diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/configuration_idefics2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/configuration_idefics2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..54477b5c32808bc164000be310e171fe331d1f3d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/configuration_idefics2.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/convert_idefics2_weights_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/convert_idefics2_weights_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8ec4ddb88c2d362e3e8132780b9c453542ad9cd4 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/convert_idefics2_weights_to_hf.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/image_processing_idefics2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/image_processing_idefics2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6736aba7e9ee41e71131113192224ded158ebff0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/image_processing_idefics2.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/modeling_idefics2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/modeling_idefics2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..32575477d7774ea5319350ba0f8015b974195228 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics2/__pycache__/modeling_idefics2.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/configuration_layoutlm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/configuration_layoutlm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9dea81c505909126ee8f193fcb306766e236e65a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/configuration_layoutlm.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7a1c142e05d51e68085cd0e62a48604db45c7fc5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__init__.py @@ -0,0 +1,60 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, +) + + +_import_structure = { + "configuration_mamba": ["MAMBA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MambaConfig", "MambaOnnxConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mamba"] = [ + "MAMBA_PRETRAINED_MODEL_ARCHIVE_LIST", + "MambaForCausalLM", + "MambaModel", + "MambaPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_mamba import MAMBA_PRETRAINED_CONFIG_ARCHIVE_MAP, MambaConfig, MambaOnnxConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mamba import ( + MAMBA_PRETRAINED_MODEL_ARCHIVE_LIST, + MambaForCausalLM, + MambaModel, + MambaPreTrainedModel, + ) +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1feda987abc3e3bfa0b3dc6f12882310d8c00274 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/configuration_mamba.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/configuration_mamba.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..26cba4fc0bbbdaef6e6c68431bbcd866cbe91981 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/configuration_mamba.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/convert_mamba_ssm_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/convert_mamba_ssm_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6214c7cc86e52a6c47c7bc9dba3065906d8de330 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/convert_mamba_ssm_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/modeling_mamba.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/modeling_mamba.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..11418700d29ff94e34ba0e9ab51da9b62e04fd9a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/__pycache__/modeling_mamba.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/configuration_mamba.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/configuration_mamba.py new file mode 100644 index 0000000000000000000000000000000000000000..b3e9b4eb946b93cbee418c4c81757b16514933f0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/configuration_mamba.py @@ -0,0 +1,156 @@ +# coding=utf-8 +# Copyright 2024 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""MAMBA configuration""" + +import math + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import MAMBA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class MambaConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the MAMBA + [state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50280): + Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`MambaModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the embeddings and hidden states. + state_size (`int`, *optional*, defaults to 16): shape of the state space latents. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the model. + layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): + The epsilon to use in the layer normalization layers. + pad_token_id (`int`, *optional*, defaults to 0): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 0): + The id of the beginning of sentence token in the vocabulary. + eos_token_id (`int`, *optional*, defaults to 0): + The id of the end of sentence token in the vocabulary. + expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. + conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. + use_bias (`bool`, *optional*, defaults to `False`): + Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block + use_conv_bias (`bool`, *optional*, defaults to `True`): + Whether or not to use bias in the convolution layer of the mixer block. + hidden_act (`str`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + initializer_range (`float`, *optional*, defaults to 0.1): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + residual_in_fp32 (`bool`, *optional*, defaults to `True`): + Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model + time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): + Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` + time_step_scale (`float`, *optional*, defaults to 1.0): + Scale used used to scale `dt_proj.bias`. + time_step_min (`float`, *optional*, defaults to 0.001): + Minimum `time_step` used to bound `dt_proj.bias`. + time_step_max (`float`, *optional*, defaults to 0.1): + Maximum `time_step` used to bound `dt_proj.bias`. + time_step_init_scheme (`float`, *optional*, defaults to `"random"`): + Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]` + time_step_floor (`float`, *optional*, defaults to 0.0001): + Minimum clamping value of the `dt_proj.bias` layer initialization. + rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): + Whether or not to rescale `out_proj` weights when initializing. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the cache should be used. + + + Example: + + ```python + >>> from transformers import MambaConfig, MambaModel + + >>> # Initializing a Mamba configuration + >>> configuration = MambaConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = MambaModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "mamba" + + def __init__( + self, + vocab_size=50280, + hidden_size=768, + state_size=16, + num_hidden_layers=32, + layer_norm_epsilon=1e-5, + pad_token_id=0, + bos_token_id=0, + eos_token_id=0, + expand=2, + conv_kernel=4, + use_bias=False, + use_conv_bias=True, + hidden_act="silu", + initializer_range=0.1, + residual_in_fp32=True, + time_step_rank="auto", + time_step_scale=1.0, + time_step_min=0.001, + time_step_max=0.1, + time_step_init_scheme="random", + time_step_floor=1e-4, + rescale_prenorm_residual=False, + use_cache=True, + **kwargs, + ): + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.state_size = state_size + self.num_hidden_layers = num_hidden_layers + self.layer_norm_epsilon = layer_norm_epsilon + self.conv_kernel = conv_kernel + self.expand = expand + self.intermediate_size = int(expand * self.hidden_size) + self.bos_token_id = bos_token_id + self.eos_token_id = eos_token_id + self.pad_token_id = pad_token_id + self.use_bias = use_bias + self.use_conv_bias = use_conv_bias + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank + self.time_step_scale = time_step_scale + self.time_step_min = time_step_min + self.time_step_max = time_step_max + self.time_step_init_scheme = time_step_init_scheme + self.time_step_floor = time_step_floor + self.rescale_prenorm_residual = rescale_prenorm_residual + self.residual_in_fp32 = residual_in_fp32 + self.use_cache = use_cache + + super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/convert_mamba_ssm_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/convert_mamba_ssm_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..0cf7dcc0edafab9a7d0b7d0824063d2acf5d0783 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/convert_mamba_ssm_checkpoint_to_pytorch.py @@ -0,0 +1,153 @@ +# coding=utf-8 +# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""This script can be used to convert checkpoints provided in the `mamba_ssm` library into the format provided in HuggingFace `transformers`. It depends on the `mamba_ssm` package to be installed.""" + +import argparse +import json +import math +from typing import Tuple + +import torch + +from transformers import AutoTokenizer, MambaConfig, MambaForCausalLM +from transformers.utils import logging +from transformers.utils.import_utils import is_mamba_ssm_available + + +if is_mamba_ssm_available(): + from mamba_ssm.models.config_mamba import MambaConfig as MambaConfigSSM + from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel + + def convert_ssm_config_to_hf_config(config_ssm: MambaConfigSSM) -> MambaConfig: + """Convert a MambaConfig from mamba_ssm to a MambaConfig from transformers.""" + hf_config = MambaConfig() + # Set config hidden size, num hidden layers, and vocab size directly from the original config + hf_config.hidden_size = config_ssm.d_model + hf_config.intermediate_size = config_ssm.d_model * 2 + hf_config.time_step_rank = math.ceil(config_ssm.d_model / 16) + + hf_config.num_hidden_layers = config_ssm.n_layer + vocab_size = config_ssm.vocab_size + pad_vocab_size_multiple = config_ssm.pad_vocab_size_multiple + if (vocab_size % pad_vocab_size_multiple) != 0: + vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple) + hf_config.vocab_size = vocab_size + return hf_config + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def convert_mamba_ssm_checkpoint_to_huggingface_model( + original_state_dict: dict, original_ssm_config_dict: dict +) -> Tuple[MambaForCausalLM, AutoTokenizer]: + if not is_mamba_ssm_available(): + raise ImportError( + "Calling convert_mamba_ssm_checkpoint_to_huggingface_model requires the mamba_ssm library to be installed. Please install it with `pip install mamba_ssm`." + ) + original_ssm_config = MambaConfigSSM(**original_ssm_config_dict) + + # Convert mamba_ssm config to huggingface MambaConfig + hf_config = convert_ssm_config_to_hf_config(original_ssm_config) + + # No weights need to be renamed between the two models. + converted_state_dict = original_state_dict + + # Load reshaped state dict into a huggingface model. + hf_model = MambaForCausalLM(hf_config) + tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") + hf_model.load_state_dict(converted_state_dict) + return (hf_model, tokenizer) + + +def validate_converted_model( + original_state_dict: dict, original_ssm_config_dict: dict, hf_model: MambaForCausalLM, tokenizer: AutoTokenizer +) -> None: + """Validate the converted model returns the same output as the original model.""" + torch_device = "cuda" + + original_config = MambaConfigSSM(**original_ssm_config_dict) + original_model = MambaLMHeadModel(original_config).to(torch_device) + original_model.load_state_dict(original_state_dict) + + hf_model = hf_model.to(torch_device) + input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"].to(torch_device) + # Assert model logits are close + with torch.no_grad(): + original_model_logits = original_model(input_ids).logits + hf_model_logits = hf_model(input_ids).logits + if not torch.allclose(original_model_logits, hf_model_logits, atol=1e-3): + raise ValueError("The converted model did not return the same logits as the original model.") + + logger.info("Model conversion validated successfully.") + + +def convert_mamba_checkpoint_file_to_huggingface_model_file( + mamba_checkpoint_path: str, config_json_file: str, output_dir: str +) -> None: + if not is_mamba_ssm_available(): + raise ImportError( + "Calling convert_mamba_checkpoint_file_to_huggingface_model_file requires the mamba_ssm library to be installed. Please install it with `pip install mamba_ssm`." + ) + if not torch.cuda.is_available(): + raise ValueError( + "This script is to be run with a CUDA device, as the original mamba_ssm model does not support cpu." + ) + logger.info(f"Loading model from {mamba_checkpoint_path} based on config from {config_json_file}") + # Load weights and config from paths + original_state_dict = torch.load(mamba_checkpoint_path, map_location="cpu") + with open(config_json_file, "r", encoding="utf-8") as json_file: + original_ssm_config_dict = json.load(json_file) + + # Convert the model + hf_model, tokenizer = convert_mamba_ssm_checkpoint_to_huggingface_model( + original_state_dict, original_ssm_config_dict + ) + + # Validate the conversion + validate_converted_model(original_state_dict, original_ssm_config_dict, hf_model, tokenizer) + + logger.info(f"Model converted successfully. Saving model to {output_dir}") + + # Save new model to pytorch_dump_path + hf_model.save_pretrained(output_dir) + tokenizer.save_pretrained(output_dir) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "-i", + "--mamba_checkpoint_file", + type=str, + required=True, + help="Path to a `pytorch_model.bin` mamba_ssm checkpoint file to be converted.", + ) + parser.add_argument( + "-c", + "--config_json_file", + type=str, + required=True, + help="Path to a `config.json` file corresponding to a MambaConfig of the original mamba_ssm model.", + ) + parser.add_argument( + "-o", "--output_dir", type=str, required=True, help="Path to directory to save the converted output model to." + ) + args = parser.parse_args() + + convert_mamba_checkpoint_file_to_huggingface_model_file( + args.mamba_checkpoint_file, args.config_json_file, args.output_dir + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/modeling_mamba.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/modeling_mamba.py new file mode 100644 index 0000000000000000000000000000000000000000..8f19c361269e2763a631e29e3204032e22193fc9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mamba/modeling_mamba.py @@ -0,0 +1,709 @@ +# coding=utf-8 +# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch MAMBA model.""" + +import math +from dataclasses import dataclass +from typing import Any, Dict, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from ...utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available +from .configuration_mamba import MambaConfig + + +logger = logging.get_logger(__name__) + +if is_mamba_ssm_available(): + from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn + from mamba_ssm.ops.triton.selective_state_update import selective_state_update +else: + selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None + +if is_causal_conv1d_available(): + from causal_conv1d import causal_conv1d_fn, causal_conv1d_update +else: + causal_conv1d_update, causal_conv1d_fn = None, None + +is_fast_path_available = all( + (selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn) +) + +_CHECKPOINT_FOR_DOC = "state-spaces/mamba-130m-hf" +_CONFIG_FOR_DOC = "MambaConfig" + + +from ..deprecated._archive_maps import MAMBA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class MambaCache: + """ + Arguments: + config: MambaConfig + batch_size: int + dtype: torch.dtype + device: torch.device + + Attributes: + seqlen_offset: int + dtype: torch.dtype + conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size] + ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size] + """ + + def __init__( + self, config: MambaConfig, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None + ): + self.seqlen_offset = 0 + self.dtype = dtype + intermediate_size = config.intermediate_size + ssm_state_size = config.state_size + conv_kernel_size = config.conv_kernel + + self.conv_states = { + i: torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype) + for i in range(config.num_hidden_layers) + } + self.ssm_states = { + i: torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype) + for i in range(config.num_hidden_layers) + } + + +class MambaMixer(nn.Module): + """ + Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. + A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) + ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, + and is why Mamba is called **selective** state spaces) + """ + + def __init__(self, config: MambaConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + self.ssm_state_size = config.state_size + self.conv_kernel_size = config.conv_kernel + self.intermediate_size = config.intermediate_size + self.time_step_rank = int(config.time_step_rank) + self.layer_idx = layer_idx + self.use_conv_bias = config.use_conv_bias + self.conv1d = nn.Conv1d( + in_channels=self.intermediate_size, + out_channels=self.intermediate_size, + bias=config.use_conv_bias, + kernel_size=config.conv_kernel, + groups=self.intermediate_size, + padding=config.conv_kernel - 1, + ) + + self.activation = config.hidden_act + self.act = ACT2FN[config.hidden_act] + + # projection of the input hidden states + self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias) + # selective projection used to make dt, B and C input dependant + self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False) + # time step projection (discretization) + self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True) + + # S4D real initialization. These are not discretized! + # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded + A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] + A = A.expand(self.intermediate_size, -1).contiguous() + + self.A_log = nn.Parameter(torch.log(A)) + self.D = nn.Parameter(torch.ones(self.intermediate_size)) + self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias) + self.use_bias = config.use_bias + + if not is_fast_path_available: + logger.warning_once( + "The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" + " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and" + " https://github.com/Dao-AILab/causal-conv1d" + ) + + def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: Optional[MambaCache] = None): + # 1. Gated MLP's linear projection + projected_states = self.in_proj(hidden_states).transpose(1, 2) + + if self.training and cache_params is None: # Doesn't support outputting the states -> used for training + contextualized_states = mamba_inner_fn( + projected_states, + self.conv1d.weight, + self.conv1d.bias if self.use_conv_bias else None, + self.x_proj.weight, + self.dt_proj.weight, + self.out_proj.weight, + self.out_proj.bias.float() if self.use_bias else None, + -torch.exp(self.A_log.float()), + None, # input-dependent B + None, # input-dependent C + self.D.float(), + delta_bias=self.dt_proj.bias.float(), + delta_softplus=True, + ) + + else: + hidden_states, gate = projected_states.chunk(2, dim=1) + + # 2. Convolution sequence transformation + conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) + if cache_params is not None and cache_params.seqlen_offset > 0: + hidden_states = causal_conv1d_update( + hidden_states.squeeze(-1), + cache_params.conv_states[self.layer_idx], + conv_weights, + self.conv1d.bias, + self.activation, + ) + hidden_states = hidden_states.unsqueeze(-1) + else: + if cache_params is not None: + conv_states = nn.functional.pad( + hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) + ) + cache_params.conv_states[self.layer_idx].copy_(conv_states) + hidden_states = causal_conv1d_fn( + hidden_states, conv_weights, self.conv1d.bias, activation=self.activation + ) + + # 3. State Space Model sequence transformation + # 3.a. input varying initialization of time_step, B and C + ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) + time_step, B, C = torch.split( + ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 + ) + discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2) + + A = -torch.exp(self.A_log.float()) + # 3.c perform the recurrence y ← SSM(A, B, C)(x) + time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None + if cache_params is not None and cache_params.seqlen_offset > 0: + scan_outputs = selective_state_update( + cache_params.ssm_states[self.layer_idx], + hidden_states[..., 0], + discrete_time_step[..., 0], + A, + B[:, 0], + C[:, 0], + self.D, + gate[..., 0], + time_proj_bias, + dt_softplus=True, + ).unsqueeze(-1) + else: + scan_outputs, ssm_state = selective_scan_fn( + hidden_states, + discrete_time_step, + A, + B.transpose(1, 2), + C.transpose(1, 2), + self.D.float(), + gate, + time_proj_bias, + delta_softplus=True, + return_last_state=True, + ) + if ssm_state is not None and cache_params is not None: + cache_params.ssm_states[self.layer_idx].copy_(ssm_state) + + # 4. Final linear projection + contextualized_states = self.out_proj(scan_outputs.transpose(1, 2)) + return contextualized_states + + # fmt: off + def slow_forward(self, input_states, cache_params: Optional[MambaCache]=None): + batch_size, seq_len, _ = input_states.shape + dtype = input_states.dtype + # 1. Gated MLP's linear projection + projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len] + hidden_states, gate = projected_states.chunk(2, dim=1) + + # 2. Convolution sequence transformation + if cache_params is not None: + ssm_state = cache_params.ssm_states[self.layer_idx].clone() + if cache_params.seqlen_offset > 0: + conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size] + conv_state = torch.roll(conv_state, shifts=-1, dims=-1) + conv_state[:, :, -1] = hidden_states[:, :, 0] + cache_params.conv_states[self.layer_idx].copy_(conv_state) + hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1) + if self.use_conv_bias: + hidden_states += self.conv1d.bias + hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding + else: + conv_state = nn.functional.pad( + hidden_states, + (self.conv_kernel_size - hidden_states.shape[-1], 0) + ) + cache_params.conv_states[self.layer_idx].copy_(conv_state) + hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len] + else: + ssm_state = torch.zeros( + (batch_size, self.intermediate_size, self.ssm_state_size), + device=hidden_states.device, dtype=dtype + ) + hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len] + + # 3. State Space Model sequence transformation + # 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2] + ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) + time_step, B, C = torch.split( + ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 + ) + discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size] + discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len] + + # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM) + A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size] + discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size] + discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediade_size, seq_len, ssm_state_size] + deltaB_u = discrete_B * hidden_states[:, :, :, None].float() + + # 3.c perform the recurrence y ← SSM(A, B, C)(x) + scan_outputs = [] + for i in range(seq_len): + ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state] + scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1] + scan_outputs.append(scan_output[:, :, 0]) + scan_output = torch.stack(scan_outputs, dim=-1) # [batch, seq_len, intermediade_size] + scan_output = scan_output + (hidden_states * self.D[None, :, None]) + scan_output = (scan_output * self.act(gate)) + + if cache_params is not None: + cache_params.ssm_states[self.layer_idx].copy_(ssm_state) + + # 4. Final linear projection + contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size] + return contextualized_states + # fmt: on + + def forward(self, hidden_states, cache_params: Optional[MambaCache] = None): + if is_fast_path_available and "cuda" in self.x_proj.weight.device.type: + return self.cuda_kernels_forward(hidden_states, cache_params) + return self.slow_forward(hidden_states, cache_params) + + +class MambaRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + MambaRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +class MambaBlock(nn.Module): + def __init__(self, config, layer_idx): + super().__init__() + self.config = config + self.layer_idx = layer_idx + self.residual_in_fp32 = config.residual_in_fp32 + self.norm = MambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) + self.mixer = MambaMixer(config, layer_idx=layer_idx) + + def forward(self, hidden_states, cache_params: Optional[MambaCache] = None): + residual = hidden_states + hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype)) + if self.residual_in_fp32: + residual = residual.to(torch.float32) + + hidden_states = self.mixer(hidden_states, cache_params=cache_params) + hidden_states = residual + hidden_states + return hidden_states + + +class MambaPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MambaConfig + base_model_prefix = "backbone" + _no_split_modules = ["MambaBlock"] + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, MambaMixer): + module.A_log._no_weight_decay = True + module.D._no_weight_decay = True + + dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale + if self.config.time_step_init_scheme == "constant": + nn.init.constant_(module.dt_proj.weight, dt_init_std) + elif self.config.time_step_init_scheme == "random": + nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std) + + dt = torch.exp( + torch.rand(self.config.intermediate_size) + * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + + math.log(self.config.time_step_min) + ).clamp(min=self.config.time_step_floor) + # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 + inv_dt = dt + torch.log(-torch.expm1(-dt)) + with torch.no_grad(): + module.dt_proj.bias.copy_(inv_dt) + module.dt_proj.bias._no_reinit = True + + if isinstance(module, nn.Linear): + if module.bias is not None: + if not getattr(module.bias, "_no_reinit", False): + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Embedding): + nn.init.normal_(module.weight, std=self.config.initializer_range) + + if self.config.rescale_prenorm_residual: + # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: + # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale + # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. + # > -- GPT-2 :: https://openai.com/blog/better-language-models/ + # + # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py + for name, p in module.named_parameters(): + if name in ["out_proj.weight"]: + # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block + # Following Pytorch init, except scale by 1/sqrt(2 * n_layer) + # We need to reinit p since this code could be called multiple times + # Having just p *= scale would repeatedly scale it down + nn.init.kaiming_uniform_(p, a=math.sqrt(5)) + with torch.no_grad(): + p /= math.sqrt(self.config.num_layers) + + +@dataclass +class MambaOutput(ModelOutput): + """ + Class for the MAMBA model outputs. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + cache_params (`MambaCache`): + The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to + avoid providing the old `input_ids`. + + Includes both the State space model state matrices after the selective scan, and the Convolutional states + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + """ + + last_hidden_state: Optional[torch.FloatTensor] = None + cache_params: Optional[MambaCache] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class MambaCausalLMOutput(ModelOutput): + """ + Base class for causal language model (or autoregressive) outputs. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss (for next-token prediction). + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + cache_params (`MambaCache`): + The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to + avoid providing the old `input_ids`. + + Includes both the State space model state matrices after the selective scan, and the Convolutional states + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + """ + + loss: Optional[torch.FloatTensor] = None + logits: Optional[torch.FloatTensor] = None + cache_params: Optional[MambaCache] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +MAMBA_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MambaConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MAMBA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): + Indices of input sequence tokens in the vocabulary. + + If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as + `input_ids`. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + cache_params (`MambaCache`, *optional*): + If passed along, the model uses the previous state in all the blocks (which will give the output for the + `input_ids` provided as if the model add `state_input_ids + input_ids` as context). + use_cache (`bool`, *optional*): + If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MAMBA Model transformer outputting raw hidden-states without any specific head on top.", + MAMBA_START_DOCSTRING, +) +class MambaModel(MambaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) + self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)]) + + self.gradient_checkpointing = False + self.norm_f = MambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) + # Initialize weights and apply final processing + self._register_load_state_dict_pre_hook(self.load_hook) + self.post_init() + + def load_hook(self, state_dict, prefix, *args): + for k in state_dict: + if "embedding." in k: + state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k) + break + + def get_input_embeddings(self): + return self.embeddings + + def set_input_embeddings(self, new_embeddings): + self.embeddings = new_embeddings + + @add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MambaOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.LongTensor] = None, + cache_params: Optional[MambaCache] = None, + use_cache: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, # `attention_mask` is passed by the tokenizer and we don't want it + ) -> Union[Tuple, MambaOutput]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" + ) + + if inputs_embeds is None: + inputs_embeds = self.embeddings(input_ids) + + if self.gradient_checkpointing and self.training and use_cache: + use_cache = False + + if cache_params is None and use_cache: + cache_params = MambaCache( + self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype + ) + + hidden_states = inputs_embeds + all_hidden_states = () if output_hidden_states else None + for mixer_block in self.layers: + if self.gradient_checkpointing and self.training: + hidden_states = self._gradient_checkpointing_func(mixer_block.__call__, hidden_states, cache_params) + else: + hidden_states = mixer_block(hidden_states, cache_params=cache_params) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if use_cache: + cache_params.seqlen_offset += inputs_embeds.shape[1] + + hidden_states = self.norm_f(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None) + + return MambaOutput( + last_hidden_state=hidden_states, + cache_params=cache_params if use_cache else None, + hidden_states=all_hidden_states, + ) + + +@add_start_docstrings( + """ + The MAMBA Model transformer with a language modeling head on top (linear layer with weights tied to the input + embeddings). + """, + MAMBA_START_DOCSTRING, +) +class MambaForCausalLM(MambaPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.backbone = MambaModel(config) + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def get_input_embeddings(self): + return self.backbone.get_input_embeddings() + + def set_input_embeddings(self, new_embeddings): + return self.backbone.set_input_embeddings(new_embeddings) + + def _update_model_kwargs_for_generation( + self, outputs: ModelOutput, model_kwargs: Dict[str, Any], **kwargs + ) -> Dict[str, Any]: + model_kwargs["cache_params"] = outputs.get("cache_params", None) + return model_kwargs + + def prepare_inputs_for_generation( + self, input_ids, cache_params: Optional[MambaCache] = None, inputs_embeds=None, attention_mask=None, **kwargs + ): + # only last token for inputs_ids if the state is passed along. + if cache_params is not None: + input_ids = input_ids[:, -1].unsqueeze(-1) + + if inputs_embeds is not None and cache_params is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs["cache_params"] = cache_params + return model_inputs + + @add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MambaCausalLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + cache_params: Optional[MambaCache] = None, + labels: Optional[torch.LongTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + use_cache: Optional[bool] = None, + **kwargs, # for now we need this for generation + ) -> Union[Tuple, MambaCausalLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + mamba_outputs = self.backbone( + input_ids, + cache_params=cache_params, + inputs_embeds=inputs_embeds, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + use_cache=use_cache, + ) + hidden_states = mamba_outputs[0] + + logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float() + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + if not return_dict: + output = (logits,) + mamba_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return MambaCausalLMOutput( + loss=loss, + logits=logits, + cache_params=mamba_outputs.cache_params, + hidden_states=mamba_outputs.hidden_states, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3a62183a23d6e2e7fd692f722ac959b13cce6454 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__init__.py @@ -0,0 +1,83 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = { + "configuration_poolformer": [ + "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "PoolFormerConfig", + "PoolFormerOnnxConfig", + ] +} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["feature_extraction_poolformer"] = ["PoolFormerFeatureExtractor"] + _import_structure["image_processing_poolformer"] = ["PoolFormerImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_poolformer"] = [ + "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "PoolFormerForImageClassification", + "PoolFormerModel", + "PoolFormerPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_poolformer import ( + POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + PoolFormerConfig, + PoolFormerOnnxConfig, + ) + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_poolformer import PoolFormerFeatureExtractor + from .image_processing_poolformer import PoolFormerImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_poolformer import ( + POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + PoolFormerForImageClassification, + PoolFormerModel, + PoolFormerPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/configuration_poolformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/configuration_poolformer.py new file mode 100644 index 0000000000000000000000000000000000000000..be0f18c0a3103542cd13e0947dd494fd0e0b95ed --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/configuration_poolformer.py @@ -0,0 +1,147 @@ +# coding=utf-8 +# Copyright 2022 Sea AI Labs and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PoolFormer model configuration""" +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class PoolFormerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of [`PoolFormerModel`]. It is used to instantiate a + PoolFormer model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the PoolFormer + [sail/poolformer_s12](https://huggingface.co/sail/poolformer_s12) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + num_channels (`int`, *optional*, defaults to 3): + The number of channels in the input image. + patch_size (`int`, *optional*, defaults to 16): + The size of the input patch. + stride (`int`, *optional*, defaults to 16): + The stride of the input patch. + pool_size (`int`, *optional*, defaults to 3): + The size of the pooling window. + mlp_ratio (`float`, *optional*, defaults to 4.0): + The ratio of the number of channels in the output of the MLP to the number of channels in the input. + depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`): + The depth of each encoder block. + hidden_sizes (`list`, *optional*, defaults to `[64, 128, 320, 512]`): + The hidden sizes of each encoder block. + patch_sizes (`list`, *optional*, defaults to `[7, 3, 3, 3]`): + The size of the input patch for each encoder block. + strides (`list`, *optional*, defaults to `[4, 2, 2, 2]`): + The stride of the input patch for each encoder block. + padding (`list`, *optional*, defaults to `[2, 1, 1, 1]`): + The padding of the input patch for each encoder block. + num_encoder_blocks (`int`, *optional*, defaults to 4): + The number of encoder blocks. + drop_path_rate (`float`, *optional*, defaults to 0.0): + The dropout rate for the dropout layers. + hidden_act (`str`, *optional*, defaults to `"gelu"`): + The activation function for the hidden layers. + use_layer_scale (`bool`, *optional*, defaults to `True`): + Whether to use layer scale. + layer_scale_init_value (`float`, *optional*, defaults to 1e-05): + The initial value for the layer scale. + initializer_range (`float`, *optional*, defaults to 0.02): + The initializer range for the weights. + + Example: + + ```python + >>> from transformers import PoolFormerConfig, PoolFormerModel + + >>> # Initializing a PoolFormer sail/poolformer_s12 style configuration + >>> configuration = PoolFormerConfig() + + >>> # Initializing a model (with random weights) from the sail/poolformer_s12 style configuration + >>> model = PoolFormerModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` + """ + + model_type = "poolformer" + + def __init__( + self, + num_channels=3, + patch_size=16, + stride=16, + pool_size=3, + mlp_ratio=4.0, + depths=[2, 2, 6, 2], + hidden_sizes=[64, 128, 320, 512], + patch_sizes=[7, 3, 3, 3], + strides=[4, 2, 2, 2], + padding=[2, 1, 1, 1], + num_encoder_blocks=4, + drop_path_rate=0.0, + hidden_act="gelu", + use_layer_scale=True, + layer_scale_init_value=1e-5, + initializer_range=0.02, + **kwargs, + ): + self.num_channels = num_channels + self.patch_size = patch_size + self.stride = stride + self.padding = padding + self.pool_size = pool_size + self.hidden_sizes = hidden_sizes + self.mlp_ratio = mlp_ratio + self.depths = depths + self.patch_sizes = patch_sizes + self.strides = strides + self.num_encoder_blocks = num_encoder_blocks + self.drop_path_rate = drop_path_rate + self.hidden_act = hidden_act + self.use_layer_scale = use_layer_scale + self.layer_scale_init_value = layer_scale_init_value + self.initializer_range = initializer_range + super().__init__(**kwargs) + + +class PoolFormerOnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 2e-3 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/convert_poolformer_original_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/convert_poolformer_original_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..e5fad6da1a3fc0342fba28c313555397a191b8e7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/convert_poolformer_original_to_pytorch.py @@ -0,0 +1,214 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert PoolFormer checkpoints from the original repository. URL: https://github.com/sail-sg/poolformer""" + +import argparse +import json +from collections import OrderedDict +from pathlib import Path + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def replace_key_with_offset(key, offset, original_name, new_name): + """ + Replaces the key by subtracting the offset from the original layer number + """ + to_find = original_name.split(".")[0] + key_list = key.split(".") + orig_block_num = int(key_list[key_list.index(to_find) - 2]) + layer_num = int(key_list[key_list.index(to_find) - 1]) + new_block_num = orig_block_num - offset + + key = key.replace(f"{orig_block_num}.{layer_num}.{original_name}", f"block.{new_block_num}.{layer_num}.{new_name}") + return key + + +def rename_keys(state_dict): + new_state_dict = OrderedDict() + total_embed_found, patch_emb_offset = 0, 0 + for key, value in state_dict.items(): + if key.startswith("network"): + key = key.replace("network", "poolformer.encoder") + if "proj" in key: + # Works for the first embedding as well as the internal embedding layers + if key.endswith("bias") and "patch_embed" not in key: + patch_emb_offset += 1 + to_replace = key[: key.find("proj")] + key = key.replace(to_replace, f"patch_embeddings.{total_embed_found}.") + key = key.replace("proj", "projection") + if key.endswith("bias"): + total_embed_found += 1 + if "patch_embeddings" in key: + key = "poolformer.encoder." + key + if "mlp.fc1" in key: + key = replace_key_with_offset(key, patch_emb_offset, "mlp.fc1", "output.conv1") + if "mlp.fc2" in key: + key = replace_key_with_offset(key, patch_emb_offset, "mlp.fc2", "output.conv2") + if "norm1" in key: + key = replace_key_with_offset(key, patch_emb_offset, "norm1", "before_norm") + if "norm2" in key: + key = replace_key_with_offset(key, patch_emb_offset, "norm2", "after_norm") + if "layer_scale_1" in key: + key = replace_key_with_offset(key, patch_emb_offset, "layer_scale_1", "layer_scale_1") + if "layer_scale_2" in key: + key = replace_key_with_offset(key, patch_emb_offset, "layer_scale_2", "layer_scale_2") + if "head" in key: + key = key.replace("head", "classifier") + new_state_dict[key] = value + return new_state_dict + + +# We will verify our results on a COCO image +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + image = Image.open(requests.get(url, stream=True).raw) + + return image + + +@torch.no_grad() +def convert_poolformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path): + """ + Copy/paste/tweak model's weights to our PoolFormer structure. + """ + + # load default PoolFormer configuration + config = PoolFormerConfig() + + # set attributes based on model_name + repo_id = "huggingface/label-files" + size = model_name[-3:] + config.num_labels = 1000 + filename = "imagenet-1k-id2label.json" + expected_shape = (1, 1000) + + # set config attributes + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + if size == "s12": + config.depths = [2, 2, 6, 2] + config.hidden_sizes = [64, 128, 320, 512] + config.mlp_ratio = 4.0 + crop_pct = 0.9 + elif size == "s24": + config.depths = [4, 4, 12, 4] + config.hidden_sizes = [64, 128, 320, 512] + config.mlp_ratio = 4.0 + crop_pct = 0.9 + elif size == "s36": + config.depths = [6, 6, 18, 6] + config.hidden_sizes = [64, 128, 320, 512] + config.mlp_ratio = 4.0 + config.layer_scale_init_value = 1e-6 + crop_pct = 0.9 + elif size == "m36": + config.depths = [6, 6, 18, 6] + config.hidden_sizes = [96, 192, 384, 768] + config.mlp_ratio = 4.0 + config.layer_scale_init_value = 1e-6 + crop_pct = 0.95 + elif size == "m48": + config.depths = [8, 8, 24, 8] + config.hidden_sizes = [96, 192, 384, 768] + config.mlp_ratio = 4.0 + config.layer_scale_init_value = 1e-6 + crop_pct = 0.95 + else: + raise ValueError(f"Size {size} not supported") + + # load image processor + image_processor = PoolFormerImageProcessor(crop_pct=crop_pct) + + # Prepare image + image = prepare_img() + pixel_values = image_processor(images=image, return_tensors="pt").pixel_values + + logger.info(f"Converting model {model_name}...") + + # load original state dict + state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) + + # rename keys + state_dict = rename_keys(state_dict) + + # create HuggingFace model and load state dict + model = PoolFormerForImageClassification(config) + model.load_state_dict(state_dict) + model.eval() + + # Define image processor + image_processor = PoolFormerImageProcessor(crop_pct=crop_pct) + pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values + + # forward pass + outputs = model(pixel_values) + logits = outputs.logits + + # define expected logit slices for different models + if size == "s12": + expected_slice = torch.tensor([-0.3045, -0.6758, -0.4869]) + elif size == "s24": + expected_slice = torch.tensor([0.4402, -0.1374, -0.8045]) + elif size == "s36": + expected_slice = torch.tensor([-0.6080, -0.5133, -0.5898]) + elif size == "m36": + expected_slice = torch.tensor([0.3952, 0.2263, -1.2668]) + elif size == "m48": + expected_slice = torch.tensor([0.1167, -0.0656, -0.3423]) + else: + raise ValueError(f"Size {size} not supported") + + # verify logits + assert logits.shape == expected_shape + assert torch.allclose(logits[0, :3], expected_slice, atol=1e-2) + + # finally, save model and image processor + logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--model_name", + default="poolformer_s12", + type=str, + help="Name of the model you'd like to convert.", + ) + parser.add_argument( + "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." + ) + args = parser.parse_args() + convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/feature_extraction_poolformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/feature_extraction_poolformer.py new file mode 100644 index 0000000000000000000000000000000000000000..79ffa037eed36a03669a60b43a5997dd7a647f8e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/feature_extraction_poolformer.py @@ -0,0 +1,33 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for PoolFormer.""" + +import warnings + +from ...utils import logging +from .image_processing_poolformer import PoolFormerImageProcessor + + +logger = logging.get_logger(__name__) + + +class PoolFormerFeatureExtractor(PoolFormerImageProcessor): + def __init__(self, *args, **kwargs) -> None: + warnings.warn( + "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." + " Please use PoolFormerImageProcessor instead.", + FutureWarning, + ) + super().__init__(*args, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/image_processing_poolformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/image_processing_poolformer.py new file mode 100644 index 0000000000000000000000000000000000000000..dcdb1591b1c31b8c2967eac99b5d5ee5fd91a6e5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/image_processing_poolformer.py @@ -0,0 +1,377 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for PoolFormer.""" + +from typing import Dict, List, Optional, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import ( + get_resize_output_image_size, + resize, + to_channel_dimension_format, +) +from ...image_utils import ( + IMAGENET_DEFAULT_MEAN, + IMAGENET_DEFAULT_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import TensorType, is_vision_available, logging + + +if is_vision_available(): + import PIL + + +logger = logging.get_logger(__name__) + + +class PoolFormerImageProcessor(BaseImageProcessor): + r""" + Constructs a PoolFormer image processor. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by + `do_resize` in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): + Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. If crop_pct is + unset: + - size is `{"height": h, "width": w}`: the image is resized to `(h, w)`. + - size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the + aspect ratio. + + If crop_pct is set: + - size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)), + int(floor(w/crop_pct)))` + - size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` + whilst maintaining the aspect ratio. + - size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` + whilst maintaining the aspect ratio. + crop_pct (`float`, *optional*, defaults to 0.9): + Percentage of the image to crop from the center. Can be overridden by `crop_pct` in the `preprocess` + method. + resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): + Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. + do_center_crop (`bool`, *optional*, defaults to `True`): + Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image + is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in the `preprocess` + method. + crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): + Size of the image after applying center crop. Only has an effect if `do_center_crop` is set to `True`. Can + be overridden by the `crop_size` parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the + `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` + parameter in the `preprocess` method. + do_normalize (`bool`, *optional*, defaults to `True`): + Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the + `preprocess` method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + size: Dict[str, int] = None, + crop_pct: int = 0.9, + resample: PILImageResampling = PILImageResampling.BICUBIC, + do_center_crop: bool = True, + crop_size: Dict[str, int] = None, + rescale_factor: Union[int, float] = 1 / 255, + do_rescale: bool = True, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + **kwargs, + ) -> None: + super().__init__(**kwargs) + size = size if size is not None else {"shortest_edge": 224} + size = get_size_dict(size, default_to_square=False) + crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} + crop_size = get_size_dict(crop_size, param_name="crop_size") + + self.do_resize = do_resize + self.size = size + self.crop_pct = crop_pct + self.resample = resample + self.do_center_crop = do_center_crop + self.crop_size = crop_size + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD + self._valid_processor_keys = [ + "images", + "do_resize", + "size", + "crop_pct", + "resample", + "do_center_crop", + "crop_size", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "return_tensors", + "data_format", + "input_data_format", + ] + + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + crop_pct: Optional[float] = None, + resample: PILImageResampling = PILImageResampling.BICUBIC, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize an image. + + If crop_pct is unset: + - size is `{"height": h, "width": w}`: the image is resized to `(h, w)`. + - size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the + aspect ratio. + + if crop_pct is set: + - size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)), + int(floor(w/crop_pct)))` + - size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` + whilst maintaining the aspect ratio. + - size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` + whilst maintaining the aspect ratio. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Size of the output image. + crop_pct (`float`, *optional*): + Percentage of the image that will be cropped from the center. If set, the image is resized + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): + Resampling filter to use when resizing the image. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + size = get_size_dict(size, default_to_square=False) + if "shortest_edge" not in size and ("height" not in size or "width" not in size): + raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") + if crop_pct is not None: + if "shortest_edge" in size: + scale_size = int(size["shortest_edge"] / crop_pct) + elif "height" in size and "width" in size: + if size["height"] == size["width"]: + scale_size = int(size["height"] / crop_pct) + else: + scale_size = (int(size["height"] / crop_pct), int(size["width"] / crop_pct)) + else: + raise ValueError("Invalid size for resize: {}".format(size)) + + output_size = get_resize_output_image_size( + image, size=scale_size, default_to_square=False, input_data_format=input_data_format + ) + else: + if "shortest_edge" in size: + output_size = get_resize_output_image_size( + image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format + ) + elif "height" in size and "width" in size: + output_size = (size["height"], size["width"]) + else: + raise ValueError("Invalid size for resize: {}".format(size)) + + return resize( + image, + size=output_size, + resample=resample, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def preprocess( + self, + images: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + crop_pct: int = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: ChannelDimension = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> PIL.Image.Image: + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the image after applying resize. + crop_pct (`float`, *optional*, defaults to `self.crop_pct`): + Percentage of the image to crop. Only has an effect if `do_resize` is set to `True`. + resample (`int`, *optional*, defaults to `self.resample`): + Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only + has an effect if `do_resize` is set to `True`. + do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): + Whether to center crop the image. + crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): + Size of the image after applying center crop. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image values between [0 - 1]. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `ChannelDimension.LAST`: image in (height, width, num_channels) format. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_resize = do_resize if do_resize is not None else self.do_resize + crop_pct = crop_pct if crop_pct is not None else self.crop_pct + resample = resample if resample is not None else self.resample + do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + + size = size if size is not None else self.size + size = get_size_dict(size, default_to_square=False) + crop_size = crop_size if crop_size is not None else self.crop_size + crop_size = get_size_dict(crop_size, param_name="crop_size") + + images = make_list_of_images(images) + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_resize=do_resize, + size=size, + resample=resample, + ) + + # All transformations expect numpy arrays. + images = [to_numpy_array(image) for image in images] + + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + if do_resize: + images = [ + self.resize( + image=image, size=size, crop_pct=crop_pct, resample=resample, input_data_format=input_data_format + ) + for image in images + ] + + if do_center_crop: + images = [ + self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images + ] + + if do_rescale: + images = [ + self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + for image in images + ] + + if do_normalize: + images = [ + self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) + for image in images + ] + + images = [ + to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images + ] + + data = {"pixel_values": images} + return BatchFeature(data=data, tensor_type=return_tensors) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/modeling_poolformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/modeling_poolformer.py new file mode 100644 index 0000000000000000000000000000000000000000..80208bd1fc33e04b19dada1378a32f98444fdce2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/modeling_poolformer.py @@ -0,0 +1,448 @@ +# coding=utf-8 +# Copyright 2022 Sea AI Lab and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch PoolFormer model.""" + + +import collections.abc +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention +from ...modeling_utils import PreTrainedModel +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_poolformer import PoolFormerConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "PoolFormerConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "sail/poolformer_s12" +_EXPECTED_OUTPUT_SHAPE = [1, 512, 7, 7] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "sail/poolformer_s12" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +from ..deprecated._archive_maps import POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.beit.modeling_beit.drop_path +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->PoolFormer +class PoolFormerDropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +class PoolFormerEmbeddings(nn.Module): + """ + Construct Patch Embeddings. + """ + + def __init__(self, hidden_size, num_channels, patch_size, stride, padding, norm_layer=None): + super().__init__() + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride) + padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding) + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=padding) + self.norm = norm_layer(hidden_size) if norm_layer else nn.Identity() + + def forward(self, pixel_values): + embeddings = self.projection(pixel_values) + embeddings = self.norm(embeddings) + return embeddings + + +class PoolFormerGroupNorm(nn.GroupNorm): + """ + Group Normalization with 1 group. Input: tensor in shape [B, C, H, W] + """ + + def __init__(self, num_channels, **kwargs): + super().__init__(1, num_channels, **kwargs) + + +class PoolFormerPooling(nn.Module): + def __init__(self, pool_size): + super().__init__() + self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) + + def forward(self, hidden_states): + return self.pool(hidden_states) - hidden_states + + +class PoolFormerOutput(nn.Module): + def __init__(self, config, dropout_prob, hidden_size, intermediate_size): + super().__init__() + self.conv1 = nn.Conv2d(hidden_size, intermediate_size, 1) + self.conv2 = nn.Conv2d(intermediate_size, hidden_size, 1) + self.drop = PoolFormerDropPath(dropout_prob) + if isinstance(config.hidden_act, str): + self.act_fn = ACT2FN[config.hidden_act] + else: + self.act_fn = config.hidden_act + + def forward(self, hidden_states): + hidden_states = self.conv1(hidden_states) + hidden_states = self.act_fn(hidden_states) + hidden_states = self.drop(hidden_states) + hidden_states = self.conv2(hidden_states) + hidden_states = self.drop(hidden_states) + + return hidden_states + + +class PoolFormerLayer(nn.Module): + """This corresponds to the 'PoolFormerBlock' class in the original implementation.""" + + def __init__(self, config, num_channels, pool_size, hidden_size, intermediate_size, drop_path): + super().__init__() + self.pooling = PoolFormerPooling(pool_size) + self.output = PoolFormerOutput(config, drop_path, hidden_size, intermediate_size) + self.before_norm = PoolFormerGroupNorm(num_channels) + self.after_norm = PoolFormerGroupNorm(num_channels) + + # Useful for training neural nets + self.drop_path = PoolFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.use_layer_scale = config.use_layer_scale + if config.use_layer_scale: + self.layer_scale_1 = nn.Parameter( + config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True + ) + self.layer_scale_2 = nn.Parameter( + config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True + ) + + def forward(self, hidden_states): + if self.use_layer_scale: + pooling_output = self.pooling(self.before_norm(hidden_states)) + scaled_op = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * pooling_output + # First residual connection + hidden_states = hidden_states + self.drop_path(scaled_op) + outputs = () + + layer_output = self.output(self.after_norm(hidden_states)) + scaled_op = self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * layer_output + # Second residual connection + output = hidden_states + self.drop_path(scaled_op) + + outputs = (output,) + outputs + return outputs + + else: + pooling_output = self.drop_path(self.pooling(self.before_norm(hidden_states))) + # First residual connection + hidden_states = pooling_output + hidden_states + outputs = () + + # Second residual connection inside the PoolFormerOutput block + layer_output = self.drop_path(self.output(self.after_norm(hidden_states))) + output = hidden_states + layer_output + + outputs = (output,) + outputs + return outputs + + +class PoolFormerEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + # stochastic depth decay rule + dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] + + # patch embeddings + embeddings = [] + for i in range(config.num_encoder_blocks): + embeddings.append( + PoolFormerEmbeddings( + patch_size=config.patch_sizes[i], + stride=config.strides[i], + padding=config.padding[i], + num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], + hidden_size=config.hidden_sizes[i], + ) + ) + self.patch_embeddings = nn.ModuleList(embeddings) + + # Transformer blocks + blocks = [] + cur = 0 + for i in range(config.num_encoder_blocks): + # each block consists of layers + layers = [] + if i != 0: + cur += config.depths[i - 1] + for j in range(config.depths[i]): + layers.append( + PoolFormerLayer( + config, + num_channels=config.hidden_sizes[i], + pool_size=config.pool_size, + hidden_size=config.hidden_sizes[i], + intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio), + drop_path=dpr[cur + j], + ) + ) + blocks.append(nn.ModuleList(layers)) + + self.block = nn.ModuleList(blocks) + + def forward(self, pixel_values, output_hidden_states=False, return_dict=True): + all_hidden_states = () if output_hidden_states else None + + hidden_states = pixel_values + for idx, layers in enumerate(zip(self.patch_embeddings, self.block)): + embedding_layer, block_layer = layers + # Get patch embeddings from hidden_states + hidden_states = embedding_layer(hidden_states) + # Send the embeddings through the blocks + for _, blk in enumerate(block_layer): + layer_outputs = blk(hidden_states) + hidden_states = layer_outputs[0] + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) + + return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) + + +class PoolFormerPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = PoolFormerConfig + base_model_prefix = "poolformer" + main_input_name = "pixel_values" + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +POOLFORMER_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +POOLFORMER_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`PoolFormerImageProcessor.__call__`] for details. +""" + + +@add_start_docstrings( + "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.", + POOLFORMER_START_DOCSTRING, +) +class PoolFormerModel(PoolFormerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.encoder = PoolFormerEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.patch_embeddings + + @add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithNoAttention, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithNoAttention]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + encoder_outputs = self.encoder( + pixel_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + + if not return_dict: + return (sequence_output, None) + encoder_outputs[1:] + + return BaseModelOutputWithNoAttention( + last_hidden_state=sequence_output, + hidden_states=encoder_outputs.hidden_states, + ) + + +class PoolFormerFinalPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + + def forward(self, hidden_states): + output = self.dense(hidden_states) + return output + + +@add_start_docstrings( + """ + PoolFormer Model transformer with an image classification head on top + """, + POOLFORMER_START_DOCSTRING, +) +class PoolFormerForImageClassification(PoolFormerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.poolformer = PoolFormerModel(config) + + # Final norm + self.norm = PoolFormerGroupNorm(config.hidden_sizes[-1]) + # Classifier head + self.classifier = ( + nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutputWithNoAttention, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.poolformer( + pixel_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.classifier(self.norm(sequence_output).mean([-2, -1])) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e2dcaa71be54da8f71064cef274ebc42ce73231a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__init__.py @@ -0,0 +1,153 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tf_available, + is_torch_available, +) + + +_import_structure = { + "configuration_roberta_prelayernorm": [ + "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", + "RobertaPreLayerNormConfig", + "RobertaPreLayerNormOnnxConfig", + ], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_roberta_prelayernorm"] = [ + "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", + "RobertaPreLayerNormForCausalLM", + "RobertaPreLayerNormForMaskedLM", + "RobertaPreLayerNormForMultipleChoice", + "RobertaPreLayerNormForQuestionAnswering", + "RobertaPreLayerNormForSequenceClassification", + "RobertaPreLayerNormForTokenClassification", + "RobertaPreLayerNormModel", + "RobertaPreLayerNormPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_roberta_prelayernorm"] = [ + "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFRobertaPreLayerNormForCausalLM", + "TFRobertaPreLayerNormForMaskedLM", + "TFRobertaPreLayerNormForMultipleChoice", + "TFRobertaPreLayerNormForQuestionAnswering", + "TFRobertaPreLayerNormForSequenceClassification", + "TFRobertaPreLayerNormForTokenClassification", + "TFRobertaPreLayerNormMainLayer", + "TFRobertaPreLayerNormModel", + "TFRobertaPreLayerNormPreTrainedModel", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_roberta_prelayernorm"] = [ + "FlaxRobertaPreLayerNormForCausalLM", + "FlaxRobertaPreLayerNormForMaskedLM", + "FlaxRobertaPreLayerNormForMultipleChoice", + "FlaxRobertaPreLayerNormForQuestionAnswering", + "FlaxRobertaPreLayerNormForSequenceClassification", + "FlaxRobertaPreLayerNormForTokenClassification", + "FlaxRobertaPreLayerNormModel", + "FlaxRobertaPreLayerNormPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_roberta_prelayernorm import ( + ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, + RobertaPreLayerNormConfig, + RobertaPreLayerNormOnnxConfig, + ) + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_roberta_prelayernorm import ( + ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, + RobertaPreLayerNormForCausalLM, + RobertaPreLayerNormForMaskedLM, + RobertaPreLayerNormForMultipleChoice, + RobertaPreLayerNormForQuestionAnswering, + RobertaPreLayerNormForSequenceClassification, + RobertaPreLayerNormForTokenClassification, + RobertaPreLayerNormModel, + RobertaPreLayerNormPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_roberta_prelayernorm import ( + TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, + TFRobertaPreLayerNormForCausalLM, + TFRobertaPreLayerNormForMaskedLM, + TFRobertaPreLayerNormForMultipleChoice, + TFRobertaPreLayerNormForQuestionAnswering, + TFRobertaPreLayerNormForSequenceClassification, + TFRobertaPreLayerNormForTokenClassification, + TFRobertaPreLayerNormMainLayer, + TFRobertaPreLayerNormModel, + TFRobertaPreLayerNormPreTrainedModel, + ) + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_roberta_prelayernorm import ( + FlaxRobertaPreLayerNormForCausalLM, + FlaxRobertaPreLayerNormForMaskedLM, + FlaxRobertaPreLayerNormForMultipleChoice, + FlaxRobertaPreLayerNormForQuestionAnswering, + FlaxRobertaPreLayerNormForSequenceClassification, + FlaxRobertaPreLayerNormForTokenClassification, + FlaxRobertaPreLayerNormModel, + FlaxRobertaPreLayerNormPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..88fa8409519548c7526d1793ca5f6e00a911ad50 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/configuration_roberta_prelayernorm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/configuration_roberta_prelayernorm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0ec7a7014ac8909aca9aa9fd58e474ea4f640816 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/configuration_roberta_prelayernorm.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/convert_roberta_prelayernorm_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/convert_roberta_prelayernorm_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dfdfa10ee6669c4e8c28d996ceab83f08d77406b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/convert_roberta_prelayernorm_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/modeling_flax_roberta_prelayernorm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/modeling_flax_roberta_prelayernorm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..33f8b260fdfa0286e8c969722b830ebe70b1a57e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/modeling_flax_roberta_prelayernorm.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/modeling_roberta_prelayernorm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/modeling_roberta_prelayernorm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a160c3b13cc4133d02b459ae088296845fbfc94 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/modeling_roberta_prelayernorm.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/modeling_tf_roberta_prelayernorm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/modeling_tf_roberta_prelayernorm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a4f6a33298a04dba7f2216b6f2317f01c31af1fa Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/__pycache__/modeling_tf_roberta_prelayernorm.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py new file mode 100644 index 0000000000000000000000000000000000000000..379a71abf1fbb192afb1c546cb774a534ae37c45 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py @@ -0,0 +1,156 @@ +# coding=utf-8 +# Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team. +# All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" RoBERTa-PreLayerNorm configuration""" +from collections import OrderedDict +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +# Copied from transformers.models.roberta.configuration_roberta.RobertaConfig with FacebookAI/roberta-base->andreasmadsen/efficient_mlm_m0.40,RoBERTa->RoBERTa-PreLayerNorm,Roberta->RobertaPreLayerNorm,roberta->roberta-prelayernorm +class RobertaPreLayerNormConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`RobertaPreLayerNormModel`] or a [`TFRobertaPreLayerNormModel`]. It is + used to instantiate a RoBERTa-PreLayerNorm model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa-PreLayerNorm + [andreasmadsen/efficient_mlm_m0.40](https://huggingface.co/andreasmadsen/efficient_mlm_m0.40) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50265): + Vocabulary size of the RoBERTa-PreLayerNorm model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`RobertaPreLayerNormModel`] or [`TFRobertaPreLayerNormModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`RobertaPreLayerNormModel`] or [`TFRobertaPreLayerNormModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + is_decoder (`bool`, *optional*, defaults to `False`): + Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + classifier_dropout (`float`, *optional*): + The dropout ratio for the classification head. + + Examples: + + ```python + >>> from transformers import RobertaPreLayerNormConfig, RobertaPreLayerNormModel + + >>> # Initializing a RoBERTa-PreLayerNorm configuration + >>> configuration = RobertaPreLayerNormConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = RobertaPreLayerNormModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "roberta-prelayernorm" + + def __init__( + self, + vocab_size=50265, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + position_embedding_type="absolute", + use_cache=True, + classifier_dropout=None, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache + self.classifier_dropout = classifier_dropout + + +# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->RobertaPreLayerNorm +class RobertaPreLayerNormOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ] + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/convert_roberta_prelayernorm_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/convert_roberta_prelayernorm_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..41fd14c5fddff2560f153462c2fafa401b794f84 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/convert_roberta_prelayernorm_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,78 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert RoBERTa-PreLayerNorm checkpoint.""" + + +import argparse + +import torch +from huggingface_hub import hf_hub_download + +from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def convert_roberta_prelayernorm_checkpoint_to_pytorch(checkpoint_repo: str, pytorch_dump_folder_path: str): + """ + Copy/paste/tweak roberta_prelayernorm's weights to our BERT structure. + """ + # convert configuration + config = RobertaPreLayerNormConfig.from_pretrained( + checkpoint_repo, architectures=["RobertaPreLayerNormForMaskedLM"] + ) + + # convert state_dict + original_state_dict = torch.load(hf_hub_download(repo_id=checkpoint_repo, filename="pytorch_model.bin")) + state_dict = {} + for tensor_key, tensor_value in original_state_dict.items(): + # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' + if tensor_key.startswith("roberta."): + tensor_key = "roberta_prelayernorm." + tensor_key[len("roberta.") :] + + # The original implementation contains weights which are not used, remove them from the state_dict + if tensor_key.endswith(".self.LayerNorm.weight") or tensor_key.endswith(".self.LayerNorm.bias"): + continue + + state_dict[tensor_key] = tensor_value + + model = RobertaPreLayerNormForMaskedLM.from_pretrained( + pretrained_model_name_or_path=None, config=config, state_dict=state_dict + ) + model.save_pretrained(pytorch_dump_folder_path) + + # convert tokenizer + tokenizer = AutoTokenizer.from_pretrained(checkpoint_repo) + tokenizer.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--checkpoint-repo", + default=None, + type=str, + required=True, + help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/modeling_flax_roberta_prelayernorm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/modeling_flax_roberta_prelayernorm.py new file mode 100644 index 0000000000000000000000000000000000000000..c13778c1ac04ddaf3aa4a589785333209a523782 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/modeling_flax_roberta_prelayernorm.py @@ -0,0 +1,1514 @@ +# coding=utf-8 +# Copyright 2022 The Google Flax Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax RoBERTa-PreLayerNorm model.""" +from typing import Callable, Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen import partitioning as nn_partitioning +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxBaseModelOutputWithPooling, + FlaxBaseModelOutputWithPoolingAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxMaskedLMOutput, + FlaxMultipleChoiceModelOutput, + FlaxQuestionAnsweringModelOutput, + FlaxSequenceClassifierOutput, + FlaxTokenClassifierOutput, +) +from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_roberta_prelayernorm import RobertaPreLayerNormConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "andreasmadsen/efficient_mlm_m0.40" +_CONFIG_FOR_DOC = "RobertaPreLayerNormConfig" + +remat = nn_partitioning.remat + + +# Copied from transformers.models.roberta.modeling_flax_roberta.create_position_ids_from_input_ids +def create_position_ids_from_input_ids(input_ids, padding_idx): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + input_ids: jnp.ndarray + padding_idx: int + + Returns: jnp.ndarray + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = (input_ids != padding_idx).astype("i4") + + if mask.ndim > 2: + mask = mask.reshape((-1, mask.shape[-1])) + incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask + incremental_indices = incremental_indices.reshape(input_ids.shape) + else: + incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask + + return incremental_indices.astype("i4") + padding_idx + + +ROBERTA_PRELAYERNORM_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading, saving and converting weights from PyTorch models) + + This model is also a + [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as + a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and + behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`RobertaPreLayerNormConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`numpy.ndarray` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`numpy.ndarray` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + head_mask (`numpy.ndarray` of shape `({0})`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings with Bert->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.word_embeddings = nn.Embed( + self.config.vocab_size, + self.config.hidden_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + dtype=self.dtype, + ) + self.position_embeddings = nn.Embed( + self.config.max_position_embeddings, + self.config.hidden_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + dtype=self.dtype, + ) + self.token_type_embeddings = nn.Embed( + self.config.type_vocab_size, + self.config.hidden_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + dtype=self.dtype, + ) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): + # Embed + inputs_embeds = self.word_embeddings(input_ids.astype("i4")) + position_embeds = self.position_embeddings(position_ids.astype("i4")) + token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) + + # Sum all embeddings + hidden_states = inputs_embeds + token_type_embeddings + position_embeds + + # Layer Norm + hidden_states = self.LayerNorm(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormSelfAttention(nn.Module): + config: RobertaPreLayerNormConfig + causal: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.head_dim = self.config.hidden_size // self.config.num_attention_heads + if self.config.hidden_size % self.config.num_attention_heads != 0: + raise ValueError( + "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " + " : {self.config.num_attention_heads}" + ) + + self.query = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.key = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.value = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" + ) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) + + @nn.compact + # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + key_value_states: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic=True, + output_attentions: bool = False, + ): + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + # get query proj + query_states = self.query(hidden_states) + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self.key(key_value_states) + value_states = self.value(key_value_states) + else: + # self_attention + key_states = self.key(hidden_states) + value_states = self.value(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # handle cache prepare causal attention mask + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.config.attention_probs_dropout_prob > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.config.attention_probs_dropout_prob, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + # Mask heads if we want to + if layer_head_mask is not None: + attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) + + outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) + return outputs + + +class FlaxRobertaPreLayerNormSelfOutput(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, input_tensor, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = hidden_states + input_tensor + return hidden_states + + +class FlaxRobertaPreLayerNormAttention(nn.Module): + config: RobertaPreLayerNormConfig + causal: bool = False + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.self = FlaxRobertaPreLayerNormSelfAttention(self.config, causal=self.causal, dtype=self.dtype) + self.output = FlaxRobertaPreLayerNormSelfOutput(self.config, dtype=self.dtype) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + key_value_states=None, + init_cache=False, + deterministic=True, + output_attentions: bool = False, + ): + hidden_states_pre_layer_norm = self.LayerNorm(hidden_states) + # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) + # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable + # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) + attn_outputs = self.self( + hidden_states_pre_layer_norm, + attention_mask, + layer_head_mask=layer_head_mask, + key_value_states=key_value_states, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] + hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_outputs[1],) + + return outputs + + +class FlaxRobertaPreLayerNormIntermediate(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dense = nn.Dense( + self.config.intermediate_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.activation = ACT2FN[self.config.hidden_act] + + def __call__(self, hidden_states): + hidden_states = self.LayerNorm(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +class FlaxRobertaPreLayerNormOutput(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, attention_output, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = hidden_states + attention_output + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormLayer(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.attention = FlaxRobertaPreLayerNormAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype) + self.intermediate = FlaxRobertaPreLayerNormIntermediate(self.config, dtype=self.dtype) + self.output = FlaxRobertaPreLayerNormOutput(self.config, dtype=self.dtype) + if self.config.add_cross_attention: + self.crossattention = FlaxRobertaPreLayerNormAttention(self.config, causal=False, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + ): + # Self Attention + attention_outputs = self.attention( + hidden_states, + attention_mask, + layer_head_mask=layer_head_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attention_output = attention_outputs[0] + + # Cross-Attention Block + if encoder_hidden_states is not None: + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask=encoder_attention_mask, + layer_head_mask=layer_head_mask, + key_value_states=encoder_hidden_states, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attention_output = cross_attention_outputs[0] + + hidden_states = self.intermediate(attention_output) + hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attention_outputs[1],) + if encoder_hidden_states is not None: + outputs += (cross_attention_outputs[1],) + return outputs + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormLayerCollection(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + if self.gradient_checkpointing: + FlaxRobertaPreLayerNormCheckpointLayer = remat(FlaxRobertaPreLayerNormLayer, static_argnums=(5, 6, 7)) + self.layers = [ + FlaxRobertaPreLayerNormCheckpointLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.num_hidden_layers) + ] + else: + self.layers = [ + FlaxRobertaPreLayerNormLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.num_hidden_layers) + ] + + def __call__( + self, + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + # Check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.shape[0] != (len(self.layers)): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for " + f" {head_mask.shape[0]}." + ) + + for i, layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = layer( + hidden_states, + attention_mask, + head_mask[i] if head_mask is not None else None, + encoder_hidden_states, + encoder_attention_mask, + init_cache, + deterministic, + output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormEncoder(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + self.layer = FlaxRobertaPreLayerNormLayerCollection( + self.config, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + + def __call__( + self, + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return self.layer( + hidden_states, + attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPooler with Bert->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormPooler(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + + def __call__(self, hidden_states): + cls_hidden_state = hidden_states[:, 0] + cls_hidden_state = self.dense(cls_hidden_state) + return nn.tanh(cls_hidden_state) + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaLMHead with Roberta->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormLMHead(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 + bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.decoder = nn.Dense( + self.config.vocab_size, + dtype=self.dtype, + use_bias=False, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) + + def __call__(self, hidden_states, shared_embedding=None): + hidden_states = self.dense(hidden_states) + hidden_states = ACT2FN["gelu"](hidden_states) + hidden_states = self.layer_norm(hidden_states) + + if shared_embedding is not None: + hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + hidden_states = self.decoder(hidden_states) + + bias = jnp.asarray(self.bias, self.dtype) + hidden_states += bias + return hidden_states + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaClassificationHead with Roberta->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormClassificationHead(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + classifier_dropout = ( + self.config.classifier_dropout + if self.config.classifier_dropout is not None + else self.config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(rate=classifier_dropout) + self.out_proj = nn.Dense( + self.config.num_labels, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + + def __call__(self, hidden_states, deterministic=True): + hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS]) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.dense(hidden_states) + hidden_states = nn.tanh(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaPreTrainedModel with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm +class FlaxRobertaPreLayerNormPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = RobertaPreLayerNormConfig + base_model_prefix = "roberta_prelayernorm" + + module_class: nn.Module = None + + def __init__( + self, + config: RobertaPreLayerNormConfig, + input_shape: Tuple = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + gradient_checkpointing: bool = False, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing + def enable_gradient_checkpointing(self): + self._module = self.module_class( + config=self.config, + dtype=self.dtype, + gradient_checkpointing=True, + ) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + token_type_ids = jnp.ones_like(input_ids) + position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id) + attention_mask = jnp.ones_like(input_ids) + head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + if self.config.add_cross_attention: + encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,)) + encoder_attention_mask = attention_mask + module_init_outputs = self.module.init( + rngs, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + return_dict=False, + ) + else: + module_init_outputs = self.module.init( + rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False + ) + + random_params = module_init_outputs["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache + def init_cache(self, batch_size, max_length): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + """ + # init input variables to retrieve cache + input_ids = jnp.ones((batch_size, max_length), dtype="i4") + attention_mask = jnp.ones_like(input_ids, dtype="i4") + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + init_variables = self.module.init( + jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + params: dict = None, + dropout_rng: jax.random.PRNGKey = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + past_key_values: dict = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # init input tensors if not passed + if token_type_ids is None: + token_type_ids = jnp.zeros_like(input_ids) + + if position_ids is None: + position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id) + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + if head_mask is None: + head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + if self.config.add_cross_attention: + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed + # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be + # changed by FlaxRobertaPreLayerNormAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + outputs = self.module.apply( + inputs, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + token_type_ids=jnp.array(token_type_ids, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + head_mask=jnp.array(head_mask, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + deterministic=not train, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + rngs=rngs, + mutable=mutable, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past_key_values = outputs + outputs["past_key_values"] = unfreeze(past_key_values["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past_key_values = outputs + outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] + + else: + outputs = self.module.apply( + inputs, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + token_type_ids=jnp.array(token_type_ids, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + head_mask=jnp.array(head_mask, dtype="i4"), + deterministic=not train, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + rngs=rngs, + ) + + return outputs + + +class FlaxRobertaPreLayerNormModule(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + add_pooling_layer: bool = True + gradient_checkpointing: bool = False + + def setup(self): + self.embeddings = FlaxRobertaPreLayerNormEmbeddings(self.config, dtype=self.dtype) + self.encoder = FlaxRobertaPreLayerNormEncoder( + self.config, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.pooler = FlaxRobertaPreLayerNormPooler(self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + head_mask: Optional[jnp.ndarray] = None, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # make sure `token_type_ids` is correctly initialized when not passed + if token_type_ids is None: + token_type_ids = jnp.zeros_like(input_ids) + + # make sure `position_ids` is correctly initialized when not passed + if position_ids is None: + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + hidden_states = self.embeddings( + input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic + ) + outputs = self.encoder( + hidden_states, + attention_mask, + head_mask=head_mask, + deterministic=deterministic, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + hidden_states = self.LayerNorm(hidden_states) + pooled = self.pooler(hidden_states) if self.add_pooling_layer else None + + if not return_dict: + # if pooled is None, don't return it + if pooled is None: + return (hidden_states,) + outputs[1:] + return (hidden_states, pooled) + outputs[1:] + + return FlaxBaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=hidden_states, + pooler_output=pooled, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + "The bare RoBERTa-PreLayerNorm Model transformer outputting raw hidden-states without any specific head on top.", + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaModel with Roberta->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormModel(FlaxRobertaPreLayerNormPreTrainedModel): + module_class = FlaxRobertaPreLayerNormModule + + +append_call_sample_docstring( + FlaxRobertaPreLayerNormModel, + _CHECKPOINT_FOR_DOC, + FlaxBaseModelOutputWithPooling, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForMaskedLMModule with Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm +class FlaxRobertaPreLayerNormForMaskedLMModule(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta_prelayernorm = FlaxRobertaPreLayerNormModule( + config=self.config, + add_pooling_layer=False, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.lm_head = FlaxRobertaPreLayerNormLMHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + if self.config.tie_word_embeddings: + shared_embedding = self.roberta_prelayernorm.variables["params"]["embeddings"]["word_embeddings"][ + "embedding" + ] + else: + shared_embedding = None + + # Compute the prediction scores + logits = self.lm_head(hidden_states, shared_embedding=shared_embedding) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxMaskedLMOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """RoBERTa-PreLayerNorm Model with a `language modeling` head on top.""", ROBERTA_PRELAYERNORM_START_DOCSTRING +) +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForMaskedLM with Roberta->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormForMaskedLM(FlaxRobertaPreLayerNormPreTrainedModel): + module_class = FlaxRobertaPreLayerNormForMaskedLMModule + + +append_call_sample_docstring( + FlaxRobertaPreLayerNormForMaskedLM, + _CHECKPOINT_FOR_DOC, + FlaxBaseModelOutputWithPooling, + _CONFIG_FOR_DOC, + mask="", +) + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForSequenceClassificationModule with Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm +class FlaxRobertaPreLayerNormForSequenceClassificationModule(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta_prelayernorm = FlaxRobertaPreLayerNormModule( + config=self.config, + dtype=self.dtype, + add_pooling_layer=False, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.classifier = FlaxRobertaPreLayerNormClassificationHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + logits = self.classifier(sequence_output, deterministic=deterministic) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxSequenceClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + RobertaPreLayerNorm Model transformer with a sequence classification/regression head on top (a linear layer on top + of the pooled output) e.g. for GLUE tasks. + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForSequenceClassification with Roberta->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormForSequenceClassification(FlaxRobertaPreLayerNormPreTrainedModel): + module_class = FlaxRobertaPreLayerNormForSequenceClassificationModule + + +append_call_sample_docstring( + FlaxRobertaPreLayerNormForSequenceClassification, + _CHECKPOINT_FOR_DOC, + FlaxSequenceClassifierOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->RobertaPreLayerNorm, with self.bert->self.roberta_prelayernorm +class FlaxRobertaPreLayerNormForMultipleChoiceModule(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta_prelayernorm = FlaxRobertaPreLayerNormModule( + config=self.config, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + self.classifier = nn.Dense(1, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + num_choices = input_ids.shape[1] + input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None + attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None + token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None + position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None + + # Model + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + pooled_output = self.dropout(pooled_output, deterministic=deterministic) + logits = self.classifier(pooled_output) + + reshaped_logits = logits.reshape(-1, num_choices) + + if not return_dict: + return (reshaped_logits,) + outputs[2:] + + return FlaxMultipleChoiceModelOutput( + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + RobertaPreLayerNorm Model with a multiple choice classification head on top (a linear layer on top of the pooled + output and a softmax) e.g. for RocStories/SWAG tasks. + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForMultipleChoice with Roberta->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormForMultipleChoice(FlaxRobertaPreLayerNormPreTrainedModel): + module_class = FlaxRobertaPreLayerNormForMultipleChoiceModule + + +overwrite_call_docstring( + FlaxRobertaPreLayerNormForMultipleChoice, + ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"), +) +append_call_sample_docstring( + FlaxRobertaPreLayerNormForMultipleChoice, + _CHECKPOINT_FOR_DOC, + FlaxMultipleChoiceModelOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->RobertaPreLayerNorm, with self.bert->self.roberta_prelayernorm +class FlaxRobertaPreLayerNormForTokenClassificationModule(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta_prelayernorm = FlaxRobertaPreLayerNormModule( + config=self.config, + dtype=self.dtype, + add_pooling_layer=False, + gradient_checkpointing=self.gradient_checkpointing, + ) + classifier_dropout = ( + self.config.classifier_dropout + if self.config.classifier_dropout is not None + else self.config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(rate=classifier_dropout) + self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + logits = self.classifier(hidden_states) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxTokenClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + RobertaPreLayerNorm Model with a token classification head on top (a linear layer on top of the hidden-states + output) e.g. for Named-Entity-Recognition (NER) tasks. + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForTokenClassification with Roberta->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormForTokenClassification(FlaxRobertaPreLayerNormPreTrainedModel): + module_class = FlaxRobertaPreLayerNormForTokenClassificationModule + + +append_call_sample_docstring( + FlaxRobertaPreLayerNormForTokenClassification, + _CHECKPOINT_FOR_DOC, + FlaxTokenClassifierOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForQuestionAnsweringModule with Bert->RobertaPreLayerNorm, with self.bert->self.roberta_prelayernorm +class FlaxRobertaPreLayerNormForQuestionAnsweringModule(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta_prelayernorm = FlaxRobertaPreLayerNormModule( + config=self.config, + dtype=self.dtype, + add_pooling_layer=False, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + + logits = self.qa_outputs(hidden_states) + start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + if not return_dict: + return (start_logits, end_logits) + outputs[1:] + + return FlaxQuestionAnsweringModelOutput( + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + RobertaPreLayerNorm Model with a span classification head on top for extractive question-answering tasks like SQuAD + (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForQuestionAnswering with Roberta->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormForQuestionAnswering(FlaxRobertaPreLayerNormPreTrainedModel): + module_class = FlaxRobertaPreLayerNormForQuestionAnsweringModule + + +append_call_sample_docstring( + FlaxRobertaPreLayerNormForQuestionAnswering, + _CHECKPOINT_FOR_DOC, + FlaxQuestionAnsweringModelOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForCausalLMModule with Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm +class FlaxRobertaPreLayerNormForCausalLMModule(nn.Module): + config: RobertaPreLayerNormConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta_prelayernorm = FlaxRobertaPreLayerNormModule( + config=self.config, + add_pooling_layer=False, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.lm_head = FlaxRobertaPreLayerNormLMHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + token_type_ids: Optional[jnp.ndarray] = None, + head_mask: Optional[jnp.ndarray] = None, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + if self.config.tie_word_embeddings: + shared_embedding = self.roberta_prelayernorm.variables["params"]["embeddings"]["word_embeddings"][ + "embedding" + ] + else: + shared_embedding = None + + # Compute the prediction scores + logits = self.lm_head(hidden_states, shared_embedding=shared_embedding) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxCausalLMOutputWithCrossAttentions( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ + RobertaPreLayerNorm Model with a language modeling head on top (a linear layer on top of the hidden-states output) + e.g for autoregressive tasks. + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForCausalLM with Roberta->RobertaPreLayerNorm +class FlaxRobertaPreLayerNormForCausalLM(FlaxRobertaPreLayerNormPreTrainedModel): + module_class = FlaxRobertaPreLayerNormForCausalLMModule + + def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): + # initializing the cache + batch_size, seq_length = input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyway. + # Thus, we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if attention_mask is not None: + position_ids = attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "attention_mask": extended_attention_mask, + "position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 + return model_kwargs + + +append_call_sample_docstring( + FlaxRobertaPreLayerNormForCausalLM, + _CHECKPOINT_FOR_DOC, + FlaxCausalLMOutputWithCrossAttentions, + _CONFIG_FOR_DOC, +) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py new file mode 100644 index 0000000000000000000000000000000000000000..468cb1a243ca8987d065bab85be99969202220bf --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py @@ -0,0 +1,1566 @@ +# coding=utf-8 +# Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch RoBERTa-PreLayerNorm model.""" + +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN, gelu +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_roberta_prelayernorm import RobertaPreLayerNormConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "andreasmadsen/efficient_mlm_m0.40" +_CONFIG_FOR_DOC = "RobertaPreLayerNormConfig" + + +from ..deprecated._archive_maps import ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->RobertaPreLayerNorm +class RobertaPreLayerNormEmbeddings(nn.Module): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.register_buffer( + "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False + ) + + # End copy + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + def forward( + self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 + ): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->RobertaPreLayerNorm +class RobertaPreLayerNormSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in RobertaPreLayerNormModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +class RobertaPreLayerNormSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = hidden_states + input_tensor + return hidden_states + + +class RobertaPreLayerNormAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = RobertaPreLayerNormSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = RobertaPreLayerNormSelfOutput(config) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.pruned_heads = set() + + # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + hidden_states_pre_layer_norm = self.LayerNorm(hidden_states) + self_outputs = self.self( + hidden_states_pre_layer_norm, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class RobertaPreLayerNormIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.LayerNorm(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class RobertaPreLayerNormOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = hidden_states + input_tensor + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->RobertaPreLayerNorm +class RobertaPreLayerNormLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = RobertaPreLayerNormAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = RobertaPreLayerNormAttention(config, position_embedding_type="absolute") + self.intermediate = RobertaPreLayerNormIntermediate(config) + self.output = RobertaPreLayerNormOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->RobertaPreLayerNorm +class RobertaPreLayerNormEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([RobertaPreLayerNormLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class RobertaPreLayerNormPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel with Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm +class RobertaPreLayerNormPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = RobertaPreLayerNormConfig + base_model_prefix = "roberta_prelayernorm" + supports_gradient_checkpointing = True + _no_split_modules = ["RobertaPreLayerNormEmbeddings", "RobertaPreLayerNormSelfAttention"] + + # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +ROBERTA_PRELAYERNORM_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`RobertaPreLayerNormConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value + >= 2. All the value in this tensor should be always < type_vocab_size. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare RoBERTa-PreLayerNorm Model transformer outputting raw hidden-states without any specific head on top.", + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +class RobertaPreLayerNormModel(RobertaPreLayerNormPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in *Attention is + all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz + Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + + .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 + + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = RobertaPreLayerNormEmbeddings(config) + self.encoder = RobertaPreLayerNormEncoder(config) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.pooler = RobertaPreLayerNormPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.LayerNorm(sequence_output) + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings( + """RoBERTa-PreLayerNorm Model with a `language modeling` head on top for CLM fine-tuning.""", + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with FacebookAI/roberta-base->andreasmadsen/efficient_mlm_m0.40,ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm, RobertaPreLayerNormTokenizer->RobertaTokenizer +class RobertaPreLayerNormForCausalLM(RobertaPreLayerNormPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + if not config.is_decoder: + logger.warning( + "If you want to use `RobertaPreLayerNormLMHeadModel` as a standalone, add `is_decoder=True.`" + ) + + self.roberta_prelayernorm = RobertaPreLayerNormModel(config, add_pooling_layer=False) + self.lm_head = RobertaPreLayerNormLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, RobertaPreLayerNormForCausalLM, AutoConfig + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40") + >>> config = AutoConfig.from_pretrained("andreasmadsen/efficient_mlm_m0.40") + >>> config.is_decoder = True + >>> model = RobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40", config=config) + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + lm_loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(prediction_scores.device) + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} + + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """RoBERTa-PreLayerNorm Model with a `language modeling` head on top.""", ROBERTA_PRELAYERNORM_START_DOCSTRING +) +class RobertaPreLayerNormForMaskedLM(RobertaPreLayerNormPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] + + # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.__init__ with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm + def __init__(self, config): + super().__init__(config) + + if config.is_decoder: + logger.warning( + "If you want to use `RobertaPreLayerNormForMaskedLM` make sure `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.roberta_prelayernorm = RobertaPreLayerNormModel(config, add_pooling_layer=False) + self.lm_head = RobertaPreLayerNormLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="", + expected_output="' Paris'", + expected_loss=0.69, + ) + # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.forward with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + kwargs (`Dict[str, any]`, optional, defaults to *{}*): + Used to hide legacy arguments that have been deprecated. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + masked_lm_loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(prediction_scores.device) + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->RobertaPreLayerNorm +class RobertaPreLayerNormLMHead(nn.Module): + """RobertaPreLayerNorm Head for masked language modeling.