applied-ai-018 commited on
Commit
f55312b
·
verified ·
1 Parent(s): 4fc86f0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/pyarrow/__init__.pxd +42 -0
  2. llmeval-env/lib/python3.10/site-packages/pyarrow/__init__.py +429 -0
  3. llmeval-env/lib/python3.10/site-packages/pyarrow/_acero.pxd +44 -0
  4. llmeval-env/lib/python3.10/site-packages/pyarrow/_acero.pyx +608 -0
  5. llmeval-env/lib/python3.10/site-packages/pyarrow/_csv.pxd +55 -0
  6. llmeval-env/lib/python3.10/site-packages/pyarrow/_csv.pyx +1542 -0
  7. llmeval-env/lib/python3.10/site-packages/pyarrow/_dataset.pxd +183 -0
  8. llmeval-env/lib/python3.10/site-packages/pyarrow/_dataset.pyx +0 -0
  9. llmeval-env/lib/python3.10/site-packages/pyarrow/_dataset_parquet.pxd +42 -0
  10. llmeval-env/lib/python3.10/site-packages/pyarrow/_feather.pyx +117 -0
  11. llmeval-env/lib/python3.10/site-packages/pyarrow/_fs.pxd +94 -0
  12. llmeval-env/lib/python3.10/site-packages/pyarrow/_generated_version.py +16 -0
  13. llmeval-env/lib/python3.10/site-packages/pyarrow/_json.pyx +310 -0
  14. llmeval-env/lib/python3.10/site-packages/pyarrow/_orc.pxd +134 -0
  15. llmeval-env/lib/python3.10/site-packages/pyarrow/_parquet.pyx +2205 -0
  16. llmeval-env/lib/python3.10/site-packages/pyarrow/_parquet_encryption.pxd +56 -0
  17. llmeval-env/lib/python3.10/site-packages/pyarrow/_parquet_encryption.pyx +484 -0
  18. llmeval-env/lib/python3.10/site-packages/pyarrow/_pyarrow_cpp_tests.cpython-310-x86_64-linux-gnu.so +0 -0
  19. llmeval-env/lib/python3.10/site-packages/pyarrow/_pyarrow_cpp_tests.pxd +33 -0
  20. llmeval-env/lib/python3.10/site-packages/pyarrow/_s3fs.pyx +467 -0
  21. llmeval-env/lib/python3.10/site-packages/pyarrow/acero.py +395 -0
  22. llmeval-env/lib/python3.10/site-packages/pyarrow/compat.pxi +71 -0
  23. llmeval-env/lib/python3.10/site-packages/pyarrow/compute.py +731 -0
  24. llmeval-env/lib/python3.10/site-packages/pyarrow/feather.py +277 -0
  25. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/api.h +47 -0
  26. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/array.h +49 -0
  27. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/buffer.h +587 -0
  28. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/buffer_builder.h +484 -0
  29. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/builder.h +33 -0
  30. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/chunk_resolver.h +164 -0
  31. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/chunked_array.h +275 -0
  32. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compare.h +145 -0
  33. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/api_scalar.h +1717 -0
  34. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/api_vector.h +697 -0
  35. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/cast.h +134 -0
  36. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/exec.h +489 -0
  37. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/function.h +409 -0
  38. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/function_options.h +81 -0
  39. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/ordering.h +120 -0
  40. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/registry.h +126 -0
  41. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/type_fwd.h +58 -0
  42. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/config.h +98 -0
  43. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/datum.h +311 -0
  44. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/device.h +394 -0
  45. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/extension_type.h +165 -0
  46. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/memory_pool.h +296 -0
  47. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/memory_pool_test.h +111 -0
  48. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/pch.h +30 -0
  49. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/pretty_print.h +157 -0
  50. llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/record_batch.h +407 -0
llmeval-env/lib/python3.10/site-packages/pyarrow/__init__.pxd ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ from libcpp.memory cimport shared_ptr
19
+ from pyarrow.includes.libarrow cimport (CArray, CBuffer, CDataType,
20
+ CField, CRecordBatch, CSchema,
21
+ CTable, CTensor, CSparseCOOTensor,
22
+ CSparseCSRMatrix, CSparseCSCMatrix,
23
+ CSparseCSFTensor)
24
+
25
+ cdef extern from "arrow/python/pyarrow.h" namespace "arrow::py":
26
+ cdef int import_pyarrow() except -1
27
+ cdef object wrap_buffer(const shared_ptr[CBuffer]& buffer)
28
+ cdef object wrap_data_type(const shared_ptr[CDataType]& type)
29
+ cdef object wrap_field(const shared_ptr[CField]& field)
30
+ cdef object wrap_schema(const shared_ptr[CSchema]& schema)
31
+ cdef object wrap_array(const shared_ptr[CArray]& sp_array)
32
+ cdef object wrap_tensor(const shared_ptr[CTensor]& sp_tensor)
33
+ cdef object wrap_sparse_tensor_coo(
34
+ const shared_ptr[CSparseCOOTensor]& sp_sparse_tensor)
35
+ cdef object wrap_sparse_tensor_csr(
36
+ const shared_ptr[CSparseCSRMatrix]& sp_sparse_tensor)
37
+ cdef object wrap_sparse_tensor_csc(
38
+ const shared_ptr[CSparseCSCMatrix]& sp_sparse_tensor)
39
+ cdef object wrap_sparse_tensor_csf(
40
+ const shared_ptr[CSparseCSFTensor]& sp_sparse_tensor)
41
+ cdef object wrap_table(const shared_ptr[CTable]& ctable)
42
+ cdef object wrap_batch(const shared_ptr[CRecordBatch]& cbatch)
llmeval-env/lib/python3.10/site-packages/pyarrow/__init__.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # flake8: noqa
19
+
20
+ """
21
+ PyArrow is the python implementation of Apache Arrow.
22
+
23
+ Apache Arrow is a cross-language development platform for in-memory data.
24
+ It specifies a standardized language-independent columnar memory format for
25
+ flat and hierarchical data, organized for efficient analytic operations on
26
+ modern hardware. It also provides computational libraries and zero-copy
27
+ streaming messaging and interprocess communication.
28
+
29
+ For more information see the official page at https://arrow.apache.org
30
+ """
31
+
32
+ import gc as _gc
33
+ import importlib as _importlib
34
+ import os as _os
35
+ import platform as _platform
36
+ import sys as _sys
37
+ import warnings as _warnings
38
+
39
+ try:
40
+ from ._generated_version import version as __version__
41
+ except ImportError:
42
+ # Package is not installed, parse git tag at runtime
43
+ try:
44
+ import setuptools_scm
45
+ # Code duplicated from setup.py to avoid a dependency on each other
46
+
47
+ def parse_git(root, **kwargs):
48
+ """
49
+ Parse function for setuptools_scm that ignores tags for non-C++
50
+ subprojects, e.g. apache-arrow-js-XXX tags.
51
+ """
52
+ from setuptools_scm.git import parse
53
+ kwargs['describe_command'] = \
54
+ "git describe --dirty --tags --long --match 'apache-arrow-[0-9]*.*'"
55
+ return parse(root, **kwargs)
56
+ __version__ = setuptools_scm.get_version('../',
57
+ parse=parse_git)
58
+ except ImportError:
59
+ __version__ = None
60
+
61
+ # ARROW-8684: Disable GC while initializing Cython extension module,
62
+ # to workaround Cython bug in https://github.com/cython/cython/issues/3603
63
+ _gc_enabled = _gc.isenabled()
64
+ _gc.disable()
65
+ import pyarrow.lib as _lib
66
+ if _gc_enabled:
67
+ _gc.enable()
68
+
69
+ from pyarrow.lib import (BuildInfo, RuntimeInfo, set_timezone_db_path,
70
+ MonthDayNano, VersionInfo, cpp_build_info,
71
+ cpp_version, cpp_version_info, runtime_info,
72
+ cpu_count, set_cpu_count, enable_signal_handlers,
73
+ io_thread_count, set_io_thread_count)
74
+
75
+
76
+ def show_versions():
77
+ """
78
+ Print various version information, to help with error reporting.
79
+ """
80
+ def print_entry(label, value):
81
+ print(f"{label: <26}: {value: <8}")
82
+
83
+ print("pyarrow version info\n--------------------")
84
+ print_entry("Package kind", cpp_build_info.package_kind
85
+ if len(cpp_build_info.package_kind) > 0
86
+ else "not indicated")
87
+ print_entry("Arrow C++ library version", cpp_build_info.version)
88
+ print_entry("Arrow C++ compiler",
89
+ f"{cpp_build_info.compiler_id} {cpp_build_info.compiler_version}")
90
+ print_entry("Arrow C++ compiler flags", cpp_build_info.compiler_flags)
91
+ print_entry("Arrow C++ git revision", cpp_build_info.git_id)
92
+ print_entry("Arrow C++ git description", cpp_build_info.git_description)
93
+ print_entry("Arrow C++ build type", cpp_build_info.build_type)
94
+
95
+
96
+ def _module_is_available(module):
97
+ try:
98
+ _importlib.import_module(f'pyarrow.{module}')
99
+ except ImportError:
100
+ return False
101
+ else:
102
+ return True
103
+
104
+
105
+ def _filesystem_is_available(fs):
106
+ try:
107
+ import pyarrow.fs
108
+ except ImportError:
109
+ return False
110
+
111
+ try:
112
+ getattr(pyarrow.fs, fs)
113
+ except (ImportError, AttributeError):
114
+ return False
115
+ else:
116
+ return True
117
+
118
+
119
+ def show_info():
120
+ """
121
+ Print detailed version and platform information, for error reporting
122
+ """
123
+ show_versions()
124
+
125
+ def print_entry(label, value):
126
+ print(f" {label: <20}: {value: <8}")
127
+
128
+ print("\nPlatform:")
129
+ print_entry("OS / Arch", f"{_platform.system()} {_platform.machine()}")
130
+ print_entry("SIMD Level", runtime_info().simd_level)
131
+ print_entry("Detected SIMD Level", runtime_info().detected_simd_level)
132
+
133
+ pool = default_memory_pool()
134
+ print("\nMemory:")
135
+ print_entry("Default backend", pool.backend_name)
136
+ print_entry("Bytes allocated", f"{pool.bytes_allocated()} bytes")
137
+ print_entry("Max memory", f"{pool.max_memory()} bytes")
138
+ print_entry("Supported Backends", ', '.join(supported_memory_backends()))
139
+
140
+ print("\nOptional modules:")
141
+ modules = ["csv", "cuda", "dataset", "feather", "flight", "fs", "gandiva", "json",
142
+ "orc", "parquet"]
143
+ for module in modules:
144
+ status = "Enabled" if _module_is_available(module) else "-"
145
+ print(f" {module: <20}: {status: <8}")
146
+
147
+ print("\nFilesystems:")
148
+ filesystems = ["AzureFileSystem", "GcsFileSystem",
149
+ "HadoopFileSystem", "S3FileSystem"]
150
+ for fs in filesystems:
151
+ status = "Enabled" if _filesystem_is_available(fs) else "-"
152
+ print(f" {fs: <20}: {status: <8}")
153
+
154
+ print("\nCompression Codecs:")
155
+ codecs = ["brotli", "bz2", "gzip", "lz4_frame", "lz4", "snappy", "zstd"]
156
+ for codec in codecs:
157
+ status = "Enabled" if Codec.is_available(codec) else "-"
158
+ print(f" {codec: <20}: {status: <8}")
159
+
160
+
161
+ from pyarrow.lib import (null, bool_,
162
+ int8, int16, int32, int64,
163
+ uint8, uint16, uint32, uint64,
164
+ time32, time64, timestamp, date32, date64, duration,
165
+ month_day_nano_interval,
166
+ float16, float32, float64,
167
+ binary, string, utf8, binary_view, string_view,
168
+ large_binary, large_string, large_utf8,
169
+ decimal128, decimal256,
170
+ list_, large_list, list_view, large_list_view,
171
+ map_, struct,
172
+ union, sparse_union, dense_union,
173
+ dictionary,
174
+ run_end_encoded,
175
+ fixed_shape_tensor,
176
+ field,
177
+ type_for_alias,
178
+ DataType, DictionaryType, StructType,
179
+ ListType, LargeListType, FixedSizeListType,
180
+ ListViewType, LargeListViewType,
181
+ MapType, UnionType, SparseUnionType, DenseUnionType,
182
+ TimestampType, Time32Type, Time64Type, DurationType,
183
+ FixedSizeBinaryType, Decimal128Type, Decimal256Type,
184
+ BaseExtensionType, ExtensionType,
185
+ RunEndEncodedType, FixedShapeTensorType,
186
+ PyExtensionType, UnknownExtensionType,
187
+ register_extension_type, unregister_extension_type,
188
+ DictionaryMemo,
189
+ KeyValueMetadata,
190
+ Field,
191
+ Schema,
192
+ schema,
193
+ unify_schemas,
194
+ Array, Tensor,
195
+ array, chunked_array, record_batch, nulls, repeat,
196
+ SparseCOOTensor, SparseCSRMatrix, SparseCSCMatrix,
197
+ SparseCSFTensor,
198
+ infer_type, from_numpy_dtype,
199
+ NullArray,
200
+ NumericArray, IntegerArray, FloatingPointArray,
201
+ BooleanArray,
202
+ Int8Array, UInt8Array,
203
+ Int16Array, UInt16Array,
204
+ Int32Array, UInt32Array,
205
+ Int64Array, UInt64Array,
206
+ HalfFloatArray, FloatArray, DoubleArray,
207
+ ListArray, LargeListArray, FixedSizeListArray,
208
+ ListViewArray, LargeListViewArray,
209
+ MapArray, UnionArray,
210
+ BinaryArray, StringArray,
211
+ LargeBinaryArray, LargeStringArray,
212
+ BinaryViewArray, StringViewArray,
213
+ FixedSizeBinaryArray,
214
+ DictionaryArray,
215
+ Date32Array, Date64Array, TimestampArray,
216
+ Time32Array, Time64Array, DurationArray,
217
+ MonthDayNanoIntervalArray,
218
+ Decimal128Array, Decimal256Array, StructArray, ExtensionArray,
219
+ RunEndEncodedArray, FixedShapeTensorArray,
220
+ scalar, NA, _NULL as NULL, Scalar,
221
+ NullScalar, BooleanScalar,
222
+ Int8Scalar, Int16Scalar, Int32Scalar, Int64Scalar,
223
+ UInt8Scalar, UInt16Scalar, UInt32Scalar, UInt64Scalar,
224
+ HalfFloatScalar, FloatScalar, DoubleScalar,
225
+ Decimal128Scalar, Decimal256Scalar,
226
+ ListScalar, LargeListScalar, FixedSizeListScalar,
227
+ ListViewScalar, LargeListViewScalar,
228
+ Date32Scalar, Date64Scalar,
229
+ Time32Scalar, Time64Scalar,
230
+ TimestampScalar, DurationScalar,
231
+ MonthDayNanoIntervalScalar,
232
+ BinaryScalar, LargeBinaryScalar, BinaryViewScalar,
233
+ StringScalar, LargeStringScalar, StringViewScalar,
234
+ FixedSizeBinaryScalar, DictionaryScalar,
235
+ MapScalar, StructScalar, UnionScalar,
236
+ RunEndEncodedScalar, ExtensionScalar)
237
+
238
+ # Buffers, allocation
239
+ from pyarrow.lib import (Buffer, ResizableBuffer, foreign_buffer, py_buffer,
240
+ Codec, compress, decompress, allocate_buffer)
241
+
242
+ from pyarrow.lib import (MemoryPool, LoggingMemoryPool, ProxyMemoryPool,
243
+ total_allocated_bytes, set_memory_pool,
244
+ default_memory_pool, system_memory_pool,
245
+ jemalloc_memory_pool, mimalloc_memory_pool,
246
+ logging_memory_pool, proxy_memory_pool,
247
+ log_memory_allocations, jemalloc_set_decay_ms,
248
+ supported_memory_backends)
249
+
250
+ # I/O
251
+ from pyarrow.lib import (NativeFile, PythonFile,
252
+ BufferedInputStream, BufferedOutputStream, CacheOptions,
253
+ CompressedInputStream, CompressedOutputStream,
254
+ TransformInputStream, transcoding_input_stream,
255
+ FixedSizeBufferWriter,
256
+ BufferReader, BufferOutputStream,
257
+ OSFile, MemoryMappedFile, memory_map,
258
+ create_memory_map, MockOutputStream,
259
+ input_stream, output_stream,
260
+ have_libhdfs)
261
+
262
+ from pyarrow.lib import (ChunkedArray, RecordBatch, Table, table,
263
+ concat_arrays, concat_tables, TableGroupBy,
264
+ RecordBatchReader)
265
+
266
+ # Exceptions
267
+ from pyarrow.lib import (ArrowCancelled,
268
+ ArrowCapacityError,
269
+ ArrowException,
270
+ ArrowKeyError,
271
+ ArrowIndexError,
272
+ ArrowInvalid,
273
+ ArrowIOError,
274
+ ArrowMemoryError,
275
+ ArrowNotImplementedError,
276
+ ArrowTypeError,
277
+ ArrowSerializationError)
278
+
279
+ from pyarrow.ipc import serialize_pandas, deserialize_pandas
280
+ import pyarrow.ipc as ipc
281
+
282
+ import pyarrow.types as types
283
+
284
+
285
+ # ----------------------------------------------------------------------
286
+ # Deprecations
287
+
288
+ from pyarrow.util import _deprecate_api, _deprecate_class
289
+
290
+
291
+ # TODO: Deprecate these somehow in the pyarrow namespace
292
+ from pyarrow.ipc import (Message, MessageReader, MetadataVersion,
293
+ RecordBatchFileReader, RecordBatchFileWriter,
294
+ RecordBatchStreamReader, RecordBatchStreamWriter)
295
+
296
+ # ----------------------------------------------------------------------
297
+ # Returning absolute path to the pyarrow include directory (if bundled, e.g. in
298
+ # wheels)
299
+
300
+
301
+ def get_include():
302
+ """
303
+ Return absolute path to directory containing Arrow C++ include
304
+ headers. Similar to numpy.get_include
305
+ """
306
+ return _os.path.join(_os.path.dirname(__file__), 'include')
307
+
308
+
309
+ def _get_pkg_config_executable():
310
+ return _os.environ.get('PKG_CONFIG', 'pkg-config')
311
+
312
+
313
+ def _has_pkg_config(pkgname):
314
+ import subprocess
315
+ try:
316
+ return subprocess.call([_get_pkg_config_executable(),
317
+ '--exists', pkgname]) == 0
318
+ except FileNotFoundError:
319
+ return False
320
+
321
+
322
+ def _read_pkg_config_variable(pkgname, cli_args):
323
+ import subprocess
324
+ cmd = [_get_pkg_config_executable(), pkgname] + cli_args
325
+ proc = subprocess.Popen(cmd, stdout=subprocess.PIPE,
326
+ stderr=subprocess.PIPE)
327
+ out, err = proc.communicate()
328
+ if proc.returncode != 0:
329
+ raise RuntimeError("pkg-config failed: " + err.decode('utf8'))
330
+ return out.rstrip().decode('utf8')
331
+
332
+
333
+ def get_libraries():
334
+ """
335
+ Return list of library names to include in the `libraries` argument for C
336
+ or Cython extensions using pyarrow
337
+ """
338
+ return ['arrow_python', 'arrow']
339
+
340
+
341
+ def create_library_symlinks():
342
+ """
343
+ With Linux and macOS wheels, the bundled shared libraries have an embedded
344
+ ABI version like libarrow.so.17 or libarrow.17.dylib and so linking to them
345
+ with -larrow won't work unless we create symlinks at locations like
346
+ site-packages/pyarrow/libarrow.so. This unfortunate workaround addresses
347
+ prior problems we had with shipping two copies of the shared libraries to
348
+ permit third party projects like turbodbc to build their C++ extensions
349
+ against the pyarrow wheels.
350
+
351
+ This function must only be invoked once and only when the shared libraries
352
+ are bundled with the Python package, which should only apply to wheel-based
353
+ installs. It requires write access to the site-packages/pyarrow directory
354
+ and so depending on your system may need to be run with root.
355
+ """
356
+ import glob
357
+ if _sys.platform == 'win32':
358
+ return
359
+ package_cwd = _os.path.dirname(__file__)
360
+
361
+ if _sys.platform == 'linux':
362
+ bundled_libs = glob.glob(_os.path.join(package_cwd, '*.so.*'))
363
+
364
+ def get_symlink_path(hard_path):
365
+ return hard_path.rsplit('.', 1)[0]
366
+ else:
367
+ bundled_libs = glob.glob(_os.path.join(package_cwd, '*.*.dylib'))
368
+
369
+ def get_symlink_path(hard_path):
370
+ return '.'.join((hard_path.rsplit('.', 2)[0], 'dylib'))
371
+
372
+ for lib_hard_path in bundled_libs:
373
+ symlink_path = get_symlink_path(lib_hard_path)
374
+ if _os.path.exists(symlink_path):
375
+ continue
376
+ try:
377
+ _os.symlink(lib_hard_path, symlink_path)
378
+ except PermissionError:
379
+ print("Tried creating symlink {}. If you need to link to "
380
+ "bundled shared libraries, run "
381
+ "pyarrow.create_library_symlinks() as root")
382
+
383
+
384
+ def get_library_dirs():
385
+ """
386
+ Return lists of directories likely to contain Arrow C++ libraries for
387
+ linking C or Cython extensions using pyarrow
388
+ """
389
+ package_cwd = _os.path.dirname(__file__)
390
+ library_dirs = [package_cwd]
391
+
392
+ def append_library_dir(library_dir):
393
+ if library_dir not in library_dirs:
394
+ library_dirs.append(library_dir)
395
+
396
+ # Search library paths via pkg-config. This is necessary if the user
397
+ # installed libarrow and the other shared libraries manually and they
398
+ # are not shipped inside the pyarrow package (see also ARROW-2976).
399
+ pkg_config_executable = _os.environ.get('PKG_CONFIG') or 'pkg-config'
400
+ for pkgname in ["arrow", "arrow_python"]:
401
+ if _has_pkg_config(pkgname):
402
+ library_dir = _read_pkg_config_variable(pkgname,
403
+ ["--libs-only-L"])
404
+ # pkg-config output could be empty if Arrow is installed
405
+ # as a system package.
406
+ if library_dir:
407
+ if not library_dir.startswith("-L"):
408
+ raise ValueError(
409
+ "pkg-config --libs-only-L returned unexpected "
410
+ "value {!r}".format(library_dir))
411
+ append_library_dir(library_dir[2:])
412
+
413
+ if _sys.platform == 'win32':
414
+ # TODO(wesm): Is this necessary, or does setuptools within a conda
415
+ # installation add Library\lib to the linker path for MSVC?
416
+ python_base_install = _os.path.dirname(_sys.executable)
417
+ library_dir = _os.path.join(python_base_install, 'Library', 'lib')
418
+
419
+ if _os.path.exists(_os.path.join(library_dir, 'arrow.lib')):
420
+ append_library_dir(library_dir)
421
+
422
+ # ARROW-4074: Allow for ARROW_HOME to be set to some other directory
423
+ if _os.environ.get('ARROW_HOME'):
424
+ append_library_dir(_os.path.join(_os.environ['ARROW_HOME'], 'lib'))
425
+ else:
426
+ # Python wheels bundle the Arrow libraries in the pyarrow directory.
427
+ append_library_dir(_os.path.dirname(_os.path.abspath(__file__)))
428
+
429
+ return library_dirs
llmeval-env/lib/python3.10/site-packages/pyarrow/_acero.pxd ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # cython: language_level = 3
19
+
20
+ from pyarrow.lib cimport *
21
+ from pyarrow.includes.common cimport *
22
+ from pyarrow.includes.libarrow cimport *
23
+ from pyarrow.includes.libarrow_acero cimport *
24
+
25
+
26
+ cdef class ExecNodeOptions(_Weakrefable):
27
+ cdef:
28
+ shared_ptr[CExecNodeOptions] wrapped
29
+
30
+ cdef void init(self, const shared_ptr[CExecNodeOptions]& sp)
31
+ cdef inline shared_ptr[CExecNodeOptions] unwrap(self) nogil
32
+
33
+
34
+ cdef class Declaration(_Weakrefable):
35
+
36
+ cdef:
37
+ CDeclaration decl
38
+
39
+ cdef void init(self, const CDeclaration& c_decl)
40
+
41
+ @staticmethod
42
+ cdef wrap(const CDeclaration& c_decl)
43
+
44
+ cdef inline CDeclaration unwrap(self) nogil
llmeval-env/lib/python3.10/site-packages/pyarrow/_acero.pyx ADDED
@@ -0,0 +1,608 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # ---------------------------------------------------------------------
19
+ # Low-level Acero bindings
20
+
21
+ # cython: profile=False
22
+ # distutils: language = c++
23
+ # cython: language_level = 3
24
+
25
+ from pyarrow.includes.common cimport *
26
+ from pyarrow.includes.libarrow cimport *
27
+ from pyarrow.includes.libarrow_acero cimport *
28
+ from pyarrow.lib cimport (Table, pyarrow_unwrap_table, pyarrow_wrap_table,
29
+ RecordBatchReader)
30
+ from pyarrow.lib import frombytes, tobytes
31
+ from pyarrow._compute cimport (
32
+ Expression, FunctionOptions, _ensure_field_ref, _true,
33
+ unwrap_null_placement, unwrap_sort_order
34
+ )
35
+
36
+
37
+ cdef class ExecNodeOptions(_Weakrefable):
38
+ """
39
+ Base class for the node options.
40
+
41
+ Use one of the subclasses to construct an options object.
42
+ """
43
+ __slots__ = () # avoid mistakingly creating attributes
44
+
45
+ cdef void init(self, const shared_ptr[CExecNodeOptions]& sp):
46
+ self.wrapped = sp
47
+
48
+ cdef inline shared_ptr[CExecNodeOptions] unwrap(self) nogil:
49
+ return self.wrapped
50
+
51
+
52
+ cdef class _TableSourceNodeOptions(ExecNodeOptions):
53
+
54
+ def _set_options(self, Table table):
55
+ cdef:
56
+ shared_ptr[CTable] c_table
57
+
58
+ c_table = pyarrow_unwrap_table(table)
59
+ self.wrapped.reset(
60
+ new CTableSourceNodeOptions(c_table)
61
+ )
62
+
63
+
64
+ class TableSourceNodeOptions(_TableSourceNodeOptions):
65
+ """
66
+ A Source node which accepts a table.
67
+
68
+ This is the option class for the "table_source" node factory.
69
+
70
+ Parameters
71
+ ----------
72
+ table : pyarrow.Table
73
+ The table which acts as the data source.
74
+ """
75
+
76
+ def __init__(self, Table table):
77
+ self._set_options(table)
78
+
79
+
80
+ cdef class _FilterNodeOptions(ExecNodeOptions):
81
+
82
+ def _set_options(self, Expression filter_expression not None):
83
+ self.wrapped.reset(
84
+ new CFilterNodeOptions(<CExpression>filter_expression.unwrap())
85
+ )
86
+
87
+
88
+ class FilterNodeOptions(_FilterNodeOptions):
89
+ """
90
+ Make a node which excludes some rows from batches passed through it.
91
+
92
+ This is the option class for the "filter" node factory.
93
+
94
+ The "filter" operation provides an option to define data filtering
95
+ criteria. It selects rows where the given expression evaluates to true.
96
+ Filters can be written using pyarrow.compute.Expression, and the
97
+ expression must have a return type of boolean.
98
+
99
+ Parameters
100
+ ----------
101
+ filter_expression : pyarrow.compute.Expression
102
+ """
103
+
104
+ def __init__(self, Expression filter_expression):
105
+ self._set_options(filter_expression)
106
+
107
+
108
+ cdef class _ProjectNodeOptions(ExecNodeOptions):
109
+
110
+ def _set_options(self, expressions, names=None):
111
+ cdef:
112
+ Expression expr
113
+ vector[CExpression] c_expressions
114
+ vector[c_string] c_names
115
+
116
+ for expr in expressions:
117
+ c_expressions.push_back(expr.unwrap())
118
+
119
+ if names is not None:
120
+ if len(names) != len(expressions):
121
+ raise ValueError(
122
+ "The number of names should be equal to the number of expressions"
123
+ )
124
+
125
+ for name in names:
126
+ c_names.push_back(<c_string>tobytes(name))
127
+
128
+ self.wrapped.reset(
129
+ new CProjectNodeOptions(c_expressions, c_names)
130
+ )
131
+ else:
132
+ self.wrapped.reset(
133
+ new CProjectNodeOptions(c_expressions)
134
+ )
135
+
136
+
137
+ class ProjectNodeOptions(_ProjectNodeOptions):
138
+ """
139
+ Make a node which executes expressions on input batches,
140
+ producing batches of the same length with new columns.
141
+
142
+ This is the option class for the "project" node factory.
143
+
144
+ The "project" operation rearranges, deletes, transforms, and
145
+ creates columns. Each output column is computed by evaluating
146
+ an expression against the source record batch. These must be
147
+ scalar expressions (expressions consisting of scalar literals,
148
+ field references and scalar functions, i.e. elementwise functions
149
+ that return one value for each input row independent of the value
150
+ of all other rows).
151
+
152
+ Parameters
153
+ ----------
154
+ expressions : list of pyarrow.compute.Expression
155
+ List of expressions to evaluate against the source batch. This must
156
+ be scalar expressions.
157
+ names : list of str, optional
158
+ List of names for each of the output columns (same length as
159
+ `expressions`). If `names` is not provided, the string
160
+ representations of exprs will be used.
161
+ """
162
+
163
+ def __init__(self, expressions, names=None):
164
+ self._set_options(expressions, names)
165
+
166
+
167
+ cdef class _AggregateNodeOptions(ExecNodeOptions):
168
+
169
+ def _set_options(self, aggregates, keys=None):
170
+ cdef:
171
+ CAggregate c_aggr
172
+ vector[CAggregate] c_aggregations
173
+ vector[CFieldRef] c_keys
174
+
175
+ for arg_names, func_name, opts, name in aggregates:
176
+ c_aggr.function = tobytes(func_name)
177
+ if opts is not None:
178
+ c_aggr.options = (<FunctionOptions?>opts).wrapped
179
+ else:
180
+ c_aggr.options = <shared_ptr[CFunctionOptions]>nullptr
181
+ if not isinstance(arg_names, (list, tuple)):
182
+ arg_names = [arg_names]
183
+ for arg in arg_names:
184
+ c_aggr.target.push_back(_ensure_field_ref(arg))
185
+ c_aggr.name = tobytes(name)
186
+
187
+ c_aggregations.push_back(move(c_aggr))
188
+
189
+ if keys is None:
190
+ keys = []
191
+ for name in keys:
192
+ c_keys.push_back(_ensure_field_ref(name))
193
+
194
+ self.wrapped.reset(
195
+ new CAggregateNodeOptions(c_aggregations, c_keys)
196
+ )
197
+
198
+
199
+ class AggregateNodeOptions(_AggregateNodeOptions):
200
+ """
201
+ Make a node which aggregates input batches, optionally grouped by keys.
202
+
203
+ This is the option class for the "aggregate" node factory.
204
+
205
+ Acero supports two types of aggregates: "scalar" aggregates,
206
+ and "hash" aggregates. Scalar aggregates reduce an array or scalar
207
+ input to a single scalar output (e.g. computing the mean of a column).
208
+ Hash aggregates act like GROUP BY in SQL and first partition data
209
+ based on one or more key columns, then reduce the data in each partition.
210
+ The aggregate node supports both types of computation, and can compute
211
+ any number of aggregations at once.
212
+
213
+ Parameters
214
+ ----------
215
+ aggregates : list of tuples
216
+ Aggregations which will be applied to the targeted fields.
217
+ Specified as a list of tuples, where each tuple is one aggregation
218
+ specification and consists of: aggregation target column(s) followed
219
+ by function name, aggregation function options object and the
220
+ output field name.
221
+ The target column(s) specification can be a single field reference,
222
+ an empty list or a list of fields unary, nullary and n-ary aggregation
223
+ functions respectively. Each field reference can be a string
224
+ column name or expression.
225
+ keys : list of field references, optional
226
+ Keys by which aggregations will be grouped. Each key can reference
227
+ a field using a string name or expression.
228
+ """
229
+
230
+ def __init__(self, aggregates, keys=None):
231
+ self._set_options(aggregates, keys)
232
+
233
+
234
+ cdef class _OrderByNodeOptions(ExecNodeOptions):
235
+
236
+ def _set_options(self, sort_keys, null_placement):
237
+ cdef:
238
+ vector[CSortKey] c_sort_keys
239
+
240
+ for name, order in sort_keys:
241
+ c_sort_keys.push_back(
242
+ CSortKey(_ensure_field_ref(name), unwrap_sort_order(order))
243
+ )
244
+
245
+ self.wrapped.reset(
246
+ new COrderByNodeOptions(
247
+ COrdering(c_sort_keys, unwrap_null_placement(null_placement))
248
+ )
249
+ )
250
+
251
+
252
+ class OrderByNodeOptions(_OrderByNodeOptions):
253
+ """
254
+ Make a node which applies a new ordering to the data.
255
+
256
+ Currently this node works by accumulating all data, sorting, and then
257
+ emitting the new data with an updated batch index.
258
+ Larger-than-memory sort is not currently supported.
259
+
260
+ This is the option class for the "order_by" node factory.
261
+
262
+ Parameters
263
+ ----------
264
+ sort_keys : sequence of (name, order) tuples
265
+ Names of field/column keys to sort the input on,
266
+ along with the order each field/column is sorted in.
267
+ Accepted values for `order` are "ascending", "descending".
268
+ Each field reference can be a string column name or expression.
269
+ null_placement : str, default "at_end"
270
+ Where nulls in input should be sorted, only applying to
271
+ columns/fields mentioned in `sort_keys`.
272
+ Accepted values are "at_start", "at_end".
273
+ """
274
+
275
+ def __init__(self, sort_keys=(), *, null_placement="at_end"):
276
+ self._set_options(sort_keys, null_placement)
277
+
278
+
279
+ cdef class _HashJoinNodeOptions(ExecNodeOptions):
280
+
281
+ def _set_options(
282
+ self, join_type, left_keys, right_keys, left_output=None, right_output=None,
283
+ output_suffix_for_left="", output_suffix_for_right="",
284
+ ):
285
+ cdef:
286
+ CJoinType c_join_type
287
+ vector[CFieldRef] c_left_keys
288
+ vector[CFieldRef] c_right_keys
289
+ vector[CFieldRef] c_left_output
290
+ vector[CFieldRef] c_right_output
291
+
292
+ # join type
293
+ if join_type == "left semi":
294
+ c_join_type = CJoinType_LEFT_SEMI
295
+ elif join_type == "right semi":
296
+ c_join_type = CJoinType_RIGHT_SEMI
297
+ elif join_type == "left anti":
298
+ c_join_type = CJoinType_LEFT_ANTI
299
+ elif join_type == "right anti":
300
+ c_join_type = CJoinType_RIGHT_ANTI
301
+ elif join_type == "inner":
302
+ c_join_type = CJoinType_INNER
303
+ elif join_type == "left outer":
304
+ c_join_type = CJoinType_LEFT_OUTER
305
+ elif join_type == "right outer":
306
+ c_join_type = CJoinType_RIGHT_OUTER
307
+ elif join_type == "full outer":
308
+ c_join_type = CJoinType_FULL_OUTER
309
+ else:
310
+ raise ValueError("Unsupported join type")
311
+
312
+ # left/right keys
313
+ if not isinstance(left_keys, (list, tuple)):
314
+ left_keys = [left_keys]
315
+ for key in left_keys:
316
+ c_left_keys.push_back(_ensure_field_ref(key))
317
+ if not isinstance(right_keys, (list, tuple)):
318
+ right_keys = [right_keys]
319
+ for key in right_keys:
320
+ c_right_keys.push_back(_ensure_field_ref(key))
321
+
322
+ # left/right output fields
323
+ if left_output is not None and right_output is not None:
324
+ for colname in left_output:
325
+ c_left_output.push_back(_ensure_field_ref(colname))
326
+ for colname in right_output:
327
+ c_right_output.push_back(_ensure_field_ref(colname))
328
+
329
+ self.wrapped.reset(
330
+ new CHashJoinNodeOptions(
331
+ c_join_type, c_left_keys, c_right_keys,
332
+ c_left_output, c_right_output,
333
+ _true,
334
+ <c_string>tobytes(output_suffix_for_left),
335
+ <c_string>tobytes(output_suffix_for_right)
336
+ )
337
+ )
338
+ else:
339
+ self.wrapped.reset(
340
+ new CHashJoinNodeOptions(
341
+ c_join_type, c_left_keys, c_right_keys,
342
+ _true,
343
+ <c_string>tobytes(output_suffix_for_left),
344
+ <c_string>tobytes(output_suffix_for_right)
345
+ )
346
+ )
347
+
348
+
349
+ class HashJoinNodeOptions(_HashJoinNodeOptions):
350
+ """
351
+ Make a node which implements join operation using hash join strategy.
352
+
353
+ This is the option class for the "hashjoin" node factory.
354
+
355
+ Parameters
356
+ ----------
357
+ join_type : str
358
+ Type of join. One of "left semi", "right semi", "left anti",
359
+ "right anti", "inner", "left outer", "right outer", "full outer".
360
+ left_keys : str, Expression or list
361
+ Key fields from left input. Each key can be a string column name
362
+ or a field expression, or a list of such field references.
363
+ right_keys : str, Expression or list
364
+ Key fields from right input. See `left_keys` for details.
365
+ left_output : list, optional
366
+ List of output fields passed from left input. If left and right
367
+ output fields are not specified, all valid fields from both left and
368
+ right input will be output. Each field can be a string column name
369
+ or a field expression.
370
+ right_output : list, optional
371
+ List of output fields passed from right input. If left and right
372
+ output fields are not specified, all valid fields from both left and
373
+ right input will be output. Each field can be a string column name
374
+ or a field expression.
375
+ output_suffix_for_left : str
376
+ Suffix added to names of output fields coming from left input
377
+ (used to distinguish, if necessary, between fields of the same
378
+ name in left and right input and can be left empty if there are
379
+ no name collisions).
380
+ output_suffix_for_right : str
381
+ Suffix added to names of output fields coming from right input,
382
+ see `output_suffix_for_left` for details.
383
+ """
384
+
385
+ def __init__(
386
+ self, join_type, left_keys, right_keys, left_output=None, right_output=None,
387
+ output_suffix_for_left="", output_suffix_for_right=""
388
+ ):
389
+ self._set_options(
390
+ join_type, left_keys, right_keys, left_output, right_output,
391
+ output_suffix_for_left, output_suffix_for_right
392
+ )
393
+
394
+
395
+ cdef class _AsofJoinNodeOptions(ExecNodeOptions):
396
+
397
+ def _set_options(self, left_on, left_by, right_on, right_by, tolerance):
398
+ cdef:
399
+ vector[CFieldRef] c_left_by
400
+ vector[CFieldRef] c_right_by
401
+ CAsofJoinKeys c_left_keys
402
+ CAsofJoinKeys c_right_keys
403
+ vector[CAsofJoinKeys] c_input_keys
404
+
405
+ # Prepare left AsofJoinNodeOption::Keys
406
+ if not isinstance(left_by, (list, tuple)):
407
+ left_by = [left_by]
408
+ for key in left_by:
409
+ c_left_by.push_back(_ensure_field_ref(key))
410
+
411
+ c_left_keys.on_key = _ensure_field_ref(left_on)
412
+ c_left_keys.by_key = c_left_by
413
+
414
+ c_input_keys.push_back(c_left_keys)
415
+
416
+ # Prepare right AsofJoinNodeOption::Keys
417
+ if not isinstance(right_by, (list, tuple)):
418
+ right_by = [right_by]
419
+ for key in right_by:
420
+ c_right_by.push_back(_ensure_field_ref(key))
421
+
422
+ c_right_keys.on_key = _ensure_field_ref(right_on)
423
+ c_right_keys.by_key = c_right_by
424
+
425
+ c_input_keys.push_back(c_right_keys)
426
+
427
+ self.wrapped.reset(
428
+ new CAsofJoinNodeOptions(
429
+ c_input_keys,
430
+ tolerance,
431
+ )
432
+ )
433
+
434
+
435
+ class AsofJoinNodeOptions(_AsofJoinNodeOptions):
436
+ """
437
+ Make a node which implements 'as of join' operation.
438
+
439
+ This is the option class for the "asofjoin" node factory.
440
+
441
+ Parameters
442
+ ----------
443
+ left_on : str, Expression
444
+ The left key on which the join operation should be performed.
445
+ Can be a string column name or a field expression.
446
+
447
+ An inexact match is used on the "on" key, i.e. a row is considered a
448
+ match if and only if left_on - tolerance <= right_on <= left_on.
449
+
450
+ The input dataset must be sorted by the "on" key. Must be a single
451
+ field of a common type.
452
+
453
+ Currently, the "on" key must be an integer, date, or timestamp type.
454
+ left_by: str, Expression or list
455
+ The left keys on which the join operation should be performed.
456
+ Exact equality is used for each field of the "by" keys.
457
+ Each key can be a string column name or a field expression,
458
+ or a list of such field references.
459
+ right_on : str, Expression
460
+ The right key on which the join operation should be performed.
461
+ See `left_on` for details.
462
+ right_by: str, Expression or list
463
+ The right keys on which the join operation should be performed.
464
+ See `left_by` for details.
465
+ tolerance : int
466
+ The tolerance to use for the asof join. The tolerance is interpreted in
467
+ the same units as the "on" key.
468
+ """
469
+
470
+ def __init__(self, left_on, left_by, right_on, right_by, tolerance):
471
+ self._set_options(left_on, left_by, right_on, right_by, tolerance)
472
+
473
+
474
+ cdef class Declaration(_Weakrefable):
475
+ """
476
+ Helper class for declaring the nodes of an ExecPlan.
477
+
478
+ A Declaration represents an unconstructed ExecNode, and potentially
479
+ more since its inputs may also be Declarations or when constructed
480
+ with ``from_sequence``.
481
+
482
+ The possible ExecNodes to use are registered with a name,
483
+ the "factory name", and need to be specified using this name, together
484
+ with its corresponding ExecNodeOptions subclass.
485
+
486
+ Parameters
487
+ ----------
488
+ factory_name : str
489
+ The ExecNode factory name, such as "table_source", "filter",
490
+ "project" etc. See the ExecNodeOptions subclasses for the exact
491
+ factory names to use.
492
+ options : ExecNodeOptions
493
+ Corresponding ExecNodeOptions subclass (matching the factory name).
494
+ inputs : list of Declaration, optional
495
+ Input nodes for this declaration. Optional if the node is a source
496
+ node, or when the declaration gets combined later with
497
+ ``from_sequence``.
498
+
499
+ Returns
500
+ -------
501
+ Declaration
502
+ """
503
+ cdef void init(self, const CDeclaration& c_decl):
504
+ self.decl = c_decl
505
+
506
+ @staticmethod
507
+ cdef wrap(const CDeclaration& c_decl):
508
+ cdef Declaration self = Declaration.__new__(Declaration)
509
+ self.init(c_decl)
510
+ return self
511
+
512
+ cdef inline CDeclaration unwrap(self) nogil:
513
+ return self.decl
514
+
515
+ def __init__(self, factory_name, ExecNodeOptions options, inputs=None):
516
+ cdef:
517
+ c_string c_factory_name
518
+ CDeclaration c_decl
519
+ vector[CDeclaration.Input] c_inputs
520
+
521
+ c_factory_name = tobytes(factory_name)
522
+
523
+ if inputs is not None:
524
+ for ipt in inputs:
525
+ c_inputs.push_back(
526
+ CDeclaration.Input((<Declaration>ipt).unwrap())
527
+ )
528
+
529
+ c_decl = CDeclaration(c_factory_name, c_inputs, options.unwrap())
530
+ self.init(c_decl)
531
+
532
+ @staticmethod
533
+ def from_sequence(decls):
534
+ """
535
+ Convenience factory for the common case of a simple sequence of nodes.
536
+
537
+ Each of the declarations will be appended to the inputs of the
538
+ subsequent declaration, and the final modified declaration will
539
+ be returned.
540
+
541
+ Parameters
542
+ ----------
543
+ decls : list of Declaration
544
+
545
+ Returns
546
+ -------
547
+ Declaration
548
+ """
549
+ cdef:
550
+ vector[CDeclaration] c_decls
551
+ CDeclaration c_decl
552
+
553
+ for decl in decls:
554
+ c_decls.push_back((<Declaration> decl).unwrap())
555
+
556
+ c_decl = CDeclaration.Sequence(c_decls)
557
+ return Declaration.wrap(c_decl)
558
+
559
+ def __str__(self):
560
+ return frombytes(GetResultValue(DeclarationToString(self.decl)))
561
+
562
+ def __repr__(self):
563
+ return "<pyarrow.acero.Declaration>\n{0}".format(str(self))
564
+
565
+ def to_table(self, bint use_threads=True):
566
+ """
567
+ Run the declaration and collect the results into a table.
568
+
569
+ This method will implicitly add a sink node to the declaration
570
+ to collect results into a table. It will then create an ExecPlan
571
+ from the declaration, start the exec plan, block until the plan
572
+ has finished, and return the created table.
573
+
574
+ Parameters
575
+ ----------
576
+ use_threads : bool, default True
577
+ If set to False, then all CPU work will be done on the calling
578
+ thread. I/O tasks will still happen on the I/O executor
579
+ and may be multi-threaded (but should not use significant CPU
580
+ resources).
581
+
582
+ Returns
583
+ -------
584
+ pyarrow.Table
585
+ """
586
+ cdef:
587
+ shared_ptr[CTable] c_table
588
+
589
+ with nogil:
590
+ c_table = GetResultValue(DeclarationToTable(self.unwrap(), use_threads))
591
+ return pyarrow_wrap_table(c_table)
592
+
593
+ def to_reader(self, bint use_threads=True):
594
+ """Run the declaration and return results as a RecordBatchReader.
595
+
596
+ For details about the parameters, see `to_table`.
597
+
598
+ Returns
599
+ -------
600
+ pyarrow.RecordBatchReader
601
+ """
602
+ cdef:
603
+ RecordBatchReader reader
604
+ reader = RecordBatchReader.__new__(RecordBatchReader)
605
+ reader.reader.reset(
606
+ GetResultValue(DeclarationToReader(self.unwrap(), use_threads)).release()
607
+ )
608
+ return reader
llmeval-env/lib/python3.10/site-packages/pyarrow/_csv.pxd ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # cython: language_level = 3
19
+
20
+ from pyarrow.includes.libarrow cimport *
21
+ from pyarrow.lib cimport _Weakrefable
22
+
23
+
24
+ cdef class ConvertOptions(_Weakrefable):
25
+ cdef:
26
+ unique_ptr[CCSVConvertOptions] options
27
+
28
+ @staticmethod
29
+ cdef ConvertOptions wrap(CCSVConvertOptions options)
30
+
31
+
32
+ cdef class ParseOptions(_Weakrefable):
33
+ cdef:
34
+ unique_ptr[CCSVParseOptions] options
35
+ object _invalid_row_handler
36
+
37
+ @staticmethod
38
+ cdef ParseOptions wrap(CCSVParseOptions options)
39
+
40
+
41
+ cdef class ReadOptions(_Weakrefable):
42
+ cdef:
43
+ unique_ptr[CCSVReadOptions] options
44
+ public object encoding
45
+
46
+ @staticmethod
47
+ cdef ReadOptions wrap(CCSVReadOptions options)
48
+
49
+
50
+ cdef class WriteOptions(_Weakrefable):
51
+ cdef:
52
+ unique_ptr[CCSVWriteOptions] options
53
+
54
+ @staticmethod
55
+ cdef WriteOptions wrap(CCSVWriteOptions options)
llmeval-env/lib/python3.10/site-packages/pyarrow/_csv.pyx ADDED
@@ -0,0 +1,1542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # cython: profile=False
19
+ # distutils: language = c++
20
+ # cython: language_level = 3
21
+
22
+ from cython.operator cimport dereference as deref
23
+
24
+ from collections import namedtuple
25
+ from collections.abc import Mapping
26
+
27
+ from pyarrow.includes.common cimport *
28
+ from pyarrow.includes.libarrow cimport *
29
+ from pyarrow.includes.libarrow_python cimport *
30
+ from pyarrow.lib cimport (check_status, Field, MemoryPool, Schema,
31
+ RecordBatchReader, ensure_type,
32
+ maybe_unbox_memory_pool, get_input_stream,
33
+ get_writer, native_transcoding_input_stream,
34
+ pyarrow_unwrap_batch, pyarrow_unwrap_schema,
35
+ pyarrow_unwrap_table, pyarrow_wrap_schema,
36
+ pyarrow_wrap_table, pyarrow_wrap_data_type,
37
+ pyarrow_unwrap_data_type, Table, RecordBatch,
38
+ StopToken, _CRecordBatchWriter)
39
+ from pyarrow.lib import frombytes, tobytes, SignalStopHandler
40
+
41
+
42
+ cdef unsigned char _single_char(s) except 0:
43
+ val = ord(s)
44
+ if val == 0 or val > 127:
45
+ raise ValueError("Expecting an ASCII character")
46
+ return <unsigned char> val
47
+
48
+
49
+ _InvalidRow = namedtuple(
50
+ "_InvalidRow", ("expected_columns", "actual_columns", "number", "text"),
51
+ module=__name__)
52
+
53
+
54
+ class InvalidRow(_InvalidRow):
55
+ """
56
+ Description of an invalid row in a CSV file.
