
+
# manually partition long contexts into smaller rolling windows as
|
125 |
+
# done for other models derived from `BaseLM`. Override this method
|
126 |
+
# with a windowing scheme that works for direct string inputs.
|
127 |
+
raise NotImplementedError(
|
128 |
+
"`loglikelihood_rolling` is currently not supported due to lack of "
|
129 |
+
"input tokenization support from TextSynth."
|
130 |
+
)
|
131 |
+
|
132 |
+
def generate_until(self, requests, disable_tqdm: bool = False):
|
133 |
+
if not requests:
|
134 |
+
return []
|
135 |
+
|
136 |
+
res = []
|
137 |
+
for request in tqdm(requests, disable=disable_tqdm):
|
138 |
+
inp = request[0]
|
139 |
+
request_args = request[1]
|
140 |
+
until = request_args["until"]
|
141 |
+
response = textsynth_completion(
|
142 |
+
url=self.api_url + "/v1/engines/" + self.engine + "/completions",
|
143 |
+
headers={"Authorization": "Bearer " + self.api_key},
|
144 |
+
json={
|
145 |
+
"prompt": inp,
|
146 |
+
"max_tokens": self.max_gen_toks,
|
147 |
+
"top_k": 1,
|
148 |
+
"stop": until,
|
149 |
+
},
|
150 |
+
)
|
151 |
+
resp = response.json()
|
152 |
+
if "text" in resp:
|
153 |
+
s = resp["text"]
|
154 |
+
res.append(s)
|
155 |
+
|
156 |
+
self.cache_hook.add_partial("generate_until", (inp, request_args), s)
|
157 |
+
else:
|
158 |
+
logger.error(
|
159 |
+
"The following response does not contain generated `text`. "
|
160 |
+
"Got:\n{resp}"
|
161 |
+
)
|
162 |
+
assert False
|
163 |
+
return res
|
164 |
+
|
165 |
+
def _model_call(self, inps):
|
166 |
+
# Isn't used because we override _loglikelihood_tokens
|
167 |
+
raise NotImplementedError()
|
168 |
+
|
169 |
+
def _model_generate(self, context, max_length, eos_token_id):
|
170 |
+
# Isn't used because we override generate_until
|
171 |
+
raise NotImplementedError()
|
lm-evaluation/build/lib/lm_eval/models/utils.py
ADDED
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import fnmatch
|
3 |
+
import gc
|
4 |
+
import itertools
|
5 |
+
import time
|
6 |
+
from functools import wraps
|
7 |
+
from typing import (
|
8 |
+
Any,
|
9 |
+
Callable,
|
10 |
+
Dict,
|
11 |
+
Iterable,
|
12 |
+
Iterator,
|
13 |
+
List,
|
14 |
+
Literal,
|
15 |
+
Optional,
|
16 |
+
Tuple,
|
17 |
+
Type,
|
18 |
+
Union,
|
19 |
+
)
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import transformers
|
23 |
+
|
24 |
+
from lm_eval.utils import eval_logger
|
25 |
+
|
26 |
+
|
27 |
+
def chunks(iter, n: int = 0, fn=None):
|
28 |
+
"""
|
29 |
+
Divides an iterable into chunks of specified size or based on a given function.
|
30 |
+
Useful for batching
|
31 |
+
|
32 |
+
Parameters:
|
33 |
+
- iter: The input iterable to be divided into chunks.
|
34 |
+
- n: An integer representing the size of each chunk. Default is 0.
|
35 |
+
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
An iterator that yields chunks of the input iterable.
|
39 |
+
|
40 |
+
Example usage:
|
41 |
+
```
|
42 |
+
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
43 |
+
for chunk in chunks(data, 3):
|
44 |
+
print(chunk)
|
45 |
+
```
|
46 |
+
Output:
|
47 |
+
```
|
48 |
+
[1, 2, 3]
|
49 |
+
[4, 5, 6]
|
50 |
+
[7, 8, 9]
|
51 |
+
[10]
|
52 |
+
```
|
53 |
+
"""
|
54 |
+
arr = []
|
55 |
+
for i, x in enumerate(iter):
|
56 |
+
arr.append(x)
|
57 |
+
if len(arr) == (fn(i, iter) if fn else n):
|
58 |
+
yield arr
|
59 |
+
arr = []
|
60 |
+
|
61 |
+
if arr:
|
62 |
+
yield arr
|
63 |
+
|
64 |
+
|
65 |
+
class MultiChoice:
|
66 |
+
def __init__(self, choices) -> None:
|
67 |
+
self.choices = choices
|
68 |
+
|
69 |
+
# Simple wildcard support (linux filename patterns)
|
70 |
+
def __contains__(self, values) -> bool:
|
71 |
+
for value in values.split(","):
|
72 |
+
if len(fnmatch.filter(self.choices, value)) == 0:
|
73 |
+
eval_logger.info("Available tasks to choose:")
|
74 |
+
for choice in self.choices:
|
75 |
+
eval_logger.info(f" - {choice}")
|
76 |
+
raise ValueError("'{}' is not in task list".format(value))
|
77 |
+
return True
|
78 |
+
|
79 |
+
def __iter__(self) -> Iterator:
|
80 |
+
for choice in self.choices:
|
81 |
+
yield choice
|
82 |
+
|
83 |
+
|
84 |
+
class Grouper:
|
85 |
+
"""
|
86 |
+
takes an array `arr` and function `fn` and returns a dictionary
|
87 |
+
with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
|
88 |
+
objects in `arr` satisfying `key == fn(ob)`.
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(self, arr, fn) -> None:
|
92 |
+
# self.orig_arr = arr
|
93 |
+
self.size = len(arr)
|
94 |
+
arr = list(enumerate(arr))
|
95 |
+
|
96 |
+
def group_return_dict(arr, fn):
|
97 |
+
res = collections.defaultdict(list)
|
98 |
+
|
99 |
+
for ob in arr:
|
100 |
+
res[fn(ob)].append(ob)
|
101 |
+
return res
|
102 |
+
|
103 |
+
arr = group_return_dict(arr, lambda x: fn(x[1]))
|
104 |
+
|
105 |
+
# self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
|
106 |
+
self.arr = arr
|
107 |
+
self._grouped = None
|
108 |
+
|
109 |
+
def get_grouped(self):
|
110 |
+
# return the contents but not indices for our grouped dict.
|
111 |
+
if self._grouped:
|
112 |
+
return self._grouped
|
113 |
+
grouped = {}
|
114 |
+
for key in self.arr.keys():
|
115 |
+
# drop the index from each element of self.arr
|
116 |
+
grouped[key] = [y[1] for y in self.arr[key]]
|
117 |
+
self._grouped = grouped
|
118 |
+
return grouped
|
119 |
+
|
120 |
+
def get_original(self, grouped_dict):
|
121 |
+
# take in a grouped dictionary with e.g. results for each key listed
|
122 |
+
# in the same order as the instances in `self.arr`, and
|
123 |
+
# return the results in the same (single list) order as `self.orig_arr`.
|
124 |
+
res = [None] * self.size
|
125 |
+
cov = [False] * self.size
|
126 |
+
# orig = [None] * self.size
|
127 |
+
|
128 |
+
assert grouped_dict.keys() == self.arr.keys()
|
129 |
+
|
130 |
+
for key in grouped_dict.keys():
|
131 |
+
for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
|
132 |
+
res[ind] = v
|
133 |
+
cov[ind] = True
|
134 |
+
# orig[ind] = _
|
135 |
+
|
136 |
+
assert all(cov)
|
137 |
+
# assert orig == self.orig_arr
|
138 |
+
|
139 |
+
return res
|
140 |
+
|
141 |
+
|
142 |
+
def pad_and_concat(
|
143 |
+
max_length: int,
|
144 |
+
tensors: List[torch.Tensor],
|
145 |
+
padding_side: Literal["right", "left"] = "right",
|
146 |
+
):
|
147 |
+
"""
|
148 |
+
Method for padding a list of tensors given the maximum tensor
|
149 |
+
length in the batch. Used for batching inputs and continuations in
|
150 |
+
seq2seq models.
|
151 |
+
"""
|
152 |
+
assert (
|
153 |
+
padding_side == "left" or padding_side == "right"
|
154 |
+
), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
|
155 |
+
|
156 |
+
for i, tensor in enumerate(tensors):
|
157 |
+
if len(tensor.shape) == 2:
|
158 |
+
tensor = tensor.squeeze(0) # squeeze, in case passed [1, seq] size
|
159 |
+
tensor_len = tensor.shape[0]
|
160 |
+
if tensor_len < max_length:
|
161 |
+
if padding_side == "right":
|
162 |
+
# right-pad
|
163 |
+
tensors[i] = torch.cat(
|
164 |
+
[
|
165 |
+
tensor, # [seq]
|
166 |
+
torch.zeros(
|
167 |
+
max_length - tensor_len,
|
168 |
+
dtype=torch.long,
|
169 |
+
device=tensor.device,
|
170 |
+
), # [padding_length - seq]
|
171 |
+
],
|
172 |
+
dim=0,
|
173 |
+
).unsqueeze(0)
|
174 |
+
else:
|
175 |
+
# left-pad
|
176 |
+
tensors[i] = torch.cat(
|
177 |
+
[
|
178 |
+
torch.zeros(
|
179 |
+
max_length - tensor_len,
|
180 |
+
dtype=torch.long,
|
181 |
+
device=tensor.device,
|
182 |
+
), # [padding_length - seq]
|
183 |
+
tensor, # [seq]
|
184 |
+
],
|
185 |
+
dim=0,
|
186 |
+
).unsqueeze(0)
|
187 |
+
else:
|
188 |
+
tensors[i] = tensor.unsqueeze(0)
|
189 |
+
|
190 |
+
return torch.cat(tensors, dim=0)
|
191 |
+
|
192 |
+
|
193 |
+
def clear_torch_cache() -> None:
|
194 |
+
gc.collect()
|
195 |
+
torch.cuda.empty_cache()
|
196 |
+
|
197 |
+
|
198 |
+
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
|
199 |
+
"""Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
|
200 |
+
if isinstance(dtype, str) and dtype != "auto":
|
201 |
+
# Convert `str` args torch dtype: `float16` -> `torch.float16`
|
202 |
+
_torch_dtype = getattr(torch, dtype)
|
203 |
+
else:
|
204 |
+
_torch_dtype = dtype
|
205 |
+
return _torch_dtype
|
206 |
+
|
207 |
+
|
208 |
+
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
|
209 |
+
"""Criteria to stop on the specified multi-token sequence."""