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.decoder = nn.Linear(config.hidden_size, config.vocab_size) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + self.decoder.bias = self.bias + + def forward(self, features, **kwargs): + x = self.dense(features) + x = gelu(x) + x = self.layer_norm(x) + + # project back to size of vocabulary with bias + x = self.decoder(x) + + return x + + def _tie_weights(self): + # To tie those two weights if they get disconnected (on TPU or when the bias is resized) + # For accelerate compatibility and to not break backward compatibility + if self.decoder.bias.device.type == "meta": + self.decoder.bias = self.bias + else: + self.bias = self.decoder.bias + + +@add_start_docstrings( + """ + RoBERTa-PreLayerNorm Model transformer with a sequence classification/regression head on top (a linear layer on top + of the pooled output) e.g. for GLUE tasks. + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +class RobertaPreLayerNormForSequenceClassification(RobertaPreLayerNormPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.roberta_prelayernorm = RobertaPreLayerNormModel(config, add_pooling_layer=False) + self.classifier = RobertaPreLayerNormClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.forward with roberta->roberta_prelayernorm + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + RobertaPreLayerNorm Model with a multiple choice classification head on top (a linear layer on top of the pooled + output and a softmax) e.g. for RocStories/SWAG tasks. + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm +class RobertaPreLayerNormForMultipleChoice(RobertaPreLayerNormPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.roberta_prelayernorm = RobertaPreLayerNormModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + flat_inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.roberta_prelayernorm( + flat_input_ids, + position_ids=flat_position_ids, + token_type_ids=flat_token_type_ids, + attention_mask=flat_attention_mask, + head_mask=head_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(reshaped_logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + RobertaPreLayerNorm Model with a token classification head on top (a linear layer on top of the hidden-states + output) e.g. for Named-Entity-Recognition (NER) tasks. + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +class RobertaPreLayerNormForTokenClassification(RobertaPreLayerNormPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.roberta_prelayernorm = RobertaPreLayerNormModel(config, add_pooling_layer=False) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.forward with roberta->roberta_prelayernorm + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->RobertaPreLayerNorm +class RobertaPreLayerNormClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, features, **kwargs): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x) + x = self.dense(x) + x = torch.tanh(x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +@add_start_docstrings( + """ + RobertaPreLayerNorm Model with a span classification head on top for extractive question-answering tasks like SQuAD + (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +class RobertaPreLayerNormForQuestionAnswering(RobertaPreLayerNormPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.roberta_prelayernorm = RobertaPreLayerNormModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.forward with roberta->roberta_prelayernorm + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/modeling_tf_roberta_prelayernorm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/modeling_tf_roberta_prelayernorm.py new file mode 100644 index 0000000000000000000000000000000000000000..b3a0070788eaf7704fdd92df3f80011e04849a7e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta_prelayernorm/modeling_tf_roberta_prelayernorm.py @@ -0,0 +1,1799 @@ +# coding=utf-8 +# Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 RoBERTa-PreLayerNorm model.""" + + +from __future__ import annotations + +import math +import warnings +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutputWithPastAndCrossAttentions, + TFBaseModelOutputWithPoolingAndCrossAttentions, + TFCausalLMOutputWithCrossAttentions, + TFMaskedLMOutput, + TFMultipleChoiceModelOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_roberta_prelayernorm import RobertaPreLayerNormConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "andreasmadsen/efficient_mlm_m0.40" +_CONFIG_FOR_DOC = "RobertaPreLayerNormConfig" + + +from ..deprecated._archive_maps import TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaEmbeddings with Roberta->RobertaPreLayerNorm +class TFRobertaPreLayerNormEmbeddings(keras.layers.Layer): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.padding_idx = 1 + self.config = config + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding + symbols are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + input_ids: tf.Tensor + Returns: tf.Tensor + """ + mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) + incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask + + return incremental_indices + self.padding_idx + + def call( + self, + input_ids=None, + position_ids=None, + token_type_ids=None, + inputs_embeds=None, + past_key_values_length=0, + training=False, + ): + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = self.create_position_ids_from_input_ids( + input_ids=input_ids, past_key_values_length=past_key_values_length + ) + else: + position_ids = tf.expand_dims( + tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0 + ) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings = inputs_embeds + position_embeds + token_type_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->RobertaPreLayerNorm +class TFRobertaPreLayerNormPooler(keras.layers.Layer): + def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->RobertaPreLayerNorm +class TFRobertaPreLayerNormSelfAttention(keras.layers.Layer): + def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number " + f"of attention heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.sqrt_att_head_size = math.sqrt(self.attention_head_size) + + self.query = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) + + self.is_decoder = config.is_decoder + self.config = config + + def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor, + encoder_attention_mask: tf.Tensor, + past_key_value: Tuple[tf.Tensor], + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + batch_size = shape_list(hidden_states)[0] + mixed_query_layer = self.query(inputs=hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) + key_layer = tf.concat([past_key_value[0], key_layer], axis=2) + value_layer = tf.concat([past_key_value[1], value_layer], axis=2) + else: + key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) + + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + # (batch size, num_heads, seq_len_q, seq_len_k) + attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) + dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) + attention_scores = tf.divide(attention_scores, dk) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in TFRobertaPreLayerNormModel call() function) + attention_scores = tf.add(attention_scores, attention_mask) + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(logits=attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(inputs=attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = tf.multiply(attention_probs, head_mask) + + attention_output = tf.matmul(attention_probs, value_layer) + attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) + + # (batch_size, seq_len_q, all_head_size) + attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + + +class TFRobertaPreLayerNormSelfOutput(keras.layers.Layer): + def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = hidden_states + input_tensor + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFRobertaPreLayerNormAttention(keras.layers.Layer): + def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): + super().__init__(**kwargs) + + self.self_attention = TFRobertaPreLayerNormSelfAttention(config, name="self") + self.dense_output = TFRobertaPreLayerNormSelfOutput(config, name="output") + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.config = config + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention.prune_heads + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + input_tensor: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor, + encoder_attention_mask: tf.Tensor, + past_key_value: Tuple[tf.Tensor], + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + hidden_states_pre_layer_norm = self.LayerNorm(inputs=input_tensor) + self_outputs = self.self_attention( + hidden_states=hidden_states_pre_layer_norm, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = self.dense_output( + hidden_states=self_outputs[0], input_tensor=input_tensor, training=training + ) + # add attentions (possibly with past_key_value) if we output them + outputs = (attention_output,) + self_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attention", None) is not None: + with tf.name_scope(self.self_attention.name): + self.self_attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +class TFRobertaPreLayerNormIntermediate(keras.layers.Layer): + def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): + super().__init__(**kwargs) + + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.LayerNorm(inputs=hidden_states) + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFRobertaPreLayerNormOutput(keras.layers.Layer): + def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = hidden_states + input_tensor + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->RobertaPreLayerNorm +class TFRobertaPreLayerNormLayer(keras.layers.Layer): + def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): + super().__init__(**kwargs) + + self.attention = TFRobertaPreLayerNormAttention(config, name="attention") + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = TFRobertaPreLayerNormAttention(config, name="crossattention") + self.intermediate = TFRobertaPreLayerNormIntermediate(config, name="intermediate") + self.bert_output = TFRobertaPreLayerNormOutput(config, name="output") + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor | None, + encoder_attention_mask: tf.Tensor | None, + past_key_value: Tuple[tf.Tensor] | None, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + input_tensor=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=self_attn_past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + input_tensor=attention_output, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + intermediate_output = self.intermediate(hidden_states=attention_output) + layer_output = self.bert_output( + hidden_states=intermediate_output, input_tensor=attention_output, training=training + ) + outputs = (layer_output,) + outputs # add attentions if we output them + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "bert_output", None) is not None: + with tf.name_scope(self.bert_output.name): + self.bert_output.build(None) + if getattr(self, "crossattention", None) is not None: + with tf.name_scope(self.crossattention.name): + self.crossattention.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->RobertaPreLayerNorm +class TFRobertaPreLayerNormEncoder(keras.layers.Layer): + def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.layer = [TFRobertaPreLayerNormLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor | None, + encoder_attention_mask: tf.Tensor | None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None, + use_cache: Optional[bool], + output_attentions: bool, + output_hidden_states: bool, + return_dict: bool, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + past_key_value = past_key_values[i] if past_key_values is not None else None + + layer_outputs = layer_module( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask[i], + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + training=training, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + if self.config.add_cross_attention and encoder_hidden_states is not None: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None + ) + + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFRobertaPreLayerNormMainLayer(keras.layers.Layer): + config_class = RobertaPreLayerNormConfig + + def __init__(self, config, add_pooling_layer=True, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.is_decoder = config.is_decoder + + self.num_hidden_layers = config.num_hidden_layers + self.initializer_range = config.initializer_range + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + self.encoder = TFRobertaPreLayerNormEncoder(config, name="encoder") + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.pooler = TFRobertaPreLayerNormPooler(config, name="pooler") if add_pooling_layer else None + # The embeddings must be the last declaration in order to follow the weights order + self.embeddings = TFRobertaPreLayerNormEmbeddings(config, name="embeddings") + + def get_input_embeddings(self) -> keras.layers.Layer: + return self.embeddings + + def set_input_embeddings(self, value: tf.Variable): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: + if not self.config.is_decoder: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + + if past_key_values is None: + past_key_values_length = 0 + past_key_values = [None] * len(self.encoder.layer) + else: + past_key_values_length = shape_list(past_key_values[0][0])[-2] + + if attention_mask is None: + attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + training=training, + ) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask_shape = shape_list(attention_mask) + + mask_seq_length = seq_length + past_key_values_length + # Provided a padding mask of dimensions [batch_size, mask_seq_length] + # - if the model is a decoder, apply a causal mask in addition to the padding mask + # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] + if self.is_decoder: + seq_ids = tf.range(mask_seq_length) + causal_mask = tf.less_equal( + tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), + seq_ids[None, :, None], + ) + causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) + extended_attention_mask = causal_mask * attention_mask[:, None, :] + attention_mask_shape = shape_list(extended_attention_mask) + extended_attention_mask = tf.reshape( + extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) + ) + if past_key_values[0] is not None: + # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] + extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] + else: + extended_attention_mask = tf.reshape( + attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) + ) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) + one_cst = tf.constant(1.0, dtype=embedding_output.dtype) + ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) + extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) + + if self.is_decoder and encoder_attention_mask is not None: + # If a 2D ou 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) + num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) + if num_dims_encoder_attention_mask == 3: + encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] + if num_dims_encoder_attention_mask == 2: + encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] + + # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition + # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 + # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, + # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) + + encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.config.num_hidden_layers + + encoder_outputs = self.encoder( + hidden_states=embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + sequence_output = self.LayerNorm(inputs=sequence_output) + pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None + + if not return_dict: + return ( + sequence_output, + pooled_output, + ) + encoder_outputs[1:] + + return TFBaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaPreTrainedModel with Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm +class TFRobertaPreLayerNormPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = RobertaPreLayerNormConfig + base_model_prefix = "roberta_prelayernorm" + + +ROBERTA_PRELAYERNORM_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`RobertaPreLayerNormConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare RoBERTa-PreLayerNorm Model transformer outputting raw hidden-states without any specific head on top.", + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaModel with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm +class TFRobertaPreLayerNormModel(TFRobertaPreLayerNormPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer(config, name="roberta_prelayernorm") + + @unpack_inputs + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + """ + outputs = self.roberta_prelayernorm( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta_prelayernorm", None) is not None: + with tf.name_scope(self.roberta_prelayernorm.name): + self.roberta_prelayernorm.build(None) + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->RobertaPreLayerNorm +class TFRobertaPreLayerNormLMHead(keras.layers.Layer): + """RobertaPreLayerNorm Head for masked language modeling.""" + + def __init__(self, config, input_embeddings, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + self.dense = keras.layers.Dense( + config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") + self.act = get_tf_activation("gelu") + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = input_embeddings + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.hidden_size]) + + def get_output_embeddings(self): + return self.decoder + + def set_output_embeddings(self, value): + self.decoder.weight = value + self.decoder.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.layer_norm(hidden_states) + + # project back to size of vocabulary with bias + seq_length = shape_list(tensor=hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +@add_start_docstrings( + """RoBERTa-PreLayerNorm Model with a `language modeling` head on top.""", ROBERTA_PRELAYERNORM_START_DOCSTRING +) +class TFRobertaPreLayerNormForMaskedLM(TFRobertaPreLayerNormPreTrainedModel, TFMaskedLanguageModelingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] + + # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM.__init__ with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer( + config, add_pooling_layer=False, name="roberta_prelayernorm" + ) + self.lm_head = TFRobertaPreLayerNormLMHead(config, self.roberta_prelayernorm.embeddings, name="lm_head") + + def get_lm_head(self): + return self.lm_head + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.lm_head.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="", + expected_output="' Paris'", + expected_loss=0.69, + ) + # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM.call with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta_prelayernorm", None) is not None: + with tf.name_scope(self.roberta_prelayernorm.name): + self.roberta_prelayernorm.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build(None) + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForCausalLM with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm +class TFRobertaPreLayerNormForCausalLM(TFRobertaPreLayerNormPreTrainedModel, TFCausalLanguageModelingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] + + def __init__(self, config: RobertaPreLayerNormConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + if not config.is_decoder: + logger.warning( + "If you want to use `TFRobertaPreLayerNormLMHeadModel` as a standalone, add `is_decoder=True.`" + ) + + self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer( + config, add_pooling_layer=False, name="roberta_prelayernorm" + ) + self.lm_head = TFRobertaPreLayerNormLMHead( + config, input_embeddings=self.roberta_prelayernorm.embeddings, name="lm_head" + ) + + def get_lm_head(self): + return self.lm_head + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.lm_head.name + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = tf.ones(input_shape) + + # cut decoder_input_ids if past is used + if past_key_values is not None: + input_ids = input_ids[:, -1:] + + return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} + + @unpack_inputs + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFCausalLMOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: + r""" + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., + config.vocab_size - 1]`. + """ + outputs = self.roberta_prelayernorm( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = outputs[0] + logits = self.lm_head(hidden_states=sequence_output, training=training) + loss = None + + if labels is not None: + # shift labels to the left and cut last logit token + shifted_logits = logits[:, :-1] + labels = labels[:, 1:] + loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFCausalLMOutputWithCrossAttentions( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta_prelayernorm", None) is not None: + with tf.name_scope(self.roberta_prelayernorm.name): + self.roberta_prelayernorm.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build(None) + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaClassificationHead with Roberta->RobertaPreLayerNorm +class TFRobertaPreLayerNormClassificationHead(keras.layers.Layer): + """Head for sentence-level classification tasks.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(classifier_dropout) + self.out_proj = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" + ) + self.config = config + + def call(self, features, training=False): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x, training=training) + x = self.dense(x) + x = self.dropout(x, training=training) + x = self.out_proj(x) + return x + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + RoBERTa-PreLayerNorm Model transformer with a sequence classification/regression head on top (a linear layer on top + of the pooled output) e.g. for GLUE tasks. + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +class TFRobertaPreLayerNormForSequenceClassification( + TFRobertaPreLayerNormPreTrainedModel, TFSequenceClassificationLoss +): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer( + config, add_pooling_layer=False, name="roberta_prelayernorm" + ) + self.classifier = TFRobertaPreLayerNormClassificationHead(config, name="classifier") + + @unpack_inputs + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForSequenceClassification.call with roberta->roberta_prelayernorm + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output, training=training) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta_prelayernorm", None) is not None: + with tf.name_scope(self.roberta_prelayernorm.name): + self.roberta_prelayernorm.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build(None) + + +@add_start_docstrings( + """ + RobertaPreLayerNorm Model with a multiple choice classification head on top (a linear layer on top of the pooled + output and a softmax) e.g. for RocStories/SWAG tasks. + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMultipleChoice with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm +class TFRobertaPreLayerNormForMultipleChoice(TFRobertaPreLayerNormPreTrainedModel, TFMultipleChoiceLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"lm_head"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer(config, name="roberta_prelayernorm") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward( + ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None + flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None + outputs = self.roberta_prelayernorm( + flat_input_ids, + flat_attention_mask, + flat_token_type_ids, + flat_position_ids, + head_mask, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + pooled_output = self.dropout(pooled_output, training=training) + logits = self.classifier(pooled_output) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta_prelayernorm", None) is not None: + with tf.name_scope(self.roberta_prelayernorm.name): + self.roberta_prelayernorm.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + RoBERTa-PreLayerNorm Model with a token classification head on top (a linear layer on top of the hidden-states + output) e.g. for Named-Entity-Recognition (NER) tasks. + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +class TFRobertaPreLayerNormForTokenClassification(TFRobertaPreLayerNormPreTrainedModel, TFTokenClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer( + config, add_pooling_layer=False, name="roberta_prelayernorm" + ) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(classifier_dropout) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForTokenClassification.call with roberta->roberta_prelayernorm + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output, training=training) + logits = self.classifier(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta_prelayernorm", None) is not None: + with tf.name_scope(self.roberta_prelayernorm.name): + self.roberta_prelayernorm.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + RoBERTa-PreLayerNorm Model with a span classification head on top for extractive question-answering tasks like + SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + ROBERTA_PRELAYERNORM_START_DOCSTRING, +) +class TFRobertaPreLayerNormForQuestionAnswering(TFRobertaPreLayerNormPreTrainedModel, TFQuestionAnsweringLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer( + config, add_pooling_layer=False, name="roberta_prelayernorm" + ) + self.qa_outputs = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForQuestionAnswering.call with roberta->roberta_prelayernorm + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + outputs = self.roberta_prelayernorm( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + + loss = None + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions} + labels["end_position"] = end_positions + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta_prelayernorm", None) is not None: + with tf.name_scope(self.roberta_prelayernorm.name): + self.roberta_prelayernorm.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..bd43be68b7c0533dd7b20c8d11cb401f298c4f58 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__init__.py @@ -0,0 +1,56 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_sew"] = [ + "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", + "SEWForCTC", + "SEWForSequenceClassification", + "SEWModel", + "SEWPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_sew import ( + SEW_PRETRAINED_MODEL_ARCHIVE_LIST, + SEWForCTC, + SEWForSequenceClassification, + SEWModel, + SEWPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cfeaf9df9879b9c1a8302e1a4d370a9106c435ab Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/configuration_sew.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/configuration_sew.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cdc414c8f7b214ef23d92c63b10df1b780629da7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/configuration_sew.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/convert_sew_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/convert_sew_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d17804338bd7a8e5583eafa4926532824461c622 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/convert_sew_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/modeling_sew.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/modeling_sew.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bed68067a714579200ba8a4b4c6ae1a516e62212 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/__pycache__/modeling_sew.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/configuration_sew.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/configuration_sew.py new file mode 100644 index 0000000000000000000000000000000000000000..b14ce441d000cb2f461e6d7833d9725227d1d196 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/configuration_sew.py @@ -0,0 +1,256 @@ +# coding=utf-8 +# Copyright 2021 ASAPP Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" SEW model configuration""" + +import functools +import operator + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class SEWConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SEWModel`]. It is used to instantiate a SEW model + according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the SEW + [asapp/sew-tiny-100k](https://huggingface.co/asapp/sew-tiny-100k) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32): + Vocabulary size of the SEW model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`SEW`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + squeeze_factor (`int`, *optional*, defaults to 2): + Sequence length downsampling factor after the encoder and upsampling factor after the transformer. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + activation_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for activations inside the fully connected layer. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + final_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the final projection layer of [`SEWForCTC`]. + layerdrop (`float`, *optional*, defaults to 0.1): + The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more + details. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + feat_extract_norm (`str`, *optional*, defaults to `"group"`): + The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group + normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D + convolutional layers. + feat_proj_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for output of the feature encoder. + feat_extract_activation (`str, `optional`, defaults to `"gelu"`): + The non-linear activation function (function or string) in the 1D convolutional layers of the feature + extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. + conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`): + A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the + feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. + conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`): + A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length + of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. + conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`): + A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The + length of *conv_kernel* defines the number of convolutional layers and has to match the length of + *conv_dim*. + conv_bias (`bool`, *optional*, defaults to `False`): + Whether the 1D convolutional layers have a bias. + num_conv_pos_embeddings (`int`, *optional*, defaults to 128): + Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional + embeddings layer. + num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): + Number of groups of 1D convolutional positional embeddings layer. + apply_spec_augment (`bool`, *optional*, defaults to `True`): + Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see + [SpecAugment: A Simple Data Augmentation Method for Automatic Speech + Recognition](https://arxiv.org/abs/1904.08779). + mask_time_prob (`float`, *optional*, defaults to 0.05): + Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking + procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If + reasoning from the propability of each feature vector to be chosen as the start of the vector span to be + masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the + actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. + mask_time_length (`int`, *optional*, defaults to 10): + Length of vector span along the time axis. + mask_time_min_masks (`int`, *optional*, defaults to 2),: + The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, + irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < + mask_time_min_masks'' + mask_feature_prob (`float`, *optional*, defaults to 0.0): + Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The + masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over + the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector + span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap + may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is + True`. + mask_feature_length (`int`, *optional*, defaults to 10): + Length of vector span along the feature axis. + mask_feature_min_masks (`int`, *optional*, defaults to 0),: + The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time + step, irrespectively of `mask_feature_prob`. Only relevant if + ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' + ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): + Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an + instance of [`SEWForCTC`]. + ctc_zero_infinity (`bool`, *optional*, defaults to `False`): + Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly + occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance + of [`SEWForCTC`]. + use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): + Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an + instance of [`Wav2Vec2ForSequenceClassification`]. + classifier_proj_size (`int`, *optional*, defaults to 256): + Dimensionality of the projection before token mean-pooling for classification. + + Example: + + ```python + >>> from transformers import SEWConfig, SEWModel + + >>> # Initializing a SEW asapp/sew-tiny-100k style configuration + >>> configuration = SEWConfig() + + >>> # Initializing a model (with random weights) from the asapp/sew-tiny-100k style configuration + >>> model = SEWModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "sew" + + def __init__( + self, + vocab_size=32, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + squeeze_factor=2, + hidden_act="gelu", + hidden_dropout=0.1, + activation_dropout=0.1, + attention_dropout=0.1, + feat_proj_dropout=0.0, + final_dropout=0.1, + layerdrop=0.1, + initializer_range=0.02, + layer_norm_eps=1e-5, + feat_extract_norm="group", + feat_extract_activation="gelu", + conv_dim=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), + conv_stride=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), + conv_kernel=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), + conv_bias=False, + num_conv_pos_embeddings=128, + num_conv_pos_embedding_groups=16, + apply_spec_augment=True, + mask_time_prob=0.05, + mask_time_length=10, + mask_time_min_masks=2, + mask_feature_prob=0.0, + mask_feature_length=10, + mask_feature_min_masks=0, + ctc_loss_reduction="mean", + ctc_zero_infinity=False, + use_weighted_layer_sum=False, + classifier_proj_size=256, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + **kwargs, + ): + super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) + self.hidden_size = hidden_size + self.feat_extract_norm = feat_extract_norm + self.feat_extract_activation = feat_extract_activation + self.conv_dim = list(conv_dim) + self.conv_stride = list(conv_stride) + self.conv_kernel = list(conv_kernel) + self.conv_bias = conv_bias + self.num_conv_pos_embeddings = num_conv_pos_embeddings + self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups + self.num_feat_extract_layers = len(self.conv_dim) + self.num_hidden_layers = num_hidden_layers + self.intermediate_size = intermediate_size + self.squeeze_factor = squeeze_factor + self.hidden_act = hidden_act + self.num_attention_heads = num_attention_heads + self.hidden_dropout = hidden_dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.feat_proj_dropout = feat_proj_dropout + self.final_dropout = final_dropout + self.layerdrop = layerdrop + self.layer_norm_eps = layer_norm_eps + self.initializer_range = initializer_range + self.vocab_size = vocab_size + + if ( + (len(self.conv_stride) != self.num_feat_extract_layers) + or (len(self.conv_kernel) != self.num_feat_extract_layers) + or (len(self.conv_dim) != self.num_feat_extract_layers) + ): + raise ValueError( + "Configuration for convolutional layers is incorrect. " + "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, " + f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) " + f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`." + ) + + # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 + self.apply_spec_augment = apply_spec_augment + self.mask_time_prob = mask_time_prob + self.mask_time_length = mask_time_length + self.mask_time_min_masks = mask_time_min_masks + self.mask_feature_prob = mask_feature_prob + self.mask_feature_length = mask_feature_length + self.mask_feature_min_masks = mask_feature_min_masks + + # ctc loss + self.ctc_loss_reduction = ctc_loss_reduction + self.ctc_zero_infinity = ctc_zero_infinity + + # sequence classification + self.use_weighted_layer_sum = use_weighted_layer_sum + self.classifier_proj_size = classifier_proj_size + + @property + def inputs_to_logits_ratio(self): + return functools.reduce(operator.mul, self.conv_stride, 1) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/convert_sew_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/convert_sew_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..81c3284af8ef6e87a61b3776d56900c8b102bcca --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/convert_sew_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,306 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert SEW checkpoint.""" + + +import argparse +import json +import os + +import fairseq +import torch +from fairseq.data import Dictionary + +# Register SEW's fairseq modules +from sew_asapp import tasks # noqa: F401 + +from transformers import ( + SEWConfig, + SEWForCTC, + SEWModel, + Wav2Vec2CTCTokenizer, + Wav2Vec2FeatureExtractor, + Wav2Vec2Processor, + logging, +) + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + +MAPPING = { + "post_extract_proj": "feature_projection", + "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", + "self_attn.k_proj": "encoder.layers.*.attention.k_proj", + "self_attn.v_proj": "encoder.layers.*.attention.v_proj", + "self_attn.q_proj": "encoder.layers.*.attention.q_proj", + "self_attn.out_proj": "encoder.layers.*.attention.out_proj", + "self_attn_layer_norm": "encoder.layers.*.layer_norm", + "fc1": "encoder.layers.*.feed_forward.intermediate_dense", + "fc2": "encoder.layers.*.feed_forward.output_dense", + "final_layer_norm": "encoder.layers.*.final_layer_norm", + "encoder.upsample.0": "encoder.upsample.projection", + "encoder.layer_norm": "encoder.layer_norm", + "w2v_model.layer_norm": "layer_norm", + "w2v_encoder.proj": "lm_head", + "mask_emb": "masked_spec_embed", +} + + +def set_recursively(hf_pointer, key, value, full_name, weight_type): + for attribute in key.split("."): + hf_pointer = getattr(hf_pointer, attribute) + + if weight_type is not None: + hf_shape = getattr(hf_pointer, weight_type).shape + else: + hf_shape = hf_pointer.shape + + assert hf_shape == value.shape, ( + f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" + f" {value.shape} for {full_name}" + ) + + if weight_type == "weight": + hf_pointer.weight.data = value + elif weight_type == "weight_g": + hf_pointer.weight_g.data = value + elif weight_type == "weight_v": + hf_pointer.weight_v.data = value + elif weight_type == "bias": + hf_pointer.bias.data = value + else: + hf_pointer.data = value + + logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") + + +def recursively_load_weights(fairseq_model, hf_model, is_finetuned): + unused_weights = [] + fairseq_dict = fairseq_model.state_dict() + + feature_extractor = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor + + for name, value in fairseq_dict.items(): + is_used = False + if "conv_layers" in name: + load_conv_layer( + name, + value, + feature_extractor, + unused_weights, + hf_model.config.feat_extract_norm == "group", + ) + is_used = True + else: + for key, mapped_key in MAPPING.items(): + mapped_key = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key + + if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: + is_used = True + if "*" in mapped_key: + layer_index = name.split(key)[0].split(".")[-2] + mapped_key = mapped_key.replace("*", layer_index) + if "weight_g" in name: + weight_type = "weight_g" + elif "weight_v" in name: + weight_type = "weight_v" + elif "weight" in name: + weight_type = "weight" + elif "bias" in name: + weight_type = "bias" + else: + weight_type = None + set_recursively(hf_model, mapped_key, value, name, weight_type) + continue + if not is_used: + unused_weights.append(name) + + logger.warning(f"Unused weights: {unused_weights}") + + +def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): + name = full_name.split("conv_layers.")[-1] + items = name.split(".") + layer_id = int(items[0]) + type_id = int(items[1]) + + if type_id == 0: + if "bias" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].conv.bias.data = value + logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") + elif "weight" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].conv.weight.data = value + logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") + elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): + if "bias" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( + f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" + " found." + ) + feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value + logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") + elif "weight" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value + logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") + else: + unused_weights.append(full_name) + + +def convert_config(model, is_finetuned): + config = SEWConfig() + if is_finetuned: + fs_config = model.w2v_encoder.w2v_model.cfg + else: + fs_config = model.cfg + + config.conv_bias = fs_config.conv_bias + conv_layers = eval(fs_config.conv_feature_layers) + config.conv_dim = [x[0] for x in conv_layers] + config.conv_kernel = [x[1] for x in conv_layers] + config.conv_stride = [x[2] for x in conv_layers] + config.feat_extract_activation = "gelu" + config.feat_extract_norm = "layer" if fs_config.extractor_mode == "layer_norm" else "group" + config.final_dropout = 0.0 + config.hidden_act = fs_config.activation_fn.name + config.hidden_size = fs_config.encoder_embed_dim + config.initializer_range = 0.02 + config.intermediate_size = fs_config.encoder_ffn_embed_dim + config.layer_norm_eps = 1e-5 + config.layerdrop = fs_config.encoder_layerdrop + config.num_attention_heads = fs_config.encoder_attention_heads + config.num_conv_pos_embedding_groups = fs_config.conv_pos_groups + config.num_conv_pos_embeddings = fs_config.conv_pos + config.num_feat_extract_layers = len(conv_layers) + config.num_hidden_layers = fs_config.encoder_layers + config.squeeze_factor = fs_config.squeeze_factor + + # take care of any params that are overridden by the Wav2VecCtc model + if is_finetuned: + fs_config = model.cfg + config.final_dropout = fs_config.final_dropout + config.layerdrop = fs_config.layerdrop + config.activation_dropout = fs_config.activation_dropout + config.apply_spec_augment = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 + config.attention_dropout = fs_config.attention_dropout + config.feat_proj_dropout = fs_config.dropout_input + config.hidden_dropout = fs_config.dropout + config.mask_feature_length = fs_config.mask_channel_length + config.mask_feature_prob = fs_config.mask_channel_prob + config.mask_time_length = fs_config.mask_length + config.mask_time_prob = fs_config.mask_prob + + config.feature_extractor_type = "Wav2Vec2FeatureExtractor" + config.tokenizer_class = "Wav2Vec2CTCTokenizer" + + return config + + +@torch.no_grad() +def convert_sew_checkpoint( + checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True +): + """ + Copy/paste/tweak model's weights to transformers design. + """ + + if is_finetuned: + model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( + [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} + ) + else: + model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) + + if config_path is not None: + config = SEWConfig.from_pretrained(config_path) + else: + config = convert_config(model[0], is_finetuned) + model = model[0].eval() + + return_attention_mask = True if config.feat_extract_norm == "layer" else False + feature_extractor = Wav2Vec2FeatureExtractor( + feature_size=1, + sampling_rate=16000, + padding_value=0, + do_normalize=True, + return_attention_mask=return_attention_mask, + ) + + if is_finetuned: + if dict_path: + target_dict = Dictionary.load(dict_path) + + # important change bos & pad token id since CTC symbol is and + # not as in fairseq + target_dict.indices[target_dict.bos_word] = target_dict.pad_index + target_dict.indices[target_dict.pad_word] = target_dict.bos_index + config.bos_token_id = target_dict.pad_index + config.pad_token_id = target_dict.bos_index + config.eos_token_id = target_dict.eos_index + config.vocab_size = len(target_dict.symbols) + vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json") + if not os.path.isdir(pytorch_dump_folder_path): + logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path)) + return + os.makedirs(pytorch_dump_folder_path, exist_ok=True) + with open(vocab_path, "w", encoding="utf-8") as vocab_handle: + json.dump(target_dict.indices, vocab_handle) + tokenizer = Wav2Vec2CTCTokenizer( + vocab_path, + unk_token=target_dict.unk_word, + pad_token=target_dict.pad_word, + bos_token=target_dict.bos_word, + eos_token=target_dict.eos_word, + word_delimiter_token="|", + do_lower_case=False, + ) + processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) + processor.save_pretrained(pytorch_dump_folder_path) + + hf_model = SEWForCTC(config) + else: + hf_model = SEWModel(config) + feature_extractor.save_pretrained(pytorch_dump_folder_path) + + recursively_load_weights(model, hf_model, is_finetuned) + + hf_model.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") + parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") + parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") + parser.add_argument( + "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" + ) + args = parser.parse_args() + convert_sew_checkpoint( + args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/modeling_sew.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/modeling_sew.py new file mode 100644 index 0000000000000000000000000000000000000000..950a91fb6a54b1877f68238934f3ecc82b3ea89d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/sew/modeling_sew.py @@ -0,0 +1,1226 @@ +# coding=utf-8 +# Copyright 2021 ASAPP Inc. and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch SEW model.""" + +import math +import warnings +from typing import Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...integrations.deepspeed import is_deepspeed_zero3_enabled +from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput +from ...modeling_utils import PreTrainedModel +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_sew import SEWConfig + + +logger = logging.get_logger(__name__) + + +_HIDDEN_STATES_START_POSITION = 1 + +# General docstring +_CONFIG_FOR_DOC = "SEWConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "asapp/sew-tiny-100k-ft-ls100h" +_EXPECTED_OUTPUT_SHAPE = [1, 292, 512] + +# CTC docstring +_CTC_EXPECTED_OUTPUT = ( + "'MISTER QUILTER IS THE APPOSTILE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPOLLE'" +) +_CTC_EXPECTED_LOSS = 0.42 + +# Audio class docstring +_SEQ_CLASS_CHECKPOINT = "anton-l/sew-mid-100k-ft-keyword-spotting" +_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" +_SEQ_CLASS_EXPECTED_LOSS = 9.52 + + +from ..deprecated._archive_maps import SEW_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices +def _compute_mask_indices( + shape: Tuple[int, int], + mask_prob: float, + mask_length: int, + attention_mask: Optional[torch.LongTensor] = None, + min_masks: int = 0, +) -> np.ndarray: + """ + Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for + ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on + CPU as part of the preprocessing during training. + + Args: + shape: The shape for which to compute masks. This should be of a tuple of size 2 where + the first element is the batch size and the second element is the length of the axis to span. + mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of + independently generated mask spans of length `mask_length` is computed by + `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the + actual percentage will be smaller. + mask_length: size of the mask + min_masks: minimum number of masked spans + attention_mask: A (right-padded) attention mask which independently shortens the feature axis of + each batch dimension. + """ + batch_size, sequence_length = shape + + if mask_length < 1: + raise ValueError("`mask_length` has to be bigger than 0.") + + if mask_length > sequence_length: + raise ValueError( + f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" + f" and `sequence_length`: {sequence_length}`" + ) + + # epsilon is used for probabilistic rounding + epsilon = np.random.rand(1).item() + + def compute_num_masked_span(input_length): + """Given input length, compute how many spans should be masked""" + num_masked_span = int(mask_prob * input_length / mask_length + epsilon) + num_masked_span = max(num_masked_span, min_masks) + + # make sure num masked span <= sequence_length + if num_masked_span * mask_length > sequence_length: + num_masked_span = sequence_length // mask_length + + # make sure num_masked span is also <= input_length - (mask_length - 1) + if input_length - (mask_length - 1) < num_masked_span: + num_masked_span = max(input_length - (mask_length - 1), 0) + + return num_masked_span + + # compute number of masked spans in batch + input_lengths = ( + attention_mask.sum(-1).detach().tolist() + if attention_mask is not None + else [sequence_length for _ in range(batch_size)] + ) + + # SpecAugment mask to fill + spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) + spec_aug_mask_idxs = [] + + max_num_masked_span = compute_num_masked_span(sequence_length) + + if max_num_masked_span == 0: + return spec_aug_mask + + for input_length in input_lengths: + # compute num of masked spans for this input + num_masked_span = compute_num_masked_span(input_length) + + # get random indices to mask + spec_aug_mask_idx = np.random.choice( + np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False + ) + + # pick first sampled index that will serve as a dummy index to pad vector + # to ensure same dimension for all batches due to probabilistic rounding + # Picking first sample just pads those vectors twice. + if len(spec_aug_mask_idx) == 0: + # this case can only happen if `input_length` is strictly smaller then + # `sequence_length` in which case the last token has to be a padding + # token which we can use as a dummy mask id + dummy_mask_idx = sequence_length - 1 + else: + dummy_mask_idx = spec_aug_mask_idx[0] + + spec_aug_mask_idx = np.concatenate( + [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] + ) + spec_aug_mask_idxs.append(spec_aug_mask_idx) + + spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) + + # expand masked indices to masked spans + spec_aug_mask_idxs = np.broadcast_to( + spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) + ) + spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) + + # add offset to the starting indexes so that indexes now create a span + offsets = np.arange(mask_length)[None, None, :] + offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( + batch_size, max_num_masked_span * mask_length + ) + spec_aug_mask_idxs = spec_aug_mask_idxs + offsets + + # ensure that we cannot have indices larger than sequence_length + if spec_aug_mask_idxs.max() > sequence_length - 1: + spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 + + # scatter indices to mask + np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) + + return spec_aug_mask + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SEW +class SEWNoLayerNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SEW +class SEWLayerNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + + hidden_states = hidden_states.transpose(-2, -1) + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states.transpose(-2, -1) + + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SEW +class SEWGroupNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.activation = ACT2FN[config.feat_extract_activation] + + self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +class SEWPositionalConvEmbedding(nn.Module): + def __init__(self, config): + super().__init__() + self.conv = nn.Conv1d( + config.hidden_size, + config.hidden_size, + kernel_size=config.num_conv_pos_embeddings, + padding=config.num_conv_pos_embeddings // 2, + groups=config.num_conv_pos_embedding_groups, + stride=config.squeeze_factor, + ) + + if is_deepspeed_zero3_enabled(): + import deepspeed + + with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): + self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) + deepspeed.zero.register_external_parameter(self, self.conv.weight_v) + deepspeed.zero.register_external_parameter(self, self.conv.weight_g) + else: + self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) + + self.padding = SEWSamePadLayer(config.num_conv_pos_embeddings) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.padding(hidden_states) + hidden_states = self.activation(hidden_states) + + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SEW +class SEWSamePadLayer(nn.Module): + def __init__(self, num_conv_pos_embeddings): + super().__init__() + self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 + + def forward(self, hidden_states): + if self.num_pad_remove > 0: + hidden_states = hidden_states[:, :, : -self.num_pad_remove] + return hidden_states + + +class SEWUpsampling(nn.Module): + def __init__(self, config): + super().__init__() + self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor) + self.activation = ACT2FN[config.feat_extract_activation] + self.squeeze_factor = config.squeeze_factor + + def forward(self, hidden_states): + hidden_states = self.projection(hidden_states) + hidden_states = self.activation(hidden_states) + + if self.squeeze_factor > 1: + # transform embedding channels to sequence length + bsz, src_len, src_embed_dim = hidden_states.size() + tgt_len = src_len * self.squeeze_factor + tgt_embed_dim = src_embed_dim // self.squeeze_factor + hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim) + hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim) + + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SEW +class SEWFeatureEncoder(nn.Module): + """Construct the features from raw audio waveform""" + + def __init__(self, config): + super().