57
+
58
+ Parameters
59
+ ----------
60
+ expected_columns : int
61
+ The expected number of columns in the row.
62
+ actual_columns : int
63
+ The actual number of columns in the row.
64
+ number : int or None
65
+ The physical row number if known, otherwise None.
66
+ text : str
67
+ The contents of the row.
68
+ """
69
+ __slots__ = ()
70
+
71
+
72
+ cdef CInvalidRowResult _handle_invalid_row(
73
+ handler, const CCSVInvalidRow& c_row) except CInvalidRowResult_Error:
74
+ # A negative row number means undetermined (because of parallel reading)
75
+ row_number = c_row.number if c_row.number >= 0 else None
76
+ row = InvalidRow(c_row.expected_columns, c_row.actual_columns,
77
+ row_number, frombytes(<c_string> c_row.text))
78
+ result = handler(row)
79
+ if result == 'error':
80
+ return CInvalidRowResult_Error
81
+ elif result == 'skip':
82
+ return CInvalidRowResult_Skip
83
+ else:
84
+ raise ValueError("Invalid return value for invalid row handler: "
85
+ f"expected 'error' or 'skip', got {result!r}")
86
+
87
+
88
+ cdef class ReadOptions(_Weakrefable):
89
+ """
90
+ Options for reading CSV files.
91
+
92
+ Parameters
93
+ ----------
94
+ use_threads : bool, optional (default True)
95
+ Whether to use multiple threads to accelerate reading
96
+ block_size : int, optional
97
+ How much bytes to process at a time from the input stream.
98
+ This will determine multi-threading granularity as well as
99
+ the size of individual record batches or table chunks.
100
+ Minimum valid value for block size is 1
101
+ skip_rows : int, optional (default 0)
102
+ The number of rows to skip before the column names (if any)
103
+ and the CSV data.
104
+ skip_rows_after_names : int, optional (default 0)
105
+ The number of rows to skip after the column names.
106
+ This number can be larger than the number of rows in one
107
+ block, and empty rows are counted.
108
+ The order of application is as follows:
109
+ - `skip_rows` is applied (if non-zero);
110
+ - column names are read (unless `column_names` is set);
111
+ - `skip_rows_after_names` is applied (if non-zero).
112
+ column_names : list, optional
113
+ The column names of the target table. If empty, fall back on
114
+ `autogenerate_column_names`.
115
+ autogenerate_column_names : bool, optional (default False)
116
+ Whether to autogenerate column names if `column_names` is empty.
117
+ If true, column names will be of the form "f0", "f1"...
118
+ If false, column names will be read from the first CSV row
119
+ after `skip_rows`.
120
+ encoding : str, optional (default 'utf8')
121
+ The character encoding of the CSV data. Columns that cannot
122
+ decode using this encoding can still be read as Binary.
123
+
124
+ Examples
125
+ --------
126
+
127
+ Defining an example data:
128
+
129
+ >>> import io
130
+ >>> s = "1,2,3\\nFlamingo,2,2022-03-01\\nHorse,4,2022-03-02\\nBrittle stars,5,2022-03-03\\nCentipede,100,2022-03-04"
131
+ >>> print(s)
132
+ 1,2,3
133
+ Flamingo,2,2022-03-01
134
+ Horse,4,2022-03-02
135
+ Brittle stars,5,2022-03-03
136
+ Centipede,100,2022-03-04
137
+
138
+ Ignore the first numbered row and substitute it with defined
139
+ or autogenerated column names:
140
+
141
+ >>> from pyarrow import csv
142
+ >>> read_options = csv.ReadOptions(
143
+ ... column_names=["animals", "n_legs", "entry"],
144
+ ... skip_rows=1)
145
+ >>> csv.read_csv(io.BytesIO(s.encode()), read_options=read_options)
146
+ pyarrow.Table
147
+ animals: string
148
+ n_legs: int64
149
+ entry: date32[day]
150
+ ----
151
+ animals: [["Flamingo","Horse","Brittle stars","Centipede"]]
152
+ n_legs: [[2,4,5,100]]
153
+ entry: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]]
154
+
155
+ >>> read_options = csv.ReadOptions(autogenerate_column_names=True,
156
+ ... skip_rows=1)
157
+ >>> csv.read_csv(io.BytesIO(s.encode()), read_options=read_options)
158
+ pyarrow.Table
159
+ f0: string
160
+ f1: int64
161
+ f2: date32[day]
162
+ ----
163
+ f0: [["Flamingo","Horse","Brittle stars","Centipede"]]
164
+ f1: [[2,4,5,100]]
165
+ f2: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]]
166
+
167
+ Remove the first 2 rows of the data:
168
+
169
+ >>> read_options = csv.ReadOptions(skip_rows_after_names=2)
170
+ >>> csv.read_csv(io.BytesIO(s.encode()), read_options=read_options)
171
+ pyarrow.Table
172
+ 1: string
173
+ 2: int64
174
+ 3: date32[day]
175
+ ----
176
+ 1: [["Brittle stars","Centipede"]]
177
+ 2: [[5,100]]
178
+ 3: [[2022-03-03,2022-03-04]]
179
+ """
180
+
181
+ # Avoid mistakingly creating attributes
182
+ __slots__ = ()
183
+
184
+ # __init__() is not called when unpickling, initialize storage here
185
+ def __cinit__(self, *argw, **kwargs):
186
+ self.options.reset(new CCSVReadOptions(CCSVReadOptions.Defaults()))
187
+
188
+ def __init__(self, *, use_threads=None, block_size=None, skip_rows=None,
189
+ skip_rows_after_names=None, column_names=None,
190
+ autogenerate_column_names=None, encoding='utf8'):
191
+ if use_threads is not None:
192
+ self.use_threads = use_threads
193
+ if block_size is not None:
194
+ self.block_size = block_size
195
+ if skip_rows is not None:
196
+ self.skip_rows = skip_rows
197
+ if skip_rows_after_names is not None:
198
+ self.skip_rows_after_names = skip_rows_after_names
199
+ if column_names is not None:
200
+ self.column_names = column_names
201
+ if autogenerate_column_names is not None:
202
+ self.autogenerate_column_names= autogenerate_column_names
203
+ # Python-specific option
204
+ self.encoding = encoding
205
+
206
+ @property
207
+ def use_threads(self):
208
+ """
209
+ Whether to use multiple threads to accelerate reading.
210
+ """
211
+ return deref(self.options).use_threads
212
+
213
+ @use_threads.setter
214
+ def use_threads(self, value):
215
+ deref(self.options).use_threads = value
216
+
217
+ @property
218
+ def block_size(self):
219
+ """
220
+ How much bytes to process at a time from the input stream.
221
+ This will determine multi-threading granularity as well as
222
+ the size of individual record batches or table chunks.
223
+ """
224
+ return deref(self.options).block_size
225
+
226
+ @block_size.setter
227
+ def block_size(self, value):
228
+ deref(self.options).block_size = value
229
+
230
+ @property
231
+ def skip_rows(self):
232
+ """
233
+ The number of rows to skip before the column names (if any)
234
+ and the CSV data.
235
+ See `skip_rows_after_names` for interaction description
236
+ """
237
+ return deref(self.options).skip_rows
238
+
239
+ @skip_rows.setter
240
+ def skip_rows(self, value):
241
+ deref(self.options).skip_rows = value
242
+
243
+ @property
244
+ def skip_rows_after_names(self):
245
+ """
246
+ The number of rows to skip after the column names.
247
+ This number can be larger than the number of rows in one
248
+ block, and empty rows are counted.
249
+ The order of application is as follows:
250
+ - `skip_rows` is applied (if non-zero);
251
+ - column names are read (unless `column_names` is set);
252
+ - `skip_rows_after_names` is applied (if non-zero).
253
+ """
254
+ return deref(self.options).skip_rows_after_names
255
+
256
+ @skip_rows_after_names.setter
257
+ def skip_rows_after_names(self, value):
258
+ deref(self.options).skip_rows_after_names = value
259
+
260
+ @property
261
+ def column_names(self):
262
+ """
263
+ The column names of the target table. If empty, fall back on
264
+ `autogenerate_column_names`.
265
+ """
266
+ return [frombytes(s) for s in deref(self.options).column_names]
267
+
268
+ @column_names.setter
269
+ def column_names(self, value):
270
+ deref(self.options).column_names.clear()
271
+ for item in value:
272
+ deref(self.options).column_names.push_back(tobytes(item))
273
+
274
+ @property
275
+ def autogenerate_column_names(self):
276
+ """
277
+ Whether to autogenerate column names if `column_names` is empty.
278
+ If true, column names will be of the form "f0", "f1"...
279
+ If false, column names will be read from the first CSV row
280
+ after `skip_rows`.
281
+ """
282
+ return deref(self.options).autogenerate_column_names
283
+
284
+ @autogenerate_column_names.setter
285
+ def autogenerate_column_names(self, value):
286
+ deref(self.options).autogenerate_column_names = value
287
+
288
+ def validate(self):
289
+ check_status(deref(self.options).Validate())
290
+
291
+ def equals(self, ReadOptions other):
292
+ """
293
+ Parameters
294
+ ----------
295
+ other : pyarrow.csv.ReadOptions
296
+
297
+ Returns
298
+ -------
299
+ bool
300
+ """
301
+ return (
302
+ self.use_threads == other.use_threads and
303
+ self.block_size == other.block_size and
304
+ self.skip_rows == other.skip_rows and
305
+ self.skip_rows_after_names == other.skip_rows_after_names and
306
+ self.column_names == other.column_names and
307
+ self.autogenerate_column_names ==
308
+ other.autogenerate_column_names and
309
+ self.encoding == other.encoding
310
+ )
311
+
312
+ @staticmethod
313
+ cdef ReadOptions wrap(CCSVReadOptions options):
314
+ out = ReadOptions()
315
+ out.options.reset(new CCSVReadOptions(move(options)))
316
+ out.encoding = 'utf8' # No way to know this
317
+ return out
318
+
319
+ def __getstate__(self):
320
+ return (self.use_threads, self.block_size, self.skip_rows,
321
+ self.column_names, self.autogenerate_column_names,
322
+ self.encoding, self.skip_rows_after_names)
323
+
324
+ def __setstate__(self, state):
325
+ (self.use_threads, self.block_size, self.skip_rows,
326
+ self.column_names, self.autogenerate_column_names,
327
+ self.encoding, self.skip_rows_after_names) = state
328
+
329
+ def __eq__(self, other):
330
+ try:
331
+ return self.equals(other)
332
+ except TypeError:
333
+ return False
334
+
335
+
336
+ cdef class ParseOptions(_Weakrefable):
337
+ """
338
+ Options for parsing CSV files.
339
+
340
+ Parameters
341
+ ----------
342
+ delimiter : 1-character string, optional (default ',')
343
+ The character delimiting individual cells in the CSV data.
344
+ quote_char : 1-character string or False, optional (default '"')
345
+ The character used optionally for quoting CSV values
346
+ (False if quoting is not allowed).
347
+ double_quote : bool, optional (default True)
348
+ Whether two quotes in a quoted CSV value denote a single quote
349
+ in the data.
350
+ escape_char : 1-character string or False, optional (default False)
351
+ The character used optionally for escaping special characters
352
+ (False if escaping is not allowed).
353
+ newlines_in_values : bool, optional (default False)
354
+ Whether newline characters are allowed in CSV values.
355
+ Setting this to True reduces the performance of multi-threaded
356
+ CSV reading.
357
+ ignore_empty_lines : bool, optional (default True)
358
+ Whether empty lines are ignored in CSV input.
359
+ If False, an empty line is interpreted as containing a single empty
360
+ value (assuming a one-column CSV file).
361
+ invalid_row_handler : callable, optional (default None)
362
+ If not None, this object is called for each CSV row that fails
363
+ parsing (because of a mismatching number of columns).
364
+ It should accept a single InvalidRow argument and return either
365
+ "skip" or "error" depending on the desired outcome.
366
+
367
+ Examples
368
+ --------
369
+
370
+ Defining an example file from bytes object:
371
+
372
+ >>> import io
373
+ >>> s = (
374
+ ... "animals;n_legs;entry\\n"
375
+ ... "Flamingo;2;2022-03-01\\n"
376
+ ... "# Comment here:\\n"
377
+ ... "Horse;4;2022-03-02\\n"
378
+ ... "Brittle stars;5;2022-03-03\\n"
379
+ ... "Centipede;100;2022-03-04"
380
+ ... )
381
+ >>> print(s)
382
+ animals;n_legs;entry
383
+ Flamingo;2;2022-03-01
384
+ # Comment here:
385
+ Horse;4;2022-03-02
386
+ Brittle stars;5;2022-03-03
387
+ Centipede;100;2022-03-04
388
+ >>> source = io.BytesIO(s.encode())
389
+
390
+ Read the data from a file skipping rows with comments
391
+ and defining the delimiter:
392
+
393
+ >>> from pyarrow import csv
394
+ >>> def skip_comment(row):
395
+ ... if row.text.startswith("# "):
396
+ ... return 'skip'
397
+ ... else:
398
+ ... return 'error'
399
+ ...
400
+ >>> parse_options = csv.ParseOptions(delimiter=";", invalid_row_handler=skip_comment)
401
+ >>> csv.read_csv(source, parse_options=parse_options)
402
+ pyarrow.Table
403
+ animals: string
404
+ n_legs: int64
405
+ entry: date32[day]
406
+ ----
407
+ animals: [["Flamingo","Horse","Brittle stars","Centipede"]]
408
+ n_legs: [[2,4,5,100]]
409
+ entry: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]]
410
+ """
411
+ __slots__ = ()
412
+
413
+ def __cinit__(self, *argw, **kwargs):
414
+ self._invalid_row_handler = None
415
+ self.options.reset(new CCSVParseOptions(CCSVParseOptions.Defaults()))
416
+
417
+ def __init__(self, *, delimiter=None, quote_char=None, double_quote=None,
418
+ escape_char=None, newlines_in_values=None,
419
+ ignore_empty_lines=None, invalid_row_handler=None):
420
+ if delimiter is not None:
421
+ self.delimiter = delimiter
422
+ if quote_char is not None:
423
+ self.quote_char = quote_char
424
+ if double_quote is not None:
425
+ self.double_quote = double_quote
426
+ if escape_char is not None:
427
+ self.escape_char = escape_char
428
+ if newlines_in_values is not None:
429
+ self.newlines_in_values = newlines_in_values
430
+ if ignore_empty_lines is not None:
431
+ self.ignore_empty_lines = ignore_empty_lines
432
+ if invalid_row_handler is not None:
433
+ self.invalid_row_handler = invalid_row_handler
434
+
435
+ @property
436
+ def delimiter(self):
437
+ """
438
+ The character delimiting individual cells in the CSV data.
439
+ """
440
+ return chr(deref(self.options).delimiter)
441
+
442
+ @delimiter.setter
443
+ def delimiter(self, value):
444
+ deref(self.options).delimiter = _single_char(value)
445
+
446
+ @property
447
+ def quote_char(self):
448
+ """
449
+ The character used optionally for quoting CSV values
450
+ (False if quoting is not allowed).
451
+ """
452
+ if deref(self.options).quoting:
453
+ return chr(deref(self.options).quote_char)
454
+ else:
455
+ return False
456
+
457
+ @quote_char.setter
458
+ def quote_char(self, value):
459
+ if value is False:
460
+ deref(self.options).quoting = False
461
+ else:
462
+ deref(self.options).quote_char = _single_char(value)
463
+ deref(self.options).quoting = True
464
+
465
+ @property
466
+ def double_quote(self):
467
+ """
468
+ Whether two quotes in a quoted CSV value denote a single quote
469
+ in the data.
470
+ """
471
+ return deref(self.options).double_quote
472
+
473
+ @double_quote.setter
474
+ def double_quote(self, value):
475
+ deref(self.options).double_quote = value
476
+
477
+ @property
478
+ def escape_char(self):
479
+ """
480
+ The character used optionally for escaping special characters
481
+ (False if escaping is not allowed).
482
+ """
483
+ if deref(self.options).escaping:
484
+ return chr(deref(self.options).escape_char)
485
+ else:
486
+ return False
487
+
488
+ @escape_char.setter
489
+ def escape_char(self, value):
490
+ if value is False:
491
+ deref(self.options).escaping = False
492
+ else:
493
+ deref(self.options).escape_char = _single_char(value)
494
+ deref(self.options).escaping = True
495
+
496
+ @property
497
+ def newlines_in_values(self):
498
+ """
499
+ Whether newline characters are allowed in CSV values.
500
+ Setting this to True reduces the performance of multi-threaded
501
+ CSV reading.
502
+ """
503
+ return deref(self.options).newlines_in_values
504
+
505
+ @newlines_in_values.setter
506
+ def newlines_in_values(self, value):
507
+ deref(self.options).newlines_in_values = value
508
+
509
+ @property
510
+ def ignore_empty_lines(self):
511
+ """
512
+ Whether empty lines are ignored in CSV input.
513
+ If False, an empty line is interpreted as containing a single empty
514
+ value (assuming a one-column CSV file).
515
+ """
516
+ return deref(self.options).ignore_empty_lines
517
+
518
+ @property
519
+ def invalid_row_handler(self):
520
+ """
521
+ Optional handler for invalid rows.
522
+
523
+ If not None, this object is called for each CSV row that fails
524
+ parsing (because of a mismatching number of columns).
525
+ It should accept a single InvalidRow argument and return either
526
+ "skip" or "error" depending on the desired outcome.
527
+ """
528
+ return self._invalid_row_handler
529
+
530
+ @invalid_row_handler.setter
531
+ def invalid_row_handler(self, value):
532
+ if value is not None and not callable(value):
533
+ raise TypeError("Expected callable or None, "
534
+ f"got instance of {type(value)!r}")
535
+ self._invalid_row_handler = value
536
+ deref(self.options).invalid_row_handler = MakeInvalidRowHandler(
537
+ <function[PyInvalidRowCallback]> &_handle_invalid_row, value)
538
+
539
+ @ignore_empty_lines.setter
540
+ def ignore_empty_lines(self, value):
541
+ deref(self.options).ignore_empty_lines = value
542
+
543
+ def validate(self):
544
+ check_status(deref(self.options).Validate())
545
+
546
+ def equals(self, ParseOptions other):
547
+ """
548
+ Parameters
549
+ ----------
550
+ other : pyarrow.csv.ParseOptions
551
+
552
+ Returns
553
+ -------
554
+ bool
555
+ """
556
+ return (
557
+ self.delimiter == other.delimiter and
558
+ self.quote_char == other.quote_char and
559
+ self.double_quote == other.double_quote and
560
+ self.escape_char == other.escape_char and
561
+ self.newlines_in_values == other.newlines_in_values and
562
+ self.ignore_empty_lines == other.ignore_empty_lines and
563
+ self._invalid_row_handler == other._invalid_row_handler
564
+ )
565
+
566
+ @staticmethod
567
+ cdef ParseOptions wrap(CCSVParseOptions options):
568
+ out = ParseOptions()
569
+ out.options.reset(new CCSVParseOptions(move(options)))
570
+ return out
571
+
572
+ def __getstate__(self):
573
+ return (self.delimiter, self.quote_char, self.double_quote,
574
+ self.escape_char, self.newlines_in_values,
575
+ self.ignore_empty_lines, self.invalid_row_handler)
576
+
577
+ def __setstate__(self, state):
578
+ (self.delimiter, self.quote_char, self.double_quote,
579
+ self.escape_char, self.newlines_in_values,
580
+ self.ignore_empty_lines, self.invalid_row_handler) = state
581
+
582
+ def __eq__(self, other):
583
+ try:
584
+ return self.equals(other)
585
+ except TypeError:
586
+ return False
587
+
588
+
589
+ cdef class _ISO8601(_Weakrefable):
590
+ """
591
+ A special object indicating ISO-8601 parsing.
592
+ """
593
+ __slots__ = ()
594
+
595
+ def __str__(self):
596
+ return 'ISO8601'
597
+
598
+ def __eq__(self, other):
599
+ return isinstance(other, _ISO8601)
600
+
601
+
602
+ ISO8601 = _ISO8601()
603
+
604
+
605
+ cdef class ConvertOptions(_Weakrefable):
606
+ """
607
+ Options for converting CSV data.
608
+
609
+ Parameters
610
+ ----------
611
+ check_utf8 : bool, optional (default True)
612
+ Whether to check UTF8 validity of string columns.
613
+ column_types : pyarrow.Schema or dict, optional
614
+ Explicitly map column names to column types. Passing this argument
615
+ disables type inference on the defined columns.
616
+ null_values : list, optional
617
+ A sequence of strings that denote nulls in the data
618
+ (defaults are appropriate in most cases). Note that by default,
619
+ string columns are not checked for null values. To enable
620
+ null checking for those, specify ``strings_can_be_null=True``.
621
+ true_values : list, optional
622
+ A sequence of strings that denote true booleans in the data
623
+ (defaults are appropriate in most cases).
624
+ false_values : list, optional
625
+ A sequence of strings that denote false booleans in the data
626
+ (defaults are appropriate in most cases).
627
+ decimal_point : 1-character string, optional (default '.')
628
+ The character used as decimal point in floating-point and decimal
629
+ data.
630
+ strings_can_be_null : bool, optional (default False)
631
+ Whether string / binary columns can have null values.
632
+ If true, then strings in null_values are considered null for
633
+ string columns.
634
+ If false, then all strings are valid string values.
635
+ quoted_strings_can_be_null : bool, optional (default True)
636
+ Whether quoted values can be null.
637
+ If true, then strings in "null_values" are also considered null
638
+ when they appear quoted in the CSV file. Otherwise, quoted values
639
+ are never considered null.
640
+ include_columns : list, optional
641
+ The names of columns to include in the Table.
642
+ If empty, the Table will include all columns from the CSV file.
643
+ If not empty, only these columns will be included, in this order.
644
+ include_missing_columns : bool, optional (default False)
645
+ If false, columns in `include_columns` but not in the CSV file will
646
+ error out.
647
+ If true, columns in `include_columns` but not in the CSV file will
648
+ produce a column of nulls (whose type is selected using
649
+ `column_types`, or null by default).
650
+ This option is ignored if `include_columns` is empty.
651
+ auto_dict_encode : bool, optional (default False)
652
+ Whether to try to automatically dict-encode string / binary data.
653
+ If true, then when type inference detects a string or binary column,
654
+ it it dict-encoded up to `auto_dict_max_cardinality` distinct values
655
+ (per chunk), after which it switches to regular encoding.
656
+ This setting is ignored for non-inferred columns (those in
657
+ `column_types`).
658
+ auto_dict_max_cardinality : int, optional
659
+ The maximum dictionary cardinality for `auto_dict_encode`.
660
+ This value is per chunk.
661
+ timestamp_parsers : list, optional
662
+ A sequence of strptime()-compatible format strings, tried in order
663
+ when attempting to infer or convert timestamp values (the special
664
+ value ISO8601() can also be given). By default, a fast built-in
665
+ ISO-8601 parser is used.
666
+
667
+ Examples
668
+ --------
669
+
670
+ Defining an example data:
671
+
672
+ >>> import io
673
+ >>> s = (
674
+ ... "animals,n_legs,entry,fast\\n"
675
+ ... "Flamingo,2,01/03/2022,Yes\\n"
676
+ ... "Horse,4,02/03/2022,Yes\\n"
677
+ ... "Brittle stars,5,03/03/2022,No\\n"
678
+ ... "Centipede,100,04/03/2022,No\\n"
679
+ ... ",6,05/03/2022,"
680
+ ... )
681
+ >>> print(s)
682
+ animals,n_legs,entry,fast
683
+ Flamingo,2,01/03/2022,Yes
684
+ Horse,4,02/03/2022,Yes
685
+ Brittle stars,5,03/03/2022,No
686
+ Centipede,100,04/03/2022,No
687
+ ,6,05/03/2022,
688
+
689
+ Change the type of a column:
690
+
691
+ >>> import pyarrow as pa
692
+ >>> from pyarrow import csv
693
+ >>> convert_options = csv.ConvertOptions(column_types={"n_legs": pa.float64()})
694
+ >>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
695
+ pyarrow.Table
696
+ animals: string
697
+ n_legs: double
698
+ entry: string
699
+ fast: string
700
+ ----
701
+ animals: [["Flamingo","Horse","Brittle stars","Centipede",""]]
702
+ n_legs: [[2,4,5,100,6]]
703
+ entry: [["01/03/2022","02/03/2022","03/03/2022","04/03/2022","05/03/2022"]]
704
+ fast: [["Yes","Yes","No","No",""]]
705
+
706
+ Define a date parsing format to get a timestamp type column
707
+ (in case dates are not in ISO format and not converted by default):
708
+
709
+ >>> convert_options = csv.ConvertOptions(
710
+ ... timestamp_parsers=["%m/%d/%Y", "%m-%d-%Y"])
711
+ >>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
712
+ pyarrow.Table
713
+ animals: string
714
+ n_legs: int64
715
+ entry: timestamp[s]
716
+ fast: string
717
+ ----
718
+ animals: [["Flamingo","Horse","Brittle stars","Centipede",""]]
719
+ n_legs: [[2,4,5,100,6]]
720
+ entry: [[2022-01-03 00:00:00,2022-02-03 00:00:00,2022-03-03 00:00:00,2022-04-03 00:00:00,2022-05-03 00:00:00]]
721
+ fast: [["Yes","Yes","No","No",""]]
722
+
723
+ Specify a subset of columns to be read:
724
+
725
+ >>> convert_options = csv.ConvertOptions(
726
+ ... include_columns=["animals", "n_legs"])
727
+ >>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
728
+ pyarrow.Table
729
+ animals: string
730
+ n_legs: int64
731
+ ----
732
+ animals: [["Flamingo","Horse","Brittle stars","Centipede",""]]
733
+ n_legs: [[2,4,5,100,6]]
734
+
735
+ List additional column to be included as a null typed column:
736
+
737
+ >>> convert_options = csv.ConvertOptions(
738
+ ... include_columns=["animals", "n_legs", "location"],
739
+ ... include_missing_columns=True)
740
+ >>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
741
+ pyarrow.Table
742
+ animals: string
743
+ n_legs: int64
744
+ location: null
745
+ ----
746
+ animals: [["Flamingo","Horse","Brittle stars","Centipede",""]]
747
+ n_legs: [[2,4,5,100,6]]
748
+ location: [5 nulls]
749
+
750
+ Define columns as dictionary type (by default only the
751
+ string/binary columns are dictionary encoded):
752
+
753
+ >>> convert_options = csv.ConvertOptions(
754
+ ... timestamp_parsers=["%m/%d/%Y", "%m-%d-%Y"],
755
+ ... auto_dict_encode=True)
756
+ >>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
757
+ pyarrow.Table
758
+ animals: dictionary<values=string, indices=int32, ordered=0>
759
+ n_legs: int64
760
+ entry: timestamp[s]
761
+ fast: dictionary<values=string, indices=int32, ordered=0>
762
+ ----
763
+ animals: [ -- dictionary:
764
+ ["Flamingo","Horse","Brittle stars","Centipede",""] -- indices:
765
+ [0,1,2,3,4]]
766
+ n_legs: [[2,4,5,100,6]]
767
+ entry: [[2022-01-03 00:00:00,2022-02-03 00:00:00,2022-03-03 00:00:00,2022-04-03 00:00:00,2022-05-03 00:00:00]]
768
+ fast: [ -- dictionary:
769
+ ["Yes","No",""] -- indices:
770
+ [0,0,1,1,2]]
771
+
772
+ Set upper limit for the number of categories. If the categories
773
+ is more than the limit, the conversion to dictionary will not
774
+ happen:
775
+
776
+ >>> convert_options = csv.ConvertOptions(
777
+ ... include_columns=["animals"],
778
+ ... auto_dict_encode=True,
779
+ ... auto_dict_max_cardinality=2)
780
+ >>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
781
+ pyarrow.Table
782
+ animals: string
783
+ ----
784
+ animals: [["Flamingo","Horse","Brittle stars","Centipede",""]]
785
+
786
+ Set empty strings to missing values:
787
+
788
+ >>> convert_options = csv.ConvertOptions(include_columns=["animals", "n_legs"],
789
+ ... strings_can_be_null=True)
790
+ >>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
791
+ pyarrow.Table
792
+ animals: string
793
+ n_legs: int64
794
+ ----
795
+ animals: [["Flamingo","Horse","Brittle stars","Centipede",null]]
796
+ n_legs: [[2,4,5,100,6]]
797
+
798
+ Define values to be True and False when converting a column
799
+ into a bool type:
800
+
801
+ >>> convert_options = csv.ConvertOptions(
802
+ ... include_columns=["fast"],
803
+ ... false_values=["No"],
804
+ ... true_values=["Yes"])
805
+ >>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options)
806
+ pyarrow.Table
807
+ fast: bool
808
+ ----
809
+ fast: [[true,true,false,false,null]]
810
+ """
811
+
812
+ # Avoid mistakingly creating attributes
813
+ __slots__ = ()
814
+
815
+ def __cinit__(self, *argw, **kwargs):
816
+ self.options.reset(
817
+ new CCSVConvertOptions(CCSVConvertOptions.Defaults()))
818
+
819
+ def __init__(self, *, check_utf8=None, column_types=None, null_values=None,
820
+ true_values=None, false_values=None, decimal_point=None,
821
+ strings_can_be_null=None, quoted_strings_can_be_null=None,
822
+ include_columns=None, include_missing_columns=None,
823
+ auto_dict_encode=None, auto_dict_max_cardinality=None,
824
+ timestamp_parsers=None):
825
+ if check_utf8 is not None:
826
+ self.check_utf8 = check_utf8
827
+ if column_types is not None:
828
+ self.column_types = column_types
829
+ if null_values is not None:
830
+ self.null_values = null_values
831
+ if true_values is not None:
832
+ self.true_values = true_values
833
+ if false_values is not None:
834
+ self.false_values = false_values
835
+ if decimal_point is not None:
836
+ self.decimal_point = decimal_point
837
+ if strings_can_be_null is not None:
838
+ self.strings_can_be_null = strings_can_be_null
839
+ if quoted_strings_can_be_null is not None:
840
+ self.quoted_strings_can_be_null = quoted_strings_can_be_null
841
+ if include_columns is not None:
842
+ self.include_columns = include_columns
843
+ if include_missing_columns is not None:
844
+ self.include_missing_columns = include_missing_columns
845
+ if auto_dict_encode is not None:
846
+ self.auto_dict_encode = auto_dict_encode
847
+ if auto_dict_max_cardinality is not None:
848
+ self.auto_dict_max_cardinality = auto_dict_max_cardinality
849
+ if timestamp_parsers is not None:
850
+ self.timestamp_parsers = timestamp_parsers
851
+
852
+ @property
853
+ def check_utf8(self):
854
+ """
855
+ Whether to check UTF8 validity of string columns.
856
+ """
857
+ return deref(self.options).check_utf8
858
+
859
+ @check_utf8.setter
860
+ def check_utf8(self, value):
861
+ deref(self.options).check_utf8 = value
862
+
863
+ @property
864
+ def strings_can_be_null(self):
865
+ """
866
+ Whether string / binary columns can have null values.
867
+ """
868
+ return deref(self.options).strings_can_be_null
869
+
870
+ @strings_can_be_null.setter
871
+ def strings_can_be_null(self, value):
872
+ deref(self.options).strings_can_be_null = value
873
+
874
+ @property
875
+ def quoted_strings_can_be_null(self):
876
+ """
877
+ Whether quoted values can be null.
878
+ """
879
+ return deref(self.options).quoted_strings_can_be_null
880
+
881
+ @quoted_strings_can_be_null.setter
882
+ def quoted_strings_can_be_null(self, value):
883
+ deref(self.options).quoted_strings_can_be_null = value
884
+
885
+ @property
886
+ def column_types(self):
887
+ """
888
+ Explicitly map column names to column types.
889
+ """
890
+ d = {frombytes(item.first): pyarrow_wrap_data_type(item.second)
891
+ for item in deref(self.options).column_types}
892
+ return d
893
+
894
+ @column_types.setter
895
+ def column_types(self, value):
896
+ cdef:
897
+ shared_ptr[CDataType] typ
898
+
899
+ if isinstance(value, Mapping):
900
+ value = value.items()
901
+
902
+ deref(self.options).column_types.clear()
903
+ for item in value:
904
+ if isinstance(item, Field):
905
+ k = item.name
906
+ v = item.type
907
+ else:
908
+ k, v = item
909
+ typ = pyarrow_unwrap_data_type(ensure_type(v))
910
+ assert typ != NULL
911
+ deref(self.options).column_types[tobytes(k)] = typ
912
+
913
+ @property
914
+ def null_values(self):
915
+ """
916
+ A sequence of strings that denote nulls in the data.
917
+ """
918
+ return [frombytes(x) for x in deref(self.options).null_values]
919
+
920
+ @null_values.setter
921
+ def null_values(self, value):
922
+ deref(self.options).null_values = [tobytes(x) for x in value]
923
+
924
+ @property
925
+ def true_values(self):
926
+ """
927
+ A sequence of strings that denote true booleans in the data.
928
+ """
929
+ return [frombytes(x) for x in deref(self.options).true_values]
930
+
931
+ @true_values.setter
932
+ def true_values(self, value):
933
+ deref(self.options).true_values = [tobytes(x) for x in value]
934
+
935
+ @property
936
+ def false_values(self):
937
+ """
938
+ A sequence of strings that denote false booleans in the data.
939
+ """
940
+ return [frombytes(x) for x in deref(self.options).false_values]
941
+
942
+ @false_values.setter
943
+ def false_values(self, value):
944
+ deref(self.options).false_values = [tobytes(x) for x in value]
945
+
946
+ @property
947
+ def decimal_point(self):
948
+ """
949
+ The character used as decimal point in floating-point and decimal
950
+ data.
951
+ """
952
+ return chr(deref(self.options).decimal_point)
953
+
954
+ @decimal_point.setter
955
+ def decimal_point(self, value):
956
+ deref(self.options).decimal_point = _single_char(value)
957
+
958
+ @property
959
+ def auto_dict_encode(self):
960
+ """
961
+ Whether to try to automatically dict-encode string / binary data.
962
+ """
963
+ return deref(self.options).auto_dict_encode
964
+
965
+ @auto_dict_encode.setter
966
+ def auto_dict_encode(self, value):
967
+ deref(self.options).auto_dict_encode = value
968
+
969
+ @property
970
+ def auto_dict_max_cardinality(self):
971
+ """
972
+ The maximum dictionary cardinality for `auto_dict_encode`.
973
+
974
+ This value is per chunk.
975
+ """
976
+ return deref(self.options).auto_dict_max_cardinality
977
+
978
+ @auto_dict_max_cardinality.setter
979
+ def auto_dict_max_cardinality(self, value):
980
+ deref(self.options).auto_dict_max_cardinality = value
981
+
982
+ @property
983
+ def include_columns(self):
984
+ """
985
+ The names of columns to include in the Table.
986
+
987
+ If empty, the Table will include all columns from the CSV file.
988
+ If not empty, only these columns will be included, in this order.
989
+ """
990
+ return [frombytes(s) for s in deref(self.options).include_columns]
991
+
992
+ @include_columns.setter
993
+ def include_columns(self, value):
994
+ deref(self.options).include_columns.clear()
995
+ for item in value:
996
+ deref(self.options).include_columns.push_back(tobytes(item))
997
+
998
+ @property
999
+ def include_missing_columns(self):
1000
+ """
1001
+ If false, columns in `include_columns` but not in the CSV file will
1002
+ error out.
1003
+ If true, columns in `include_columns` but not in the CSV file will
1004
+ produce a null column (whose type is selected using `column_types`,
1005
+ or null by default).
1006
+ This option is ignored if `include_columns` is empty.
1007
+ """
1008
+ return deref(self.options).include_missing_columns
1009
+
1010
+ @include_missing_columns.setter
1011
+ def include_missing_columns(self, value):
1012
+ deref(self.options).include_missing_columns = value
1013
+
1014
+ @property
1015
+ def timestamp_parsers(self):
1016
+ """
1017
+ A sequence of strptime()-compatible format strings, tried in order
1018
+ when attempting to infer or convert timestamp values (the special
1019
+ value ISO8601() can also be given). By default, a fast built-in
1020
+ ISO-8601 parser is used.
1021
+ """
1022
+ cdef:
1023
+ shared_ptr[CTimestampParser] c_parser
1024
+ c_string kind
1025
+
1026
+ parsers = []
1027
+ for c_parser in deref(self.options).timestamp_parsers:
1028
+ kind = deref(c_parser).kind()
1029
+ if kind == b'strptime':
1030
+ parsers.append(frombytes(deref(c_parser).format()))
1031
+ else:
1032
+ assert kind == b'iso8601'
1033
+ parsers.append(ISO8601)
1034
+
1035
+ return parsers
1036
+
1037
+ @timestamp_parsers.setter
1038
+ def timestamp_parsers(self, value):
1039
+ cdef:
1040
+ vector[shared_ptr[CTimestampParser]] c_parsers
1041
+
1042
+ for v in value:
1043
+ if isinstance(v, str):
1044
+ c_parsers.push_back(CTimestampParser.MakeStrptime(tobytes(v)))
1045
+ elif v == ISO8601:
1046
+ c_parsers.push_back(CTimestampParser.MakeISO8601())
1047
+ else:
1048
+ raise TypeError("Expected list of str or ISO8601 objects")
1049
+
1050
+ deref(self.options).timestamp_parsers = move(c_parsers)
1051
+
1052
+ @staticmethod
1053
+ cdef ConvertOptions wrap(CCSVConvertOptions options):
1054
+ out = ConvertOptions()
1055
+ out.options.reset(new CCSVConvertOptions(move(options)))
1056
+ return out
1057
+
1058
+ def validate(self):
1059
+ check_status(deref(self.options).Validate())
1060
+
1061
+ def equals(self, ConvertOptions other):
1062
+ """
1063
+ Parameters
1064
+ ----------
1065
+ other : pyarrow.csv.ConvertOptions
1066
+
1067
+ Returns
1068
+ -------
1069
+ bool
1070
+ """
1071
+ return (
1072
+ self.check_utf8 == other.check_utf8 and
1073
+ self.column_types == other.column_types and
1074
+ self.null_values == other.null_values and
1075
+ self.true_values == other.true_values and
1076
+ self.false_values == other.false_values and
1077
+ self.decimal_point == other.decimal_point and
1078
+ self.timestamp_parsers == other.timestamp_parsers and
1079
+ self.strings_can_be_null == other.strings_can_be_null and
1080
+ self.quoted_strings_can_be_null ==
1081
+ other.quoted_strings_can_be_null and
1082
+ self.auto_dict_encode == other.auto_dict_encode and
1083
+ self.auto_dict_max_cardinality ==
1084
+ other.auto_dict_max_cardinality and
1085
+ self.include_columns == other.include_columns and
1086
+ self.include_missing_columns == other.include_missing_columns
1087
+ )
1088
+
1089
+ def __getstate__(self):
1090
+ return (self.check_utf8, self.column_types, self.null_values,
1091
+ self.true_values, self.false_values, self.decimal_point,
1092
+ self.timestamp_parsers, self.strings_can_be_null,
1093
+ self.quoted_strings_can_be_null, self.auto_dict_encode,
1094
+ self.auto_dict_max_cardinality, self.include_columns,
1095
+ self.include_missing_columns)
1096
+
1097
+ def __setstate__(self, state):
1098
+ (self.check_utf8, self.column_types, self.null_values,
1099
+ self.true_values, self.false_values, self.decimal_point,
1100
+ self.timestamp_parsers, self.strings_can_be_null,
1101
+ self.quoted_strings_can_be_null, self.auto_dict_encode,
1102
+ self.auto_dict_max_cardinality, self.include_columns,
1103
+ self.include_missing_columns) = state
1104
+
1105
+ def __eq__(self, other):
1106
+ try:
1107
+ return self.equals(other)
1108
+ except TypeError:
1109
+ return False
1110
+
1111
+
1112
+ cdef _get_reader(input_file, ReadOptions read_options,
1113
+ shared_ptr[CInputStream]* out):
1114
+ use_memory_map = False
1115
+ get_input_stream(input_file, use_memory_map, out)
1116
+ if read_options is not None:
1117
+ out[0] = native_transcoding_input_stream(out[0],
1118
+ read_options.encoding,
1119
+ 'utf8')
1120
+
1121
+
1122
+ cdef _get_read_options(ReadOptions read_options, CCSVReadOptions* out):
1123
+ if read_options is None:
1124
+ out[0] = CCSVReadOptions.Defaults()
1125
+ else:
1126
+ out[0] = deref(read_options.options)
1127
+
1128
+
1129
+ cdef _get_parse_options(ParseOptions parse_options, CCSVParseOptions* out):
1130
+ if parse_options is None:
1131
+ out[0] = CCSVParseOptions.Defaults()
1132
+ else:
1133
+ out[0] = deref(parse_options.options)
1134
+
1135
+
1136
+ cdef _get_convert_options(ConvertOptions convert_options,
1137
+ CCSVConvertOptions* out):
1138
+ if convert_options is None:
1139
+ out[0] = CCSVConvertOptions.Defaults()
1140
+ else:
1141
+ out[0] = deref(convert_options.options)
1142
+
1143
+
1144
+ cdef class CSVStreamingReader(RecordBatchReader):
1145
+ """An object that reads record batches incrementally from a CSV file.
1146
+
1147
+ Should not be instantiated directly by user code.
1148
+ """
1149
+ cdef readonly:
1150
+ Schema schema
1151
+
1152
+ def __init__(self):
1153
+ raise TypeError("Do not call {}'s constructor directly, "
1154
+ "use pyarrow.csv.open_csv() instead."
1155
+ .format(self.__class__.__name__))
1156
+
1157
+ # Note about cancellation: we cannot create a SignalStopHandler
1158
+ # by default here, as several CSVStreamingReader instances may be
1159
+ # created (including by the same thread). Handling cancellation
1160
+ # would require having the user pass the SignalStopHandler.
1161
+ # (in addition to solving ARROW-11853)
1162
+
1163
+ cdef _open(self, shared_ptr[CInputStream] stream,
1164
+ CCSVReadOptions c_read_options,
1165
+ CCSVParseOptions c_parse_options,
1166
+ CCSVConvertOptions c_convert_options,
1167
+ MemoryPool memory_pool):
1168
+ cdef:
1169
+ shared_ptr[CSchema] c_schema
1170
+ CIOContext io_context
1171
+
1172
+ io_context = CIOContext(maybe_unbox_memory_pool(memory_pool))
1173
+
1174
+ with nogil:
1175
+ self.reader = <shared_ptr[CRecordBatchReader]> GetResultValue(
1176
+ CCSVStreamingReader.Make(
1177
+ io_context, stream,
1178
+ move(c_read_options), move(c_parse_options),
1179
+ move(c_convert_options)))
1180
+ c_schema = self.reader.get().schema()
1181
+
1182
+ self.schema = pyarrow_wrap_schema(c_schema)
1183
+
1184
+
1185
+ def read_csv(input_file, read_options=None, parse_options=None,
1186
+ convert_options=None, MemoryPool memory_pool=None):
1187
+ """
1188
+ Read a Table from a stream of CSV data.
1189
+
1190
+ Parameters
1191
+ ----------
1192
+ input_file : string, path or file-like object
1193
+ The location of CSV data. If a string or path, and if it ends
1194
+ with a recognized compressed file extension (e.g. ".gz" or ".bz2"),
1195
+ the data is automatically decompressed when reading.
1196
+ read_options : pyarrow.csv.ReadOptions, optional
1197
+ Options for the CSV reader (see pyarrow.csv.ReadOptions constructor
1198
+ for defaults)
1199
+ parse_options : pyarrow.csv.ParseOptions, optional
1200
+ Options for the CSV parser
1201
+ (see pyarrow.csv.ParseOptions constructor for defaults)
1202
+ convert_options : pyarrow.csv.ConvertOptions, optional
1203
+ Options for converting CSV data
1204
+ (see pyarrow.csv.ConvertOptions constructor for defaults)
1205
+ memory_pool : MemoryPool, optional
1206
+ Pool to allocate Table memory from
1207
+
1208
+ Returns
1209
+ -------
1210
+ :class:`pyarrow.Table`
1211
+ Contents of the CSV file as a in-memory table.
1212
+
1213
+ Examples
1214
+ --------
1215
+
1216
+ Defining an example file from bytes object:
1217
+
1218
+ >>> import io
1219
+ >>> s = (
1220
+ ... "animals,n_legs,entry\\n"
1221
+ ... "Flamingo,2,2022-03-01\\n"
1222
+ ... "Horse,4,2022-03-02\\n"
1223
+ ... "Brittle stars,5,2022-03-03\\n"
1224
+ ... "Centipede,100,2022-03-04"
1225
+ ... )
1226
+ >>> print(s)
1227
+ animals,n_legs,entry
1228
+ Flamingo,2,2022-03-01
1229
+ Horse,4,2022-03-02
1230
+ Brittle stars,5,2022-03-03
1231
+ Centipede,100,2022-03-04
1232
+ >>> source = io.BytesIO(s.encode())
1233
+
1234
+ Reading from the file
1235
+
1236
+ >>> from pyarrow import csv
1237
+ >>> csv.read_csv(source)
1238
+ pyarrow.Table
1239
+ animals: string
1240
+ n_legs: int64
1241
+ entry: date32[day]
1242
+ ----
1243
+ animals: [["Flamingo","Horse","Brittle stars","Centipede"]]
1244
+ n_legs: [[2,4,5,100]]
1245
+ entry: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]]
1246
+ """
1247
+ cdef:
1248
+ shared_ptr[CInputStream] stream
1249
+ CCSVReadOptions c_read_options
1250
+ CCSVParseOptions c_parse_options
1251
+ CCSVConvertOptions c_convert_options
1252
+ CIOContext io_context
1253
+ SharedPtrNoGIL[CCSVReader] reader
1254
+ shared_ptr[CTable] table
1255
+
1256
+ _get_reader(input_file, read_options, &stream)
1257
+ _get_read_options(read_options, &c_read_options)
1258
+ _get_parse_options(parse_options, &c_parse_options)
1259
+ _get_convert_options(convert_options, &c_convert_options)
1260
+
1261
+ with SignalStopHandler() as stop_handler:
1262
+ io_context = CIOContext(
1263
+ maybe_unbox_memory_pool(memory_pool),
1264
+ (<StopToken> stop_handler.stop_token).stop_token)
1265
+ reader = GetResultValue(CCSVReader.Make(
1266
+ io_context, stream,
1267
+ c_read_options, c_parse_options, c_convert_options))
1268
+
1269
+ with nogil:
1270
+ table = GetResultValue(reader.get().Read())
1271
+
1272
+ return pyarrow_wrap_table(table)
1273
+
1274
+
1275
+ def open_csv(input_file, read_options=None, parse_options=None,
1276
+ convert_options=None, MemoryPool memory_pool=None):
1277
+ """
1278
+ Open a streaming reader of CSV data.
1279
+
1280
+ Reading using this function is always single-threaded.
1281
+
1282
+ Parameters
1283
+ ----------
1284
+ input_file : string, path or file-like object
1285
+ The location of CSV data. If a string or path, and if it ends
1286
+ with a recognized compressed file extension (e.g. ".gz" or ".bz2"),
1287
+ the data is automatically decompressed when reading.