|
210 |
+
|
211 |
+
def __init__(
|
212 |
+
self,
|
213 |
+
sequence: str,
|
214 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
215 |
+
initial_decoder_input_length: int,
|
216 |
+
batch_size: int,
|
217 |
+
) -> None:
|
218 |
+
self.initial_decoder_input_length = initial_decoder_input_length
|
219 |
+
self.done_tracker = [False] * batch_size
|
220 |
+
self.sequence = sequence
|
221 |
+
self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
|
222 |
+
# print(sequence, self.sequence_ids)
|
223 |
+
# we look back for 2 more tokens than it takes to encode our stop sequence
|
224 |
+
# because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']`
|
225 |
+
# and we don't want to mistakenly not stop a generation because our
|
226 |
+
# (string) stop sequence was output in a different tokenization
|
227 |
+
|
228 |
+
# NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model,
|
229 |
+
# and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized
|
230 |
+
# Additionally, in lookback_ids_batch we should prevent ever looking back into the inputs as described.
|
231 |
+
self.sequence_id_len = len(self.sequence_ids) + 2
|
232 |
+
self.tokenizer = tokenizer
|
233 |
+
|
234 |
+
def __call__(self, input_ids, scores, **kwargs) -> bool:
|
235 |
+
# For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
|
236 |
+
lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :]
|
237 |
+
|
238 |
+
lookback_ids_batch = lookback_ids_batch[:, -self.sequence_id_len :]
|
239 |
+
|
240 |
+
lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)
|
241 |
+
|
242 |
+
for i, done in enumerate(self.done_tracker):
|
243 |
+
if not done:
|
244 |
+
self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
|
245 |
+
return False not in self.done_tracker
|
246 |
+
|
247 |
+
|
248 |
+
def stop_sequences_criteria(
|
249 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
250 |
+
stop_sequences: List[str],
|
251 |
+
initial_decoder_input_length: int,
|
252 |
+
batch_size: int,
|
253 |
+
) -> transformers.StoppingCriteriaList:
|
254 |
+
return transformers.StoppingCriteriaList(
|
255 |
+
[
|
256 |
+
*[
|
257 |
+
MultiTokenEOSCriteria(
|
258 |
+
sequence, tokenizer, initial_decoder_input_length, batch_size
|
259 |
+
)
|
260 |
+
for sequence in stop_sequences
|
261 |
+
],
|
262 |
+
]
|
263 |
+
)
|
264 |
+
|
265 |
+
|
266 |
+
def undistribute(iterable):
|
267 |
+
"""
|
268 |
+
Undoes https://more-itertools.readthedocs.io/en/stable/api.html#more_itertools.distribute .
|
269 |
+
|
270 |
+
Re-interleaves results that have been split using more_itertools.distribute:
|
271 |
+
>>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6])
|
272 |
+
>>> list(group_1)
|
273 |
+
[1, 3, 5]
|
274 |
+
>>> list(group_2)
|
275 |
+
[2, 4, 6]
|
276 |
+
>>> undistribute([group_1, group_2])
|
277 |
+
[1, 2, 3, 4, 5, 6]
|
278 |
+
|
279 |
+
Handles non-uniform component lengths:
|
280 |
+
|
281 |
+
>>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7])
|
282 |
+
>>> [list(c) for c in children]
|
283 |
+
[[1, 4, 7], [2, 5], [3, 6]]
|
284 |
+
>>> undistribute(children)
|
285 |
+
[1, 2, 3, 4, 5, 6, 7]
|
286 |
+
|
287 |
+
Also handles when some iterables are empty:
|
288 |
+
|
289 |
+
>>> children = distribute(5, [1, 2, 3])
|
290 |
+
>>> [list(c) for c in children]
|
291 |
+
[[1], [2], [3], [], []]
|
292 |
+
>>> undistribute(children)
|
293 |
+
[1, 2, 3]
|
294 |
+
|
295 |
+
"""
|
296 |
+
|
297 |
+
return [
|
298 |
+
x
|
299 |
+
for x in itertools.chain.from_iterable(
|
300 |
+
itertools.zip_longest(*[list(x) for x in iterable])
|
301 |
+
)
|
302 |
+
if x is not None
|
303 |
+
]
|
304 |
+
|
305 |
+
|
306 |
+
def retry_on_specific_exceptions(
|
307 |
+
on_exceptions: List[Type[Exception]],
|
308 |
+
max_retries: Optional[int] = None,
|
309 |
+
backoff_time: float = 3.0,
|
310 |
+
backoff_multiplier: float = 1.5,
|
311 |
+
on_exception_callback: Optional[Callable[[Exception, float], Any]] = None,
|
312 |
+
):
|
313 |
+
"""Retry on an LLM Provider's rate limit error with exponential backoff
|
314 |
+
For example, to use for OpenAI, do the following:
|
315 |
+
```
|
316 |
+
from openai import RateLimitError
|
317 |
+
|
318 |
+
# Recommend specifying max_retries to avoid infinite loops!
|
319 |
+
@retry_on_specific_exceptions([RateLimitError], max_retries=3)
|
320 |
+
def completion(...):
|
321 |
+
# Wrap OpenAI completion function here
|
322 |
+
...
|
323 |
+
```
|
324 |
+
"""
|
325 |
+
|
326 |
+
def decorator(func: Callable):
|
327 |
+
@wraps(func)
|
328 |
+
def wrapper(*args, **kwargs):
|
329 |
+
sleep_time = backoff_time
|
330 |
+
attempt = 0
|
331 |
+
while max_retries is None or attempt < max_retries:
|
332 |
+
try:
|
333 |
+
return func(*args, **kwargs)
|
334 |
+
except tuple(on_exceptions) as e:
|
335 |
+
if on_exception_callback is not None:
|
336 |
+
on_exception_callback(e, sleep_time)
|
337 |
+
time.sleep(sleep_time)
|
338 |
+
sleep_time *= backoff_multiplier
|
339 |
+
attempt += 1
|
340 |
+
|
341 |
+
return wrapper
|
342 |
+
|
343 |
+
return decorator
|
344 |
+
|
345 |
+
|
346 |
+
class Collator:
|
347 |
+
"""
|
348 |
+
A class for reordering and batching elements of an array.
|
349 |
+
|
350 |
+
This class allows for sorting an array based on a provided sorting function, grouping elements based on a grouping function, and generating batches from the sorted and grouped data.
|
351 |
+
|
352 |
+
Objects of this class have the group_by attribute which determines the method for grouping
|
353 |
+
the data while batching it. Three options include "gen_kwargs", "contexts", or None:
|
354 |
+
If group_by == "gen_kwargs" then requests will be grouped by gen_kwargs
|
355 |
+
If group_by == "contexts" then requests will be grouped by context + cont[:-1]
|
356 |
+
If None then requests will just be reordered by length descending.
|
357 |
+
"""
|
358 |
+
|
359 |
+
def __init__(
|
360 |
+
self,
|
361 |
+
arr: List,
|
362 |
+
sort_fn: Callable = lambda x: x,
|
363 |
+
group_fn: Callable = lambda x: x[1],
|
364 |
+
group_by: Union[Literal["gen_kwargs", "contexts"], None] = None,
|
365 |
+
) -> None:
|
366 |
+
self._group_by = group_by
|
367 |
+
# 0 indices are enumerated indices. Apply functions to original arr.
|
368 |
+
self._sort_fn = lambda x: sort_fn(x[1])
|
369 |
+
self._group_fn = lambda x: group_fn(x[1])
|
370 |
+
self._reorder_indices: List = []
|
371 |
+
self._size = len(arr)
|
372 |
+
self._arr_with_indices: Union[Dict, Tuple[Tuple[int, Any], ...]] = tuple(
|
373 |
+
enumerate(arr)
|
374 |
+
) # [indices, (arr)]
|
375 |
+
if self._group_by == "contexts":
|
376 |
+
self._group_by_context()
|
377 |
+
elif self._group_by == "gen_kwargs":
|
378 |
+
self._group_by_index()
|
379 |
+
|
380 |
+
def _group_by_index(self) -> None:
|
381 |
+
"""Group the elements of a list based on their indices."""
|
382 |
+
self._arr_with_indices = self.group(
|
383 |
+
self._arr_with_indices, fn=self._group_fn, group_by="gen_kwargs"
|
384 |
+
)
|
385 |
+
|
386 |
+
def _group_by_context(self) -> None:
|
387 |
+
"""Group the array with indices by context."""
|
388 |
+
self._arr_with_indices = self.group(
|
389 |
+
self._arr_with_indices, fn=self._group_fn, group_by="contexts"
|
390 |
+
)
|
391 |
+
|
392 |
+
def get_batched(self, n: int = 1, batch_fn: Optional[Callable] = None) -> Iterator:
|
393 |
+
"""
|
394 |
+
Generates and yields batches from the reordered array. The method of grouping and batching
|
395 |
+
depends on the parameter `group_by`.
|
396 |
+
If `group_by` is set to "gen_kwargs", it will batch the
|
397 |
+
re-ordered values with same gen_kwargs for each batch.
|
398 |
+
If `group_by` is "contexts", it caches the requests by context before batching.
|
399 |
+
If `group_by` is neither "gen_kwargs" nor "contexts", it yields the reordered array
|
400 |
+
|
401 |
+
Parameters:
|
402 |
+
- n (int): The size of each batch. Defaults to 1.
|
403 |
+
- batch_fn ([Callable[[int, Iterable], int]] | None): A function to determine the size of
|
404 |
+
each batch. Optional, defaults to None.
|
405 |
+
|
406 |
+
Returns:
|
407 |
+
Iterator: An iterator over batches of reordered elements grouped as per the `group_by`
|
408 |
+
attribute.
|
409 |
+
|
410 |
+
Yields:
|
411 |
+
List of batched elements according to the `group_by` attribute.
|
412 |
+
"""
|
413 |
+
if self._group_by == "gen_kwargs":
|
414 |
+
for (
|
415 |
+
key,
|
416 |
+
values,
|
417 |
+
) in self._arr_with_indices.items(): # type: ignore
|
418 |
+
values = self._reorder(values)
|
419 |
+
batch = self.get_chunks(values, n=n, fn=batch_fn)
|
420 |
+
yield from batch
|
421 |
+
elif self._group_by == "contexts":
|
422 |
+
# Get one sample from each key
|
423 |
+
values = self._reorder(
|
424 |
+
[value[0] for value in self._arr_with_indices.values()]
|
425 |
+
)
|
426 |
+
batch = self.get_chunks(values, n=n, fn=batch_fn)
|
427 |
+
yield from batch
|
428 |
+
else:
|
429 |
+
values = self._reorder(self._arr_with_indices) # type: ignore
|
430 |
+
batch = self.get_chunks(values, n=n, fn=batch_fn)
|
431 |
+
yield from batch
|
432 |
+
|
433 |
+
def get_cache(
|
434 |
+
self,
|
435 |
+
req_str: Tuple[str, str] = None,
|
436 |
+
cxt_toks: List[int] = None,
|
437 |
+
cont_toks: List[int] = None,
|
438 |
+
logits: torch.Tensor = None,
|
439 |
+
) -> Iterator[Tuple[Tuple[str, str], List[int], torch.Tensor]]:
|
440 |
+
"""
|
441 |
+
Retrieves cached single-token continuations and their associated arguments, updating indices as necessary.