__init__() + + if config.feat_extract_norm == "group": + conv_layers = [SEWGroupNormConvLayer(config, layer_id=0)] + [ + SEWNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) + ] + elif config.feat_extract_norm == "layer": + conv_layers = [SEWLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] + else: + raise ValueError( + f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" + ) + self.conv_layers = nn.ModuleList(conv_layers) + self.gradient_checkpointing = False + self._requires_grad = True + + def _freeze_parameters(self): + for param in self.parameters(): + param.requires_grad = False + self._requires_grad = False + + def forward(self, input_values): + hidden_states = input_values[:, None] + + # make sure hidden_states require grad for gradient_checkpointing + if self._requires_grad and self.training: + hidden_states.requires_grad = True + + for conv_layer in self.conv_layers: + if self._requires_grad and self.gradient_checkpointing and self.training: + hidden_states = self._gradient_checkpointing_func( + conv_layer.__call__, + hidden_states, + ) + else: + hidden_states = conv_layer(hidden_states) + + return hidden_states + + +class SEWFeatureExtractor(SEWFeatureEncoder): + def __init__(self, config): + super().__init__(config) + warnings.warn( + f"The class `{self.__class__.__name__}` has been depreciated " + "and will be removed in Transformers v5. " + f"Use `{self.__class__.__bases__[0].__name__}` instead.", + FutureWarning, + ) + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->SEW +class SEWAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[SEWConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->SEW +class SEWFeedForward(nn.Module): + def __init__(self, config): + super().__init__() + self.intermediate_dropout = nn.Dropout(config.activation_dropout) + + self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.output_dropout = nn.Dropout(config.hidden_dropout) + + def forward(self, hidden_states): + hidden_states = self.intermediate_dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + hidden_states = self.intermediate_dropout(hidden_states) + + hidden_states = self.output_dense(hidden_states) + hidden_states = self.output_dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->SEW +class SEWEncoderLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.attention = SEWAttention( + embed_dim=config.hidden_size, + num_heads=config.num_attention_heads, + dropout=config.attention_dropout, + is_decoder=False, + ) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.feed_forward = SEWFeedForward(config) + self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + attn_residual = hidden_states + hidden_states, attn_weights, _ = self.attention( + hidden_states, attention_mask=attention_mask, output_attentions=output_attentions + ) + hidden_states = self.dropout(hidden_states) + hidden_states = attn_residual + hidden_states + + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states + self.feed_forward(hidden_states) + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class SEWEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.pos_conv_embed = SEWPositionalConvEmbedding(config) + self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layers = nn.ModuleList([SEWEncoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.upsample = SEWUpsampling(config) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + if attention_mask is not None: + # make sure padded tokens output 0 + hidden_states[~attention_mask] = 0.0 + + input_lengths = (attention_mask.long()).sum(-1) + # apply pooling formula to get real output_lengths + output_lengths = input_lengths // self.config.squeeze_factor + max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor + attention_ids = ( + torch.arange(0, max_encoder_length, device=output_lengths.device) + .view(1, -1) + .expand(output_lengths.shape[0], -1) + ) + attention_mask = (attention_ids < output_lengths.view(-1, 1)).long() + + # extend attention_mask + attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) + attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min + attention_mask = attention_mask.expand( + attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] + ) + + n_input_timesteps = hidden_states.shape[1] + + hidden_states = hidden_states.transpose(1, 2) + position_embeddings = self.pos_conv_embed(hidden_states) + pooled_hidden_states = self.pool(hidden_states) + min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1)) + hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length] + hidden_states = hidden_states.transpose(1, 2) + + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states) + + deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() + + for layer in self.layers: + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = torch.rand([]) + + skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False + if not skip_the_layer or deepspeed_zero3_is_enabled: + # under deepspeed zero3 all gpus must run in sync + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer.__call__, + hidden_states, + attention_mask, + output_attentions, + ) + else: + layer_outputs = layer( + hidden_states, attention_mask=attention_mask, output_attentions=output_attentions + ) + hidden_states = layer_outputs[0] + + if skip_the_layer: + layer_outputs = (None, None) + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + hidden_states = self.upsample(hidden_states) + if hidden_states.shape[1] < n_input_timesteps: + hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1])) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class SEWPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SEWConfig + base_model_prefix = "sew" + main_input_name = "input_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, SEWPositionalConvEmbedding): + nn.init.normal_( + module.conv.weight, + mean=0, + std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), + ) + nn.init.constant_(module.conv.bias, 0) + elif isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, nn.Conv1d): + if is_deepspeed_zero3_enabled(): + import deepspeed + + if hasattr(module, "weight_v") and hasattr(module, "weight_g"): + with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0): + nn.init.kaiming_normal_(module.weight.data) + else: + with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0): + nn.init.kaiming_normal_(module.weight.data) + else: + nn.init.kaiming_normal_(module.weight.data) + + if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None: + module.bias.data.zero_() + + def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): + """ + Computes the output length of the convolutional layers + """ + + def _conv_out_length(input_length, kernel_size, stride): + # 1D convolutional layer output length formula taken + # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html + return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 + + for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): + input_lengths = _conv_out_length(input_lengths, kernel_size, stride) + + return input_lengths + + def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): + output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) + batch_size = attention_mask.shape[0] + + attention_mask = torch.zeros( + (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device + ) + # these two operations makes sure that all values before the output lengths idxs are attended to + attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 + attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() + return attention_mask + + +SEW_START_DOCSTRING = r""" + SEW was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech + Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, + Yoav Artzi. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving etc.). + + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`SEWConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +SEW_INPUTS_DOCSTRING = r""" + Args: + input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file + into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install + soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and + conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, + 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare SEW Model transformer outputting raw hidden-states without any specific head on top.", + SEW_START_DOCSTRING, +) +class SEWModel(SEWPreTrainedModel): + def __init__(self, config: SEWConfig): + super().__init__(config) + self.config = config + self.feature_extractor = SEWFeatureEncoder(config) + self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) + + self.project_features = config.conv_dim[-1] != config.hidden_size + if self.project_features: + self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size) + self.feature_dropout = nn.Dropout(config.feat_proj_dropout) + + if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: + self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) + + self.encoder = SEWEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states + def _mask_hidden_states( + self, + hidden_states: torch.FloatTensor, + mask_time_indices: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + ): + """ + Masks extracted features along time axis and/or along feature axis according to + [SpecAugment](https://arxiv.org/abs/1904.08779). + """ + + # `config.apply_spec_augment` can set masking to False + if not getattr(self.config, "apply_spec_augment", True): + return hidden_states + + # generate indices & apply SpecAugment along time axis + batch_size, sequence_length, hidden_size = hidden_states.size() + + if mask_time_indices is not None: + # apply SpecAugment along time axis with given mask_time_indices + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + elif self.config.mask_time_prob > 0 and self.training: + mask_time_indices = _compute_mask_indices( + (batch_size, sequence_length), + mask_prob=self.config.mask_time_prob, + mask_length=self.config.mask_time_length, + attention_mask=attention_mask, + min_masks=self.config.mask_time_min_masks, + ) + mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + + if self.config.mask_feature_prob > 0 and self.training: + # generate indices & apply SpecAugment along feature axis + mask_feature_indices = _compute_mask_indices( + (batch_size, hidden_size), + mask_prob=self.config.mask_feature_prob, + mask_length=self.config.mask_feature_length, + min_masks=self.config.mask_feature_min_masks, + ) + mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) + mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) + hidden_states[mask_feature_indices] = 0 + + return hidden_states + + @add_start_docstrings_to_model_forward(SEW_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutput, + config_class=_CONFIG_FOR_DOC, + modality="audio", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + mask_time_indices: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + extract_features = self.feature_extractor(input_values) + extract_features = extract_features.transpose(1, 2) + extract_features = self.layer_norm(extract_features) + + if self.project_features: + extract_features = self.feature_projection(extract_features) + hidden_states = self.feature_dropout(extract_features) + + if attention_mask is not None: + # compute reduced attention_mask corresponding to feature vectors + attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) + + hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) + + encoder_outputs = self.encoder( + hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = encoder_outputs[0] + + if not return_dict: + return (hidden_states,) + encoder_outputs[1:] + + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """SEW Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", + SEW_START_DOCSTRING, +) +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->SEW, wav2vec2->sew, WAV_2_VEC_2->SEW +class SEWForCTC(SEWPreTrainedModel): + def __init__(self, config, target_lang: Optional[str] = None): + super().__init__(config) + + self.sew = SEWModel(config) + self.dropout = nn.Dropout(config.final_dropout) + + self.target_lang = target_lang + + if config.vocab_size is None: + raise ValueError( + f"You are trying to instantiate {self.__class__} with a configuration that " + "does not define the vocabulary size of the language model head. Please " + "instantiate the model as follows: `SEWForCTC.from_pretrained(..., vocab_size=vocab_size)`. " + "or define `vocab_size` of your model's configuration." + ) + output_hidden_size = ( + config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size + ) + self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) + + # Initialize weights and apply final processing + self.post_init() + + def tie_weights(self): + """ + This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when + passing `target_lang=...` to `from_pretrained(...)`. + + This method is **not** supposed to be called by the user and is prone to be changed in the future. + """ + + # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to + # correctly load adapter layers for SEW so that we do not have to introduce a new API to + # [`PreTrainedModel`]. While slightly hacky, SEW never has to tie input and output embeddings, so that it is + # ok to repurpose this function here. + target_lang = self.target_lang + + if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: + raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") + elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: + logger.info("By default `target_lang` is set to 'eng'.") + elif target_lang is not None: + self.load_adapter(target_lang, force_load=True) + + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.sew.feature_extractor._freeze_parameters() + + def freeze_base_model(self): + """ + Calling this function will disable the gradient computation for the base model so that its parameters will not + be updated during training. Only the classification head will be updated. + """ + for param in self.sew.parameters(): + param.requires_grad = False + + @add_start_docstrings_to_model_forward(SEW_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_CTC_EXPECTED_OUTPUT, + expected_loss=_CTC_EXPECTED_LOSS, + ) + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, CausalLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): + Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to + the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. + All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., + config.vocab_size - 1]`. + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.sew( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states) + + logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + if labels.max() >= self.config.vocab_size: + raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") + + # retrieve loss input_lengths from attention_mask + attention_mask = ( + attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) + ) + input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) + + # assuming that padded tokens are filled with -100 + # when not being attended to + labels_mask = labels >= 0 + target_lengths = labels_mask.sum(-1) + flattened_targets = labels.masked_select(labels_mask) + + # ctc_loss doesn't support fp16 + log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) + + with torch.backends.cudnn.flags(enabled=False): + loss = nn.functional.ctc_loss( + log_probs, + flattened_targets, + input_lengths, + target_lengths, + blank=self.config.pad_token_id, + reduction=self.config.ctc_loss_reduction, + zero_infinity=self.config.ctc_zero_infinity, + ) + + if not return_dict: + output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutput( + loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions + ) + + +@add_start_docstrings( + """ + SEW Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB + Keyword Spotting. + """, + SEW_START_DOCSTRING, +) +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->SEW, wav2vec2->sew, WAV_2_VEC_2->SEW +class SEWForSequenceClassification(SEWPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + if hasattr(config, "add_adapter") and config.add_adapter: + raise ValueError( + "Sequence classification does not support the use of SEW adapters (config.add_adapter=True)" + ) + self.sew = SEWModel(config) + num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings + if config.use_weighted_layer_sum: + self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) + self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) + self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameters will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.sew.feature_extractor._freeze_parameters() + + def freeze_base_model(self): + """ + Calling this function will disable the gradient computation for the base model so that its parameters will not + be updated during training. Only the classification head will be updated. + """ + for param in self.sew.parameters(): + param.requires_grad = False + + @add_start_docstrings_to_model_forward(SEW_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_SEQ_CLASS_CHECKPOINT, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + modality="audio", + expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, + expected_loss=_SEQ_CLASS_EXPECTED_LOSS, + ) + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states + + outputs = self.sew( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if self.config.use_weighted_layer_sum: + hidden_states = outputs[_HIDDEN_STATES_START_POSITION] + hidden_states = torch.stack(hidden_states, dim=1) + norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) + hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) + else: + hidden_states = outputs[0] + + hidden_states = self.projector(hidden_states) + if attention_mask is None: + pooled_output = hidden_states.mean(dim=1) + else: + padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) + hidden_states[~padding_mask] = 0.0 + pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) + + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..35816110111092c9f605ba04157593732a8b532a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__init__.py @@ -0,0 +1,80 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_sentencepiece_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_switch_transformers": [ + "SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP", + "SwitchTransformersConfig", + "SwitchTransformersOnnxConfig", + ] +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_switch_transformers"] = [ + "SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST", + "SwitchTransformersEncoderModel", + "SwitchTransformersForConditionalGeneration", + "SwitchTransformersModel", + "SwitchTransformersPreTrainedModel", + "SwitchTransformersTop1Router", + "SwitchTransformersSparseMLP", + ] + + +if TYPE_CHECKING: + from .configuration_switch_transformers import ( + SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP, + SwitchTransformersConfig, + SwitchTransformersOnnxConfig, + ) + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_switch_transformers import ( + SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST, + SwitchTransformersEncoderModel, + SwitchTransformersForConditionalGeneration, + SwitchTransformersModel, + SwitchTransformersPreTrainedModel, + SwitchTransformersSparseMLP, + SwitchTransformersTop1Router, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b2b769753ec4c4c875141cf85f2eb1af07a6c57c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/configuration_switch_transformers.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/configuration_switch_transformers.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e679031435b056239fb086d5346ba1e5b8f678f9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/configuration_switch_transformers.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/convert_big_switch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/convert_big_switch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50e23debc51707aa195ea283aad93104f21ded99 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/convert_big_switch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/convert_switch_transformers_original_flax_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/convert_switch_transformers_original_flax_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e707bcb37e675bd35067c20fdd339abbf2df47d7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/convert_switch_transformers_original_flax_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/modeling_switch_transformers.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/modeling_switch_transformers.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..73e30d21093e1bb971a469e62c0e8ef24297645c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/__pycache__/modeling_switch_transformers.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/configuration_switch_transformers.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/configuration_switch_transformers.py new file mode 100644 index 0000000000000000000000000000000000000000..fb531003178af05d8fafb8f763d6d2817aa583ac --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/configuration_switch_transformers.py @@ -0,0 +1,184 @@ +# coding=utf-8 +# Copyright 2022, Google and HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Switch Transformers model configuration""" +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class SwitchTransformersConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SwitchTransformersModel`]. It is used to + instantiate a SwitchTransformers model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the + SwitchTransformers [google/switch-base-8](https://huggingface.co/google/switch-base-8) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Arguments: + vocab_size (`int`, *optional*, defaults to 32128): + Vocabulary size of the SwitchTransformers model. Defines the number of different tokens that can be + represented by the `inputs_ids` passed when calling [`SwitchTransformersModel`]. + d_model (`int`, *optional*, defaults to 768): + Size of the encoder layers and the pooler layer. + d_kv (`int`, *optional*, defaults to 64): + Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model // + num_heads`. + d_ff (`int`, *optional*, defaults to 2048): + Size of the intermediate feed forward layer in each `SwitchTransformersBlock`. + expert_capacity (`int`, *optional*, defaults to 64): + Number of tokens that can be stored in each expert. If set to 1, the model will behave like a regular + Transformer. + num_layers (`int`, *optional*, defaults to 12): + Number of dense hidden layers in the Transformer encoder layer. + num_sparse_encoder_layers (`int`, *optional*, defaults to 3): + Number of sparse (MoE) dense hidden layers in the Transformer encoder layer. + num_decoder_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. + num_sparse_decoder_layers (`int`, *optional*, defaults to 3): + Number of sparse (MoE) dense hidden layers in the Transformer decoder layer. + num_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + num_experts (`int`, *optional*, defaults to 8): + Number of experts for each SwitchTransformer layer. + router_bias (`bool`, *optional*, defaults to `False`): + Whether to add a bias to the router. + router_jitter_noise (`float`, *optional*, defaults to 0.01): + Amount of noise to add to the router. + router_dtype (`str`, *optional*, default to `"float32"`): + The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the + *selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961). + router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`): + Whether to ignore padding tokens when routing. + relative_attention_num_buckets (`int`, *optional*, defaults to 32): + The number of buckets to use for each attention layer. + relative_attention_max_distance (`int`, *optional*, defaults to 128): + The maximum distance of the longer sequences for the bucket separation. + dropout_rate (`float`, *optional*, defaults to 0.1): + The ratio for all dropout layers. + layer_norm_eps (`float`, *optional*, defaults to 1e-6): + The epsilon used by the layer normalization layers. + router_z_loss_coef (`float`, *optional*, defaults to 0.001): + The z loss factor for the total loss. + router_aux_loss_coef (`float`, *optional*, defaults to 0.001): + The aux loss factor for the total loss. + initializer_factor (`float`, *optional*, defaults to 1.0): + A factor for initializing all weight matrices (should be kept to 1, used internally for initialization + testing). + dense_act_fn (`string`, *optional*, defaults to `"relu"`): + Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. SwitchTransformersv1.1 + uses the `"gated-gelu"` feed forward projection. Original SwitchTransformers uses `"relu"`. + add_router_probs (`bool`, *optional*, defaults to `False`): + Whether to output router probabilities to compute router auxiliary loss. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + """ + + model_type = "switch_transformers" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} + + def __init__( + self, + vocab_size=32128, + d_model=768, + d_kv=64, + d_ff=2048, + expert_capacity=64, + num_layers=12, + num_sparse_encoder_layers=3, + num_decoder_layers=12, + num_sparse_decoder_layers=3, + num_heads=12, + num_experts=8, + router_bias=False, + router_jitter_noise=0.01, + router_dtype="float32", + router_ignore_padding_tokens=False, + relative_attention_num_buckets=32, + relative_attention_max_distance=128, + dropout_rate=0.1, + layer_norm_epsilon=1e-6, + router_z_loss_coef=0.001, + router_aux_loss_coef=0.001, + initializer_factor=1.0, + dense_act_fn="relu", + is_encoder_decoder=True, + add_router_probs=False, + use_cache=True, + pad_token_id=0, + eos_token_id=1, + **kwargs, + ): + self.vocab_size = vocab_size + self.d_model = d_model + self.d_kv = d_kv + self.d_ff = d_ff + + self.num_sparse_encoder_layers = num_sparse_encoder_layers + + self.num_layers = num_layers + self.num_decoder_layers = ( + num_decoder_layers if num_decoder_layers is not None else self.num_layers + ) # default = symmetry + self.num_sparse_decoder_layers = num_sparse_decoder_layers + + # This tells us, each how many encoder layer we'll have to set a sparse layer. + if self.num_sparse_encoder_layers > 0: + self.encoder_sparse_step = self.num_layers // self.num_sparse_encoder_layers + else: + self.encoder_sparse_step = self.num_layers # HACK: this will create 0 sparse layers + + # This tells us, each how many encoder layer we'll have to set a sparse layer. + if self.num_sparse_decoder_layers > 0: + self.decoder_sparse_step = self.num_decoder_layers // self.num_sparse_decoder_layers + else: + self.decoder_sparse_step = self.num_decoder_layers # HACK: this will create 0 sparse layers + + self.num_heads = num_heads + self.num_experts = num_experts + self.expert_capacity = expert_capacity + self.router_bias = router_bias + self.router_jitter_noise = router_jitter_noise + if router_dtype not in ["float32", "float16", "bfloat16"]: + raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}") + self.router_dtype = router_dtype + + self.router_ignore_padding_tokens = router_ignore_padding_tokens + self.relative_attention_num_buckets = relative_attention_num_buckets + self.relative_attention_max_distance = relative_attention_max_distance + + self.dropout_rate = dropout_rate + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_factor = initializer_factor + self.use_cache = use_cache + self.add_router_probs = add_router_probs + + self.router_z_loss_coef = router_z_loss_coef + self.router_aux_loss_coef = router_aux_loss_coef + self.dense_act_fn = dense_act_fn + + super().__init__( + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/convert_big_switch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/convert_big_switch.py new file mode 100644 index 0000000000000000000000000000000000000000..e4b8af07cd4c88cd5634a0817e82be6190365ce2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/convert_big_switch.py @@ -0,0 +1,193 @@ +import argparse +import json +import os + +import tensorstore as ts +import torch +from flax import serialization +from flax.traverse_util import flatten_dict, unflatten_dict +from tensorflow.io import gfile + +from transformers.modeling_utils import dtype_byte_size +from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( + rename_keys, +) +from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME +from transformers.utils.hub import convert_file_size_to_int + + +def rename_base_flax_keys(flax_key_tuple, flax_tensor): + """ + Post renaming of basic JAX keys to pytorch. + """ + if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: + # expert layer + flax_key_tuple = flax_key_tuple[:-1] + ("weight",) + flax_tensor = torch.permute(flax_tensor, (0, 2, 1)) + elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple): + # linear layer + flax_key_tuple = flax_key_tuple[:-1] + ("weight",) + flax_tensor = flax_tensor.T + elif flax_key_tuple[-1] in ["scale", "embedding"]: + flax_key_tuple = flax_key_tuple[:-1] + ("weight",) + + return flax_key_tuple, flax_tensor + + +def get_key_and_tensorstore_dict(layer, checkpoint_info, switch_checkpoint_path): + if "metadata" in layer: + split_layer = layer.split("metadata") + curr_real_layer_name = "".join(split_layer[0])[:-1] + split_layer = [tuple(("metadata" + split_layer[1]).split("/"))] + elif "kvstore" in layer: + split_layer = layer.split("kvstore") + curr_real_layer_name = "".join(split_layer[0])[:-1] + split_layer = [tuple(("kvstore" + split_layer[1]).split("/"))] + + else: + split_layer = layer.split("/") + curr_real_layer_name = "/".join(split_layer[:-1]) + split_layer[-1] = (split_layer[-1],) + + if "kvstore/path" in layer: + content = f"{switch_checkpoint_path}/{checkpoint_info[layer]}" + elif "kvstore/driver" in layer: + content = "file" + else: + content = checkpoint_info[layer] + + return curr_real_layer_name, split_layer, content + + +def rename_and_save_block(current_block, save_path): + current_block = rename_keys(current_block) + new_current_block = {} + for k, v in current_block.items(): + new_current_block[k.replace("/", ".")] = v + current_block = new_current_block + torch.save(current_block, save_path) + + +def shard_on_the_fly(switch_checkpoint_path, dump_path, max_shard_size, dtype, weights_name: str = WEIGHTS_NAME): + max_shard_size = convert_file_size_to_int(max_shard_size) + sharded_state_dicts = [] + current_block = {} + current_block_size = 0 + total_size = 0 + + os.makedirs(dump_path, exist_ok=True) + with gfile.GFile(switch_checkpoint_path + "/checkpoint", "rb") as fp: + checkpoint_info = serialization.msgpack_restore(fp.read())["optimizer"]["target"] + checkpoint_info = flatten_dict(checkpoint_info, sep="/") + + all_layers = {} + for layer in checkpoint_info.keys(): + curr_real_layer_name, split_layer, content = get_key_and_tensorstore_dict( + layer, checkpoint_info, switch_checkpoint_path + ) + if curr_real_layer_name in all_layers: + all_layers[curr_real_layer_name][split_layer[-1]] = content + else: + all_layers[curr_real_layer_name] = {split_layer[-1]: content} + + for key in all_layers.keys(): + # open tensorstore file + raw_weights = ts.open(unflatten_dict(all_layers[key])).result().read().result() + raw_weights = torch.tensor(raw_weights) + weight_size = raw_weights.numel() * dtype_byte_size(raw_weights.dtype) + + # use the renaming pattern from the small conversion scripts + key, raw_weights = rename_base_flax_keys(tuple(key.split("/")), raw_weights) + key = "/".join(key) + + # If this weight is going to tip up over the maximal size, we split. + if current_block_size + weight_size > max_shard_size: + save_path = os.path.join( + dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin") + ) + rename_and_save_block(current_block, save_path) + sharded_state_dicts.append(current_block.keys()) + del current_block + current_block = {} + current_block_size = 0 + + current_block[key] = raw_weights.to(getattr(torch, dtype)) + current_block_size += weight_size + total_size += weight_size + + # Add the last block + save_path = os.path.join(dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin")) + rename_and_save_block(current_block, save_path) + sharded_state_dicts.append(current_block.keys()) + + # If we only have one shard, we return it + if len(sharded_state_dicts) == 1: + return {weights_name: sharded_state_dicts[0]}, None + + # Otherwise, let's build the index + weight_map = {} + shards = {} + for idx, shard in enumerate(sharded_state_dicts): + shard_file = weights_name.replace( + ".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin" + ) # len(sharded_state_dicts):05d} + temp_filename = os.path.join(dump_path, weights_name.replace(".bin", f"-{idx+1:05d}-of-???.bin")) + os.rename(temp_filename, os.path.join(dump_path, shard_file)) + shards[shard_file] = shard + for key in shard: + weight_map[key] = shard_file + + # Add the metadata + metadata = {"total_size": total_size} + index = {"metadata": metadata, "weight_map": weight_map} + + with open(os.path.join(dump_path, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + return metadata, index + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--switch_t5x_checkpoint_path", + default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", + type=str, + required=False, + help="Path to a directory containing a folder per layer. Follows the original Google format.", + ) + parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") + parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") + parser.add_argument( + "--pytorch_dump_folder_path", + default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", + type=str, + required=False, + help="Path to the output pytorch model.", + ) + args = parser.parse_args() + shard_on_the_fly( + args.switch_t5x_checkpoint_path, + args.pytorch_dump_folder_path, + args.max_shard_size, + args.dtype, + ) + + +def sanity_check(): + from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, T5Tokenizer + + config = SwitchTransformersConfig.from_pretrained("google/switch-base-8") + config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted") + model = SwitchTransformersForConditionalGeneration.from_pretrained( + "/home/arthur_huggingface_co/transformers/switch_converted", device_map="auto" + ) + + tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") + text = "A walks into a bar a orders a with pinch of ." + + input_ids = tokenizer(text, return_tensors="pt").input_ids + out = model.generate(input_ids, decoder_start_token_id=0) + print(tokenizer.decode(out[0])) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/convert_switch_transformers_original_flax_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/convert_switch_transformers_original_flax_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..5937101169c6b4ee5b23b72953faad1be4632f15 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/convert_switch_transformers_original_flax_checkpoint_to_pytorch.py @@ -0,0 +1,203 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Convert SwitchTransformersX checkpoints from the original repository to JAX/FLAX model.""" + +import argparse +import re + +from flax.traverse_util import flatten_dict, unflatten_dict +from t5x import checkpoints + +from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration +from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model +from transformers.utils import logging + + +logging.set_verbosity_info() + + +# should not include what is already done by the `from_pt` argument +MOE_LAYER_NAME_MAPPING = { + "/attention/": "/0/SelfAttention/", + "/self_attention/": "/0/SelfAttention/", + "/encoder_decoder_attention/": "/1/EncDecAttention/", + "value": "v", + "query": "q", + "key": "k", + "out": "o", + "pre_self_attention_layer_norm": "0/layer_norm", + "pre_cross_attention_layer_norm": "1/layer_norm", + "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong + "token_embedder": "shared", + "encoder_norm": "final_layer_norm", + "decoder_norm": "final_layer_norm", + "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", + "router/router_weights/w/": "router/classifier/", + "roer/roer_weights/w/": "router/classifier/", + "logits_dense": "lm_head", +} + + +def rename_keys(s_dict): + # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in + # the original model + keys = list(s_dict.keys()) + for key in keys: + layer_to_block_of_layer = r".*/layers_(\d+)" + new_key = key + if re.match(layer_to_block_of_layer, key): + new_key = re.sub(r"layers_(\d+)", r"block/\1/layer", new_key) + + layer_to_block_of_layer = r"(encoder|decoder)\/" + + if re.match(layer_to_block_of_layer, key): + groups = re.match(layer_to_block_of_layer, new_key).groups() + if groups[0] == "encoder": + new_key = re.sub(r"/mlp/", r"/1/mlp/", new_key) + new_key = re.sub(r"/pre_mlp_layer_norm/", r"/1/layer_norm/", new_key) + + elif groups[0] == "decoder": + new_key = re.sub(r"/mlp/", r"/2/mlp/", new_key) + new_key = re.sub(r"/pre_mlp_layer_norm/", r"/2/layer_norm/", new_key) + + # 2. Convert other classic mappings + for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): + if old_key in new_key: + new_key = new_key.replace(old_key, temp_key) + + print(f"{key} -> {new_key}") + s_dict[new_key] = s_dict.pop(key) + + if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: + s_dict["encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"] = s_dict[ + "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" + ].T + if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: + s_dict["decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"] = s_dict[ + "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" + ].T + + # 3. Take extra care of the EXPERTS layer + for key in list(s_dict.keys()): + if "expert" in key: + num_experts = s_dict[key].shape[0] + expert_weihts = s_dict[key] + for idx in range(num_experts): + s_dict[key.replace("expert/", f"experts/expert_{idx}/")] = expert_weihts[idx] + print(f"{key} -> {key.replace('expert/', f'experts/expert_{idx}/')}") + + s_dict.pop(key) + + return s_dict + + +GIN_TO_CONFIG_MAPPING = { + "NUM_ENCODER_LAYERS": "num_layers", + "NUM_DECODER_LAYERS": "num_decoder_layers", + "NUM_HEADS": "num_heads", + "HEAD_DIM": "d_kv", + "EMBED_DIM": "d_model", + "MLP_DIM": "d_ff", + "NUM_SELECTED_EXPERTS": "num_selected_experts", + "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", + "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", + "dense.MlpBlock.activations": "feed_forward_proj", +} + + +def convert_gin_to_config(gin_file, num_experts): + # Convert a google style config to the hugging face fromat + import regex as re + + with open(gin_file, "r") as f: + raw_gin = f.read() + + regex_match = re.findall(r"(.*) = ([0-9.]*)", raw_gin) + args = {} + for param, value in regex_match: + if param in GIN_TO_CONFIG_MAPPING and value != "": + args[GIN_TO_CONFIG_MAPPING[param]] = float(value) if "." in value else int(value) + + activation = re.findall(r"(.*activations) = \(\'(.*)\',\)", raw_gin)[0] + args[GIN_TO_CONFIG_MAPPING[activation[0]]] = str(activation[1]) + + args["num_experts"] = num_experts + config = SwitchTransformersConfig(**args) + return config + + +def convert_flax_checkpoint_to_pytorch( + flax_checkpoint_path, config_file, gin_file=None, pytorch_dump_path="./", num_experts=8 +): + # Initialise PyTorch model + + print(f"Loading flax weights from : {flax_checkpoint_path}") + flax_params = checkpoints.load_t5x_checkpoint(flax_checkpoint_path) + + if gin_file is not None: + config = convert_gin_to_config(gin_file, num_experts) + else: + config = SwitchTransformersConfig.from_pretrained(config_file) + + pt_model = SwitchTransformersForConditionalGeneration(config) + + flax_params = flax_params["target"] + flax_params = flatten_dict(flax_params, sep="/") + flax_params = rename_keys(flax_params) + flax_params = unflatten_dict(flax_params, sep="/") + + # Load the flax params in the PT model + load_flax_weights_in_pytorch_model(pt_model, flax_params) + + print(f"Save PyTorch model to {pytorch_dump_path}") + pt_model.save_pretrained(pytorch_dump_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--switch_t5x_checkpoint_path", + default=None, + type=str, + required=True, + help=( + "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" + " model architecture. If not provided, a `gin_file` has to be provided." + ), + ) + parser.add_argument( + "--gin_file", + default=None, + type=str, + required=False, + help="Path to the gin config file. If not provided, a `config_file` has to be passed ", + ) + parser.add_argument( + "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." + ) + parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") + args = parser.parse_args() + convert_flax_checkpoint_to_pytorch( + args.switch_t5x_checkpoint_path, + args.config_name, + args.gin_file, + args.pytorch_dump_folder_path, + args.num_experts, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/modeling_switch_transformers.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/modeling_switch_transformers.py new file mode 100644 index 0000000000000000000000000000000000000000..375d94043e6c13c87fb7913bbb88938f5cb7c381 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/switch_transformers/modeling_switch_transformers.py @@ -0,0 +1,1858 @@ +# coding=utf-8 +# Copyright 2022 SwitchTransformers Authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch SwitchTransformers model.""" + + +import copy +import math +import warnings +from typing import Optional, Tuple, Union + +import torch +import torch.nn as nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + MoEModelOutput, + MoEModelOutputWithPastAndCrossAttentions, + Seq2SeqMoEModelOutput, + Seq2SeqMoEOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + DUMMY_INPUTS, + DUMMY_MASK, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_torch_fx_proxy, + logging, + replace_return_docstrings, +) +from .configuration_switch_transformers import SwitchTransformersConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "SwitchTransformersConfig" +_CHECKPOINT_FOR_DOC = "google/switch-base-8" + +#################################################### +# This dict contains ids and associated url +# for the pretrained weights provided with the models +#################################################### + +from ..deprecated._archive_maps import SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def router_z_loss_func(router_logits: torch.Tensor) -> float: + r""" + Compute the router z-loss implemented in PyTorch. + + The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906). + It encourages router logits to remain small in an effort to improve stability. + + Args: + router_logits (`float`): + Input logits of shape [batch_size, sequence_length, num_experts] + + Returns: + Scalar router z-loss. + """ + num_groups, tokens_per_group, _ = router_logits.shape + log_z = torch.logsumexp(router_logits, dim=-1) + z_loss = log_z**2 + return torch.sum(z_loss) / (num_groups * tokens_per_group) + + +def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float: + r""" + Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. + + See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss + function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between + experts is too unbalanced. + + Args: + router_probs (`torch.Tensor`): + Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts]. + expert_indices (`torch.Tensor`): + Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token. + + Returns: + The auxiliary loss. + """ + num_experts = router_probs.shape[-1] + + # cast the expert indices to int64, otherwise one-hot encoding will fail + if expert_indices.dtype != torch.int64: + expert_indices = expert_indices.to(torch.int64) + + if len(expert_indices.shape) == 2: + expert_indices = expert_indices.unsqueeze(2) + + expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts) + + # For a given token, determine if it was routed to a given expert. + expert_mask = torch.max(expert_mask, axis=-2).values + + # cast to float32 otherwise mean will fail + expert_mask = expert_mask.to(torch.float32) + tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) + + router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2) + return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2) + + +class SwitchTransformersTop1Router(nn.Module): + """ + Router using tokens choose top-1 experts assignment. + + This router uses the same mechanism as in Switch Transformer (https://arxiv.org/abs/2101.03961) and V-MoE + (https://arxiv.org/abs/2106.05974): tokens choose their top experts. Items are sorted by router_probs and then + routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each + token is processed by an expert**, or that each expert receives at least one token. + + """ + + def __init__(self, config: SwitchTransformersConfig): + super().__init__() + self.num_experts = config.num_experts + self.expert_capacity = config.expert_capacity + self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias) + self.jitter_noise = config.router_jitter_noise + self.ignore_padding_tokens = config.router_ignore_padding_tokens + self.dtype = getattr(torch, config.router_dtype) + + def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + r""" + Computes router probabilities from input hidden states. + + Args: + hidden_states (`torch.Tensor`): + (batch_size, sequence_length, hidden_dim) from which router probabilities are computed. + Returns: + router_probabilities (`torch.Tensor`): + Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each + token and expert. Used for routing tokens to experts. + router_logits (`torch.Tensor`): + Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits. + This is used later for computing router z-loss. + """ + # float32 is used to ensure stability. See the discussion of "selective precision" in + # https://arxiv.org/abs/2101.03961. + # We also store the previous dtype to cast back the output to the previous dtype + self.input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(self.dtype) + + if self.training and self.jitter_noise > 0: + # Multiply the token inputs by the uniform distribution - adding some noise + hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) + + # Shape: [num_groups, tokens_per_group, num_experts] + self._cast_classifier() + router_logits = self.classifier(hidden_states) + + # Apply Softmax and cast back to the original `dtype` + router_probabilities = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(self.input_dtype) + return router_probabilities, router_logits + + def _cast_classifier(self): + r""" + `bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an + instance of the `Linear8bitLt` class by checking special attributes. + """ + if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")): + self.classifier = self.classifier.to(self.dtype) + + def forward(self, hidden_states: torch.Tensor) -> Tuple: + r""" + Generic forward function for every Router class. Each Router expects to have the same input hidden states + (`hidden_states`) corresponding to the hidden states for each token, the `expert_capacity` corresponding to the + number of tokens the Router will send to each expert, some Routers can send up to few tokens to each expert. + + Each Router works as the following: it expects the hidden states for each token, gets the `router_probs` and + `router_logits` from the `router_weights`. This will assign for each token, the raw probability to be assigned + to an expert. Then each Router class will have to define its own `_compute_routing_instructions`. + + Args: + hidden_states (`torch.Tensor`) : + [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. + Returns: + Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`] Tuple containing the expert index, the router probs + and the router logits. The router probabilities and logits are required to compute the loss. + """ + router_probs, router_logits = self._compute_router_probabilities(hidden_states) + + expert_index = torch.argmax(router_probs, dim=-1) + expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.num_experts) + + # Mask tokens outside expert capacity. Sum over each sequence + token_priority = torch.cumsum(expert_index, dim=-2) + # mask if the token routed to to the expert will overflow + expert_capacity_mask = token_priority <= self.expert_capacity + expert_index = expert_index * expert_capacity_mask + + router_probs = torch.max(router_probs, dim=-1).values.unsqueeze(-1) + return expert_index, router_probs, router_logits + + +# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->SwitchTransformers +class SwitchTransformersLayerNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Construct a layernorm module in the SwitchTransformers style. No bias and no subtraction of mean. + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + # SwitchTransformers uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean + # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated + # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for + # half-precision inputs is done in fp32 + + variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + + # convert into half-precision if necessary + if self.weight.dtype in [torch.float16, torch.bfloat16]: + hidden_states = hidden_states.to(self.weight.dtype) + + return self.weight * hidden_states + + +ALL_LAYERNORM_LAYERS.append(SwitchTransformersLayerNorm) + + +# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->SwitchTransformers +class SwitchTransformersDenseActDense(nn.Module): + def __init__(self, config: SwitchTransformersConfig): + super().__init__() + self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) + self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) + self.dropout = nn.Dropout(config.dropout_rate) + self.act = ACT2FN[config.dense_act_fn] + + def forward(self, hidden_states): + hidden_states = self.wi(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.dropout(hidden_states) + if ( + isinstance(self.wo.weight, torch.Tensor) + and hidden_states.dtype != self.wo.weight.dtype + and self.wo.weight.dtype != torch.int8 + ): + hidden_states = hidden_states.to(self.wo.weight.dtype) + hidden_states = self.wo(hidden_states) + return hidden_states + + +class SwitchTransformersSparseMLP(nn.Module): + r""" + Implementation of the Switch Transformers Sparse MLP module. + """ + + def __init__(self, config: SwitchTransformersConfig, expert_class: nn.Module = SwitchTransformersDenseActDense): + super().__init__() + # Step 1: Get the correct router according to its class + self.router = SwitchTransformersTop1Router(config) + + # Step 2: Get the experts + self.experts = nn.ModuleDict() + for idx in range(config.num_experts): + self.experts[f"expert_{idx}"] = expert_class(config) + + def forward(self, hidden_states): + r""" + Hold on, this will be slightly tricky to understand In the correct order, a MoE layer does the following: + + 1- Gets the `router_mask` from the router. The shape of the mask is `(batch_size, sequence_length, num_expert)` + and corresponds to the argmax of the `router_probs`. The probabilities are needed in the computation of the + hidden states : they are broadcasted to the hidden states values (can be interpreted as a scaling factor). + + 2- Dispatch the tokens to its associated experts. We do a classic for loop over the experts and assign for each + expert the corresponding hidden states. + + """ + # Step 1: Get the router_mask from the router as wel as the probabilities + router_mask, router_probs, router_logits = self.router(hidden_states) + expert_index = torch.argmax(router_mask, dim=-1) + + # The routers introduced might not always map all the tokens, to a router, which means that some hidden states + # can be unchanged from one layer to another. That is why the hidden states are cloned before updating only the seleced ones. + + next_states = hidden_states.clone() + for idx, expert in enumerate(self.experts.values()): + token_indices = router_mask[:, :, idx].bool() + next_states[token_indices] = expert(hidden_states[token_indices]).to(next_states.dtype) + + hidden_states = router_probs * next_states + return hidden_states, (router_logits, expert_index) + + +class SwitchTransformersLayerFF(nn.Module): + r""" + Switch Transformers Feed Forward layer module. This is a wrapper around the Mixture of Experts module. + + Parameters: + config : ([`SwitchTransformersConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. + is_sparse (`bool`): + Whether the MLP layer is a `Sparse` layer (contains a Mixture of Experts) or not + """ + + def __init__(self, config: SwitchTransformersConfig, is_sparse=False): + super().__init__() + self.is_sparse = is_sparse + + # Check if it is a sparse layer, if not then it is a dense layer + if not self.is_sparse: + self.mlp = SwitchTransformersDenseActDense(config) + else: + self.mlp = SwitchTransformersSparseMLP(config) + + self.layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, hidden_states, output_router_logits): + forwarded_states = self.layer_norm(hidden_states) + forwarded_states = self.mlp(forwarded_states) + + if isinstance(forwarded_states, tuple): + forwarded_states, router_tuple = forwarded_states + else: + router_tuple = None + + output = hidden_states + self.dropout(forwarded_states) + + if output_router_logits and router_tuple is not None: + output = (output, router_tuple) + + return output + + +# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->SwitchTransformers +class SwitchTransformersAttention(nn.Module): + def __init__(self, config: SwitchTransformersConfig, has_relative_attention_bias=False): + super().