1288
+ read_options : pyarrow.csv.ReadOptions, optional
1289
+ Options for the CSV reader (see pyarrow.csv.ReadOptions constructor
1290
+ for defaults)
1291
+ parse_options : pyarrow.csv.ParseOptions, optional
1292
+ Options for the CSV parser
1293
+ (see pyarrow.csv.ParseOptions constructor for defaults)
1294
+ convert_options : pyarrow.csv.ConvertOptions, optional
1295
+ Options for converting CSV data
1296
+ (see pyarrow.csv.ConvertOptions constructor for defaults)
1297
+ memory_pool : MemoryPool, optional
1298
+ Pool to allocate Table memory from
1299
+
1300
+ Returns
1301
+ -------
1302
+ :class:`pyarrow.csv.CSVStreamingReader`
1303
+ """
1304
+ cdef:
1305
+ shared_ptr[CInputStream] stream
1306
+ CCSVReadOptions c_read_options
1307
+ CCSVParseOptions c_parse_options
1308
+ CCSVConvertOptions c_convert_options
1309
+ CSVStreamingReader reader
1310
+
1311
+ _get_reader(input_file, read_options, &stream)
1312
+ _get_read_options(read_options, &c_read_options)
1313
+ _get_parse_options(parse_options, &c_parse_options)
1314
+ _get_convert_options(convert_options, &c_convert_options)
1315
+
1316
+ reader = CSVStreamingReader.__new__(CSVStreamingReader)
1317
+ reader._open(stream, move(c_read_options), move(c_parse_options),
1318
+ move(c_convert_options), memory_pool)
1319
+ return reader
1320
+
1321
+
1322
+ def _raise_invalid_function_option(value, description, *,
1323
+ exception_class=ValueError):
1324
+ raise exception_class(f"\"{value}\" is not a valid {description}")
1325
+
1326
+
1327
+ cdef CQuotingStyle unwrap_quoting_style(quoting_style) except *:
1328
+ if quoting_style == "needed":
1329
+ return CQuotingStyle_Needed
1330
+ elif quoting_style == "all_valid":
1331
+ return CQuotingStyle_AllValid
1332
+ elif quoting_style == "none":
1333
+ return CQuotingStyle_None
1334
+ _raise_invalid_function_option(quoting_style, "quoting style")
1335
+
1336
+
1337
+ cdef wrap_quoting_style(quoting_style):
1338
+ if quoting_style == CQuotingStyle_Needed:
1339
+ return 'needed'
1340
+ elif quoting_style == CQuotingStyle_AllValid:
1341
+ return 'all_valid'
1342
+ elif quoting_style == CQuotingStyle_None:
1343
+ return 'none'
1344
+
1345
+
1346
+ cdef class WriteOptions(_Weakrefable):
1347
+ """
1348
+ Options for writing CSV files.
1349
+
1350
+ Parameters
1351
+ ----------
1352
+ include_header : bool, optional (default True)
1353
+ Whether to write an initial header line with column names
1354
+ batch_size : int, optional (default 1024)
1355
+ How many rows to process together when converting and writing
1356
+ CSV data
1357
+ delimiter : 1-character string, optional (default ",")
1358
+ The character delimiting individual cells in the CSV data.
1359
+ quoting_style : str, optional (default "needed")
1360
+ Whether to quote values, and if so, which quoting style to use.
1361
+ The following values are accepted:
1362
+
1363
+ - "needed" (default): only enclose values in quotes when needed.
1364
+ - "all_valid": enclose all valid values in quotes; nulls are not quoted.
1365
+ - "none": do not enclose any values in quotes; values containing
1366
+ special characters (such as quotes, cell delimiters or line endings)
1367
+ will raise an error.
1368
+ """
1369
+
1370
+ # Avoid mistakingly creating attributes
1371
+ __slots__ = ()
1372
+
1373
+ def __init__(self, *, include_header=None, batch_size=None,
1374
+ delimiter=None, quoting_style=None):
1375
+ self.options.reset(new CCSVWriteOptions(CCSVWriteOptions.Defaults()))
1376
+ if include_header is not None:
1377
+ self.include_header = include_header
1378
+ if batch_size is not None:
1379
+ self.batch_size = batch_size
1380
+ if delimiter is not None:
1381
+ self.delimiter = delimiter
1382
+ if quoting_style is not None:
1383
+ self.quoting_style = quoting_style
1384
+
1385
+ @property
1386
+ def include_header(self):
1387
+ """
1388
+ Whether to write an initial header line with column names.
1389
+ """
1390
+ return deref(self.options).include_header
1391
+
1392
+ @include_header.setter
1393
+ def include_header(self, value):
1394
+ deref(self.options).include_header = value
1395
+
1396
+ @property
1397
+ def batch_size(self):
1398
+ """
1399
+ How many rows to process together when converting and writing
1400
+ CSV data.
1401
+ """
1402
+ return deref(self.options).batch_size
1403
+
1404
+ @batch_size.setter
1405
+ def batch_size(self, value):
1406
+ deref(self.options).batch_size = value
1407
+
1408
+ @property
1409
+ def delimiter(self):
1410
+ """
1411
+ The character delimiting individual cells in the CSV data.
1412
+ """
1413
+ return chr(deref(self.options).delimiter)
1414
+
1415
+ @delimiter.setter
1416
+ def delimiter(self, value):
1417
+ deref(self.options).delimiter = _single_char(value)
1418
+
1419
+ @property
1420
+ def quoting_style(self):
1421
+ """
1422
+ Whether to quote values, and if so, which quoting style to use.
1423
+ The following values are accepted:
1424
+
1425
+ - "needed" (default): only enclose values in quotes when needed.
1426
+ - "all_valid": enclose all valid values in quotes; nulls are not quoted.
1427
+ - "none": do not enclose any values in quotes; values containing
1428
+ special characters (such as quotes, cell delimiters or line endings)
1429
+ will raise an error.
1430
+ """
1431
+ return wrap_quoting_style(deref(self.options).quoting_style)
1432
+
1433
+ @quoting_style.setter
1434
+ def quoting_style(self, value):
1435
+ deref(self.options).quoting_style = unwrap_quoting_style(value)
1436
+
1437
+ @staticmethod
1438
+ cdef WriteOptions wrap(CCSVWriteOptions options):
1439
+ out = WriteOptions()
1440
+ out.options.reset(new CCSVWriteOptions(move(options)))
1441
+ return out
1442
+
1443
+ def validate(self):
1444
+ check_status(self.options.get().Validate())
1445
+
1446
+
1447
+ cdef _get_write_options(WriteOptions write_options, CCSVWriteOptions* out):
1448
+ if write_options is None:
1449
+ out[0] = CCSVWriteOptions.Defaults()
1450
+ else:
1451
+ out[0] = deref(write_options.options)
1452
+
1453
+
1454
+ def write_csv(data, output_file, write_options=None,
1455
+ MemoryPool memory_pool=None):
1456
+ """
1457
+ Write record batch or table to a CSV file.
1458
+
1459
+ Parameters
1460
+ ----------
1461
+ data : pyarrow.RecordBatch or pyarrow.Table
1462
+ The data to write.
1463
+ output_file : string, path, pyarrow.NativeFile, or file-like object
1464
+ The location where to write the CSV data.
1465
+ write_options : pyarrow.csv.WriteOptions
1466
+ Options to configure writing the CSV data.
1467
+ memory_pool : MemoryPool, optional
1468
+ Pool for temporary allocations.
1469
+
1470
+ Examples
1471
+ --------
1472
+
1473
+ >>> import pyarrow as pa
1474
+ >>> from pyarrow import csv
1475
+
1476
+ >>> legs = pa.array([2, 4, 5, 100])
1477
+ >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"])
1478
+ >>> entry_date = pa.array(["01/03/2022", "02/03/2022",
1479
+ ... "03/03/2022", "04/03/2022"])
1480
+ >>> table = pa.table([animals, legs, entry_date],
1481
+ ... names=["animals", "n_legs", "entry"])
1482
+
1483
+ >>> csv.write_csv(table, "animals.csv")
1484
+
1485
+ >>> write_options = csv.WriteOptions(include_header=False)
1486
+ >>> csv.write_csv(table, "animals.csv", write_options=write_options)
1487
+
1488
+ >>> write_options = csv.WriteOptions(delimiter=";")
1489
+ >>> csv.write_csv(table, "animals.csv", write_options=write_options)
1490
+ """
1491
+ cdef:
1492
+ shared_ptr[COutputStream] stream
1493
+ CCSVWriteOptions c_write_options
1494
+ CMemoryPool* c_memory_pool
1495
+ CRecordBatch* batch
1496
+ CTable* table
1497
+ _get_write_options(write_options, &c_write_options)
1498
+
1499
+ get_writer(output_file, &stream)
1500
+ c_memory_pool = maybe_unbox_memory_pool(memory_pool)
1501
+ c_write_options.io_context = CIOContext(c_memory_pool)
1502
+ if isinstance(data, RecordBatch):
1503
+ batch = pyarrow_unwrap_batch(data).get()
1504
+ with nogil:
1505
+ check_status(WriteCSV(deref(batch), c_write_options, stream.get()))
1506
+ elif isinstance(data, Table):
1507
+ table = pyarrow_unwrap_table(data).get()
1508
+ with nogil:
1509
+ check_status(WriteCSV(deref(table), c_write_options, stream.get()))
1510
+ else:
1511
+ raise TypeError(f"Expected Table or RecordBatch, got '{type(data)}'")
1512
+
1513
+
1514
+ cdef class CSVWriter(_CRecordBatchWriter):
1515
+ """
1516
+ Writer to create a CSV file.
1517
+
1518
+ Parameters
1519
+ ----------
1520
+ sink : str, path, pyarrow.OutputStream or file-like object
1521
+ The location where to write the CSV data.
1522
+ schema : pyarrow.Schema
1523
+ The schema of the data to be written.
1524
+ write_options : pyarrow.csv.WriteOptions
1525
+ Options to configure writing the CSV data.
1526
+ memory_pool : MemoryPool, optional
1527
+ Pool for temporary allocations.
1528
+ """
1529
+
1530
+ def __init__(self, sink, Schema schema, *,
1531
+ WriteOptions write_options=None, MemoryPool memory_pool=None):
1532
+ cdef:
1533
+ shared_ptr[COutputStream] c_stream
1534
+ shared_ptr[CSchema] c_schema = pyarrow_unwrap_schema(schema)
1535
+ CCSVWriteOptions c_write_options
1536
+ CMemoryPool* c_memory_pool = maybe_unbox_memory_pool(memory_pool)
1537
+ _get_write_options(write_options, &c_write_options)
1538
+ c_write_options.io_context = CIOContext(c_memory_pool)
1539
+ get_writer(sink, &c_stream)
1540
+ with nogil:
1541
+ self.writer = GetResultValue(MakeCSVWriter(
1542
+ c_stream, c_schema, c_write_options))
llmeval-env/lib/python3.10/site-packages/pyarrow/_dataset.pxd ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # cython: language_level = 3
19
+
20
+ """Dataset is currently unstable. APIs subject to change without notice."""
21
+
22
+ from pyarrow.includes.common cimport *
23
+ from pyarrow.includes.libarrow_dataset cimport *
24
+ from pyarrow.lib cimport *
25
+ from pyarrow._fs cimport FileSystem, FileInfo
26
+
27
+
28
+ cdef CFileSource _make_file_source(object file, FileSystem filesystem=*, object file_size=*)
29
+
30
+ cdef class DatasetFactory(_Weakrefable):
31
+
32
+ cdef:
33
+ SharedPtrNoGIL[CDatasetFactory] wrapped
34
+ CDatasetFactory* factory
35
+
36
+ cdef init(self, const shared_ptr[CDatasetFactory]& sp)
37
+
38
+ @staticmethod
39
+ cdef wrap(const shared_ptr[CDatasetFactory]& sp)
40
+
41
+ cdef inline shared_ptr[CDatasetFactory] unwrap(self) nogil
42
+
43
+
44
+ cdef class Dataset(_Weakrefable):
45
+
46
+ cdef:
47
+ SharedPtrNoGIL[CDataset] wrapped
48
+ CDataset* dataset
49
+ public dict _scan_options
50
+
51
+ cdef void init(self, const shared_ptr[CDataset]& sp)
52
+
53
+ @staticmethod
54
+ cdef wrap(const shared_ptr[CDataset]& sp)
55
+
56
+ cdef shared_ptr[CDataset] unwrap(self) nogil
57
+
58
+
59
+ cdef class Scanner(_Weakrefable):
60
+ cdef:
61
+ SharedPtrNoGIL[CScanner] wrapped
62
+ CScanner* scanner
63
+
64
+ cdef void init(self, const shared_ptr[CScanner]& sp)
65
+
66
+ @staticmethod
67
+ cdef wrap(const shared_ptr[CScanner]& sp)
68
+
69
+ cdef shared_ptr[CScanner] unwrap(self)
70
+
71
+ @staticmethod
72
+ cdef shared_ptr[CScanOptions] _make_scan_options(Dataset dataset, dict py_scanoptions) except *
73
+
74
+
75
+ cdef class FragmentScanOptions(_Weakrefable):
76
+
77
+ cdef:
78
+ shared_ptr[CFragmentScanOptions] wrapped
79
+
80
+ cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp)
81
+
82
+ @staticmethod
83
+ cdef wrap(const shared_ptr[CFragmentScanOptions]& sp)
84
+
85
+
86
+ cdef class FileFormat(_Weakrefable):
87
+
88
+ cdef:
89
+ shared_ptr[CFileFormat] wrapped
90
+ CFileFormat* format
91
+
92
+ cdef void init(self, const shared_ptr[CFileFormat]& sp)
93
+
94
+ @staticmethod
95
+ cdef wrap(const shared_ptr[CFileFormat]& sp)
96
+
97
+ cdef inline shared_ptr[CFileFormat] unwrap(self)
98
+
99
+ cdef _set_default_fragment_scan_options(self, FragmentScanOptions options)
100
+
101
+ # Return a WrittenFile after a file was written.
102
+ # May be overridden by subclasses, e.g. to add metadata.
103
+ cdef WrittenFile _finish_write(self, path, base_dir,
104
+ CFileWriter* file_writer)
105
+
106
+
107
+ cdef class FileWriteOptions(_Weakrefable):
108
+
109
+ cdef:
110
+ shared_ptr[CFileWriteOptions] wrapped
111
+ CFileWriteOptions* c_options
112
+
113
+ cdef void init(self, const shared_ptr[CFileWriteOptions]& sp)
114
+
115
+ @staticmethod
116
+ cdef wrap(const shared_ptr[CFileWriteOptions]& sp)
117
+
118
+ cdef inline shared_ptr[CFileWriteOptions] unwrap(self)
119
+
120
+
121
+ cdef class Fragment(_Weakrefable):
122
+
123
+ cdef:
124
+ SharedPtrNoGIL[CFragment] wrapped
125
+ CFragment* fragment
126
+
127
+ cdef void init(self, const shared_ptr[CFragment]& sp)
128
+
129
+ @staticmethod
130
+ cdef wrap(const shared_ptr[CFragment]& sp)
131
+
132
+ cdef inline shared_ptr[CFragment] unwrap(self)
133
+
134
+
135
+ cdef class FileFragment(Fragment):
136
+
137
+ cdef:
138
+ CFileFragment* file_fragment
139
+
140
+ cdef void init(self, const shared_ptr[CFragment]& sp)
141
+
142
+
143
+ cdef class Partitioning(_Weakrefable):
144
+
145
+ cdef:
146
+ shared_ptr[CPartitioning] wrapped
147
+ CPartitioning* partitioning
148
+
149
+ cdef init(self, const shared_ptr[CPartitioning]& sp)
150
+
151
+ @staticmethod
152
+ cdef wrap(const shared_ptr[CPartitioning]& sp)
153
+
154
+ cdef inline shared_ptr[CPartitioning] unwrap(self)
155
+
156
+
157
+ cdef class PartitioningFactory(_Weakrefable):
158
+
159
+ cdef:
160
+ shared_ptr[CPartitioningFactory] wrapped
161
+ CPartitioningFactory* factory
162
+ object constructor
163
+ object options
164
+
165
+ cdef init(self, const shared_ptr[CPartitioningFactory]& sp)
166
+
167
+ @staticmethod
168
+ cdef wrap(const shared_ptr[CPartitioningFactory]& sp,
169
+ object constructor, object options)
170
+
171
+ cdef inline shared_ptr[CPartitioningFactory] unwrap(self)
172
+
173
+
174
+ cdef class WrittenFile(_Weakrefable):
175
+
176
+ # The full path to the created file
177
+ cdef public str path
178
+ # Optional Parquet metadata
179
+ # This metadata will have the file path attribute set to the path of
180
+ # the written file.
181
+ cdef public object metadata
182
+ # The size of the file in bytes
183
+ cdef public int64_t size
llmeval-env/lib/python3.10/site-packages/pyarrow/_dataset.pyx ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/pyarrow/_dataset_parquet.pxd ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # cython: language_level = 3
19
+
20
+ """Dataset support for Parquet file format."""
21
+
22
+ from pyarrow.includes.libarrow_dataset cimport *
23
+ from pyarrow.includes.libarrow_dataset_parquet cimport *
24
+
25
+ from pyarrow._dataset cimport FragmentScanOptions, FileWriteOptions
26
+
27
+
28
+ cdef class ParquetFragmentScanOptions(FragmentScanOptions):
29
+ cdef:
30
+ CParquetFragmentScanOptions* parquet_options
31
+ object _parquet_decryption_config
32
+
33
+ cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp)
34
+ cdef CReaderProperties* reader_properties(self)
35
+ cdef ArrowReaderProperties* arrow_reader_properties(self)
36
+
37
+
38
+ cdef class ParquetFileWriteOptions(FileWriteOptions):
39
+
40
+ cdef:
41
+ CParquetFileWriteOptions* parquet_options
42
+ object _properties
llmeval-env/lib/python3.10/site-packages/pyarrow/_feather.pyx ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # ---------------------------------------------------------------------
19
+ # Implement Feather file format
20
+
21
+ # cython: profile=False
22
+ # distutils: language = c++
23
+ # cython: language_level=3
24
+
25
+ from cython.operator cimport dereference as deref
26
+ from pyarrow.includes.common cimport *
27
+ from pyarrow.includes.libarrow cimport *
28
+ from pyarrow.includes.libarrow_feather cimport *
29
+ from pyarrow.lib cimport (check_status, Table, _Weakrefable,
30
+ get_writer, get_reader, pyarrow_wrap_table)
31
+ from pyarrow.lib import tobytes
32
+
33
+
34
+ class FeatherError(Exception):
35
+ pass
36
+
37
+
38
+ def write_feather(Table table, object dest, compression=None,
39
+ compression_level=None, chunksize=None, version=2):
40
+ cdef shared_ptr[COutputStream] sink
41
+ get_writer(dest, &sink)
42
+
43
+ cdef CFeatherProperties properties
44
+ if version == 2:
45
+ properties.version = kFeatherV2Version
46
+ else:
47
+ properties.version = kFeatherV1Version
48
+
49
+ if compression == 'zstd':
50
+ properties.compression = CCompressionType_ZSTD
51
+ elif compression == 'lz4':
52
+ properties.compression = CCompressionType_LZ4_FRAME
53
+ else:
54
+ properties.compression = CCompressionType_UNCOMPRESSED
55
+
56
+ if chunksize is not None:
57
+ properties.chunksize = chunksize
58
+
59
+ if compression_level is not None:
60
+ properties.compression_level = compression_level
61
+
62
+ with nogil:
63
+ check_status(WriteFeather(deref(table.table), sink.get(),
64
+ properties))
65
+
66
+
67
+ cdef class FeatherReader(_Weakrefable):
68
+ cdef:
69
+ shared_ptr[CFeatherReader] reader
70
+
71
+ def __cinit__(self, source, c_bool use_memory_map, c_bool use_threads):
72
+ cdef:
73
+ shared_ptr[CRandomAccessFile] reader
74
+ CIpcReadOptions options = CIpcReadOptions.Defaults()
75
+ options.use_threads = use_threads
76
+
77
+ get_reader(source, use_memory_map, &reader)
78
+ with nogil:
79
+ self.reader = GetResultValue(CFeatherReader.Open(reader, options))
80
+
81
+ @property
82
+ def version(self):
83
+ return self.reader.get().version()
84
+
85
+ def read(self):
86
+ cdef shared_ptr[CTable] sp_table
87
+ with nogil:
88
+ check_status(self.reader.get()
89
+ .Read(&sp_table))
90
+
91
+ return pyarrow_wrap_table(sp_table)
92
+
93
+ def read_indices(self, indices):
94
+ cdef:
95
+ shared_ptr[CTable] sp_table
96
+ vector[int] c_indices
97
+
98
+ for index in indices:
99
+ c_indices.push_back(index)
100
+ with nogil:
101
+ check_status(self.reader.get()
102
+ .Read(c_indices, &sp_table))
103
+
104
+ return pyarrow_wrap_table(sp_table)
105
+
106
+ def read_names(self, names):
107
+ cdef:
108
+ shared_ptr[CTable] sp_table
109
+ vector[c_string] c_names
110
+
111
+ for name in names:
112
+ c_names.push_back(tobytes(name))
113
+ with nogil:
114
+ check_status(self.reader.get()
115
+ .Read(c_names, &sp_table))
116
+
117
+ return pyarrow_wrap_table(sp_table)
llmeval-env/lib/python3.10/site-packages/pyarrow/_fs.pxd ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # cython: language_level = 3
19
+
20
+ from pyarrow.includes.common cimport *
21
+ from pyarrow.includes.libarrow_fs cimport *
22
+ from pyarrow.lib import _detect_compression, frombytes, tobytes
23
+ from pyarrow.lib cimport *
24
+
25
+
26
+ cpdef enum FileType:
27
+ NotFound = <int8_t> CFileType_NotFound
28
+ Unknown = <int8_t> CFileType_Unknown
29
+ File = <int8_t> CFileType_File
30
+ Directory = <int8_t> CFileType_Directory
31
+
32
+
33
+ cdef class FileInfo(_Weakrefable):
34
+ cdef:
35
+ CFileInfo info
36
+
37
+ @staticmethod
38
+ cdef wrap(CFileInfo info)
39
+
40
+ cdef inline CFileInfo unwrap(self) nogil
41
+
42
+ @staticmethod
43
+ cdef CFileInfo unwrap_safe(obj)
44
+
45
+
46
+ cdef class FileSelector(_Weakrefable):
47
+ cdef:
48
+ CFileSelector selector
49
+
50
+ @staticmethod
51
+ cdef FileSelector wrap(CFileSelector selector)
52
+
53
+ cdef inline CFileSelector unwrap(self) nogil
54
+
55
+
56
+ cdef class FileSystem(_Weakrefable):
57
+ cdef:
58
+ shared_ptr[CFileSystem] wrapped
59
+ CFileSystem* fs
60
+
61
+ cdef init(self, const shared_ptr[CFileSystem]& wrapped)
62
+
63
+ @staticmethod
64
+ cdef wrap(const shared_ptr[CFileSystem]& sp)
65
+
66
+ cdef inline shared_ptr[CFileSystem] unwrap(self) nogil
67
+
68
+
69
+ cdef class LocalFileSystem(FileSystem):
70
+ cdef:
71
+ CLocalFileSystem* localfs
72
+
73
+ cdef init(self, const shared_ptr[CFileSystem]& wrapped)
74
+
75
+
76
+ cdef class SubTreeFileSystem(FileSystem):
77
+ cdef:
78
+ CSubTreeFileSystem* subtreefs
79
+
80
+ cdef init(self, const shared_ptr[CFileSystem]& wrapped)
81
+
82
+
83
+ cdef class _MockFileSystem(FileSystem):
84
+ cdef:
85
+ CMockFileSystem* mockfs
86
+
87
+ cdef init(self, const shared_ptr[CFileSystem]& wrapped)
88
+
89
+
90
+ cdef class PyFileSystem(FileSystem):
91
+ cdef:
92
+ CPyFileSystem* pyfs
93
+
94
+ cdef init(self, const shared_ptr[CFileSystem]& wrapped)
llmeval-env/lib/python3.10/site-packages/pyarrow/_generated_version.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # file generated by setuptools_scm
2
+ # don't change, don't track in version control
3
+ TYPE_CHECKING = False
4
+ if TYPE_CHECKING:
5
+ from typing import Tuple, Union
6
+ VERSION_TUPLE = Tuple[Union[int, str], ...]
7
+ else:
8
+ VERSION_TUPLE = object
9
+
10
+ version: str
11
+ __version__: str
12
+ __version_tuple__: VERSION_TUPLE
13
+ version_tuple: VERSION_TUPLE
14
+
15
+ __version__ = version = '16.0.0'
16
+ __version_tuple__ = version_tuple = (16, 0, 0)
llmeval-env/lib/python3.10/site-packages/pyarrow/_json.pyx ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # cython: profile=False
19
+ # distutils: language = c++
20
+ # cython: language_level = 3
21
+
22
+ from pyarrow.includes.common cimport *
23
+ from pyarrow.includes.libarrow cimport *
24
+ from pyarrow.lib cimport (_Weakrefable, MemoryPool,
25
+ maybe_unbox_memory_pool,
26
+ get_input_stream, pyarrow_wrap_table,
27
+ pyarrow_wrap_schema, pyarrow_unwrap_schema)
28
+
29
+
30
+ cdef class ReadOptions(_Weakrefable):
31
+ """
32
+ Options for reading JSON files.
33
+
34
+ Parameters
35
+ ----------
36
+ use_threads : bool, optional (default True)
37
+ Whether to use multiple threads to accelerate reading
38
+ block_size : int, optional
39
+ How much bytes to process at a time from the input stream.
40
+ This will determine multi-threading granularity as well as
41
+ the size of individual chunks in the Table.
42
+ """
43
+
44
+ # Avoid mistakingly creating attributes
45
+ __slots__ = ()
46
+
47
+ def __init__(self, use_threads=None, block_size=None):
48
+ self.options = CJSONReadOptions.Defaults()
49
+ if use_threads is not None:
50
+ self.use_threads = use_threads
51
+ if block_size is not None:
52
+ self.block_size = block_size
53
+
54
+ @property
55
+ def use_threads(self):
56
+ """
57
+ Whether to use multiple threads to accelerate reading.
58
+ """
59
+ return self.options.use_threads
60
+
61
+ @use_threads.setter
62
+ def use_threads(self, value):
63
+ self.options.use_threads = value
64
+
65
+ @property
66
+ def block_size(self):
67
+ """
68
+ How much bytes to process at a time from the input stream.
69
+
70
+ This will determine multi-threading granularity as well as the size of
71
+ individual chunks in the Table.
72
+ """
73
+ return self.options.block_size
74
+
75
+ @block_size.setter
76
+ def block_size(self, value):
77
+ self.options.block_size = value
78
+
79
+ def __reduce__(self):
80
+ return ReadOptions, (
81
+ self.use_threads,
82
+ self.block_size
83
+ )
84
+
85
+ def equals(self, ReadOptions other):
86
+ """
87
+ Parameters
88
+ ----------
89
+ other : pyarrow.json.ReadOptions
90
+
91
+ Returns
92
+ -------
93
+ bool
94
+ """
95
+ return (
96
+ self.use_threads == other.use_threads and
97
+ self.block_size == other.block_size
98
+ )
99
+
100
+ def __eq__(self, other):
101
+ try:
102
+ return self.equals(other)
103
+ except TypeError:
104
+ return False
105
+
106
+ @staticmethod
107
+ cdef ReadOptions wrap(CJSONReadOptions options):
108
+ out = ReadOptions()
109
+ out.options = options # shallow copy
110
+ return out
111
+
112
+
113
+ cdef class ParseOptions(_Weakrefable):
114
+ """
115
+ Options for parsing JSON files.
116
+
117
+ Parameters
118
+ ----------
119
+ explicit_schema : Schema, optional (default None)
120
+ Optional explicit schema (no type inference, ignores other fields).
121
+ newlines_in_values : bool, optional (default False)
122
+ Whether objects may be printed across multiple lines (for example
123
+ pretty printed). If false, input must end with an empty line.
124
+ unexpected_field_behavior : str, default "infer"
125
+ How JSON fields outside of explicit_schema (if given) are treated.
126
+
127
+ Possible behaviors:
128
+
129
+ - "ignore": unexpected JSON fields are ignored
130
+ - "error": error out on unexpected JSON fields
131
+ - "infer": unexpected JSON fields are type-inferred and included in
132
+ the output
133
+ """
134
+
135
+ __slots__ = ()
136
+
137
+ def __init__(self, explicit_schema=None, newlines_in_values=None,
138
+ unexpected_field_behavior=None):
139
+ self.options = CJSONParseOptions.Defaults()
140
+ if explicit_schema is not None:
141
+ self.explicit_schema = explicit_schema
142
+ if newlines_in_values is not None:
143
+ self.newlines_in_values = newlines_in_values
144
+ if unexpected_field_behavior is not None:
145
+ self.unexpected_field_behavior = unexpected_field_behavior
146
+
147
+ def __reduce__(self):
148
+ return ParseOptions, (
149
+ self.explicit_schema,
150
+ self.newlines_in_values,
151
+ self.unexpected_field_behavior
152
+ )
153
+
154
+ @property
155
+ def explicit_schema(self):
156
+ """
157
+ Optional explicit schema (no type inference, ignores other fields)
158
+ """
159
+ if self.options.explicit_schema.get() == NULL:
160
+ return None
161
+ else:
162
+ return pyarrow_wrap_schema(self.options.explicit_schema)
163
+
164
+ @explicit_schema.setter
165
+ def explicit_schema(self, value):
166
+ self.options.explicit_schema = pyarrow_unwrap_schema(value)
167
+
168
+ @property
169
+ def newlines_in_values(self):
170
+ """
171
+ Whether newline characters are allowed in JSON values.
172
+ Setting this to True reduces the performance of multi-threaded
173
+ JSON reading.
174
+ """
175
+ return self.options.newlines_in_values
176
+
177
+ @newlines_in_values.setter
178
+ def newlines_in_values(self, value):
179
+ self.options.newlines_in_values = value
180
+
181
+ @property
182
+ def unexpected_field_behavior(self):
183
+ """
184
+ How JSON fields outside of explicit_schema (if given) are treated.
185
+
186
+ Possible behaviors:
187
+
188
+ - "ignore": unexpected JSON fields are ignored
189
+ - "error": error out on unexpected JSON fields
190
+ - "infer": unexpected JSON fields are type-inferred and included in
191
+ the output
192
+
193
+ Set to "infer" by default.
194
+ """
195
+ v = self.options.unexpected_field_behavior
196
+ if v == CUnexpectedFieldBehavior_Ignore:
197
+ return "ignore"
198
+ elif v == CUnexpectedFieldBehavior_Error:
199
+ return "error"
200
+ elif v == CUnexpectedFieldBehavior_InferType:
201
+ return "infer"
202
+ else:
203
+ raise ValueError('Unexpected value for unexpected_field_behavior')
204
+
205
+ @unexpected_field_behavior.setter
206
+ def unexpected_field_behavior(self, value):
207
+ cdef CUnexpectedFieldBehavior v
208
+
209
+ if value == "ignore":
210
+ v = CUnexpectedFieldBehavior_Ignore
211
+ elif value == "error":
212
+ v = CUnexpectedFieldBehavior_Error
213
+ elif value == "infer":
214
+ v = CUnexpectedFieldBehavior_InferType
215
+ else:
216
+ raise ValueError(
217
+ "Unexpected value `{}` for `unexpected_field_behavior`, pass "
218
+ "either `ignore`, `error` or `infer`.".format(value)
219
+ )
220
+
221
+ self.options.unexpected_field_behavior = v
222
+
223
+ def equals(self, ParseOptions other):
224
+ """
225
+ Parameters
226
+ ----------
227
+ other : pyarrow.json.ParseOptions
228
+
229
+ Returns
230
+ -------
231
+ bool
232
+ """
233
+ return (
234
+ self.explicit_schema == other.explicit_schema and
235
+ self.newlines_in_values == other.newlines_in_values and
236
+ self.unexpected_field_behavior == other.unexpected_field_behavior
237
+ )
238
+
239
+ def __eq__(self, other):
240
+ try:
241
+ return self.equals(other)
242
+ except TypeError:
243
+ return False
244
+
245
+ @staticmethod
246
+ cdef ParseOptions wrap(CJSONParseOptions options):
247
+ out = ParseOptions()
248
+ out.options = options # shallow copy
249
+ return out
250
+
251
+
252
+ cdef _get_reader(input_file, shared_ptr[CInputStream]* out):
253
+ use_memory_map = False
254
+ get_input_stream(input_file, use_memory_map, out)
255
+
256
+ cdef _get_read_options(ReadOptions read_options, CJSONReadOptions* out):
257
+ if read_options is None:
258
+ out[0] = CJSONReadOptions.Defaults()
259
+ else:
260
+ out[0] = read_options.options
261
+
262
+ cdef _get_parse_options(ParseOptions parse_options, CJSONParseOptions* out):
263
+ if parse_options is None:
264
+ out[0] = CJSONParseOptions.Defaults()
265
+ else:
266
+ out[0] = parse_options.options
267
+
268
+
269
+ def read_json(input_file, read_options=None, parse_options=None,
270
+ MemoryPool memory_pool=None):
271
+ """
272
+ Read a Table from a stream of JSON data.
273
+
274
+ Parameters
275
+ ----------
276
+ input_file : str, path or file-like object
277
+ The location of JSON data. Currently only the line-delimited JSON
278
+ format is supported.
279
+ read_options : pyarrow.json.ReadOptions, optional
280
+ Options for the JSON reader (see ReadOptions constructor for defaults).
281
+ parse_options : pyarrow.json.ParseOptions, optional
282
+ Options for the JSON parser
283
+ (see ParseOptions constructor for defaults).
284
+ memory_pool : MemoryPool, optional
285
+ Pool to allocate Table memory from.
286
+
287
+ Returns
288
+ -------
289
+ :class:`pyarrow.Table`
290
+ Contents of the JSON file as a in-memory table.
291
+ """
292
+ cdef:
293
+ shared_ptr[CInputStream] stream
294
+ CJSONReadOptions c_read_options
295
+ CJSONParseOptions c_parse_options
296
+ shared_ptr[CJSONReader] reader
297
+ shared_ptr[CTable] table
298
+
299
+ _get_reader(input_file, &stream)
300
+ _get_read_options(read_options, &c_read_options)
301
+ _get_parse_options(parse_options, &c_parse_options)
302
+
303
+ reader = GetResultValue(
304
+ CJSONReader.Make(maybe_unbox_memory_pool(memory_pool),
305
+ stream, c_read_options, c_parse_options))
306
+
307
+ with nogil:
308
+ table = GetResultValue(reader.get().Read())
309
+
310
+ return pyarrow_wrap_table(table)
llmeval-env/lib/python3.10/site-packages/pyarrow/_orc.pxd ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # distutils: language = c++
19
+ # cython: language_level = 3
20
+
21
+ from libcpp cimport bool as c_bool
22
+ from libc.string cimport const_char
23
+ from libcpp.vector cimport vector as std_vector
24
+ from pyarrow.includes.common cimport *
25
+ from pyarrow.includes.libarrow cimport (CArray, CSchema, CStatus,
26
+ CResult, CTable, CMemoryPool,
27
+ CKeyValueMetadata,
28
+ CRecordBatch,
29
+ CTable, CCompressionType,
30
+ CRandomAccessFile, COutputStream,
31
+ TimeUnit)
32
+
33
+ cdef extern from "arrow/adapters/orc/options.h" \
34
+ namespace "arrow::adapters::orc" nogil:
35
+ cdef enum CompressionStrategy \
36
+ " arrow::adapters::orc::CompressionStrategy":
37
+ _CompressionStrategy_SPEED \
38
+ " arrow::adapters::orc::CompressionStrategy::kSpeed"
39
+ _CompressionStrategy_COMPRESSION \
40
+ " arrow::adapters::orc::CompressionStrategy::kCompression"
41
+
42
+ cdef enum WriterId" arrow::adapters::orc::WriterId":
43
+ _WriterId_ORC_JAVA_WRITER" arrow::adapters::orc::WriterId::kOrcJava"
44
+ _WriterId_ORC_CPP_WRITER" arrow::adapters::orc::WriterId::kOrcCpp"
45
+ _WriterId_PRESTO_WRITER" arrow::adapters::orc::WriterId::kPresto"
46
+ _WriterId_SCRITCHLEY_GO \
47
+ " arrow::adapters::orc::WriterId::kScritchleyGo"
48
+ _WriterId_TRINO_WRITER" arrow::adapters::orc::WriterId::kTrino"
49
+ _WriterId_UNKNOWN_WRITER" arrow::adapters::orc::WriterId::kUnknown"
50
+
51
+ cdef enum WriterVersion" arrow::adapters::orc::WriterVersion":
52
+ _WriterVersion_ORIGINAL \
53
+ " arrow::adapters::orc::WriterVersion::kOriginal"
54
+ _WriterVersion_HIVE_8732 \
55
+ " arrow::adapters::orc::WriterVersion::kHive8732"
56
+ _WriterVersion_HIVE_4243 \
57
+ " arrow::adapters::orc::WriterVersion::kHive4243"
58
+ _WriterVersion_HIVE_12055 \
59
+ " arrow::adapters::orc::WriterVersion::kHive12055"
60
+ _WriterVersion_HIVE_13083 \
61
+ " arrow::adapters::orc::WriterVersion::kHive13083"
62
+ _WriterVersion_ORC_101" arrow::adapters::orc::WriterVersion::kOrc101"
63
+ _WriterVersion_ORC_135" arrow::adapters::orc::WriterVersion::kOrc135"
64
+ _WriterVersion_ORC_517" arrow::adapters::orc::WriterVersion::kOrc517"
65
+ _WriterVersion_ORC_203" arrow::adapters::orc::WriterVersion::kOrc203"
66
+ _WriterVersion_ORC_14" arrow::adapters::orc::WriterVersion::kOrc14"
67
+ _WriterVersion_MAX" arrow::adapters::orc::WriterVersion::kMax"
68
+
69
+ cdef cppclass FileVersion" arrow::adapters::orc::FileVersion":
70
+ FileVersion(uint32_t major_version, uint32_t minor_version)
71
+ uint32_t major_version()
72
+ uint32_t minor_version()
73
+ c_string ToString()
74
+
75
+ cdef struct WriteOptions" arrow::adapters::orc::WriteOptions":
76
+ int64_t batch_size
77
+ FileVersion file_version
78
+ int64_t stripe_size
79
+ CCompressionType compression
80
+ int64_t compression_block_size
81
+ CompressionStrategy compression_strategy
82
+ int64_t row_index_stride
83
+ double padding_tolerance
84
+ double dictionary_key_size_threshold
85
+ std_vector[int64_t] bloom_filter_columns
86
+ double bloom_filter_fpp
87
+
88
+
89
+ cdef extern from "arrow/adapters/orc/adapter.h" \
90
+ namespace "arrow::adapters::orc" nogil:
91
+
92
+ cdef cppclass ORCFileReader:
93
+ @staticmethod
94
+ CResult[unique_ptr[ORCFileReader]] Open(
95
+ const shared_ptr[CRandomAccessFile]& file,
96
+ CMemoryPool* pool)
97
+
98
+ CResult[shared_ptr[const CKeyValueMetadata]] ReadMetadata()
99
+
100
+ CResult[shared_ptr[CSchema]] ReadSchema()
101
+
102
+ CResult[shared_ptr[CRecordBatch]] ReadStripe(int64_t stripe)
103
+ CResult[shared_ptr[CRecordBatch]] ReadStripe(
104
+ int64_t stripe, std_vector[c_string])
105
+
106
+ CResult[shared_ptr[CTable]] Read()
107
+ CResult[shared_ptr[CTable]] Read(std_vector[c_string])
108
+
109
+ int64_t NumberOfStripes()
110
+ int64_t NumberOfRows()
111
+ FileVersion GetFileVersion()
112
+ c_string GetSoftwareVersion()
113
+ CResult[CCompressionType] GetCompression()
114
+ int64_t GetCompressionSize()
115
+ int64_t GetRowIndexStride()
116
+ WriterId GetWriterId()
117
+ int32_t GetWriterIdValue()
118
+ WriterVersion GetWriterVersion()
119
+ int64_t GetNumberOfStripeStatistics()
120
+ int64_t GetContentLength()
121
+ int64_t GetStripeStatisticsLength()
122
+ int64_t GetFileFooterLength()
123
+ int64_t GetFilePostscriptLength()
124
+ int64_t GetFileLength()
125
+ c_string GetSerializedFileTail()
126
+
127
+ cdef cppclass ORCFileWriter:
128
+ @staticmethod
129
+ CResult[unique_ptr[ORCFileWriter]] Open(
130
+ COutputStream* output_stream, const WriteOptions& writer_options)
131
+
132
+ CStatus Write(const CTable& table)
133
+
134
+ CStatus Close()
llmeval-env/lib/python3.10/site-packages/pyarrow/_parquet.pyx ADDED
@@ -0,0 +1,2205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # cython: profile=False
19
+ # distutils: language = c++
20
+
21
+ from collections.abc import Sequence
22
+ from textwrap import indent
23
+ import warnings
24
+
25
+ from cython.operator cimport dereference as deref
26
+ from pyarrow.includes.common cimport *
27
+ from pyarrow.includes.libarrow cimport *
28
+ from pyarrow.includes.libarrow_python cimport *
29
+ from pyarrow.lib cimport (_Weakrefable, Buffer, Schema,
30
+ check_status,
31
+ MemoryPool, maybe_unbox_memory_pool,
32
+ Table, NativeFile,
33
+ pyarrow_wrap_chunked_array,
34
+ pyarrow_wrap_schema,
35
+ pyarrow_unwrap_schema,
36
+ pyarrow_wrap_table,
37
+ pyarrow_wrap_batch,
38
+ pyarrow_wrap_scalar,
39
+ NativeFile, get_reader, get_writer,
40
+ string_to_timeunit)
41
+
42
+ from pyarrow.lib import (ArrowException, NativeFile, BufferOutputStream,
43
+ _stringify_path,
44
+ tobytes, frombytes)
45
+
46
+ cimport cpython as cp
47
+
48
+ _DEFAULT_ROW_GROUP_SIZE = 1024*1024
49
+ _MAX_ROW_GROUP_SIZE = 64*1024*1024
50
+
51
+ cdef class Statistics(_Weakrefable):
52
+ """Statistics for a single column in a single row group."""
53
+
54
+ def __cinit__(self):
55
+ pass
56
+
57
+ def __repr__(self):
58
+ return """{}
59
+ has_min_max: {}
60
+ min: {}
61
+ max: {}
62
+ null_count: {}
63
+ distinct_count: {}
64
+ num_values: {}
65
+ physical_type: {}
66
+ logical_type: {}
67
+ converted_type (legacy): {}""".format(object.__repr__(self),
68
+ self.has_min_max,
69
+ self.min,
70
+ self.max,
71
+ self.null_count,
72
+ self.distinct_count,
73
+ self.num_values,
74
+ self.physical_type,
75
+ str(self.logical_type),
76
+ self.converted_type)
77
+
78
+ def to_dict(self):
79
+ """
80
+ Get dictionary representation of statistics.
81
+
82
+ Returns
83
+ -------
84
+ dict
85
+ Dictionary with a key for each attribute of this class.
86
+ """
87
+ d = dict(
88
+ has_min_max=self.has_min_max,
89
+ min=self.min,
90
+ max=self.max,
91
+ null_count=self.null_count,
92
+ distinct_count=self.distinct_count,
93
+ num_values=self.num_values,
94
+ physical_type=self.physical_type
95
+ )
96
+ return d
97
+
98
+ def __eq__(self, other):
99
+ try:
100
+ return self.equals(other)
101
+ except TypeError:
102
+ return NotImplemented
103
+
104
+ def equals(self, Statistics other):
105
+ """
106
+ Return whether the two column statistics objects are equal.
107
+
108
+ Parameters
109
+ ----------
110
+ other : Statistics
111
+ Statistics to compare against.
112
+
113
+ Returns
114
+ -------
115
+ are_equal : bool
116
+ """
117
+ return self.statistics.get().Equals(deref(other.statistics.get()))
118
+
119
+ @property
120
+ def has_min_max(self):
121
+ """Whether min and max are present (bool)."""
122
+ return self.statistics.get().HasMinMax()
123
+
124
+ @property
125
+ def has_null_count(self):
126
+ """Whether null count is present (bool)."""
127
+ return self.statistics.get().HasNullCount()
128
+
129
+ @property
130
+ def has_distinct_count(self):
131
+ """Whether distinct count is preset (bool)."""
132
+ return self.statistics.get().HasDistinctCount()
133
+
134
+ @property
135
+ def min_raw(self):
136
+ """Min value as physical type (bool, int, float, or bytes)."""
137
+ if self.has_min_max:
138
+ return _cast_statistic_raw_min(self.statistics.get())
139
+ else:
140
+ return None
141
+
142
+ @property
143
+ def max_raw(self):
144
+ """Max value as physical type (bool, int, float, or bytes)."""
145
+ if self.has_min_max:
146
+ return _cast_statistic_raw_max(self.statistics.get())
147
+ else:
148
+ return None
149
+
150
+ @property
151
+ def min(self):
152
+ """
153
+ Min value as logical type.
154
+
155
+ Returned as the Python equivalent of logical type, such as datetime.date
156
+ for dates and decimal.Decimal for decimals.
157
+ """
158
+ if self.has_min_max:
159
+ min_scalar, _ = _cast_statistics(self.statistics.get())
160
+ return min_scalar.as_py()
161
+ else:
162
+ return None
163
+
164
+ @property
165
+ def max(self):
166
+ """
167
+ Max value as logical type.
168
+
169
+ Returned as the Python equivalent of logical type, such as datetime.date
170
+ for dates and decimal.Decimal for decimals.
171
+ """
172
+ if self.has_min_max:
173
+ _, max_scalar = _cast_statistics(self.statistics.get())
174
+ return max_scalar.as_py()
175
+ else:
176
+ return None
177
+
178
+ @property
179
+ def null_count(self):
180
+ """Number of null values in chunk (int)."""
181
+ if self.has_null_count:
182
+ return self.statistics.get().null_count()
183
+ else:
184
+ return None
185
+
186
+ @property
187
+ def distinct_count(self):
188
+ """Distinct number of values in chunk (int)."""
189
+ if self.has_distinct_count:
190
+ return self.statistics.get().distinct_count()
191
+ else:
192
+ return None
193
+
194
+ @property
195
+ def num_values(self):
196
+ """Number of non-null values (int)."""
197
+ return self.statistics.get().num_values()
198
+
199
+ @property
200
+ def physical_type(self):
201
+ """Physical type of column (str)."""
202
+ raw_physical_type = self.statistics.get().physical_type()
203
+ return physical_type_name_from_enum(raw_physical_type)
204
+
205
+ @property
206
+ def logical_type(self):
207
+ """Logical type of column (:class:`ParquetLogicalType`)."""
208
+ return wrap_logical_type(self.statistics.get().descr().logical_type())
209
+
210
+ @property
211
+ def converted_type(self):
212
+ """Legacy converted type (str or None)."""
213
+ raw_converted_type = self.statistics.get().descr().converted_type()
214
+ return converted_type_name_from_enum(raw_converted_type)
215
+
216
+
217
+ cdef class ParquetLogicalType(_Weakrefable):
218
+ """Logical type of parquet type."""
219
+ cdef:
220
+ shared_ptr[const CParquetLogicalType] type
221
+
222
+ def __cinit__(self):
223
+ pass
224
+
225
+ cdef init(self, const shared_ptr[const CParquetLogicalType]& type):
226
+ self.type = type
227
+
228
+ def __repr__(self):
229
+ return "{}\n {}".format(object.__repr__(self), str(self))
230
+
231
+ def __str__(self):
232
+ return frombytes(self.type.get().ToString(), safe=True)
233
+
234
+ def to_json(self):
235
+ """
236
+ Get a JSON string containing type and type parameters.
237
+
238
+ Returns
239
+ -------
240
+ json : str
241
+ JSON representation of type, with at least a field called 'Type'
242
+ which contains the type name. If the type is parameterized, such
243
+ as a decimal with scale and precision, will contain those as fields
244
+ as well.
245
+ """
246
+ return frombytes(self.type.get().ToJSON())
247
+
248
+ @property
249
+ def type(self):
250
+ """Name of the logical type (str)."""