|
442 |
+
|
443 |
+
The behavior of this function varies depending on how the `group_by` attribute is set:
|
444 |
+
|
445 |
+
- When `group_by` is "contexts":
|
446 |
+
The function identifies single-token continuations by checking for keys that equate to
|
447 |
+
[context+continuation][-1] and logs the indices for re-ordering.
|
448 |
+
In this mode, this function can work in two scenarios:
|
449 |
+
|
450 |
+
1. Cache Hit - Single Match:
|
451 |
+
If a single matching context-continuation pair is found in the cache,
|
452 |
+
the function yields the original arguments.
|
453 |
+
|
454 |
+
2. Cache Hit - Multiple Matches:
|
455 |
+
If multiple matching context-continuation pairs are found in the cache,
|
456 |
+
the function expands the logits batch dimension to match the number of cache hits.
|
457 |
+
It updates the original requests and continuation tokens.
|
458 |
+
|
459 |
+
- When `group_by` is not set to "contexts":
|
460 |
+
This method yields the original arguments, logits and continuation tokens,
|
461 |
+
without checking for one-token continuations.
|
462 |
+
|
463 |
+
Parameters:
|
464 |
+
- req_str (tuple[str, str]): Original strings used for CachingLM.
|
465 |
+
- cxt_toks (list[int]): Full context tokens used for lookup.
|
466 |
+
- cont_toks (list[int]): Continuation tokens for which logits were generated.
|
467 |
+
- logits (torch.Tensor [1, seq_length, vocab_size]): Logits generated by the model given context and continuation keys.
|
468 |
+
|
469 |
+
Yields:
|
470 |
+
- Iterator:
|
471 |
+
- req_str (tuple[str, str]): strings used for CachingLM.
|
472 |
+
- cont_toks (list[int]) : continuation tokens.
|
473 |
+
- logits (torch.Tensor [1, seq_length, vocab_size]): The original logits (repeated cache hit times)
|
474 |
+
"""
|
475 |
+
if self._group_by == "contexts":
|
476 |
+
cache_hit: List[
|
477 |
+
Tuple[int, Tuple[Tuple[str, str], List[int], List[int]]]
|
478 |
+
] = self._arr_with_indices.pop(tuple(cxt_toks + cont_toks[:-1]))
|
479 |
+
if (cache_size := len(cache_hit)) == 1:
|
480 |
+
self._reorder_indices.extend(x[0] for x in cache_hit)
|
481 |
+
yield req_str, cont_toks, logits
|
482 |
+
else:
|
483 |
+
# If we have matching requests then expand the batch dimension (no-op) and
|
484 |
+
# yield each along with its corresponding args.
|
485 |
+
multilogits = logits.expand(cache_size, -1, -1).chunk(cache_size)
|
486 |
+
indices, req_str, cont_toks = zip(
|
487 |
+
*[(x[0], x[1][0], x[-1][-1]) for x in cache_hit]
|
488 |
+
)
|
489 |
+
self._reorder_indices.extend(indices)
|
490 |
+
for c_key, cont_tok, logit in zip(req_str, cont_toks, multilogits):
|
491 |
+
yield c_key, cont_tok, logit
|
492 |
+
else:
|
493 |
+
yield req_str, cont_toks, logits
|
494 |
+
|
495 |
+
def _reorder(self, arr: Union[List, Tuple[Tuple[int, Any], ...]]) -> Iterator:
|
496 |
+
"""
|
497 |
+
Reorders the elements in the array based on the sorting function.
|
498 |
+
|
499 |
+
Parameters:
|
500 |
+
- arr (list | tuple[tuple[int, Any], ...]]): The array or iterable to be reordered.
|
501 |
+
|
502 |
+
Yields:
|
503 |
+
Iterator
|
504 |
+
"""
|
505 |
+
arr = sorted(arr, key=self._sort_fn)
|
506 |
+
if not self._group_by == "contexts":
|
507 |
+
# If grouped by contexts then indices will be set in get_cache()
|
508 |
+
self._reorder_indices.extend([x[0] for x in arr])
|
509 |
+
yield from [x[1] for x in arr]
|
510 |
+
|
511 |
+
def get_original(self, newarr: List) -> List:
|
512 |
+
"""
|
513 |
+
Restores the original order of elements from the reordered list.
|
514 |
+
|
515 |
+
Parameters:
|
516 |
+
- newarr (list): The reordered array.
|
517 |
+
|
518 |
+
Returns:
|
519 |
+
list: The array with elements restored to their original order.
|
520 |
+
"""
|
521 |
+
res = [None] * self._size
|
522 |
+
cov = [False] * self._size
|
523 |
+
|
524 |
+
for ind, v in zip(self._reorder_indices, newarr):
|
525 |
+
res[ind] = v
|
526 |
+
cov[ind] = True
|
527 |
+
|
528 |
+
assert all(cov)
|
529 |
+
|
530 |
+
return res
|
531 |
+
|
532 |
+
def __len__(self):
|
533 |
+
return self._size
|
534 |
+
|
535 |
+
@staticmethod
|
536 |
+
def group(
|
537 |
+
arr: Iterable,
|
538 |
+
fn: Callable,
|
539 |
+
group_by: Literal["gen_kwargs", "contexts"] = "gen_kwargs",
|
540 |
+
) -> dict:
|
541 |
+
"""
|
542 |
+
Groups elements of an iterable based on a provided function.
|
543 |
+
|
544 |
+
|
545 |
+
The `group_by` parameter determines the method of grouping.
|
546 |
+
If `group_by` is "contexts", the elements are grouped by [context + cont][:-1].
|
547 |
+
If `group_by` is "gen_kwargs", the elements are grouped based on the gen_kwargs dict.
|
548 |
+
|
549 |
+
Parameters:
|
550 |
+
- arr (Iterable): The iterable to be grouped.
|
551 |
+
- fn (Callable): The function to determine the grouping.
|
552 |
+
- values (bool): If True, returns the values of the group. Defaults to False.
|
553 |
+
|
554 |
+
Returns:
|
555 |
+
Iterator: An iterable of grouped elements.
|
556 |
+
"""
|
557 |
+
res = collections.defaultdict(list)
|
558 |
+
for ob in arr:
|
559 |
+
# where ob == [context + cont]
|
560 |
+
if group_by == "contexts":
|
561 |
+
res[tuple(fn(ob))].append(ob)
|
562 |
+
else:
|
563 |
+
try:
|
564 |
+
hashable_dict = tuple(
|
565 |
+
(
|
566 |
+
key,
|
567 |
+
tuple(value)
|
568 |
+
if isinstance(value, collections.abc.Iterable)
|
569 |
+
else value,
|
570 |
+
)
|
571 |
+
for key, value in sorted(fn(ob).items())
|
572 |
+
)
|
573 |
+
res[hashable_dict].append(ob)
|
574 |
+
except (TypeError, AttributeError):
|
575 |
+
res[tuple(fn(ob))].append(ob)
|
576 |
+
return res
|
577 |
+
|
578 |
+
@staticmethod
|
579 |
+
def get_chunks(_iter, n: int = 0, fn=None):
|
580 |
+
"""
|
581 |
+
Divides an iterable into chunks of specified size or based on a given function.
|
582 |
+
Useful for batching
|
583 |
+
|
584 |
+
Parameters:
|
585 |
+
- iter: The input iterable to be divided into chunks.
|
586 |
+
- n: An integer representing the size of each chunk. Default is 0.
|
587 |
+
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.
|
588 |
+
|
589 |
+
Returns:
|
590 |
+
An iterator that yields chunks of the input iterable.