__init__() + self.is_decoder = config.is_decoder + self.has_relative_attention_bias = has_relative_attention_bias + self.relative_attention_num_buckets = config.relative_attention_num_buckets + self.relative_attention_max_distance = config.relative_attention_max_distance + self.d_model = config.d_model + self.key_value_proj_dim = config.d_kv + self.n_heads = config.num_heads + self.dropout = config.dropout_rate + self.inner_dim = self.n_heads * self.key_value_proj_dim + + # Mesh TensorFlow initialization to avoid scaling before softmax + self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) + self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) + self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) + self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) + + if self.has_relative_attention_bias: + self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) + self.pruned_heads = set() + self.gradient_checkpointing = False + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads + ) + # Prune linear layers + self.q = prune_linear_layer(self.q, index) + self.k = prune_linear_layer(self.k, index) + self.v = prune_linear_layer(self.v, index) + self.o = prune_linear_layer(self.o, index, dim=1) + # Update hyper params + self.n_heads = self.n_heads - len(heads) + self.inner_dim = self.key_value_proj_dim * self.n_heads + self.pruned_heads = self.pruned_heads.union(heads) + + @staticmethod + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """ + Adapted from Mesh Tensorflow: + https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + + Args: + relative_position: an int32 Tensor + bidirectional: a boolean - whether the attention is bidirectional + num_buckets: an integer + max_distance: an integer + + Returns: + a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) + """ + relative_buckets = 0 + if bidirectional: + num_buckets //= 2 + relative_buckets += (relative_position > 0).to(torch.long) * num_buckets + relative_position = torch.abs(relative_position) + else: + relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) + # now relative_position is in the range [0, inf) + + # half of the buckets are for exact increments in positions + max_exact = num_buckets // 2 + is_small = relative_position < max_exact + + # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance + relative_position_if_large = max_exact + ( + torch.log(relative_position.float() / max_exact) + / math.log(max_distance / max_exact) + * (num_buckets - max_exact) + ).to(torch.long) + relative_position_if_large = torch.min( + relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) + ) + + relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) + return relative_buckets + + def compute_bias(self, query_length, key_length, device=None): + """Compute binned relative position bias""" + if device is None: + device = self.relative_attention_bias.weight.device + context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] + memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] + relative_position = memory_position - context_position # shape (query_length, key_length) + relative_position_bucket = self._relative_position_bucket( + relative_position, # shape (query_length, key_length) + bidirectional=(not self.is_decoder), + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) + values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) + return values + + def forward( + self, + hidden_states, + mask=None, + key_value_states=None, + position_bias=None, + past_key_value=None, + layer_head_mask=None, + query_length=None, + use_cache=False, + output_attentions=False, + ): + """ + Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). + """ + # Input is (batch_size, seq_length, dim) + # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) + # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) + batch_size, seq_length = hidden_states.shape[:2] + + real_seq_length = seq_length + + if past_key_value is not None: + if len(past_key_value) != 2: + raise ValueError( + f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" + ) + real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length + + key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] + + def shape(states): + """projection""" + return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) + + def unshape(states): + """reshape""" + return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) + + def project(hidden_states, proj_layer, key_value_states, past_key_value): + """projects hidden states correctly to key/query states""" + if key_value_states is None: + # self-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(hidden_states)) + elif past_key_value is None: + # cross-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(key_value_states)) + + if past_key_value is not None: + if key_value_states is None: + # self-attn + # (batch_size, n_heads, key_length, dim_per_head) + hidden_states = torch.cat([past_key_value, hidden_states], dim=2) + elif past_key_value.shape[2] != key_value_states.shape[1]: + # checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + # cross-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(key_value_states)) + else: + # cross-attn + hidden_states = past_key_value + return hidden_states + + # get query states + query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) + + # get key/value states + key_states = project( + hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None + ) + value_states = project( + hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None + ) + + # compute scores + scores = torch.matmul( + query_states, key_states.transpose(3, 2) + ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 + + if position_bias is None: + if not self.has_relative_attention_bias: + position_bias = torch.zeros( + (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype + ) + if self.gradient_checkpointing and self.training: + position_bias.requires_grad = True + else: + position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) + + # if key and values are already calculated + # we want only the last query position bias + if past_key_value is not None: + position_bias = position_bias[:, :, -hidden_states.size(1) :, :] + + if mask is not None: + position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) + + if self.pruned_heads: + mask = torch.ones(position_bias.shape[1]) + mask[list(self.pruned_heads)] = 0 + position_bias_masked = position_bias[:, mask.bool()] + else: + position_bias_masked = position_bias + + scores += position_bias_masked + attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( + scores + ) # (batch_size, n_heads, seq_length, key_length) + attn_weights = nn.functional.dropout( + attn_weights, p=self.dropout, training=self.training + ) # (batch_size, n_heads, seq_length, key_length) + + # Mask heads if we want to + if layer_head_mask is not None: + attn_weights = attn_weights * layer_head_mask + + attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) + attn_output = self.o(attn_output) + + present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None + outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + + if output_attentions: + outputs = outputs + (attn_weights,) + return outputs + + +# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->SwitchTransformers +class SwitchTransformersLayerSelfAttention(nn.Module): + def __init__(self, config, has_relative_attention_bias=False): + super().__init__() + self.SelfAttention = SwitchTransformersAttention( + config, has_relative_attention_bias=has_relative_attention_bias + ) + self.layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward( + self, + hidden_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + past_key_value=None, + use_cache=False, + output_attentions=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.SelfAttention( + normed_hidden_states, + mask=attention_mask, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states = hidden_states + self.dropout(attention_output[0]) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->SwitchTransformers +class SwitchTransformersLayerCrossAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.EncDecAttention = SwitchTransformersAttention(config, has_relative_attention_bias=False) + self.layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward( + self, + hidden_states, + key_value_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + past_key_value=None, + use_cache=False, + query_length=None, + output_attentions=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.EncDecAttention( + normed_hidden_states, + mask=attention_mask, + key_value_states=key_value_states, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + query_length=query_length, + output_attentions=output_attentions, + ) + layer_output = hidden_states + self.dropout(attention_output[0]) + outputs = (layer_output,) + attention_output[1:] # add attentions if we output them + return outputs + + +class SwitchTransformersBlock(nn.Module): + def __init__(self, config, has_relative_attention_bias=False, is_sparse=False): + super().__init__() + self.is_decoder = config.is_decoder + self.is_sparse = is_sparse + self.layer = nn.ModuleList() + self.layer.append( + SwitchTransformersLayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias) + ) + if self.is_decoder: + self.layer.append(SwitchTransformersLayerCrossAttention(config)) + + self.layer.append(SwitchTransformersLayerFF(config, is_sparse=self.is_sparse)) + + def forward( + self, + hidden_states, + attention_mask=None, + position_bias=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + encoder_decoder_position_bias=None, + layer_head_mask=None, + cross_attn_layer_head_mask=None, + past_key_value=None, + use_cache=False, + output_attentions=False, + output_router_logits=True, + return_dict=True, + ): + if past_key_value is not None: + if not self.is_decoder: + logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") + expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 + + if len(past_key_value) != expected_num_past_key_values: + raise ValueError( + f"There should be {expected_num_past_key_values} past states. " + f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" + f"Got {len(past_key_value)} past key / value states" + ) + + self_attn_past_key_value = past_key_value[:2] + cross_attn_past_key_value = past_key_value[2:] + else: + self_attn_past_key_value, cross_attn_past_key_value = None, None + + self_attention_outputs = self.layer[0]( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=self_attn_past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states, present_key_value_state = self_attention_outputs[:2] + attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + do_cross_attention = self.is_decoder and encoder_hidden_states is not None + if do_cross_attention: + # the actual query length is unknown for cross attention + # if using past key value states. Need to inject it here + if present_key_value_state is not None: + query_length = present_key_value_state[0].shape[2] + else: + query_length = None + + cross_attention_outputs = self.layer[1]( + hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + position_bias=encoder_decoder_position_bias, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + query_length=query_length, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states = cross_attention_outputs[0] + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + # Combine self attn and cross attn key value states + if present_key_value_state is not None: + present_key_value_state = present_key_value_state + cross_attention_outputs[1] + + # Keep cross-attention outputs and relative position weights + attention_outputs = attention_outputs + cross_attention_outputs[2:] + + # Apply Feed Forward layer + hidden_states = self.layer[-1](hidden_states, output_router_logits) + + if isinstance(hidden_states, tuple): + hidden_states, router_tuple = hidden_states + else: + router_tuple = (torch.zeros((1,), device=hidden_states.device, dtype=torch.int64),) + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if use_cache: + outputs = outputs + (present_key_value_state,) + attention_outputs + (router_tuple,) + else: + outputs = outputs + attention_outputs + (router_tuple,) + + return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights), (router_tuple) + + +class SwitchTransformersPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SwitchTransformersConfig + base_model_prefix = "switch_transformers" + supports_gradient_checkpointing = True + _no_split_modules = ["SwitchTransformersBlock"] + + @property + def dummy_inputs(self): + input_ids = torch.tensor(DUMMY_INPUTS) + input_mask = torch.tensor(DUMMY_MASK) + dummy_inputs = { + "decoder_input_ids": input_ids, + "input_ids": input_ids, + "decoder_attention_mask": input_mask, + } + return dummy_inputs + + def _init_weights(self, module): + """Initialize the weights""" + factor = self.config.initializer_factor # Used for testing weights initialization + if isinstance(module, SwitchTransformersLayerNorm): + module.weight.data.fill_(factor * 1.0) + elif isinstance( + module, + (SwitchTransformersModel, SwitchTransformersForConditionalGeneration, SwitchTransformersEncoderModel), + ): + # Mesh TensorFlow embeddings initialization + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 + module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) + if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: + module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) + elif isinstance(module, SwitchTransformersDenseActDense): + # Mesh TensorFlow FF initialization + # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 + # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 + module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.wi, "bias") and module.wi.bias is not None: + module.wi.bias.data.zero_() + module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) + if hasattr(module.wo, "bias") and module.wo.bias is not None: + module.wo.bias.data.zero_() + elif isinstance(module, SwitchTransformersAttention): + # Mesh TensorFlow attention initialization to avoid scaling before softmax + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 + d_model = self.config.d_model + key_value_proj_dim = self.config.d_kv + n_heads = self.config.num_heads + module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) + module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) + module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) + module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) + if module.has_relative_attention_bias: + module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) + elif isinstance(module, SwitchTransformersSparseMLP): + # Mesh TensorFlow attention initialization to avoid scaling before softmax + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 + d_model = self.config.d_model + key_value_proj_dim = self.config.d_kv + n_heads = self.config.num_heads + module.router.classifier.weight.data.normal_(mean=0.0, std=factor * 1) + for idx in range(self.config.num_experts): + module.experts[f"expert_{idx}"].wi.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) + module.experts[f"expert_{idx}"].wo.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) + + def _shift_right(self, input_ids): + decoder_start_token_id = self.config.decoder_start_token_id + pad_token_id = self.config.pad_token_id + + if decoder_start_token_id is None: + raise ValueError( + "self.model.config.decoder_start_token_id has to be defined. In SwitchTransformers it is usually set" + " to the pad_token_id. See SwitchTransformers docs for more information" + ) + + # shift inputs to the right + if is_torch_fx_proxy(input_ids): + # Item assignment is not supported natively for proxies. + shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) + shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) + else: + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() + shifted_input_ids[..., 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +class SwitchTransformersStack(SwitchTransformersPreTrainedModel): + def __init__(self, config, embed_tokens=None): + super().__init__(config) + + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model) + + if embed_tokens is not None: + self.embed_tokens.weight = embed_tokens.weight + + self.is_decoder = config.is_decoder + + sparse_step = config.decoder_sparse_step if self.is_decoder else config.encoder_sparse_step + config.num_layers = config.num_decoder_layers if self.is_decoder else config.num_layers + self.block = nn.ModuleList() + for i in range(config.num_layers): + is_sparse = (i % sparse_step == 1 or sparse_step == 1) if sparse_step > 0 else False + + self.block.append( + SwitchTransformersBlock(config, has_relative_attention_bias=bool(i == 0), is_sparse=is_sparse) + ) + + self.final_layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + # Initialize weights and apply final processing + self.post_init() + + self.device_map = None + self.gradient_checkpointing = False + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, new_embeddings): + self.embed_tokens = new_embeddings + + def forward( + self, + input_ids=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + inputs_embeds=None, + head_mask=None, + cross_attn_head_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + output_router_logits=True, + return_dict=None, + ): + use_cache = use_cache if use_cache is not None else self.config.use_cache + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + err_msg_prefix = "decoder_" if self.is_decoder else "" + raise ValueError( + f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" + ) + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + err_msg_prefix = "decoder_" if self.is_decoder else "" + raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") + + if inputs_embeds is None: + if self.embed_tokens is None: + raise ValueError("You have to initialize the model with valid token embeddings") + inputs_embeds = self.embed_tokens(input_ids) + + batch_size, seq_length = input_shape + + # required mask seq length can be calculated via length of past + mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length + + if use_cache is True: + if not self.is_decoder: + raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") + + if attention_mask is None: + attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) + if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: + encoder_seq_length = encoder_hidden_states.shape[1] + encoder_attention_mask = torch.ones( + batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long + ) + + # initialize past_key_values with `None` if past does not exist + if past_key_values is None: + past_key_values = [None] * len(self.block) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # Prepare head mask if needed + head_mask = self.get_head_mask(head_mask, self.config.num_layers) + cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) + present_key_value_states = () if use_cache else None + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_router_probs = () if output_router_logits else None + all_cross_attentions = () if (output_attentions and self.is_decoder) else None + position_bias = None + encoder_decoder_position_bias = None + + hidden_states = self.dropout(inputs_embeds) + + for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): + layer_head_mask = head_mask[i] + cross_attn_layer_head_mask = cross_attn_head_mask[i] + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.forward, + hidden_states, + extended_attention_mask, + position_bias, + encoder_hidden_states, + encoder_extended_attention_mask, + encoder_decoder_position_bias, + layer_head_mask, + cross_attn_layer_head_mask, + None, # past_key_value is always None with gradient checkpointing + use_cache, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask=extended_attention_mask, + position_bias=position_bias, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + encoder_decoder_position_bias=encoder_decoder_position_bias, + layer_head_mask=layer_head_mask, + cross_attn_layer_head_mask=cross_attn_layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + output_router_logits=output_router_logits, + ) + + router_probs = layer_outputs[-1] + layer_outputs = layer_outputs[:-1] + + # layer_outputs is a tuple with: + # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) + if use_cache is False: + layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] + + hidden_states, present_key_value_state = layer_outputs[:2] + + # We share the position biases between the layers - the first layer store them + # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), + # (cross-attention position bias), (cross-attention weights) + position_bias = layer_outputs[2] + if self.is_decoder and encoder_hidden_states is not None: + encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] + # append next layer key value states + if use_cache: + present_key_value_states = present_key_value_states + (present_key_value_state,) + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[3],) + if self.is_decoder: + all_cross_attentions = all_cross_attentions + (layer_outputs[5],) + + if output_router_logits: + all_router_probs = all_router_probs + (router_probs,) + + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + present_key_value_states, + all_hidden_states, + all_attentions, + all_cross_attentions, + all_router_probs, + ] + if v is not None + ) + return MoEModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_value_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + router_probs=all_router_probs, + ) + + +SWITCH_TRANSFORMERS_START_DOCSTRING = r""" + + The SWITCH_TRANSFORMERS model was proposed in [Switch Transformers: Scaling to Trillion Parameter Models with + Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by [William + Fedus](https://arxiv.org/search/cs?searchtype=author&query=Fedus%2C+W), [Barret + Zoph](https://arxiv.org/search/cs?searchtype=author&query=Zoph%2C+B), and [Noam + Shazeer](https://arxiv.org/search/cs?searchtype=author&query=Shazeer%2C+N). It's an encoder-decoder T5-like model + with sparse Feed Forward that stands for Mixture of Experts (MoE) architecture. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`SwitchTransformersConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +SWITCH_TRANSFORMERS_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. SWITCH_TRANSFORMERS is a model with relative position + embeddings so you should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + [What are input IDs?](../glossary#input-ids) + + To know more on how to prepare `input_ids` for pretraining take a look a [SWITCH_TRANSFORMERS + Training](./switch_transformers#training). + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + SWITCH_TRANSFORMERS uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + To know more on how to prepare `decoder_input_ids` for pretraining take a look at [SWITCH_TRANSFORMERS + Training](./switch_transformers#training). + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in + `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at + the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, and + should not be returned during inference. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +SWITCH_TRANSFORMERS_ENCODER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. SWITCH_TRANSFORMERS is a model with relative position + embeddings so you should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + To know more on how to prepare `input_ids` for pretraining take a look a [SWITCH_TRANSFORMERS + Training](./switch_transformers#training). + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, and + should not be returned during inference. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask +__HEAD_MASK_WARNING_MSG = """ +The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, +`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. +If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, +num_heads)`. +""" + + +@add_start_docstrings( + "The bare SWITCH_TRANSFORMERS Model transformer outputting raw hidden-states without any specific head on top.", + SWITCH_TRANSFORMERS_START_DOCSTRING, +) +class SwitchTransformersModel(SwitchTransformersPreTrainedModel): + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + def __init__(self, config: SwitchTransformersConfig): + super().__init__(config) + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.is_decoder = False + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = SwitchTransformersStack(encoder_config, self.shared) + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.is_encoder_decoder = False + self.decoder = SwitchTransformersStack(decoder_config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + # Model parallel + self.device_map = None + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + self.decoder.set_input_embeddings(new_embeddings) + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) + self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(SWITCH_TRANSFORMERS_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqMoEModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqMoEModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, SwitchTransformersModel + + >>> tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8") + >>> model = SwitchTransformersModel.from_pretrained("google/switch-base-8") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 + + >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for SwitchTransformersModel. + >>> # This is not needed for torch's SwitchTransformersForConditionalGeneration as it does this internally using labels arg. + >>> decoder_input_ids = model._shift_right(decoder_input_ids) + + >>> # forward pass + >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) + >>> last_hidden_states = outputs.last_hidden_state + ```""" + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask + if head_mask is not None and decoder_head_mask is None: + if self.config.num_layers == self.config.num_decoder_layers: + warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) + decoder_head_mask = head_mask + + if ( + output_router_logits + and self.config.num_sparse_encoder_layers == 0 + and self.config.num_sparse_encoder_layers == 0 + ): + raise ValueError( + "You asked to return `output_router_logits` but the transformer in dense, and does " + " not contain any sparse MLP Layers. Set `output_router_logits = False` and restart" + ) + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + ) + elif return_dict and not isinstance(encoder_outputs, MoEModelOutput): + encoder_outputs = MoEModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None, + ) + + hidden_states = encoder_outputs[0] + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + inputs_embeds=decoder_inputs_embeds, + past_key_values=past_key_values, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqMoEModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + decoder_router_logits=decoder_outputs.router_probs, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + encoder_router_logits=encoder_outputs.router_probs, + ) + + +@add_start_docstrings( + """SWITCH_TRANSFORMERS Model with a `language modeling` head on top.""", SWITCH_TRANSFORMERS_START_DOCSTRING +) +class SwitchTransformersForConditionalGeneration(SwitchTransformersPreTrainedModel): + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] + + def __init__(self, config: SwitchTransformersConfig): + super().__init__(config) + self.model_dim = config.d_model + + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.is_decoder = False + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = SwitchTransformersStack(encoder_config, self.shared) + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.is_encoder_decoder = False + decoder_config.num_layers = config.num_decoder_layers + self.decoder = SwitchTransformersStack(decoder_config, self.shared) + + self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) + + self.router_z_loss_coef = config.router_z_loss_coef + self.router_aux_loss_coef = config.router_aux_loss_coef + + # Initialize weights and apply final processing + self.post_init() + + # Model parallel + self.device_map = None + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + self.decoder.set_input_embeddings(new_embeddings) + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) + self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def get_output_embeddings(self): + return self.lm_head + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(SWITCH_TRANSFORMERS_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqMoEOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = True, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqMoEOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., + config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for + labels in `[0, ..., config.vocab_size]` + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8") + >>> model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-8") + + >>> # training + >>> input_ids = tokenizer("The walks in park", return_tensors="pt").input_ids + >>> labels = tokenizer(" cute dog the ", return_tensors="pt").input_ids + >>> outputs = model(input_ids=input_ids, labels=labels) + >>> loss = outputs.loss + >>> logits = outputs.logits + + >>> # inference + >>> input_ids = tokenizer( + ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> outputs = model.generate(input_ids) + >>> # . To, let’s say you have a dog. To summarize: + >>> # Since the model has been trained on MLM, this will output gibberish + ```""" + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask + if head_mask is not None and decoder_head_mask is None: + if self.config.num_layers == self.config.num_decoder_layers: + warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) + decoder_head_mask = head_mask + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + # Convert encoder inputs in embeddings if needed + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + ) + elif return_dict and not isinstance(encoder_outputs, MoEModelOutput): + encoder_outputs = MoEModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None, + ) + + hidden_states = encoder_outputs[0] + + if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: + # get decoder inputs from shifting lm labels to the right + decoder_input_ids = self._shift_right(labels) + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + inputs_embeds=decoder_inputs_embeds, + past_key_values=past_key_values, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + ) + + sequence_output = decoder_outputs[0] + + if self.config.tie_word_embeddings: + # Rescale output before projecting on vocab + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 + sequence_output = sequence_output * (self.model_dim**-0.5) + + lm_logits = self.lm_head(sequence_output) + + loss = None + encoder_z_loss = None + encoder_aux_loss = None + decoder_z_loss = None + decoder_aux_loss = None + + if output_router_logits: + # Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder + if self.encoder.config.encoder_sparse_step > 1: + encoder_router_logits, encoder_expert_indexes = self._unpack_router_logits(encoder_outputs[-1]) + encoder_z_loss = router_z_loss_func(encoder_router_logits) + encoder_router_probs = nn.Softmax(dim=-1)(encoder_router_logits) + encoder_aux_loss = load_balancing_loss_func(encoder_router_probs, encoder_expert_indexes) + else: + encoder_z_loss = 0 + encoder_aux_loss = 0 + + if self.decoder.config.decoder_sparse_step > 1: + decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(decoder_outputs[-1]) + decoder_z_loss = router_z_loss_func(decoder_router_logits) + decoder_router_probs = nn.Softmax(dim=-1)(decoder_router_logits) + decoder_aux_loss = load_balancing_loss_func(decoder_router_probs, decoder_expert_indexes) + else: + decoder_z_loss = 0 + decoder_aux_loss = 0 + + if labels is not None: + loss_fct = CrossEntropyLoss(ignore_index=-100) + # move labels to correct device to enable PP + labels = labels.to(lm_logits.device) + loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) + + if output_router_logits: + z_loss = self.router_z_loss_coef * (encoder_z_loss + decoder_z_loss) + aux_loss = self.router_aux_loss_coef * (encoder_aux_loss + decoder_aux_loss) + loss = loss + z_loss + aux_loss + + if not return_dict: + output = (lm_logits,) + if output_router_logits: + output += (encoder_z_loss, encoder_aux_loss, decoder_z_loss, decoder_aux_loss) + output += (*decoder_outputs[1:], *encoder_outputs) + + return ((loss,) + output) if loss is not None else output + + return Seq2SeqMoEOutput( + loss=loss, + logits=lm_logits, + encoder_z_loss=encoder_z_loss, + encoder_aux_loss=encoder_aux_loss, + decoder_z_loss=decoder_z_loss, + decoder_aux_loss=decoder_aux_loss, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + decoder_router_logits=decoder_outputs.router_probs, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + encoder_router_logits=encoder_outputs.router_probs, + ) + + def _unpack_router_logits(self, router_outputs): + total_router_logits = [] + total_expert_indexes = [] + for router_output in router_outputs: + if len(router_output[0].shape) > 1: + router_logits, expert_indexes = router_output + total_router_logits.append(router_logits) + total_expert_indexes.append(expert_indexes) + return torch.cat(total_router_logits, dim=1), torch.cat(total_expert_indexes, dim=1) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return { + "decoder_input_ids": input_ids, + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, + } + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return self._shift_right(labels) + + def _reorder_cache(self, past_key_values, beam_idx): + # if decoder past is not included in output + # speedy decoding is disabled and no need to reorder + if past_key_values is None: + logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") + return past_key_values + + reordered_decoder_past = () + for layer_past_states in past_key_values: + # get the correct batch idx from layer past batch dim + # batch dim of `past` is at 2nd position + reordered_layer_past_states = () + for layer_past_state in layer_past_states: + # need to set correct `past` for each of the four key / value states + reordered_layer_past_states = reordered_layer_past_states + ( + layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), + ) + + if reordered_layer_past_states[0].shape != layer_past_states[0].shape: + raise ValueError( + "expected reordered_layer_past_states to have the same shape than layer_past_states, " + f"but got {reordered_layer_past_states[0].shape} and {layer_past_states[0].shape}" + ) + if len(reordered_layer_past_states) != len(layer_past_states): + raise ValueError( + "expected layer_past_states to have the same length as reordered_layer_past_states, " + f"but got {len(layer_past_states)} and {len(reordered_layer_past_states)}" + ) + + reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) + return reordered_decoder_past + + +@add_start_docstrings( + "The bare SWITCH_TRANSFORMERS Model transformer outputting encoder's raw hidden-states without any specific head" + " on top.", + SWITCH_TRANSFORMERS_START_DOCSTRING, +) +class SwitchTransformersEncoderModel(SwitchTransformersPreTrainedModel): + _tied_weights_keys = ["encoder.embed_tokens.weight"] + + def __init__(self, config: SwitchTransformersConfig): + super().__init__(config) + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = SwitchTransformersStack(encoder_config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + # Model parallel + self.device_map = None + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) + + def get_encoder(self): + return self.encoder + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(SWITCH_TRANSFORMERS_ENCODER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=MoEModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = True, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], MoEModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, SwitchTransformersEncoderModel + + >>> tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8") + >>> model = SwitchTransformersEncoderModel.from_pretrained("google/switch-base-8") + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> outputs = model(input_ids=input_ids) + >>> last_hidden_states = outputs.last_hidden_state + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + ) + + return encoder_outputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..dbdbe238ba3376303db04849091312906c96d52f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__init__.py @@ -0,0 +1,160 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_sentencepiece_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = {"configuration_t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config", "T5OnnxConfig"]} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_t5"] = ["T5Tokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_t5_fast"] = ["T5TokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_t5"] = [ + "T5_PRETRAINED_MODEL_ARCHIVE_LIST", + "T5EncoderModel", + "T5ForConditionalGeneration", + "T5Model", + "T5PreTrainedModel", + "load_tf_weights_in_t5", + "T5ForQuestionAnswering", + "T5ForSequenceClassification", + "T5ForTokenClassification", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_t5"] = [ + "TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFT5EncoderModel", + "TFT5ForConditionalGeneration", + "TFT5Model", + "TFT5PreTrainedModel", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_t5"] = [ + "FlaxT5EncoderModel", + "FlaxT5ForConditionalGeneration", + "FlaxT5Model", + "FlaxT5PreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config, T5OnnxConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_t5 import T5Tokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_t5_fast import T5TokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_t5 import ( + T5_PRETRAINED_MODEL_ARCHIVE_LIST, + T5EncoderModel, + T5ForConditionalGeneration, + T5ForQuestionAnswering, + T5ForSequenceClassification, + T5ForTokenClassification, + T5Model, + T5PreTrainedModel, + load_tf_weights_in_t5, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_t5 import ( + TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST, + TFT5EncoderModel, + TFT5ForConditionalGeneration, + TFT5Model, + TFT5PreTrainedModel, + ) + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_t5 import ( + FlaxT5EncoderModel, + FlaxT5ForConditionalGeneration, + FlaxT5Model, + FlaxT5PreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..371716b4bab56d84d9a0f7bf05e309ffc8854291 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/configuration_t5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/configuration_t5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6a23439f2c3f3be4a74430abc00de68d6506fa2b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/configuration_t5.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/convert_t5_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/convert_t5_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..047fca901081576924658bbe64b47b7b3eea3ef7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/convert_t5_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/convert_t5x_checkpoint_to_flax.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/convert_t5x_checkpoint_to_flax.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a115fcd746711246ef1f93732ecc6d504cadaa2a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/convert_t5x_checkpoint_to_flax.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/convert_t5x_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/convert_t5x_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea4b0e202b0f1baabe8cf2105724cb6594d52d11 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/convert_t5x_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/modeling_flax_t5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/modeling_flax_t5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c22be784d5ce2aba7047c0c015ad4f7749c66428 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/modeling_flax_t5.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/modeling_t5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/modeling_t5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..478d4227bd2cee680f5cdf941eecf8e586d8bbaa Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/modeling_t5.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/modeling_tf_t5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/modeling_tf_t5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b90ecd336c1ee075b1603e621908b952cc0b328f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/modeling_tf_t5.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/tokenization_t5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/tokenization_t5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a803e5cba4b3a703991b1465469155e2f3447dab Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/tokenization_t5.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/tokenization_t5_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/tokenization_t5_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..48dc7a5b7b52619be47ede83dd4f9cbb95fb0e98 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/__pycache__/tokenization_t5_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/configuration_t5.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/configuration_t5.py new file mode 100644 index 0000000000000000000000000000000000000000..2633ee630dff9053d5a3e0209697efc6e67eab60 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/configuration_t5.py @@ -0,0 +1,165 @@ +# coding=utf-8 +# Copyright 2020, The T5 Authors and HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" T5 model configuration""" +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxSeq2SeqConfigWithPast +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import T5_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class T5Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to + instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the T5 + [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Arguments: + vocab_size (`int`, *optional*, defaults to 32128): + Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`]. + d_model (`int`, *optional*, defaults to 512): + Size of the encoder layers and the pooler layer. + d_kv (`int`, *optional*, defaults to 64): + Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will + be defined as `num_heads * d_kv`. + d_ff (`int`, *optional*, defaults to 2048): + Size of the intermediate feed forward layer in each `T5Block`. + num_layers (`int`, *optional*, defaults to 6): + Number of hidden layers in the Transformer encoder. + num_decoder_layers (`int`, *optional*): + Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. + num_heads (`int`, *optional*, defaults to 8): + Number of attention heads for each attention layer in the Transformer encoder. + relative_attention_num_buckets (`int`, *optional*, defaults to 32): + The number of buckets to use for each attention layer. + relative_attention_max_distance (`int`, *optional*, defaults to 128): + The maximum distance of the longer sequences for the bucket separation. + dropout_rate (`float`, *optional*, defaults to 0.1): + The ratio for all dropout layers. + classifier_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for classifier. + layer_norm_eps (`float`, *optional*, defaults to 1e-6): + The epsilon used by the layer normalization layers. + initializer_factor (`float`, *optional*, defaults to 1): + A factor for initializing all weight matrices (should be kept to 1, used internally for initialization + testing). + feed_forward_proj (`string`, *optional*, defaults to `"relu"`): + Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the + `"gated-gelu"` feed forward projection. Original T5 uses `"relu"`. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + """ + + model_type = "t5" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} + + def __init__( + self, + vocab_size=32128, + d_model=512, + d_kv=64, + d_ff=2048, + num_layers=6, + num_decoder_layers=None, + num_heads=8, + relative_attention_num_buckets=32, + relative_attention_max_distance=128, + dropout_rate=0.1, + layer_norm_epsilon=1e-6, + initializer_factor=1.0, + feed_forward_proj="relu", + is_encoder_decoder=True, + use_cache=True, + pad_token_id=0, + eos_token_id=1, + classifier_dropout=0.0, + **kwargs, + ): + self.vocab_size = vocab_size + self.d_model = d_model + self.d_kv = d_kv + self.d_ff = d_ff + self.num_layers = num_layers + self.num_decoder_layers = ( + num_decoder_layers if num_decoder_layers is not None else self.num_layers + ) # default = symmetry + self.num_heads = num_heads + self.relative_attention_num_buckets = relative_attention_num_buckets + self.relative_attention_max_distance = relative_attention_max_distance + self.dropout_rate = dropout_rate + self.classifier_dropout = classifier_dropout + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_factor = initializer_factor + self.feed_forward_proj = feed_forward_proj + self.use_cache = use_cache + + act_info = self.feed_forward_proj.split("-") + self.dense_act_fn = act_info[-1] + self.is_gated_act = act_info[0] == "gated" + + if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: + raise ValueError( + f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " + "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " + "'gated-gelu' or 'relu'" + ) + + # for backwards compatibility + if feed_forward_proj == "gated-gelu": + self.dense_act_fn = "gelu_new" + + super().__init__( + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + **kwargs, + ) + + +class T5OnnxConfig(OnnxSeq2SeqConfigWithPast): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + common_inputs = { + "input_ids": {0: "batch", 1: "encoder_sequence"}, + "attention_mask": {0: "batch", 1: "encoder_sequence"}, + } + if self.use_past: + common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence" + common_inputs["decoder_input_ids"] = {0: "batch"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + else: + common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} + + if self.use_past: + self.fill_with_past_key_values_(common_inputs, direction="inputs") + + return common_inputs + + @property + def default_onnx_opset(self) -> int: + return 13 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/convert_t5_original_tf_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/convert_t5_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..7d9a20f3b0b395ffd31a2e8445d94aedb6036a6e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/convert_t5_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,60 @@ +# coding=utf-8 +# Copyright 2018 The T5 authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert T5 checkpoint.""" + + +import argparse + +from transformers import T5Config, T5ForConditionalGeneration, load_tf_weights_in_t5 +from transformers.utils import logging + + +logging.set_verbosity_info() + + +def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path): + # Initialise PyTorch model + config = T5Config.from_json_file(config_file) + print(f"Building PyTorch model from configuration: {config}") + model = T5ForConditionalGeneration(config) + + # Load weights from tf checkpoint + load_tf_weights_in_t5(model, config, tf_checkpoint_path) + + # Save pytorch-model + print(f"Save PyTorch model to {pytorch_dump_path}") + model.save_pretrained(pytorch_dump_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." + ) + parser.add_argument( + "--config_file", + default=None, + type=str, + required=True, + help=( + "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." + ), + ) + parser.add_argument( + "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/convert_t5x_checkpoint_to_flax.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/convert_t5x_checkpoint_to_flax.py new file mode 100644 index 0000000000000000000000000000000000000000..11f32c8461e97c5bc6f7562cbed6f5c3b27dea7e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/convert_t5x_checkpoint_to_flax.py @@ -0,0 +1,235 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Convert T5X checkpoints from the original repository to JAX/FLAX model.""" + +import argparse + +from t5x import checkpoints + +from transformers import FlaxT5ForConditionalGeneration, T5Config + + +def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path): + config = T5Config.from_pretrained(config_name) + flax_model = FlaxT5ForConditionalGeneration(config=config) + t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path) + + split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["layers_0"]["mlp"] + + # Encoder + for layer_index in range(config.num_layers): + layer_name = f"layers_{str(layer_index)}" + + # Self-Attention + t5x_attention_key = t5x_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] + t5x_attention_out = t5x_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] + t5x_attention_query = t5x_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] + t5x_attention_value = t5x_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] + + # Layer Normalization + t5x_attention_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] + + if split_mlp_wi: + t5x_mlp_wi_0 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] + t5x_mlp_wi_1 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] + else: + t5x_mlp_wi = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] + + t5x_mlp_wo = t5x_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] + + # Layer Normalization + t5x_mlp_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] + + # Assigning + flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"][ + "kernel" + ] = t5x_attention_key + flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"][ + "kernel" + ] = t5x_attention_out + flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"][ + "kernel" + ] = t5x_attention_query + flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"][ + "kernel" + ] = t5x_attention_value + + flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"][ + "weight" + ] = t5x_attention_layer_norm + + if split_mlp_wi: + flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_0"][ + "kernel" + ] = t5x_mlp_wi_0 + flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_1"][ + "kernel" + ] = t5x_mlp_wi_1 + else: + flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi"][ + "kernel" + ] = t5x_mlp_wi + + flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wo"][ + "kernel" + ] = t5x_mlp_wo + flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"][ + "weight" + ] = t5x_mlp_layer_norm + + # Only for layer 0: + t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T + flax_model.params["encoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"][ + "embedding" + ] = t5x_encoder_rel_embedding + + # Assigning + t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"] + flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm + + # Decoder + for layer_index in range(config.num_decoder_layers): + layer_name = f"layers_{str(layer_index)}" + + # Self-Attention + t5x_attention_key = t5x_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] + t5x_attention_out = t5x_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] + t5x_attention_query = t5x_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] + t5x_attention_value = t5x_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] + + # Layer Normalization + t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ + "scale" + ] + + # Encoder-Decoder-Attention + t5x_enc_dec_attention_key = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["key"][ + "kernel" + ] + t5x_enc_dec_attention_out = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["out"][ + "kernel" + ] + t5x_enc_dec_attention_query = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["query"][ + "kernel" + ] + t5x_enc_dec_attention_value = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]["value"][ + "kernel" + ] + + # Layer Normalization + t5x_cross_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] + + # MLP + if split_mlp_wi: + t5x_mlp_wi_0 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] + t5x_mlp_wi_1 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] + else: + t5x_mlp_wi = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] + + t5x_mlp_wo = t5x_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] + + # Layer Normalization + tx5_mlp_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] + + # Assigning + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"][ + "kernel" + ] = t5x_attention_key + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"][ + "kernel" + ] = t5x_attention_out + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"][ + "kernel" + ] = t5x_attention_query + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"][ + "kernel" + ] = t5x_attention_value + + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"][ + "weight" + ] = t5x_pre_attention_layer_norm + + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["k"][ + "kernel" + ] = t5x_enc_dec_attention_key + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["o"][ + "kernel" + ] = t5x_enc_dec_attention_out + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["q"][ + "kernel" + ] = t5x_enc_dec_attention_query + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["v"][ + "kernel" + ] = t5x_enc_dec_attention_value + + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"][ + "weight" + ] = t5x_cross_layer_norm + + if split_mlp_wi: + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_0"][ + "kernel" + ] = t5x_mlp_wi_0 + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_1"][ + "kernel" + ] = t5x_mlp_wi_1 + else: + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi"][ + "kernel" + ] = t5x_mlp_wi + + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wo"][ + "kernel" + ] = t5x_mlp_wo + + flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["layer_norm"][ + "weight" + ] = tx5_mlp_layer_norm + + # Decoder Normalization + tx5_decoder_norm = t5x_model["target"]["decoder"]["decoder_norm"]["scale"] + flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm + + # Only for layer 0: + t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T + flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"][ + "embedding" + ] = t5x_decoder_rel_embedding + + # Token Embeddings + tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"] + flax_model.params["shared"]["embedding"] = tx5_token_embeddings + + # LM Head (only in v1.1 checkpoints) + if "logits_dense" in t5x_model["target"]["decoder"]: + flax_model.params["lm_head"]["kernel"] = t5x_model["target"]["decoder"]["logits_dense"]["kernel"] + + flax_model.save_pretrained(flax_dump_folder_path) + print("T5X Model was sucessfully converted!") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the TX5 checkpoint." + ) + parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of T5 model.") + parser.add_argument( + "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." + ) + args = parser.parse_args() + convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/convert_t5x_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/convert_t5x_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..5e7d9ef33d3e8a6c40a726983beab5b3ec6b67f4 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/convert_t5x_checkpoint_to_pytorch.py @@ -0,0 +1,238 @@ +# coding=utf-8 +# Copyright 2022 Google LLC and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Convert T5X checkpoint to PyTorch + +Steps: +- Install gsutil according to https://cloud.google.com/storage/docs/gsutil_install +- Get a T5X checkpoint at https://github.com/google-research/t5x/blob/main/docs/models.md#t5-11-checkpoints Example: + `gsutil -m cp -r gs://t5-data/pretrained_models/t5x/t5_1_1_small $HOME/` +- Create or download a corresponding config for the downloaded model. E.g. for T5 v1.1 small, you can use + https://huggingface.co/google/t5-v1_1-small/blob/main/config.json +- Convert: + ``` + python3 convert_t5x_checkpoint_to_pytorch.py --t5x_checkpoint_path=$HOME/t5_1_1_small --config_file=config.json\ + --pytorch_dump_path=$HOME/t5_1_1_small_pt + ``` +""" + +import argparse +import collections + +import torch +from flax import traverse_util +from t5x import checkpoints + +from transformers import T5Config, T5EncoderModel, T5ForConditionalGeneration +from transformers.utils import logging + + +logging.set_verbosity_info() + + +def t5x_attention_lookup(params, i, prefix, layer_name="attention"): + """Returns the KOQV parameters of (self-)attention. Does not transpose.""" + k = params[f"{prefix}/layers_{i}/{layer_name}/key/kernel"] + o = params[f"{prefix}/layers_{i}/{layer_name}/out/kernel"] + q = params[f"{prefix}/layers_{i}/{layer_name}/query/kernel"] + v = params[f"{prefix}/layers_{i}/{layer_name}/value/kernel"] + return k, o, q, v + + +def t5x_mlp_lookup(params, i, prefix, split_mlp_wi=False): + """Returns the MLP parameters of a layer. Does not transpose.""" + if split_mlp_wi: + wi_0 = params[f"{prefix}/layers_{i}/mlp/wi_0/kernel"] + wi_1 = params[f"{prefix}/layers_{i}/mlp/wi_1/kernel"] + wi = (wi_0, wi_1) + else: + wi = params[f"{prefix}/layers_{i}/mlp/wi/kernel"] + + wo = params[f"{prefix}/layers_{i}/mlp/wo/kernel"] + return wi, wo + + +def t5x_layer_norm_lookup(params, i, prefix, layer_name): + """Returns the layer norm param of a layer.""" + return params[f"{prefix}/layers_{i}/{layer_name}/scale"] + + +def convert_t5x_to_pytorch(variables: dict, *, num_layers: int, num_decoder_layers: int, is_encoder_only: bool): + """Converts the parameters from T5X-Flax to Transformers-PyTorch.""" + old = traverse_util.flatten_dict(variables["target"]) + old = {"/".join(k): v for k, v in old.items()} + + # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi + split_mlp_wi = "encoder/layers_0/mlp/wi_0/kernel" in old + print("Split MLP:", split_mlp_wi) + + new = collections.OrderedDict() + + # Shared embeddings. + new["shared.weight"] = old["token_embedder/embedding"] + + # Encoder. + for i in range(num_layers): + # Block i, layer 0 (Self Attention). + layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_attention_layer_norm") + k, o, q, v = t5x_attention_lookup(old, i, "encoder", "attention") + new[f"encoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm + new[f"encoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T + new[f"encoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T + new[f"encoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T + new[f"encoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T + + # Block i, layer 1 (MLP). + layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_mlp_layer_norm") + wi, wo = t5x_mlp_lookup(old, i, "encoder", split_mlp_wi) + new[f"encoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm + if split_mlp_wi: + new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_0.weight"] = wi[0].T + new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_1.weight"] = wi[1].T + else: + new[f"encoder.block.{i}.layer.1.DenseReluDense.wi.weight"] = wi.T + new[f"encoder.block.{i}.layer.1.DenseReluDense.wo.weight"] = wo.T + + new["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = old[ + "encoder/relpos_bias/rel_embedding" + ].T + new["encoder.final_layer_norm.weight"] = old["encoder/encoder_norm/scale"] + + if not is_encoder_only: + # Decoder. + for i in range(num_decoder_layers): + # Block i, layer 0 (Self Attention). + layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_self_attention_layer_norm") + k, o, q, v = t5x_attention_lookup(old, i, "decoder", "self_attention") + new[f"decoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm + new[f"decoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T + new[f"decoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T + new[f"decoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T + new[f"decoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T + + # Block i, layer 1 (Cross Attention). + layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_cross_attention_layer_norm") + k, o, q, v = t5x_attention_lookup(old, i, "decoder", "encoder_decoder_attention") + new[f"decoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm + new[f"decoder.block.{i}.layer.1.EncDecAttention.k.weight"] = k.T + new[f"decoder.block.{i}.layer.1.EncDecAttention.o.weight"] = o.T + new[f"decoder.block.{i}.layer.1.EncDecAttention.q.weight"] = q.T + new[f"decoder.block.{i}.layer.1.EncDecAttention.v.weight"] = v.T + + # Block i, layer 2 (MLP). + layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_mlp_layer_norm") + wi, wo = t5x_mlp_lookup(old, i, "decoder", split_mlp_wi) + new[f"decoder.block.{i}.layer.2.layer_norm.weight"] = layer_norm + if split_mlp_wi: + new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_0.weight"] = wi[0].T + new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_1.weight"] = wi[1].T + else: + new[f"decoder.block.{i}.layer.2.DenseReluDense.wi.weight"] = wi.T + new[f"decoder.block.{i}.layer.2.DenseReluDense.wo.weight"] = wo.T + + new["decoder.final_layer_norm.weight"] = old["decoder/decoder_norm/scale"] + new["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = old[ + "decoder/relpos_bias/rel_embedding" + ].T + + # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) + if "decoder/logits_dense/kernel" in old: + new["lm_head.weight"] = old["decoder/logits_dense/kernel"].T + + return new + + +def make_state_dict(converted_params, is_encoder_only: bool): + """Prepares a state dict for the PyTorch model.""" + # Make a state dict with torch tensors. + state_dict = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()]) + + # Add what is missing. + if "encoder.embed_tokens.weight" not in state_dict: + state_dict["encoder.embed_tokens.weight"] = state_dict["shared.weight"] + + if not is_encoder_only: + if "decoder.embed_tokens.weight" not in state_dict: + state_dict["decoder.embed_tokens.weight"] = state_dict["shared.weight"] + + if "lm_head.weight" not in state_dict: # For old 1.0 models. + print("Using shared word embeddings as lm_head.") + state_dict["lm_head.weight"] = state_dict["shared.weight"] + + return state_dict + + +def load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only): + """Replaces the params in model witht the T5X converted params.""" + variables = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path) + converted = convert_t5x_to_pytorch( + variables, + num_layers=config.num_layers, + num_decoder_layers=config.num_decoder_layers, + is_encoder_only=is_encoder_only, + ) + state_dict = make_state_dict(converted, is_encoder_only) + model.load_state_dict(state_dict, strict=True) + + +def convert_t5x_checkpoint_to_pytorch( + t5x_checkpoint_path, config_file, pytorch_dump_path, is_encoder_only: bool = False +): + """Loads the config and model, converts the T5X checkpoint, and saves a PyTorch checkpoint.""" + # Initialise PyTorch model + config = T5Config.from_json_file(config_file) + print(f"Building PyTorch model from configuration: {config}") + # Non-v1.1 checkpoints could also use T5Model, but this works for all. + # The v1.0 checkpoints will simply have an LM head that is the word embeddings. + if is_encoder_only: + model = T5EncoderModel(config) + else: + model = T5ForConditionalGeneration(config) + + # Load weights from tf checkpoint + load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only) + + # Save pytorch-model + print(f"Save PyTorch model to {pytorch_dump_path}") + model.save_pretrained(pytorch_dump_path) + + # Verify that we can load the checkpoint. + model.from_pretrained(pytorch_dump_path) + print("Done") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") + # Required parameters + parser.add_argument( + "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." + ) + parser.add_argument( + "--config_file", + default=None, + type=str, + required=True, + help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", + ) + parser.add_argument( + "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + parser.add_argument( + "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False + ) + args = parser.parse_args() + convert_t5x_checkpoint_to_pytorch( + args.t5x_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/modeling_flax_t5.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/modeling_flax_t5.py new file mode 100644 index 0000000000000000000000000000000000000000..94b24bd42f9671d6688f9d6bf5cb2dec8b4b392d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/modeling_flax_t5.py @@ -0,0 +1,1799 @@ +# coding=utf-8 +# Copyright 2021 T5 Authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax T5 model.""" + + +import copy +from typing import Callable, Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen import partitioning as nn_partitioning +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax.random import PRNGKey + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxSeq2SeqLMOutput, + FlaxSeq2SeqModelOutput, +) +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_call_sample_docstring, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_t5 import T5Config + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google-t5/t5-small" +_CONFIG_FOR_DOC = "T5Config" + +remat = nn_partitioning.remat + + +# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right +def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: + """ + Shift input ids one token to the right. + """ + shifted_input_ids = jnp.zeros_like(input_ids) + shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) + shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) + + shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) + return shifted_input_ids + + +class FlaxT5LayerNorm(nn.Module): + hidden_size: int + dtype: jnp.dtype = jnp.float32 + eps: float = 1e-6 + weight_init: Callable[..., np.ndarray] = jax.nn.initializers.ones + + def setup(self): + self.weight = self.param("weight", self.weight_init, (self.hidden_size,)) + + def __call__(self, hidden_states): + """ + Construct a layernorm module in the T5 style; No bias and no subtraction of mean. + """ + # layer norm should always be calculated in float32 + variance = jnp.power(hidden_states.astype("f4"), 2).mean(axis=-1, keepdims=True) + hidden_states = hidden_states / jnp.sqrt(variance + self.eps) + + return self.weight * hidden_states + + +class FlaxT5DenseActDense(nn.Module): + config: T5Config + dtype: jnp.dtype = jnp.float32 + + def setup(self): + wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) + wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) + + self.wi = nn.Dense( + self.config.d_ff, + use_bias=False, + kernel_init=jax.nn.initializers.normal(wi_init_std), + dtype=self.dtype, + ) + self.wo = nn.Dense( + self.config.d_model, + use_bias=False, + kernel_init=jax.nn.initializers.normal(wo_init_std), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + self.act = ACT2FN[self.config.dense_act_fn] + + def __call__(self, hidden_states, deterministic=True): + hidden_states = self.wi(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.wo(hidden_states) + return hidden_states + + +class FlaxT5DenseGatedActDense(nn.Module): + config: T5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) + wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) + + self.wi_0 = nn.Dense( + self.config.d_ff, + use_bias=False, + kernel_init=jax.nn.initializers.normal(wi_init_std), + dtype=self.dtype, + ) + self.wi_1 = nn.Dense( + self.config.d_ff, + use_bias=False, + kernel_init=jax.nn.initializers.normal(wi_init_std), + dtype=self.dtype, + ) + self.wo = nn.Dense( + self.config.d_model, + use_bias=False, + kernel_init=jax.nn.initializers.normal(wo_init_std), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + self.act = ACT2FN[self.config.dense_act_fn] + + def __call__(self, hidden_states, deterministic): + hidden_gelu = self.act(self.wi_0(hidden_states)) + hidden_linear = self.wi_1(hidden_states) + hidden_states = hidden_gelu * hidden_linear + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.wo(hidden_states) + return hidden_states + + +class FlaxT5LayerFF(nn.Module): + config: T5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + if self.config.is_gated_act: + self.DenseReluDense = FlaxT5DenseGatedActDense(self.config, dtype=self.dtype) + else: + self.DenseReluDense = FlaxT5DenseActDense(self.config, dtype=self.dtype) + + self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype) + self.dropout = nn.Dropout(self.config.dropout_rate) + + def __call__(self, hidden_states, deterministic=True): + forwarded_states = self.layer_norm(hidden_states) + forwarded_states = self.DenseReluDense(forwarded_states, deterministic=deterministic) + hidden_states = hidden_states + self.dropout(forwarded_states, deterministic=deterministic) + return hidden_states + + +class FlaxT5Attention(nn.Module): + config: T5Config + has_relative_attention_bias: bool = False + causal: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.relative_attention_num_buckets = self.config.relative_attention_num_buckets + self.relative_attention_max_distance = self.config.relative_attention_max_distance + self.d_model = self.config.d_model + self.key_value_proj_dim = self.config.d_kv + self.n_heads = self.config.num_heads + self.dropout = self.config.dropout_rate + self.inner_dim = self.n_heads * self.key_value_proj_dim + + q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) + kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) + o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) + + self.q = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(q_init_std), + dtype=self.dtype, + ) + self.k = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(kv_init_std), + dtype=self.dtype, + ) + self.v = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(kv_init_std), + dtype=self.dtype, + ) + self.o = nn.Dense( + self.d_model, + use_bias=False, + kernel_init=jax.nn.initializers.normal(o_init_std), + dtype=self.dtype, + ) + + if self.has_relative_attention_bias: + self.relative_attention_bias = nn.Embed( + self.relative_attention_num_buckets, + self.n_heads, + embedding_init=jax.nn.initializers.normal(kv_init_std), + dtype=self.dtype, + ) + + @staticmethod + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """ + Adapted from Mesh Tensorflow: + https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + """ + relative_buckets = 0 + if bidirectional: + num_buckets //= 2 + relative_buckets += (relative_position > 0) * num_buckets + relative_position = jnp.abs(relative_position) + else: + relative_position = -jnp.clip(relative_position, a_max=0) + # now relative_position is in the range [0, inf) + + # half of the buckets are for exact increments in positions + max_exact = num_buckets // 2 + is_small = relative_position < max_exact + + # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance + relative_position_if_large = max_exact + ( + jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) + ) + relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) + + relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) + + return relative_buckets.astype("i4") + + def compute_bias(self, query_length, key_length): + """Compute binned relative position bias""" + context_position = jnp.arange(query_length, dtype="i4")[:, None] + memory_position = jnp.arange(key_length, dtype="i4")[None, :] + + relative_position = memory_position - context_position + relative_position_bucket = self._relative_position_bucket( + relative_position, + bidirectional=(not self.causal), + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + + values = self.relative_attention_bias(relative_position_bucket) + values = values.transpose((2, 0, 1))[None, :, :, :] + return values + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.inner_dim,)) + + @nn.compact + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = jax.lax.dynamic_update_slice(cached_key.value, key, indices) + value = jax.lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions + # that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def _create_position_bias( + self, key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift + ): + cache_is_filled = self.causal and self.has_variable("cache", "cached_key") and (not init_cache) + key_length = key_states.shape[1] + query_length = key_length if cache_is_filled else query_states.shape[1] + + if self.has_relative_attention_bias: + position_bias = self.compute_bias(query_length, key_length) + elif attention_mask is not None: + position_bias = jnp.zeros_like(attention_mask) + else: + position_bias = jnp.zeros((1, self.n_heads, query_length, key_length), dtype=self.dtype) + + # if key and values are already calculated, only the last query position bias should be taken + if cache_is_filled: + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + position_bias = jax.lax.dynamic_slice( + position_bias, + (0, 0, causal_attention_mask_shift, 0), + (1, self.n_heads, seq_length, max_decoder_length), + ) + return position_bias + + def __call__( + self, + hidden_states, + attention_mask=None, + key_value_states=None, + position_bias=None, + use_cache=False, + output_attentions=False, + deterministic=True, + init_cache=False, + ): + """ + Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). + """ + batch_size, seq_length = hidden_states.shape[:2] + + # q, k, v projections + query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) + key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) + value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) + + # reshape to (batch_size, seq_length, n_heads, head_dim) + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # counter-act scaling in dot_product_attention_weights function + query_states *= jnp.sqrt(query_states.shape[-1]) + + # for fast decoding causal attention mask should be shifted + causal_attention_mask_shift = ( + self.variables["cache"]["cache_index"] if (self.has_variable("cache", "cached_key") and self.causal) else 0 + ) + # create causal attention_mask; attention_mask has to be defined when model is causal + if self.causal: + causal_attention_mask = make_causal_mask(attention_mask, dtype="bool") + + # fast decoding for generate requires special attention_mask + if self.has_variable("cache", "cached_key"): + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_attention_mask = jax.lax.dynamic_slice( + causal_attention_mask, + (0, 0, causal_attention_mask_shift, 0), + (1, 1, seq_length, max_decoder_length), + ) + + # broadcast causal attention mask & attention mask to fit for merge + causal_attention_mask = jnp.broadcast_to( + causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:] + ) + attention_mask = jnp.broadcast_to( + jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape + ) + attention_mask = combine_masks(attention_mask, causal_attention_mask) + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # replace masked positions with -10_000 + if attention_mask is not None: + mask_value = jnp.finfo(self.dtype).min + attention_mask = jax.lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, mask_value).astype(self.dtype), + ) + + if position_bias is None: + # compute position bias (only for first layer) + position_bias = self._create_position_bias( + key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift + ) + + if attention_mask is not None: + position_bias = position_bias + attention_mask + + # create dropout rng + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + # Softmax(QK^T) + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=position_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + ) + + # multiply with value states + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + + # bring back to (batch_size, seq_length, d_model) + attn_output = self._merge_heads(attn_output) + + # apply output matrix + attn_output = self.o(attn_output) + + outputs = (attn_output, position_bias) + + if output_attentions: + outputs = outputs + (attn_weights,) + + return outputs + + +class FlaxT5LayerSelfAttention(nn.Module): + config: T5Config + has_relative_attention_bias: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.SelfAttention = FlaxT5Attention( + self.config, + has_relative_attention_bias=self.has_relative_attention_bias, + causal=self.config.causal, + dtype=self.dtype, + ) + self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype) + self.dropout = nn.Dropout(self.config.dropout_rate) + + def __call__( + self, + hidden_states, + attention_mask=None, + position_bias=None, + output_attentions=False, + deterministic=True, + init_cache=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.SelfAttention( + normed_hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + output_attentions=output_attentions, + deterministic=deterministic, + init_cache=init_cache, + ) + hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + +class FlaxT5LayerCrossAttention(nn.Module): + config: T5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.EncDecAttention = FlaxT5Attention( + self.config, has_relative_attention_bias=False, causal=False, dtype=self.dtype + ) + self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype) + self.dropout = nn.Dropout(self.config.dropout_rate) + + def __call__( + self, + hidden_states, + key_value_states, + attention_mask=None, + position_bias=None, + output_attentions=False, + deterministic=True, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.EncDecAttention( + normed_hidden_states, + attention_mask=attention_mask, + key_value_states=key_value_states, + position_bias=position_bias, + output_attentions=output_attentions, + ) + hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + +class FlaxT5Block(nn.Module): + config: T5Config + has_relative_attention_bias: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.causal = self.config.causal + self.layer = ( + FlaxT5LayerSelfAttention( + self.config, + has_relative_attention_bias=self.has_relative_attention_bias, + name=str(0), + dtype=self.dtype, + ), + ) + feed_forward_index = 1 + if self.causal: + self.layer += (FlaxT5LayerCrossAttention(self.config, name=str(1), dtype=self.dtype),) + feed_forward_index += 1 + + self.layer += (FlaxT5LayerFF(self.config, name=str(feed_forward_index), dtype=self.dtype),) + + def __call__( + self, + hidden_states, + attention_mask=None, + position_bias=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + encoder_decoder_position_bias=None, + output_attentions=False, + return_dict=True, + deterministic=True, + init_cache=False, + ): + self_attention_outputs = self.layer[0]( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + output_attentions=output_attentions, + deterministic=deterministic, + init_cache=init_cache, + ) + hidden_states = self_attention_outputs[0] + attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights + + do_cross_attention = self.causal and encoder_hidden_states is not None + if do_cross_attention: + cross_attention_outputs = self.layer[1]( + hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + position_bias=encoder_decoder_position_bias, + output_attentions=output_attentions, + deterministic=deterministic, + ) + hidden_states = cross_attention_outputs[0] + + # Keep cross-attention outputs and relative position weights + attention_outputs = attention_outputs + cross_attention_outputs[1:] + + # Apply Feed Forward layer + hidden_states = self.layer[-1](hidden_states, deterministic=deterministic) + + outputs = (hidden_states,) + + outputs = outputs + attention_outputs + + # returns hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), + # (cross-attention position bias), (cross-attention weights) + return outputs + + +class FlaxT5LayerCollection(nn.Module): + config: T5Config + has_relative_attention_bias: bool + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layer = FlaxT5Block( + self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype + ) + + def __call__( + self, + hidden_states, + attention_mask=None, + position_bias=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + encoder_decoder_position_bias=None, + output_attentions=False, + deterministic=True, + init_cache=False, + ): + return self.layer( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + encoder_decoder_position_bias=encoder_decoder_position_bias, + output_attentions=output_attentions, + deterministic=deterministic, + init_cache=init_cache, + ) + + +class FlaxT5BlockCollection(nn.Module): + config: T5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + self.causal = self.config.causal + if self.gradient_checkpointing: + FlaxT5CheckpointLayer = remat(FlaxT5LayerCollection, static_argnums=(6, 7, 8)) + self.blocks = [ + FlaxT5CheckpointLayer( + self.config, + has_relative_attention_bias=(i == 0), + dtype=self.dtype, + name=str(i), + ) + for i in range(self.config.num_layers) + ] + else: + self.blocks = [ + FlaxT5LayerCollection( + self.config, + has_relative_attention_bias=(i == 0), + dtype=self.dtype, + name=str(i), + ) + for i in range(self.config.num_layers) + ] + + def __call__( + self, + hidden_states=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + output_attentions: bool = False, + output_hidden_states: bool = False, + deterministic: bool = True, + init_cache: bool = False, + ): + # Prepare head mask if needed + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if (output_attentions and self.causal) else None + position_bias = None + encoder_decoder_position_bias = None + + for i, layer_module in enumerate(self.blocks): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states, + attention_mask, + position_bias, + encoder_hidden_states, + encoder_attention_mask, + encoder_decoder_position_bias, + output_attentions, + deterministic, + init_cache, + ) + + hidden_states = layer_outputs[0] + + # We share the position biases between the layers - the first layer store them + # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), + # (cross-attention position bias), (cross-attention weights) + position_bias = layer_outputs[1] + + if self.causal and encoder_hidden_states is not None: + encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[2],) + if self.causal: + all_cross_attentions = all_cross_attentions + (layer_outputs[4],) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + +class FlaxT5Stack(nn.Module): + config: T5Config + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + self.causal = self.config.causal + + self.block = FlaxT5BlockCollection( + self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + self.final_layer_norm = FlaxT5LayerNorm( + self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + + def __call__( + self, + input_ids=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + init_cache: bool = False, + ): + hidden_states = self.embed_tokens(input_ids) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + + outputs = self.block( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + deterministic=deterministic, + init_cache=init_cache, + ) + + hidden_states = outputs[0] + + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + + # Add last layer + all_hidden_states = None + + if output_hidden_states: + all_hidden_states = outputs.hidden_states + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + if output_hidden_states: + return ( + hidden_states, + all_hidden_states, + ) + outputs[2:] + return (hidden_states,) + outputs[1:] + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +T5_ENCODE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you + should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +T5_DECODE_INPUTS_DOCSTRING = r""" + Args: + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For training, `decoder_input_ids` should be provided. + encoder_outputs (`tuple(tuple(jnp.ndarray)`): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): + Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast + auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +T5_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you + should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + [What are input IDs?](../glossary#input-ids) + + To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` + is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). + + To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 + Training](./t5#training). + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + encoder_outputs (`tuple(tuple(jnp.ndarray)`, *optional*): + Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at + the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(jnp.ndarray))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class FlaxT5PreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = T5Config + base_model_prefix = "transformer" + module_class: nn.Module = None + + def __init__( + self, + config: T5Config, + input_shape: Tuple[int] = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + gradient_checkpointing: bool = False, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def enable_gradient_checkpointing(self): + self._module = self.module_class( + config=self.config, + dtype=self.dtype, + gradient_checkpointing=True, + ) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + + attention_mask = jnp.ones_like(input_ids) + args = [input_ids, attention_mask] + if self.module_class not in [FlaxT5EncoderModule]: + decoder_input_ids = jnp.ones_like(input_ids) + decoder_attention_mask = jnp.ones_like(input_ids) + args.extend([decoder_input_ids, decoder_attention_mask]) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init( + rngs, + *args, + )["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + decoder_input_ids: jnp.ndarray = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if decoder_input_ids is None: + raise ValueError( + "Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed" + " here." + ) + + # prepare encoder inputs + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + # prepare decoder inputs + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + ) + + def init_cache(self, batch_size, max_length, encoder_outputs): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): + `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: + `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) + is a sequence of hidden-states at the output of the last layer of the encoder. Used in the + cross-attention of the decoder. + """ + # init input variables to retrieve cache + decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + **kwargs, + ) + + init_variables = self.module.init( + jax.random.PRNGKey(0), + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + init_cache=True, + method=_decoder_forward, # we only need to call the decoder to init the cache + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings(T5_ENCODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=T5Config) + def encode( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, return_tensors="np") + >>> encoder_outputs = model.encode(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + def _encoder_forward(module, input_ids, attention_mask, **kwargs): + encode_module = module._get_encoder_module() + return encode_module(input_ids, attention_mask, **kwargs) + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + method=_encoder_forward, + ) + + @add_start_docstrings(T5_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=T5Config) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration + >>> import jax.numpy as jnp + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, return_tensors="np") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> logits = outputs.logits + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxT5Attention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + **kwargs, + ) + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past = outputs + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past = outputs + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + +T5_START_DOCSTRING = r""" + The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text + Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan + Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a + text-to-text denoising generative setting. + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`T5Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + + +@add_start_docstrings( + "The bare T5 Model transformer outputting raw hidden-stateswithout any specific head on top.", + T5_START_DOCSTRING, +) +class FlaxT5Module(nn.Module): + config: T5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def _get_encoder_module(self): + return self.encoder + + def _get_decoder_module(self): + return self.decoder + + def setup(self): + self.shared = nn.Embed( + self.config.vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0), + dtype=self.dtype, + ) + + encoder_config = copy.deepcopy(self.config) + encoder_config.causal = False + self.encoder = FlaxT5Stack( + encoder_config, + embed_tokens=self.shared, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + + decoder_config = copy.deepcopy(self.config) + decoder_config.causal = True + decoder_config.num_layers = self.config.num_decoder_layers + self.decoder = FlaxT5Stack( + decoder_config, + embed_tokens=self.shared, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + + def __call__( + self, + input_ids=None, + attention_mask=None, + decoder_input_ids=None, + decoder_attention_mask=None, + encoder_outputs=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + deterministic: bool = True, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Encode if needed (training, first prediction pass) + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return FlaxSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +class FlaxT5Model(FlaxT5PreTrainedModel): + module_class = FlaxT5Module + + +append_call_sample_docstring(FlaxT5Model, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) + +FLAX_T5_MODEL_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxT5Model + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = FlaxT5Model.from_pretrained("google-t5/t5-small") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="np" + ... ).input_ids + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids + + >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. + >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. + >>> decoder_input_ids = model._shift_right(decoder_input_ids) + + >>> # forward pass + >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) + >>> last_hidden_states = outputs.last_hidden_state + ``` +""" + + +overwrite_call_docstring(FlaxT5Model, T5_INPUTS_DOCSTRING + FLAX_T5_MODEL_DOCSTRING) +append_replace_return_docstrings(FlaxT5Model, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + + +@add_start_docstrings( + "The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", + T5_START_DOCSTRING, +) +class FlaxT5EncoderModule(nn.Module): + config: T5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + self.shared = nn.Embed( + self.config.vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0), + dtype=self.dtype, + ) + + encoder_config = copy.deepcopy(self.config) + encoder_config.is_decoder = False + encoder_config.is_encoder_decoder = False + encoder_config.causal = False + self.encoder = FlaxT5Stack( + encoder_config, + embed_tokens=self.shared, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + + def __call__( + self, + input_ids=None, + attention_mask=None, + output_attentions=False, + output_hidden_states=False, + return_dict: bool = True, + deterministic: bool = True, + ): + # Encode if needed (training, first prediction pass) + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + return encoder_outputs + + +class FlaxT5EncoderModel(FlaxT5PreTrainedModel): + module_class = FlaxT5EncoderModule + + @add_start_docstrings_to_model_forward(T5_ENCODE_INPUTS_DOCSTRING) + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # prepare encoder inputs + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + ) + + +@add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) +class FlaxT5ForConditionalGenerationModule(nn.Module): + config: T5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def _get_encoder_module(self): + return self.encoder + + def _get_decoder_module(self): + return self.decoder + + def setup(self): + self.model_dim = self.config.d_model + + self.shared = nn.Embed( + self.config.vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.initializer_factor), + dtype=self.dtype, + ) + + encoder_config = copy.deepcopy(self.config) + encoder_config.causal = False + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = FlaxT5Stack( + encoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + + decoder_config = copy.deepcopy(self.config) + decoder_config.causal = True + decoder_config.is_encoder_decoder = False + decoder_config.num_layers = self.config.num_decoder_layers + self.decoder = FlaxT5Stack( + decoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + + self.lm_head = nn.Dense( + self.config.vocab_size, + use_bias=False, + kernel_init=jax.nn.initializers.normal(self.config.initializer_factor), + dtype=self.dtype, + ) + + def __call__( + self, + input_ids=None, + attention_mask=None, + decoder_input_ids=None, + decoder_attention_mask=None, + encoder_outputs=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + deterministic: bool = True, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Encode + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + hidden_states = encoder_outputs[0] + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + sequence_output = decoder_outputs[0] + + if self.config.tie_word_embeddings: + # Rescale output before projecting on vocab + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 + sequence_output = sequence_output * (self.model_dim**-0.5) + + if self.config.tie_word_embeddings: + shared_embedding = self.shared.variables["params"]["embedding"] + lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) + else: + lm_logits = self.lm_head(sequence_output) + + if not return_dict: + return (lm_logits,) + decoder_outputs[1:] + encoder_outputs + + return FlaxSeq2SeqLMOutput( + logits=lm_logits, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +class FlaxT5ForConditionalGeneration(FlaxT5PreTrainedModel): + module_class = FlaxT5ForConditionalGenerationModule + + @add_start_docstrings(T5_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=T5Config) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration + >>> import jax.numpy as jnp + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") + + >>> text = "summarize: My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, return_tensors="np") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> logits = outputs.logits + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxT5Attention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): + decoder_module = module._get_decoder_module() + decoder_outputs = decoder_module( + decoder_input_ids, + decoder_attention_mask, + **kwargs, + ) + + sequence_output = decoder_outputs[0] + + if self.config.tie_word_embeddings: + # Rescale output before projecting on vocab + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 + sequence_output = sequence_output * (self.config.d_model**-0.5) + + if self.config.tie_word_embeddings: + shared_embedding = module.shared.variables["params"]["embedding"] + lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) + else: + lm_logits = module.lm_head(sequence_output) + + return lm_logits, decoder_outputs + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + if past_key_values is None: + lm_logits, decoder_outputs = outputs + else: + (lm_logits, decoder_outputs), past = outputs + + if return_dict: + outputs = FlaxCausalLMOutputWithCrossAttentions( + logits=lm_logits, + hidden_states=decoder_outputs.hidden_states, + attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + ) + else: + outputs = (lm_logits,) + decoder_outputs[1:] + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + max_length, + attention_mask: Optional[jax.Array] = None, + decoder_attention_mask: Optional[jax.Array] = None, + encoder_outputs=None, + **kwargs, + ): + # initializing the cache + batch_size, seq_length = decoder_input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyways. + # Thus we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if decoder_attention_mask is not None: + extended_attention_mask = jax.lax.dynamic_update_slice( + extended_attention_mask, decoder_attention_mask, (0, 0) + ) + + return { + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "encoder_attention_mask": attention_mask, + "decoder_attention_mask": extended_attention_mask, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + return model_kwargs + + +FLAX_T5_CONDITIONAL_GENERATION_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") + + >>> ARTICLE_TO_SUMMARIZE = "summarize: My friends are cool but they eat too many carbs." + >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], return_tensors="np") + + >>> # Generate Summary + >>> summary_ids = model.generate(inputs["input_ids"]).sequences + >>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)) + ``` +""" + + +overwrite_call_docstring( + FlaxT5ForConditionalGeneration, T5_INPUTS_DOCSTRING + FLAX_T5_CONDITIONAL_GENERATION_DOCSTRING +) +append_replace_return_docstrings( + FlaxT5ForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC +) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/modeling_t5.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/modeling_t5.py new file mode 100644 index 0000000000000000000000000000000000000000..930d098186a5a314c9ebffa215a625861c79ac38 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/modeling_t5.py @@ -0,0 +1,2381 @@ +# coding=utf-8 +# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch T5 model.""" + + +import copy +import math +import os +import warnings +from typing import List, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, + Seq2SeqQuestionAnsweringModelOutput, + Seq2SeqSequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + DUMMY_INPUTS, + DUMMY_MASK, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_torch_fx_proxy, + logging, + replace_return_docstrings, +) +from ...utils.model_parallel_utils import assert_device_map, get_device_map +from .configuration_t5 import T5Config + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "T5Config" +_CHECKPOINT_FOR_DOC = "google-t5/t5-small" + +#################################################### +# This dict contains ids and associated url +# for the pretrained weights provided with the models +#################################################### + +from ..deprecated._archive_maps import T5_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +#################################################### +# This is a conversion method from TF 1.0 to PyTorch +# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28 +#################################################### +def load_tf_weights_in_t5(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + tf_weights = {} + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + tf_weights[name] = array + + for txt_name in names: + name = txt_name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + tf_weights.pop(txt_name, None) + continue + if "_slot_" in name[-1]: + logger.info(f"Skipping {'/'.join(name)}") + tf_weights.pop(txt_name, None) + continue + pointer = model + array = tf_weights[txt_name] + + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] in ["kernel", "scale", "embedding"]: + pointer = getattr(pointer, "weight") + elif scope_names[0] == "self_attention": + pointer = getattr(pointer, "layer") + pointer = pointer[0] + elif scope_names[0] == "enc_dec_attention": + pointer = getattr(pointer, "layer") + pointer = pointer[1] + elif scope_names[0] == "dense_relu_dense": + pointer = getattr(pointer, "layer") + pointer = pointer[2] + elif scope_names[0] == "rms_norm": + if hasattr(pointer, "layer_norm"): + pointer = getattr(pointer, "layer_norm") + elif hasattr(pointer, "final_layer_norm"): + pointer = getattr(pointer, "final_layer_norm") + elif scope_names[0] == "scale": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + elif scope_names[0] == "decoder" and name[1] == "logits": + continue + elif scope_names[0] == "logits": + pointer = getattr(pointer, "lm_head") + elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): + pointer = getattr(pointer, f"wi_{scope_names[1]}") + continue + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if scope_names[0] not in ["kernel", "scale", "embedding"]: + pointer = getattr(pointer, "weight") + if scope_names[0] != "embedding": + logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") + array = np.transpose(array) + try: + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array.astype(np.float32)) + tf_weights.pop(txt_name, None) + + logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") + return model + + +#################################################### +# PyTorch Models are constructed by sub-classing +# - torch.nn.Module for the layers and +# - PreTrainedModel for the models (it-self a sub-class of nn.Module) +#################################################### +PARALLELIZE_DOCSTRING = r""" + This is an experimental feature and is a subject to change at a moment's notice. + + Uses a device map to distribute attention modules of the model across several devices. If no device map is given, + it will evenly distribute blocks across all devices. + + Args: + device_map (`Dict[int, list]`, optional, defaults to None): + A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always + automatically mapped to the first device (for esoteric reasons). That means that the first device should + have fewer attention modules mapped to it than other devices. For reference, the t5 models have the + following number of attention modules: + + - google-t5/t5-small: 6 + - google-t5/t5-base: 12 + - google-t5/t5-large: 24 + - google-t5/t5-3b: 24 + - google-t5/t5-11b: 24 + + Example: + + ```python + # Here is an example of a device map on a machine with 4 GPUs using google-t5/t5-3b, which has a total of 24 attention modules: + model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") + device_map = { + 0: [0, 1, 2], + 1: [3, 4, 5, 6, 7, 8, 9], + 2: [10, 11, 12, 13, 14, 15, 16], + 3: [17, 18, 19, 20, 21, 22, 23], + } + model.parallelize(device_map) + ``` +""" +DEPARALLELIZE_DOCSTRING = r""" + Moves the model to cpu from a model parallel state. + + Example: + + ```python + # On a 4 GPU machine with google-t5/t5-3b: + model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") + device_map = { + 0: [0, 1, 2], + 1: [3, 4, 5, 6, 7, 8, 9], + 2: [10, 11, 12, 13, 14, 15, 16], + 3: [17, 18, 19, 20, 21, 22, 23], + } + model.parallelize(device_map) # Splits the model across several devices + model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() + ``` +""" + + +class T5LayerNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Construct a layernorm module in the T5 style. No bias and no subtraction of mean. + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean + # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated + # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for + # half-precision inputs is done in fp32 + + variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + + # convert into half-precision if necessary + if self.weight.dtype in [torch.float16, torch.bfloat16]: + hidden_states = hidden_states.to(self.weight.dtype) + + return self.weight * hidden_states + + +try: + from apex.normalization import FusedRMSNorm + + T5LayerNorm = FusedRMSNorm # noqa + + logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm") +except ImportError: + # using the normal T5LayerNorm + pass +except Exception: + logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm") + pass + +ALL_LAYERNORM_LAYERS.append(T5LayerNorm) + + +class T5DenseActDense(nn.Module): + def __init__(self, config: T5Config): + super().__init__() + self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) + self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) + self.dropout = nn.Dropout(config.dropout_rate) + self.act = ACT2FN[config.dense_act_fn] + + def forward(self, hidden_states): + hidden_states = self.wi(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.dropout(hidden_states) + if ( + isinstance(self.wo.weight, torch.Tensor) + and hidden_states.dtype != self.wo.weight.dtype + and self.wo.weight.dtype != torch.int8 + ): + hidden_states = hidden_states.to(self.wo.weight.dtype) + hidden_states = self.wo(hidden_states) + return hidden_states + + +class T5DenseGatedActDense(nn.Module): + def __init__(self, config: T5Config): + super().__init__() + self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) + self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) + self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) + self.dropout = nn.Dropout(config.dropout_rate) + self.act = ACT2FN[config.dense_act_fn] + + def forward(self, hidden_states): + hidden_gelu = self.act(self.wi_0(hidden_states)) + hidden_linear = self.wi_1(hidden_states) + hidden_states = hidden_gelu * hidden_linear + hidden_states = self.dropout(hidden_states) + + # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. + # See https://github.com/huggingface/transformers/issues/20287 + # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` + if ( + isinstance(self.wo.weight, torch.Tensor) + and hidden_states.dtype != self.wo.weight.dtype + and self.wo.weight.dtype != torch.int8 + ): + hidden_states = hidden_states.to(self.wo.weight.dtype) + + hidden_states = self.wo(hidden_states) + return hidden_states + + +class T5LayerFF(nn.Module): + def __init__(self, config: T5Config): + super().__init__() + if config.is_gated_act: + self.DenseReluDense = T5DenseGatedActDense(config) + else: + self.DenseReluDense = T5DenseActDense(config) + + self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, hidden_states): + forwarded_states = self.layer_norm(hidden_states) + forwarded_states = self.DenseReluDense(forwarded_states) + hidden_states = hidden_states + self.dropout(forwarded_states) + return hidden_states + + +class T5Attention(nn.Module): + def __init__(self, config: T5Config, has_relative_attention_bias=False): + super().