251
+ return logical_type_name_from_enum(self.type.get().type())
252
+
253
+
254
+ cdef wrap_logical_type(const shared_ptr[const CParquetLogicalType]& type):
255
+ cdef ParquetLogicalType out = ParquetLogicalType()
256
+ out.init(type)
257
+ return out
258
+
259
+
260
+ cdef _cast_statistic_raw_min(CStatistics* statistics):
261
+ cdef ParquetType physical_type = statistics.physical_type()
262
+ cdef uint32_t type_length = statistics.descr().type_length()
263
+ if physical_type == ParquetType_BOOLEAN:
264
+ return (<CBoolStatistics*> statistics).min()
265
+ elif physical_type == ParquetType_INT32:
266
+ return (<CInt32Statistics*> statistics).min()
267
+ elif physical_type == ParquetType_INT64:
268
+ return (<CInt64Statistics*> statistics).min()
269
+ elif physical_type == ParquetType_FLOAT:
270
+ return (<CFloatStatistics*> statistics).min()
271
+ elif physical_type == ParquetType_DOUBLE:
272
+ return (<CDoubleStatistics*> statistics).min()
273
+ elif physical_type == ParquetType_BYTE_ARRAY:
274
+ return _box_byte_array((<CByteArrayStatistics*> statistics).min())
275
+ elif physical_type == ParquetType_FIXED_LEN_BYTE_ARRAY:
276
+ return _box_flba((<CFLBAStatistics*> statistics).min(), type_length)
277
+
278
+
279
+ cdef _cast_statistic_raw_max(CStatistics* statistics):
280
+ cdef ParquetType physical_type = statistics.physical_type()
281
+ cdef uint32_t type_length = statistics.descr().type_length()
282
+ if physical_type == ParquetType_BOOLEAN:
283
+ return (<CBoolStatistics*> statistics).max()
284
+ elif physical_type == ParquetType_INT32:
285
+ return (<CInt32Statistics*> statistics).max()
286
+ elif physical_type == ParquetType_INT64:
287
+ return (<CInt64Statistics*> statistics).max()
288
+ elif physical_type == ParquetType_FLOAT:
289
+ return (<CFloatStatistics*> statistics).max()
290
+ elif physical_type == ParquetType_DOUBLE:
291
+ return (<CDoubleStatistics*> statistics).max()
292
+ elif physical_type == ParquetType_BYTE_ARRAY:
293
+ return _box_byte_array((<CByteArrayStatistics*> statistics).max())
294
+ elif physical_type == ParquetType_FIXED_LEN_BYTE_ARRAY:
295
+ return _box_flba((<CFLBAStatistics*> statistics).max(), type_length)
296
+
297
+
298
+ cdef _cast_statistics(CStatistics* statistics):
299
+ cdef:
300
+ shared_ptr[CScalar] c_min
301
+ shared_ptr[CScalar] c_max
302
+ check_status(StatisticsAsScalars(statistics[0], &c_min, &c_max))
303
+ return (pyarrow_wrap_scalar(c_min), pyarrow_wrap_scalar(c_max))
304
+
305
+
306
+ cdef _box_byte_array(ParquetByteArray val):
307
+ return cp.PyBytes_FromStringAndSize(<char*> val.ptr, <Py_ssize_t> val.len)
308
+
309
+
310
+ cdef _box_flba(ParquetFLBA val, uint32_t len):
311
+ return cp.PyBytes_FromStringAndSize(<char*> val.ptr, <Py_ssize_t> len)
312
+
313
+
314
+ cdef class ColumnChunkMetaData(_Weakrefable):
315
+ """Column metadata for a single row group."""
316
+
317
+ def __cinit__(self):
318
+ pass
319
+
320
+ def __repr__(self):
321
+ statistics = indent(repr(self.statistics), 4 * ' ')
322
+ return """{0}
323
+ file_offset: {1}
324
+ file_path: {2}
325
+ physical_type: {3}
326
+ num_values: {4}
327
+ path_in_schema: {5}
328
+ is_stats_set: {6}
329
+ statistics:
330
+ {7}
331
+ compression: {8}
332
+ encodings: {9}
333
+ has_dictionary_page: {10}
334
+ dictionary_page_offset: {11}
335
+ data_page_offset: {12}
336
+ total_compressed_size: {13}
337
+ total_uncompressed_size: {14}""".format(object.__repr__(self),
338
+ self.file_offset,
339
+ self.file_path,
340
+ self.physical_type,
341
+ self.num_values,
342
+ self.path_in_schema,
343
+ self.is_stats_set,
344
+ statistics,
345
+ self.compression,
346
+ self.encodings,
347
+ self.has_dictionary_page,
348
+ self.dictionary_page_offset,
349
+ self.data_page_offset,
350
+ self.total_compressed_size,
351
+ self.total_uncompressed_size)
352
+
353
+ def to_dict(self):
354
+ """
355
+ Get dictionary representation of the column chunk metadata.
356
+
357
+ Returns
358
+ -------
359
+ dict
360
+ Dictionary with a key for each attribute of this class.
361
+ """
362
+ statistics = self.statistics.to_dict() if self.is_stats_set else None
363
+ d = dict(
364
+ file_offset=self.file_offset,
365
+ file_path=self.file_path,
366
+ physical_type=self.physical_type,
367
+ num_values=self.num_values,
368
+ path_in_schema=self.path_in_schema,
369
+ is_stats_set=self.is_stats_set,
370
+ statistics=statistics,
371
+ compression=self.compression,
372
+ encodings=self.encodings,
373
+ has_dictionary_page=self.has_dictionary_page,
374
+ dictionary_page_offset=self.dictionary_page_offset,
375
+ data_page_offset=self.data_page_offset,
376
+ total_compressed_size=self.total_compressed_size,
377
+ total_uncompressed_size=self.total_uncompressed_size
378
+ )
379
+ return d
380
+
381
+ def __eq__(self, other):
382
+ try:
383
+ return self.equals(other)
384
+ except TypeError:
385
+ return NotImplemented
386
+
387
+ def equals(self, ColumnChunkMetaData other):
388
+ """
389
+ Return whether the two column chunk metadata objects are equal.
390
+
391
+ Parameters
392
+ ----------
393
+ other : ColumnChunkMetaData
394
+ Metadata to compare against.
395
+
396
+ Returns
397
+ -------
398
+ are_equal : bool
399
+ """
400
+ return self.metadata.Equals(deref(other.metadata))
401
+
402
+ @property
403
+ def file_offset(self):
404
+ """Offset into file where column chunk is located (int)."""
405
+ return self.metadata.file_offset()
406
+
407
+ @property
408
+ def file_path(self):
409
+ """Optional file path if set (str or None)."""
410
+ return frombytes(self.metadata.file_path())
411
+
412
+ @property
413
+ def physical_type(self):
414
+ """Physical type of column (str)."""
415
+ return physical_type_name_from_enum(self.metadata.type())
416
+
417
+ @property
418
+ def num_values(self):
419
+ """Total number of values (int)."""
420
+ return self.metadata.num_values()
421
+
422
+ @property
423
+ def path_in_schema(self):
424
+ """Nested path to field, separated by periods (str)."""
425
+ path = self.metadata.path_in_schema().get().ToDotString()
426
+ return frombytes(path)
427
+
428
+ @property
429
+ def is_stats_set(self):
430
+ """Whether or not statistics are present in metadata (bool)."""
431
+ return self.metadata.is_stats_set()
432
+
433
+ @property
434
+ def statistics(self):
435
+ """Statistics for column chunk (:class:`Statistics`)."""
436
+ if not self.metadata.is_stats_set():
437
+ return None
438
+ statistics = Statistics()
439
+ statistics.init(self.metadata.statistics(), self)
440
+ return statistics
441
+
442
+ @property
443
+ def compression(self):
444
+ """
445
+ Type of compression used for column (str).
446
+
447
+ One of 'UNCOMPRESSED', 'SNAPPY', 'GZIP', 'LZO', 'BROTLI', 'LZ4', 'ZSTD',
448
+ or 'UNKNOWN'.
449
+ """
450
+ return compression_name_from_enum(self.metadata.compression())
451
+
452
+ @property
453
+ def encodings(self):
454
+ """
455
+ Encodings used for column (tuple of str).
456
+
457
+ One of 'PLAIN', 'BIT_PACKED', 'RLE', 'BYTE_STREAM_SPLIT', 'DELTA_BINARY_PACKED',
458
+ 'DELTA_LENGTH_BYTE_ARRAY', 'DELTA_BYTE_ARRAY'.
459
+ """
460
+ return tuple(map(encoding_name_from_enum, self.metadata.encodings()))
461
+
462
+ @property
463
+ def has_dictionary_page(self):
464
+ """Whether there is dictionary data present in the column chunk (bool)."""
465
+ return bool(self.metadata.has_dictionary_page())
466
+
467
+ @property
468
+ def dictionary_page_offset(self):
469
+ """Offset of dictionary page relative to column chunk offset (int)."""
470
+ if self.has_dictionary_page:
471
+ return self.metadata.dictionary_page_offset()
472
+ else:
473
+ return None
474
+
475
+ @property
476
+ def data_page_offset(self):
477
+ """Offset of data page relative to column chunk offset (int)."""
478
+ return self.metadata.data_page_offset()
479
+
480
+ @property
481
+ def has_index_page(self):
482
+ """Not yet supported."""
483
+ raise NotImplementedError('not supported in parquet-cpp')
484
+
485
+ @property
486
+ def index_page_offset(self):
487
+ """Not yet supported."""
488
+ raise NotImplementedError("parquet-cpp doesn't return valid values")
489
+
490
+ @property
491
+ def total_compressed_size(self):
492
+ """Compressed size in bytes (int)."""
493
+ return self.metadata.total_compressed_size()
494
+
495
+ @property
496
+ def total_uncompressed_size(self):
497
+ """Uncompressed size in bytes (int)."""
498
+ return self.metadata.total_uncompressed_size()
499
+
500
+ @property
501
+ def has_offset_index(self):
502
+ """Whether the column chunk has an offset index"""
503
+ return self.metadata.GetOffsetIndexLocation().has_value()
504
+
505
+ @property
506
+ def has_column_index(self):
507
+ """Whether the column chunk has a column index"""
508
+ return self.metadata.GetColumnIndexLocation().has_value()
509
+
510
+
511
+ cdef class SortingColumn:
512
+ """
513
+ Sorting specification for a single column.
514
+
515
+ Returned by :meth:`RowGroupMetaData.sorting_columns` and used in
516
+ :class:`ParquetWriter` to specify the sort order of the data.
517
+
518
+ Parameters
519
+ ----------
520
+ column_index : int
521
+ Index of column that data is sorted by.
522
+ descending : bool, default False
523
+ Whether column is sorted in descending order.
524
+ nulls_first : bool, default False
525
+ Whether null values appear before valid values.
526
+
527
+ Notes
528
+ -----
529
+
530
+ Column indices are zero-based, refer only to leaf fields, and are in
531
+ depth-first order. This may make the column indices for nested schemas
532
+ different from what you expect. In most cases, it will be easier to
533
+ specify the sort order using column names instead of column indices
534
+ and converting using the ``from_ordering`` method.
535
+
536
+ Examples
537
+ --------
538
+
539
+ In other APIs, sort order is specified by names, such as:
540
+
541
+ >>> sort_order = [('id', 'ascending'), ('timestamp', 'descending')]
542
+
543
+ For Parquet, the column index must be used instead:
544
+
545
+ >>> import pyarrow.parquet as pq
546
+ >>> [pq.SortingColumn(0), pq.SortingColumn(1, descending=True)]
547
+ [SortingColumn(column_index=0, descending=False, nulls_first=False), SortingColumn(column_index=1, descending=True, nulls_first=False)]
548
+
549
+ Convert the sort_order into the list of sorting columns with
550
+ ``from_ordering`` (note that the schema must be provided as well):
551
+
552
+ >>> import pyarrow as pa
553
+ >>> schema = pa.schema([('id', pa.int64()), ('timestamp', pa.timestamp('ms'))])
554
+ >>> sorting_columns = pq.SortingColumn.from_ordering(schema, sort_order)
555
+ >>> sorting_columns
556
+ (SortingColumn(column_index=0, descending=False, nulls_first=False), SortingColumn(column_index=1, descending=True, nulls_first=False))
557
+
558
+ Convert back to the sort order with ``to_ordering``:
559
+
560
+ >>> pq.SortingColumn.to_ordering(schema, sorting_columns)
561
+ ((('id', 'ascending'), ('timestamp', 'descending')), 'at_end')
562
+
563
+ See Also
564
+ --------
565
+ RowGroupMetaData.sorting_columns
566
+ """
567
+ cdef int column_index
568
+ cdef c_bool descending
569
+ cdef c_bool nulls_first
570
+
571
+ def __init__(self, int column_index, c_bool descending=False, c_bool nulls_first=False):
572
+ self.column_index = column_index
573
+ self.descending = descending
574
+ self.nulls_first = nulls_first
575
+
576
+ @classmethod
577
+ def from_ordering(cls, Schema schema, sort_keys, null_placement='at_end'):
578
+ """
579
+ Create a tuple of SortingColumn objects from the same arguments as
580
+ :class:`pyarrow.compute.SortOptions`.
581
+
582
+ Parameters
583
+ ----------
584
+ schema : Schema
585
+ Schema of the input data.
586
+ sort_keys : Sequence of (name, order) tuples
587
+ Names of field/column keys (str) to sort the input on,
588
+ along with the order each field/column is sorted in.
589
+ Accepted values for `order` are "ascending", "descending".
590
+ null_placement : {'at_start', 'at_end'}, default 'at_end'
591
+ Where null values should appear in the sort order.
592
+
593
+ Returns
594
+ -------
595
+ sorting_columns : tuple of SortingColumn
596
+ """
597
+ if null_placement == 'at_start':
598
+ nulls_first = True
599
+ elif null_placement == 'at_end':
600
+ nulls_first = False
601
+ else:
602
+ raise ValueError('null_placement must be "at_start" or "at_end"')
603
+
604
+ col_map = _name_to_index_map(schema)
605
+
606
+ sorting_columns = []
607
+
608
+ for sort_key in sort_keys:
609
+ if isinstance(sort_key, str):
610
+ name = sort_key
611
+ descending = False
612
+ elif (isinstance(sort_key, tuple) and len(sort_key) == 2 and
613
+ isinstance(sort_key[0], str) and
614
+ isinstance(sort_key[1], str)):
615
+ name, descending = sort_key
616
+ if descending == "descending":
617
+ descending = True
618
+ elif descending == "ascending":
619
+ descending = False
620
+ else:
621
+ raise ValueError("Invalid sort key direction: {0}"
622
+ .format(descending))
623
+ else:
624
+ raise ValueError("Invalid sort key: {0}".format(sort_key))
625
+
626
+ try:
627
+ column_index = col_map[name]
628
+ except KeyError:
629
+ raise ValueError("Sort key name '{0}' not found in schema:\n{1}"
630
+ .format(name, schema))
631
+
632
+ sorting_columns.append(
633
+ cls(column_index, descending=descending, nulls_first=nulls_first)
634
+ )
635
+
636
+ return tuple(sorting_columns)
637
+
638
+ @staticmethod
639
+ def to_ordering(Schema schema, sorting_columns):
640
+ """
641
+ Convert a tuple of SortingColumn objects to the same format as
642
+ :class:`pyarrow.compute.SortOptions`.
643
+
644
+ Parameters
645
+ ----------
646
+ schema : Schema
647
+ Schema of the input data.
648
+ sorting_columns : tuple of SortingColumn
649
+ Columns to sort the input on.
650
+
651
+ Returns
652
+ -------
653
+ sort_keys : tuple of (name, order) tuples
654
+ null_placement : {'at_start', 'at_end'}
655
+ """
656
+ col_map = {i: name for name, i in _name_to_index_map(schema).items()}
657
+
658
+ sort_keys = []
659
+ nulls_first = None
660
+
661
+ for sorting_column in sorting_columns:
662
+ name = col_map[sorting_column.column_index]
663
+ if sorting_column.descending:
664
+ order = "descending"
665
+ else:
666
+ order = "ascending"
667
+ sort_keys.append((name, order))
668
+ if nulls_first is None:
669
+ nulls_first = sorting_column.nulls_first
670
+ elif nulls_first != sorting_column.nulls_first:
671
+ raise ValueError("Sorting columns have inconsistent null placement")
672
+
673
+ if nulls_first:
674
+ null_placement = "at_start"
675
+ else:
676
+ null_placement = "at_end"
677
+
678
+ return tuple(sort_keys), null_placement
679
+
680
+ def __repr__(self):
681
+ return """{}(column_index={}, descending={}, nulls_first={})""".format(
682
+ self.__class__.__name__,
683
+ self.column_index, self.descending, self.nulls_first)
684
+
685
+ def __eq__(self, SortingColumn other):
686
+ return (self.column_index == other.column_index and
687
+ self.descending == other.descending and
688
+ self.nulls_first == other.nulls_first)
689
+
690
+ def __hash__(self):
691
+ return hash((self.column_index, self.descending, self.nulls_first))
692
+
693
+ @property
694
+ def column_index(self):
695
+ """"Index of column data is sorted by (int)."""
696
+ return self.column_index
697
+
698
+ @property
699
+ def descending(self):
700
+ """Whether column is sorted in descending order (bool)."""
701
+ return self.descending
702
+
703
+ @property
704
+ def nulls_first(self):
705
+ """Whether null values appear before valid values (bool)."""
706
+ return self.nulls_first
707
+
708
+
709
+ cdef class RowGroupMetaData(_Weakrefable):
710
+ """Metadata for a single row group."""
711
+
712
+ def __cinit__(self, FileMetaData parent, int index):
713
+ if index < 0 or index >= parent.num_row_groups:
714
+ raise IndexError('{0} out of bounds'.format(index))
715
+ self.up_metadata = parent._metadata.RowGroup(index)
716
+ self.metadata = self.up_metadata.get()
717
+ self.parent = parent
718
+ self.index = index
719
+
720
+ def __reduce__(self):
721
+ return RowGroupMetaData, (self.parent, self.index)
722
+
723
+ def __eq__(self, other):
724
+ try:
725
+ return self.equals(other)
726
+ except TypeError:
727
+ return NotImplemented
728
+
729
+ def equals(self, RowGroupMetaData other):
730
+ """
731
+ Return whether the two row group metadata objects are equal.
732
+
733
+ Parameters
734
+ ----------
735
+ other : RowGroupMetaData
736
+ Metadata to compare against.
737
+
738
+ Returns
739
+ -------
740
+ are_equal : bool
741
+ """
742
+ return self.metadata.Equals(deref(other.metadata))
743
+
744
+ def column(self, int i):
745
+ """
746
+ Get column metadata at given index.
747
+
748
+ Parameters
749
+ ----------
750
+ i : int
751
+ Index of column to get metadata for.
752
+
753
+ Returns
754
+ -------
755
+ ColumnChunkMetaData
756
+ Metadata for column within this chunk.
757
+ """
758
+ if i < 0 or i >= self.num_columns:
759
+ raise IndexError('{0} out of bounds'.format(i))
760
+ chunk = ColumnChunkMetaData()
761
+ chunk.init(self, i)
762
+ return chunk
763
+
764
+ def __repr__(self):
765
+ return """{0}
766
+ num_columns: {1}
767
+ num_rows: {2}
768
+ total_byte_size: {3}
769
+ sorting_columns: {4}""".format(object.__repr__(self),
770
+ self.num_columns,
771
+ self.num_rows,
772
+ self.total_byte_size,
773
+ self.sorting_columns)
774
+
775
+ def to_dict(self):
776
+ """
777
+ Get dictionary representation of the row group metadata.
778
+
779
+ Returns
780
+ -------
781
+ dict
782
+ Dictionary with a key for each attribute of this class.
783
+ """
784
+ columns = []
785
+ d = dict(
786
+ num_columns=self.num_columns,
787
+ num_rows=self.num_rows,
788
+ total_byte_size=self.total_byte_size,
789
+ columns=columns,
790
+ sorting_columns=[col.to_dict() for col in self.sorting_columns]
791
+ )
792
+ for i in range(self.num_columns):
793
+ columns.append(self.column(i).to_dict())
794
+ return d
795
+
796
+ @property
797
+ def num_columns(self):
798
+ """Number of columns in this row group (int)."""
799
+ return self.metadata.num_columns()
800
+
801
+ @property
802
+ def num_rows(self):
803
+ """Number of rows in this row group (int)."""
804
+ return self.metadata.num_rows()
805
+
806
+ @property
807
+ def total_byte_size(self):
808
+ """Total byte size of all the uncompressed column data in this row group (int)."""
809
+ return self.metadata.total_byte_size()
810
+
811
+ @property
812
+ def sorting_columns(self):
813
+ """Columns the row group is sorted by (tuple of :class:`SortingColumn`))."""
814
+ out = []
815
+ cdef vector[CSortingColumn] sorting_columns = self.metadata.sorting_columns()
816
+ for sorting_col in sorting_columns:
817
+ out.append(SortingColumn(
818
+ sorting_col.column_idx,
819
+ sorting_col.descending,
820
+ sorting_col.nulls_first
821
+ ))
822
+ return tuple(out)
823
+
824
+
825
+ def _reconstruct_filemetadata(Buffer serialized):
826
+ cdef:
827
+ FileMetaData metadata = FileMetaData.__new__(FileMetaData)
828
+ CBuffer *buffer = serialized.buffer.get()
829
+ uint32_t metadata_len = <uint32_t>buffer.size()
830
+
831
+ metadata.init(CFileMetaData_Make(buffer.data(), &metadata_len))
832
+
833
+ return metadata
834
+
835
+
836
+ cdef class FileMetaData(_Weakrefable):
837
+ """Parquet metadata for a single file."""
838
+
839
+ def __cinit__(self):
840
+ pass
841
+
842
+ def __reduce__(self):
843
+ cdef:
844
+ NativeFile sink = BufferOutputStream()
845
+ COutputStream* c_sink = sink.get_output_stream().get()
846
+ with nogil:
847
+ self._metadata.WriteTo(c_sink)
848
+
849
+ cdef Buffer buffer = sink.getvalue()
850
+ return _reconstruct_filemetadata, (buffer,)
851
+
852
+ def __hash__(self):
853
+ return hash((self.schema,
854
+ self.num_rows,
855
+ self.num_row_groups,
856
+ self.format_version,
857
+ self.serialized_size))
858
+
859
+ def __repr__(self):
860
+ return """{0}
861
+ created_by: {1}
862
+ num_columns: {2}
863
+ num_rows: {3}
864
+ num_row_groups: {4}
865
+ format_version: {5}
866
+ serialized_size: {6}""".format(object.__repr__(self),
867
+ self.created_by, self.num_columns,
868
+ self.num_rows, self.num_row_groups,
869
+ self.format_version,
870
+ self.serialized_size)
871
+
872
+ def to_dict(self):
873
+ """
874
+ Get dictionary representation of the file metadata.
875
+
876
+ Returns
877
+ -------
878
+ dict
879
+ Dictionary with a key for each attribute of this class.
880
+ """
881
+ row_groups = []
882
+ d = dict(
883
+ created_by=self.created_by,
884
+ num_columns=self.num_columns,
885
+ num_rows=self.num_rows,
886
+ num_row_groups=self.num_row_groups,
887
+ row_groups=row_groups,
888
+ format_version=self.format_version,
889
+ serialized_size=self.serialized_size
890
+ )
891
+ for i in range(self.num_row_groups):
892
+ row_groups.append(self.row_group(i).to_dict())
893
+ return d
894
+
895
+ def __eq__(self, other):
896
+ try:
897
+ return self.equals(other)
898
+ except TypeError:
899
+ return NotImplemented
900
+
901
+ def equals(self, FileMetaData other not None):
902
+ """
903
+ Return whether the two file metadata objects are equal.
904
+
905
+ Parameters
906
+ ----------
907
+ other : FileMetaData
908
+ Metadata to compare against.
909
+
910
+ Returns
911
+ -------
912
+ are_equal : bool
913
+ """
914
+ return self._metadata.Equals(deref(other._metadata))
915
+
916
+ @property
917
+ def schema(self):
918
+ """Schema of the file (:class:`ParquetSchema`)."""
919
+ if self._schema is None:
920
+ self._schema = ParquetSchema(self)
921
+ return self._schema
922
+
923
+ @property
924
+ def serialized_size(self):
925
+ """Size of the original thrift encoded metadata footer (int)."""
926
+ return self._metadata.size()
927
+
928
+ @property
929
+ def num_columns(self):
930
+ """Number of columns in file (int)."""
931
+ return self._metadata.num_columns()
932
+
933
+ @property
934
+ def num_rows(self):
935
+ """Total number of rows in file (int)."""
936
+ return self._metadata.num_rows()
937
+
938
+ @property
939
+ def num_row_groups(self):
940
+ """Number of row groups in file (int)."""
941
+ return self._metadata.num_row_groups()
942
+
943
+ @property
944
+ def format_version(self):
945
+ """
946
+ Parquet format version used in file (str, such as '1.0', '2.4').
947
+
948
+ If version is missing or unparsable, will default to assuming '2.6'.
949
+ """
950
+ cdef ParquetVersion version = self._metadata.version()
951
+ if version == ParquetVersion_V1:
952
+ return '1.0'
953
+ elif version == ParquetVersion_V2_0:
954
+ return 'pseudo-2.0'
955
+ elif version == ParquetVersion_V2_4:
956
+ return '2.4'
957
+ elif version == ParquetVersion_V2_6:
958
+ return '2.6'
959
+ else:
960
+ warnings.warn('Unrecognized file version, assuming 2.6: {}'
961
+ .format(version))
962
+ return '2.6'
963
+
964
+ @property
965
+ def created_by(self):
966
+ """
967
+ String describing source of the parquet file (str).
968
+
969
+ This typically includes library name and version number. For example, Arrow 7.0's
970
+ writer returns 'parquet-cpp-arrow version 7.0.0'.
971
+ """
972
+ return frombytes(self._metadata.created_by())
973
+
974
+ @property
975
+ def metadata(self):
976
+ """Additional metadata as key value pairs (dict[bytes, bytes])."""
977
+ cdef:
978
+ unordered_map[c_string, c_string] metadata
979
+ const CKeyValueMetadata* underlying_metadata
980
+ underlying_metadata = self._metadata.key_value_metadata().get()
981
+ if underlying_metadata != NULL:
982
+ underlying_metadata.ToUnorderedMap(&metadata)
983
+ return metadata
984
+ else:
985
+ return None
986
+
987
+ def row_group(self, int i):
988
+ """
989
+ Get metadata for row group at index i.
990
+
991
+ Parameters
992
+ ----------
993
+ i : int
994
+ Row group index to get.
995
+
996
+ Returns
997
+ -------
998
+ row_group_metadata : RowGroupMetaData
999
+ """
1000
+ return RowGroupMetaData(self, i)
1001
+
1002
+ def set_file_path(self, path):
1003
+ """
1004
+ Set ColumnChunk file paths to the given value.
1005
+
1006
+ This method modifies the ``file_path`` field of each ColumnChunk
1007
+ in the FileMetaData to be a particular value.
1008
+
1009
+ Parameters
1010
+ ----------
1011
+ path : str
1012
+ The file path to set on all ColumnChunks.
1013
+ """
1014
+ cdef:
1015
+ c_string c_path = tobytes(path)
1016
+ self._metadata.set_file_path(c_path)
1017
+
1018
+ def append_row_groups(self, FileMetaData other):
1019
+ """
1020
+ Append row groups from other FileMetaData object.
1021
+
1022
+ Parameters
1023
+ ----------
1024
+ other : FileMetaData
1025
+ Other metadata to append row groups from.
1026
+ """
1027
+ cdef shared_ptr[CFileMetaData] c_metadata
1028
+
1029
+ c_metadata = other.sp_metadata
1030
+ self._metadata.AppendRowGroups(deref(c_metadata))
1031
+
1032
+ def write_metadata_file(self, where):
1033
+ """
1034
+ Write the metadata to a metadata-only Parquet file.
1035
+
1036
+ Parameters
1037
+ ----------
1038
+ where : path or file-like object
1039
+ Where to write the metadata. Should be a writable path on
1040
+ the local filesystem, or a writable file-like object.
1041
+ """
1042
+ cdef:
1043
+ shared_ptr[COutputStream] sink
1044
+ c_string c_where
1045
+
1046
+ try:
1047
+ where = _stringify_path(where)
1048
+ except TypeError:
1049
+ get_writer(where, &sink)
1050
+ else:
1051
+ c_where = tobytes(where)
1052
+ with nogil:
1053
+ sink = GetResultValue(FileOutputStream.Open(c_where))
1054
+
1055
+ with nogil:
1056
+ check_status(
1057
+ WriteMetaDataFile(deref(self._metadata), sink.get()))
1058
+
1059
+
1060
+ cdef class ParquetSchema(_Weakrefable):
1061
+ """A Parquet schema."""
1062
+
1063
+ def __cinit__(self, FileMetaData container):
1064
+ self.parent = container
1065
+ self.schema = container._metadata.schema()
1066
+
1067
+ def __repr__(self):
1068
+ return "{0}\n{1}".format(
1069
+ object.__repr__(self),
1070
+ frombytes(self.schema.ToString(), safe=True))
1071
+
1072
+ def __reduce__(self):
1073
+ return ParquetSchema, (self.parent,)
1074
+
1075
+ def __len__(self):
1076
+ return self.schema.num_columns()
1077
+
1078
+ def __getitem__(self, i):
1079
+ return self.column(i)
1080
+
1081
+ def __hash__(self):
1082
+ return hash(self.schema.ToString())
1083
+
1084
+ @property
1085
+ def names(self):
1086
+ """Name of each field (list of str)."""
1087
+ return [self[i].name for i in range(len(self))]
1088
+
1089
+ def to_arrow_schema(self):
1090
+ """
1091
+ Convert Parquet schema to effective Arrow schema.
1092
+
1093
+ Returns
1094
+ -------
1095
+ schema : Schema
1096
+ """
1097
+ cdef shared_ptr[CSchema] sp_arrow_schema
1098
+
1099
+ with nogil:
1100
+ check_status(FromParquetSchema(
1101
+ self.schema, default_arrow_reader_properties(),
1102
+ self.parent._metadata.key_value_metadata(),
1103
+ &sp_arrow_schema))
1104
+
1105
+ return pyarrow_wrap_schema(sp_arrow_schema)
1106
+
1107
+ def __eq__(self, other):
1108
+ try:
1109
+ return self.equals(other)
1110
+ except TypeError:
1111
+ return NotImplemented
1112
+
1113
+ def equals(self, ParquetSchema other):
1114
+ """
1115
+ Return whether the two schemas are equal.
1116
+
1117
+ Parameters
1118
+ ----------
1119
+ other : ParquetSchema
1120
+ Schema to compare against.
1121
+
1122
+ Returns
1123
+ -------
1124
+ are_equal : bool
1125
+ """
1126
+ return self.schema.Equals(deref(other.schema))
1127
+
1128
+ def column(self, i):
1129
+ """
1130
+ Return the schema for a single column.
1131
+
1132
+ Parameters
1133
+ ----------
1134
+ i : int
1135
+ Index of column in schema.
1136
+
1137
+ Returns
1138
+ -------
1139
+ column_schema : ColumnSchema
1140
+ """
1141
+ if i < 0 or i >= len(self):
1142
+ raise IndexError('{0} out of bounds'.format(i))
1143
+
1144
+ return ColumnSchema(self, i)
1145
+
1146
+
1147
+ cdef class ColumnSchema(_Weakrefable):
1148
+ """Schema for a single column."""
1149
+ cdef:
1150
+ int index
1151
+ ParquetSchema parent
1152
+ const ColumnDescriptor* descr
1153
+
1154
+ def __cinit__(self, ParquetSchema schema, int index):
1155
+ self.parent = schema
1156
+ self.index = index # for pickling support
1157
+ self.descr = schema.schema.Column(index)
1158
+
1159
+ def __eq__(self, other):
1160
+ try:
1161
+ return self.equals(other)
1162
+ except TypeError:
1163
+ return NotImplemented
1164
+
1165
+ def __reduce__(self):
1166
+ return ColumnSchema, (self.parent, self.index)
1167
+
1168
+ def equals(self, ColumnSchema other):
1169
+ """
1170
+ Return whether the two column schemas are equal.
1171
+
1172
+ Parameters
1173
+ ----------
1174
+ other : ColumnSchema
1175
+ Schema to compare against.
1176
+
1177
+ Returns
1178
+ -------
1179
+ are_equal : bool
1180
+ """
1181
+ return self.descr.Equals(deref(other.descr))
1182
+
1183
+ def __repr__(self):
1184
+ physical_type = self.physical_type
1185
+ converted_type = self.converted_type
1186
+ if converted_type == 'DECIMAL':
1187
+ converted_type = 'DECIMAL({0}, {1})'.format(self.precision,
1188
+ self.scale)
1189
+ elif physical_type == 'FIXED_LEN_BYTE_ARRAY':
1190
+ converted_type = ('FIXED_LEN_BYTE_ARRAY(length={0})'
1191
+ .format(self.length))
1192
+
1193
+ return """<ParquetColumnSchema>
1194
+ name: {0}
1195
+ path: {1}
1196
+ max_definition_level: {2}
1197
+ max_repetition_level: {3}
1198
+ physical_type: {4}
1199
+ logical_type: {5}
1200
+ converted_type (legacy): {6}""".format(self.name, self.path,
1201
+ self.max_definition_level,
1202
+ self.max_repetition_level,
1203
+ physical_type,
1204
+ str(self.logical_type),
1205
+ converted_type)
1206
+
1207
+ @property
1208
+ def name(self):
1209
+ """Name of field (str)."""
1210
+ return frombytes(self.descr.name())
1211
+
1212
+ @property
1213
+ def path(self):
1214
+ """Nested path to field, separated by periods (str)."""
1215
+ return frombytes(self.descr.path().get().ToDotString())
1216
+
1217
+ @property
1218
+ def max_definition_level(self):
1219
+ """Maximum definition level (int)."""
1220
+ return self.descr.max_definition_level()
1221
+
1222
+ @property
1223
+ def max_repetition_level(self):
1224
+ """Maximum repetition level (int)."""
1225
+ return self.descr.max_repetition_level()
1226
+
1227
+ @property
1228
+ def physical_type(self):
1229
+ """Name of physical type (str)."""
1230
+ return physical_type_name_from_enum(self.descr.physical_type())
1231
+
1232
+ @property
1233
+ def logical_type(self):
1234
+ """Logical type of column (:class:`ParquetLogicalType`)."""
1235
+ return wrap_logical_type(self.descr.logical_type())
1236
+
1237
+ @property
1238
+ def converted_type(self):
1239
+ """Legacy converted type (str or None)."""
1240
+ return converted_type_name_from_enum(self.descr.converted_type())
1241
+
1242
+ # FIXED_LEN_BYTE_ARRAY attribute
1243
+ @property
1244
+ def length(self):
1245
+ """Array length if fixed length byte array type, None otherwise (int or None)."""
1246
+ return self.descr.type_length()
1247
+
1248
+ # Decimal attributes
1249
+ @property
1250
+ def precision(self):
1251
+ """Precision if decimal type, None otherwise (int or None)."""
1252
+ return self.descr.type_precision()
1253
+
1254
+ @property
1255
+ def scale(self):
1256
+ """Scale if decimal type, None otherwise (int or None)."""
1257
+ return self.descr.type_scale()
1258
+
1259
+
1260
+ cdef physical_type_name_from_enum(ParquetType type_):
1261
+ return {
1262
+ ParquetType_BOOLEAN: 'BOOLEAN',
1263
+ ParquetType_INT32: 'INT32',
1264
+ ParquetType_INT64: 'INT64',
1265
+ ParquetType_INT96: 'INT96',
1266
+ ParquetType_FLOAT: 'FLOAT',
1267
+ ParquetType_DOUBLE: 'DOUBLE',
1268
+ ParquetType_BYTE_ARRAY: 'BYTE_ARRAY',
1269
+ ParquetType_FIXED_LEN_BYTE_ARRAY: 'FIXED_LEN_BYTE_ARRAY',
1270
+ }.get(type_, 'UNKNOWN')
1271
+
1272
+
1273
+ cdef logical_type_name_from_enum(ParquetLogicalTypeId type_):
1274
+ return {
1275
+ ParquetLogicalType_UNDEFINED: 'UNDEFINED',
1276
+ ParquetLogicalType_STRING: 'STRING',
1277
+ ParquetLogicalType_MAP: 'MAP',
1278
+ ParquetLogicalType_LIST: 'LIST',
1279
+ ParquetLogicalType_ENUM: 'ENUM',
1280
+ ParquetLogicalType_DECIMAL: 'DECIMAL',
1281
+ ParquetLogicalType_DATE: 'DATE',
1282
+ ParquetLogicalType_TIME: 'TIME',
1283
+ ParquetLogicalType_TIMESTAMP: 'TIMESTAMP',
1284
+ ParquetLogicalType_INT: 'INT',
1285
+ ParquetLogicalType_JSON: 'JSON',
1286
+ ParquetLogicalType_BSON: 'BSON',
1287
+ ParquetLogicalType_UUID: 'UUID',
1288
+ ParquetLogicalType_NONE: 'NONE',
1289
+ }.get(type_, 'UNKNOWN')
1290
+
1291
+
1292
+ cdef converted_type_name_from_enum(ParquetConvertedType type_):
1293
+ return {
1294
+ ParquetConvertedType_NONE: 'NONE',
1295
+ ParquetConvertedType_UTF8: 'UTF8',
1296
+ ParquetConvertedType_MAP: 'MAP',
1297
+ ParquetConvertedType_MAP_KEY_VALUE: 'MAP_KEY_VALUE',
1298
+ ParquetConvertedType_LIST: 'LIST',
1299
+ ParquetConvertedType_ENUM: 'ENUM',
1300
+ ParquetConvertedType_DECIMAL: 'DECIMAL',
1301
+ ParquetConvertedType_DATE: 'DATE',
1302
+ ParquetConvertedType_TIME_MILLIS: 'TIME_MILLIS',
1303
+ ParquetConvertedType_TIME_MICROS: 'TIME_MICROS',
1304
+ ParquetConvertedType_TIMESTAMP_MILLIS: 'TIMESTAMP_MILLIS',
1305
+ ParquetConvertedType_TIMESTAMP_MICROS: 'TIMESTAMP_MICROS',
1306
+ ParquetConvertedType_UINT_8: 'UINT_8',
1307
+ ParquetConvertedType_UINT_16: 'UINT_16',
1308
+ ParquetConvertedType_UINT_32: 'UINT_32',
1309
+ ParquetConvertedType_UINT_64: 'UINT_64',
1310
+ ParquetConvertedType_INT_8: 'INT_8',
1311
+ ParquetConvertedType_INT_16: 'INT_16',
1312
+ ParquetConvertedType_INT_32: 'INT_32',
1313
+ ParquetConvertedType_INT_64: 'INT_64',
1314
+ ParquetConvertedType_JSON: 'JSON',
1315
+ ParquetConvertedType_BSON: 'BSON',
1316
+ ParquetConvertedType_INTERVAL: 'INTERVAL',
1317
+ }.get(type_, 'UNKNOWN')
1318
+
1319
+
1320
+ cdef encoding_name_from_enum(ParquetEncoding encoding_):
1321
+ return {
1322
+ ParquetEncoding_PLAIN: 'PLAIN',
1323
+ ParquetEncoding_PLAIN_DICTIONARY: 'PLAIN_DICTIONARY',
1324
+ ParquetEncoding_RLE: 'RLE',
1325
+ ParquetEncoding_BIT_PACKED: 'BIT_PACKED',
1326
+ ParquetEncoding_DELTA_BINARY_PACKED: 'DELTA_BINARY_PACKED',
1327
+ ParquetEncoding_DELTA_LENGTH_BYTE_ARRAY: 'DELTA_LENGTH_BYTE_ARRAY',
1328
+ ParquetEncoding_DELTA_BYTE_ARRAY: 'DELTA_BYTE_ARRAY',
1329
+ ParquetEncoding_RLE_DICTIONARY: 'RLE_DICTIONARY',
1330
+ ParquetEncoding_BYTE_STREAM_SPLIT: 'BYTE_STREAM_SPLIT',
1331
+ }.get(encoding_, 'UNKNOWN')
1332
+
1333
+
1334
+ cdef encoding_enum_from_name(str encoding_name):
1335
+ enc = {
1336
+ 'PLAIN': ParquetEncoding_PLAIN,
1337
+ 'BIT_PACKED': ParquetEncoding_BIT_PACKED,
1338
+ 'RLE': ParquetEncoding_RLE,
1339
+ 'BYTE_STREAM_SPLIT': ParquetEncoding_BYTE_STREAM_SPLIT,
1340
+ 'DELTA_BINARY_PACKED': ParquetEncoding_DELTA_BINARY_PACKED,
1341
+ 'DELTA_LENGTH_BYTE_ARRAY': ParquetEncoding_DELTA_LENGTH_BYTE_ARRAY,
1342
+ 'DELTA_BYTE_ARRAY': ParquetEncoding_DELTA_BYTE_ARRAY,
1343
+ 'RLE_DICTIONARY': 'dict',
1344
+ 'PLAIN_DICTIONARY': 'dict',
1345
+ }.get(encoding_name, None)
1346
+ if enc is None:
1347
+ raise ValueError(f"Unsupported column encoding: {encoding_name!r}")
1348
+ elif enc == 'dict':
1349
+ raise ValueError(f"{encoding_name!r} is already used by default.")
1350
+ else:
1351
+ return enc
1352
+
1353
+
1354
+ cdef compression_name_from_enum(ParquetCompression compression_):
1355
+ return {
1356
+ ParquetCompression_UNCOMPRESSED: 'UNCOMPRESSED',
1357
+ ParquetCompression_SNAPPY: 'SNAPPY',
1358
+ ParquetCompression_GZIP: 'GZIP',
1359
+ ParquetCompression_LZO: 'LZO',
1360
+ ParquetCompression_BROTLI: 'BROTLI',
1361
+ ParquetCompression_LZ4: 'LZ4',
1362
+ ParquetCompression_ZSTD: 'ZSTD',
1363
+ }.get(compression_, 'UNKNOWN')
1364
+
1365
+
1366
+ cdef int check_compression_name(name) except -1:
1367
+ if name.upper() not in {'NONE', 'SNAPPY', 'GZIP', 'LZO', 'BROTLI', 'LZ4',
1368
+ 'ZSTD'}:
1369
+ raise ArrowException("Unsupported compression: " + name)
1370
+ return 0
1371
+
1372
+
1373
+ cdef ParquetCompression compression_from_name(name):
1374
+ name = name.upper()
1375
+ if name == 'SNAPPY':
1376
+ return ParquetCompression_SNAPPY
1377
+ elif name == 'GZIP':
1378
+ return ParquetCompression_GZIP
1379
+ elif name == 'LZO':
1380
+ return ParquetCompression_LZO
1381
+ elif name == 'BROTLI':
1382
+ return ParquetCompression_BROTLI
1383
+ elif name == 'LZ4':
1384
+ return ParquetCompression_LZ4
1385
+ elif name == 'ZSTD':
1386
+ return ParquetCompression_ZSTD
1387
+ else:
1388
+ return ParquetCompression_UNCOMPRESSED
1389
+
1390
+
1391
+ cdef class ParquetReader(_Weakrefable):
1392
+ cdef:
1393
+ object source
1394
+ CMemoryPool* pool
1395
+ UniquePtrNoGIL[FileReader] reader
1396
+ FileMetaData _metadata
1397
+ shared_ptr[CRandomAccessFile] rd_handle
1398
+
1399
+ cdef public:
1400
+ _column_idx_map
1401
+
1402
+ def __cinit__(self, MemoryPool memory_pool=None):
1403
+ self.pool = maybe_unbox_memory_pool(memory_pool)
1404
+ self._metadata = None
1405
+
1406
+ def open(self, object source not None, *, bint use_memory_map=False,
1407
+ read_dictionary=None, FileMetaData metadata=None,
1408
+ int buffer_size=0, bint pre_buffer=False,
1409
+ coerce_int96_timestamp_unit=None,
1410
+ FileDecryptionProperties decryption_properties=None,
1411
+ thrift_string_size_limit=None,
1412
+ thrift_container_size_limit=None,
1413
+ page_checksum_verification=False):
1414
+ """
1415
+ Open a parquet file for reading.
1416
+
1417
+ Parameters
1418
+ ----------
1419
+ source : str, pathlib.Path, pyarrow.NativeFile, or file-like object
1420
+ use_memory_map : bool, default False
1421
+ read_dictionary : iterable[int or str], optional
1422
+ metadata : FileMetaData, optional
1423
+ buffer_size : int, default 0
1424
+ pre_buffer : bool, default False
1425
+ coerce_int96_timestamp_unit : str, optional
1426
+ decryption_properties : FileDecryptionProperties, optional
1427
+ thrift_string_size_limit : int, optional
1428
+ thrift_container_size_limit : int, optional
1429
+ page_checksum_verification : bool, default False
1430
+ """
1431
+ cdef:
1432
+ shared_ptr[CFileMetaData] c_metadata
1433
+ CReaderProperties properties = default_reader_properties()
1434
+ ArrowReaderProperties arrow_props = (
1435
+ default_arrow_reader_properties())
1436
+ FileReaderBuilder builder
1437
+
1438
+ if metadata is not None:
1439
+ c_metadata = metadata.sp_metadata
1440
+
1441
+ if buffer_size > 0:
1442
+ properties.enable_buffered_stream()
1443
+ properties.set_buffer_size(buffer_size)
1444
+ elif buffer_size == 0:
1445
+ properties.disable_buffered_stream()
1446
+ else:
1447
+ raise ValueError('Buffer size must be larger than zero')
1448
+
1449
+ if thrift_string_size_limit is not None:
1450
+ if thrift_string_size_limit <= 0:
1451
+ raise ValueError("thrift_string_size_limit "
1452
+ "must be larger than zero")
1453
+ properties.set_thrift_string_size_limit(thrift_string_size_limit)
1454
+ if thrift_container_size_limit is not None:
1455
+ if thrift_container_size_limit <= 0:
1456
+ raise ValueError("thrift_container_size_limit "
1457
+ "must be larger than zero")
1458
+ properties.set_thrift_container_size_limit(
1459
+ thrift_container_size_limit)
1460
+
1461
+ if decryption_properties is not None:
1462
+ properties.file_decryption_properties(
1463
+ decryption_properties.unwrap())
1464
+
1465
+ arrow_props.set_pre_buffer(pre_buffer)
1466
+
1467
+ properties.set_page_checksum_verification(page_checksum_verification)
1468
+
1469
+ if coerce_int96_timestamp_unit is None:
1470
+ # use the default defined in default_arrow_reader_properties()
1471
+ pass
1472
+ else:
1473
+ arrow_props.set_coerce_int96_timestamp_unit(
1474
+ string_to_timeunit(coerce_int96_timestamp_unit))
1475
+
1476
+ self.source = source
1477
+ get_reader(source, use_memory_map, &self.rd_handle)
1478
+
1479
+ with nogil:
1480
+ check_status(builder.Open(self.rd_handle, properties, c_metadata))
1481
+
1482
+ # Set up metadata
1483
+ with nogil:
1484
+ c_metadata = builder.raw_reader().metadata()
1485
+ self._metadata = result = FileMetaData()
1486
+ result.init(c_metadata)
1487
+
1488
+ if read_dictionary is not None:
1489
+ self._set_read_dictionary(read_dictionary, &arrow_props)
1490
+
1491
+ with nogil:
1492
+ check_status(builder.memory_pool(self.pool)
1493
+ .properties(arrow_props)
1494
+ .Build(&self.reader))
1495
+
1496
+ cdef _set_read_dictionary(self, read_dictionary,
1497
+ ArrowReaderProperties* props):
1498
+ for column in read_dictionary:
1499
+ if not isinstance(column, int):
1500
+ column = self.column_name_idx(column)
1501
+ props.set_read_dictionary(column, True)
1502
+
1503
+ @property
1504
+ def column_paths(self):
1505
+ cdef:
1506
+ FileMetaData container = self.metadata
1507
+ const CFileMetaData* metadata = container._metadata
1508
+ vector[c_string] path
1509
+ int i = 0
1510
+
1511
+ paths = []
1512
+ for i in range(0, metadata.num_columns()):
1513
+ path = (metadata.schema().Column(i)
1514
+ .path().get().ToDotVector())
1515
+ paths.append([frombytes(x) for x in path])
1516
+
1517
+ return paths
1518
+
1519
+ @property
1520
+ def metadata(self):
1521
+ return self._metadata
1522
+
1523
+ @property
1524
+ def schema_arrow(self):
1525
+ cdef shared_ptr[CSchema] out
1526
+ with nogil:
1527
+ check_status(self.reader.get().GetSchema(&out))
1528
+ return pyarrow_wrap_schema(out)
1529
+
1530
+ @property
1531
+ def num_row_groups(self):
1532
+ return self.reader.get().num_row_groups()
1533
+
1534
+ def set_use_threads(self, bint use_threads):
1535
+ """
1536
+ Parameters
1537
+ ----------
1538
+ use_threads : bool
1539
+ """
1540
+ self.reader.get().set_use_threads(use_threads)
1541
+
1542
+ def set_batch_size(self, int64_t batch_size):
1543
+ """
1544
+ Parameters
1545
+ ----------
1546
+ batch_size : int64
1547
+ """
1548
+ self.reader.get().set_batch_size(batch_size)
1549
+
1550
+ def iter_batches(self, int64_t batch_size, row_groups, column_indices=None,
1551
+ bint use_threads=True):
1552
+ """
1553
+ Parameters
1554
+ ----------
1555
+ batch_size : int64
1556
+ row_groups : list[int]
1557
+ column_indices : list[int], optional
1558
+ use_threads : bool, default True
1559
+
1560
+ Yields
1561
+ ------
1562
+ next : RecordBatch
1563
+ """
1564
+ cdef:
1565
+ vector[int] c_row_groups
1566
+ vector[int] c_column_indices
1567
+ shared_ptr[CRecordBatch] record_batch
1568
+ UniquePtrNoGIL[CRecordBatchReader] recordbatchreader
1569
+
1570
+ self.set_batch_size(batch_size)
1571
+
1572
+ if use_threads:
1573
+ self.set_use_threads(use_threads)
1574
+
1575
+ for row_group in row_groups:
1576
+ c_row_groups.push_back(row_group)
1577
+
1578
+ if column_indices is not None:
1579
+ for index in column_indices:
1580
+ c_column_indices.push_back(index)
1581
+ with nogil:
1582
+ check_status(
1583
+ self.reader.get().GetRecordBatchReader(
1584
+ c_row_groups, c_column_indices, &recordbatchreader
1585
+ )
1586
+ )
1587
+ else:
1588
+ with nogil:
1589
+ check_status(
1590
+ self.reader.get().GetRecordBatchReader(
1591
+ c_row_groups, &recordbatchreader
1592
+ )
1593
+ )
1594
+
1595
+ while True:
1596
+ with nogil:
1597
+ check_status(
1598
+ recordbatchreader.get().ReadNext(&record_batch)
1599
+ )
1600
+ if record_batch.get() == NULL:
1601
+ break
1602
+
1603
+ yield pyarrow_wrap_batch(record_batch)
1604
+
1605
+ def read_row_group(self, int i, column_indices=None,
1606
+ bint use_threads=True):
1607
+ """
1608
+ Parameters
1609
+ ----------
1610
+ i : int
1611
+ column_indices : list[int], optional
1612
+ use_threads : bool, default True
1613
+
1614
+ Returns
1615
+ -------
1616
+ table : pyarrow.Table
1617
+ """
1618
+ return self.read_row_groups([i], column_indices, use_threads)
1619
+
1620
+ def read_row_groups(self, row_groups not None, column_indices=None,
1621
+ bint use_threads=True):
1622
+ """
1623
+ Parameters
1624
+ ----------
1625
+ row_groups : list[int]
1626
+ column_indices : list[int], optional
1627
+ use_threads : bool, default True
1628
+
1629
+ Returns
1630
+ -------
1631
+ table : pyarrow.Table
1632
+ """
1633
+ cdef:
1634
+ shared_ptr[CTable] ctable
1635
+ vector[int] c_row_groups
1636
+ vector[int] c_column_indices
1637
+
1638
+ self.set_use_threads(use_threads)
1639
+
1640
+ for row_group in row_groups:
1641
+ c_row_groups.push_back(row_group)
1642
+
1643
+ if column_indices is not None:
1644
+ for index in column_indices:
1645
+ c_column_indices.push_back(index)
1646
+
1647
+ with nogil:
1648
+ check_status(self.reader.get()
1649
+ .ReadRowGroups(c_row_groups, c_column_indices,
1650
+ &ctable))
1651
+ else:
1652
+ # Read all columns
1653
+ with nogil:
1654
+ check_status(self.reader.get()
1655
+ .ReadRowGroups(c_row_groups, &ctable))
1656
+ return pyarrow_wrap_table(ctable)
1657
+
1658
+ def read_all(self, column_indices=None, bint use_threads=True):
1659
+ """
1660
+ Parameters
1661
+ ----------
1662
+ column_indices : list[int], optional
1663
+ use_threads : bool, default True
1664
+
1665
+ Returns
1666
+ -------
1667
+ table : pyarrow.Table
1668
+ """
1669
+ cdef:
1670
+ shared_ptr[CTable] ctable
1671
+ vector[int] c_column_indices
1672
+
1673
+ self.set_use_threads(use_threads)
1674
+
1675
+ if column_indices is not None:
1676
+ for index in column_indices:
1677
+ c_column_indices.push_back(index)
1678
+
1679
+ with nogil:
1680
+ check_status(self.reader.get()
1681
+ .ReadTable(c_column_indices, &ctable))
1682
+ else:
1683
+ # Read all columns
1684
+ with nogil:
1685
+ check_status(self.reader.get()
1686
+ .ReadTable(&ctable))
1687
+ return pyarrow_wrap_table(ctable)
1688
+
1689
+ def scan_contents(self, column_indices=None, batch_size=65536):
1690
+ """
1691
+ Parameters
1692
+ ----------
1693
+ column_indices : list[int], optional
1694
+ batch_size : int32, default 65536
1695
+
1696
+ Returns
1697
+ -------
1698
+ num_rows : int64
1699
+ """
1700
+ cdef:
1701
+ vector[int] c_column_indices
1702
+ int32_t c_batch_size
1703
+ int64_t c_num_rows
1704
+
1705
+ if column_indices is not None:
1706
+ for index in column_indices:
1707
+ c_column_indices.push_back(index)
1708
+
1709
+ c_batch_size = batch_size
1710
+
1711
+ with nogil:
1712
+ check_status(self.reader.get()
1713
+ .ScanContents(c_column_indices, c_batch_size,
1714
+ &c_num_rows))
1715
+
1716
+ return c_num_rows
1717
+
1718
+ def column_name_idx(self, column_name):
1719
+ """
1720
+ Find the index of a column by its name.