|
591 |
+
|
592 |
+
Example usage:
|
593 |
+
```
|
594 |
+
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
595 |
+
for chunk in chunks(data, 3):
|
596 |
+
print(chunk)
|
597 |
+
```
|
598 |
+
Output:
|
599 |
+
```
|
600 |
+
[1, 2, 3]
|
601 |
+
[4, 5, 6]
|
602 |
+
[7, 8, 9]
|
603 |
+
[10]
|
604 |
+
```
|
605 |
+
"""
|
606 |
+
arr = []
|
607 |
+
_iter = tuple(_iter)
|
608 |
+
for i, x in enumerate(_iter):
|
609 |
+
arr.append(x)
|
610 |
+
if len(arr) == (fn(i, _iter) if fn else n):
|
611 |
+
yield arr
|
612 |
+
arr = []
|
613 |
+
|
614 |
+
if arr:
|
615 |
+
yield arr
|
lm-evaluation/build/lib/lm_eval/models/vllm_causallms.py
ADDED
@@ -0,0 +1,487 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from importlib.metadata import version
|
3 |
+
from importlib.util import find_spec
|
4 |
+
from typing import List, Literal, Optional, Tuple, Union
|
5 |
+
|
6 |
+
from more_itertools import distribute
|
7 |
+
from packaging.version import parse as parse_version
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
from lm_eval.api.instance import Instance
|
11 |
+
from lm_eval.api.model import TemplateLM
|
12 |
+
from lm_eval.api.registry import register_model
|
13 |
+
from lm_eval.models.utils import Collator, undistribute
|
14 |
+
from lm_eval.utils import (
|
15 |
+
eval_logger,
|
16 |
+
get_rolling_token_windows,
|
17 |
+
make_disjoint_window,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
try:
|
22 |
+
import ray
|
23 |
+
from vllm import LLM, SamplingParams
|
24 |
+
from vllm.transformers_utils.tokenizer import get_tokenizer
|
25 |
+
except ModuleNotFoundError:
|
26 |
+
pass
|
27 |
+
|
28 |
+
eval_logger = eval_logger
|
29 |
+
|
30 |
+
|
31 |
+
@register_model("vllm")
|
32 |
+
class VLLM(TemplateLM):
|
33 |
+
_DEFAULT_MAX_LENGTH = 2048
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
pretrained="gpt2",
|
38 |
+
dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
|
39 |
+
revision: Optional[str] = None,
|
40 |
+
trust_remote_code: Optional[bool] = False,
|
41 |
+
tokenizer: Optional[str] = None,
|
42 |
+
tokenizer_mode: Literal["auto", "slow"] = "auto",
|
43 |
+
tokenizer_revision: Optional[str] = None,
|
44 |
+
add_bos_token: Optional[bool] = False,
|
45 |
+
prefix_token_id: Optional[int] = None,
|
46 |
+
tensor_parallel_size: int = 1,
|
47 |
+
quantization: Optional[str] = None,
|
48 |
+
max_gen_toks: int = 256,
|
49 |
+
swap_space: int = 4,
|
50 |
+
batch_size: Union[str, int] = 1,
|
51 |
+
max_batch_size=None,
|
52 |
+
max_length: int = None,
|
53 |
+
max_model_len: int = None,
|
54 |
+
seed: int = 1234,
|
55 |
+
gpu_memory_utilization: float = 0.9,
|
56 |
+
device: str = "cuda",
|
57 |
+
data_parallel_size: int = 1,
|
58 |
+
**kwargs,
|
59 |
+
):
|
60 |
+
super().__init__()
|
61 |
+
|
62 |
+
if not find_spec("vllm"):
|
63 |
+
raise Exception(
|
64 |
+
"attempted to use 'vllm' LM type, but package `vllm` is not installed. "
|
65 |
+
"Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
|
66 |
+
)
|
67 |
+
|
68 |
+
assert "cuda" in device or device is None, "vLLM only supports CUDA"
|
69 |
+
assert (
|
70 |
+
max_length is None or max_model_len is None
|
71 |
+
), "Either max_length or max_model_len may be provided, but not both"
|
72 |
+
|
73 |
+
self._max_length = max_model_len if max_model_len is not None else max_length
|
74 |
+
self.tensor_parallel_size = int(tensor_parallel_size)
|
75 |
+
self.data_parallel_size = int(data_parallel_size)
|
76 |
+
self.model_args = {
|
77 |
+
"model": pretrained,
|
78 |
+
"gpu_memory_utilization": float(gpu_memory_utilization),
|
79 |
+
"revision": revision,
|
80 |
+
"dtype": dtype,
|
81 |
+
"tokenizer": tokenizer,
|
82 |
+
"tokenizer_mode": tokenizer_mode,
|
83 |
+
"tokenizer_revision": tokenizer_revision,
|
84 |
+
"trust_remote_code": trust_remote_code,
|
85 |
+
"tensor_parallel_size": int(tensor_parallel_size),
|
86 |
+
"max_model_len": int(self._max_length) if self._max_length else None,
|
87 |
+
"swap_space": int(swap_space),
|
88 |
+
"quantization": quantization,
|
89 |
+
"seed": int(seed),
|
90 |
+
}
|
91 |
+
self.model_args.update(kwargs)
|
92 |
+
self.batch_size = (
|
93 |
+
"auto"
|
94 |
+
if isinstance(batch_size, str) and "auto" in batch_size
|
95 |
+
else batch_size
|
96 |
+
)
|
97 |
+
if self.data_parallel_size <= 1:
|
98 |
+
self.model = LLM(**self.model_args)
|
99 |
+
else:
|
100 |
+
assert parse_version(version("vllm")) < parse_version(
|
101 |
+
"0.3.3"
|
102 |
+
), "data_parallel is only compatible with vllm < v0.3.3."
|
103 |
+
eval_logger.warning(
|
104 |
+
"You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached."
|
105 |
+
)
|
106 |
+
self.model_args["worker_use_ray"] = True
|
107 |
+
self.batch_size = "auto"
|
108 |
+
eval_logger.info("Manual batching is not compatible with data parallelism.")
|
109 |
+
|
110 |
+
from transformers import AutoConfig
|
111 |
+
|
112 |
+
self._config = AutoConfig.from_pretrained(
|
113 |
+
pretrained, trust_remote_code=trust_remote_code, revision=revision
|
114 |
+
)
|
115 |
+
self.tokenizer = get_tokenizer(
|
116 |
+
tokenizer if tokenizer else pretrained,
|
117 |
+
tokenizer_mode=tokenizer_mode,
|
118 |
+
trust_remote_code=trust_remote_code,
|
119 |
+
tokenizer_revision=tokenizer_revision,
|
120 |
+
)
|
121 |
+
self.add_bos_token = add_bos_token
|
122 |
+
self.custom_prefix_token_id = prefix_token_id
|
123 |
+
if prefix_token_id is not None:
|
124 |
+
eval_logger.info(
|
125 |
+
f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
|
126 |
+
)
|
127 |
+
|
128 |
+
self._max_gen_toks = max_gen_toks
|
129 |
+
|
130 |
+
@property
|
131 |
+
def eot_token_id(self):
|
132 |
+
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
133 |
+
return self.tokenizer.eos_token_id
|
134 |
+
|
135 |
+
@property
|
136 |
+
def prefix_token_id(self):
|
137 |
+
# it is used as prefix for loglikelihood
|
138 |
+
if self.custom_prefix_token_id is not None:
|
139 |
+
return self.custom_prefix_token_id
|
140 |
+
if self.tokenizer.bos_token_id is not None:
|
141 |
+
return self.tokenizer.bos_token_id
|
142 |
+
return self.tokenizer.eos_token_id
|
143 |
+
|
144 |
+
@property
|
145 |
+
def max_length(self):
|
146 |
+
if self._max_length: # if max length manually set, return it
|
147 |
+
return self._max_length
|
148 |
+
if self.data_parallel_size <= 1:
|
149 |
+
return self.model.llm_engine.model_config.max_model_len
|
150 |
+
else:
|
151 |
+
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
|
152 |
+
for attr in seqlen_config_attrs:
|
153 |
+
if hasattr(self._config, attr):
|
154 |
+
return getattr(self._config, attr)
|
155 |
+
if hasattr(self.tokenizer, "model_max_length"):
|
156 |
+
if self.tokenizer.model_max_length == 1000000000000000019884624838656:
|
157 |
+
return self._DEFAULT_MAX_LENGTH
|
158 |
+
return self.tokenizer.model_max_length
|
159 |
+
return self._DEFAULT_MAX_LENGTH
|
160 |
+
|
161 |
+
@property
|
162 |
+
def max_gen_toks(self):
|
163 |
+
return self._max_gen_toks
|
164 |
+
|
165 |
+
def tok_encode(
|
166 |
+
self,
|
167 |
+
string: str,
|
168 |
+
left_truncate_len=None,
|
169 |
+
add_special_tokens=None,
|
170 |
+
truncation=False,
|
171 |
+
):
|
172 |
+
""" """
|
173 |
+
if not add_special_tokens:
|
174 |
+
add_special_tokens = False or self.add_bos_token
|
175 |
+
encoding = self.tokenizer.encode(
|
176 |
+
string, add_special_tokens=add_special_tokens, truncation=truncation
|
177 |
+
)
|
178 |
+
|
179 |
+
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
|
180 |
+
if left_truncate_len:
|
181 |
+
encoding = encoding[-left_truncate_len:]
|
182 |
+
|
183 |
+
return encoding
|
184 |
+
|
185 |
+
def _model_generate(
|
186 |
+
self,
|
187 |
+
requests: List[List[int]] = None,
|
188 |
+
generate: bool = False,
|
189 |
+
max_tokens: int = None,
|
190 |
+
stop: Optional[List[str]] = None,
|
191 |
+
**kwargs,
|
192 |
+
):
|
193 |
+
if generate:
|
194 |
+
kwargs = self.modify_gen_kwargs(kwargs)
|
195 |
+
sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
|
196 |
+
else:
|
197 |
+
sampling_params = SamplingParams(
|
198 |
+
temperature=0, prompt_logprobs=1, max_tokens=1
|
199 |
+
)
|
200 |
+
if self.data_parallel_size > 1:
|
201 |
+
# vLLM hangs if tensor_parallel > 1 and resources are set in ray.remote
|
202 |
+
# also seems to only work with decorator and not with ray.remote() fn
|
203 |
+
# see https://github.com/vllm-project/vllm/issues/973
|
204 |
+
# note: this has changed on 0.3.3, and it only works now if num_gpus are set.
|
205 |
+
# but then tensor_parallel breaks
|
206 |
+
@ray.remote
|
207 |
+
def run_inference_one_model(
|
208 |
+
model_args: dict, sampling_params, requests: List[List[int]]
|
209 |
+
):
|
210 |
+
llm = LLM(**model_args)
|
211 |
+
return llm.generate(
|
212 |
+
prompt_token_ids=requests, sampling_params=sampling_params
|
213 |
+
)
|
214 |
+
|
215 |
+
# dispatch requests to all self.data_parallel_size workers, in interleaved fashion
|
216 |
+
# interleaved important to balance context lengths across workers
|
217 |
+
requests = [list(x) for x in distribute(self.data_parallel_size, requests)]
|
218 |
+
inputs = ((self.model_args, sampling_params, req) for req in requests)
|
219 |
+
object_refs = [run_inference_one_model.remote(*x) for x in inputs]
|
220 |
+
results = ray.get(object_refs)
|
221 |
+
# Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
|
222 |
+
ray.shutdown()
|
223 |
+
# flatten results
|
224 |
+
return undistribute(results)
|
225 |
+
|
226 |
+
outputs = self.model.generate(
|
227 |
+
prompt_token_ids=requests,
|
228 |
+
sampling_params=sampling_params,
|
229 |
+
use_tqdm=True if self.batch_size == "auto" else False,
|
230 |
+
)
|
231 |
+
return outputs
|
232 |
+
|
233 |
+
def loglikelihood_rolling(
|
234 |
+
self, requests: List[Instance], disable_tqdm: bool = False
|
235 |
+
) -> List[float]:
|
236 |
+
loglikelihoods = []
|
237 |
+
|
238 |
+
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
|
239 |
+
rolling_token_windows = list(
|
240 |
+
map(
|
241 |
+
make_disjoint_window,
|
242 |
+
get_rolling_token_windows(
|
243 |
+
token_list=self.tok_encode(string),
|
244 |
+
prefix_token=self.eot_token_id,
|
245 |
+
max_seq_len=self.max_length - 1,
|
246 |
+
context_len=1,
|
247 |
+
),
|
248 |
+
)
|
249 |
+
)
|
250 |
+
|
251 |
+
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
|
252 |
+
|
253 |
+
string_nll = self._loglikelihood_tokens(
|
254 |
+
rolling_token_windows,
|
255 |
+
)
|
256 |
+
|
257 |
+
# discard is_greedy
|
258 |
+
string_nll = [x[0] for x in string_nll]
|
259 |
+
|
260 |
+
string_nll = sum(string_nll)
|
261 |
+
loglikelihoods.append(string_nll)
|
262 |
+
return loglikelihoods
|
263 |
+
|
264 |
+
def generate_until(
|
265 |
+
self, requests: List[Instance], disable_tqdm: bool = False
|
266 |
+
) -> List[str]:
|
267 |
+
res = []
|
268 |
+
|
269 |
+
# batch tokenize contexts
|
270 |
+
context, all_gen_kwargs = zip(*(req.args for req in requests))
|
271 |
+
context_encoding = self.tokenizer(context, add_special_tokens=False).input_ids
|
272 |
+
requests = [
|
273 |
+
((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
|
274 |
+
]
|
275 |
+
|
276 |
+
def _collate_gen(_requests):
|
277 |
+
# the negative sign on len(toks) sorts descending - this has a few advantages:
|
278 |
+
# - time estimates will always be over not underestimates, which is more useful for planning
|
279 |
+
# - to know the size of a batch when going through the list, you know the first one is always the batch
|
280 |
+
# padded context length. this is useful to simplify the batching logic and more importantly to make
|
281 |
+
# automatic adaptive batches much much easier to implement
|
282 |
+
# - any OOMs will happen right away rather than near the end
|
283 |
+
return -len(_requests[0][1]), _requests[0][0]