__init__() + self.is_decoder = config.is_decoder + self.has_relative_attention_bias = has_relative_attention_bias + self.relative_attention_num_buckets = config.relative_attention_num_buckets + self.relative_attention_max_distance = config.relative_attention_max_distance + self.d_model = config.d_model + self.key_value_proj_dim = config.d_kv + self.n_heads = config.num_heads + self.dropout = config.dropout_rate + self.inner_dim = self.n_heads * self.key_value_proj_dim + + # Mesh TensorFlow initialization to avoid scaling before softmax + self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) + self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) + self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) + self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) + + if self.has_relative_attention_bias: + self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) + self.pruned_heads = set() + self.gradient_checkpointing = False + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads + ) + # Prune linear layers + self.q = prune_linear_layer(self.q, index) + self.k = prune_linear_layer(self.k, index) + self.v = prune_linear_layer(self.v, index) + self.o = prune_linear_layer(self.o, index, dim=1) + # Update hyper params + self.n_heads = self.n_heads - len(heads) + self.inner_dim = self.key_value_proj_dim * self.n_heads + self.pruned_heads = self.pruned_heads.union(heads) + + @staticmethod + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """ + Adapted from Mesh Tensorflow: + https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + + Args: + relative_position: an int32 Tensor + bidirectional: a boolean - whether the attention is bidirectional + num_buckets: an integer + max_distance: an integer + + Returns: + a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) + """ + relative_buckets = 0 + if bidirectional: + num_buckets //= 2 + relative_buckets += (relative_position > 0).to(torch.long) * num_buckets + relative_position = torch.abs(relative_position) + else: + relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) + # now relative_position is in the range [0, inf) + + # half of the buckets are for exact increments in positions + max_exact = num_buckets // 2 + is_small = relative_position < max_exact + + # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance + relative_position_if_large = max_exact + ( + torch.log(relative_position.float() / max_exact) + / math.log(max_distance / max_exact) + * (num_buckets - max_exact) + ).to(torch.long) + relative_position_if_large = torch.min( + relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) + ) + + relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) + return relative_buckets + + def compute_bias(self, query_length, key_length, device=None): + """Compute binned relative position bias""" + if device is None: + device = self.relative_attention_bias.weight.device + context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] + memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] + relative_position = memory_position - context_position # shape (query_length, key_length) + relative_position_bucket = self._relative_position_bucket( + relative_position, # shape (query_length, key_length) + bidirectional=(not self.is_decoder), + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) + values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) + return values + + def forward( + self, + hidden_states, + mask=None, + key_value_states=None, + position_bias=None, + past_key_value=None, + layer_head_mask=None, + query_length=None, + use_cache=False, + output_attentions=False, + ): + """ + Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). + """ + # Input is (batch_size, seq_length, dim) + # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) + # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) + batch_size, seq_length = hidden_states.shape[:2] + + real_seq_length = seq_length + + if past_key_value is not None: + if len(past_key_value) != 2: + raise ValueError( + f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" + ) + real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length + + key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] + + def shape(states): + """projection""" + return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) + + def unshape(states): + """reshape""" + return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) + + def project(hidden_states, proj_layer, key_value_states, past_key_value): + """projects hidden states correctly to key/query states""" + if key_value_states is None: + # self-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(hidden_states)) + elif past_key_value is None: + # cross-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(key_value_states)) + + if past_key_value is not None: + if key_value_states is None: + # self-attn + # (batch_size, n_heads, key_length, dim_per_head) + hidden_states = torch.cat([past_key_value, hidden_states], dim=2) + elif past_key_value.shape[2] != key_value_states.shape[1]: + # checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + # cross-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(key_value_states)) + else: + # cross-attn + hidden_states = past_key_value + return hidden_states + + # get query states + query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) + + # get key/value states + key_states = project( + hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None + ) + value_states = project( + hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None + ) + + # compute scores + scores = torch.matmul( + query_states, key_states.transpose(3, 2) + ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 + + if position_bias is None: + if not self.has_relative_attention_bias: + position_bias = torch.zeros( + (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype + ) + if self.gradient_checkpointing and self.training: + position_bias.requires_grad = True + else: + position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) + + # if key and values are already calculated + # we want only the last query position bias + if past_key_value is not None: + position_bias = position_bias[:, :, -hidden_states.size(1) :, :] + + if mask is not None: + position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) + + if self.pruned_heads: + mask = torch.ones(position_bias.shape[1]) + mask[list(self.pruned_heads)] = 0 + position_bias_masked = position_bias[:, mask.bool()] + else: + position_bias_masked = position_bias + + scores += position_bias_masked + attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( + scores + ) # (batch_size, n_heads, seq_length, key_length) + attn_weights = nn.functional.dropout( + attn_weights, p=self.dropout, training=self.training + ) # (batch_size, n_heads, seq_length, key_length) + + # Mask heads if we want to + if layer_head_mask is not None: + attn_weights = attn_weights * layer_head_mask + + attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) + attn_output = self.o(attn_output) + + present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None + outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + + if output_attentions: + outputs = outputs + (attn_weights,) + return outputs + + +class T5LayerSelfAttention(nn.Module): + def __init__(self, config, has_relative_attention_bias=False): + super().__init__() + self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias) + self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward( + self, + hidden_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + past_key_value=None, + use_cache=False, + output_attentions=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.SelfAttention( + normed_hidden_states, + mask=attention_mask, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states = hidden_states + self.dropout(attention_output[0]) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + +class T5LayerCrossAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False) + self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward( + self, + hidden_states, + key_value_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + past_key_value=None, + use_cache=False, + query_length=None, + output_attentions=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.EncDecAttention( + normed_hidden_states, + mask=attention_mask, + key_value_states=key_value_states, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + query_length=query_length, + output_attentions=output_attentions, + ) + layer_output = hidden_states + self.dropout(attention_output[0]) + outputs = (layer_output,) + attention_output[1:] # add attentions if we output them + return outputs + + +class T5Block(nn.Module): + def __init__(self, config, has_relative_attention_bias=False): + super().__init__() + self.is_decoder = config.is_decoder + self.layer = nn.ModuleList() + self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) + if self.is_decoder: + self.layer.append(T5LayerCrossAttention(config)) + + self.layer.append(T5LayerFF(config)) + + def forward( + self, + hidden_states, + attention_mask=None, + position_bias=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + encoder_decoder_position_bias=None, + layer_head_mask=None, + cross_attn_layer_head_mask=None, + past_key_value=None, + use_cache=False, + output_attentions=False, + return_dict=True, + ): + if past_key_value is not None: + if not self.is_decoder: + logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") + expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 + + if len(past_key_value) != expected_num_past_key_values: + raise ValueError( + f"There should be {expected_num_past_key_values} past states. " + f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}" + f"Got {len(past_key_value)} past key / value states" + ) + + self_attn_past_key_value = past_key_value[:2] + cross_attn_past_key_value = past_key_value[2:] + else: + self_attn_past_key_value, cross_attn_past_key_value = None, None + + self_attention_outputs = self.layer[0]( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=self_attn_past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states, present_key_value_state = self_attention_outputs[:2] + attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16: + clamp_value = torch.where( + torch.isinf(hidden_states).any(), + torch.finfo(hidden_states.dtype).max - 1000, + torch.finfo(hidden_states.dtype).max, + ) + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + do_cross_attention = self.is_decoder and encoder_hidden_states is not None + if do_cross_attention: + # the actual query length is unknown for cross attention + # if using past key value states. Need to inject it here + if present_key_value_state is not None: + query_length = present_key_value_state[0].shape[2] + else: + query_length = None + + cross_attention_outputs = self.layer[1]( + hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + position_bias=encoder_decoder_position_bias, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + query_length=query_length, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states = cross_attention_outputs[0] + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16: + clamp_value = torch.where( + torch.isinf(hidden_states).any(), + torch.finfo(hidden_states.dtype).max - 1000, + torch.finfo(hidden_states.dtype).max, + ) + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + # Combine self attn and cross attn key value states + if present_key_value_state is not None: + present_key_value_state = present_key_value_state + cross_attention_outputs[1] + + # Keep cross-attention outputs and relative position weights + attention_outputs = attention_outputs + cross_attention_outputs[2:] + + # Apply Feed Forward layer + hidden_states = self.layer[-1](hidden_states) + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16: + clamp_value = torch.where( + torch.isinf(hidden_states).any(), + torch.finfo(hidden_states.dtype).max - 1000, + torch.finfo(hidden_states.dtype).max, + ) + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if use_cache: + outputs = outputs + (present_key_value_state,) + attention_outputs + else: + outputs = outputs + attention_outputs + + return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) + + +class T5ClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config: T5Config): + super().__init__() + self.dense = nn.Linear(config.d_model, config.d_model) + self.dropout = nn.Dropout(p=config.classifier_dropout) + self.out_proj = nn.Linear(config.d_model, config.num_labels) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +class T5PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = T5Config + load_tf_weights = load_tf_weights_in_t5 + base_model_prefix = "transformer" + is_parallelizable = True + supports_gradient_checkpointing = True + _no_split_modules = ["T5Block"] + _keep_in_fp32_modules = ["wo"] + + @property + def dummy_inputs(self): + input_ids = torch.tensor(DUMMY_INPUTS) + input_mask = torch.tensor(DUMMY_MASK) + dummy_inputs = { + "decoder_input_ids": input_ids, + "input_ids": input_ids, + "decoder_attention_mask": input_mask, + } + return dummy_inputs + + def _init_weights(self, module): + """Initialize the weights""" + factor = self.config.initializer_factor # Used for testing weights initialization + if isinstance(module, T5LayerNorm): + module.weight.data.fill_(factor * 1.0) + elif isinstance( + module, + (T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering), + ): + # Mesh TensorFlow embeddings initialization + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 + module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) + if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: + module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) + if hasattr(module, "qa_outputs"): + module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + module.qa_outputs.bias.data.zero_() + elif isinstance(module, T5ForTokenClassification): + if hasattr(module, "classifier"): + module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0) + module.classifier.bias.data.zero_() + elif isinstance(module, T5ClassificationHead): + module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.dense, "bias") and module.dense.bias is not None: + module.dense.bias.data.zero_() + module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: + module.out_proj.bias.data.zero_() + elif isinstance(module, T5DenseActDense): + # Mesh TensorFlow FF initialization + # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 + # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 + module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.wi, "bias") and module.wi.bias is not None: + module.wi.bias.data.zero_() + module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) + if hasattr(module.wo, "bias") and module.wo.bias is not None: + module.wo.bias.data.zero_() + elif isinstance(module, T5DenseGatedActDense): + module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: + module.wi_0.bias.data.zero_() + module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: + module.wi_1.bias.data.zero_() + module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) + if hasattr(module.wo, "bias") and module.wo.bias is not None: + module.wo.bias.data.zero_() + elif isinstance(module, T5Attention): + # Mesh TensorFlow attention initialization to avoid scaling before softmax + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 + d_model = self.config.d_model + key_value_proj_dim = self.config.d_kv + n_heads = self.config.num_heads + module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) + module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) + module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) + module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) + if module.has_relative_attention_bias: + module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) + + def _shift_right(self, input_ids): + decoder_start_token_id = self.config.decoder_start_token_id + pad_token_id = self.config.pad_token_id + + if decoder_start_token_id is None: + raise ValueError( + "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. " + "See T5 docs for more information." + ) + + # shift inputs to the right + if is_torch_fx_proxy(input_ids): + # Item assignment is not supported natively for proxies. + shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) + shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) + else: + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() + shifted_input_ids[..., 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +class T5Stack(T5PreTrainedModel): + def __init__(self, config, embed_tokens=None): + super().__init__(config) + + self.embed_tokens = embed_tokens + self.is_decoder = config.is_decoder + + self.block = nn.ModuleList( + [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] + ) + self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + # Initialize weights and apply final processing + self.post_init() + # Model parallel + self.model_parallel = False + self.device_map = None + self.gradient_checkpointing = False + + @add_start_docstrings(PARALLELIZE_DOCSTRING) + def parallelize(self, device_map=None): + warnings.warn( + "`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" + " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" + " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," + " 'block.1': 1, ...}", + FutureWarning, + ) + # Check validity of device_map + self.device_map = ( + get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map + ) + assert_device_map(self.device_map, len(self.block)) + self.model_parallel = True + self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) + self.last_device = "cuda:" + str(max(self.device_map.keys())) + # Load onto devices + for k, v in self.device_map.items(): + for layer in v: + cuda_device = "cuda:" + str(k) + self.block[layer] = self.block[layer].to(cuda_device) + + # Set embed_tokens to first layer + self.embed_tokens = self.embed_tokens.to(self.first_device) + # Set final layer norm to last device + self.final_layer_norm = self.final_layer_norm.to(self.last_device) + + @add_start_docstrings(DEPARALLELIZE_DOCSTRING) + def deparallelize(self): + warnings.warn( + "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", + FutureWarning, + ) + self.model_parallel = False + self.device_map = None + self.first_device = "cpu" + self.last_device = "cpu" + for i in range(len(self.block)): + self.block[i] = self.block[i].to("cpu") + self.embed_tokens = self.embed_tokens.to("cpu") + self.final_layer_norm = self.final_layer_norm.to("cpu") + torch.cuda.empty_cache() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, new_embeddings): + self.embed_tokens = new_embeddings + + def forward( + self, + input_ids=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + inputs_embeds=None, + head_mask=None, + cross_attn_head_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + # Model parallel + if self.model_parallel: + torch.cuda.set_device(self.first_device) + self.embed_tokens = self.embed_tokens.to(self.first_device) + use_cache = use_cache if use_cache is not None else self.config.use_cache + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + err_msg_prefix = "decoder_" if self.is_decoder else "" + raise ValueError( + f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" + ) + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + err_msg_prefix = "decoder_" if self.is_decoder else "" + raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") + + if inputs_embeds is None: + if self.embed_tokens is None: + raise ValueError("You have to initialize the model with valid token embeddings") + inputs_embeds = self.embed_tokens(input_ids) + + batch_size, seq_length = input_shape + + # required mask seq length can be calculated via length of past + mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length + + if use_cache is True: + if not self.is_decoder: + raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") + + # initialize past_key_values with `None` if past does not exist + if past_key_values is None: + past_key_values = [None] * len(self.block) + + if attention_mask is None: + attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones( + encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long + ) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # Prepare head mask if needed + head_mask = self.get_head_mask(head_mask, self.config.num_layers) + cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) + present_key_value_states = () if use_cache else None + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if (output_attentions and self.is_decoder) else None + position_bias = None + encoder_decoder_position_bias = None + + hidden_states = self.dropout(inputs_embeds) + + for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): + layer_head_mask = head_mask[i] + cross_attn_layer_head_mask = cross_attn_head_mask[i] + # Model parallel + if self.model_parallel: + torch.cuda.set_device(hidden_states.device) + # Ensure that attention_mask is always on the same device as hidden_states + if attention_mask is not None: + attention_mask = attention_mask.to(hidden_states.device) + if position_bias is not None: + position_bias = position_bias.to(hidden_states.device) + if encoder_hidden_states is not None: + encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) + if encoder_extended_attention_mask is not None: + encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) + if encoder_decoder_position_bias is not None: + encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) + if layer_head_mask is not None: + layer_head_mask = layer_head_mask.to(hidden_states.device) + if cross_attn_layer_head_mask is not None: + cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.forward, + hidden_states, + extended_attention_mask, + position_bias, + encoder_hidden_states, + encoder_extended_attention_mask, + encoder_decoder_position_bias, + layer_head_mask, + cross_attn_layer_head_mask, + None, # past_key_value is always None with gradient checkpointing + use_cache, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask=extended_attention_mask, + position_bias=position_bias, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + encoder_decoder_position_bias=encoder_decoder_position_bias, + layer_head_mask=layer_head_mask, + cross_attn_layer_head_mask=cross_attn_layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + + # layer_outputs is a tuple with: + # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) + if use_cache is False: + layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] + + hidden_states, present_key_value_state = layer_outputs[:2] + + # We share the position biases between the layers - the first layer store them + # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), + # (cross-attention position bias), (cross-attention weights) + position_bias = layer_outputs[2] + if self.is_decoder and encoder_hidden_states is not None: + encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] + # append next layer key value states + if use_cache: + present_key_value_states = present_key_value_states + (present_key_value_state,) + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[3],) + if self.is_decoder: + all_cross_attentions = all_cross_attentions + (layer_outputs[5],) + + # Model Parallel: If it's the last layer for that device, put things on the next device + if self.model_parallel: + for k, v in self.device_map.items(): + if i == v[-1] and "cuda:" + str(k) != self.last_device: + hidden_states = hidden_states.to("cuda:" + str(k + 1)) + + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + present_key_value_states, + all_hidden_states, + all_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_value_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + +T5_START_DOCSTRING = r""" + + The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text + Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan + Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a + text-to-text denoising generative setting. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`T5Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +T5_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you + should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + [What are input IDs?](../glossary#input-ids) + + To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` + is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). + + To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 + Training](./t5#training). + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in + `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at + the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +T5_ENCODER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you + should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask +__HEAD_MASK_WARNING_MSG = """ +The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, +`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. +If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, +num_heads)`. +""" + + +@add_start_docstrings( + "The bare T5 Model transformer outputting raw hidden-states without any specific head on top.", + T5_START_DOCSTRING, +) +class T5Model(T5PreTrainedModel): + _keys_to_ignore_on_load_unexpected = [ + "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", + ] + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + def __init__(self, config: T5Config): + super().__init__(config) + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.is_decoder = False + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = T5Stack(encoder_config, self.shared) + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.is_encoder_decoder = False + decoder_config.num_layers = config.num_decoder_layers + self.decoder = T5Stack(decoder_config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + # Model parallel + self.model_parallel = False + self.device_map = None + + @add_start_docstrings(PARALLELIZE_DOCSTRING) + def parallelize(self, device_map=None): + warnings.warn( + "`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" + " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" + " `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':" + " 0, 'encoder.block.1': 1, ...}", + FutureWarning, + ) + self.device_map = ( + get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) + if device_map is None + else device_map + ) + assert_device_map(self.device_map, len(self.encoder.block)) + self.encoder.parallelize(self.device_map) + self.decoder.parallelize(self.device_map) + self.model_parallel = True + + @add_start_docstrings(DEPARALLELIZE_DOCSTRING) + def deparallelize(self): + warnings.warn( + "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", + FutureWarning, + ) + self.encoder.deparallelize() + self.decoder.deparallelize() + self.encoder = self.encoder.to("cpu") + self.decoder = self.decoder.to("cpu") + self.model_parallel = False + self.device_map = None + torch.cuda.empty_cache() + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + self.decoder.set_input_embeddings(new_embeddings) + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) + self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, T5Model + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = T5Model.from_pretrained("google-t5/t5-small") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 + + >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. + >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. + >>> decoder_input_ids = model._shift_right(decoder_input_ids) + + >>> # forward pass + >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) + >>> last_hidden_states = outputs.last_hidden_state + ```""" + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask + if head_mask is not None and decoder_head_mask is None: + if self.config.num_layers == self.config.num_decoder_layers: + warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) + decoder_head_mask = head_mask + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + hidden_states = encoder_outputs[0] + + # Set device for model parallelism + if self.model_parallel: + torch.cuda.set_device(self.decoder.first_device) + hidden_states = hidden_states.to(self.decoder.first_device) + if decoder_input_ids is not None: + decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) + if attention_mask is not None: + attention_mask = attention_mask.to(self.decoder.first_device) + if decoder_attention_mask is not None: + decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + inputs_embeds=decoder_inputs_embeds, + past_key_values=past_key_values, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) +class T5ForConditionalGeneration(T5PreTrainedModel): + _keys_to_ignore_on_load_unexpected = [ + "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", + ] + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] + + def __init__(self, config: T5Config): + super().__init__(config) + self.model_dim = config.d_model + + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.is_decoder = False + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = T5Stack(encoder_config, self.shared) + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.is_encoder_decoder = False + decoder_config.num_layers = config.num_decoder_layers + self.decoder = T5Stack(decoder_config, self.shared) + + self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + # Model parallel + self.model_parallel = False + self.device_map = None + + @add_start_docstrings(PARALLELIZE_DOCSTRING) + def parallelize(self, device_map=None): + warnings.warn( + "`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you" + " should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also" + " provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance" + " {'encoder.block.0': 0, 'encoder.block.1': 1, ...}", + FutureWarning, + ) + self.device_map = ( + get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) + if device_map is None + else device_map + ) + assert_device_map(self.device_map, len(self.encoder.block)) + self.encoder.parallelize(self.device_map) + self.decoder.parallelize(self.device_map) + self.lm_head = self.lm_head.to(self.decoder.first_device) + self.model_parallel = True + + @add_start_docstrings(DEPARALLELIZE_DOCSTRING) + def deparallelize(self): + warnings.warn( + "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", + FutureWarning, + ) + self.encoder.deparallelize() + self.decoder.deparallelize() + self.encoder = self.encoder.to("cpu") + self.decoder = self.decoder.to("cpu") + self.lm_head = self.lm_head.to("cpu") + self.model_parallel = False + self.device_map = None + torch.cuda.empty_cache() + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + self.decoder.set_input_embeddings(new_embeddings) + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) + self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def get_output_embeddings(self): + return self.lm_head + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., + config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for + labels in `[0, ..., config.vocab_size]` + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, T5ForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") + + >>> # training + >>> input_ids = tokenizer("The walks in park", return_tensors="pt").input_ids + >>> labels = tokenizer(" cute dog the ", return_tensors="pt").input_ids + >>> outputs = model(input_ids=input_ids, labels=labels) + >>> loss = outputs.loss + >>> logits = outputs.logits + + >>> # inference + >>> input_ids = tokenizer( + ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> outputs = model.generate(input_ids) + >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) + >>> # studies have shown that owning a dog is good for you. + ```""" + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask + if head_mask is not None and decoder_head_mask is None: + if self.config.num_layers == self.config.num_decoder_layers: + warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) + decoder_head_mask = head_mask + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + # Convert encoder inputs in embeddings if needed + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + hidden_states = encoder_outputs[0] + + if self.model_parallel: + torch.cuda.set_device(self.decoder.first_device) + + if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: + # get decoder inputs from shifting lm labels to the right + decoder_input_ids = self._shift_right(labels) + + # Set device for model parallelism + if self.model_parallel: + torch.cuda.set_device(self.decoder.first_device) + hidden_states = hidden_states.to(self.decoder.first_device) + if decoder_input_ids is not None: + decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) + if attention_mask is not None: + attention_mask = attention_mask.to(self.decoder.first_device) + if decoder_attention_mask is not None: + decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + inputs_embeds=decoder_inputs_embeds, + past_key_values=past_key_values, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = decoder_outputs[0] + + # Set device for model parallelism + if self.model_parallel: + torch.cuda.set_device(self.encoder.first_device) + self.lm_head = self.lm_head.to(self.encoder.first_device) + sequence_output = sequence_output.to(self.lm_head.weight.device) + + if self.config.tie_word_embeddings: + # Rescale output before projecting on vocab + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 + sequence_output = sequence_output * (self.model_dim**-0.5) + + lm_logits = self.lm_head(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss(ignore_index=-100) + # move labels to correct device to enable PP + labels = labels.to(lm_logits.device) + loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) + # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 + + if not return_dict: + output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs + return ((loss,) + output) if loss is not None else output + + return Seq2SeqLMOutput( + loss=loss, + logits=lm_logits, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + decoder_attention_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return { + "decoder_input_ids": input_ids, + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "decoder_attention_mask": decoder_attention_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, + } + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return self._shift_right(labels) + + def _reorder_cache(self, past_key_values, beam_idx): + # if decoder past is not included in output + # speedy decoding is disabled and no need to reorder + if past_key_values is None: + logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") + return past_key_values + + reordered_decoder_past = () + for layer_past_states in past_key_values: + # get the correct batch idx from layer past batch dim + # batch dim of `past` is at 2nd position + reordered_layer_past_states = () + for layer_past_state in layer_past_states: + # need to set correct `past` for each of the four key / value states + reordered_layer_past_states = reordered_layer_past_states + ( + layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), + ) + + if reordered_layer_past_states[0].shape != layer_past_states[0].shape: + raise ValueError( + f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" + ) + if len(reordered_layer_past_states) != len(layer_past_states): + raise ValueError( + f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" + ) + + reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) + return reordered_decoder_past + + +@add_start_docstrings( + "The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", + T5_START_DOCSTRING, +) +class T5EncoderModel(T5PreTrainedModel): + _tied_weights_keys = ["encoder.embed_tokens.weight"] + _keys_to_ignore_on_load_unexpected = [r"decoder"] + + def __init__(self, config: T5Config): + super().__init__(config) + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = T5Stack(encoder_config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + # Model parallel + self.model_parallel = False + self.device_map = None + + @add_start_docstrings(PARALLELIZE_DOCSTRING) + def parallelize(self, device_map=None): + warnings.warn( + "`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" + " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" + " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," + " 'block.1': 1, ...}", + FutureWarning, + ) + self.device_map = ( + get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) + if device_map is None + else device_map + ) + assert_device_map(self.device_map, len(self.encoder.block)) + self.encoder.parallelize(self.device_map) + self.model_parallel = True + + @add_start_docstrings(DEPARALLELIZE_DOCSTRING) + def deparallelize(self): + warnings.warn( + "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", + FutureWarning, + ) + self.encoder.deparallelize() + self.encoder = self.encoder.to("cpu") + self.model_parallel = False + self.device_map = None + torch.cuda.empty_cache() + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) + + def get_encoder(self): + return self.encoder + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, T5EncoderModel + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = T5EncoderModel.from_pretrained("google-t5/t5-small") + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> outputs = model(input_ids=input_ids) + >>> last_hidden_states = outputs.last_hidden_state + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return encoder_outputs + + +@add_start_docstrings( + """ + T5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE + tasks. + """, + T5_START_DOCSTRING, +) +class T5ForSequenceClassification(T5PreTrainedModel): + _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + def __init__(self, config: T5Config): + super().__init__(config) + self.transformer = T5Model(config) + self.classification_head = T5ClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + self.model_parallel = False + + @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + Returns: + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + if input_ids is None and inputs_embeds is not None: + raise NotImplementedError( + f"Passing input embeddings is currently not supported for {self.__class__.__name__}" + ) + + # Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates + # decoder_input_ids from input_ids if no decoder_input_ids are provided + if decoder_input_ids is None and decoder_inputs_embeds is None: + if input_ids is None: + raise ValueError( + "If no `decoder_input_ids` or `decoder_inputs_embeds` are " + "passed, `input_ids` cannot be `None`. Please pass either " + "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." + ) + decoder_input_ids = self._shift_right(input_ids) + + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + + eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) + + if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: + raise ValueError("All examples must have the same number of tokens.") + batch_size, _, hidden_size = sequence_output.shape + sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] + logits = self.classification_head(sentence_representation) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.config.num_labels == 1: + self.config.problem_type = "regression" + elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.config.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqSequenceClassifierOutput( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + """ + T5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output) + e.g. for Named-Entity-Recognition (NER) tasks. + """, + T5_START_DOCSTRING, +) +class T5ForTokenClassification(T5PreTrainedModel): + _tied_weights_keys = ["transformer.encoder.embed_tokens.weight"] + + def __init__(self, config: T5Config): + super().__init__(config) + self.num_labels = config.num_labels + + self.transformer = T5EncoderModel(config) + self.dropout = nn.Dropout(config.classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + Returns: + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states) + logits = self.classifier(hidden_states) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits, outputs[2:-1]) + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + T5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers + on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + T5_START_DOCSTRING, +) +class T5ForQuestionAnswering(T5PreTrainedModel): + _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + def __init__(self, config: T5Config): + super().__init__(config) + self.model_dim = config.d_model + + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.is_decoder = False + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = T5Stack(encoder_config, self.shared) + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.is_encoder_decoder = False + decoder_config.num_layers = config.num_decoder_layers + self.decoder = T5Stack(decoder_config, self.shared) + + self.num_labels = config.num_labels + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + self.model_parallel = False + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + self.decoder.set_input_embeddings(new_embeddings) + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) + self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + Returns: + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + use_cache = use_cache if use_cache is not None else self.config.use_cache + if start_positions is not None and end_positions is not None: + use_cache = False + + # Copied from models.bart.modeling_bart.BartModel.forward + # different to other models, T5 automatically creates decoder_input_ids from + # input_ids if no decoder_input_ids are provided + if decoder_input_ids is None and decoder_inputs_embeds is None: + if input_ids is None: + raise ValueError( + "If no `decoder_input_ids` or `decoder_inputs_embeds` are " + "passed, `input_ids` cannot be `None`. Please pass either " + "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." + ) + decoder_input_ids = self._shift_right(input_ids) + + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask + if head_mask is not None and decoder_head_mask is None: + if self.config.num_layers == self.config.num_decoder_layers: + warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) + decoder_head_mask = head_mask + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + hidden_states = encoder_outputs[0] + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + inputs_embeds=decoder_inputs_embeds, + past_key_values=None, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = decoder_outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1).to(start_logits.device) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1).to(end_logits.device) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs + return ((total_loss,) + output) if total_loss is not None else output + + return Seq2SeqQuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/modeling_tf_t5.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/modeling_tf_t5.py new file mode 100644 index 0000000000000000000000000000000000000000..834abbad8a2885c8404e9d5e84e17fec24bdee0e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/modeling_tf_t5.py @@ -0,0 +1,1684 @@ +# coding=utf-8 +# Copyright 2020 T5 Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 T5 model.""" + + +from __future__ import annotations + +import copy +import itertools +import math +import warnings +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf +from tensorflow.compiler.tf2xla.python.xla import dynamic_slice + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPastAndCrossAttentions, + TFSeq2SeqLMOutput, + TFSeq2SeqModelOutput, +) +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFModelInputType, + TFPreTrainedModel, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_t5 import T5Config + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "T5Config" + + +from ..deprecated._archive_maps import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +#################################################### +# TF 2.0 Models are constructed using Keras imperative API by sub-classing +# - keras.layers.Layer for the layers and +# - TFPreTrainedModel for the models (it-self a sub-class of keras.Model) +#################################################### + + +class TFT5LayerNorm(keras.layers.Layer): + def __init__(self, hidden_size, epsilon=1e-6, **kwargs): + """ + Construct a layernorm module in the T5 style No bias and no subtraction of mean. + """ + super().__init__(**kwargs) + self.variance_epsilon = epsilon + self.hidden_size = hidden_size + + def build(self, input_shape): + """Build shared word embedding layer""" + self.weight = self.add_weight("weight", shape=(self.hidden_size,), initializer="ones") + super().build(input_shape) + + def call(self, hidden_states): + variance = tf.math.reduce_mean(tf.math.square(hidden_states), axis=-1, keepdims=True) + hidden_states = hidden_states * tf.math.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states + + +class TFT5DenseActDense(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + wi_initializer = keras.initializers.RandomNormal( + mean=0, stddev=config.initializer_factor * (config.d_model**-0.5) + ) + wo_initializer = keras.initializers.RandomNormal( + mean=0, stddev=config.initializer_factor * (config.d_ff**-0.5) + ) + self.wi = keras.layers.Dense( + config.d_ff, use_bias=False, name="wi", kernel_initializer=wi_initializer + ) # Update init weights as in flax + self.wo = keras.layers.Dense( + config.d_model, use_bias=False, name="wo", kernel_initializer=wo_initializer + ) # Update init weights as in flax + self.dropout = keras.layers.Dropout(config.dropout_rate) + self.act = get_tf_activation(config.dense_act_fn) + self.config = config + + def call(self, hidden_states, training=False): + hidden_states = self.wi(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.wo(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "wi", None) is not None: + with tf.name_scope(self.wi.name): + self.wi.build([None, None, self.config.d_model]) + if getattr(self, "wo", None) is not None: + with tf.name_scope(self.wo.name): + self.wo.build([None, None, self.config.d_ff]) + + +class TFT5DenseGatedActDense(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + wi_initializer = keras.initializers.RandomNormal( + mean=0, stddev=config.initializer_factor * (config.d_model**-0.5) + ) + wo_initializer = keras.initializers.RandomNormal( + mean=0, stddev=config.initializer_factor * (config.d_ff**-0.5) + ) + self.wi_0 = keras.layers.Dense( + config.d_ff, use_bias=False, name="wi_0", kernel_initializer=wi_initializer + ) # Update init weights as in flax + self.wi_1 = keras.layers.Dense( + config.d_ff, use_bias=False, name="wi_1", kernel_initializer=wi_initializer + ) # Update init weights as in flax + self.wo = keras.layers.Dense( + config.d_model, use_bias=False, name="wo", kernel_initializer=wo_initializer + ) # Update init weights as in flax + self.dropout = keras.layers.Dropout(config.dropout_rate) + self.act = get_tf_activation(config.dense_act_fn) + self.config = config + + def call(self, hidden_states, training=False): + hidden_gelu = self.act(self.wi_0(hidden_states)) + hidden_linear = self.wi_1(hidden_states) + hidden_states = hidden_gelu * hidden_linear + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.wo(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "wi_0", None) is not None: + with tf.name_scope(self.wi_0.name): + self.wi_0.build([None, None, self.config.d_model]) + if getattr(self, "wi_1", None) is not None: + with tf.name_scope(self.wi_1.name): + self.wi_1.build([None, None, self.config.d_model]) + if getattr(self, "wo", None) is not None: + with tf.name_scope(self.wo.name): + self.wo.build([None, None, self.config.d_ff]) + + +class TFT5LayerFF(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + if config.is_gated_act: + self.DenseReluDense = TFT5DenseGatedActDense(config, name="DenseReluDense") + else: + self.DenseReluDense = TFT5DenseActDense(config, name="DenseReluDense") + + self.layer_norm = TFT5LayerNorm(config.d_model, epsilon=config.layer_norm_epsilon, name="layer_norm") + self.dropout = keras.layers.Dropout(config.dropout_rate) + + def call(self, hidden_states, training=False): + normed_hidden_states = self.layer_norm(hidden_states) + dense_output = self.DenseReluDense(normed_hidden_states, training=training) + hidden_states = hidden_states + self.dropout(dense_output, training=training) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build(None) + if getattr(self, "DenseReluDense", None) is not None: + with tf.name_scope(self.DenseReluDense.name): + self.DenseReluDense.build(None) + + +class TFT5Attention(keras.layers.Layer): + NEW_ID = itertools.count() + + def __init__(self, config, has_relative_attention_bias=False, **kwargs): + super().__init__(**kwargs) + self.layer_id = next(TFT5Attention.NEW_ID) + self.is_decoder = config.is_decoder + self.use_cache = config.use_cache + self.has_relative_attention_bias = has_relative_attention_bias + self.output_attentions = config.output_attentions + + self.relative_attention_num_buckets = config.relative_attention_num_buckets + self.relative_attention_max_distance = config.relative_attention_max_distance + self.d_model = config.d_model + self.key_value_proj_dim = config.d_kv + self.n_heads = config.num_heads + self.inner_dim = self.n_heads * self.key_value_proj_dim + + # Mesh TensorFlow initialization to avoid scaling before softmax + q_initializer = keras.initializers.RandomNormal( + mean=0, stddev=config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) + ) + k_initializer = keras.initializers.RandomNormal( + mean=0, stddev=config.initializer_factor * (self.inner_dim**-0.5) + ) + v_initializer = keras.initializers.RandomNormal( + mean=0, stddev=config.initializer_factor * (self.inner_dim**-0.5) + ) + o_initializer = keras.initializers.RandomNormal( + mean=0, stddev=config.initializer_factor * (self.inner_dim**-0.5) + ) + self.relative_attention_bias_initializer = keras.initializers.RandomNormal( + mean=0, stddev=config.initializer_factor * (self.inner_dim**-0.5) + ) + + self.q = keras.layers.Dense( + self.inner_dim, use_bias=False, name="q", kernel_initializer=q_initializer + ) # Update init weights as in flax + self.k = keras.layers.Dense( + self.inner_dim, use_bias=False, name="k", kernel_initializer=k_initializer + ) # Update init weights as in flax + self.v = keras.layers.Dense( + self.inner_dim, use_bias=False, name="v", kernel_initializer=v_initializer + ) # Update init weights as in flax + self.o = keras.layers.Dense( + self.d_model, use_bias=False, name="o", kernel_initializer=o_initializer + ) # Update init weights as in flax + self.dropout = keras.layers.Dropout(config.dropout_rate) + + self.pruned_heads = set() + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if self.has_relative_attention_bias: + with tf.name_scope("relative_attention_bias"): + self.relative_attention_bias = self.add_weight( + name="embeddings", + shape=[self.relative_attention_num_buckets, self.n_heads], + initializer=self.relative_attention_bias_initializer, # Add initializer + ) + if getattr(self, "q", None) is not None: + with tf.name_scope(self.q.name): + self.q.build([None, None, self.d_model]) + if getattr(self, "k", None) is not None: + with tf.name_scope(self.k.name): + self.k.build([None, None, self.d_model]) + if getattr(self, "v", None) is not None: + with tf.name_scope(self.v.name): + self.v.build([None, None, self.d_model]) + if getattr(self, "o", None) is not None: + with tf.name_scope(self.o.name): + self.o.build([None, None, self.inner_dim]) + + def prune_heads(self, heads): + raise NotImplementedError + + @staticmethod + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """ + Adapted from Mesh Tensorflow: + https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + + Args: + relative_position: an int32 Tensor + bidirectional: a boolean - whether the attention is bidirectional + num_buckets: an integer + max_distance: an integer + + Returns: + a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) + """ + relative_buckets = 0 + # n = -relative_position + if bidirectional: + num_buckets //= 2 + relative_buckets += ( + tf.cast(tf.math.greater(relative_position, 0), dtype=relative_position.dtype) * num_buckets + ) + relative_position = tf.math.abs(relative_position) + else: + relative_position = -tf.math.minimum(relative_position, 0) + # now n is in the range [0, inf) + max_exact = num_buckets // 2 + is_small = tf.math.less(relative_position, max_exact) + relative_position_if_large = max_exact + tf.cast( + tf.math.log(tf.cast(relative_position, tf.float32) / tf.cast(max_exact, tf.float32)) + / math.log(max_distance / max_exact) + * (num_buckets - max_exact), + dtype=relative_position.dtype, + ) + relative_position_if_large = tf.math.minimum(relative_position_if_large, num_buckets - 1) + relative_buckets += tf.where(is_small, relative_position, relative_position_if_large) + return relative_buckets + + def compute_bias(self, query_length, key_length): + """Compute binned relative position bias""" + context_position = tf.range(query_length)[:, None] + memory_position = tf.range(key_length)[None, :] + relative_position = memory_position - context_position # shape (query_length, key_length) + relative_position_bucket = self._relative_position_bucket( + relative_position, + bidirectional=(not self.is_decoder), + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + values = tf.gather( + self.relative_attention_bias, relative_position_bucket + ) # shape (query_length, key_length, num_heads) + values = tf.expand_dims( + tf.transpose(values, [2, 0, 1]), axis=0 + ) # shape (1, num_heads, query_length, key_length) + return values + + def call( + self, + hidden_states, + mask=None, + key_value_states=None, + position_bias=None, + past_key_value=None, + layer_head_mask=None, + query_length=None, + use_cache=False, + training=False, + output_attentions=False, + ): + """ + Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). + """ + # Input is (batch_size, query_length, dim) + # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) + # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) + batch_size, seq_length = shape_list(hidden_states)[:2] + + real_seq_length = seq_length + + if past_key_value is not None: + assert ( + len(past_key_value) == 2 + ), f"past_key_value should have 2 past states: keys and values. Got {len(past_key_value)} past states" + real_seq_length += shape_list(past_key_value[0])[2] if query_length is None else query_length + + key_length = real_seq_length if key_value_states is None else shape_list(key_value_states)[1] + + def shape(hidden_states): + """projection""" + return tf.transpose( + tf.reshape(hidden_states, (batch_size, -1, self.n_heads, self.key_value_proj_dim)), perm=(0, 2, 1, 3) + ) + + def unshape(hidden_states): + """compute context""" + return tf.reshape(tf.transpose(hidden_states, perm=(0, 2, 1, 3)), (batch_size, -1, self.inner_dim)) + + def project(hidden_states, proj_layer, key_value_states, past_key_value): + """projects hidden states correctly to key/query states""" + if key_value_states is None: + # self-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(hidden_states)) + elif past_key_value is None: + # cross-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(key_value_states)) + + if past_key_value is not None: + if key_value_states is None: + # self-attn + # (batch_size, n_heads, key_length, dim_per_head) + hidden_states = tf.concat([past_key_value, hidden_states], axis=2) + else: + # cross-attn + hidden_states = past_key_value + return hidden_states + + # get query + query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, query_length, dim_per_head) + + # get key/value + key_states = project( + hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None + ) + value_states = project( + hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None + ) + + # to cope with keras serialization + if self.is_decoder and use_cache: + present_key_value_state = (key_states, value_states) + else: + present_key_value_state = None + + scores = tf.einsum( + "bnqd,bnkd->bnqk", query_states, key_states + ) # (batch_size, n_heads, query_length, key_length) + + if position_bias is None: + if not self.has_relative_attention_bias: + position_bias = tf.zeros((1, self.n_heads, real_seq_length, key_length)) + else: + position_bias = self.compute_bias(real_seq_length, key_length) + + # if key and values are already calculated we want only the last query position bias + if past_key_value is not None: + if not self.has_relative_attention_bias: + position_bias = position_bias[:, :, -seq_length:, :] + else: + # we might have a padded past structure, in which case we want to fetch the position bias slice + # right after the most recently filled past index + most_recently_filled_past_index = tf.reduce_max(tf.where(past_key_value[0][0, 0, :, 0] != 0.0)) + position_bias = dynamic_slice( + position_bias, + (0, 0, most_recently_filled_past_index + 1, 0), + (1, self.n_heads, seq_length, real_seq_length), + ) + + if mask is not None: + position_bias = tf.cast(position_bias, dtype=mask.dtype) + position_bias = position_bias + mask # (batch_size, n_heads, query_length, key_length) + + scores += position_bias + weights = stable_softmax(scores, axis=-1) # (batch_size, n_heads, query_length, key_length) + weights = self.dropout(weights, training=training) # (batch_size, n_heads, query_length, key_length) + + # Mask heads if we want to + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.n_heads], + message=( + f"Head mask for a single layer should be of size {(self.n_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * weights + + attn_output = tf.matmul(weights, value_states) # (batch_size, n_heads, query_length, dim_per_head) + + attn_output = self.o(unshape(attn_output)) + + outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + + if output_attentions: + outputs = outputs + (weights,) + + return outputs + + +class TFT5LayerSelfAttention(keras.layers.Layer): + def __init__(self, config, has_relative_attention_bias=False, **kwargs): + super().