1721
+
1722
+ Parameters
1723
+ ----------
1724
+ column_name : str
1725
+ Name of the column; separation of nesting levels is done via ".".
1726
+
1727
+ Returns
1728
+ -------
1729
+ column_idx : int
1730
+ Integer index of the column in the schema.
1731
+ """
1732
+ cdef:
1733
+ FileMetaData container = self.metadata
1734
+ const CFileMetaData* metadata = container._metadata
1735
+ int i = 0
1736
+
1737
+ if self._column_idx_map is None:
1738
+ self._column_idx_map = {}
1739
+ for i in range(0, metadata.num_columns()):
1740
+ col_bytes = tobytes(metadata.schema().Column(i)
1741
+ .path().get().ToDotString())
1742
+ self._column_idx_map[col_bytes] = i
1743
+
1744
+ return self._column_idx_map[tobytes(column_name)]
1745
+
1746
+ def read_column(self, int column_index):
1747
+ """
1748
+ Read the column at the specified index.
1749
+
1750
+ Parameters
1751
+ ----------
1752
+ column_index : int
1753
+ Index of the column.
1754
+
1755
+ Returns
1756
+ -------
1757
+ column : pyarrow.ChunkedArray
1758
+ """
1759
+ cdef shared_ptr[CChunkedArray] out
1760
+ with nogil:
1761
+ check_status(self.reader.get()
1762
+ .ReadColumn(column_index, &out))
1763
+ return pyarrow_wrap_chunked_array(out)
1764
+
1765
+ def close(self):
1766
+ if not self.closed:
1767
+ with nogil:
1768
+ check_status(self.rd_handle.get().Close())
1769
+
1770
+ @property
1771
+ def closed(self):
1772
+ if self.rd_handle == NULL:
1773
+ return True
1774
+ with nogil:
1775
+ closed = self.rd_handle.get().closed()
1776
+ return closed
1777
+
1778
+
1779
+ cdef CSortingColumn _convert_sorting_column(SortingColumn sorting_column):
1780
+ cdef CSortingColumn c_sorting_column
1781
+
1782
+ c_sorting_column.column_idx = sorting_column.column_index
1783
+ c_sorting_column.descending = sorting_column.descending
1784
+ c_sorting_column.nulls_first = sorting_column.nulls_first
1785
+
1786
+ return c_sorting_column
1787
+
1788
+
1789
+ cdef vector[CSortingColumn] _convert_sorting_columns(sorting_columns) except *:
1790
+ if not (isinstance(sorting_columns, Sequence)
1791
+ and all(isinstance(col, SortingColumn) for col in sorting_columns)):
1792
+ raise ValueError(
1793
+ "'sorting_columns' must be a list of `SortingColumn`")
1794
+
1795
+ cdef vector[CSortingColumn] c_sorting_columns = [_convert_sorting_column(col)
1796
+ for col in sorting_columns]
1797
+
1798
+ return c_sorting_columns
1799
+
1800
+
1801
+ cdef shared_ptr[WriterProperties] _create_writer_properties(
1802
+ use_dictionary=None,
1803
+ compression=None,
1804
+ version=None,
1805
+ write_statistics=None,
1806
+ data_page_size=None,
1807
+ compression_level=None,
1808
+ use_byte_stream_split=False,
1809
+ column_encoding=None,
1810
+ data_page_version=None,
1811
+ FileEncryptionProperties encryption_properties=None,
1812
+ write_batch_size=None,
1813
+ dictionary_pagesize_limit=None,
1814
+ write_page_index=False,
1815
+ write_page_checksum=False,
1816
+ sorting_columns=None) except *:
1817
+ """General writer properties"""
1818
+ cdef:
1819
+ shared_ptr[WriterProperties] properties
1820
+ WriterProperties.Builder props
1821
+
1822
+ # data_page_version
1823
+
1824
+ if data_page_version is not None:
1825
+ if data_page_version == "1.0":
1826
+ props.data_page_version(ParquetDataPageVersion_V1)
1827
+ elif data_page_version == "2.0":
1828
+ props.data_page_version(ParquetDataPageVersion_V2)
1829
+ else:
1830
+ raise ValueError("Unsupported Parquet data page version: {0}"
1831
+ .format(data_page_version))
1832
+
1833
+ # version
1834
+
1835
+ if version is not None:
1836
+ if version == "1.0":
1837
+ props.version(ParquetVersion_V1)
1838
+ elif version in ("2.0", "pseudo-2.0"):
1839
+ warnings.warn(
1840
+ "Parquet format '2.0' pseudo version is deprecated, use "
1841
+ "'2.4' or '2.6' for fine-grained feature selection",
1842
+ FutureWarning, stacklevel=2)
1843
+ props.version(ParquetVersion_V2_0)
1844
+ elif version == "2.4":
1845
+ props.version(ParquetVersion_V2_4)
1846
+ elif version == "2.6":
1847
+ props.version(ParquetVersion_V2_6)
1848
+ else:
1849
+ raise ValueError("Unsupported Parquet format version: {0}"
1850
+ .format(version))
1851
+
1852
+ # compression
1853
+
1854
+ if isinstance(compression, basestring):
1855
+ check_compression_name(compression)
1856
+ props.compression(compression_from_name(compression))
1857
+ elif compression is not None:
1858
+ for column, codec in compression.iteritems():
1859
+ check_compression_name(codec)
1860
+ props.compression(tobytes(column), compression_from_name(codec))
1861
+
1862
+ if isinstance(compression_level, int):
1863
+ props.compression_level(compression_level)
1864
+ elif compression_level is not None:
1865
+ for column, level in compression_level.iteritems():
1866
+ props.compression_level(tobytes(column), level)
1867
+
1868
+ # use_dictionary
1869
+
1870
+ if isinstance(use_dictionary, bool):
1871
+ if use_dictionary:
1872
+ props.enable_dictionary()
1873
+ if column_encoding is not None:
1874
+ raise ValueError(
1875
+ "To use 'column_encoding' set 'use_dictionary' to False")
1876
+ else:
1877
+ props.disable_dictionary()
1878
+ elif use_dictionary is not None:
1879
+ # Deactivate dictionary encoding by default
1880
+ props.disable_dictionary()
1881
+ for column in use_dictionary:
1882
+ props.enable_dictionary(tobytes(column))
1883
+ if (column_encoding is not None and
1884
+ column_encoding.get(column) is not None):
1885
+ raise ValueError(
1886
+ "To use 'column_encoding' set 'use_dictionary' to False")
1887
+
1888
+ # write_statistics
1889
+
1890
+ if isinstance(write_statistics, bool):
1891
+ if write_statistics:
1892
+ props.enable_statistics()
1893
+ else:
1894
+ props.disable_statistics()
1895
+ elif write_statistics is not None:
1896
+ # Deactivate statistics by default and enable for specified columns
1897
+ props.disable_statistics()
1898
+ for column in write_statistics:
1899
+ props.enable_statistics(tobytes(column))
1900
+
1901
+ # sorting_columns
1902
+
1903
+ if sorting_columns is not None:
1904
+ props.set_sorting_columns(_convert_sorting_columns(sorting_columns))
1905
+
1906
+ # use_byte_stream_split
1907
+
1908
+ if isinstance(use_byte_stream_split, bool):
1909
+ if use_byte_stream_split:
1910
+ if column_encoding is not None:
1911
+ raise ValueError(
1912
+ "'use_byte_stream_split' cannot be passed"
1913
+ "together with 'column_encoding'")
1914
+ else:
1915
+ props.encoding(ParquetEncoding_BYTE_STREAM_SPLIT)
1916
+ elif use_byte_stream_split is not None:
1917
+ for column in use_byte_stream_split:
1918
+ if column_encoding is None:
1919
+ column_encoding = {column: 'BYTE_STREAM_SPLIT'}
1920
+ elif column_encoding.get(column, None) is None:
1921
+ column_encoding[column] = 'BYTE_STREAM_SPLIT'
1922
+ else:
1923
+ raise ValueError(
1924
+ "'use_byte_stream_split' cannot be passed"
1925
+ "together with 'column_encoding'")
1926
+
1927
+ # column_encoding
1928
+ # encoding map - encode individual columns
1929
+
1930
+ if column_encoding is not None:
1931
+ if isinstance(column_encoding, dict):
1932
+ for column, _encoding in column_encoding.items():
1933
+ props.encoding(tobytes(column),
1934
+ encoding_enum_from_name(_encoding))
1935
+ elif isinstance(column_encoding, str):
1936
+ props.encoding(encoding_enum_from_name(column_encoding))
1937
+ else:
1938
+ raise TypeError(
1939
+ "'column_encoding' should be a dictionary or a string")
1940
+
1941
+ if data_page_size is not None:
1942
+ props.data_pagesize(data_page_size)
1943
+
1944
+ if write_batch_size is not None:
1945
+ props.write_batch_size(write_batch_size)
1946
+
1947
+ if dictionary_pagesize_limit is not None:
1948
+ props.dictionary_pagesize_limit(dictionary_pagesize_limit)
1949
+
1950
+ # encryption
1951
+
1952
+ if encryption_properties is not None:
1953
+ props.encryption(
1954
+ (<FileEncryptionProperties>encryption_properties).unwrap())
1955
+
1956
+ # For backwards compatibility reasons we cap the maximum row group size
1957
+ # at 64Mi rows. This could be changed in the future, though it would be
1958
+ # a breaking change.
1959
+ #
1960
+ # The user can always specify a smaller row group size (and the default
1961
+ # is smaller) when calling write_table. If the call to write_table uses
1962
+ # a size larger than this then it will be latched to this value.
1963
+ props.max_row_group_length(_MAX_ROW_GROUP_SIZE)
1964
+
1965
+ # checksum
1966
+
1967
+ if write_page_checksum:
1968
+ props.enable_page_checksum()
1969
+ else:
1970
+ props.disable_page_checksum()
1971
+
1972
+ # page index
1973
+
1974
+ if write_page_index:
1975
+ props.enable_write_page_index()
1976
+ else:
1977
+ props.disable_write_page_index()
1978
+
1979
+ properties = props.build()
1980
+
1981
+ return properties
1982
+
1983
+
1984
+ cdef shared_ptr[ArrowWriterProperties] _create_arrow_writer_properties(
1985
+ use_deprecated_int96_timestamps=False,
1986
+ coerce_timestamps=None,
1987
+ allow_truncated_timestamps=False,
1988
+ writer_engine_version=None,
1989
+ use_compliant_nested_type=True,
1990
+ store_schema=True) except *:
1991
+ """Arrow writer properties"""
1992
+ cdef:
1993
+ shared_ptr[ArrowWriterProperties] arrow_properties
1994
+ ArrowWriterProperties.Builder arrow_props
1995
+
1996
+ # Store the original Arrow schema so things like dictionary types can
1997
+ # be automatically reconstructed
1998
+ if store_schema:
1999
+ arrow_props.store_schema()
2000
+
2001
+ # int96 support
2002
+
2003
+ if use_deprecated_int96_timestamps:
2004
+ arrow_props.enable_deprecated_int96_timestamps()
2005
+ else:
2006
+ arrow_props.disable_deprecated_int96_timestamps()
2007
+
2008
+ # coerce_timestamps
2009
+
2010
+ if coerce_timestamps == 'ms':
2011
+ arrow_props.coerce_timestamps(TimeUnit_MILLI)
2012
+ elif coerce_timestamps == 'us':
2013
+ arrow_props.coerce_timestamps(TimeUnit_MICRO)
2014
+ elif coerce_timestamps is not None:
2015
+ raise ValueError('Invalid value for coerce_timestamps: {0}'
2016
+ .format(coerce_timestamps))
2017
+
2018
+ # allow_truncated_timestamps
2019
+
2020
+ if allow_truncated_timestamps:
2021
+ arrow_props.allow_truncated_timestamps()
2022
+ else:
2023
+ arrow_props.disallow_truncated_timestamps()
2024
+
2025
+ # use_compliant_nested_type
2026
+
2027
+ if use_compliant_nested_type:
2028
+ arrow_props.enable_compliant_nested_types()
2029
+ else:
2030
+ arrow_props.disable_compliant_nested_types()
2031
+
2032
+ # writer_engine_version
2033
+
2034
+ if writer_engine_version == "V1":
2035
+ warnings.warn("V1 parquet writer engine is a no-op. Use V2.")
2036
+ arrow_props.set_engine_version(ArrowWriterEngineVersion.V1)
2037
+ elif writer_engine_version != "V2":
2038
+ raise ValueError("Unsupported Writer Engine Version: {0}"
2039
+ .format(writer_engine_version))
2040
+
2041
+ arrow_properties = arrow_props.build()
2042
+
2043
+ return arrow_properties
2044
+
2045
+ cdef _name_to_index_map(Schema arrow_schema):
2046
+ cdef:
2047
+ shared_ptr[CSchema] sp_arrow_schema
2048
+ shared_ptr[SchemaDescriptor] sp_parquet_schema
2049
+ shared_ptr[WriterProperties] props = _create_writer_properties()
2050
+ shared_ptr[ArrowWriterProperties] arrow_props = _create_arrow_writer_properties(
2051
+ use_deprecated_int96_timestamps=False,
2052
+ coerce_timestamps=None,
2053
+ allow_truncated_timestamps=False,
2054
+ writer_engine_version="V2"
2055
+ )
2056
+
2057
+ sp_arrow_schema = pyarrow_unwrap_schema(arrow_schema)
2058
+
2059
+ with nogil:
2060
+ check_status(ToParquetSchema(
2061
+ sp_arrow_schema.get(), deref(props.get()), deref(arrow_props.get()), &sp_parquet_schema))
2062
+
2063
+ out = dict()
2064
+
2065
+ cdef SchemaDescriptor* parquet_schema = sp_parquet_schema.get()
2066
+
2067
+ for i in range(parquet_schema.num_columns()):
2068
+ name = frombytes(parquet_schema.Column(i).path().get().ToDotString())
2069
+ out[name] = i
2070
+
2071
+ return out
2072
+
2073
+
2074
+ cdef class ParquetWriter(_Weakrefable):
2075
+ cdef:
2076
+ unique_ptr[FileWriter] writer
2077
+ shared_ptr[COutputStream] sink
2078
+ bint own_sink
2079
+
2080
+ cdef readonly:
2081
+ object use_dictionary
2082
+ object use_deprecated_int96_timestamps
2083
+ object use_byte_stream_split
2084
+ object column_encoding
2085
+ object coerce_timestamps
2086
+ object allow_truncated_timestamps
2087
+ object compression
2088
+ object compression_level
2089
+ object data_page_version
2090
+ object use_compliant_nested_type
2091
+ object version
2092
+ object write_statistics
2093
+ object writer_engine_version
2094
+ int row_group_size
2095
+ int64_t data_page_size
2096
+ FileEncryptionProperties encryption_properties
2097
+ int64_t write_batch_size
2098
+ int64_t dictionary_pagesize_limit
2099
+ object store_schema
2100
+
2101
+ def __cinit__(self, where, Schema schema not None, use_dictionary=None,
2102
+ compression=None, version=None,
2103
+ write_statistics=None,
2104
+ MemoryPool memory_pool=None,
2105
+ use_deprecated_int96_timestamps=False,
2106
+ coerce_timestamps=None,
2107
+ data_page_size=None,
2108
+ allow_truncated_timestamps=False,
2109
+ compression_level=None,
2110
+ use_byte_stream_split=False,
2111
+ column_encoding=None,
2112
+ writer_engine_version=None,
2113
+ data_page_version=None,
2114
+ use_compliant_nested_type=True,
2115
+ encryption_properties=None,
2116
+ write_batch_size=None,
2117
+ dictionary_pagesize_limit=None,
2118
+ store_schema=True,
2119
+ write_page_index=False,
2120
+ write_page_checksum=False,
2121
+ sorting_columns=None):
2122
+ cdef:
2123
+ shared_ptr[WriterProperties] properties
2124
+ shared_ptr[ArrowWriterProperties] arrow_properties
2125
+ c_string c_where
2126
+ CMemoryPool* pool
2127
+
2128
+ try:
2129
+ where = _stringify_path(where)
2130
+ except TypeError:
2131
+ get_writer(where, &self.sink)
2132
+ self.own_sink = False
2133
+ else:
2134
+ c_where = tobytes(where)
2135
+ with nogil:
2136
+ self.sink = GetResultValue(FileOutputStream.Open(c_where))
2137
+ self.own_sink = True
2138
+
2139
+ properties = _create_writer_properties(
2140
+ use_dictionary=use_dictionary,
2141
+ compression=compression,
2142
+ version=version,
2143
+ write_statistics=write_statistics,
2144
+ data_page_size=data_page_size,
2145
+ compression_level=compression_level,
2146
+ use_byte_stream_split=use_byte_stream_split,
2147
+ column_encoding=column_encoding,
2148
+ data_page_version=data_page_version,
2149
+ encryption_properties=encryption_properties,
2150
+ write_batch_size=write_batch_size,
2151
+ dictionary_pagesize_limit=dictionary_pagesize_limit,
2152
+ write_page_index=write_page_index,
2153
+ write_page_checksum=write_page_checksum,
2154
+ sorting_columns=sorting_columns,
2155
+ )
2156
+ arrow_properties = _create_arrow_writer_properties(
2157
+ use_deprecated_int96_timestamps=use_deprecated_int96_timestamps,
2158
+ coerce_timestamps=coerce_timestamps,
2159
+ allow_truncated_timestamps=allow_truncated_timestamps,
2160
+ writer_engine_version=writer_engine_version,
2161
+ use_compliant_nested_type=use_compliant_nested_type,
2162
+ store_schema=store_schema,
2163
+ )
2164
+
2165
+ pool = maybe_unbox_memory_pool(memory_pool)
2166
+ with nogil:
2167
+ self.writer = move(GetResultValue(
2168
+ FileWriter.Open(deref(schema.schema), pool,
2169
+ self.sink, properties, arrow_properties)))
2170
+
2171
+ def close(self):
2172
+ with nogil:
2173
+ check_status(self.writer.get().Close())
2174
+ if self.own_sink:
2175
+ check_status(self.sink.get().Close())
2176
+
2177
+ def write_table(self, Table table, row_group_size=None):
2178
+ cdef:
2179
+ CTable* ctable = table.table
2180
+ int64_t c_row_group_size
2181
+
2182
+ if row_group_size is None or row_group_size == -1:
2183
+ c_row_group_size = min(ctable.num_rows(), _DEFAULT_ROW_GROUP_SIZE)
2184
+ elif row_group_size == 0:
2185
+ raise ValueError('Row group size cannot be 0')
2186
+ else:
2187
+ c_row_group_size = row_group_size
2188
+
2189
+ with nogil:
2190
+ check_status(self.writer.get()
2191
+ .WriteTable(deref(ctable), c_row_group_size))
2192
+
2193
+ @property
2194
+ def metadata(self):
2195
+ cdef:
2196
+ shared_ptr[CFileMetaData] metadata
2197
+ FileMetaData result
2198
+ with nogil:
2199
+ metadata = self.writer.get().metadata()
2200
+ if metadata:
2201
+ result = FileMetaData()
2202
+ result.init(metadata)
2203
+ return result
2204
+ raise RuntimeError(
2205
+ 'file metadata is only available after writer close')
llmeval-env/lib/python3.10/site-packages/pyarrow/_parquet_encryption.pxd ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # distutils: language = c++
19
+ # cython: language_level = 3
20
+
21
+ from pyarrow.includes.common cimport *
22
+ from pyarrow.includes.libparquet_encryption cimport *
23
+ from pyarrow._parquet cimport (ParquetCipher,
24
+ CFileEncryptionProperties,
25
+ CFileDecryptionProperties,
26
+ FileEncryptionProperties,
27
+ FileDecryptionProperties,
28
+ ParquetCipher_AES_GCM_V1,
29
+ ParquetCipher_AES_GCM_CTR_V1)
30
+ from pyarrow.lib cimport _Weakrefable
31
+
32
+ cdef class CryptoFactory(_Weakrefable):
33
+ cdef shared_ptr[CPyCryptoFactory] factory
34
+ cdef init(self, callable_client_factory)
35
+ cdef inline shared_ptr[CPyCryptoFactory] unwrap(self)
36
+
37
+ cdef class EncryptionConfiguration(_Weakrefable):
38
+ cdef shared_ptr[CEncryptionConfiguration] configuration
39
+ cdef inline shared_ptr[CEncryptionConfiguration] unwrap(self) nogil
40
+
41
+ cdef class DecryptionConfiguration(_Weakrefable):
42
+ cdef shared_ptr[CDecryptionConfiguration] configuration
43
+ cdef inline shared_ptr[CDecryptionConfiguration] unwrap(self) nogil
44
+
45
+ cdef class KmsConnectionConfig(_Weakrefable):
46
+ cdef shared_ptr[CKmsConnectionConfig] configuration
47
+ cdef inline shared_ptr[CKmsConnectionConfig] unwrap(self) nogil
48
+
49
+ @staticmethod
50
+ cdef wrap(const CKmsConnectionConfig& config)
51
+
52
+
53
+ cdef shared_ptr[CCryptoFactory] pyarrow_unwrap_cryptofactory(object crypto_factory) except *
54
+ cdef shared_ptr[CKmsConnectionConfig] pyarrow_unwrap_kmsconnectionconfig(object kmsconnectionconfig) except *
55
+ cdef shared_ptr[CEncryptionConfiguration] pyarrow_unwrap_encryptionconfig(object encryptionconfig) except *
56
+ cdef shared_ptr[CDecryptionConfiguration] pyarrow_unwrap_decryptionconfig(object decryptionconfig) except *
llmeval-env/lib/python3.10/site-packages/pyarrow/_parquet_encryption.pyx ADDED
@@ -0,0 +1,484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # cython: profile=False
19
+ # distutils: language = c++
20
+
21
+ from datetime import timedelta
22
+
23
+ from cython.operator cimport dereference as deref
24
+ from libcpp.memory cimport shared_ptr
25
+ from pyarrow.includes.common cimport *
26
+ from pyarrow.includes.libarrow cimport *
27
+ from pyarrow.lib cimport _Weakrefable
28
+ from pyarrow.lib import tobytes, frombytes
29
+
30
+
31
+ cdef ParquetCipher cipher_from_name(name):
32
+ name = name.upper()
33
+ if name == 'AES_GCM_V1':
34
+ return ParquetCipher_AES_GCM_V1
35
+ elif name == 'AES_GCM_CTR_V1':
36
+ return ParquetCipher_AES_GCM_CTR_V1
37
+ else:
38
+ raise ValueError(f'Invalid cipher name: {name!r}')
39
+
40
+
41
+ cdef cipher_to_name(ParquetCipher cipher):
42
+ if ParquetCipher_AES_GCM_V1 == cipher:
43
+ return 'AES_GCM_V1'
44
+ elif ParquetCipher_AES_GCM_CTR_V1 == cipher:
45
+ return 'AES_GCM_CTR_V1'
46
+ else:
47
+ raise ValueError('Invalid cipher value: {0}'.format(cipher))
48
+
49
+ cdef class EncryptionConfiguration(_Weakrefable):
50
+ """Configuration of the encryption, such as which columns to encrypt"""
51
+ # Avoid mistakingly creating attributes
52
+ __slots__ = ()
53
+
54
+ def __init__(self, footer_key, *, column_keys=None,
55
+ encryption_algorithm=None,
56
+ plaintext_footer=None, double_wrapping=None,
57
+ cache_lifetime=None, internal_key_material=None,
58
+ data_key_length_bits=None):
59
+ self.configuration.reset(
60
+ new CEncryptionConfiguration(tobytes(footer_key)))
61
+ if column_keys is not None:
62
+ self.column_keys = column_keys
63
+ if encryption_algorithm is not None:
64
+ self.encryption_algorithm = encryption_algorithm
65
+ if plaintext_footer is not None:
66
+ self.plaintext_footer = plaintext_footer
67
+ if double_wrapping is not None:
68
+ self.double_wrapping = double_wrapping
69
+ if cache_lifetime is not None:
70
+ self.cache_lifetime = cache_lifetime
71
+ if internal_key_material is not None:
72
+ self.internal_key_material = internal_key_material
73
+ if data_key_length_bits is not None:
74
+ self.data_key_length_bits = data_key_length_bits
75
+
76
+ @property
77
+ def footer_key(self):
78
+ """ID of the master key for footer encryption/signing"""
79
+ return frombytes(self.configuration.get().footer_key)
80
+
81
+ @property
82
+ def column_keys(self):
83
+ """
84
+ List of columns to encrypt, with master key IDs.
85
+ """
86
+ column_keys_str = frombytes(self.configuration.get().column_keys)
87
+ # Convert from "masterKeyID:colName,colName;masterKeyID:colName..."
88
+ # (see HIVE-21848) to dictionary of master key ID to column name lists
89
+ column_keys_to_key_list_str = dict(subString.replace(" ", "").split(
90
+ ":") for subString in column_keys_str.split(";"))
91
+ column_keys_dict = {k: v.split(
92
+ ",") for k, v in column_keys_to_key_list_str.items()}
93
+ return column_keys_dict
94
+
95
+ @column_keys.setter
96
+ def column_keys(self, dict value):
97
+ if value is not None:
98
+ # convert a dictionary such as
99
+ # '{"key1": ["col1 ", "col2"], "key2": ["col3 ", "col4"]}''
100
+ # to the string defined by the spec
101
+ # 'key1: col1 , col2; key2: col3 , col4'
102
+ column_keys = "; ".join(
103
+ ["{}: {}".format(k, ", ".join(v)) for k, v in value.items()])
104
+ self.configuration.get().column_keys = tobytes(column_keys)
105
+
106
+ @property
107
+ def encryption_algorithm(self):
108
+ """Parquet encryption algorithm.
109
+ Can be "AES_GCM_V1" (default), or "AES_GCM_CTR_V1"."""
110
+ return cipher_to_name(self.configuration.get().encryption_algorithm)
111
+
112
+ @encryption_algorithm.setter
113
+ def encryption_algorithm(self, value):
114
+ cipher = cipher_from_name(value)
115
+ self.configuration.get().encryption_algorithm = cipher
116
+
117
+ @property
118
+ def plaintext_footer(self):
119
+ """Write files with plaintext footer."""
120
+ return self.configuration.get().plaintext_footer
121
+
122
+ @plaintext_footer.setter
123
+ def plaintext_footer(self, value):
124
+ self.configuration.get().plaintext_footer = value
125
+
126
+ @property
127
+ def double_wrapping(self):
128
+ """Use double wrapping - where data encryption keys (DEKs) are
129
+ encrypted with key encryption keys (KEKs), which in turn are
130
+ encrypted with master keys.
131
+ If set to false, use single wrapping - where DEKs are
132
+ encrypted directly with master keys."""
133
+ return self.configuration.get().double_wrapping
134
+
135
+ @double_wrapping.setter
136
+ def double_wrapping(self, value):
137
+ self.configuration.get().double_wrapping = value
138
+
139
+ @property
140
+ def cache_lifetime(self):
141
+ """Lifetime of cached entities (key encryption keys,
142
+ local wrapping keys, KMS client objects)."""
143
+ return timedelta(
144
+ seconds=self.configuration.get().cache_lifetime_seconds)
145
+
146
+ @cache_lifetime.setter
147
+ def cache_lifetime(self, value):
148
+ if not isinstance(value, timedelta):
149
+ raise TypeError("cache_lifetime should be a timedelta")
150
+ self.configuration.get().cache_lifetime_seconds = value.total_seconds()
151
+
152
+ @property
153
+ def internal_key_material(self):
154
+ """Store key material inside Parquet file footers; this mode doesn’t
155
+ produce additional files. If set to false, key material is stored in
156
+ separate files in the same folder, which enables key rotation for
157
+ immutable Parquet files."""
158
+ return self.configuration.get().internal_key_material
159
+
160
+ @internal_key_material.setter
161
+ def internal_key_material(self, value):
162
+ self.configuration.get().internal_key_material = value
163
+
164
+ @property
165
+ def data_key_length_bits(self):
166
+ """Length of data encryption keys (DEKs), randomly generated by parquet key
167
+ management tools. Can be 128, 192 or 256 bits."""
168
+ return self.configuration.get().data_key_length_bits
169
+
170
+ @data_key_length_bits.setter
171
+ def data_key_length_bits(self, value):
172
+ self.configuration.get().data_key_length_bits = value
173
+
174
+ cdef inline shared_ptr[CEncryptionConfiguration] unwrap(self) nogil:
175
+ return self.configuration
176
+
177
+
178
+ cdef class DecryptionConfiguration(_Weakrefable):
179
+ """Configuration of the decryption, such as cache timeout."""
180
+ # Avoid mistakingly creating attributes
181
+ __slots__ = ()
182
+
183
+ def __init__(self, *, cache_lifetime=None):
184
+ self.configuration.reset(new CDecryptionConfiguration())
185
+
186
+ @property
187
+ def cache_lifetime(self):
188
+ """Lifetime of cached entities (key encryption keys,
189
+ local wrapping keys, KMS client objects)."""
190
+ return timedelta(
191
+ seconds=self.configuration.get().cache_lifetime_seconds)
192
+
193
+ @cache_lifetime.setter
194
+ def cache_lifetime(self, value):
195
+ self.configuration.get().cache_lifetime_seconds = value.total_seconds()
196
+
197
+ cdef inline shared_ptr[CDecryptionConfiguration] unwrap(self) nogil:
198
+ return self.configuration
199
+
200
+
201
+ cdef class KmsConnectionConfig(_Weakrefable):
202
+ """Configuration of the connection to the Key Management Service (KMS)"""
203
+ # Avoid mistakingly creating attributes
204
+ __slots__ = ()
205
+
206
+ def __init__(self, *, kms_instance_id=None, kms_instance_url=None,
207
+ key_access_token=None, custom_kms_conf=None):
208
+ self.configuration.reset(new CKmsConnectionConfig())
209
+ if kms_instance_id is not None:
210
+ self.kms_instance_id = kms_instance_id
211
+ if kms_instance_url is not None:
212
+ self.kms_instance_url = kms_instance_url
213
+ if key_access_token is None:
214
+ self.key_access_token = b'DEFAULT'
215
+ else:
216
+ self.key_access_token = key_access_token
217
+ if custom_kms_conf is not None:
218
+ self.custom_kms_conf = custom_kms_conf
219
+
220
+ @property
221
+ def kms_instance_id(self):
222
+ """ID of the KMS instance that will be used for encryption
223
+ (if multiple KMS instances are available)."""
224
+ return frombytes(self.configuration.get().kms_instance_id)
225
+
226
+ @kms_instance_id.setter
227
+ def kms_instance_id(self, value):
228
+ self.configuration.get().kms_instance_id = tobytes(value)
229
+
230
+ @property
231
+ def kms_instance_url(self):
232
+ """URL of the KMS instance."""
233
+ return frombytes(self.configuration.get().kms_instance_url)
234
+
235
+ @kms_instance_url.setter
236
+ def kms_instance_url(self, value):
237
+ self.configuration.get().kms_instance_url = tobytes(value)
238
+
239
+ @property
240
+ def key_access_token(self):
241
+ """Authorization token that will be passed to KMS."""
242
+ return frombytes(self.configuration.get()
243
+ .refreshable_key_access_token.get().value())
244
+
245
+ @key_access_token.setter
246
+ def key_access_token(self, value):
247
+ self.refresh_key_access_token(value)
248
+
249
+ @property
250
+ def custom_kms_conf(self):
251
+ """A dictionary with KMS-type-specific configuration"""
252
+ custom_kms_conf = {
253
+ frombytes(k): frombytes(v)
254
+ for k, v in self.configuration.get().custom_kms_conf
255
+ }
256
+ return custom_kms_conf
257
+
258
+ @custom_kms_conf.setter
259
+ def custom_kms_conf(self, dict value):
260
+ if value is not None:
261
+ for k, v in value.items():
262
+ if isinstance(k, str) and isinstance(v, str):
263
+ self.configuration.get().custom_kms_conf[tobytes(k)] = \
264
+ tobytes(v)
265
+ else:
266
+ raise TypeError("Expected custom_kms_conf to be " +
267
+ "a dictionary of strings")
268
+
269
+ def refresh_key_access_token(self, value):
270
+ cdef:
271
+ shared_ptr[CKeyAccessToken] c_key_access_token = \
272
+ self.configuration.get().refreshable_key_access_token
273
+
274
+ c_key_access_token.get().Refresh(tobytes(value))
275
+
276
+ cdef inline shared_ptr[CKmsConnectionConfig] unwrap(self) nogil:
277
+ return self.configuration
278
+
279
+ @staticmethod
280
+ cdef wrap(const CKmsConnectionConfig& config):
281
+ result = KmsConnectionConfig()
282
+ result.configuration = make_shared[CKmsConnectionConfig](move(config))
283
+ return result
284
+
285
+
286
+ # Callback definitions for CPyKmsClientVtable
287
+ cdef void _cb_wrap_key(
288
+ handler, const c_string& key_bytes,
289
+ const c_string& master_key_identifier, c_string* out) except *:
290
+ mkid_str = frombytes(master_key_identifier)
291
+ wrapped_key = handler.wrap_key(key_bytes, mkid_str)
292
+ out[0] = tobytes(wrapped_key)
293
+
294
+
295
+ cdef void _cb_unwrap_key(
296
+ handler, const c_string& wrapped_key,
297
+ const c_string& master_key_identifier, c_string* out) except *:
298
+ mkid_str = frombytes(master_key_identifier)
299
+ wk_str = frombytes(wrapped_key)
300
+ key = handler.unwrap_key(wk_str, mkid_str)
301
+ out[0] = tobytes(key)
302
+
303
+
304
+ cdef class KmsClient(_Weakrefable):
305
+ """The abstract base class for KmsClient implementations."""
306
+ cdef:
307
+ shared_ptr[CKmsClient] client
308
+
309
+ def __init__(self):
310
+ self.init()
311
+
312
+ cdef init(self):
313
+ cdef:
314
+ CPyKmsClientVtable vtable = CPyKmsClientVtable()
315
+
316
+ vtable.wrap_key = _cb_wrap_key
317
+ vtable.unwrap_key = _cb_unwrap_key
318
+
319
+ self.client.reset(new CPyKmsClient(self, vtable))
320
+
321
+ def wrap_key(self, key_bytes, master_key_identifier):
322
+ """Wrap a key - encrypt it with the master key."""
323
+ raise NotImplementedError()
324
+
325
+ def unwrap_key(self, wrapped_key, master_key_identifier):
326
+ """Unwrap a key - decrypt it with the master key."""
327
+ raise NotImplementedError()
328
+
329
+ cdef inline shared_ptr[CKmsClient] unwrap(self) nogil:
330
+ return self.client
331
+
332
+
333
+ # Callback definition for CPyKmsClientFactoryVtable
334
+ cdef void _cb_create_kms_client(
335
+ handler,
336
+ const CKmsConnectionConfig& kms_connection_config,
337
+ shared_ptr[CKmsClient]* out) except *:
338
+ connection_config = KmsConnectionConfig.wrap(kms_connection_config)
339
+
340
+ result = handler(connection_config)
341
+ if not isinstance(result, KmsClient):
342
+ raise TypeError(
343
+ "callable must return KmsClient instances, but got {}".format(
344
+ type(result)))
345
+
346
+ out[0] = (<KmsClient> result).unwrap()
347
+
348
+
349
+ cdef class CryptoFactory(_Weakrefable):
350
+ """ A factory that produces the low-level FileEncryptionProperties and
351
+ FileDecryptionProperties objects, from the high-level parameters."""
352
+ # Avoid mistakingly creating attributes
353
+ __slots__ = ()
354
+
355
+ def __init__(self, kms_client_factory):
356
+ """Create CryptoFactory.
357
+
358
+ Parameters
359
+ ----------
360
+ kms_client_factory : a callable that accepts KmsConnectionConfig
361
+ and returns a KmsClient
362
+ """
363
+ self.factory.reset(new CPyCryptoFactory())
364
+
365
+ if callable(kms_client_factory):
366
+ self.init(kms_client_factory)
367
+ else:
368
+ raise TypeError("Parameter kms_client_factory must be a callable")
369
+
370
+ cdef init(self, callable_client_factory):
371
+ cdef:
372
+ CPyKmsClientFactoryVtable vtable
373
+ shared_ptr[CPyKmsClientFactory] kms_client_factory
374
+
375
+ vtable.create_kms_client = _cb_create_kms_client
376
+ kms_client_factory.reset(
377
+ new CPyKmsClientFactory(callable_client_factory, vtable))
378
+ # A KmsClientFactory object must be registered
379
+ # via this method before calling any of
380
+ # file_encryption_properties()/file_decryption_properties() methods.
381
+ self.factory.get().RegisterKmsClientFactory(
382
+ static_pointer_cast[CKmsClientFactory, CPyKmsClientFactory](
383
+ kms_client_factory))
384
+
385
+ def file_encryption_properties(self,
386
+ KmsConnectionConfig kms_connection_config,
387
+ EncryptionConfiguration encryption_config):
388
+ """Create file encryption properties.
389
+
390
+ Parameters
391
+ ----------
392
+ kms_connection_config : KmsConnectionConfig
393
+ Configuration of connection to KMS
394
+
395
+ encryption_config : EncryptionConfiguration
396
+ Configuration of the encryption, such as which columns to encrypt
397
+
398
+ Returns
399
+ -------
400
+ file_encryption_properties : FileEncryptionProperties
401
+ File encryption properties.
402
+ """
403
+ cdef:
404
+ CResult[shared_ptr[CFileEncryptionProperties]] \
405
+ file_encryption_properties_result
406
+ with nogil:
407
+ file_encryption_properties_result = \
408
+ self.factory.get().SafeGetFileEncryptionProperties(
409
+ deref(kms_connection_config.unwrap().get()),
410
+ deref(encryption_config.unwrap().get()))
411
+ file_encryption_properties = GetResultValue(
412
+ file_encryption_properties_result)
413
+ return FileEncryptionProperties.wrap(file_encryption_properties)
414
+
415
+ def file_decryption_properties(
416
+ self,
417
+ KmsConnectionConfig kms_connection_config,
418
+ DecryptionConfiguration decryption_config=None):
419
+ """Create file decryption properties.
420
+
421
+ Parameters
422
+ ----------
423
+ kms_connection_config : KmsConnectionConfig
424
+ Configuration of connection to KMS
425
+
426
+ decryption_config : DecryptionConfiguration, default None
427
+ Configuration of the decryption, such as cache timeout.
428
+ Can be None.
429
+
430
+ Returns
431
+ -------
432
+ file_decryption_properties : FileDecryptionProperties
433
+ File decryption properties.
434
+ """
435
+ cdef:
436
+ CDecryptionConfiguration c_decryption_config
437
+ CResult[shared_ptr[CFileDecryptionProperties]] \
438
+ c_file_decryption_properties
439
+ if decryption_config is None:
440
+ c_decryption_config = CDecryptionConfiguration()
441
+ else:
442
+ c_decryption_config = deref(decryption_config.unwrap().get())
443
+ with nogil:
444
+ c_file_decryption_properties = \
445
+ self.factory.get().SafeGetFileDecryptionProperties(
446
+ deref(kms_connection_config.unwrap().get()),
447
+ c_decryption_config)
448
+ file_decryption_properties = GetResultValue(
449
+ c_file_decryption_properties)
450
+ return FileDecryptionProperties.wrap(file_decryption_properties)
451
+
452
+ def remove_cache_entries_for_token(self, access_token):
453
+ self.factory.get().RemoveCacheEntriesForToken(tobytes(access_token))
454
+
455
+ def remove_cache_entries_for_all_tokens(self):
456
+ self.factory.get().RemoveCacheEntriesForAllTokens()
457
+
458
+ cdef inline shared_ptr[CPyCryptoFactory] unwrap(self):
459
+ return self.factory
460
+
461
+
462
+ cdef shared_ptr[CCryptoFactory] pyarrow_unwrap_cryptofactory(object crypto_factory) except *:
463
+ if isinstance(crypto_factory, CryptoFactory):
464
+ pycf = (<CryptoFactory> crypto_factory).unwrap()
465
+ return static_pointer_cast[CCryptoFactory, CPyCryptoFactory](pycf)
466
+ raise TypeError("Expected CryptoFactory, got %s" % type(crypto_factory))
467
+
468
+
469
+ cdef shared_ptr[CKmsConnectionConfig] pyarrow_unwrap_kmsconnectionconfig(object kmsconnectionconfig) except *:
470
+ if isinstance(kmsconnectionconfig, KmsConnectionConfig):
471
+ return (<KmsConnectionConfig> kmsconnectionconfig).unwrap()
472
+ raise TypeError("Expected KmsConnectionConfig, got %s" % type(kmsconnectionconfig))
473
+
474
+
475
+ cdef shared_ptr[CEncryptionConfiguration] pyarrow_unwrap_encryptionconfig(object encryptionconfig) except *:
476
+ if isinstance(encryptionconfig, EncryptionConfiguration):
477
+ return (<EncryptionConfiguration> encryptionconfig).unwrap()
478
+ raise TypeError("Expected EncryptionConfiguration, got %s" % type(encryptionconfig))
479
+
480
+
481
+ cdef shared_ptr[CDecryptionConfiguration] pyarrow_unwrap_decryptionconfig(object decryptionconfig) except *:
482
+ if isinstance(decryptionconfig, DecryptionConfiguration):
483
+ return (<DecryptionConfiguration> decryptionconfig).unwrap()
484
+ raise TypeError("Expected DecryptionConfiguration, got %s" % type(decryptionconfig))
llmeval-env/lib/python3.10/site-packages/pyarrow/_pyarrow_cpp_tests.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (84.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pyarrow/_pyarrow_cpp_tests.pxd ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # distutils: language = c++
19
+ # cython: language_level = 3
20
+
21
+ from pyarrow.includes.common cimport *
22
+ from pyarrow.includes.libarrow cimport CStatus
23
+
24
+
25
+ ctypedef CStatus cb_test_func()
26
+
27
+ cdef extern from "arrow/python/python_test.h" namespace "arrow::py::testing" nogil:
28
+
29
+ cdef cppclass CTestCase "arrow::py::testing::TestCase":
30
+ c_string name
31
+ cb_test_func func
32
+
33
+ vector[CTestCase] GetCppTestCases()
llmeval-env/lib/python3.10/site-packages/pyarrow/_s3fs.pyx ADDED
@@ -0,0 +1,467 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # cython: language_level = 3
19
+
20
+ from cython cimport binding
21
+
22
+ from pyarrow.lib cimport (check_status, pyarrow_wrap_metadata,
23
+ pyarrow_unwrap_metadata)
24
+ from pyarrow.lib import frombytes, tobytes, KeyValueMetadata
25
+ from pyarrow.includes.common cimport *
26
+ from pyarrow.includes.libarrow cimport *
27
+ from pyarrow.includes.libarrow_fs cimport *
28
+ from pyarrow._fs cimport FileSystem
29
+
30
+
31
+ cpdef enum S3LogLevel:
32
+ Off = <int8_t> CS3LogLevel_Off
33
+ Fatal = <int8_t> CS3LogLevel_Fatal
34
+ Error = <int8_t> CS3LogLevel_Error
35
+ Warn = <int8_t> CS3LogLevel_Warn
36
+ Info = <int8_t> CS3LogLevel_Info
37
+ Debug = <int8_t> CS3LogLevel_Debug
38
+ Trace = <int8_t> CS3LogLevel_Trace
39
+
40
+
41
+ def initialize_s3(S3LogLevel log_level=S3LogLevel.Fatal, int num_event_loop_threads=1):
42
+ """
43
+ Initialize S3 support
44
+
45
+ Parameters
46
+ ----------
47
+ log_level : S3LogLevel
48
+ level of logging
49
+ num_event_loop_threads : int, default 1
50
+ how many threads to use for the AWS SDK's I/O event loop
51
+
52
+ Examples
53
+ --------
54
+ >>> fs.initialize_s3(fs.S3LogLevel.Error) # doctest: +SKIP
55
+ """
56
+ cdef CS3GlobalOptions options
57
+ options.log_level = <CS3LogLevel> log_level
58
+ options.num_event_loop_threads = num_event_loop_threads
59
+ check_status(CInitializeS3(options))
60
+
61
+
62
+ def ensure_s3_initialized():
63
+ """
64
+ Initialize S3 (with default options) if not already initialized
65
+ """
66
+ check_status(CEnsureS3Initialized())
67
+
68
+
69
+ def finalize_s3():
70
+ check_status(CFinalizeS3())
71
+
72
+
73
+ def ensure_s3_finalized():
74
+ """
75
+ Finalize S3 if already initialized
76
+ """
77
+ check_status(CEnsureS3Finalized())
78
+
79
+
80
+ def resolve_s3_region(bucket):
81
+ """
82
+ Resolve the S3 region of a bucket.