|
284 |
+
|
285 |
+
# we group requests by their generation_kwargs,
|
286 |
+
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
|
287 |
+
# in the same batch.
|
288 |
+
re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
|
289 |
+
chunks = re_ords.get_batched(
|
290 |
+
n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
|
291 |
+
)
|
292 |
+
|
293 |
+
pbar = tqdm(
|
294 |
+
total=len(requests),
|
295 |
+
disable=(disable_tqdm or (self.rank != 0)),
|
296 |
+
desc="Running generate_until requests",
|
297 |
+
)
|
298 |
+
# for each different set of kwargs, we execute all requests, by batch.
|
299 |
+
for chunk in chunks:
|
300 |
+
context_and_encoding, all_gen_kwargs = zip(*chunk)
|
301 |
+
context, context_encoding = zip(*context_and_encoding)
|
302 |
+
# we assume all gen kwargs in the batch are the same
|
303 |
+
# this is safe to assume because the `grouper` object ensures it.
|
304 |
+
gen_kwargs = all_gen_kwargs[0]
|
305 |
+
# unpack our keyword arguments.
|
306 |
+
until = None
|
307 |
+
if isinstance(gen_kwargs, dict):
|
308 |
+
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
|
309 |
+
if "until" in kwargs.keys():
|
310 |
+
until = kwargs.pop("until")
|
311 |
+
if isinstance(until, str):
|
312 |
+
until = [until]
|
313 |
+
elif not isinstance(until, list):
|
314 |
+
raise ValueError(
|
315 |
+
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
raise ValueError(
|
319 |
+
f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}"
|
320 |
+
)
|
321 |
+
# add EOS token to stop sequences
|
322 |
+
eos = self.tokenizer.decode(self.eot_token_id)
|
323 |
+
if not until:
|
324 |
+
until = [eos]
|
325 |
+
else:
|
326 |
+
until.append(eos)
|
327 |
+
if "max_gen_toks" in kwargs.keys():
|
328 |
+
max_gen_toks = kwargs.pop("max_gen_toks")
|
329 |
+
else:
|
330 |
+
max_gen_toks = self.max_gen_toks
|
331 |
+
|
332 |
+
# set the max length in tokens of inputs ("context_enc")
|
333 |
+
# max len for inputs = max length, minus room to generate the max new tokens
|
334 |
+
max_ctx_len = self.max_length - max_gen_toks
|
335 |
+
context_encoding = [x[-max_ctx_len:] for x in context_encoding]
|
336 |
+
|
337 |
+
# perform batched generation
|
338 |
+
cont = self._model_generate(
|
339 |
+
requests=context_encoding,
|
340 |
+
generate=True,
|
341 |
+
max_tokens=max_gen_toks,
|
342 |
+
stop=until,
|
343 |
+
**kwargs,
|
344 |
+
)
|
345 |
+
|
346 |
+
# cache generations
|
347 |
+
for output, context in zip(cont, context):
|
348 |
+
generated_text = output.outputs[0].text
|
349 |
+
res.append(generated_text)
|
350 |
+
self.cache_hook.add_partial(
|
351 |
+
"generate_until", (context, gen_kwargs), generated_text
|
352 |
+
)
|
353 |
+
pbar.update(1)
|
354 |
+
|
355 |
+
pbar.close()
|
356 |
+
# reorder all group of results back to original unsorted form
|
357 |
+
return re_ords.get_original(res)
|
358 |
+
|
359 |
+
def _loglikelihood_tokens(
|
360 |
+
self,
|
361 |
+
requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
|
362 |
+
disable_tqdm: bool = False,
|
363 |
+
) -> List[Tuple[float, bool]]:
|
364 |
+
res = []
|
365 |
+
|
366 |
+
def _collate(x):
|
367 |
+
toks = x[1] + x[2]
|
368 |
+
return -len(toks), tuple(toks)
|
369 |
+
|
370 |
+
# Reorder requests by length and batch
|
371 |
+
re_ord = Collator(requests, sort_fn=_collate)
|
372 |
+
chunks = re_ord.get_batched(
|
373 |
+
n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
|
374 |
+
)
|
375 |
+
|
376 |
+
pbar = tqdm(
|
377 |
+
total=len(requests),
|
378 |
+
disable=disable_tqdm,
|
379 |
+
desc="Running loglikelihood requests",
|
380 |
+
)
|
381 |
+
for chunk in chunks:
|
382 |
+
inputs = []
|
383 |
+
ctxlens = []
|
384 |
+
for cache_key, context_enc, continuation_enc in chunk:
|
385 |
+
inp = (context_enc + continuation_enc)[-(self.max_length) :]
|
386 |
+
ctxlen = len(context_enc) - max(
|
387 |
+
0, len(context_enc) + len(continuation_enc) - (self.max_length)
|
388 |
+
)
|
389 |
+
|
390 |
+
inputs.append(inp)
|
391 |
+
ctxlens.append(ctxlen)
|
392 |
+
|
393 |
+
outputs = self._model_generate(requests=inputs, generate=False)
|
394 |
+
|
395 |
+
for output, ctxlen, (cache_key, _, _), inp in zip(
|
396 |
+
outputs, ctxlens, chunk, inputs
|
397 |
+
):
|
398 |
+
answer = self._parse_logprobs(
|
399 |
+
tokens=inp,
|
400 |
+
outputs=output,
|
401 |
+
ctxlen=ctxlen,
|
402 |
+
)
|
403 |
+
|
404 |
+
res.append(answer)
|
405 |
+
|
406 |
+
# partial caching
|
407 |
+
if cache_key is not None:
|
408 |
+
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
|
409 |
+
pbar.update(1)
|
410 |
+
pbar.close()
|
411 |
+
return re_ord.get_original(res)
|
412 |
+
|
413 |
+
@staticmethod
|
414 |
+
def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
|
415 |
+
"""Process logprobs and tokens.
|
416 |
+
|
417 |
+
:param tokens: list
|
418 |
+
Input tokens (potentially left-truncated)
|
419 |
+
:param outputs: RequestOutput
|
420 |
+
Contains prompt_logprobs
|
421 |
+
:param ctxlen: int
|
422 |
+
Length of context (so we can slice them away and only keep the predictions)
|
423 |
+
:return:
|
424 |
+
continuation_logprobs: float
|
425 |
+
Log probabilities of continuation tokens
|
426 |
+
is_greedy: bool
|
427 |
+
Whether argmax matches given continuation exactly
|
428 |
+
"""
|
429 |
+
|
430 |
+
# The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
|
431 |
+
continuation_logprobs_dicts = outputs.prompt_logprobs
|
432 |
+
|
433 |
+
def coerce_logprob_to_num(logprob):
|
434 |
+
# vLLM changed the return type of logprobs from float
|
435 |
+
# to a Logprob object storing the float value + extra data
|
436 |
+
# (https://github.com/vllm-project/vllm/pull/3065).
|
437 |
+
# If we are dealing with vllm's Logprob object, return
|
438 |
+
# the logprob value stored as an attribute. Otherwise,
|
439 |
+
# return the object itself (which should be a float
|
440 |
+
# for older versions of vLLM).
|
441 |
+
return getattr(logprob, "logprob", logprob)
|
442 |
+
|
443 |
+
continuation_logprobs_dicts = [
|
444 |
+
{
|
445 |
+
token: coerce_logprob_to_num(logprob)
|
446 |
+
for token, logprob in logprob_dict.items()
|
447 |
+
}
|
448 |
+
if logprob_dict is not None
|
449 |
+
else None
|
450 |
+
for logprob_dict in continuation_logprobs_dicts
|
451 |
+
]
|
452 |
+
|
453 |
+
# Calculate continuation_logprobs
|
454 |
+
# assume ctxlen always >= 1
|
455 |
+
continuation_logprobs = sum(
|
456 |
+
logprob_dict.get(token)
|
457 |
+
for token, logprob_dict in zip(
|
458 |
+
tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
|
459 |
+
)
|
460 |
+
)
|
461 |
+
|
462 |
+
# Determine if is_greedy
|
463 |
+
is_greedy = True
|
464 |
+
for token, logprob_dict in zip(
|
465 |
+
tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
|
466 |
+
):
|
467 |
+
# Get the token with the maximum log probability from the logprob_dict
|
468 |
+
if logprob_dict: # Ensure the logprob_dict is not None
|
469 |
+
top_token = max(logprob_dict, key=logprob_dict.get)
|
470 |
+
if top_token != token:
|
471 |
+
is_greedy = False
|
472 |
+
break
|
473 |
+
|
474 |
+
return continuation_logprobs, is_greedy
|
475 |
+
|
476 |
+
@staticmethod
|
477 |
+
def modify_gen_kwargs(kwargs: dict) -> dict:
|
478 |
+
# sampling_params
|
479 |
+
do_sample = kwargs.pop("do_sample", None)
|
480 |
+
if do_sample is False or "temperature" not in kwargs:
|
481 |
+
kwargs["temperature"] = 0.0
|
482 |
+
# hf defaults
|
483 |
+
kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
|
484 |
+
kwargs["spaces_between_special_tokens"] = kwargs.get(
|
485 |
+
"spaces_between_special_tokens", False
|
486 |
+
)
|
487 |
+
return kwargs
|
lm-evaluation/build/lib/lm_eval/prompts/__init__.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import os