__init__(**kwargs) + self.SelfAttention = TFT5Attention( + config, + has_relative_attention_bias=has_relative_attention_bias, + name="SelfAttention", + ) + self.layer_norm = TFT5LayerNorm(config.d_model, epsilon=config.layer_norm_epsilon, name="layer_norm") + self.dropout = keras.layers.Dropout(config.dropout_rate) + + def call( + self, + hidden_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + past_key_value=None, + use_cache=False, + output_attentions=False, + training=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.SelfAttention( + normed_hidden_states, + mask=attention_mask, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + training=training, + ) + hidden_states = hidden_states + self.dropout(attention_output[0], training=training) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "SelfAttention", None) is not None: + with tf.name_scope(self.SelfAttention.name): + self.SelfAttention.build(None) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build(None) + + +class TFT5LayerCrossAttention(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.EncDecAttention = TFT5Attention( + config, + has_relative_attention_bias=False, + name="EncDecAttention", + ) + self.layer_norm = TFT5LayerNorm(config.d_model, epsilon=config.layer_norm_epsilon, name="layer_norm") + self.dropout = keras.layers.Dropout(config.dropout_rate) + + def call( + self, + hidden_states, + key_value_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + past_key_value=None, + query_length=None, + use_cache=False, + output_attentions=False, + training=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.EncDecAttention( + normed_hidden_states, + mask=attention_mask, + key_value_states=key_value_states, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=past_key_value, + query_length=query_length, + use_cache=use_cache, + output_attentions=output_attentions, + training=training, + ) + hidden_states = hidden_states + self.dropout(attention_output[0], training=training) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "EncDecAttention", None) is not None: + with tf.name_scope(self.EncDecAttention.name): + self.EncDecAttention.build(None) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build(None) + + +class TFT5Block(keras.layers.Layer): + def __init__(self, config, has_relative_attention_bias=False, **kwargs): + super().__init__(**kwargs) + self.is_decoder = config.is_decoder + self.layer = [] + self.layer.append( + TFT5LayerSelfAttention( + config, + has_relative_attention_bias=has_relative_attention_bias, + name="layer_._0", + ) + ) + if self.is_decoder: + self.layer.append( + TFT5LayerCrossAttention( + config, + name="layer_._1", + ) + ) + + self.layer.append(TFT5LayerFF(config, name=f"layer_._{len(self.layer)}")) + + def call( + self, + hidden_states, + attention_mask=None, + position_bias=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + encoder_decoder_position_bias=None, + layer_head_mask=None, + encoder_layer_head_mask=None, + past_key_value=None, + use_cache=False, + output_attentions=False, + training=False, + ): + if past_key_value is not None: + assert self.is_decoder, "Only decoder can use `past_key_values`" + expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 + + if len(past_key_value) != expected_num_past_key_values: + raise ValueError( + f"There should be {expected_num_past_key_values} past states. " + f"{'2 (key / value) for cross attention' if expected_num_past_key_values == 4 else ''}. " + f"Got {len(past_key_value)} past key / value states" + ) + + self_attn_past_key_value = past_key_value[:2] + cross_attn_past_key_value = past_key_value[2:] + else: + self_attn_past_key_value, cross_attn_past_key_value = None, None + + self_attention_outputs = self.layer[0]( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=self_attn_past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + training=training, + ) + hidden_states, present_key_value_state = self_attention_outputs[:2] + attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights + + if self.is_decoder and encoder_hidden_states is not None: + # the actual query length is unknown for cross attention + # if using past key value states. Need to inject it here + if present_key_value_state is not None: + query_length = shape_list(present_key_value_state[0])[2] + else: + query_length = None + + cross_attention_outputs = self.layer[1]( + hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + position_bias=encoder_decoder_position_bias, + layer_head_mask=encoder_layer_head_mask, + past_key_value=cross_attn_past_key_value, + query_length=query_length, + use_cache=use_cache, + output_attentions=output_attentions, + training=training, + ) + hidden_states = cross_attention_outputs[0] + # Combine self attn and cross attn key value states + if present_key_value_state is not None: + present_key_value_state = present_key_value_state + cross_attention_outputs[1] + + # Keep cross-attention outputs and relative position weights + attention_outputs = attention_outputs + cross_attention_outputs[2:] + + # Apply Feed Forward layer + hidden_states = self.layer[-1](hidden_states, training=training) + outputs = (hidden_states,) + + # Add attentions if we output them + outputs = outputs + (present_key_value_state,) + attention_outputs + return outputs # hidden-states, present_key_value_states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + for layer_module in self.layer: + if hasattr(layer_module, "name"): + with tf.name_scope(layer_module.name): + layer_module.build(None) + + +#################################################### +# The full model without a specific pretrained or finetuning head is +# provided as a keras.layers.Layer usually called "TFT5MainLayer" +#################################################### +@keras_serializable +class TFT5MainLayer(keras.layers.Layer): + config_class = T5Config + + def __init__(self, config, embed_tokens=None, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.output_hidden_states = config.output_hidden_states + self.output_attentions = config.output_attentions + self.use_cache = config.use_cache + + self.embed_tokens = embed_tokens + self.is_decoder = config.is_decoder + + self.config = config + self.num_hidden_layers = config.num_layers + + self.block = [ + TFT5Block(config, has_relative_attention_bias=bool(i == 0), name=f"block_._{i}") + for i in range(config.num_layers) + ] + self.final_layer_norm = TFT5LayerNorm( + config.d_model, epsilon=config.layer_norm_epsilon, name="final_layer_norm" + ) + self.dropout = keras.layers.Dropout(config.dropout_rate) + + def _prune_heads(self, heads_to_prune): + raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + inputs_embeds=None, + head_mask=None, + encoder_head_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ) -> Tuple: + if input_ids is not None and inputs_embeds is not None: + err_msg_prefix = "decoder_" if self.is_decoder else "" + raise ValueError( + f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" + ) + elif input_ids is not None: + input_shape = shape_list(input_ids) + input_ids = tf.reshape(input_ids, (-1, input_shape[-1])) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + err_msg_prefix = "decoder_" if self.is_decoder else "" + raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") + + if inputs_embeds is None: + assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) + + batch_size, seq_length = input_shape + + # required mask seq length can be calculated via length of past + mask_seq_length = ( + shape_list(past_key_values[0][0])[2] + seq_length if past_key_values is not None else seq_length + ) + + if attention_mask is None: + attention_mask = tf.fill((batch_size, mask_seq_length), 1) + if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: + encoder_seq_length = shape_list(encoder_hidden_states)[1] + encoder_attention_mask = tf.fill((batch_size, encoder_seq_length), 1) + + # initialize past_key_values with `None` if past does not exist + if past_key_values is None: + past_key_values = [None] * len(self.block) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + attention_mask = tf.cast(attention_mask, dtype=inputs_embeds.dtype) + num_dims_attention_mask = len(shape_list(attention_mask)) + if num_dims_attention_mask == 3: + extended_attention_mask = attention_mask[:, None, :, :] + elif num_dims_attention_mask == 2: + # Provided a padding mask of dimensions [batch_size, mask_seq_length] + # - if the model is a decoder, apply a causal mask in addition to the padding mask + # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] + if self.is_decoder: + seq_ids = tf.range(mask_seq_length) + causal_mask = tf.less_equal( + tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), + seq_ids[None, :, None], + ) + causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) + extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] + if past_key_values[0] is not None: + extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] + else: + extended_attention_mask = attention_mask[:, None, None, :] + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -1e9 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + + # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition + # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 + # extended_attention_mask = tf.math.equal(extended_attention_mask, + # tf.transpose(extended_attention_mask, perm=(-1, -2))) + + extended_attention_mask = (1.0 - extended_attention_mask) * -1e9 + + if self.is_decoder and encoder_attention_mask is not None: + # If a 2D ou 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) + num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) + if num_dims_encoder_attention_mask == 3: + encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] + if num_dims_encoder_attention_mask == 2: + encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] + + # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition + # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 + # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, + # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) + + encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9 + else: + encoder_extended_attention_mask = None + + present_key_value_states = () if use_cache and self.is_decoder else None + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if (output_attentions and self.is_decoder) else None + position_bias = None + encoder_decoder_position_bias = None + + hidden_states = self.dropout(inputs_embeds, training=training) + + for idx, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + layer_outputs = layer_module( + hidden_states, + attention_mask=extended_attention_mask, + position_bias=position_bias, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + encoder_decoder_position_bias=encoder_decoder_position_bias, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + encoder_layer_head_mask=encoder_head_mask[idx] if encoder_head_mask is not None else None, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + training=training, + ) + + # layer_outputs is a tuple with: + # hidden-states, key-value-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias) + hidden_states, present_key_value_state = layer_outputs[:2] + + # We share the position biases between the layers - the first layer store them + # layer_outputs = hidden-states, past_key_values, (self-attention weights), + # (self-attention position bias), (cross-attention position bias), (cross-attention weights), + position_bias = layer_outputs[2] + + if self.is_decoder and encoder_hidden_states is not None: + encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] + + # append next layer key value states + if present_key_value_state is not None and use_cache and self.is_decoder: + present_key_value_states = present_key_value_states + (present_key_value_state,) + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[3],) + if self.is_decoder: + all_cross_attentions = all_cross_attentions + (layer_outputs[5],) + + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + outputs = (hidden_states,) + # need to check if is decoder here as well for special cases when using keras compile + if use_cache and self.is_decoder: + outputs = outputs + (present_key_value_states,) + if output_hidden_states: + outputs = outputs + (all_hidden_states,) + if output_attentions: + outputs = outputs + (all_attentions,) + if self.is_decoder: + outputs + (all_cross_attentions,) + return outputs # last-layer hidden state, (past_key_values), (all hidden states), (all attentions), (all_cross_attentions) + + if self.is_decoder: + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_value_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + else: + return TFBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build(None) + if getattr(self, "block", None) is not None: + for layer in self.block: + with tf.name_scope(layer.name): + layer.build(None) + + +#################################################### +# TFT5PreTrainedModel is a sub-class of keras.Model +# which take care of loading and saving pretrained weights +# and various common utilities. +# Here you just need to specify a few (self-explanatory) +# pointers for your model. +#################################################### +class TFT5PreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = T5Config + base_model_prefix = "transformer" + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"decoder\Wblock[\W_0]+layer[\W_1]+EncDecAttention\Wrelative_attention_bias"] + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, value): + self.shared = value + self.encoder.embed_tokens = self.shared + if hasattr(self, "decoder"): + self.decoder.embed_tokens = self.shared + + def _shift_right(self, input_ids): + decoder_start_token_id = self.config.decoder_start_token_id + pad_token_id = self.config.pad_token_id + + assert decoder_start_token_id is not None, ( + "self.model.config.decoder_start_token_id has to be defined. In TF T5 it is usually set to the" + " pad_token_id. See T5 docs for more information" + ) + + start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) + start_tokens = tf.cast(start_tokens, input_ids.dtype) # Ensure compatible dtypes for concatenation + shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) + + assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids = tf.where( + shifted_input_ids == -100, + tf.cast(tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids.dtype), + shifted_input_ids, + ) + + # "Verify that `labels` has only positive values and -100" + assert_gte0 = tf.debugging.assert_greater_equal( + shifted_input_ids, tf.constant(0, dtype=shifted_input_ids.dtype) + ) + + # Make sure the assertion op is called by wrapping the result in an identity no-op + with tf.control_dependencies([assert_gte0]): + shifted_input_ids = tf.identity(shifted_input_ids) + + return shifted_input_ids + + +T5_START_DOCSTRING = r""" + + The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text + Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan + Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a + text-to-text denoising generative setting. + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`T5Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +T5_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you + should be able to pad the inputs on the right or the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + + To know more on how to prepare `inputs` for pretraining take a look at [T5 Training](./t5#training). + decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Provide for sequence to sequence training. T5 uses the `pad_token_id` as the starting token for + `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` + have to be input (see `past_key_values`). + + To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 + Training](./t5#training). + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(tf.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at + the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + +T5_ENCODER_INPUTS_DOCSTRING = r""" + Args: + inputs (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you + should be able to pad the inputs on the right or the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + To know more on how to prepare `inputs` for pre-training take a look at [T5 Training](./t5#training). + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + +_HEAD_MASK_WARNING_MSG = """ +The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, +`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. +If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = tf.ones((num_layers, +num_heads))`. +""" + + +@add_start_docstrings( + "The bare T5 Model transformer outputting raw hidden-stateswithout any specific head on top.", + T5_START_DOCSTRING, +) +class TFT5Model(TFT5PreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.shared = keras.layers.Embedding( + input_dim=config.vocab_size, + output_dim=config.d_model, + embeddings_initializer=keras.initializers.TruncatedNormal(self.config.initializer_factor), + name="shared", + ) + # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) + self.shared.load_weight_prefix = "shared" + + encoder_config = copy.deepcopy(config) + encoder_config.use_cache = False + self.encoder = TFT5MainLayer(encoder_config, self.shared, name="encoder") + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.num_layers = config.num_decoder_layers + self.decoder = TFT5MainLayer(decoder_config, self.shared, name="decoder") + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + decoder_input_ids: np.ndarray | tf.Tensor | None = None, + decoder_attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + decoder_head_mask: np.ndarray | tf.Tensor | None = None, + encoder_outputs: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFSeq2SeqModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TFT5Model + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = TFT5Model.from_pretrained("google-t5/t5-small") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="tf" + ... ).input_ids # Batch size 1 + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="tf").input_ids # Batch size 1 + + >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. + >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. + >>> decoder_input_ids = model._shift_right(decoder_input_ids) + + >>> # forward pass + >>> outputs = model(input_ids, decoder_input_ids=decoder_input_ids) + >>> last_hidden_states = outputs.last_hidden_state + ```""" + # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask + if head_mask is not None and decoder_head_mask is None: + warnings.warn(_HEAD_MASK_WARNING_MSG, FutureWarning) + decoder_head_mask = head_mask + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids, + attention_mask=attention_mask, + encoder_hidden_states=None, + encoder_attention_mask=None, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + past_key_values=None, + use_cache=False, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + hidden_states = encoder_outputs[0] + + # Decode + decoder_outputs = self.decoder( + decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + inputs_embeds=decoder_inputs_embeds, + head_mask=decoder_head_mask, + encoder_head_mask=head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + past = decoder_outputs[1] if use_cache else None + + if not return_dict: + if past_key_values is not None: + decoder_outputs = decoder_outputs[:1] + (past,) + decoder_outputs[2:] + return decoder_outputs + encoder_outputs + + return TFSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=past, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + # The shared/tied weights expect to be in the model base namespace + # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than + # the current one. + with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): + self.shared.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) +class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModelingLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.model_dim = config.d_model + self.shared = keras.layers.Embedding( + config.vocab_size, + config.d_model, + name="shared", + embeddings_initializer=get_initializer(self.config.initializer_factor), + ) + # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) + self.shared.load_weight_prefix = "shared" + + encoder_config = copy.deepcopy(config) + encoder_config.use_cache = False + self.encoder = TFT5MainLayer(encoder_config, self.shared, name="encoder") + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.num_layers = config.num_decoder_layers + self.decoder = TFT5MainLayer(decoder_config, self.shared, name="decoder") + + if not config.tie_word_embeddings: + lm_head_initializer = keras.initializers.RandomNormal(mean=0, stddev=config.initializer_factor) + self.lm_head = keras.layers.Dense( + config.vocab_size, use_bias=False, name="lm_head", kernel_initializer=lm_head_initializer + ) # Update init weights as in flax + self.config = config + + def get_output_embeddings(self): + if self.config.tie_word_embeddings: + return self.get_input_embeddings() + else: + # in a dense layer the kernel has a shape (last_dim, units), for us (dim, num_tokens) + # value has a shape (num_tokens, dim) then needs to be transposed + return tf.transpose(self.lm_head.kernel) + + def set_output_embeddings(self, value): + if self.config.tie_word_embeddings: + self.set_input_embeddings(value) + else: + lm_head_initializer = keras.initializers.RandomNormal(mean=0, stddev=self.config.initializer_factor) + self.lm_head = keras.layers.Dense( + shape_list(value)[0], use_bias=False, name="lm_head", kernel_initializer=lm_head_initializer + ) # Update init weights as in flax + # in a dense layer the kernel has a shape (last_dim, units), for us (dim, num_tokens) + # value has a shape (num_tokens, dim) then needs to be transposed + transposed_value = tf.transpose(value) + self.lm_head.kernel = transposed_value + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + decoder_input_ids: np.ndarray | tf.Tensor | None = None, + decoder_attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + decoder_head_mask: np.ndarray | tf.Tensor | None = None, + encoder_outputs: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, + labels: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFSeq2SeqLMOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., + config.vocab_size - 1]`. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TFT5ForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") + + >>> # training + >>> inputs = tokenizer("The walks in park", return_tensors="tf").input_ids + >>> labels = tokenizer(" cute dog the ", return_tensors="tf").input_ids + >>> outputs = model(inputs, labels=labels) + >>> loss = outputs.loss + >>> logits = outputs.logits + + >>> # inference + >>> inputs = tokenizer( + ... "summarize: studies have shown that owning a dog is good for you", return_tensors="tf" + ... ).input_ids # Batch size 1 + >>> outputs = model.generate(inputs) + >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) + >>> # studies have shown that owning a dog is good for you + ```""" + # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask + if head_mask is not None and decoder_head_mask is None: + warnings.warn(_HEAD_MASK_WARNING_MSG, FutureWarning) + decoder_head_mask = head_mask + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + hidden_states = encoder_outputs[0] + + if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: + # get decoder inputs from shifting lm labels to the right + decoder_input_ids = self._shift_right(labels) + + # Decode + decoder_outputs = self.decoder( + decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + inputs_embeds=decoder_inputs_embeds, + head_mask=decoder_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = decoder_outputs[0] + + # T5v1.1 does not tie output word embeddings and thus does not require downscaling + if self.config.tie_word_embeddings: + sequence_output = sequence_output * (self.model_dim**-0.5) + logits = tf.matmul(sequence_output, self.shared.weights, transpose_b=True) + else: + logits = self.lm_head(sequence_output) + + logits = tf.cast(logits, tf.float32) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + past = decoder_outputs[1] if use_cache else None + if not return_dict: + if past_key_values is not None: + decoder_outputs = decoder_outputs[:1] + (past,) + decoder_outputs[2:] + output = (logits,) + decoder_outputs[1:] + encoder_outputs + return ((loss,) + output) if loss is not None else output + + # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True + elif isinstance(encoder_outputs, tuple): + last_hidden_state = encoder_outputs[0] + hidden_states = None + attentions = None + idx = 0 + if output_hidden_states: + idx += 1 + hidden_states = encoder_outputs[idx] + if output_attentions: + idx += 1 + attentions = encoder_outputs[idx] + + encoder_outputs = TFBaseModelOutput( + last_hidden_state=last_hidden_state, + hidden_states=hidden_states, + attentions=attentions, + ) + + return TFSeq2SeqLMOutput( + loss=loss, + logits=logits, + past_key_values=past, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def serving_output(self, output): + pkv = tf.convert_to_tensor(output.past_key_values[1:]) if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqLMOutput( + logits=output.logits, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + decoder_attention_mask=None, + head_mask=None, + decoder_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + input_ids = input_ids[:, -1:] + + return { + "input_ids": None, # needs to be passed to make Keras.layer.__call__ happy + "decoder_input_ids": input_ids, + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "attention_mask": attention_mask, + "decoder_attention_mask": decoder_attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "use_cache": use_cache, + } + + def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): + return self._shift_right(labels) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + # The shared/tied weights expect to be in the model base namespace + # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than + # the current one. + with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): + self.shared.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build([None, None, self.config.d_model]) + + +@add_start_docstrings( + "The bare T5 Model transformer outputting encoder's raw hidden-stateswithout any specific head on top.", + T5_START_DOCSTRING, +) +class TFT5EncoderModel(TFT5PreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.shared = keras.layers.Embedding( + config.vocab_size, + config.d_model, + name="shared", + embeddings_initializer=get_initializer(self.config.initializer_factor), + ) + # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) + self.shared.load_weight_prefix = "shared" + + encoder_config = copy.deepcopy(config) + encoder_config.use_cache = False + self.encoder = TFT5MainLayer(encoder_config, self.shared, name="encoder") + + def get_encoder(self): + return self.encoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFBaseModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TFT5EncoderModel + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") + >>> model = TFT5EncoderModel.from_pretrained("google-t5/t5-small") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="tf" + ... ).input_ids # Batch size 1 + >>> outputs = model(input_ids) + ```""" + + encoder_outputs = self.encoder( + input_ids, + attention_mask=attention_mask, + encoder_hidden_states=None, + encoder_attention_mask=None, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + past_key_values=None, + use_cache=False, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return encoder_outputs + + return TFBaseModelOutput( + last_hidden_state=encoder_outputs.last_hidden_state, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + # The shared/tied weights expect to be in the model base namespace + # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than + # the current one. + with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): + self.shared.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/tokenization_t5.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/tokenization_t5.py new file mode 100644 index 0000000000000000000000000000000000000000..7292808adc6b56119d264c84b2cb72f0984a2f7a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/tokenization_t5.py @@ -0,0 +1,449 @@ +# coding=utf-8 +# Copyright 2018 T5 Authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization class for model T5.""" + + +import os +import re +import warnings +from shutil import copyfile +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...convert_slow_tokenizer import import_protobuf +from ...tokenization_utils import PreTrainedTokenizer +from ...tokenization_utils_base import AddedToken + + +if TYPE_CHECKING: + from ...tokenization_utils_base import TextInput +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} + + +# TODO(PVP) - this should be removed in Transformers v5 + +SPIECE_UNDERLINE = "▁" + + +class T5Tokenizer(PreTrainedTokenizer): + """ + Construct a T5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + extra_ids (`int`, *optional*, defaults to 100): + Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are + accessible as "" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be + retrieved by calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids + method + additional_special_tokens (`List[str]`, *optional*): + Additional special tokens used by the tokenizer. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + legacy (`bool`, *optional*): + Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622 + and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple + example: + + - `legacy=True`: + ```python + >>> from transformers import T5Tokenizer + + >>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=True) + >>> tokenizer.encode("Hello .") + [8774, 32099, 3, 5, 1] + ``` + - `legacy=False`: + ```python + >>> from transformers import T5Tokenizer + + >>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=False) + >>> tokenizer.encode("Hello .") # the extra space `[3]` is no longer here + [8774, 32099, 5, 1] + ``` + Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + eos_token="", + unk_token="", + pad_token="", + extra_ids=100, + additional_special_tokens=None, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + legacy=None, + add_prefix_space=True, + **kwargs, + ) -> None: + pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token + unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token + eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.vocab_file = vocab_file + self._extra_ids = extra_ids + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + + if additional_special_tokens is not None: + extra_tokens = [x for x in additional_special_tokens if "" for i in range(extra_ids)] + elif extra_ids > 0 and extra_ids != len(extra_tokens): + raise ValueError( + f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" + " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" + " tokens" + ) + else: + extra_tokens = [f"" for i in range(extra_ids)] + additional_special_tokens = extra_tokens + + # for legacy purpose, we keep this. Will be removed and tests updated. (when `added_tokens_decoder` is not passed as kwargs) + self._added_tokens_decoder = {} + for i in range(len(extra_tokens)): + self._added_tokens_decoder[len(self.sp_model) - 1 + extra_ids - i] = AddedToken( + f"", single_word=False, lstrip=True, rstrip=True, special=True, normalized=False + ) + + if legacy is None: + logger.warning_once( + f"You are using the default legacy behaviour of the {self.__class__}. This is" + " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." + " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" + " means, and thoroughly read the reason why this was added as explained in" + " https://github.com/huggingface/transformers/pull/24565" + ) + legacy = True + + self.legacy = legacy + self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) + self.vocab_file = vocab_file + self._extra_ids = extra_ids + self.add_prefix_space = add_prefix_space + + super().__init__( + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + extra_ids=extra_ids, + additional_special_tokens=additional_special_tokens, + sp_model_kwargs=self.sp_model_kwargs, + legacy=legacy, + add_prefix_space=add_prefix_space, + **kwargs, + ) + + # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor + def get_spm_processor(self, from_slow=False): + tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) + if self.legacy or from_slow: # no dependency on protobuf + tokenizer.Load(self.vocab_file) + return tokenizer + + with open(self.vocab_file, "rb") as f: + sp_model = f.read() + model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") + model = model_pb2.ModelProto.FromString(sp_model) + normalizer_spec = model_pb2.NormalizerSpec() + normalizer_spec.add_dummy_prefix = False + model.normalizer_spec.MergeFrom(normalizer_spec) + sp_model = model.SerializeToString() + tokenizer.LoadFromSerializedProto(sp_model) + return tokenizer + + @staticmethod + def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length): + if pretrained_model_name_or_path in T5Tokenizer.max_model_input_sizes: + deprecated_max_model_length = T5Tokenizer.max_model_input_sizes[pretrained_model_name_or_path] + if init_max_model_length is not None and init_max_model_length != max_model_length: + return init_max_model_length + elif init_max_model_length is None: + warnings.warn( + "This tokenizer was incorrectly instantiated with a model max length of" + f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" + " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" + " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" + f" {pretrained_model_name_or_path} automatically truncating your input to" + f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" + f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" + " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" + " instantiate this tokenizer with `model_max_length` set to your preferred value.", + FutureWarning, + ) + + return max_model_length + + @property + def vocab_size(self): + return self.sp_model.get_piece_size() + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + # normal case: some special tokens + if token_ids_1 is None: + return ([0] * len(token_ids_0)) + [1] + return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + + def get_sentinel_tokens(self): + return list( + set(filter(lambda x: bool(re.search(r"", x)) is not None, self.additional_special_tokens)) + ) + + def get_sentinel_token_ids(self): + return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()] + + def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: + """Do not add eos again if user already added it.""" + if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: + warnings.warn( + f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" + " eos tokens being added." + ) + return token_ids + else: + return token_ids + [self.eos_token_id] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make + use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + eos = [self.eos_token_id] + + if token_ids_1 is None: + return len(token_ids_0 + eos) * [0] + return len(token_ids_0 + eos + token_ids_1 + eos) * [0] + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A sequence has the following format: + + - single sequence: `X ` + - pair of sequences: `A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + token_ids_0 = self._add_eos_if_not_present(token_ids_0) + if token_ids_1 is None: + return token_ids_0 + else: + token_ids_1 = self._add_eos_if_not_present(token_ids_1) + return token_ids_0 + token_ids_1 + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + def tokenize(self, text: "TextInput", **kwargs) -> List[str]: + """ + Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the + first token is special. + """ + if self.legacy or len(text) == 0: + return super().tokenize(text, **kwargs) + + text = text.replace(SPIECE_UNDERLINE, " ") + if self.add_prefix_space: + text = SPIECE_UNDERLINE + text + + tokens = super().tokenize(text, **kwargs) + + if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: + tokens = tokens[1:] + return tokens + + @property + def unk_token_length(self): + return len(self.sp_model.encode(str(self.unk_token))) + + def _tokenize(self, text, **kwargs): + """ + Returns a tokenized string. + + We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any + SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give + `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the + `unk_token`. Here is an example with `unk_token = ""` and `unk_token_length = 4`. + `self.tokenizer.sp_model.encode(" Hey", out_type = str)[4:]`. + """ + tokens = self.sp_model.encode(text, out_type=str) + if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): + return tokens + + # 1. Encode string + prefix ex: " Hey" + tokens = self.sp_model.encode(self.unk_token + text, out_type=str) + # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] + return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.piece_to_id(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + token = self.sp_model.IdToPiece(index) + return token + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + # since we manually add the prefix space, we have to remove it when decoding + if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space: + tokens[0] = tokens[0][1:] + + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + if not prev_is_special: + out_string += " " + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + return out_string.strip() + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/tokenization_t5_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/tokenization_t5_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..e9f2033812e69839aedbf1d02cb6aa2e441cc20a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/t5/tokenization_t5_fast.py @@ -0,0 +1,234 @@ +# coding=utf-8 +# Copyright 2018 T5 Authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization class for model T5.""" + + +import os +import re +import warnings +from shutil import copyfile +from typing import List, Optional, Tuple + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_t5 import T5Tokenizer +else: + T5Tokenizer = None + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} + + +# TODO(PVP) - this should be removed in Transformers v5 + + +class T5TokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" T5 tokenizer (backed by HuggingFace's *tokenizers* library). Based on + [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + extra_ids (`int`, *optional*, defaults to 100): + Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are accessible as + "" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be retrieved by + calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids method + additional_special_tokens (`List[str]`, *optional*): + Additional special tokens used by the tokenizer. + add_prefix_space (`bool`, *optional*): + Whether or not the tokenizer should automatically add a prefix space + from_slow (`book`, *optional*, defaults to `False`): + Whether or not the tokenizer should be converted from a slow one. If `add_prefix_space` is set, this will be set to `True`. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = T5Tokenizer + + prefix_tokens: List[int] = [] + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + eos_token="", + unk_token="", + pad_token="", + extra_ids=100, + additional_special_tokens=None, + add_prefix_space=None, + **kwargs, + ): + # Add extra_ids to the special token list + if additional_special_tokens is not None: + extra_tokens = [x for x in additional_special_tokens if "" for i in range(extra_ids)] + elif extra_ids > 0 and extra_ids != len(extra_tokens): + raise ValueError( + f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" + " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" + " tokens" + ) + else: + extra_tokens = [f"" for i in range(extra_ids)] + additional_special_tokens = extra_tokens + + if add_prefix_space is not None: + logger.warning_once( + "You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers" + ) + kwargs["from_slow"] = True + + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + extra_ids=extra_ids, + additional_special_tokens=additional_special_tokens, + **kwargs, + ) + + self.vocab_file = vocab_file + self._extra_ids = extra_ids + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + @staticmethod + def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length): + if pretrained_model_name_or_path in T5TokenizerFast.max_model_input_sizes: + deprecated_max_model_length = T5TokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] + if init_max_model_length is not None and init_max_model_length != max_model_length: + return init_max_model_length + elif init_max_model_length is None: + warnings.warn( + "This tokenizer was incorrectly instantiated with a model max length of" + f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" + " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" + " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" + f" {pretrained_model_name_or_path} automatically truncating your input to" + f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" + f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" + " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" + " instantiate this tokenizer with `model_max_length` set to your preferred value.", + FutureWarning, + ) + + return max_model_length + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + logger.info(f"Copy vocab file to {out_vocab_file}") + + return (out_vocab_file,) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A sequence has the following format: + + - single sequence: `X ` + - pair of sequences: `A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + token_ids_0 = token_ids_0 + [self.eos_token_id] + if token_ids_1 is None: + return self.prefix_tokens + token_ids_0 + else: + token_ids_1 = token_ids_1 + [self.eos_token_id] + return self.prefix_tokens + token_ids_0 + token_ids_1 + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make + use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + eos = [self.eos_token_id] + + if token_ids_1 is None: + return len(token_ids_0 + eos) * [0] + return len(token_ids_0 + eos + token_ids_1 + eos) * [0] + + def get_sentinel_tokens(self): + return list( + set(filter(lambda x: bool(re.search(r"", x)) is not None, self.additional_special_tokens)) + ) + + def get_sentinel_token_ids(self): + return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()] diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4c692f76432f4a9dee44efadede1192274a3ca96 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py @@ -0,0 +1,49 @@ +# flake8: noqa +# There's no way to ignore "F401 '...' imported but unused" warnings in this +# module, but to preserve other warnings. So, don't check this module at all. + +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = {"configuration_timm_backbone": ["TimmBackboneConfig"]} + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_timm_backbone"] = ["TimmBackbone"] + + +if TYPE_CHECKING: + from .configuration_timm_backbone import TimmBackboneConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_timm_backbone import TimmBackbone + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8c039b72373d8e96467a096bf9c9a235b2136b94 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..52d7737358420826307c3fd3d04322a512bb38f5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c0428108227ba71023c724d120017930354334b2 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py new file mode 100644 index 0000000000000000000000000000000000000000..0f2f1b0b6c31348f2f25382029b700694a18d257 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py @@ -0,0 +1,83 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" Configuration for Backbone models""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class TimmBackboneConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration for a timm backbone [`TimmBackbone`]. + + It is used to instantiate a timm backbone model according to the specified arguments, defining the model. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + backbone (`str`, *optional*): + The timm checkpoint to load. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + features_only (`bool`, *optional*, defaults to `True`): + Whether to output only the features or also the logits. + use_pretrained_backbone (`bool`, *optional*, defaults to `True`): + Whether to use a pretrained backbone. + out_indices (`List[int]`, *optional*): + If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how + many stages the model has). Will default to the last stage if unset. + freeze_batch_norm_2d (`bool`, *optional*, defaults to `False`): + Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. + + Example: + ```python + >>> from transformers import TimmBackboneConfig, TimmBackbone + + >>> # Initializing a timm backbone + >>> configuration = TimmBackboneConfig("resnet50") + + >>> # Initializing a model from the configuration + >>> model = TimmBackbone(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` + """ + + model_type = "timm_backbone" + + def __init__( + self, + backbone=None, + num_channels=3, + features_only=True, + use_pretrained_backbone=True, + out_indices=None, + freeze_batch_norm_2d=False, + **kwargs, + ): + super().__init__(**kwargs) + self.backbone = backbone + self.num_channels = num_channels + self.features_only = features_only + self.use_pretrained_backbone = use_pretrained_backbone + self.use_timm_backbone = True + self.out_indices = out_indices if out_indices is not None else (-1,) + self.freeze_batch_norm_2d = freeze_batch_norm_2d diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py new file mode 100644 index 0000000000000000000000000000000000000000..0c6fe67b75731f775800080260082fc023fd654f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py @@ -0,0 +1,158 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Optional, Tuple, Union + +import torch + +from ...modeling_outputs import BackboneOutput +from ...modeling_utils import PreTrainedModel +from ...utils import is_timm_available, is_torch_available, requires_backends +from ...utils.backbone_utils import BackboneMixin +from .configuration_timm_backbone import TimmBackboneConfig + + +if is_timm_available(): + import timm + + +if is_torch_available(): + from torch import Tensor + + +class TimmBackbone(PreTrainedModel, BackboneMixin): + """ + Wrapper class for timm models to be used as backbones. This enables using the timm models interchangeably with the + other models in the library keeping the same API. + """ + + main_input_name = "pixel_values" + supports_gradient_checkpointing = False + config_class = TimmBackboneConfig + + def __init__(self, config, **kwargs): + requires_backends(self, "timm") + super().__init__(config) + self.config = config + + if config.backbone is None: + raise ValueError("backbone is not set in the config. Please set it to a timm model name.") + + if config.backbone not in timm.list_models(): + raise ValueError(f"backbone {config.backbone} is not supported by timm.") + + if hasattr(config, "out_features") and config.out_features is not None: + raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") + + pretrained = getattr(config, "use_pretrained_backbone", None) + if pretrained is None: + raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") + + # We just take the final layer by default. This matches the default for the transformers models. + out_indices = config.out_indices if getattr(config, "out_indices", None) is not None else (-1,) + + self._backbone = timm.create_model( + config.backbone, + pretrained=pretrained, + # This is currently not possible for transformer architectures. + features_only=config.features_only, + in_chans=config.num_channels, + out_indices=out_indices, + **kwargs, + ) + + # Converts all `BatchNorm2d` and `SyncBatchNorm` or `BatchNormAct2d` and `SyncBatchNormAct2d` layers of provided module into `FrozenBatchNorm2d` or `FrozenBatchNormAct2d` respectively + if getattr(config, "freeze_batch_norm_2d", False): + self.freeze_batch_norm_2d() + + # These are used to control the output of the model when called. If output_hidden_states is True, then + # return_layers is modified to include all layers. + self._return_layers = self._backbone.return_layers + self._all_layers = {layer["module"]: str(i) for i, layer in enumerate(self._backbone.feature_info.info)} + super()._init_backbone(config) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): + requires_backends(cls, ["vision", "timm"]) + from ...models.timm_backbone import TimmBackboneConfig + + config = kwargs.pop("config", TimmBackboneConfig()) + + use_timm = kwargs.pop("use_timm_backbone", True) + if not use_timm: + raise ValueError("use_timm_backbone must be True for timm backbones") + + num_channels = kwargs.pop("num_channels", config.num_channels) + features_only = kwargs.pop("features_only", config.features_only) + use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone) + out_indices = kwargs.pop("out_indices", config.out_indices) + config = TimmBackboneConfig( + backbone=pretrained_model_name_or_path, + num_channels=num_channels, + features_only=features_only, + use_pretrained_backbone=use_pretrained_backbone, + out_indices=out_indices, + ) + return super()._from_config(config, **kwargs) + + def freeze_batch_norm_2d(self): + timm.layers.freeze_batch_norm_2d(self._backbone) + + def unfreeze_batch_norm_2d(self): + timm.layers.unfreeze_batch_norm_2d(self._backbone) + + def _init_weights(self, module): + """ + Empty init weights function to ensure compatibility of the class in the library. + """ + pass + + def forward( + self, + pixel_values: torch.FloatTensor, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + + if output_attentions: + raise ValueError("Cannot output attentions for timm backbones at the moment") + + if output_hidden_states: + # We modify the return layers to include all the stages of the backbone + self._backbone.return_layers = self._all_layers + hidden_states = self._backbone(pixel_values, **kwargs) + self._backbone.return_layers = self._return_layers + feature_maps = tuple(hidden_states[i] for i in self.out_indices) + else: + feature_maps = self._backbone(pixel_values, **kwargs) + hidden_states = None + + feature_maps = tuple(feature_maps) + hidden_states = tuple(hidden_states) if hidden_states is not None else None + + if not return_dict: + output = (feature_maps,) + if output_hidden_states: + output = output + (hidden_states,) + return output + + return BackboneOutput(feature_maps=feature_maps, hidden_states=hidden_states, attentions=None)