83
+
84
+ Parameters
85
+ ----------
86
+ bucket : str
87
+ A S3 bucket name
88
+
89
+ Returns
90
+ -------
91
+ region : str
92
+ A S3 region name
93
+
94
+ Examples
95
+ --------
96
+ >>> fs.resolve_s3_region('voltrondata-labs-datasets')
97
+ 'us-east-2'
98
+ """
99
+ cdef:
100
+ c_string c_bucket
101
+ c_string c_region
102
+
103
+ ensure_s3_initialized()
104
+
105
+ c_bucket = tobytes(bucket)
106
+ with nogil:
107
+ c_region = GetResultValue(ResolveS3BucketRegion(c_bucket))
108
+
109
+ return frombytes(c_region)
110
+
111
+
112
+ class S3RetryStrategy:
113
+ """
114
+ Base class for AWS retry strategies for use with S3.
115
+
116
+ Parameters
117
+ ----------
118
+ max_attempts : int, default 3
119
+ The maximum number of retry attempts to attempt before failing.
120
+ """
121
+
122
+ def __init__(self, max_attempts=3):
123
+ self.max_attempts = max_attempts
124
+
125
+
126
+ class AwsStandardS3RetryStrategy(S3RetryStrategy):
127
+ """
128
+ Represents an AWS Standard retry strategy for use with S3.
129
+
130
+ Parameters
131
+ ----------
132
+ max_attempts : int, default 3
133
+ The maximum number of retry attempts to attempt before failing.
134
+ """
135
+ pass
136
+
137
+
138
+ class AwsDefaultS3RetryStrategy(S3RetryStrategy):
139
+ """
140
+ Represents an AWS Default retry strategy for use with S3.
141
+
142
+ Parameters
143
+ ----------
144
+ max_attempts : int, default 3
145
+ The maximum number of retry attempts to attempt before failing.
146
+ """
147
+ pass
148
+
149
+
150
+ cdef class S3FileSystem(FileSystem):
151
+ """
152
+ S3-backed FileSystem implementation
153
+
154
+ AWS access_key and secret_key can be provided explicitly.
155
+
156
+ If role_arn is provided instead of access_key and secret_key, temporary
157
+ credentials will be fetched by issuing a request to STS to assume the
158
+ specified role.
159
+
160
+ If neither access_key nor secret_key are provided, and role_arn is also not
161
+ provided, then attempts to establish the credentials automatically.
162
+ S3FileSystem will try the following methods, in order:
163
+
164
+ * ``AWS_ACCESS_KEY_ID``, ``AWS_SECRET_ACCESS_KEY``, and ``AWS_SESSION_TOKEN`` environment variables
165
+ * configuration files such as ``~/.aws/credentials`` and ``~/.aws/config``
166
+ * for nodes on Amazon EC2, the EC2 Instance Metadata Service
167
+
168
+ Note: S3 buckets are special and the operations available on them may be
169
+ limited or more expensive than desired.
170
+
171
+ When S3FileSystem creates new buckets (assuming allow_bucket_creation is
172
+ True), it does not pass any non-default settings. In AWS S3, the bucket and
173
+ all objects will be not publicly visible, and will have no bucket policies
174
+ and no resource tags. To have more control over how buckets are created,
175
+ use a different API to create them.
176
+
177
+ Parameters
178
+ ----------
179
+ access_key : str, default None
180
+ AWS Access Key ID. Pass None to use the standard AWS environment
181
+ variables and/or configuration file.
182
+ secret_key : str, default None
183
+ AWS Secret Access key. Pass None to use the standard AWS environment
184
+ variables and/or configuration file.
185
+ session_token : str, default None
186
+ AWS Session Token. An optional session token, required if access_key
187
+ and secret_key are temporary credentials from STS.
188
+ anonymous : boolean, default False
189
+ Whether to connect anonymously if access_key and secret_key are None.
190
+ If true, will not attempt to look up credentials using standard AWS
191
+ configuration methods.
192
+ role_arn : str, default None
193
+ AWS Role ARN. If provided instead of access_key and secret_key,
194
+ temporary credentials will be fetched by assuming this role.
195
+ session_name : str, default None
196
+ An optional identifier for the assumed role session.
197
+ external_id : str, default None
198
+ An optional unique identifier that might be required when you assume
199
+ a role in another account.
200
+ load_frequency : int, default 900
201
+ The frequency (in seconds) with which temporary credentials from an
202
+ assumed role session will be refreshed.
203
+ region : str, default None
204
+ AWS region to connect to. If not set, the AWS SDK will attempt to
205
+ determine the region using heuristics such as environment variables,
206
+ configuration profile, EC2 metadata, or default to 'us-east-1' when SDK
207
+ version <1.8. One can also use :func:`pyarrow.fs.resolve_s3_region` to
208
+ automatically resolve the region from a bucket name.
209
+ request_timeout : double, default None
210
+ Socket read timeouts on Windows and macOS, in seconds.
211
+ If omitted, the AWS SDK default value is used (typically 3 seconds).
212
+ This option is ignored on non-Windows, non-macOS systems.
213
+ connect_timeout : double, default None
214
+ Socket connection timeout, in seconds.
215
+ If omitted, the AWS SDK default value is used (typically 1 second).
216
+ scheme : str, default 'https'
217
+ S3 connection transport scheme.
218
+ endpoint_override : str, default None
219
+ Override region with a connect string such as "localhost:9000"
220
+ background_writes : boolean, default True
221
+ Whether file writes will be issued in the background, without
222
+ blocking.
223
+ default_metadata : mapping or pyarrow.KeyValueMetadata, default None
224
+ Default metadata for open_output_stream. This will be ignored if
225
+ non-empty metadata is passed to open_output_stream.
226
+ proxy_options : dict or str, default None
227
+ If a proxy is used, provide the options here. Supported options are:
228
+ 'scheme' (str: 'http' or 'https'; required), 'host' (str; required),
229
+ 'port' (int; required), 'username' (str; optional),
230
+ 'password' (str; optional).
231
+ A proxy URI (str) can also be provided, in which case these options
232
+ will be derived from the provided URI.
233
+ The following are equivalent::
234
+
235
+ S3FileSystem(proxy_options='http://username:password@localhost:8020')
236
+ S3FileSystem(proxy_options={'scheme': 'http', 'host': 'localhost',
237
+ 'port': 8020, 'username': 'username',
238
+ 'password': 'password'})
239
+ allow_bucket_creation : bool, default False
240
+ Whether to allow CreateDir at the bucket-level. This option may also be
241
+ passed in a URI query parameter.
242
+ allow_bucket_deletion : bool, default False
243
+ Whether to allow DeleteDir at the bucket-level. This option may also be
244
+ passed in a URI query parameter.
245
+ retry_strategy : S3RetryStrategy, default AwsStandardS3RetryStrategy(max_attempts=3)
246
+ The retry strategy to use with S3; fail after max_attempts. Available
247
+ strategies are AwsStandardS3RetryStrategy, AwsDefaultS3RetryStrategy.
248
+ force_virtual_addressing : bool, default False
249
+ Whether to use virtual addressing of buckets.
250
+ If true, then virtual addressing is always enabled.
251
+ If false, then virtual addressing is only enabled if `endpoint_override` is empty.
252
+ This can be used for non-AWS backends that only support virtual hosted-style access.
253
+
254
+ Examples
255
+ --------
256
+ >>> from pyarrow import fs
257
+ >>> s3 = fs.S3FileSystem(region='us-west-2')
258
+ >>> s3.get_file_info(fs.FileSelector(
259
+ ... 'power-analysis-ready-datastore/power_901_constants.zarr/FROCEAN', recursive=True
260
+ ... ))
261
+ [<FileInfo for 'power-analysis-ready-datastore/power_901_constants.zarr/FROCEAN/.zarray...
262
+
263
+ For usage of the methods see examples for :func:`~pyarrow.fs.LocalFileSystem`.
264
+ """
265
+
266
+ cdef:
267
+ CS3FileSystem* s3fs
268
+
269
+ def __init__(self, *, access_key=None, secret_key=None, session_token=None,
270
+ bint anonymous=False, region=None, request_timeout=None,
271
+ connect_timeout=None, scheme=None, endpoint_override=None,
272
+ bint background_writes=True, default_metadata=None,
273
+ role_arn=None, session_name=None, external_id=None,
274
+ load_frequency=900, proxy_options=None,
275
+ allow_bucket_creation=False, allow_bucket_deletion=False,
276
+ retry_strategy: S3RetryStrategy = AwsStandardS3RetryStrategy(
277
+ max_attempts=3),
278
+ force_virtual_addressing=False):
279
+ cdef:
280
+ optional[CS3Options] options
281
+ shared_ptr[CS3FileSystem] wrapped
282
+
283
+ # Need to do this before initializing `options` as the S3Options
284
+ # constructor has a debug check against use after S3 finalization.
285
+ ensure_s3_initialized()
286
+
287
+ if access_key is not None and secret_key is None:
288
+ raise ValueError(
289
+ 'In order to initialize with explicit credentials both '
290
+ 'access_key and secret_key must be provided, '
291
+ '`secret_key` is not set.'
292
+ )
293
+ elif access_key is None and secret_key is not None:
294
+ raise ValueError(
295
+ 'In order to initialize with explicit credentials both '
296
+ 'access_key and secret_key must be provided, '
297
+ '`access_key` is not set.'
298
+ )
299
+
300
+ elif session_token is not None and (access_key is None or
301
+ secret_key is None):
302
+ raise ValueError(
303
+ 'In order to initialize a session with temporary credentials, '
304
+ 'both secret_key and access_key must be provided in addition '
305
+ 'to session_token.'
306
+ )
307
+
308
+ elif (access_key is not None or secret_key is not None):
309
+ if anonymous:
310
+ raise ValueError(
311
+ 'Cannot pass anonymous=True together with access_key '
312
+ 'and secret_key.')
313
+
314
+ if role_arn:
315
+ raise ValueError(
316
+ 'Cannot provide role_arn with access_key and secret_key')
317
+
318
+ if session_token is None:
319
+ session_token = ""
320
+
321
+ options = CS3Options.FromAccessKey(
322
+ tobytes(access_key),
323
+ tobytes(secret_key),
324
+ tobytes(session_token)
325
+ )
326
+ elif anonymous:
327
+ if role_arn:
328
+ raise ValueError(
329
+ 'Cannot provide role_arn with anonymous=True')
330
+
331
+ options = CS3Options.Anonymous()
332
+ elif role_arn:
333
+ if session_name is None:
334
+ session_name = ''
335
+ if external_id is None:
336
+ external_id = ''
337
+
338
+ options = CS3Options.FromAssumeRole(
339
+ tobytes(role_arn),
340
+ tobytes(session_name),
341
+ tobytes(external_id),
342
+ load_frequency
343
+ )
344
+ else:
345
+ options = CS3Options.Defaults()
346
+
347
+ if region is not None:
348
+ options.value().region = tobytes(region)
349
+ if request_timeout is not None:
350
+ options.value().request_timeout = request_timeout
351
+ if connect_timeout is not None:
352
+ options.value().connect_timeout = connect_timeout
353
+ if scheme is not None:
354
+ options.value().scheme = tobytes(scheme)
355
+ if endpoint_override is not None:
356
+ options.value().endpoint_override = tobytes(endpoint_override)
357
+ if background_writes is not None:
358
+ options.value().background_writes = background_writes
359
+ if default_metadata is not None:
360
+ if not isinstance(default_metadata, KeyValueMetadata):
361
+ default_metadata = KeyValueMetadata(default_metadata)
362
+ options.value().default_metadata = pyarrow_unwrap_metadata(
363
+ default_metadata)
364
+
365
+ if proxy_options is not None:
366
+ if isinstance(proxy_options, dict):
367
+ options.value().proxy_options.scheme = tobytes(
368
+ proxy_options["scheme"])
369
+ options.value().proxy_options.host = tobytes(
370
+ proxy_options["host"])
371
+ options.value().proxy_options.port = proxy_options["port"]
372
+ proxy_username = proxy_options.get("username", None)
373
+ if proxy_username:
374
+ options.value().proxy_options.username = tobytes(
375
+ proxy_username)
376
+ proxy_password = proxy_options.get("password", None)
377
+ if proxy_password:
378
+ options.value().proxy_options.password = tobytes(
379
+ proxy_password)
380
+ elif isinstance(proxy_options, str):
381
+ options.value().proxy_options = GetResultValue(
382
+ CS3ProxyOptions.FromUriString(tobytes(proxy_options)))
383
+ else:
384
+ raise TypeError(
385
+ "'proxy_options': expected 'dict' or 'str', "
386
+ f"got {type(proxy_options)} instead.")
387
+
388
+ options.value().allow_bucket_creation = allow_bucket_creation
389
+ options.value().allow_bucket_deletion = allow_bucket_deletion
390
+ options.value().force_virtual_addressing = force_virtual_addressing
391
+
392
+ if isinstance(retry_strategy, AwsStandardS3RetryStrategy):
393
+ options.value().retry_strategy = CS3RetryStrategy.GetAwsStandardRetryStrategy(
394
+ retry_strategy.max_attempts)
395
+ elif isinstance(retry_strategy, AwsDefaultS3RetryStrategy):
396
+ options.value().retry_strategy = CS3RetryStrategy.GetAwsDefaultRetryStrategy(
397
+ retry_strategy.max_attempts)
398
+ else:
399
+ raise ValueError(f'Invalid retry_strategy {retry_strategy!r}')
400
+
401
+ with nogil:
402
+ wrapped = GetResultValue(CS3FileSystem.Make(options.value()))
403
+
404
+ self.init(<shared_ptr[CFileSystem]> wrapped)
405
+
406
+ cdef init(self, const shared_ptr[CFileSystem]& wrapped):
407
+ FileSystem.init(self, wrapped)
408
+ self.s3fs = <CS3FileSystem*> wrapped.get()
409
+
410
+ @staticmethod
411
+ @binding(True) # Required for cython < 3
412
+ def _reconstruct(kwargs):
413
+ # __reduce__ doesn't allow passing named arguments directly to the
414
+ # reconstructor, hence this wrapper.
415
+ return S3FileSystem(**kwargs)
416
+
417
+ def __reduce__(self):
418
+ cdef CS3Options opts = self.s3fs.options()
419
+
420
+ # if creds were explicitly provided, then use them
421
+ # else obtain them as they were last time.
422
+ if opts.credentials_kind == CS3CredentialsKind_Explicit:
423
+ access_key = frombytes(opts.GetAccessKey())
424
+ secret_key = frombytes(opts.GetSecretKey())
425
+ session_token = frombytes(opts.GetSessionToken())
426
+ else:
427
+ access_key = None
428
+ secret_key = None
429
+ session_token = None
430
+
431
+ return (
432
+ S3FileSystem._reconstruct, (dict(
433
+ access_key=access_key,
434
+ secret_key=secret_key,
435
+ session_token=session_token,
436
+ anonymous=(opts.credentials_kind ==
437
+ CS3CredentialsKind_Anonymous),
438
+ region=frombytes(opts.region),
439
+ scheme=frombytes(opts.scheme),
440
+ connect_timeout=opts.connect_timeout,
441
+ request_timeout=opts.request_timeout,
442
+ endpoint_override=frombytes(opts.endpoint_override),
443
+ role_arn=frombytes(opts.role_arn),
444
+ session_name=frombytes(opts.session_name),
445
+ external_id=frombytes(opts.external_id),
446
+ load_frequency=opts.load_frequency,
447
+ background_writes=opts.background_writes,
448
+ allow_bucket_creation=opts.allow_bucket_creation,
449
+ allow_bucket_deletion=opts.allow_bucket_deletion,
450
+ default_metadata=pyarrow_wrap_metadata(opts.default_metadata),
451
+ proxy_options={'scheme': frombytes(opts.proxy_options.scheme),
452
+ 'host': frombytes(opts.proxy_options.host),
453
+ 'port': opts.proxy_options.port,
454
+ 'username': frombytes(
455
+ opts.proxy_options.username),
456
+ 'password': frombytes(
457
+ opts.proxy_options.password)},
458
+ force_virtual_addressing=opts.force_virtual_addressing,
459
+ ),)
460
+ )
461
+
462
+ @property
463
+ def region(self):
464
+ """
465
+ The AWS region this filesystem connects to.
466
+ """
467
+ return frombytes(self.s3fs.region())
llmeval-env/lib/python3.10/site-packages/pyarrow/acero.py ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ # ---------------------------------------------------------------------
19
+ # Implement Internal ExecPlan bindings
20
+
21
+ # cython: profile=False
22
+ # distutils: language = c++
23
+ # cython: language_level = 3
24
+
25
+ from pyarrow.lib import Table
26
+ from pyarrow.compute import Expression, field
27
+
28
+ try:
29
+ from pyarrow._acero import ( # noqa
30
+ Declaration,
31
+ ExecNodeOptions,
32
+ TableSourceNodeOptions,
33
+ FilterNodeOptions,
34
+ ProjectNodeOptions,
35
+ AggregateNodeOptions,
36
+ OrderByNodeOptions,
37
+ HashJoinNodeOptions,
38
+ AsofJoinNodeOptions,
39
+ )
40
+ except ImportError as exc:
41
+ raise ImportError(
42
+ f"The pyarrow installation is not built with support for 'acero' ({str(exc)})"
43
+ ) from None
44
+
45
+
46
+ try:
47
+ import pyarrow.dataset as ds
48
+ from pyarrow._dataset import ScanNodeOptions
49
+ except ImportError:
50
+ class DatasetModuleStub:
51
+ class Dataset:
52
+ pass
53
+
54
+ class InMemoryDataset:
55
+ pass
56
+ ds = DatasetModuleStub
57
+
58
+
59
+ def _dataset_to_decl(dataset, use_threads=True):
60
+ decl = Declaration("scan", ScanNodeOptions(dataset, use_threads=use_threads))
61
+
62
+ # Get rid of special dataset columns
63
+ # "__fragment_index", "__batch_index", "__last_in_fragment", "__filename"
64
+ projections = [field(f) for f in dataset.schema.names]
65
+ decl = Declaration.from_sequence(
66
+ [decl, Declaration("project", ProjectNodeOptions(projections))]
67
+ )
68
+
69
+ filter_expr = dataset._scan_options.get("filter")
70
+ if filter_expr is not None:
71
+ # Filters applied in CScanNodeOptions are "best effort" for the scan node itself
72
+ # so we always need to inject an additional Filter node to apply them for real.
73
+ decl = Declaration.from_sequence(
74
+ [decl, Declaration("filter", FilterNodeOptions(filter_expr))]
75
+ )
76
+
77
+ return decl
78
+
79
+
80
+ def _perform_join(join_type, left_operand, left_keys,
81
+ right_operand, right_keys,
82
+ left_suffix=None, right_suffix=None,
83
+ use_threads=True, coalesce_keys=False,
84
+ output_type=Table):
85
+ """
86
+ Perform join of two tables or datasets.
87
+
88
+ The result will be an output table with the result of the join operation
89
+
90
+ Parameters
91
+ ----------
92
+ join_type : str
93
+ One of supported join types.
94
+ left_operand : Table or Dataset
95
+ The left operand for the join operation.
96
+ left_keys : str or list[str]
97
+ The left key (or keys) on which the join operation should be performed.
98
+ right_operand : Table or Dataset
99
+ The right operand for the join operation.
100
+ right_keys : str or list[str]
101
+ The right key (or keys) on which the join operation should be performed.
102
+ left_suffix : str, default None
103
+ Which suffix to add to left column names. This prevents confusion
104
+ when the columns in left and right operands have colliding names.
105
+ right_suffix : str, default None
106
+ Which suffix to add to the right column names. This prevents confusion
107
+ when the columns in left and right operands have colliding names.
108
+ use_threads : bool, default True
109
+ Whether to use multithreading or not.
110
+ coalesce_keys : bool, default False
111
+ If the duplicated keys should be omitted from one of the sides
112
+ in the join result.
113
+ output_type: Table or InMemoryDataset
114
+ The output type for the exec plan result.
115
+
116
+ Returns
117
+ -------
118
+ result_table : Table or InMemoryDataset
119
+ """
120
+ if not isinstance(left_operand, (Table, ds.Dataset)):
121
+ raise TypeError(f"Expected Table or Dataset, got {type(left_operand)}")
122
+ if not isinstance(right_operand, (Table, ds.Dataset)):
123
+ raise TypeError(f"Expected Table or Dataset, got {type(right_operand)}")
124
+
125
+ # Prepare left and right tables Keys to send them to the C++ function
126
+ left_keys_order = {}
127
+ if not isinstance(left_keys, (tuple, list)):
128
+ left_keys = [left_keys]
129
+ for idx, key in enumerate(left_keys):
130
+ left_keys_order[key] = idx
131
+
132
+ right_keys_order = {}
133
+ if not isinstance(right_keys, (list, tuple)):
134
+ right_keys = [right_keys]
135
+ for idx, key in enumerate(right_keys):
136
+ right_keys_order[key] = idx
137
+
138
+ # By default expose all columns on both left and right table
139
+ left_columns = left_operand.schema.names
140
+ right_columns = right_operand.schema.names
141
+
142
+ # Pick the join type
143
+ if join_type == "left semi" or join_type == "left anti":
144
+ right_columns = []
145
+ elif join_type == "right semi" or join_type == "right anti":
146
+ left_columns = []
147
+ elif join_type == "inner" or join_type == "left outer":
148
+ right_columns = [
149
+ col for col in right_columns if col not in right_keys_order
150
+ ]
151
+ elif join_type == "right outer":
152
+ left_columns = [
153
+ col for col in left_columns if col not in left_keys_order
154
+ ]
155
+
156
+ # Turn the columns to vectors of FieldRefs
157
+ # and set aside indices of keys.
158
+ left_column_keys_indices = {}
159
+ for idx, colname in enumerate(left_columns):
160
+ if colname in left_keys:
161
+ left_column_keys_indices[colname] = idx
162
+ right_column_keys_indices = {}
163
+ for idx, colname in enumerate(right_columns):
164
+ if colname in right_keys:
165
+ right_column_keys_indices[colname] = idx
166
+
167
+ # Add the join node to the execplan
168
+ if isinstance(left_operand, ds.Dataset):
169
+ left_source = _dataset_to_decl(left_operand, use_threads=use_threads)
170
+ else:
171
+ left_source = Declaration("table_source", TableSourceNodeOptions(left_operand))
172
+ if isinstance(right_operand, ds.Dataset):
173
+ right_source = _dataset_to_decl(right_operand, use_threads=use_threads)
174
+ else:
175
+ right_source = Declaration(
176
+ "table_source", TableSourceNodeOptions(right_operand)
177
+ )
178
+
179
+ if coalesce_keys:
180
+ join_opts = HashJoinNodeOptions(
181
+ join_type, left_keys, right_keys, left_columns, right_columns,
182
+ output_suffix_for_left=left_suffix or "",
183
+ output_suffix_for_right=right_suffix or "",
184
+ )
185
+ else:
186
+ join_opts = HashJoinNodeOptions(
187
+ join_type, left_keys, right_keys,
188
+ output_suffix_for_left=left_suffix or "",
189
+ output_suffix_for_right=right_suffix or "",
190
+ )
191
+ decl = Declaration(
192
+ "hashjoin", options=join_opts, inputs=[left_source, right_source]
193
+ )
194
+
195
+ if coalesce_keys and join_type == "full outer":
196
+ # In case of full outer joins, the join operation will output all columns
197
+ # so that we can coalesce the keys and exclude duplicates in a subsequent
198
+ # projection.
199
+ left_columns_set = set(left_columns)
200
+ right_columns_set = set(right_columns)
201
+ # Where the right table columns start.
202
+ right_operand_index = len(left_columns)
203
+ projected_col_names = []
204
+ projections = []
205
+ for idx, col in enumerate(left_columns + right_columns):
206
+ if idx < len(left_columns) and col in left_column_keys_indices:
207
+ # Include keys only once and coalesce left+right table keys.
208
+ projected_col_names.append(col)
209
+ # Get the index of the right key that is being paired
210
+ # with this left key. We do so by retrieving the name
211
+ # of the right key that is in the same position in the provided keys
212
+ # and then looking up the index for that name in the right table.
213
+ right_key_index = right_column_keys_indices[
214
+ right_keys[left_keys_order[col]]]
215
+ projections.append(
216
+ Expression._call("coalesce", [
217
+ Expression._field(idx), Expression._field(
218
+ right_operand_index+right_key_index)
219
+ ])
220
+ )
221
+ elif idx >= right_operand_index and col in right_column_keys_indices:
222
+ # Do not include right table keys. As they would lead to duplicated keys
223
+ continue
224
+ else:
225
+ # For all the other columns include them as they are.
226
+ # Just recompute the suffixes that the join produced as the projection
227
+ # would lose them otherwise.
228
+ if (
229
+ left_suffix and idx < right_operand_index
230
+ and col in right_columns_set
231
+ ):
232
+ col += left_suffix
233
+ if (
234
+ right_suffix and idx >= right_operand_index
235
+ and col in left_columns_set
236
+ ):
237
+ col += right_suffix
238
+ projected_col_names.append(col)
239
+ projections.append(
240
+ Expression._field(idx)
241
+ )
242
+ projection = Declaration(
243
+ "project", ProjectNodeOptions(projections, projected_col_names)
244
+ )
245
+ decl = Declaration.from_sequence([decl, projection])
246
+
247
+ result_table = decl.to_table(use_threads=use_threads)
248
+
249
+ if output_type == Table:
250
+ return result_table
251
+ elif output_type == ds.InMemoryDataset:
252
+ return ds.InMemoryDataset(result_table)
253
+ else:
254
+ raise TypeError("Unsupported output type")
255
+
256
+
257
+ def _perform_join_asof(left_operand, left_on, left_by,
258
+ right_operand, right_on, right_by,
259
+ tolerance, use_threads=True,
260
+ output_type=Table):
261
+ """
262
+ Perform asof join of two tables or datasets.
263
+
264
+ The result will be an output table with the result of the join operation
265
+
266
+ Parameters
267
+ ----------
268
+ left_operand : Table or Dataset
269
+ The left operand for the join operation.
270
+ left_on : str
271
+ The left key (or keys) on which the join operation should be performed.
272
+ left_by: str or list[str]
273
+ The left key (or keys) on which the join operation should be performed.
274
+ right_operand : Table or Dataset
275
+ The right operand for the join operation.
276
+ right_on : str or list[str]
277
+ The right key (or keys) on which the join operation should be performed.
278
+ right_by: str or list[str]
279
+ The right key (or keys) on which the join operation should be performed.
280
+ tolerance : int
281
+ The tolerance to use for the asof join. The tolerance is interpreted in
282
+ the same units as the "on" key.
283
+ output_type: Table or InMemoryDataset
284
+ The output type for the exec plan result.
285
+
286
+ Returns
287
+ -------
288
+ result_table : Table or InMemoryDataset
289
+ """
290
+ if not isinstance(left_operand, (Table, ds.Dataset)):
291
+ raise TypeError(f"Expected Table or Dataset, got {type(left_operand)}")
292
+ if not isinstance(right_operand, (Table, ds.Dataset)):
293
+ raise TypeError(f"Expected Table or Dataset, got {type(right_operand)}")
294
+
295
+ if not isinstance(left_by, (tuple, list)):
296
+ left_by = [left_by]
297
+ if not isinstance(right_by, (tuple, list)):
298
+ right_by = [right_by]
299
+
300
+ # AsofJoin does not return on or by columns for right_operand.
301
+ right_columns = [
302
+ col for col in right_operand.schema.names
303
+ if col not in [right_on] + right_by
304
+ ]
305
+ columns_collisions = set(left_operand.schema.names) & set(right_columns)
306
+ if columns_collisions:
307
+ raise ValueError(
308
+ "Columns {} present in both tables. AsofJoin does not support "
309
+ "column collisions.".format(columns_collisions),
310
+ )
311
+
312
+ # Add the join node to the execplan
313
+ if isinstance(left_operand, ds.Dataset):
314
+ left_source = _dataset_to_decl(left_operand, use_threads=use_threads)
315
+ else:
316
+ left_source = Declaration(
317
+ "table_source", TableSourceNodeOptions(left_operand),
318
+ )
319
+ if isinstance(right_operand, ds.Dataset):
320
+ right_source = _dataset_to_decl(right_operand, use_threads=use_threads)
321
+ else:
322
+ right_source = Declaration(
323
+ "table_source", TableSourceNodeOptions(right_operand)
324
+ )
325
+
326
+ join_opts = AsofJoinNodeOptions(
327
+ left_on, left_by, right_on, right_by, tolerance
328
+ )
329
+ decl = Declaration(
330
+ "asofjoin", options=join_opts, inputs=[left_source, right_source]
331
+ )
332
+
333
+ result_table = decl.to_table(use_threads=use_threads)
334
+
335
+ if output_type == Table:
336
+ return result_table
337
+ elif output_type == ds.InMemoryDataset:
338
+ return ds.InMemoryDataset(result_table)
339
+ else:
340
+ raise TypeError("Unsupported output type")
341
+
342
+
343
+ def _filter_table(table, expression):
344
+ """Filter rows of a table based on the provided expression.
345
+
346
+ The result will be an output table with only the rows matching
347
+ the provided expression.
348
+
349
+ Parameters
350
+ ----------
351
+ table : Table or Dataset
352
+ Table or Dataset that should be filtered.
353
+ expression : Expression
354
+ The expression on which rows should be filtered.
355
+
356
+ Returns
357
+ -------
358
+ Table
359
+ """
360
+ decl = Declaration.from_sequence([
361
+ Declaration("table_source", options=TableSourceNodeOptions(table)),
362
+ Declaration("filter", options=FilterNodeOptions(expression))
363
+ ])
364
+ return decl.to_table(use_threads=True)
365
+
366
+
367
+ def _sort_source(table_or_dataset, sort_keys, output_type=Table, **kwargs):
368
+
369
+ if isinstance(table_or_dataset, ds.Dataset):
370
+ data_source = _dataset_to_decl(table_or_dataset, use_threads=True)
371
+ else:
372
+ data_source = Declaration(
373
+ "table_source", TableSourceNodeOptions(table_or_dataset)
374
+ )
375
+
376
+ order_by = Declaration("order_by", OrderByNodeOptions(sort_keys, **kwargs))
377
+
378
+ decl = Declaration.from_sequence([data_source, order_by])
379
+ result_table = decl.to_table(use_threads=True)
380
+
381
+ if output_type == Table:
382
+ return result_table
383
+ elif output_type == ds.InMemoryDataset:
384
+ return ds.InMemoryDataset(result_table)
385
+ else:
386
+ raise TypeError("Unsupported output type")
387
+
388
+
389
+ def _group_by(table, aggregates, keys, use_threads=True):
390
+
391
+ decl = Declaration.from_sequence([
392
+ Declaration("table_source", TableSourceNodeOptions(table)),
393
+ Declaration("aggregate", AggregateNodeOptions(aggregates, keys=keys))
394
+ ])
395
+ return decl.to_table(use_threads=use_threads)
llmeval-env/lib/python3.10/site-packages/pyarrow/compat.pxi ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+
19
+ def encode_file_path(path):
20
+ if isinstance(path, str):
21
+ # POSIX systems can handle utf-8. UTF8 is converted to utf16-le in
22
+ # libarrow
23
+ encoded_path = path.encode('utf-8')
24
+ else:
25
+ encoded_path = path
26
+
27
+ # Windows file system requires utf-16le for file names; Arrow C++ libraries
28
+ # will convert utf8 to utf16
29
+ return encoded_path
30
+
31
+
32
+ # Starting with Python 3.7, dicts are guaranteed to be insertion-ordered.
33
+ ordered_dict = dict
34
+
35
+
36
+ try:
37
+ import cloudpickle as pickle
38
+ except ImportError:
39
+ import pickle
40
+
41
+
42
+ def tobytes(o):
43
+ """
44
+ Encode a unicode or bytes string to bytes.
45
+
46
+ Parameters
47
+ ----------
48
+ o : str or bytes
49
+ Input string.
50
+ """
51
+ if isinstance(o, str):
52
+ return o.encode('utf8')
53
+ else:
54
+ return o
55
+
56
+
57
+ def frombytes(o, *, safe=False):
58
+ """
59
+ Decode the given bytestring to unicode.
60
+
61
+ Parameters
62
+ ----------
63
+ o : bytes-like
64
+ Input object.
65
+ safe : bool, default False
66
+ If true, raise on encoding errors.
67
+ """
68
+ if safe:
69
+ return o.decode('utf8', errors='replace')
70
+ else:
71
+ return o.decode('utf8')
llmeval-env/lib/python3.10/site-packages/pyarrow/compute.py ADDED
@@ -0,0 +1,731 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ from pyarrow._compute import ( # noqa
19
+ Function,
20
+ FunctionOptions,
21
+ FunctionRegistry,
22
+ HashAggregateFunction,
23
+ HashAggregateKernel,
24
+ Kernel,
25
+ ScalarAggregateFunction,
26
+ ScalarAggregateKernel,
27
+ ScalarFunction,
28
+ ScalarKernel,
29
+ VectorFunction,
30
+ VectorKernel,
31
+ # Option classes
32
+ ArraySortOptions,
33
+ AssumeTimezoneOptions,
34
+ CastOptions,
35
+ CountOptions,
36
+ CumulativeOptions,
37
+ CumulativeSumOptions,
38
+ DayOfWeekOptions,
39
+ DictionaryEncodeOptions,
40
+ RunEndEncodeOptions,
41
+ ElementWiseAggregateOptions,
42
+ ExtractRegexOptions,
43
+ FilterOptions,
44
+ IndexOptions,
45
+ JoinOptions,
46
+ ListSliceOptions,
47
+ MakeStructOptions,
48
+ MapLookupOptions,
49
+ MatchSubstringOptions,
50
+ ModeOptions,
51
+ NullOptions,
52
+ PadOptions,
53
+ PairwiseOptions,
54
+ PartitionNthOptions,
55
+ QuantileOptions,
56
+ RandomOptions,
57
+ RankOptions,
58
+ ReplaceSliceOptions,
59
+ ReplaceSubstringOptions,
60
+ RoundBinaryOptions,
61
+ RoundOptions,
62
+ RoundTemporalOptions,
63
+ RoundToMultipleOptions,
64
+ ScalarAggregateOptions,
65
+ SelectKOptions,
66
+ SetLookupOptions,
67
+ SliceOptions,
68
+ SortOptions,
69
+ SplitOptions,
70
+ SplitPatternOptions,
71
+ StrftimeOptions,
72
+ StrptimeOptions,
73
+ StructFieldOptions,
74
+ TakeOptions,
75
+ TDigestOptions,
76
+ TrimOptions,
77
+ Utf8NormalizeOptions,
78
+ VarianceOptions,
79
+ WeekOptions,
80
+ # Functions
81
+ call_function,
82
+ function_registry,
83
+ get_function,
84
+ list_functions,
85
+ # Udf
86
+ call_tabular_function,
87
+ register_scalar_function,
88
+ register_tabular_function,
89
+ register_aggregate_function,
90
+ register_vector_function,
91
+ UdfContext,
92
+ # Expressions
93
+ Expression,
94
+ )
95
+
96
+ from collections import namedtuple
97
+ import inspect
98
+ from textwrap import dedent
99
+ import warnings
100
+
101
+ import pyarrow as pa
102
+ from pyarrow import _compute_docstrings
103
+ from pyarrow.vendored import docscrape
104
+
105
+
106
+ def _get_arg_names(func):
107
+ return func._doc.arg_names
108
+
109
+
110
+ _OptionsClassDoc = namedtuple('_OptionsClassDoc', ('params',))
111
+
112
+
113
+ def _scrape_options_class_doc(options_class):
114
+ if not options_class.__doc__:
115
+ return None
116
+ doc = docscrape.NumpyDocString(options_class.__doc__)
117
+ return _OptionsClassDoc(doc['Parameters'])
118
+
119
+
120
+ def _decorate_compute_function(wrapper, exposed_name, func, options_class):
121
+ # Decorate the given compute function wrapper with useful metadata
122
+ # and documentation.
123
+ cpp_doc = func._doc
124
+
125
+ wrapper.__arrow_compute_function__ = dict(
126
+ name=func.name,
127
+ arity=func.arity,
128
+ options_class=cpp_doc.options_class,
129
+ options_required=cpp_doc.options_required)
130
+ wrapper.__name__ = exposed_name
131
+ wrapper.__qualname__ = exposed_name
132
+
133
+ doc_pieces = []
134
+
135
+ # 1. One-line summary
136
+ summary = cpp_doc.summary
137
+ if not summary:
138
+ arg_str = "arguments" if func.arity > 1 else "argument"
139
+ summary = ("Call compute function {!r} with the given {}"
140
+ .format(func.name, arg_str))
141
+
142
+ doc_pieces.append(f"{summary}.\n\n")
143
+
144
+ # 2. Multi-line description
145
+ description = cpp_doc.description
146
+ if description:
147
+ doc_pieces.append(f"{description}\n\n")
148
+
149
+ doc_addition = _compute_docstrings.function_doc_additions.get(func.name)
150
+
151
+ # 3. Parameter description
152
+ doc_pieces.append(dedent("""\
153
+ Parameters
154
+ ----------
155
+ """))
156
+
157
+ # 3a. Compute function parameters
158
+ arg_names = _get_arg_names(func)
159
+ for arg_name in arg_names:
160
+ if func.kind in ('vector', 'scalar_aggregate'):
161
+ arg_type = 'Array-like'
162
+ else:
163
+ arg_type = 'Array-like or scalar-like'
164
+ doc_pieces.append(f"{arg_name} : {arg_type}\n")
165
+ doc_pieces.append(" Argument to compute function.\n")
166
+
167
+ # 3b. Compute function option values
168
+ if options_class is not None:
169
+ options_class_doc = _scrape_options_class_doc(options_class)
170
+ if options_class_doc:
171
+ for p in options_class_doc.params:
172
+ doc_pieces.append(f"{p.name} : {p.type}\n")
173
+ for s in p.desc:
174
+ doc_pieces.append(f" {s}\n")
175
+ else:
176
+ warnings.warn(f"Options class {options_class.__name__} "
177
+ f"does not have a docstring", RuntimeWarning)
178
+ options_sig = inspect.signature(options_class)
179
+ for p in options_sig.parameters.values():
180
+ doc_pieces.append(dedent("""\
181
+ {0} : optional
182
+ Parameter for {1} constructor. Either `options`
183
+ or `{0}` can be passed, but not both at the same time.
184
+ """.format(p.name, options_class.__name__)))
185
+ doc_pieces.append(dedent(f"""\
186
+ options : pyarrow.compute.{options_class.__name__}, optional
187
+ Alternative way of passing options.
188
+ """))
189
+
190
+ doc_pieces.append(dedent("""\
191
+ memory_pool : pyarrow.MemoryPool, optional
192
+ If not passed, will allocate memory from the default memory pool.
193
+ """))
194
+
195
+ # 4. Custom addition (e.g. examples)
196
+ if doc_addition is not None:
197
+ doc_pieces.append("\n{}\n".format(dedent(doc_addition).strip("\n")))
198
+
199
+ wrapper.__doc__ = "".join(doc_pieces)
200
+ return wrapper
201
+
202
+
203
+ def _get_options_class(func):
204
+ class_name = func._doc.options_class
205
+ if not class_name:
206
+ return None
207
+ try:
208
+ return globals()[class_name]
209
+ except KeyError:
210
+ warnings.warn("Python binding for {} not exposed"
211
+ .format(class_name), RuntimeWarning)
212
+ return None
213
+
214
+
215
+ def _handle_options(name, options_class, options, args, kwargs):
216
+ if args or kwargs:
217
+ if options is not None:
218
+ raise TypeError(
219
+ "Function {!r} called with both an 'options' argument "
220
+ "and additional arguments"
221
+ .format(name))
222
+ return options_class(*args, **kwargs)
223
+
224
+ if options is not None:
225
+ if isinstance(options, dict):
226
+ return options_class(**options)
227
+ elif isinstance(options, options_class):
228
+ return options
229
+ raise TypeError(
230
+ "Function {!r} expected a {} parameter, got {}"
231
+ .format(name, options_class, type(options)))
232
+
233
+ return None
234
+
235
+
236
+ def _make_generic_wrapper(func_name, func, options_class, arity):
237
+ if options_class is None:
238
+ def wrapper(*args, memory_pool=None):
239
+ if arity is not Ellipsis and len(args) != arity:
240
+ raise TypeError(
241
+ f"{func_name} takes {arity} positional argument(s), "
242
+ f"but {len(args)} were given"
243
+ )
244
+ if args and isinstance(args[0], Expression):
245
+ return Expression._call(func_name, list(args))
246
+ return func.call(args, None, memory_pool)
247
+ else:
248
+ def wrapper(*args, memory_pool=None, options=None, **kwargs):
249
+ if arity is not Ellipsis:
250
+ if len(args) < arity:
251
+ raise TypeError(
252
+ f"{func_name} takes {arity} positional argument(s), "
253
+ f"but {len(args)} were given"
254
+ )
255
+ option_args = args[arity:]
256
+ args = args[:arity]
257
+ else:
258
+ option_args = ()
259
+ options = _handle_options(func_name, options_class, options,
260
+ option_args, kwargs)
261
+ if args and isinstance(args[0], Expression):
262
+ return Expression._call(func_name, list(args), options)
263
+ return func.call(args, options, memory_pool)
264
+ return wrapper
265
+
266
+
267
+ def _make_signature(arg_names, var_arg_names, options_class):
268
+ from inspect import Parameter
269
+ params = []
270
+ for name in arg_names:
271
+ params.append(Parameter(name, Parameter.POSITIONAL_ONLY))
272
+ for name in var_arg_names:
273
+ params.append(Parameter(name, Parameter.VAR_POSITIONAL))
274
+ if options_class is not None:
275
+ options_sig = inspect.signature(options_class)
276
+ for p in options_sig.parameters.values():
277
+ assert p.kind in (Parameter.POSITIONAL_OR_KEYWORD,
278
+ Parameter.KEYWORD_ONLY)
279
+ if var_arg_names:
280
+ # Cannot have a positional argument after a *args
281
+ p = p.replace(kind=Parameter.KEYWORD_ONLY)
282
+ params.append(p)
283
+ params.append(Parameter("options", Parameter.KEYWORD_ONLY,
284
+ default=None))
285
+ params.append(Parameter("memory_pool", Parameter.KEYWORD_ONLY,
286
+ default=None))
287
+ return inspect.Signature(params)
288
+
289
+
290
+ def _wrap_function(name, func):
291
+ options_class = _get_options_class(func)
292
+ arg_names = _get_arg_names(func)
293
+ has_vararg = arg_names and arg_names[-1].startswith('*')
294
+ if has_vararg:
295
+ var_arg_names = [arg_names.pop().lstrip('*')]
296
+ else:
297
+ var_arg_names = []
298
+
299
+ wrapper = _make_generic_wrapper(
300
+ name, func, options_class, arity=func.arity)
301
+ wrapper.__signature__ = _make_signature(arg_names, var_arg_names,
302
+ options_class)
303
+ return _decorate_compute_function(wrapper, name, func, options_class)
304
+
305
+
306
+ def _make_global_functions():
307
+ """
308
+ Make global functions wrapping each compute function.
309
+
310
+ Note that some of the automatically-generated wrappers may be overridden
311
+ by custom versions below.
312
+ """
313
+ g = globals()
314
+ reg = function_registry()
315
+
316
+ # Avoid clashes with Python keywords
317
+ rewrites = {'and': 'and_',
318
+ 'or': 'or_'}
319
+
320
+ for cpp_name in reg.list_functions():
321
+ name = rewrites.get(cpp_name, cpp_name)
322
+ func = reg.get_function(cpp_name)
323
+ if func.kind == "hash_aggregate":
324
+ # Hash aggregate functions are not callable,
325
+ # so let's not expose them at module level.
326
+ continue
327
+ if func.kind == "scalar_aggregate" and func.arity == 0:
328
+ # Nullary scalar aggregate functions are not callable
329
+ # directly so let's not expose them at module level.
330
+ continue
331
+ assert name not in g, name
332
+ g[cpp_name] = g[name] = _wrap_function(name, func)
333
+
334
+
335
+ _make_global_functions()
336
+
337
+
338
+ def cast(arr, target_type=None, safe=None, options=None, memory_pool=None):
339
+ """
340
+ Cast array values to another data type. Can also be invoked as an array
341
+ instance method.
342
+
343
+ Parameters
344
+ ----------
345
+ arr : Array-like
346
+ target_type : DataType or str
347
+ Type to cast to
348
+ safe : bool, default True
349
+ Check for overflows or other unsafe conversions
350
+ options : CastOptions, default None
351
+ Additional checks pass by CastOptions
352
+ memory_pool : MemoryPool, optional
353
+ memory pool to use for allocations during function execution.
354
+
355
+ Examples
356
+ --------
357
+ >>> from datetime import datetime
358
+ >>> import pyarrow as pa
359
+ >>> arr = pa.array([datetime(2010, 1, 1), datetime(2015, 1, 1)])
360
+ >>> arr.type
361
+ TimestampType(timestamp[us])
362
+
363
+ You can use ``pyarrow.DataType`` objects to specify the target type:
364
+
365
+ >>> cast(arr, pa.timestamp('ms'))
366
+ <pyarrow.lib.TimestampArray object at ...>
367
+ [
368
+ 2010-01-01 00:00:00.000,
369
+ 2015-01-01 00:00:00.000
370
+ ]
371
+
372
+ >>> cast(arr, pa.timestamp('ms')).type
373
+ TimestampType(timestamp[ms])
374
+
375
+ Alternatively, it is also supported to use the string aliases for these
376
+ types:
377
+
378
+ >>> arr.cast('timestamp[ms]')
379
+ <pyarrow.lib.TimestampArray object at ...>
380
+ [
381
+ 2010-01-01 00:00:00.000,
382
+ 2015-01-01 00:00:00.000
383
+ ]
384
+ >>> arr.cast('timestamp[ms]').type
385
+ TimestampType(timestamp[ms])
386
+
387
+ Returns
388
+ -------
389
+ casted : Array
390
+ The cast result as a new Array
391
+ """
392
+ safe_vars_passed = (safe is not None) or (target_type is not None)
393
+
394
+ if safe_vars_passed and (options is not None):
395
+ raise ValueError("Must either pass values for 'target_type' and 'safe'"
396
+ " or pass a value for 'options'")
397
+
398
+ if options is None:
399
+ target_type = pa.types.lib.ensure_type(target_type)
400
+ if safe is False:
401
+ options = CastOptions.unsafe(target_type)
402
+ else:
403
+ options = CastOptions.safe(target_type)
404
+ return call_function("cast", [arr], options, memory_pool)
405
+
406
+
407
+ def index(data, value, start=None, end=None, *, memory_pool=None):
408
+ """
409
+ Find the index of the first occurrence of a given value.
410
+
411
+ Parameters
412
+ ----------
413
+ data : Array-like
414
+ value : Scalar-like object
415
+ The value to search for.
416
+ start : int, optional
417
+ end : int, optional
418
+ memory_pool : MemoryPool, optional
419
+ If not passed, will allocate memory from the default memory pool.
420
+
421
+ Returns
422
+ -------
423
+ index : int
424
+ the index, or -1 if not found
425
+ """
426
+ if start is not None:
427
+ if end is not None:
428
+ data = data.slice(start, end - start)
429
+ else:
430
+ data = data.slice(start)
431
+ elif end is not None:
432
+ data = data.slice(0, end)
433
+
434
+ if not isinstance(value, pa.Scalar):
435
+ value = pa.scalar(value, type=data.type)
436
+ elif data.type != value.type:
437
+ value = pa.scalar(value.as_py(), type=data.type)
438
+ options = IndexOptions(value=value)
439
+ result = call_function('index', [data], options, memory_pool)
440
+ if start is not None and result.as_py() >= 0:
441
+ result = pa.scalar(result.as_py() + start, type=pa.int64())
442
+ return result
443
+
444
+
445
+ def take(data, indices, *, boundscheck=True, memory_pool=None):
446
+ """
447
+ Select values (or records) from array- or table-like data given integer
448
+ selection indices.
449
+
450
+ The result will be of the same type(s) as the input, with elements taken
451
+ from the input array (or record batch / table fields) at the given
452
+ indices. If an index is null then the corresponding value in the output
453
+ will be null.
454
+
455
+ Parameters
456
+ ----------
457
+ data : Array, ChunkedArray, RecordBatch, or Table
458
+ indices : Array, ChunkedArray
459
+ Must be of integer type
460
+ boundscheck : boolean, default True
461
+ Whether to boundscheck the indices. If False and there is an out of
462
+ bounds index, will likely cause the process to crash.
463
+ memory_pool : MemoryPool, optional
464
+ If not passed, will allocate memory from the default memory pool.