|
3 |
+
from typing import Dict
|
4 |
+
|
5 |
+
from lm_eval import utils
|
6 |
+
from lm_eval.utils import eval_logger
|
7 |
+
|
8 |
+
|
9 |
+
# Prompt library.
|
10 |
+
# Stores prompts in a dictionary indexed by 2 levels:
|
11 |
+
# prompt category name, and prompt name.
|
12 |
+
# This allows us to access prompts
|
13 |
+
PROMPT_REGISTRY: Dict[str, Dict[str, str]] = {
|
14 |
+
"qa-basic": {
|
15 |
+
"question-newline-answer": "Question: {{question}}\nAnswer:",
|
16 |
+
"q-newline-a": "Q: {{question}}\nA:",
|
17 |
+
},
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
def get_prompt(prompt_id: str, dataset_name: str = None, subset_name: str = None):
|
22 |
+
# unpack prompt name
|
23 |
+
category_name, prompt_name = prompt_id.split(":")
|
24 |
+
if subset_name is None:
|
25 |
+
dataset_full_name = dataset_name
|
26 |
+
else:
|
27 |
+
dataset_full_name = f"{dataset_name}-{subset_name}"
|
28 |
+
eval_logger.info(f"Loading prompt from {category_name} for {dataset_full_name}")
|
29 |
+
if category_name == "promptsource":
|
30 |
+
try:
|
31 |
+
from promptsource.templates import DatasetTemplates
|
32 |
+
except ModuleNotFoundError:
|
33 |
+
raise Exception(
|
34 |
+
"Tried to load a Promptsource template, but promptsource is not installed ",
|
35 |
+
"please install promptsource via pip install lm-eval[promptsource] or pip install -e .[promptsource]",
|
36 |
+
)
|
37 |
+
try:
|
38 |
+
if subset_name is None:
|
39 |
+
prompts = DatasetTemplates(dataset_name=dataset_name)
|
40 |
+
else:
|
41 |
+
prompts = DatasetTemplates(
|
42 |
+
dataset_name=dataset_name, subset_name=subset_name
|
43 |
+
)
|
44 |
+
except Exception:
|
45 |
+
raise ValueError(f"{dataset_name} and {subset_name} not found")
|
46 |
+
if prompt_name in prompts.all_template_names:
|
47 |
+
return prompts[prompt_name]
|
48 |
+
else:
|
49 |
+
raise ValueError(
|
50 |
+
f"{prompt_name} not in prompt list {prompts.all_template_names}"
|
51 |
+
)
|
52 |
+
elif ".yaml" in category_name:
|
53 |
+
import yaml
|
54 |
+
|
55 |
+
with open(category_name, "rb") as file:
|
56 |
+
prompt_yaml_file = yaml.full_load(file)
|
57 |
+
|
58 |
+
prompt_string = prompt_yaml_file["prompts"][prompt_name]
|
59 |
+
return PromptString(prompt_string)
|
60 |
+
else:
|
61 |
+
try:
|
62 |
+
return PROMPT_REGISTRY[category_name][prompt_name]
|
63 |
+
except Exception:
|
64 |
+
raise ValueError(
|
65 |
+
f"expected only a single `:` as separator between \
|
66 |
+
prompt category and name, but got `{prompt_id}` instead"
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
def load_prompt_list(
|
71 |
+
use_prompt: str, dataset_name=None, subset_name=None, yaml_path=None, **kwargs
|
72 |
+
):
|
73 |
+
category_name, prompt_name = use_prompt.split(":")
|
74 |
+
|
75 |
+
if category_name == "promptsource":
|
76 |
+
from promptsource.templates import DatasetTemplates
|
77 |
+
|
78 |
+
if subset_name is None:
|
79 |
+
prompts = DatasetTemplates(dataset_name=dataset_name)
|
80 |
+
else:
|
81 |
+
prompts = DatasetTemplates(
|
82 |
+
dataset_name=dataset_name, subset_name=subset_name
|
83 |
+
)
|
84 |
+
|
85 |
+
prompt_list = utils.pattern_match(prompt_name, prompts.all_template_names)
|
86 |
+
|
87 |
+
elif ".yaml" in category_name:
|
88 |
+
import yaml
|
89 |
+
|
90 |
+
if yaml_path is not None:
|
91 |
+
category_name = os.path.realpath(os.path.join(yaml_path, category_name))
|
92 |
+
|
93 |
+
with open(category_name, "rb") as file:
|
94 |
+
prompt_yaml_file = yaml.full_load(file)
|
95 |
+
|
96 |
+
prompt_list = utils.pattern_match(
|
97 |
+
prompt_name, prompt_yaml_file["prompts"].keys()
|
98 |
+
)
|
99 |
+
|
100 |
+
# category_name, *prompt_name = use_prompt.split(":")
|
101 |
+
# TODO allow to multiple prompt naming
|
102 |
+
# if len(prompt_name) > 1:
|
103 |
+
# prompt_list = []
|
104 |
+
# for prompt in prompt_name:
|
105 |
+
# prompt_list.append(utils.pattern_match(prompt_name, prompts.all_template_names))
|
106 |
+
# else:
|
107 |
+
# prompt_list = utils.pattern_match(prompt_name, prompts.all_template_names)
|
108 |
+
return [":".join([category_name, prompt]) for prompt in prompt_list]
|
109 |
+
|
110 |
+
|
111 |
+
class PromptString:
|
112 |
+
def __init__(self, prompt_string):
|
113 |
+
self.prompt_string = prompt_string
|
114 |
+
|
115 |
+
def apply(self, doc):
|
116 |
+
doc_to_text = self.prompt_string["doc_to_text"]
|
117 |
+
doc_to_target = self.prompt_string["doc_to_target"]
|
118 |
+
|
119 |
+
# TODO need a way to process doc_to_choice
|
120 |
+
if "doc_to_choice" in self.prompt_string:
|
121 |
+
raise Exception("Not yet implemented to accept doc_to_choice")
|
122 |
+
|
123 |
+
text_string = utils.apply_template(doc_to_text, doc)
|
124 |
+
target_string = utils.apply_template(doc_to_target, doc)
|
125 |
+
|
126 |
+
return [text_string, target_string]
|
lm-evaluation/build/lib/lm_eval/tasks/arc/README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ARC
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Title: Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge
|
6 |
+
|
7 |
+
Abstract: https://arxiv.org/abs/1803.05457
|
8 |
+
|
9 |
+
The ARC dataset consists of 7,787 science exam questions drawn from a variety
|
10 |
+
of sources, including science questions provided under license by a research
|
11 |
+
partner affiliated with AI2. These are text-only, English language exam questions
|
12 |
+
that span several grade levels as indicated in the files. Each question has a
|
13 |
+
multiple choice structure (typically 4 answer options). The questions are sorted
|
14 |
+
into a Challenge Set of 2,590 “hard” questions (those that both a retrieval and
|
15 |
+
a co-occurrence method fail to answer correctly) and an Easy Set of 5,197 questions.
|
16 |
+
|
17 |
+
Homepage: https://allenai.org/data/arc
|
18 |
+
|
19 |
+
|
20 |
+
### Citation
|
21 |
+
|
22 |
+
```
|
23 |
+
@article{Clark2018ThinkYH,
|
24 |
+
title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
|
25 |
+
author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
|
26 |
+
journal={ArXiv},
|
27 |
+
year={2018},
|
28 |
+
volume={abs/1803.05457}
|
29 |
+
}
|
30 |
+
```
|
31 |
+
|
32 |
+
### Groups and Tasks
|
33 |
+
|
34 |
+
#### Groups
|
35 |
+
|
36 |
+
* `ai2_arc`: Evaluates `arc_easy` and `arc_challenge`
|
37 |
+
|
38 |
+
#### Tasks
|
39 |
+
|
40 |
+
* `arc_easy`
|
41 |
+
* `arc_challenge`
|
42 |
+
|
43 |
+
### Checklist
|
44 |
+
|
45 |
+
For adding novel benchmarks/datasets to the library:
|
46 |
+
* [ ] Is the task an existing benchmark in the literature?
|
47 |
+
* [ ] Have you referenced the original paper that introduced the task?
|
48 |
+
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
49 |
+
|
50 |
+
|
51 |
+
If other tasks on this dataset are already supported:
|
52 |
+
* [ ] Is the "Main" variant of this task clearly denoted?
|
53 |
+
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
54 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|
lm-evaluation/build/lib/lm_eval/tasks/arc/arc_challenge.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
include: arc_easy.yaml
|
2 |
+
task: arc_challenge
|
3 |
+
dataset_name: ARC-Challenge
|
lm-evaluation/build/lib/lm_eval/tasks/arc/arc_easy.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- ai2_arc
|
3 |
+
task: arc_easy
|
4 |
+
dataset_path: allenai/ai2_arc
|
5 |
+
dataset_name: ARC-Easy
|
6 |
+
output_type: multiple_choice
|
7 |
+
training_split: train
|
8 |
+
validation_split: validation
|
9 |
+
test_split: test
|
10 |
+
doc_to_text: "Question: {{question}}\nAnswer:"
|
11 |
+
doc_to_target: "{{choices.label.index(answerKey)}}"
|
12 |
+
doc_to_choice: "{{choices.text}}"
|
13 |
+
should_decontaminate: true
|
14 |
+
doc_to_decontamination_query: "Question: {{question}}\nAnswer:"
|
15 |
+
metric_list:
|
16 |
+
- metric: acc
|
17 |
+
aggregation: mean
|
18 |
+
higher_is_better: true
|
19 |
+
- metric: acc_norm
|
20 |
+
aggregation: mean
|
21 |
+
higher_is_better: true
|
22 |
+
metadata:
|
23 |
+
version: 1.0
|
lm-evaluation/build/lib/lm_eval/tasks/eus_proficiency/README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# EusProficiency
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Title: Latxa: An Open Language Model and Evaluation Suite for Basque
|
6 |
+
|
7 |
+
Abstract: https://arxiv.org/abs/2403.20266
|
8 |
+
|
9 |
+
EusProficiency comprises 5,169 exercises on different topics from past EGA exams, the official C1-level certificate of proficiency in Basque. We collected the atarikoa exercises from EGA exams through the years 1998 to 2008. Atarikoa is the first qualifying test of EGA, which measures different aspects of language competency, such as reading comprehension, grammar, vocabulary, spelling, and writing. Each test generally has 85 multiple-choice questions, with 4 choices and a single correct answer.
|
10 |
+
|
11 |
+
Homepage: https://github.com/hitz-zentroa/latxa
|
12 |
+
|
13 |
+
|
14 |
+
### Citation
|
15 |
+
|
16 |
+
```
|
17 |
+
@misc{etxaniz2024latxa,
|
18 |
+
title={Latxa: An Open Language Model and Evaluation Suite for Basque},
|
19 |
+
author={Julen Etxaniz and Oscar Sainz and Naiara Perez and Itziar Aldabe and German Rigau and Eneko Agirre and Aitor Ormazabal and Mikel Artetxe and Aitor Soroa},
|
20 |
+
year={2024},
|
21 |
+
eprint={2403.20266},
|
22 |
+
archivePrefix={arXiv},
|
23 |
+
primaryClass={cs.CL}
|
24 |
+
}
|
25 |
+
```
|
26 |
+
|
27 |
+
### Groups and Tasks
|
28 |
+
|
29 |
+
#### Groups
|
30 |
+
|
31 |
+
There are no groups.
|
32 |
+
|
33 |
+
#### Tasks
|
34 |
+
|
35 |
+
* `eus_proficiency`: EusProficiency comprises 5,169 exercises on different topics from past EGA exams, the official C1-level certificate of proficiency in Basque.
|
36 |
+
|
37 |
+
### Checklist
|
38 |
+
|
39 |
+
For adding novel benchmarks/datasets to the library:
|
40 |
+
* [ ] Is the task an existing benchmark in the literature?
|
41 |
+
* [ ] Have you referenced the original paper that introduced the task?
|
42 |
+
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
43 |
+
|
44 |
+
|
45 |
+
If other tasks on this dataset are already supported:
|
46 |
+
* [ ] Is the "Main" variant of this task clearly denoted?
|
47 |
+
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
48 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|
lm-evaluation/build/lib/lm_eval/tasks/eus_proficiency/eus_proficiency.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_path: HiTZ/EusProficiency
|
2 |
+
dataset_name: default
|
3 |
+
task: eus_proficiency
|
4 |
+
doc_to_text: "Galdera: {{question}}\nA: {{candidates[0]}}\nB: {{candidates[1]}}\nC: {{candidates[2]}}\nD: {{candidates[3]}}\nErantzuna:"
|
5 |
+
doc_to_choice: ["A", "B", "C", "D"]
|
6 |
+
validation_split: null
|
7 |
+
test_split: test
|
8 |
+
fewshot_split: test
|
9 |
+
output_type: multiple_choice
|
10 |
+
doc_to_target: answer
|
11 |
+
metric_list:
|
12 |
+
- metric: acc
|
13 |
+
aggregation: mean
|
14 |
+
higher_is_better: true
|
15 |
+
metadata:
|
16 |
+
version: 0.0
|
lm-evaluation/build/lib/lm_eval/tasks/eus_reading/README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# EusReading
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Title: Latxa: An Open Language Model and Evaluation Suite for Basque
|
6 |
+
|
7 |
+
Abstract: https://arxiv.org/abs/2403.20266
|
8 |
+
|
9 |
+
EusReading consists of 352 reading comprehension exercises (irakurmena) sourced from the set of past EGA exams from 1998 to 2008. Each test generally has 10 multiple-choice questions, with 4 choices and a single correct answer. These exercises are more challenging than Belebele due to the complexity and length of the input texts. As a result, EusReading is useful to measure long context understanding of models.
|
10 |
+
|
11 |
+
Homepage: https://github.com/hitz-zentroa/latxa
|
12 |
+
|
13 |
+
|
14 |
+
### Citation
|
15 |
+
|
16 |
+
```
|
17 |
+
@misc{etxaniz2024latxa,
|
18 |
+
title={Latxa: An Open Language Model and Evaluation Suite for Basque},
|
19 |
+
author={Julen Etxaniz and Oscar Sainz and Naiara Perez and Itziar Aldabe and German Rigau and Eneko Agirre and Aitor Ormazabal and Mikel Artetxe and Aitor Soroa},
|
20 |
+
year={2024},
|
21 |
+
eprint={2403.20266},
|
22 |
+
archivePrefix={arXiv},
|
23 |
+
primaryClass={cs.CL}
|
24 |
+
}
|
25 |
+
```
|
26 |
+
|
27 |
+
### Groups and Tasks
|
28 |
+
|
29 |
+
#### Groups
|
30 |
+
|
31 |
+
There are no groups.
|
32 |
+
|
33 |
+
#### Tasks
|
34 |
+
|
35 |
+
* `eus_reading`: EusReading consists of 352 reading comprehension exercises (irakurmena) sourced from the set of past EGA exams from 1998 to 2008.
|
36 |
+
|
37 |
+
### Checklist
|
38 |
+
|
39 |
+
For adding novel benchmarks/datasets to the library:
|
40 |
+
* [ ] Is the task an existing benchmark in the literature?
|
41 |
+
* [ ] Have you referenced the original paper that introduced the task?
|
42 |
+
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
43 |
+
|
44 |
+
|
45 |
+
If other tasks on this dataset are already supported:
|
46 |
+
* [ ] Is the "Main" variant of this task clearly denoted?
|
47 |
+
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
48 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|
lm-evaluation/build/lib/lm_eval/tasks/eus_reading/eus_reading.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_path: HiTZ/EusReading
|
2 |
+
dataset_name: default
|
3 |
+
task: eus_reading
|
4 |
+
doc_to_text: !function utils.doc_to_text_context
|
5 |
+
doc_to_choice: !function utils.doc_to_choice
|
6 |
+
validation_split: null
|
7 |
+
test_split: test
|
8 |
+
fewshot_split: test
|
9 |
+
output_type: multiple_choice
|
10 |
+
doc_to_target: answer
|
11 |
+
metric_list:
|
12 |
+
- metric: acc
|
13 |
+
aggregation: mean
|
14 |
+
higher_is_better: true
|
15 |
+
metadata:
|
16 |
+
version: 0.0
|
lm-evaluation/build/lib/lm_eval/tasks/eus_reading/utils.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
|
4 |
+
letters = ["A", "B", "C", "D"]
|
5 |
+
|
6 |
+
|
7 |
+
def doc_to_text_context(doc) -> str:
|
8 |
+
"""
|
9 |
+
Converts a document to a formatted string.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
doc (dict): A dictionary containing the document information.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
str: A formatted string containing the question and answer choices.
|
16 |
+
"""
|
17 |
+
candidates = doc["candidates"]
|
18 |
+
num_choices = len(candidates)
|
19 |
+
if num_choices < 2:
|
20 |
+
raise ValueError("Invalid number of candidates")
|
21 |
+
choices = letters[:num_choices]
|
22 |
+
formatted_choices = "\n".join(
|
23 |
+
[f"{choice}: {candidates[i]}" for i, choice in enumerate(choices)]
|
24 |
+
)
|
25 |
+
return f"Pasartea: {doc['context']}\n\nGaldera: {doc['question']}\n{formatted_choices}\nErantzuna:"
|
26 |
+
|
27 |
+
|
28 |
+
def doc_to_choice(doc) -> List[str]:
|
29 |
+
"""
|
30 |
+
Returns the answer choices for a document.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
doc (dict): A dictionary containing the document information.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
list: A list of strings containing the answer choices.
|
37 |
+
"""
|
38 |
+
num_choices = len(doc["candidates"])
|
39 |
+
if num_choices < 2:
|
40 |
+
raise ValueError("Invalid number of candidates")
|
41 |
+
return letters[:num_choices]
|
lm-evaluation/build/lib/lm_eval/tasks/haerae/README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# HAE-RAE BENCH
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Title: `HAE-RAE Bench: Evaluation of Korean Knowledge in Language Models`
|
6 |
+
|
7 |
+
Abstract: `Large Language Models (LLMs) trained on massive corpora demonstrate impressive capabilities in a wide range of tasks. While there are ongoing efforts to adapt these models to languages beyond English, the attention given to their evaluation methodologies remains limited. Current multilingual benchmarks often rely on back translations or re-implementations of English tests, limiting their capacity to capture unique cultural and linguistic nuances. To bridge this gap for the Korean language, we introduce HAE-RAE Bench, a dataset curated to challenge models lacking Korean cultural and contextual depth. The dataset encompasses six downstream tasks across four domains: vocabulary, history, general knowledge, and reading comprehension. Contrary to traditional evaluation suites focused on token or sequence classification and specific mathematical or logical reasoning, HAE-RAE Bench emphasizes a model's aptitude for recalling Korean-specific knowledge and cultural contexts. Comparative analysis with prior Korean benchmarks indicates that the HAE-RAE Bench presents a greater challenge to non-native models, by disturbing abilities and knowledge learned from English being transferred.`
|
8 |
+
|
9 |
+
Homepage: https://huggingface.co/datasets/HAERAE-HUB/HAE_RAE_BENCH
|
10 |
+
|
11 |
+
### Citation
|
12 |
+
|
13 |
+
@misc{son2023haerae,
|
14 |
+
title={HAE-RAE Bench: Evaluation of Korean Knowledge in Language Models},
|
15 |
+
author={Guijin Son and Hanwool Lee and Suwan Kim and Huiseo Kim and Jaecheol Lee and Je Won Yeom and Jihyu Jung and Jung Woo Kim and Songseong Kim},
|
16 |
+
year={2023},
|
17 |
+
eprint={2309.02706},
|
18 |
+
archivePrefix={arXiv},
|
19 |
+
primaryClass={cs.CL}
|
20 |
+
}
|
21 |
+
|
22 |
+
### Groups and Tasks
|
23 |
+
|
24 |
+
#### Groups
|
25 |
+
|
26 |
+
* `haerae`: 'It consists of five tasks provided in the HAERAE-BENCH paper. 'Reading Comprehension' was excluded from the implementation due to copyright issues. We will include it in the next haerae update. For other tasks, some part of data may be replaced or increased with the production of Haerae v1.1. Please note this when using it.'
|
27 |
+
|
28 |
+
#### Tasks
|
29 |
+
|
30 |
+
The following tasks evaluate subjects in the HaeRae dataset
|
31 |
+
|
32 |
+
- `haerae_standard_nomenclature`
|
33 |
+
- `haerae_loan_word`
|
34 |
+
- `haerae_rare_word`
|
35 |
+
- `haerae_general_knowledge`
|
36 |
+
- `haerae_history`
|
37 |
+
|
38 |
+
### Checklist
|
39 |
+
|
40 |
+
For adding novel benchmarks/datasets to the library:
|
41 |
+
* [x] Is the task an existing benchmark in the literature?
|
42 |
+
* [x] Have you referenced the original paper that introduced the task?
|
43 |
+
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
44 |
+
|
45 |
+
|
46 |
+
If other tasks on this dataset are already supported:
|
47 |
+
* [ ] Is the "Main" variant of this task clearly denoted?