465
+
466
+ Returns
467
+ -------
468
+ result : depends on inputs
469
+ Selected values for the given indices
470
+
471
+ Examples
472
+ --------
473
+ >>> import pyarrow as pa
474
+ >>> arr = pa.array(["a", "b", "c", None, "e", "f"])
475
+ >>> indices = pa.array([0, None, 4, 3])
476
+ >>> arr.take(indices)
477
+ <pyarrow.lib.StringArray object at ...>
478
+ [
479
+ "a",
480
+ null,
481
+ "e",
482
+ null
483
+ ]
484
+ """
485
+ options = TakeOptions(boundscheck=boundscheck)
486
+ return call_function('take', [data, indices], options, memory_pool)
487
+
488
+
489
+ def fill_null(values, fill_value):
490
+ """Replace each null element in values with a corresponding
491
+ element from fill_value.
492
+
493
+ If fill_value is scalar-like, then every null element in values
494
+ will be replaced with fill_value. If fill_value is array-like,
495
+ then the i-th element in values will be replaced with the i-th
496
+ element in fill_value.
497
+
498
+ The fill_value's type must be the same as that of values, or it
499
+ must be able to be implicitly casted to the array's type.
500
+
501
+ This is an alias for :func:`coalesce`.
502
+
503
+ Parameters
504
+ ----------
505
+ values : Array, ChunkedArray, or Scalar-like object
506
+ Each null element is replaced with the corresponding value
507
+ from fill_value.
508
+ fill_value : Array, ChunkedArray, or Scalar-like object
509
+ If not same type as values, will attempt to cast.
510
+
511
+ Returns
512
+ -------
513
+ result : depends on inputs
514
+ Values with all null elements replaced
515
+
516
+ Examples
517
+ --------
518
+ >>> import pyarrow as pa
519
+ >>> arr = pa.array([1, 2, None, 3], type=pa.int8())
520
+ >>> fill_value = pa.scalar(5, type=pa.int8())
521
+ >>> arr.fill_null(fill_value)
522
+ <pyarrow.lib.Int8Array object at ...>
523
+ [
524
+ 1,
525
+ 2,
526
+ 5,
527
+ 3
528
+ ]
529
+ >>> arr = pa.array([1, 2, None, 4, None])
530
+ >>> arr.fill_null(pa.array([10, 20, 30, 40, 50]))
531
+ <pyarrow.lib.Int64Array object at ...>
532
+ [
533
+ 1,
534
+ 2,
535
+ 30,
536
+ 4,
537
+ 50
538
+ ]
539
+ """
540
+ if not isinstance(fill_value, (pa.Array, pa.ChunkedArray, pa.Scalar)):
541
+ fill_value = pa.scalar(fill_value, type=values.type)
542
+ elif values.type != fill_value.type:
543
+ fill_value = pa.scalar(fill_value.as_py(), type=values.type)
544
+
545
+ return call_function("coalesce", [values, fill_value])
546
+
547
+
548
+ def top_k_unstable(values, k, sort_keys=None, *, memory_pool=None):
549
+ """
550
+ Select the indices of the top-k ordered elements from array- or table-like
551
+ data.
552
+
553
+ This is a specialization for :func:`select_k_unstable`. Output is not
554
+ guaranteed to be stable.
555
+
556
+ Parameters
557
+ ----------
558
+ values : Array, ChunkedArray, RecordBatch, or Table
559
+ Data to sort and get top indices from.
560
+ k : int
561
+ The number of `k` elements to keep.
562
+ sort_keys : List-like
563
+ Column key names to order by when input is table-like data.
564
+ memory_pool : MemoryPool, optional
565
+ If not passed, will allocate memory from the default memory pool.
566
+
567
+ Returns
568
+ -------
569
+ result : Array
570
+ Indices of the top-k ordered elements
571
+
572
+ Examples
573
+ --------
574
+ >>> import pyarrow as pa
575
+ >>> import pyarrow.compute as pc
576
+ >>> arr = pa.array(["a", "b", "c", None, "e", "f"])
577
+ >>> pc.top_k_unstable(arr, k=3)
578
+ <pyarrow.lib.UInt64Array object at ...>
579
+ [
580
+ 5,
581
+ 4,
582
+ 2
583
+ ]
584
+ """
585
+ if sort_keys is None:
586
+ sort_keys = []
587
+ if isinstance(values, (pa.Array, pa.ChunkedArray)):
588
+ sort_keys.append(("dummy", "descending"))
589
+ else:
590
+ sort_keys = map(lambda key_name: (key_name, "descending"), sort_keys)
591
+ options = SelectKOptions(k, sort_keys)
592
+ return call_function("select_k_unstable", [values], options, memory_pool)
593
+
594
+
595
+ def bottom_k_unstable(values, k, sort_keys=None, *, memory_pool=None):
596
+ """
597
+ Select the indices of the bottom-k ordered elements from
598
+ array- or table-like data.
599
+
600
+ This is a specialization for :func:`select_k_unstable`. Output is not
601
+ guaranteed to be stable.
602
+
603
+ Parameters
604
+ ----------
605
+ values : Array, ChunkedArray, RecordBatch, or Table
606
+ Data to sort and get bottom indices from.
607
+ k : int
608
+ The number of `k` elements to keep.
609
+ sort_keys : List-like
610
+ Column key names to order by when input is table-like data.
611
+ memory_pool : MemoryPool, optional
612
+ If not passed, will allocate memory from the default memory pool.
613
+
614
+ Returns
615
+ -------
616
+ result : Array of indices
617
+ Indices of the bottom-k ordered elements
618
+
619
+ Examples
620
+ --------
621
+ >>> import pyarrow as pa
622
+ >>> import pyarrow.compute as pc
623
+ >>> arr = pa.array(["a", "b", "c", None, "e", "f"])
624
+ >>> pc.bottom_k_unstable(arr, k=3)
625
+ <pyarrow.lib.UInt64Array object at ...>
626
+ [
627
+ 0,
628
+ 1,
629
+ 2
630
+ ]
631
+ """
632
+ if sort_keys is None:
633
+ sort_keys = []
634
+ if isinstance(values, (pa.Array, pa.ChunkedArray)):
635
+ sort_keys.append(("dummy", "ascending"))
636
+ else:
637
+ sort_keys = map(lambda key_name: (key_name, "ascending"), sort_keys)
638
+ options = SelectKOptions(k, sort_keys)
639
+ return call_function("select_k_unstable", [values], options, memory_pool)
640
+
641
+
642
+ def random(n, *, initializer='system', options=None, memory_pool=None):
643
+ """
644
+ Generate numbers in the range [0, 1).
645
+
646
+ Generated values are uniformly-distributed, double-precision
647
+ in range [0, 1). Algorithm and seed can be changed via RandomOptions.
648
+
649
+ Parameters
650
+ ----------
651
+ n : int
652
+ Number of values to generate, must be greater than or equal to 0
653
+ initializer : int or str
654
+ How to initialize the underlying random generator.
655
+ If an integer is given, it is used as a seed.
656
+ If "system" is given, the random generator is initialized with
657
+ a system-specific source of (hopefully true) randomness.
658
+ Other values are invalid.
659
+ options : pyarrow.compute.RandomOptions, optional
660
+ Alternative way of passing options.
661
+ memory_pool : pyarrow.MemoryPool, optional
662
+ If not passed, will allocate memory from the default memory pool.
663
+ """
664
+ options = RandomOptions(initializer=initializer)
665
+ return call_function("random", [], options, memory_pool, length=n)
666
+
667
+
668
+ def field(*name_or_index):
669
+ """Reference a column of the dataset.
670
+
671
+ Stores only the field's name. Type and other information is known only when
672
+ the expression is bound to a dataset having an explicit scheme.
673
+
674
+ Nested references are allowed by passing multiple names or a tuple of
675
+ names. For example ``('foo', 'bar')`` references the field named "bar"
676
+ inside the field named "foo".
677
+
678
+ Parameters
679
+ ----------
680
+ *name_or_index : string, multiple strings, tuple or int
681
+ The name or index of the (possibly nested) field the expression
682
+ references to.
683
+
684
+ Returns
685
+ -------
686
+ field_expr : Expression
687
+ Reference to the given field
688
+
689
+ Examples
690
+ --------
691
+ >>> import pyarrow.compute as pc
692
+ >>> pc.field("a")
693
+ <pyarrow.compute.Expression a>
694
+ >>> pc.field(1)
695
+ <pyarrow.compute.Expression FieldPath(1)>
696
+ >>> pc.field(("a", "b"))
697
+ <pyarrow.compute.Expression FieldRef.Nested(FieldRef.Name(a) ...
698
+ >>> pc.field("a", "b")
699
+ <pyarrow.compute.Expression FieldRef.Nested(FieldRef.Name(a) ...
700
+ """
701
+ n = len(name_or_index)
702
+ if n == 1:
703
+ if isinstance(name_or_index[0], (str, int)):
704
+ return Expression._field(name_or_index[0])
705
+ elif isinstance(name_or_index[0], tuple):
706
+ return Expression._nested_field(name_or_index[0])
707
+ else:
708
+ raise TypeError(
709
+ "field reference should be str, multiple str, tuple or "
710
+ f"integer, got {type(name_or_index[0])}"
711
+ )
712
+ # In case of multiple strings not supplied in a tuple
713
+ else:
714
+ return Expression._nested_field(name_or_index)
715
+
716
+
717
+ def scalar(value):
718
+ """Expression representing a scalar value.
719
+
720
+ Parameters
721
+ ----------
722
+ value : bool, int, float or string
723
+ Python value of the scalar. Note that only a subset of types are
724
+ currently supported.
725
+
726
+ Returns
727
+ -------
728
+ scalar_expr : Expression
729
+ An Expression representing the scalar value
730
+ """
731
+ return Expression._scalar(value)
llmeval-env/lib/python3.10/site-packages/pyarrow/feather.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed to the Apache Software Foundation (ASF) under one
2
+ # or more contributor license agreements. See the NOTICE file
3
+ # distributed with this work for additional information
4
+ # regarding copyright ownership. The ASF licenses this file
5
+ # to you under the Apache License, Version 2.0 (the
6
+ # "License"); you may not use this file except in compliance
7
+ # with the License. You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+
19
+ import os
20
+
21
+ from pyarrow.pandas_compat import _pandas_api # noqa
22
+ from pyarrow.lib import (Codec, Table, # noqa
23
+ concat_tables, schema)
24
+ import pyarrow.lib as ext
25
+ from pyarrow import _feather
26
+ from pyarrow._feather import FeatherError # noqa: F401
27
+
28
+
29
+ class FeatherDataset:
30
+ """
31
+ Encapsulates details of reading a list of Feather files.
32
+
33
+ Parameters
34
+ ----------
35
+ path_or_paths : List[str]
36
+ A list of file names
37
+ validate_schema : bool, default True
38
+ Check that individual file schemas are all the same / compatible
39
+ """
40
+
41
+ def __init__(self, path_or_paths, validate_schema=True):
42
+ self.paths = path_or_paths
43
+ self.validate_schema = validate_schema
44
+
45
+ def read_table(self, columns=None):
46
+ """
47
+ Read multiple feather files as a single pyarrow.Table
48
+
49
+ Parameters
50
+ ----------
51
+ columns : List[str]
52
+ Names of columns to read from the file
53
+
54
+ Returns
55
+ -------
56
+ pyarrow.Table
57
+ Content of the file as a table (of columns)
58
+ """
59
+ _fil = read_table(self.paths[0], columns=columns)
60
+ self._tables = [_fil]
61
+ self.schema = _fil.schema
62
+
63
+ for path in self.paths[1:]:
64
+ table = read_table(path, columns=columns)
65
+ if self.validate_schema:
66
+ self.validate_schemas(path, table)
67
+ self._tables.append(table)
68
+ return concat_tables(self._tables)
69
+
70
+ def validate_schemas(self, piece, table):
71
+ if not self.schema.equals(table.schema):
72
+ raise ValueError('Schema in {!s} was different. \n'
73
+ '{!s}\n\nvs\n\n{!s}'
74
+ .format(piece, self.schema,
75
+ table.schema))
76
+
77
+ def read_pandas(self, columns=None, use_threads=True):
78
+ """
79
+ Read multiple Parquet files as a single pandas DataFrame
80
+
81
+ Parameters
82
+ ----------
83
+ columns : List[str]
84
+ Names of columns to read from the file
85
+ use_threads : bool, default True
86
+ Use multiple threads when converting to pandas
87
+
88
+ Returns
89
+ -------
90
+ pandas.DataFrame
91
+ Content of the file as a pandas DataFrame (of columns)
92
+ """
93
+ return self.read_table(columns=columns).to_pandas(
94
+ use_threads=use_threads)
95
+
96
+
97
+ def check_chunked_overflow(name, col):
98
+ if col.num_chunks == 1:
99
+ return
100
+
101
+ if col.type in (ext.binary(), ext.string()):
102
+ raise ValueError("Column '{}' exceeds 2GB maximum capacity of "
103
+ "a Feather binary column. This restriction may be "
104
+ "lifted in the future".format(name))
105
+ else:
106
+ # TODO(wesm): Not sure when else this might be reached
107
+ raise ValueError("Column '{}' of type {} was chunked on conversion "
108
+ "to Arrow and cannot be currently written to "
109
+ "Feather format".format(name, str(col.type)))
110
+
111
+
112
+ _FEATHER_SUPPORTED_CODECS = {'lz4', 'zstd', 'uncompressed'}
113
+
114
+
115
+ def write_feather(df, dest, compression=None, compression_level=None,
116
+ chunksize=None, version=2):
117
+ """
118
+ Write a pandas.DataFrame to Feather format.
119
+
120
+ Parameters
121
+ ----------
122
+ df : pandas.DataFrame or pyarrow.Table
123
+ Data to write out as Feather format.
124
+ dest : str
125
+ Local destination path.
126
+ compression : string, default None
127
+ Can be one of {"zstd", "lz4", "uncompressed"}. The default of None uses
128
+ LZ4 for V2 files if it is available, otherwise uncompressed.
129
+ compression_level : int, default None
130
+ Use a compression level particular to the chosen compressor. If None
131
+ use the default compression level
132
+ chunksize : int, default None
133
+ For V2 files, the internal maximum size of Arrow RecordBatch chunks
134
+ when writing the Arrow IPC file format. None means use the default,
135
+ which is currently 64K
136
+ version : int, default 2
137
+ Feather file version. Version 2 is the current. Version 1 is the more
138
+ limited legacy format
139
+ """
140
+ if _pandas_api.have_pandas:
141
+ if (_pandas_api.has_sparse and
142
+ isinstance(df, _pandas_api.pd.SparseDataFrame)):
143
+ df = df.to_dense()
144
+
145
+ if _pandas_api.is_data_frame(df):
146
+ # Feather v1 creates a new column in the resultant Table to
147
+ # store index information if index type is not RangeIndex
148
+
149
+ if version == 1:
150
+ preserve_index = False
151
+ elif version == 2:
152
+ preserve_index = None
153
+ else:
154
+ raise ValueError("Version value should either be 1 or 2")
155
+
156
+ table = Table.from_pandas(df, preserve_index=preserve_index)
157
+
158
+ if version == 1:
159
+ # Version 1 does not chunking
160
+ for i, name in enumerate(table.schema.names):
161
+ col = table[i]
162
+ check_chunked_overflow(name, col)
163
+ else:
164
+ table = df
165
+
166
+ if version == 1:
167
+ if len(table.column_names) > len(set(table.column_names)):
168
+ raise ValueError("cannot serialize duplicate column names")
169
+
170
+ if compression is not None:
171
+ raise ValueError("Feather V1 files do not support compression "
172
+ "option")
173
+
174
+ if chunksize is not None:
175
+ raise ValueError("Feather V1 files do not support chunksize "
176
+ "option")
177
+ else:
178
+ if compression is None and Codec.is_available('lz4_frame'):
179
+ compression = 'lz4'
180
+ elif (compression is not None and
181
+ compression not in _FEATHER_SUPPORTED_CODECS):
182
+ raise ValueError('compression="{}" not supported, must be '
183
+ 'one of {}'.format(compression,
184
+ _FEATHER_SUPPORTED_CODECS))
185
+
186
+ try:
187
+ _feather.write_feather(table, dest, compression=compression,
188
+ compression_level=compression_level,
189
+ chunksize=chunksize, version=version)
190
+ except Exception:
191
+ if isinstance(dest, str):
192
+ try:
193
+ os.remove(dest)
194
+ except os.error:
195
+ pass
196
+ raise
197
+
198
+
199
+ def read_feather(source, columns=None, use_threads=True,
200
+ memory_map=False, **kwargs):
201
+ """
202
+ Read a pandas.DataFrame from Feather format. To read as pyarrow.Table use
203
+ feather.read_table.
204
+
205
+ Parameters
206
+ ----------
207
+ source : str file path, or file-like object
208
+ You can use MemoryMappedFile as source, for explicitly use memory map.
209
+ columns : sequence, optional
210
+ Only read a specific set of columns. If not provided, all columns are
211
+ read.
212
+ use_threads : bool, default True
213
+ Whether to parallelize reading using multiple threads. If false the
214
+ restriction is used in the conversion to Pandas as well as in the
215
+ reading from Feather format.
216
+ memory_map : boolean, default False
217
+ Use memory mapping when opening file on disk, when source is a str.
218
+ **kwargs
219
+ Additional keyword arguments passed on to `pyarrow.Table.to_pandas`.
220
+
221
+ Returns
222
+ -------
223
+ df : pandas.DataFrame
224
+ The contents of the Feather file as a pandas.DataFrame
225
+ """
226
+ return (read_table(
227
+ source, columns=columns, memory_map=memory_map,
228
+ use_threads=use_threads).to_pandas(use_threads=use_threads, **kwargs))
229
+
230
+
231
+ def read_table(source, columns=None, memory_map=False, use_threads=True):
232
+ """
233
+ Read a pyarrow.Table from Feather format
234
+
235
+ Parameters
236
+ ----------
237
+ source : str file path, or file-like object
238
+ You can use MemoryMappedFile as source, for explicitly use memory map.
239
+ columns : sequence, optional
240
+ Only read a specific set of columns. If not provided, all columns are
241
+ read.
242
+ memory_map : boolean, default False
243
+ Use memory mapping when opening file on disk, when source is a str
244
+ use_threads : bool, default True
245
+ Whether to parallelize reading using multiple threads.
246
+
247
+ Returns
248
+ -------
249
+ table : pyarrow.Table
250
+ The contents of the Feather file as a pyarrow.Table
251
+ """
252
+ reader = _feather.FeatherReader(
253
+ source, use_memory_map=memory_map, use_threads=use_threads)
254
+
255
+ if columns is None:
256
+ return reader.read()
257
+
258
+ column_types = [type(column) for column in columns]
259
+ if all(map(lambda t: t == int, column_types)):
260
+ table = reader.read_indices(columns)
261
+ elif all(map(lambda t: t == str, column_types)):
262
+ table = reader.read_names(columns)
263
+ else:
264
+ column_type_names = [t.__name__ for t in column_types]
265
+ raise TypeError("Columns must be indices or names. "
266
+ "Got columns {} of types {}"
267
+ .format(columns, column_type_names))
268
+
269
+ # Feather v1 already respects the column selection
270
+ if reader.version < 3:
271
+ return table
272
+ # Feather v2 reads with sorted / deduplicated selection
273
+ elif sorted(set(columns)) == columns:
274
+ return table
275
+ else:
276
+ # follow exact order / selection of names
277
+ return table.select(columns)
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/api.h ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ // Coarse public API while the library is in development
19
+
20
+ #pragma once
21
+
22
+ #include "arrow/array.h" // IWYU pragma: export
23
+ #include "arrow/array/array_run_end.h" // IWYU pragma: export
24
+ #include "arrow/array/concatenate.h" // IWYU pragma: export
25
+ #include "arrow/buffer.h" // IWYU pragma: export
26
+ #include "arrow/builder.h" // IWYU pragma: export
27
+ #include "arrow/chunked_array.h" // IWYU pragma: export
28
+ #include "arrow/compare.h" // IWYU pragma: export
29
+ #include "arrow/config.h" // IWYU pragma: export
30
+ #include "arrow/datum.h" // IWYU pragma: export
31
+ #include "arrow/extension_type.h" // IWYU pragma: export
32
+ #include "arrow/memory_pool.h" // IWYU pragma: export
33
+ #include "arrow/pretty_print.h" // IWYU pragma: export
34
+ #include "arrow/record_batch.h" // IWYU pragma: export
35
+ #include "arrow/result.h" // IWYU pragma: export
36
+ #include "arrow/status.h" // IWYU pragma: export
37
+ #include "arrow/table.h" // IWYU pragma: export
38
+ #include "arrow/table_builder.h" // IWYU pragma: export
39
+ #include "arrow/tensor.h" // IWYU pragma: export
40
+ #include "arrow/type.h" // IWYU pragma: export
41
+ #include "arrow/util/key_value_metadata.h" // IWYU pragma: export
42
+ #include "arrow/visit_array_inline.h" // IWYU pragma: export
43
+ #include "arrow/visit_scalar_inline.h" // IWYU pragma: export
44
+ #include "arrow/visitor.h" // IWYU pragma: export
45
+
46
+ /// \brief Top-level namespace for Apache Arrow C++ API
47
+ namespace arrow {}
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/array.h ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ // Kitchen-sink public API for arrow::Array data structures. C++ library code
19
+ // (especially header files) in Apache Arrow should use more specific headers
20
+ // unless it's a file that uses most or all Array types in which case using
21
+ // arrow/array.h is fine.
22
+
23
+ #pragma once
24
+
25
+ /// \defgroup numeric-arrays Concrete classes for numeric arrays
26
+ /// @{
27
+ /// @}
28
+
29
+ /// \defgroup binary-arrays Concrete classes for binary/string arrays
30
+ /// @{
31
+ /// @}
32
+
33
+ /// \defgroup nested-arrays Concrete classes for nested arrays
34
+ /// @{
35
+ /// @}
36
+
37
+ /// \defgroup run-end-encoded-arrays Concrete classes for run-end encoded arrays
38
+ /// @{
39
+ /// @}
40
+
41
+ #include "arrow/array/array_base.h" // IWYU pragma: keep
42
+ #include "arrow/array/array_binary.h" // IWYU pragma: keep
43
+ #include "arrow/array/array_decimal.h" // IWYU pragma: keep
44
+ #include "arrow/array/array_dict.h" // IWYU pragma: keep
45
+ #include "arrow/array/array_nested.h" // IWYU pragma: keep
46
+ #include "arrow/array/array_primitive.h" // IWYU pragma: keep
47
+ #include "arrow/array/array_run_end.h" // IWYU pragma: keep
48
+ #include "arrow/array/data.h" // IWYU pragma: keep
49
+ #include "arrow/array/util.h" // IWYU pragma: keep
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/buffer.h ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <cstdint>
21
+ #include <cstring>
22
+ #include <memory>
23
+ #include <optional>
24
+ #include <string>
25
+ #include <string_view>
26
+ #include <utility>
27
+ #include <vector>
28
+
29
+ #include "arrow/device.h"
30
+ #include "arrow/status.h"
31
+ #include "arrow/type_fwd.h"
32
+ #include "arrow/util/macros.h"
33
+ #include "arrow/util/span.h"
34
+ #include "arrow/util/visibility.h"
35
+
36
+ namespace arrow {
37
+
38
+ // ----------------------------------------------------------------------
39
+ // Buffer classes
40
+
41
+ /// \class Buffer
42
+ /// \brief Object containing a pointer to a piece of contiguous memory with a
43
+ /// particular size.
44
+ ///
45
+ /// Buffers have two related notions of length: size and capacity. Size is
46
+ /// the number of bytes that might have valid data. Capacity is the number
47
+ /// of bytes that were allocated for the buffer in total.
48
+ ///
49
+ /// The Buffer base class does not own its memory, but subclasses often do.
50
+ ///
51
+ /// The following invariant is always true: Size <= Capacity
52
+ class ARROW_EXPORT Buffer {
53
+ public:
54
+ ARROW_DISALLOW_COPY_AND_ASSIGN(Buffer);
55
+
56
+ /// \brief Construct from buffer and size without copying memory
57
+ ///
58
+ /// \param[in] data a memory buffer
59
+ /// \param[in] size buffer size
60
+ ///
61
+ /// \note The passed memory must be kept alive through some other means
62
+ Buffer(const uint8_t* data, int64_t size)
63
+ : is_mutable_(false),
64
+ is_cpu_(true),
65
+ data_(data),
66
+ size_(size),
67
+ capacity_(size),
68
+ device_type_(DeviceAllocationType::kCPU) {
69
+ SetMemoryManager(default_cpu_memory_manager());
70
+ }
71
+
72
+ Buffer(const uint8_t* data, int64_t size, std::shared_ptr<MemoryManager> mm,
73
+ std::shared_ptr<Buffer> parent = NULLPTR,
74
+ std::optional<DeviceAllocationType> device_type_override = std::nullopt)
75
+ : is_mutable_(false),
76
+ data_(data),
77
+ size_(size),
78
+ capacity_(size),
79
+ parent_(std::move(parent)) {
80
+ // SetMemoryManager will also set device_type_
81
+ SetMemoryManager(std::move(mm));
82
+ // If a device type is specified, use that instead. Example of when this can be
83
+ // useful: the CudaMemoryManager can set device_type_ to kCUDA, but you can specify
84
+ // device_type_override=kCUDA_HOST as the device type to override it.
85
+ if (device_type_override != std::nullopt) {
86
+ device_type_ = *device_type_override;
87
+ }
88
+ }
89
+
90
+ Buffer(uintptr_t address, int64_t size, std::shared_ptr<MemoryManager> mm,
91
+ std::shared_ptr<Buffer> parent = NULLPTR)
92
+ : Buffer(reinterpret_cast<const uint8_t*>(address), size, std::move(mm),
93
+ std::move(parent)) {}
94
+
95
+ /// \brief Construct from string_view without copying memory
96
+ ///
97
+ /// \param[in] data a string_view object
98
+ ///
99
+ /// \note The memory viewed by data must not be deallocated in the lifetime of the
100
+ /// Buffer; temporary rvalue strings must be stored in an lvalue somewhere
101
+ explicit Buffer(std::string_view data)
102
+ : Buffer(reinterpret_cast<const uint8_t*>(data.data()),
103
+ static_cast<int64_t>(data.size())) {}
104
+
105
+ virtual ~Buffer() = default;
106
+
107
+ /// An offset into data that is owned by another buffer, but we want to be
108
+ /// able to retain a valid pointer to it even after other shared_ptr's to the
109
+ /// parent buffer have been destroyed
110
+ ///
111
+ /// This method makes no assertions about alignment or padding of the buffer but
112
+ /// in general we expected buffers to be aligned and padded to 64 bytes. In the future
113
+ /// we might add utility methods to help determine if a buffer satisfies this contract.
114
+ Buffer(const std::shared_ptr<Buffer>& parent, const int64_t offset, const int64_t size)
115
+ : Buffer(parent->data_ + offset, size) {
116
+ parent_ = parent;
117
+ SetMemoryManager(parent->memory_manager_);
118
+ }
119
+
120
+ uint8_t operator[](std::size_t i) const { return data_[i]; }
121
+
122
+ /// \brief Construct a new std::string with a hexadecimal representation of the buffer.
123
+ /// \return std::string
124
+ std::string ToHexString();
125
+
126
+ /// Return true if both buffers are the same size and contain the same bytes
127
+ /// up to the number of compared bytes
128
+ bool Equals(const Buffer& other, int64_t nbytes) const;
129
+
130
+ /// Return true if both buffers are the same size and contain the same bytes
131
+ bool Equals(const Buffer& other) const;
132
+
133
+ /// Copy a section of the buffer into a new Buffer.
134
+ Result<std::shared_ptr<Buffer>> CopySlice(
135
+ const int64_t start, const int64_t nbytes,
136
+ MemoryPool* pool = default_memory_pool()) const;
137
+
138
+ /// Zero bytes in padding, i.e. bytes between size_ and capacity_.
139
+ void ZeroPadding() {
140
+ #ifndef NDEBUG
141
+ CheckMutable();
142
+ #endif
143
+ // A zero-capacity buffer can have a null data pointer
144
+ if (capacity_ != 0) {
145
+ memset(mutable_data() + size_, 0, static_cast<size_t>(capacity_ - size_));
146
+ }
147
+ }
148
+
149
+ /// \brief Construct an immutable buffer that takes ownership of the contents
150
+ /// of an std::string (without copying it).
151
+ ///
152
+ /// \param[in] data a string to own
153
+ /// \return a new Buffer instance
154
+ static std::shared_ptr<Buffer> FromString(std::string data);
155
+
156
+ /// \brief Construct an immutable buffer that takes ownership of the contents
157
+ /// of an std::vector (without copying it). Only vectors of TrivialType objects
158
+ /// (integers, floating point numbers, ...) can be wrapped by this function.
159
+ ///
160
+ /// \param[in] vec a vector to own
161
+ /// \return a new Buffer instance
162
+ template <typename T>
163
+ static std::shared_ptr<Buffer> FromVector(std::vector<T> vec) {
164
+ static_assert(std::is_trivial_v<T>,
165
+ "Buffer::FromVector can only wrap vectors of trivial objects");
166
+
167
+ if (vec.empty()) {
168
+ return std::shared_ptr<Buffer>{new Buffer()};
169
+ }
170
+
171
+ auto* data = reinterpret_cast<uint8_t*>(vec.data());
172
+ auto size_in_bytes = static_cast<int64_t>(vec.size() * sizeof(T));
173
+ return std::shared_ptr<Buffer>{
174
+ new Buffer{data, size_in_bytes},
175
+ // Keep the vector's buffer alive inside the shared_ptr's destructor until after
176
+ // we have deleted the Buffer. Note we can't use this trick in FromString since
177
+ // std::string's data is inline for short strings so moving invalidates pointers
178
+ // into the string's buffer.
179
+ [vec = std::move(vec)](Buffer* buffer) { delete buffer; }};
180
+ }
181
+
182
+ /// \brief Create buffer referencing typed memory with some length without
183
+ /// copying
184
+ /// \param[in] data the typed memory as C array
185
+ /// \param[in] length the number of values in the array
186
+ /// \return a new shared_ptr<Buffer>
187
+ template <typename T, typename SizeType = int64_t>
188
+ static std::shared_ptr<Buffer> Wrap(const T* data, SizeType length) {
189
+ return std::make_shared<Buffer>(reinterpret_cast<const uint8_t*>(data),
190
+ static_cast<int64_t>(sizeof(T) * length));
191
+ }
192
+
193
+ /// \brief Create buffer referencing std::vector with some length without
194
+ /// copying
195
+ /// \param[in] data the vector to be referenced. If this vector is changed,
196
+ /// the buffer may become invalid
197
+ /// \return a new shared_ptr<Buffer>
198
+ template <typename T>
199
+ static std::shared_ptr<Buffer> Wrap(const std::vector<T>& data) {
200
+ return std::make_shared<Buffer>(reinterpret_cast<const uint8_t*>(data.data()),
201
+ static_cast<int64_t>(sizeof(T) * data.size()));
202
+ }
203
+
204
+ /// \brief Copy buffer contents into a new std::string
205
+ /// \return std::string
206
+ /// \note Can throw std::bad_alloc if buffer is large
207
+ std::string ToString() const;
208
+
209
+ /// \brief View buffer contents as a std::string_view
210
+ /// \return std::string_view
211
+ explicit operator std::string_view() const {
212
+ return {reinterpret_cast<const char*>(data_), static_cast<size_t>(size_)};
213
+ }
214
+
215
+ /// \brief Return a pointer to the buffer's data
216
+ ///
217
+ /// The buffer has to be a CPU buffer (`is_cpu()` is true).
218
+ /// Otherwise, an assertion may be thrown or a null pointer may be returned.
219
+ ///
220
+ /// To get the buffer's data address regardless of its device, call `address()`.
221
+ const uint8_t* data() const {
222
+ #ifndef NDEBUG
223
+ CheckCPU();
224
+ #endif
225
+ return ARROW_PREDICT_TRUE(is_cpu_) ? data_ : NULLPTR;
226
+ }
227
+
228
+ /// \brief Return a pointer to the buffer's data cast to a specific type
229
+ ///
230
+ /// The buffer has to be a CPU buffer (`is_cpu()` is true).
231
+ /// Otherwise, an assertion may be thrown or a null pointer may be returned.
232
+ template <typename T>
233
+ const T* data_as() const {
234
+ return reinterpret_cast<const T*>(data());
235
+ }
236
+
237
+ /// \brief Return the buffer's data as a span
238
+ template <typename T>
239
+ util::span<const T> span_as() const {
240
+ return util::span(data_as<T>(), static_cast<size_t>(size() / sizeof(T)));
241
+ }
242
+
243
+ /// \brief Return a writable pointer to the buffer's data
244
+ ///
245
+ /// The buffer has to be a mutable CPU buffer (`is_cpu()` and `is_mutable()`
246
+ /// are true). Otherwise, an assertion may be thrown or a null pointer may
247
+ /// be returned.
248
+ ///
249
+ /// To get the buffer's mutable data address regardless of its device, call
250
+ /// `mutable_address()`.
251
+ uint8_t* mutable_data() {
252
+ #ifndef NDEBUG
253
+ CheckCPU();
254
+ CheckMutable();
255
+ #endif
256
+ return ARROW_PREDICT_TRUE(is_cpu_ && is_mutable_) ? const_cast<uint8_t*>(data_)
257
+ : NULLPTR;
258
+ }
259
+
260
+ /// \brief Return a writable pointer to the buffer's data cast to a specific type
261
+ ///
262
+ /// The buffer has to be a mutable CPU buffer (`is_cpu()` and `is_mutable()`
263
+ /// are true). Otherwise, an assertion may be thrown or a null pointer may
264
+ /// be returned.
265
+ template <typename T>
266
+ T* mutable_data_as() {
267
+ return reinterpret_cast<T*>(mutable_data());
268
+ }
269
+
270
+ /// \brief Return the buffer's mutable data as a span
271
+ template <typename T>
272
+ util::span<T> mutable_span_as() {
273
+ return util::span(mutable_data_as<T>(), static_cast<size_t>(size() / sizeof(T)));
274
+ }
275
+
276
+ /// \brief Return the device address of the buffer's data
277
+ uintptr_t address() const { return reinterpret_cast<uintptr_t>(data_); }
278
+
279
+ /// \brief Return a writable device address to the buffer's data
280
+ ///
281
+ /// The buffer has to be a mutable buffer (`is_mutable()` is true).
282
+ /// Otherwise, an assertion may be thrown or 0 may be returned.
283
+ uintptr_t mutable_address() const {
284
+ #ifndef NDEBUG
285
+ CheckMutable();
286
+ #endif
287
+ return ARROW_PREDICT_TRUE(is_mutable_) ? reinterpret_cast<uintptr_t>(data_) : 0;
288
+ }
289
+
290
+ /// \brief Return the buffer's size in bytes
291
+ int64_t size() const { return size_; }
292
+
293
+ /// \brief Return the buffer's capacity (number of allocated bytes)
294
+ int64_t capacity() const { return capacity_; }
295
+
296
+ /// \brief Whether the buffer is directly CPU-accessible
297
+ ///
298
+ /// If this function returns true, you can read directly from the buffer's
299
+ /// `data()` pointer. Otherwise, you'll have to `View()` or `Copy()` it.
300
+ bool is_cpu() const { return is_cpu_; }
301
+
302
+ /// \brief Whether the buffer is mutable
303
+ ///
304
+ /// If this function returns true, you are allowed to modify buffer contents
305
+ /// using the pointer returned by `mutable_data()` or `mutable_address()`.
306
+ bool is_mutable() const { return is_mutable_; }
307
+
308
+ const std::shared_ptr<Device>& device() const { return memory_manager_->device(); }
309
+
310
+ const std::shared_ptr<MemoryManager>& memory_manager() const { return memory_manager_; }
311
+
312
+ DeviceAllocationType device_type() const { return device_type_; }
313
+
314
+ std::shared_ptr<Buffer> parent() const { return parent_; }
315
+
316
+ /// \brief Get a RandomAccessFile for reading a buffer
317
+ ///
318
+ /// The returned file object reads from this buffer's underlying memory.
319
+ static Result<std::shared_ptr<io::RandomAccessFile>> GetReader(std::shared_ptr<Buffer>);
320
+
321
+ /// \brief Get a OutputStream for writing to a buffer
322
+ ///
323
+ /// The buffer must be mutable. The returned stream object writes into the buffer's
324
+ /// underlying memory (but it won't resize it).
325
+ static Result<std::shared_ptr<io::OutputStream>> GetWriter(std::shared_ptr<Buffer>);
326
+
327
+ /// \brief Copy buffer
328
+ ///
329
+ /// The buffer contents will be copied into a new buffer allocated by the
330
+ /// given MemoryManager. This function supports cross-device copies.
331
+ static Result<std::shared_ptr<Buffer>> Copy(std::shared_ptr<Buffer> source,
332
+ const std::shared_ptr<MemoryManager>& to);
333
+
334
+ /// \brief Copy a non-owned buffer
335
+ ///
336
+ /// This is useful for cases where the source memory area is externally managed
337
+ /// (its lifetime not tied to the source Buffer), otherwise please use Copy().
338
+ static Result<std::unique_ptr<Buffer>> CopyNonOwned(
339
+ const Buffer& source, const std::shared_ptr<MemoryManager>& to);
340
+
341
+ /// \brief View buffer
342
+ ///
343
+ /// Return a Buffer that reflects this buffer, seen potentially from another
344
+ /// device, without making an explicit copy of the contents. The underlying
345
+ /// mechanism is typically implemented by the kernel or device driver, and may
346
+ /// involve lazy caching of parts of the buffer contents on the destination
347
+ /// device's memory.
348
+ ///
349
+ /// If a non-copy view is unsupported for the buffer on the given device,
350
+ /// nullptr is returned. An error can be returned if some low-level
351
+ /// operation fails (such as an out-of-memory condition).
352
+ static Result<std::shared_ptr<Buffer>> View(std::shared_ptr<Buffer> source,
353
+ const std::shared_ptr<MemoryManager>& to);
354
+
355
+ /// \brief View or copy buffer
356
+ ///
357
+ /// Try to view buffer contents on the given MemoryManager's device, but
358
+ /// fall back to copying if a no-copy view isn't supported.
359
+ static Result<std::shared_ptr<Buffer>> ViewOrCopy(
360
+ std::shared_ptr<Buffer> source, const std::shared_ptr<MemoryManager>& to);
361
+
362
+ virtual std::shared_ptr<Device::SyncEvent> device_sync_event() const { return NULLPTR; }
363
+
364
+ protected:
365
+ bool is_mutable_;
366
+ bool is_cpu_;
367
+ const uint8_t* data_;
368
+ int64_t size_;
369
+ int64_t capacity_;
370
+ DeviceAllocationType device_type_;
371
+
372
+ // null by default, but may be set
373
+ std::shared_ptr<Buffer> parent_;
374
+
375
+ private:
376
+ // private so that subclasses are forced to call SetMemoryManager()
377
+ std::shared_ptr<MemoryManager> memory_manager_;
378
+
379
+ protected:
380
+ Buffer();
381
+
382
+ void CheckMutable() const;
383
+ void CheckCPU() const;
384
+
385
+ void SetMemoryManager(std::shared_ptr<MemoryManager> mm) {
386
+ memory_manager_ = std::move(mm);
387
+ is_cpu_ = memory_manager_->is_cpu();
388
+ device_type_ = memory_manager_->device()->device_type();
389
+ }
390
+ };
391
+
392
+ /// \defgroup buffer-slicing-functions Functions for slicing buffers
393
+ ///
394
+ /// @{
395
+
396
+ /// \brief Construct a view on a buffer at the given offset and length.
397
+ ///
398
+ /// This function cannot fail and does not check for errors (except in debug builds)
399
+ static inline std::shared_ptr<Buffer> SliceBuffer(const std::shared_ptr<Buffer>& buffer,
400
+ const int64_t offset,
401
+ const int64_t length) {
402
+ return std::make_shared<Buffer>(buffer, offset, length);
403
+ }
404
+
405
+ /// \brief Construct a view on a buffer at the given offset, up to the buffer's end.
406
+ ///
407
+ /// This function cannot fail and does not check for errors (except in debug builds)
408
+ static inline std::shared_ptr<Buffer> SliceBuffer(const std::shared_ptr<Buffer>& buffer,
409
+ const int64_t offset) {
410
+ int64_t length = buffer->size() - offset;
411
+ return SliceBuffer(buffer, offset, length);
412
+ }
413
+
414
+ /// \brief Input-checking version of SliceBuffer
415
+ ///
416
+ /// An Invalid Status is returned if the requested slice falls out of bounds.
417
+ ARROW_EXPORT
418
+ Result<std::shared_ptr<Buffer>> SliceBufferSafe(const std::shared_ptr<Buffer>& buffer,
419
+ int64_t offset);
420
+ /// \brief Input-checking version of SliceBuffer
421
+ ///
422
+ /// An Invalid Status is returned if the requested slice falls out of bounds.
423
+ /// Note that unlike SliceBuffer, `length` isn't clamped to the available buffer size.
424
+ ARROW_EXPORT
425
+ Result<std::shared_ptr<Buffer>> SliceBufferSafe(const std::shared_ptr<Buffer>& buffer,
426
+ int64_t offset, int64_t length);
427
+
428
+ /// \brief Like SliceBuffer, but construct a mutable buffer slice.
429
+ ///
430
+ /// If the parent buffer is not mutable, behavior is undefined (it may abort
431
+ /// in debug builds).
432
+ ARROW_EXPORT
433
+ std::shared_ptr<Buffer> SliceMutableBuffer(const std::shared_ptr<Buffer>& buffer,
434
+ const int64_t offset, const int64_t length);
435
+
436
+ /// \brief Like SliceBuffer, but construct a mutable buffer slice.
437
+ ///
438
+ /// If the parent buffer is not mutable, behavior is undefined (it may abort
439
+ /// in debug builds).
440
+ static inline std::shared_ptr<Buffer> SliceMutableBuffer(
441
+ const std::shared_ptr<Buffer>& buffer, const int64_t offset) {
442
+ int64_t length = buffer->size() - offset;
443
+ return SliceMutableBuffer(buffer, offset, length);
444
+ }
445
+
446
+ /// \brief Input-checking version of SliceMutableBuffer
447
+ ///
448
+ /// An Invalid Status is returned if the requested slice falls out of bounds.
449
+ ARROW_EXPORT
450
+ Result<std::shared_ptr<Buffer>> SliceMutableBufferSafe(
451
+ const std::shared_ptr<Buffer>& buffer, int64_t offset);
452
+ /// \brief Input-checking version of SliceMutableBuffer
453
+ ///
454
+ /// An Invalid Status is returned if the requested slice falls out of bounds.
455
+ /// Note that unlike SliceBuffer, `length` isn't clamped to the available buffer size.
456
+ ARROW_EXPORT
457
+ Result<std::shared_ptr<Buffer>> SliceMutableBufferSafe(
458
+ const std::shared_ptr<Buffer>& buffer, int64_t offset, int64_t length);
459
+
460
+ /// @}
461
+
462
+ /// \class MutableBuffer
463
+ /// \brief A Buffer whose contents can be mutated. May or may not own its data.
464
+ class ARROW_EXPORT MutableBuffer : public Buffer {
465
+ public:
466
+ MutableBuffer(uint8_t* data, const int64_t size) : Buffer(data, size) {
467
+ is_mutable_ = true;
468
+ }
469
+
470
+ MutableBuffer(uint8_t* data, const int64_t size, std::shared_ptr<MemoryManager> mm)
471
+ : Buffer(data, size, std::move(mm)) {
472
+ is_mutable_ = true;
473
+ }
474
+
475
+ MutableBuffer(const std::shared_ptr<Buffer>& parent, const int64_t offset,
476
+ const int64_t size);
477
+
478
+ /// \brief Create buffer referencing typed memory with some length
479
+ /// \param[in] data the typed memory as C array
480
+ /// \param[in] length the number of values in the array
481
+ /// \return a new shared_ptr<Buffer>
482
+ template <typename T, typename SizeType = int64_t>
483
+ static std::shared_ptr<Buffer> Wrap(T* data, SizeType length) {
484
+ return std::make_shared<MutableBuffer>(reinterpret_cast<uint8_t*>(data),
485
+ static_cast<int64_t>(sizeof(T) * length));
486
+ }
487
+
488
+ protected:
489
+ MutableBuffer() : Buffer(NULLPTR, 0) {}
490
+ };
491
+
492
+ /// \class ResizableBuffer
493
+ /// \brief A mutable buffer that can be resized
494
+ class ARROW_EXPORT ResizableBuffer : public MutableBuffer {
495
+ public:
496
+ /// Change buffer reported size to indicated size, allocating memory if
497
+ /// necessary. This will ensure that the capacity of the buffer is a multiple
498
+ /// of 64 bytes as defined in Layout.md.
499
+ /// Consider using ZeroPadding afterwards, to conform to the Arrow layout
500
+ /// specification.
501
+ ///
502
+ /// @param new_size The new size for the buffer.
503
+ /// @param shrink_to_fit Whether to shrink the capacity if new size < current size
504
+ virtual Status Resize(const int64_t new_size, bool shrink_to_fit) = 0;
505
+ Status Resize(const int64_t new_size) {
506
+ return Resize(new_size, /*shrink_to_fit=*/true);
507
+ }
508
+
509
+ /// Ensure that buffer has enough memory allocated to fit the indicated
510
+ /// capacity (and meets the 64 byte padding requirement in Layout.md).
511
+ /// It does not change buffer's reported size and doesn't zero the padding.
512
+ virtual Status Reserve(const int64_t new_capacity) = 0;
513
+
514
+ template <class T>
515
+ Status TypedResize(const int64_t new_nb_elements, bool shrink_to_fit = true) {
516
+ return Resize(sizeof(T) * new_nb_elements, shrink_to_fit);
517
+ }
518
+
519
+ template <class T>
520
+ Status TypedReserve(const int64_t new_nb_elements) {
521
+ return Reserve(sizeof(T) * new_nb_elements);
522
+ }
523
+
524
+ protected:
525
+ ResizableBuffer(uint8_t* data, int64_t size) : MutableBuffer(data, size) {}
526
+ ResizableBuffer(uint8_t* data, int64_t size, std::shared_ptr<MemoryManager> mm)
527
+ : MutableBuffer(data, size, std::move(mm)) {}
528
+ };
529
+
530
+ /// \defgroup buffer-allocation-functions Functions for allocating buffers
531
+ ///
532
+ /// @{
533
+
534
+ /// \brief Allocate a fixed size mutable buffer from a memory pool, zero its padding.
535
+ ///
536
+ /// \param[in] size size of buffer to allocate
537
+ /// \param[in] pool a memory pool
538
+ ARROW_EXPORT
539
+ Result<std::unique_ptr<Buffer>> AllocateBuffer(const int64_t size,
540
+ MemoryPool* pool = NULLPTR);
541
+ ARROW_EXPORT
542
+ Result<std::unique_ptr<Buffer>> AllocateBuffer(const int64_t size, int64_t alignment,
543
+ MemoryPool* pool = NULLPTR);
544
+
545
+ /// \brief Allocate a resizeable buffer from a memory pool, zero its padding.
546
+ ///
547
+ /// \param[in] size size of buffer to allocate
548
+ /// \param[in] pool a memory pool
549
+ ARROW_EXPORT
550
+ Result<std::unique_ptr<ResizableBuffer>> AllocateResizableBuffer(
551
+ const int64_t size, MemoryPool* pool = NULLPTR);
552
+ ARROW_EXPORT
553
+ Result<std::unique_ptr<ResizableBuffer>> AllocateResizableBuffer(
554
+ const int64_t size, const int64_t alignment, MemoryPool* pool = NULLPTR);
555
+
556
+ /// \brief Allocate a bitmap buffer from a memory pool
557
+ /// no guarantee on values is provided.