|
48 |
+
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
49 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|
lm-evaluation/build/lib/lm_eval/tasks/haerae/_default_haerae_yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group: haerae
|
2 |
+
dataset_path: HAERAE-HUB/HAE_RAE_BENCH
|
3 |
+
test_split: test
|
4 |
+
fewshot_split: test
|
5 |
+
output_type: multiple_choice
|
6 |
+
doc_to_text: "{{query}}"
|
7 |
+
doc_to_choice: ["(A)", "(B)", "(C)", "(D)", "(E)"]
|
8 |
+
doc_to_target: "{{answer}}"
|
9 |
+
metric_list:
|
10 |
+
- metric: acc
|
11 |
+
aggregation: mean
|
12 |
+
higher_is_better: true
|
13 |
+
- metric: acc_norm
|
14 |
+
aggregation: mean
|
15 |
+
higher_is_better: true
|
16 |
+
metadata:
|
17 |
+
version: 1.0
|
lm-evaluation/build/lib/lm_eval/tasks/haerae/haerae_gk.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"dataset_name": "general_knowledge"
|
2 |
+
"include": "_default_haerae_yaml"
|
3 |
+
"task": "haerae_general_knowledge"
|
lm-evaluation/build/lib/lm_eval/tasks/haerae/haerae_hi.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"dataset_name": "history"
|
2 |
+
"include": "_default_haerae_yaml"
|
3 |
+
"task": "haerae_history"
|
lm-evaluation/build/lib/lm_eval/tasks/haerae/haerae_lw.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"dataset_name": "loan_words"
|
2 |
+
"include": "_default_haerae_yaml"
|
3 |
+
"task": "haerae_loan_word"
|
lm-evaluation/build/lib/lm_eval/tasks/haerae/haerae_rw.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"dataset_name": "rare_words"
|
2 |
+
"include": "_default_haerae_yaml"
|
3 |
+
"task": "haerae_rare_word"
|
lm-evaluation/build/lib/lm_eval/tasks/haerae/haerae_sn.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"dataset_name": "standard_nomenclature"
|
2 |
+
"include": "_default_haerae_yaml"
|
3 |
+
"task": "haerae_standard_nomenclature"
|
lm-evaluation/build/lib/lm_eval/tasks/lambada_cloze/README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LAMBADA Cloze
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Title: `The LAMBADA dataset: Word prediction requiring a broad discourse context`
|
6 |
+
|
7 |
+
Abstract: https://arxiv.org/abs/1606.06031
|
8 |
+
|
9 |
+
Cloze-style LAMBADA dataset.
|
10 |
+
LAMBADA is a dataset to evaluate the capabilities of computational models for text
|
11 |
+
understanding by means of a word prediction task. LAMBADA is a collection of narrative
|
12 |
+
passages sharing the characteristic that human subjects are able to guess their last
|
13 |
+
word if they are exposed to the whole passage, but not if they only see the last
|
14 |
+
sentence preceding the target word. To succeed on LAMBADA, computational models
|
15 |
+
cannot simply rely on local context, but must be able to keep track of information
|
16 |
+
in the broader discourse.
|
17 |
+
|
18 |
+
Homepage: https://zenodo.org/record/2630551#.X4Xzn5NKjUI
|
19 |
+
|
20 |
+
|
21 |
+
### Citation
|
22 |
+
|
23 |
+
```
|
24 |
+
@misc{
|
25 |
+
author={Paperno, Denis and Kruszewski, Germán and Lazaridou, Angeliki and Pham, Quan Ngoc and Bernardi, Raffaella and Pezzelle, Sandro and Baroni, Marco and Boleda, Gemma and Fernández, Raquel},
|
26 |
+
title={The LAMBADA dataset},
|
27 |
+
DOI={10.5281/zenodo.2630551},
|
28 |
+
publisher={Zenodo},
|
29 |
+
year={2016},
|
30 |
+
month={Aug}
|
31 |
+
}
|
32 |
+
```
|
33 |
+
|
34 |
+
### Groups and Tasks
|
35 |
+
|
36 |
+
#### Groups
|
37 |
+
|
38 |
+
* `lambada_cloze`
|
39 |
+
|
40 |
+
#### Tasks
|
41 |
+
|
42 |
+
* `lambada_openai_cloze_yaml`
|
43 |
+
* `lambada_standard_cloze_yaml`
|
44 |
+
|
45 |
+
### Checklist
|
46 |
+
|
47 |
+
For adding novel benchmarks/datasets to the library:
|
48 |
+
* [ ] Is the task an existing benchmark in the literature?
|
49 |
+
* [ ] Have you referenced the original paper that introduced the task?
|
50 |
+
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
51 |
+
|
52 |
+
|
53 |
+
If other tasks on this dataset are already supported:
|
54 |
+
* [ ] Is the "Main" variant of this task clearly denoted?
|
55 |
+
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
56 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|
lm-evaluation/build/lib/lm_eval/tasks/lambada_cloze/lambada_openai_cloze.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- lambada_cloze
|
3 |
+
task: lambada_openai_cloze_yaml
|
4 |
+
dataset_path: EleutherAI/lambada_openai
|
5 |
+
dataset_name: default
|
6 |
+
output_type: loglikelihood
|
7 |
+
test_split: test
|
8 |
+
doc_to_text: "{{text.split(' ')[:-1]|join(' ')}} ____. ->"
|
9 |
+
doc_to_target: "{{' '+text.split(' ')[-1]}}"
|
10 |
+
should_decontaminate: true
|
11 |
+
doc_to_decontamination_query: "{{text}}"
|
12 |
+
metric_list:
|
13 |
+
- metric: perplexity
|
14 |
+
aggregation: perplexity
|
15 |
+
higher_is_better: false
|
16 |
+
- metric: acc
|
17 |
+
aggregation: mean
|
18 |
+
higher_is_better: true
|
19 |
+
metadata:
|
20 |
+
version: 1.0
|
lm-evaluation/build/lib/lm_eval/tasks/lambada_cloze/lambada_standard_cloze.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- lambada_cloze
|
3 |
+
task: lambada_standard_cloze_yaml
|
4 |
+
dataset_path: lambada
|
5 |
+
dataset_name: null
|
6 |
+
output_type: loglikelihood
|
7 |
+
validation_split: validation
|
8 |
+
test_split: test
|
9 |
+
doc_to_text: "{{text.split(' ')[:-1]|join(' ')}} ____. ->"
|
10 |
+
doc_to_target: "{{' '+text.split(' ')[-1]}}"
|
11 |
+
should_decontaminate: true
|
12 |
+
doc_to_decontamination_query: "{{text}}"
|
13 |
+
metric_list:
|
14 |
+
- metric: perplexity
|
15 |
+
aggregation: perplexity
|
16 |
+
higher_is_better: false
|
17 |
+
- metric: acc
|
18 |
+
aggregation: mean
|
19 |
+
higher_is_better: true
|
20 |
+
metadata:
|
21 |
+
version: 1.0
|
lm-evaluation/build/lib/lm_eval/tasks/logiqa/README.md
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LogiQA
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Title: `LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning`
|
6 |
+
|
7 |
+
Abstract: https://arxiv.org/abs/2007.08124
|
8 |
+
|
9 |
+
LogiQA is a dataset for testing human logical reasoning. It consists of 8,678 QA
|
10 |
+
instances, covering multiple types of deductive reasoning. Results show that state-
|
11 |
+
of-the-art neural models perform by far worse than human ceiling. The dataset can
|
12 |
+
also serve as a benchmark for reinvestigating logical AI under the deep learning
|
13 |
+
NLP setting.
|
14 |
+
|
15 |
+
Homepage: https://github.com/lgw863/LogiQA-dataset
|
16 |
+
|
17 |
+
|
18 |
+
### Citation
|
19 |
+
|
20 |
+
```
|
21 |
+
@misc{liu2020logiqa,
|
22 |
+
title={LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning},
|
23 |
+
author={Jian Liu and Leyang Cui and Hanmeng Liu and Dandan Huang and Yile Wang and Yue Zhang},
|
24 |
+
year={2020},
|
25 |
+
eprint={2007.08124},
|
26 |
+
archivePrefix={arXiv},
|
27 |
+
primaryClass={cs.CL}
|
28 |
+
}
|
29 |
+
```
|
30 |
+
|
31 |
+
### Groups and Tasks
|
32 |
+
|
33 |
+
#### Groups
|
34 |
+
|
35 |
+
* Not part of a group yet
|
36 |
+
|
37 |
+
#### Tasks
|
38 |
+
|
39 |
+
* `logiqa`
|
40 |
+
|
41 |
+
### Checklist
|
42 |
+
|
43 |
+
For adding novel benchmarks/datasets to the library:
|
44 |
+
* [ ] Is the task an existing benchmark in the literature?
|
45 |
+
* [ ] Have you referenced the original paper that introduced the task?
|
46 |
+
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
47 |
+
|
48 |
+
|
49 |
+
If other tasks on this dataset are already supported:
|
50 |
+
* [ ] Is the "Main" variant of this task clearly denoted?
|
51 |
+
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
52 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|
lm-evaluation/build/lib/lm_eval/tasks/logiqa/logiqa.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task: logiqa
|
2 |
+
dataset_path: EleutherAI/logiqa
|
3 |
+
dataset_name: logiqa
|
4 |
+
output_type: multiple_choice
|
5 |
+
training_split: train
|
6 |
+
validation_split: validation
|
7 |
+
test_split: test
|
8 |
+
doc_to_choice: "{{options}}"
|
9 |
+
doc_to_text: !function utils_logiqa.doc_to_text
|
10 |
+
doc_to_target: !function utils_logiqa.doc_to_target
|
11 |
+
doc_to_decontamination_query: "{{context}}"
|
12 |
+
should_decontaminate: true
|
13 |
+
metric_list:
|
14 |
+
- metric: acc
|
15 |
+
aggregation: mean
|
16 |
+
higher_is_better: true
|
17 |
+
- metric: acc_norm
|
18 |
+
aggregation: mean
|
19 |
+
higher_is_better: true
|
20 |
+
metadata:
|
21 |
+
version: 1.0
|
22 |
+
dataset_kwargs:
|
23 |
+
trust_remote_code: true
|
lm-evaluation/build/lib/lm_eval/tasks/logiqa/utils_logiqa.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied from Master
|
2 |
+
def doc_to_text(doc) -> str:
|
3 |
+
"""
|
4 |
+
Passage: <passage>
|
5 |
+
Question: <question>
|
6 |
+
Choices:
|
7 |
+
A. <choice1>
|
8 |
+
B. <choice2>
|
9 |
+
C. <choice3>
|
10 |
+
D. <choice4>
|
11 |
+
Answer:
|
12 |
+
"""
|
13 |
+
choices = ["a", "b", "c", "d"]
|
14 |
+
prompt = "Passage: " + doc["context"] + "\n"
|
15 |
+
prompt += "Question: " + doc["question"] + "\nChoices:\n"
|
16 |
+
for choice, option in zip(choices, doc["options"]):
|
17 |
+
prompt += f"{choice.upper()}. {option}\n"
|
18 |
+
prompt += "Answer:"
|
19 |
+
return prompt
|
20 |
+
|
21 |
+
|
22 |
+
def doc_to_target(doc) -> int:
|
23 |
+
choices = ["a", "b", "c", "d"]
|
24 |
+
return choices.index(doc["label"].strip())
|