558
+ ///
559
+ /// \param[in] length size in bits of bitmap to allocate
560
+ /// \param[in] pool memory pool to allocate memory from
561
+ ARROW_EXPORT
562
+ Result<std::shared_ptr<Buffer>> AllocateBitmap(int64_t length,
563
+ MemoryPool* pool = NULLPTR);
564
+
565
+ /// \brief Allocate a zero-initialized bitmap buffer from a memory pool
566
+ ///
567
+ /// \param[in] length size in bits of bitmap to allocate
568
+ /// \param[in] pool memory pool to allocate memory from
569
+ ARROW_EXPORT
570
+ Result<std::shared_ptr<Buffer>> AllocateEmptyBitmap(int64_t length,
571
+ MemoryPool* pool = NULLPTR);
572
+
573
+ ARROW_EXPORT
574
+ Result<std::shared_ptr<Buffer>> AllocateEmptyBitmap(int64_t length, int64_t alignment,
575
+ MemoryPool* pool = NULLPTR);
576
+
577
+ /// \brief Concatenate multiple buffers into a single buffer
578
+ ///
579
+ /// \param[in] buffers to be concatenated
580
+ /// \param[in] pool memory pool to allocate the new buffer from
581
+ ARROW_EXPORT
582
+ Result<std::shared_ptr<Buffer>> ConcatenateBuffers(const BufferVector& buffers,
583
+ MemoryPool* pool = NULLPTR);
584
+
585
+ /// @}
586
+
587
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/buffer_builder.h ADDED
@@ -0,0 +1,484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <algorithm>
21
+ #include <cstdint>
22
+ #include <cstring>
23
+ #include <memory>
24
+ #include <string>
25
+ #include <utility>
26
+
27
+ #include "arrow/buffer.h"
28
+ #include "arrow/status.h"
29
+ #include "arrow/util/bit_util.h"
30
+ #include "arrow/util/bitmap_generate.h"
31
+ #include "arrow/util/bitmap_ops.h"
32
+ #include "arrow/util/macros.h"
33
+ #include "arrow/util/ubsan.h"
34
+ #include "arrow/util/visibility.h"
35
+
36
+ namespace arrow {
37
+
38
+ // ----------------------------------------------------------------------
39
+ // Buffer builder classes
40
+
41
+ /// \class BufferBuilder
42
+ /// \brief A class for incrementally building a contiguous chunk of in-memory
43
+ /// data
44
+ class ARROW_EXPORT BufferBuilder {
45
+ public:
46
+ explicit BufferBuilder(MemoryPool* pool = default_memory_pool(),
47
+ int64_t alignment = kDefaultBufferAlignment)
48
+ : pool_(pool),
49
+ data_(/*ensure never null to make ubsan happy and avoid check penalties below*/
50
+ util::MakeNonNull<uint8_t>()),
51
+ capacity_(0),
52
+ size_(0),
53
+ alignment_(alignment) {}
54
+
55
+ /// \brief Constructs new Builder that will start using
56
+ /// the provided buffer until Finish/Reset are called.
57
+ /// The buffer is not resized.
58
+ explicit BufferBuilder(std::shared_ptr<ResizableBuffer> buffer,
59
+ MemoryPool* pool = default_memory_pool(),
60
+ int64_t alignment = kDefaultBufferAlignment)
61
+ : buffer_(std::move(buffer)),
62
+ pool_(pool),
63
+ data_(buffer_->mutable_data()),
64
+ capacity_(buffer_->capacity()),
65
+ size_(buffer_->size()),
66
+ alignment_(alignment) {}
67
+
68
+ /// \brief Resize the buffer to the nearest multiple of 64 bytes
69
+ ///
70
+ /// \param new_capacity the new capacity of the of the builder. Will be
71
+ /// rounded up to a multiple of 64 bytes for padding
72
+ /// \param shrink_to_fit if new capacity is smaller than the existing,
73
+ /// reallocate internal buffer. Set to false to avoid reallocations when
74
+ /// shrinking the builder.
75
+ /// \return Status
76
+ Status Resize(const int64_t new_capacity, bool shrink_to_fit = true) {
77
+ if (buffer_ == NULLPTR) {
78
+ ARROW_ASSIGN_OR_RAISE(buffer_,
79
+ AllocateResizableBuffer(new_capacity, alignment_, pool_));
80
+ } else {
81
+ ARROW_RETURN_NOT_OK(buffer_->Resize(new_capacity, shrink_to_fit));
82
+ }
83
+ capacity_ = buffer_->capacity();
84
+ data_ = buffer_->mutable_data();
85
+ return Status::OK();
86
+ }
87
+
88
+ /// \brief Ensure that builder can accommodate the additional number of bytes
89
+ /// without the need to perform allocations
90
+ ///
91
+ /// \param[in] additional_bytes number of additional bytes to make space for
92
+ /// \return Status
93
+ Status Reserve(const int64_t additional_bytes) {
94
+ auto min_capacity = size_ + additional_bytes;
95
+ if (min_capacity <= capacity_) {
96
+ return Status::OK();
97
+ }
98
+ return Resize(GrowByFactor(capacity_, min_capacity), false);
99
+ }
100
+
101
+ /// \brief Return a capacity expanded by the desired growth factor
102
+ static int64_t GrowByFactor(int64_t current_capacity, int64_t new_capacity) {
103
+ // Doubling capacity except for large Reserve requests. 2x growth strategy
104
+ // (versus 1.5x) seems to have slightly better performance when using
105
+ // jemalloc, but significantly better performance when using the system
106
+ // allocator. See ARROW-6450 for further discussion
107
+ return std::max(new_capacity, current_capacity * 2);
108
+ }
109
+
110
+ /// \brief Append the given data to the buffer
111
+ ///
112
+ /// The buffer is automatically expanded if necessary.
113
+ Status Append(const void* data, const int64_t length) {
114
+ if (ARROW_PREDICT_FALSE(size_ + length > capacity_)) {
115
+ ARROW_RETURN_NOT_OK(Resize(GrowByFactor(capacity_, size_ + length), false));
116
+ }
117
+ UnsafeAppend(data, length);
118
+ return Status::OK();
119
+ }
120
+
121
+ /// \brief Append the given data to the buffer
122
+ ///
123
+ /// The buffer is automatically expanded if necessary.
124
+ Status Append(std::string_view v) { return Append(v.data(), v.size()); }
125
+
126
+ /// \brief Append copies of a value to the buffer
127
+ ///
128
+ /// The buffer is automatically expanded if necessary.
129
+ Status Append(const int64_t num_copies, uint8_t value) {
130
+ ARROW_RETURN_NOT_OK(Reserve(num_copies));
131
+ UnsafeAppend(num_copies, value);
132
+ return Status::OK();
133
+ }
134
+
135
+ // Advance pointer and zero out memory
136
+ Status Advance(const int64_t length) { return Append(length, 0); }
137
+
138
+ // Advance pointer, but don't allocate or zero memory
139
+ void UnsafeAdvance(const int64_t length) { size_ += length; }
140
+
141
+ // Unsafe methods don't check existing size
142
+ void UnsafeAppend(const void* data, const int64_t length) {
143
+ memcpy(data_ + size_, data, static_cast<size_t>(length));
144
+ size_ += length;
145
+ }
146
+
147
+ void UnsafeAppend(std::string_view v) {
148
+ UnsafeAppend(v.data(), static_cast<int64_t>(v.size()));
149
+ }
150
+
151
+ void UnsafeAppend(const int64_t num_copies, uint8_t value) {
152
+ memset(data_ + size_, value, static_cast<size_t>(num_copies));
153
+ size_ += num_copies;
154
+ }
155
+
156
+ /// \brief Return result of builder as a Buffer object.
157
+ ///
158
+ /// The builder is reset and can be reused afterwards.
159
+ ///
160
+ /// \param[out] out the finalized Buffer object
161
+ /// \param shrink_to_fit if the buffer size is smaller than its capacity,
162
+ /// reallocate to fit more tightly in memory. Set to false to avoid
163
+ /// a reallocation, at the expense of potentially more memory consumption.
164
+ /// \return Status
165
+ Status Finish(std::shared_ptr<Buffer>* out, bool shrink_to_fit = true) {
166
+ ARROW_RETURN_NOT_OK(Resize(size_, shrink_to_fit));
167
+ if (size_ != 0) buffer_->ZeroPadding();
168
+ *out = buffer_;
169
+ if (*out == NULLPTR) {
170
+ ARROW_ASSIGN_OR_RAISE(*out, AllocateBuffer(0, alignment_, pool_));
171
+ }
172
+ Reset();
173
+ return Status::OK();
174
+ }
175
+
176
+ Result<std::shared_ptr<Buffer>> Finish(bool shrink_to_fit = true) {
177
+ std::shared_ptr<Buffer> out;
178
+ ARROW_RETURN_NOT_OK(Finish(&out, shrink_to_fit));
179
+ return out;
180
+ }
181
+
182
+ /// \brief Like Finish, but override the final buffer size
183
+ ///
184
+ /// This is useful after writing data directly into the builder memory
185
+ /// without calling the Append methods (basically, when using BufferBuilder
186
+ /// mostly for memory allocation).
187
+ Result<std::shared_ptr<Buffer>> FinishWithLength(int64_t final_length,
188
+ bool shrink_to_fit = true) {
189
+ size_ = final_length;
190
+ return Finish(shrink_to_fit);
191
+ }
192
+
193
+ void Reset() {
194
+ buffer_ = NULLPTR;
195
+ capacity_ = size_ = 0;
196
+ }
197
+
198
+ /// \brief Set size to a smaller value without modifying builder
199
+ /// contents. For reusable BufferBuilder classes
200
+ /// \param[in] position must be non-negative and less than or equal
201
+ /// to the current length()
202
+ void Rewind(int64_t position) { size_ = position; }
203
+
204
+ int64_t capacity() const { return capacity_; }
205
+ int64_t length() const { return size_; }
206
+ const uint8_t* data() const { return data_; }
207
+ uint8_t* mutable_data() { return data_; }
208
+ template <typename T>
209
+ const T* data_as() const {
210
+ return reinterpret_cast<const T*>(data_);
211
+ }
212
+ template <typename T>
213
+ T* mutable_data_as() {
214
+ return reinterpret_cast<T*>(data_);
215
+ }
216
+
217
+ private:
218
+ std::shared_ptr<ResizableBuffer> buffer_;
219
+ MemoryPool* pool_;
220
+ uint8_t* data_;
221
+ int64_t capacity_;
222
+ int64_t size_;
223
+ int64_t alignment_;
224
+ };
225
+
226
+ template <typename T, typename Enable = void>
227
+ class TypedBufferBuilder;
228
+
229
+ /// \brief A BufferBuilder for building a buffer of arithmetic elements
230
+ template <typename T>
231
+ class TypedBufferBuilder<
232
+ T, typename std::enable_if<std::is_arithmetic<T>::value ||
233
+ std::is_standard_layout<T>::value>::type> {
234
+ public:
235
+ explicit TypedBufferBuilder(MemoryPool* pool = default_memory_pool(),
236
+ int64_t alignment = kDefaultBufferAlignment)
237
+ : bytes_builder_(pool, alignment) {}
238
+
239
+ explicit TypedBufferBuilder(std::shared_ptr<ResizableBuffer> buffer,
240
+ MemoryPool* pool = default_memory_pool())
241
+ : bytes_builder_(std::move(buffer), pool) {}
242
+
243
+ explicit TypedBufferBuilder(BufferBuilder builder)
244
+ : bytes_builder_(std::move(builder)) {}
245
+
246
+ BufferBuilder* bytes_builder() { return &bytes_builder_; }
247
+
248
+ Status Append(T value) {
249
+ return bytes_builder_.Append(reinterpret_cast<uint8_t*>(&value), sizeof(T));
250
+ }
251
+
252
+ Status Append(const T* values, int64_t num_elements) {
253
+ return bytes_builder_.Append(reinterpret_cast<const uint8_t*>(values),
254
+ num_elements * sizeof(T));
255
+ }
256
+
257
+ Status Append(const int64_t num_copies, T value) {
258
+ ARROW_RETURN_NOT_OK(Reserve(num_copies + length()));
259
+ UnsafeAppend(num_copies, value);
260
+ return Status::OK();
261
+ }
262
+
263
+ void UnsafeAppend(T value) {
264
+ bytes_builder_.UnsafeAppend(reinterpret_cast<uint8_t*>(&value), sizeof(T));
265
+ }
266
+
267
+ void UnsafeAppend(const T* values, int64_t num_elements) {
268
+ bytes_builder_.UnsafeAppend(reinterpret_cast<const uint8_t*>(values),
269
+ num_elements * sizeof(T));
270
+ }
271
+
272
+ template <typename Iter>
273
+ void UnsafeAppend(Iter values_begin, Iter values_end) {
274
+ auto num_elements = static_cast<int64_t>(std::distance(values_begin, values_end));
275
+ auto data = mutable_data() + length();
276
+ bytes_builder_.UnsafeAdvance(num_elements * sizeof(T));
277
+ std::copy(values_begin, values_end, data);
278
+ }
279
+
280
+ void UnsafeAppend(const int64_t num_copies, T value) {
281
+ auto data = mutable_data() + length();
282
+ bytes_builder_.UnsafeAdvance(num_copies * sizeof(T));
283
+ std::fill(data, data + num_copies, value);
284
+ }
285
+
286
+ Status Resize(const int64_t new_capacity, bool shrink_to_fit = true) {
287
+ return bytes_builder_.Resize(new_capacity * sizeof(T), shrink_to_fit);
288
+ }
289
+
290
+ Status Reserve(const int64_t additional_elements) {
291
+ return bytes_builder_.Reserve(additional_elements * sizeof(T));
292
+ }
293
+
294
+ Status Advance(const int64_t length) {
295
+ return bytes_builder_.Advance(length * sizeof(T));
296
+ }
297
+
298
+ Status Finish(std::shared_ptr<Buffer>* out, bool shrink_to_fit = true) {
299
+ return bytes_builder_.Finish(out, shrink_to_fit);
300
+ }
301
+
302
+ Result<std::shared_ptr<Buffer>> Finish(bool shrink_to_fit = true) {
303
+ std::shared_ptr<Buffer> out;
304
+ ARROW_RETURN_NOT_OK(Finish(&out, shrink_to_fit));
305
+ return out;
306
+ }
307
+
308
+ /// \brief Like Finish, but override the final buffer size
309
+ ///
310
+ /// This is useful after writing data directly into the builder memory
311
+ /// without calling the Append methods (basically, when using TypedBufferBuilder
312
+ /// only for memory allocation).
313
+ Result<std::shared_ptr<Buffer>> FinishWithLength(int64_t final_length,
314
+ bool shrink_to_fit = true) {
315
+ return bytes_builder_.FinishWithLength(final_length * sizeof(T), shrink_to_fit);
316
+ }
317
+
318
+ void Reset() { bytes_builder_.Reset(); }
319
+
320
+ int64_t length() const { return bytes_builder_.length() / sizeof(T); }
321
+ int64_t capacity() const { return bytes_builder_.capacity() / sizeof(T); }
322
+ const T* data() const { return reinterpret_cast<const T*>(bytes_builder_.data()); }
323
+ T* mutable_data() { return reinterpret_cast<T*>(bytes_builder_.mutable_data()); }
324
+
325
+ private:
326
+ BufferBuilder bytes_builder_;
327
+ };
328
+
329
+ /// \brief A BufferBuilder for building a buffer containing a bitmap
330
+ template <>
331
+ class TypedBufferBuilder<bool> {
332
+ public:
333
+ explicit TypedBufferBuilder(MemoryPool* pool = default_memory_pool(),
334
+ int64_t alignment = kDefaultBufferAlignment)
335
+ : bytes_builder_(pool, alignment) {}
336
+
337
+ explicit TypedBufferBuilder(BufferBuilder builder)
338
+ : bytes_builder_(std::move(builder)) {}
339
+
340
+ BufferBuilder* bytes_builder() { return &bytes_builder_; }
341
+
342
+ Status Append(bool value) {
343
+ ARROW_RETURN_NOT_OK(Reserve(1));
344
+ UnsafeAppend(value);
345
+ return Status::OK();
346
+ }
347
+
348
+ Status Append(const uint8_t* valid_bytes, int64_t num_elements) {
349
+ ARROW_RETURN_NOT_OK(Reserve(num_elements));
350
+ UnsafeAppend(valid_bytes, num_elements);
351
+ return Status::OK();
352
+ }
353
+
354
+ Status Append(const int64_t num_copies, bool value) {
355
+ ARROW_RETURN_NOT_OK(Reserve(num_copies));
356
+ UnsafeAppend(num_copies, value);
357
+ return Status::OK();
358
+ }
359
+
360
+ void UnsafeAppend(bool value) {
361
+ bit_util::SetBitTo(mutable_data(), bit_length_, value);
362
+ if (!value) {
363
+ ++false_count_;
364
+ }
365
+ ++bit_length_;
366
+ }
367
+
368
+ /// \brief Append bits from an array of bytes (one value per byte)
369
+ void UnsafeAppend(const uint8_t* bytes, int64_t num_elements) {
370
+ if (num_elements == 0) return;
371
+ int64_t i = 0;
372
+ internal::GenerateBitsUnrolled(mutable_data(), bit_length_, num_elements, [&] {
373
+ bool value = bytes[i++];
374
+ false_count_ += !value;
375
+ return value;
376
+ });
377
+ bit_length_ += num_elements;
378
+ }
379
+
380
+ /// \brief Append bits from a packed bitmap
381
+ void UnsafeAppend(const uint8_t* bitmap, int64_t offset, int64_t num_elements) {
382
+ if (num_elements == 0) return;
383
+ internal::CopyBitmap(bitmap, offset, num_elements, mutable_data(), bit_length_);
384
+ false_count_ += num_elements - internal::CountSetBits(bitmap, offset, num_elements);
385
+ bit_length_ += num_elements;
386
+ }
387
+
388
+ void UnsafeAppend(const int64_t num_copies, bool value) {
389
+ bit_util::SetBitsTo(mutable_data(), bit_length_, num_copies, value);
390
+ false_count_ += num_copies * !value;
391
+ bit_length_ += num_copies;
392
+ }
393
+
394
+ template <bool count_falses, typename Generator>
395
+ void UnsafeAppend(const int64_t num_elements, Generator&& gen) {
396
+ if (num_elements == 0) return;
397
+
398
+ if (count_falses) {
399
+ internal::GenerateBitsUnrolled(mutable_data(), bit_length_, num_elements, [&] {
400
+ bool value = gen();
401
+ false_count_ += !value;
402
+ return value;
403
+ });
404
+ } else {
405
+ internal::GenerateBitsUnrolled(mutable_data(), bit_length_, num_elements,
406
+ std::forward<Generator>(gen));
407
+ }
408
+ bit_length_ += num_elements;
409
+ }
410
+
411
+ Status Resize(const int64_t new_capacity, bool shrink_to_fit = true) {
412
+ const int64_t old_byte_capacity = bytes_builder_.capacity();
413
+ ARROW_RETURN_NOT_OK(
414
+ bytes_builder_.Resize(bit_util::BytesForBits(new_capacity), shrink_to_fit));
415
+ // Resize() may have chosen a larger capacity (e.g. for padding),
416
+ // so ask it again before calling memset().
417
+ const int64_t new_byte_capacity = bytes_builder_.capacity();
418
+ if (new_byte_capacity > old_byte_capacity) {
419
+ // The additional buffer space is 0-initialized for convenience,
420
+ // so that other methods can simply bump the length.
421
+ memset(mutable_data() + old_byte_capacity, 0,
422
+ static_cast<size_t>(new_byte_capacity - old_byte_capacity));
423
+ }
424
+ return Status::OK();
425
+ }
426
+
427
+ Status Reserve(const int64_t additional_elements) {
428
+ return Resize(
429
+ BufferBuilder::GrowByFactor(bit_length_, bit_length_ + additional_elements),
430
+ false);
431
+ }
432
+
433
+ Status Advance(const int64_t length) {
434
+ ARROW_RETURN_NOT_OK(Reserve(length));
435
+ bit_length_ += length;
436
+ false_count_ += length;
437
+ return Status::OK();
438
+ }
439
+
440
+ Status Finish(std::shared_ptr<Buffer>* out, bool shrink_to_fit = true) {
441
+ // set bytes_builder_.size_ == byte size of data
442
+ bytes_builder_.UnsafeAdvance(bit_util::BytesForBits(bit_length_) -
443
+ bytes_builder_.length());
444
+ bit_length_ = false_count_ = 0;
445
+ return bytes_builder_.Finish(out, shrink_to_fit);
446
+ }
447
+
448
+ Result<std::shared_ptr<Buffer>> Finish(bool shrink_to_fit = true) {
449
+ std::shared_ptr<Buffer> out;
450
+ ARROW_RETURN_NOT_OK(Finish(&out, shrink_to_fit));
451
+ return out;
452
+ }
453
+
454
+ /// \brief Like Finish, but override the final buffer size
455
+ ///
456
+ /// This is useful after writing data directly into the builder memory
457
+ /// without calling the Append methods (basically, when using TypedBufferBuilder
458
+ /// only for memory allocation).
459
+ Result<std::shared_ptr<Buffer>> FinishWithLength(int64_t final_length,
460
+ bool shrink_to_fit = true) {
461
+ const auto final_byte_length = bit_util::BytesForBits(final_length);
462
+ bytes_builder_.UnsafeAdvance(final_byte_length - bytes_builder_.length());
463
+ bit_length_ = false_count_ = 0;
464
+ return bytes_builder_.FinishWithLength(final_byte_length, shrink_to_fit);
465
+ }
466
+
467
+ void Reset() {
468
+ bytes_builder_.Reset();
469
+ bit_length_ = false_count_ = 0;
470
+ }
471
+
472
+ int64_t length() const { return bit_length_; }
473
+ int64_t capacity() const { return bytes_builder_.capacity() * 8; }
474
+ const uint8_t* data() const { return bytes_builder_.data(); }
475
+ uint8_t* mutable_data() { return bytes_builder_.mutable_data(); }
476
+ int64_t false_count() const { return false_count_; }
477
+
478
+ private:
479
+ BufferBuilder bytes_builder_;
480
+ int64_t bit_length_ = 0;
481
+ int64_t false_count_ = 0;
482
+ };
483
+
484
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/builder.h ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <memory>
21
+
22
+ #include "arrow/array/builder_adaptive.h" // IWYU pragma: keep
23
+ #include "arrow/array/builder_base.h" // IWYU pragma: keep
24
+ #include "arrow/array/builder_binary.h" // IWYU pragma: keep
25
+ #include "arrow/array/builder_decimal.h" // IWYU pragma: keep
26
+ #include "arrow/array/builder_dict.h" // IWYU pragma: keep
27
+ #include "arrow/array/builder_nested.h" // IWYU pragma: keep
28
+ #include "arrow/array/builder_primitive.h" // IWYU pragma: keep
29
+ #include "arrow/array/builder_run_end.h" // IWYU pragma: keep
30
+ #include "arrow/array/builder_time.h" // IWYU pragma: keep
31
+ #include "arrow/array/builder_union.h" // IWYU pragma: keep
32
+ #include "arrow/status.h"
33
+ #include "arrow/util/visibility.h"
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/chunk_resolver.h ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <atomic>
21
+ #include <cassert>
22
+ #include <cstdint>
23
+ #include <vector>
24
+
25
+ #include "arrow/type_fwd.h"
26
+ #include "arrow/util/macros.h"
27
+
28
+ namespace arrow::internal {
29
+
30
+ struct ChunkLocation {
31
+ /// \brief Index of the chunk in the array of chunks
32
+ ///
33
+ /// The value is always in the range `[0, chunks.size()]`. `chunks.size()` is used
34
+ /// to represent out-of-bounds locations.
35
+ int64_t chunk_index = 0;
36
+
37
+ /// \brief Index of the value in the chunk
38
+ ///
39
+ /// The value is undefined if chunk_index >= chunks.size()
40
+ int64_t index_in_chunk = 0;
41
+ };
42
+
43
+ /// \brief An utility that incrementally resolves logical indices into
44
+ /// physical indices in a chunked array.
45
+ struct ARROW_EXPORT ChunkResolver {
46
+ private:
47
+ /// \brief Array containing `chunks.size() + 1` offsets.
48
+ ///
49
+ /// `offsets_[i]` is the starting logical index of chunk `i`. `offsets_[0]` is always 0
50
+ /// and `offsets_[chunks.size()]` is the logical length of the chunked array.
51
+ std::vector<int64_t> offsets_;
52
+
53
+ /// \brief Cache of the index of the last resolved chunk.
54
+ ///
55
+ /// \invariant `cached_chunk_ in [0, chunks.size()]`
56
+ mutable std::atomic<int64_t> cached_chunk_;
57
+
58
+ public:
59
+ explicit ChunkResolver(const ArrayVector& chunks) noexcept;
60
+ explicit ChunkResolver(const std::vector<const Array*>& chunks) noexcept;
61
+ explicit ChunkResolver(const RecordBatchVector& batches) noexcept;
62
+
63
+ ChunkResolver(ChunkResolver&& other) noexcept;
64
+ ChunkResolver& operator=(ChunkResolver&& other) noexcept;
65
+
66
+ ChunkResolver(const ChunkResolver& other) noexcept;
67
+ ChunkResolver& operator=(const ChunkResolver& other) noexcept;
68
+
69
+ /// \brief Resolve a logical index to a ChunkLocation.
70
+ ///
71
+ /// The returned ChunkLocation contains the chunk index and the within-chunk index
72
+ /// equivalent to the logical index.
73
+ ///
74
+ /// \pre index >= 0
75
+ /// \post location.chunk_index in [0, chunks.size()]
76
+ /// \param index The logical index to resolve
77
+ /// \return ChunkLocation with a valid chunk_index if index is within
78
+ /// bounds, or with chunk_index == chunks.size() if logical index is
79
+ /// `>= chunked_array.length()`.
80
+ inline ChunkLocation Resolve(int64_t index) const {
81
+ const auto cached_chunk = cached_chunk_.load(std::memory_order_relaxed);
82
+ const auto chunk_index =
83
+ ResolveChunkIndex</*StoreCachedChunk=*/true>(index, cached_chunk);
84
+ return {chunk_index, index - offsets_[chunk_index]};
85
+ }
86
+
87
+ /// \brief Resolve a logical index to a ChunkLocation.
88
+ ///
89
+ /// The returned ChunkLocation contains the chunk index and the within-chunk index
90
+ /// equivalent to the logical index.
91
+ ///
92
+ /// \pre index >= 0
93
+ /// \post location.chunk_index in [0, chunks.size()]
94
+ /// \param index The logical index to resolve
95
+ /// \param hint ChunkLocation{} or the last ChunkLocation returned by
96
+ /// this ChunkResolver.
97
+ /// \return ChunkLocation with a valid chunk_index if index is within
98
+ /// bounds, or with chunk_index == chunks.size() if logical index is
99
+ /// `>= chunked_array.length()`.
100
+ inline ChunkLocation ResolveWithChunkIndexHint(int64_t index,
101
+ ChunkLocation hint) const {
102
+ assert(hint.chunk_index < static_cast<int64_t>(offsets_.size()));
103
+ const auto chunk_index =
104
+ ResolveChunkIndex</*StoreCachedChunk=*/false>(index, hint.chunk_index);
105
+ return {chunk_index, index - offsets_[chunk_index]};
106
+ }
107
+
108
+ private:
109
+ template <bool StoreCachedChunk>
110
+ inline int64_t ResolveChunkIndex(int64_t index, int64_t cached_chunk) const {
111
+ // It is common for algorithms sequentially processing arrays to make consecutive
112
+ // accesses at a relatively small distance from each other, hence often falling in the
113
+ // same chunk.
114
+ //
115
+ // This is guaranteed when merging (assuming each side of the merge uses its
116
+ // own resolver), and is the most common case in recursive invocations of
117
+ // partitioning.
118
+ const auto num_offsets = static_cast<int64_t>(offsets_.size());
119
+ const int64_t* offsets = offsets_.data();
120
+ if (ARROW_PREDICT_TRUE(index >= offsets[cached_chunk]) &&
121
+ (cached_chunk + 1 == num_offsets || index < offsets[cached_chunk + 1])) {
122
+ return cached_chunk;
123
+ }
124
+ // lo < hi is guaranteed by `num_offsets = chunks.size() + 1`
125
+ const auto chunk_index = Bisect(index, offsets, /*lo=*/0, /*hi=*/num_offsets);
126
+ if constexpr (StoreCachedChunk) {
127
+ assert(chunk_index < static_cast<int64_t>(offsets_.size()));
128
+ cached_chunk_.store(chunk_index, std::memory_order_relaxed);
129
+ }
130
+ return chunk_index;
131
+ }
132
+
133
+ /// \brief Find the index of the chunk that contains the logical index.
134
+ ///
135
+ /// Any non-negative index is accepted. When `hi=num_offsets`, the largest
136
+ /// possible return value is `num_offsets-1` which is equal to
137
+ /// `chunks.size()`. The is returned when the logical index is out-of-bounds.
138
+ ///
139
+ /// \pre index >= 0
140
+ /// \pre lo < hi
141
+ /// \pre lo >= 0 && hi <= offsets_.size()
142
+ static inline int64_t Bisect(int64_t index, const int64_t* offsets, int64_t lo,
143
+ int64_t hi) {
144
+ // Similar to std::upper_bound(), but slightly different as our offsets
145
+ // array always starts with 0.
146
+ auto n = hi - lo;
147
+ // First iteration does not need to check for n > 1
148
+ // (lo < hi is guaranteed by the precondition).
149
+ assert(n > 1 && "lo < hi is a precondition of Bisect");
150
+ do {
151
+ const int64_t m = n >> 1;
152
+ const int64_t mid = lo + m;
153
+ if (index >= offsets[mid]) {
154
+ lo = mid;
155
+ n -= m;
156
+ } else {
157
+ n = m;
158
+ }
159
+ } while (n > 1);
160
+ return lo;
161
+ }
162
+ };
163
+
164
+ } // namespace arrow::internal
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/chunked_array.h ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <cstdint>
21
+ #include <memory>
22
+ #include <string>
23
+ #include <utility>
24
+ #include <vector>
25
+
26
+ #include "arrow/chunk_resolver.h"
27
+ #include "arrow/compare.h"
28
+ #include "arrow/result.h"
29
+ #include "arrow/status.h"
30
+ #include "arrow/type_fwd.h"
31
+ #include "arrow/util/macros.h"
32
+ #include "arrow/util/visibility.h"
33
+
34
+ namespace arrow {
35
+
36
+ class Array;
37
+ class DataType;
38
+ class MemoryPool;
39
+ namespace stl {
40
+ template <typename T, typename V>
41
+ class ChunkedArrayIterator;
42
+ } // namespace stl
43
+
44
+ /// \class ChunkedArray
45
+ /// \brief A data structure managing a list of primitive Arrow arrays logically
46
+ /// as one large array
47
+ ///
48
+ /// Data chunking is treated throughout this project largely as an
49
+ /// implementation detail for performance and memory use optimization.
50
+ /// ChunkedArray allows Array objects to be collected and interpreted
51
+ /// as a single logical array without requiring an expensive concatenation
52
+ /// step.
53
+ ///
54
+ /// In some cases, data produced by a function may exceed the capacity of an
55
+ /// Array (like BinaryArray or StringArray) and so returning multiple Arrays is
56
+ /// the only possibility. In these cases, we recommend returning a ChunkedArray
57
+ /// instead of vector of Arrays or some alternative.
58
+ ///
59
+ /// When data is processed in parallel, it may not be practical or possible to
60
+ /// create large contiguous memory allocations and write output into them. With
61
+ /// some data types, like binary and string types, it is not possible at all to
62
+ /// produce non-chunked array outputs without requiring a concatenation step at
63
+ /// the end of processing.
64
+ ///
65
+ /// Application developers may tune chunk sizes based on analysis of
66
+ /// performance profiles but many developer-users will not need to be
67
+ /// especially concerned with the chunking details.
68
+ ///
69
+ /// Preserving the chunk layout/sizes in processing steps is generally not
70
+ /// considered to be a contract in APIs. A function may decide to alter the
71
+ /// chunking of its result. Similarly, APIs accepting multiple ChunkedArray
72
+ /// inputs should not expect the chunk layout to be the same in each input.
73
+ class ARROW_EXPORT ChunkedArray {
74
+ public:
75
+ ChunkedArray(ChunkedArray&&) = default;
76
+ ChunkedArray& operator=(ChunkedArray&&) = default;
77
+
78
+ /// \brief Construct a chunked array from a single Array
79
+ explicit ChunkedArray(std::shared_ptr<Array> chunk)
80
+ : ChunkedArray(ArrayVector{std::move(chunk)}) {}
81
+
82
+ /// \brief Construct a chunked array from a vector of arrays and an optional data type
83
+ ///
84
+ /// The vector elements must have the same data type.
85
+ /// If the data type is passed explicitly, the vector may be empty.
86
+ /// If the data type is omitted, the vector must be non-empty.
87
+ explicit ChunkedArray(ArrayVector chunks, std::shared_ptr<DataType> type = NULLPTR);
88
+
89
+ // \brief Constructor with basic input validation.
90
+ static Result<std::shared_ptr<ChunkedArray>> Make(
91
+ ArrayVector chunks, std::shared_ptr<DataType> type = NULLPTR);
92
+
93
+ /// \brief Create an empty ChunkedArray of a given type
94
+ ///
95
+ /// The output ChunkedArray will have one chunk with an empty
96
+ /// array of the given type.
97
+ ///
98
+ /// \param[in] type the data type of the empty ChunkedArray
99
+ /// \param[in] pool the memory pool to allocate memory from
100
+ /// \return the resulting ChunkedArray
101
+ static Result<std::shared_ptr<ChunkedArray>> MakeEmpty(
102
+ std::shared_ptr<DataType> type, MemoryPool* pool = default_memory_pool());
103
+
104
+ /// \return the total length of the chunked array; computed on construction
105
+ int64_t length() const { return length_; }
106
+
107
+ /// \return the total number of nulls among all chunks
108
+ int64_t null_count() const { return null_count_; }
109
+
110
+ /// \return the total number of chunks in the chunked array
111
+ int num_chunks() const { return static_cast<int>(chunks_.size()); }
112
+
113
+ /// \return chunk a particular chunk from the chunked array
114
+ const std::shared_ptr<Array>& chunk(int i) const { return chunks_[i]; }
115
+
116
+ /// \return an ArrayVector of chunks
117
+ const ArrayVector& chunks() const { return chunks_; }
118
+
119
+ /// \brief Construct a zero-copy slice of the chunked array with the
120
+ /// indicated offset and length
121
+ ///
122
+ /// \param[in] offset the position of the first element in the constructed
123
+ /// slice
124
+ /// \param[in] length the length of the slice. If there are not enough
125
+ /// elements in the chunked array, the length will be adjusted accordingly
126
+ ///
127
+ /// \return a new object wrapped in std::shared_ptr<ChunkedArray>
128
+ std::shared_ptr<ChunkedArray> Slice(int64_t offset, int64_t length) const;
129
+
130
+ /// \brief Slice from offset until end of the chunked array
131
+ std::shared_ptr<ChunkedArray> Slice(int64_t offset) const;
132
+
133
+ /// \brief Flatten this chunked array as a vector of chunked arrays, one
134
+ /// for each struct field
135
+ ///
136
+ /// \param[in] pool The pool for buffer allocations, if any
137
+ Result<std::vector<std::shared_ptr<ChunkedArray>>> Flatten(
138
+ MemoryPool* pool = default_memory_pool()) const;
139
+
140
+ /// Construct a zero-copy view of this chunked array with the given
141
+ /// type. Calls Array::View on each constituent chunk. Always succeeds if
142
+ /// there are zero chunks
143
+ Result<std::shared_ptr<ChunkedArray>> View(const std::shared_ptr<DataType>& type) const;
144
+
145
+ /// \brief Return the type of the chunked array
146
+ const std::shared_ptr<DataType>& type() const { return type_; }
147
+
148
+ /// \brief Return a Scalar containing the value of this array at index
149
+ Result<std::shared_ptr<Scalar>> GetScalar(int64_t index) const;
150
+
151
+ /// \brief Determine if two chunked arrays are equal.
152
+ ///
153
+ /// Two chunked arrays can be equal only if they have equal datatypes.
154
+ /// However, they may be equal even if they have different chunkings.
155
+ bool Equals(const ChunkedArray& other,
156
+ const EqualOptions& opts = EqualOptions::Defaults()) const;
157
+ /// \brief Determine if two chunked arrays are equal.
158
+ bool Equals(const std::shared_ptr<ChunkedArray>& other,
159
+ const EqualOptions& opts = EqualOptions::Defaults()) const;
160
+ /// \brief Determine if two chunked arrays approximately equal
161
+ bool ApproxEquals(const ChunkedArray& other,
162
+ const EqualOptions& = EqualOptions::Defaults()) const;
163
+
164
+ /// \return PrettyPrint representation suitable for debugging
165
+ std::string ToString() const;
166
+
167
+ /// \brief Perform cheap validation checks to determine obvious inconsistencies
168
+ /// within the chunk array's internal data.
169
+ ///
170
+ /// This is O(k*m) where k is the number of array descendents,
171
+ /// and m is the number of chunks.
172
+ ///
173
+ /// \return Status
174
+ Status Validate() const;
175
+
176
+ /// \brief Perform extensive validation checks to determine inconsistencies
177
+ /// within the chunk array's internal data.
178
+ ///
179
+ /// This is O(k*n) where k is the number of array descendents,
180
+ /// and n is the length in elements.
181
+ ///
182
+ /// \return Status
183
+ Status ValidateFull() const;
184
+
185
+ protected:
186
+ ArrayVector chunks_;
187
+ std::shared_ptr<DataType> type_;
188
+ int64_t length_;
189
+ int64_t null_count_;
190
+
191
+ private:
192
+ template <typename T, typename V>
193
+ friend class ::arrow::stl::ChunkedArrayIterator;
194
+ internal::ChunkResolver chunk_resolver_;
195
+ ARROW_DISALLOW_COPY_AND_ASSIGN(ChunkedArray);
196
+ };
197
+
198
+ namespace internal {
199
+
200
+ /// \brief EXPERIMENTAL: Utility for incremental iteration over contiguous
201
+ /// pieces of potentially differently-chunked ChunkedArray objects
202
+ class ARROW_EXPORT MultipleChunkIterator {
203
+ public:
204
+ MultipleChunkIterator(const ChunkedArray& left, const ChunkedArray& right)
205
+ : left_(left),
206
+ right_(right),
207
+ pos_(0),
208
+ length_(left.length()),
209
+ chunk_idx_left_(0),
210
+ chunk_idx_right_(0),
211
+ chunk_pos_left_(0),
212
+ chunk_pos_right_(0) {}
213
+
214
+ bool Next(std::shared_ptr<Array>* next_left, std::shared_ptr<Array>* next_right);
215
+
216
+ int64_t position() const { return pos_; }
217
+
218
+ private:
219
+ const ChunkedArray& left_;
220
+ const ChunkedArray& right_;
221
+
222
+ // The amount of the entire ChunkedArray consumed
223
+ int64_t pos_;
224
+
225
+ // Length of the chunked array(s)
226
+ int64_t length_;
227
+
228
+ // Current left chunk
229
+ int chunk_idx_left_;
230
+
231
+ // Current right chunk
232
+ int chunk_idx_right_;
233
+
234
+ // Offset into the current left chunk
235
+ int64_t chunk_pos_left_;
236
+
237
+ // Offset into the current right chunk
238
+ int64_t chunk_pos_right_;
239
+ };
240
+
241
+ /// \brief Evaluate binary function on two ChunkedArray objects having possibly
242
+ /// different chunk layouts. The passed binary function / functor should have
243
+ /// the following signature.
244
+ ///
245
+ /// Status(const Array&, const Array&, int64_t)
246
+ ///
247
+ /// The third argument is the absolute position relative to the start of each
248
+ /// ChunkedArray. The function is executed against each contiguous pair of
249
+ /// array segments, slicing if necessary.
250
+ ///
251
+ /// For example, if two arrays have chunk sizes
252
+ ///
253
+ /// left: [10, 10, 20]
254
+ /// right: [15, 10, 15]
255
+ ///
256
+ /// Then the following invocations take place (pseudocode)
257
+ ///
258
+ /// func(left.chunk[0][0:10], right.chunk[0][0:10], 0)
259
+ /// func(left.chunk[1][0:5], right.chunk[0][10:15], 10)
260
+ /// func(left.chunk[1][5:10], right.chunk[1][0:5], 15)
261
+ /// func(left.chunk[2][0:5], right.chunk[1][5:10], 20)
262
+ /// func(left.chunk[2][5:20], right.chunk[2][:], 25)
263
+ template <typename Action>
264
+ Status ApplyBinaryChunked(const ChunkedArray& left, const ChunkedArray& right,
265
+ Action&& action) {
266
+ MultipleChunkIterator iterator(left, right);
267
+ std::shared_ptr<Array> left_piece, right_piece;
268
+ while (iterator.Next(&left_piece, &right_piece)) {
269
+ ARROW_RETURN_NOT_OK(action(*left_piece, *right_piece, iterator.position()));
270
+ }
271
+ return Status::OK();
272
+ }
273
+
274
+ } // namespace internal
275
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compare.h ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ // Functions for comparing Arrow data structures
19
+
20
+ #pragma once
21
+
22
+ #include <cstdint>
23
+ #include <iosfwd>
24
+
25
+ #include "arrow/util/macros.h"
26
+ #include "arrow/util/visibility.h"
27
+
28
+ namespace arrow {
29
+
30
+ class Array;
31
+ class DataType;
32
+ class Tensor;
33
+ class SparseTensor;
34
+ struct Scalar;
35
+
36
+ static constexpr double kDefaultAbsoluteTolerance = 1E-5;
37
+
38
+ /// A container of options for equality comparisons
39
+ class EqualOptions {
40
+ public:
41
+ /// Whether or not NaNs are considered equal.
42
+ bool nans_equal() const { return nans_equal_; }
43
+
44
+ /// Return a new EqualOptions object with the "nans_equal" property changed.
45
+ EqualOptions nans_equal(bool v) const {
46
+ auto res = EqualOptions(*this);
47
+ res.nans_equal_ = v;
48
+ return res;
49
+ }
50
+
51
+ /// Whether or not zeros with differing signs are considered equal.
52
+ bool signed_zeros_equal() const { return signed_zeros_equal_; }
53
+
54
+ /// Return a new EqualOptions object with the "signed_zeros_equal" property changed.
55
+ EqualOptions signed_zeros_equal(bool v) const {
56
+ auto res = EqualOptions(*this);
57
+ res.signed_zeros_equal_ = v;
58
+ return res;
59
+ }
60
+
61
+ /// The absolute tolerance for approximate comparisons of floating-point values.
62
+ double atol() const { return atol_; }
63
+
64
+ /// Return a new EqualOptions object with the "atol" property changed.
65
+ EqualOptions atol(double v) const {
66
+ auto res = EqualOptions(*this);
67
+ res.atol_ = v;
68
+ return res;
69
+ }
70
+
71
+ /// The ostream to which a diff will be formatted if arrays disagree.
72
+ /// If this is null (the default) no diff will be formatted.
73
+ std::ostream* diff_sink() const { return diff_sink_; }
74
+
75
+ /// Return a new EqualOptions object with the "diff_sink" property changed.
76
+ /// This option will be ignored if diff formatting of the types of compared arrays is
77
+ /// not supported.
78
+ EqualOptions diff_sink(std::ostream* diff_sink) const {
79
+ auto res = EqualOptions(*this);
80
+ res.diff_sink_ = diff_sink;
81
+ return res;
82
+ }
83
+
84
+ static EqualOptions Defaults() { return {}; }
85
+
86
+ protected:
87
+ double atol_ = kDefaultAbsoluteTolerance;
88
+ bool nans_equal_ = false;
89
+ bool signed_zeros_equal_ = true;
90
+
91
+ std::ostream* diff_sink_ = NULLPTR;
92
+ };
93
+
94
+ /// Returns true if the arrays are exactly equal
95
+ ARROW_EXPORT bool ArrayEquals(const Array& left, const Array& right,
96
+ const EqualOptions& = EqualOptions::Defaults());
97
+
98
+ /// Returns true if the arrays are approximately equal. For non-floating point
99
+ /// types, this is equivalent to ArrayEquals(left, right)
100
+ ARROW_EXPORT bool ArrayApproxEquals(const Array& left, const Array& right,
101
+ const EqualOptions& = EqualOptions::Defaults());
102
+
103
+ /// Returns true if indicated equal-length segment of arrays are exactly equal
104
+ ARROW_EXPORT bool ArrayRangeEquals(const Array& left, const Array& right,
105
+ int64_t start_idx, int64_t end_idx,
106
+ int64_t other_start_idx,
107
+ const EqualOptions& = EqualOptions::Defaults());
108
+
109
+ /// Returns true if indicated equal-length segment of arrays are approximately equal
110
+ ARROW_EXPORT bool ArrayRangeApproxEquals(const Array& left, const Array& right,
111
+ int64_t start_idx, int64_t end_idx,
112
+ int64_t other_start_idx,
113
+ const EqualOptions& = EqualOptions::Defaults());
114
+
115
+ ARROW_EXPORT bool TensorEquals(const Tensor& left, const Tensor& right,
116
+ const EqualOptions& = EqualOptions::Defaults());
117
+
118
+ /// EXPERIMENTAL: Returns true if the given sparse tensors are exactly equal
119
+ ARROW_EXPORT bool SparseTensorEquals(const SparseTensor& left, const SparseTensor& right,
120
+ const EqualOptions& = EqualOptions::Defaults());
121
+
122
+ /// Returns true if the type metadata are exactly equal
123
+ /// \param[in] left a DataType
124
+ /// \param[in] right a DataType
125
+ /// \param[in] check_metadata whether to compare KeyValueMetadata for child
126
+ /// fields
127
+ ARROW_EXPORT bool TypeEquals(const DataType& left, const DataType& right,
128
+ bool check_metadata = true);
129
+
130
+ /// Returns true if scalars are equal
131
+ /// \param[in] left a Scalar
132
+ /// \param[in] right a Scalar
133
+ /// \param[in] options comparison options
134
+ ARROW_EXPORT bool ScalarEquals(const Scalar& left, const Scalar& right,
135
+ const EqualOptions& options = EqualOptions::Defaults());
136
+
137
+ /// Returns true if scalars are approximately equal
138
+ /// \param[in] left a Scalar
139
+ /// \param[in] right a Scalar
140
+ /// \param[in] options comparison options
141
+ ARROW_EXPORT bool ScalarApproxEquals(
142
+ const Scalar& left, const Scalar& right,
143
+ const EqualOptions& options = EqualOptions::Defaults());
144
+
145
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/api_scalar.h ADDED
@@ -0,0 +1,1717 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ // Eager evaluation convenience APIs for invoking common functions, including
19
+ // necessary memory allocations
20
+
21
+ #pragma once
22
+
23
+ #include <optional>
24
+ #include <string>
25
+ #include <utility>
26
+
27
+ #include "arrow/compute/function_options.h"
28
+ #include "arrow/compute/type_fwd.h"
29
+ #include "arrow/datum.h"
30
+ #include "arrow/result.h"
31
+ #include "arrow/util/macros.h"
32
+ #include "arrow/util/visibility.h"
33
+
34
+ namespace arrow {
35
+ namespace compute {
36
+
37
+ /// \addtogroup compute-concrete-options
38
+ ///
39
+ /// @{
40
+
41
+ class ARROW_EXPORT ArithmeticOptions : public FunctionOptions {
42
+ public:
43
+ explicit ArithmeticOptions(bool check_overflow = false);
44
+ static constexpr char const kTypeName[] = "ArithmeticOptions";
45
+ bool check_overflow;
46
+ };
47
+
48
+ class ARROW_EXPORT ElementWiseAggregateOptions : public FunctionOptions {
49
+ public:
50
+ explicit ElementWiseAggregateOptions(bool skip_nulls = true);
51
+ static constexpr char const kTypeName[] = "ElementWiseAggregateOptions";
52
+ static ElementWiseAggregateOptions Defaults() { return ElementWiseAggregateOptions{}; }
53
+ bool skip_nulls;
54
+ };
55
+
56
+ /// Rounding and tie-breaking modes for round compute functions.
57
+ /// Additional details and examples are provided in compute.rst.
58
+ enum class RoundMode : int8_t {
59
+ /// Round to nearest integer less than or equal in magnitude (aka "floor")
60
+ DOWN,
61
+ /// Round to nearest integer greater than or equal in magnitude (aka "ceil")
62
+ UP,
63
+ /// Get the integral part without fractional digits (aka "trunc")
64
+ TOWARDS_ZERO,
65
+ /// Round negative values with DOWN rule
66
+ /// and positive values with UP rule (aka "away from zero")
67
+ TOWARDS_INFINITY,
68
+ /// Round ties with DOWN rule (also called "round half towards negative infinity")
69
+ HALF_DOWN,
70
+ /// Round ties with UP rule (also called "round half towards positive infinity")
71
+ HALF_UP,
72
+ /// Round ties with TOWARDS_ZERO rule (also called "round half away from infinity")
73
+ HALF_TOWARDS_ZERO,
74
+ /// Round ties with TOWARDS_INFINITY rule (also called "round half away from zero")
75
+ HALF_TOWARDS_INFINITY,
76
+ /// Round ties to nearest even integer
77
+ HALF_TO_EVEN,
78
+ /// Round ties to nearest odd integer
79
+ HALF_TO_ODD,
80
+ };
81
+
82
+ class ARROW_EXPORT RoundOptions : public FunctionOptions {
83
+ public:
84
+ explicit RoundOptions(int64_t ndigits = 0,
85
+ RoundMode round_mode = RoundMode::HALF_TO_EVEN);
86
+ static constexpr char const kTypeName[] = "RoundOptions";
87
+ static RoundOptions Defaults() { return RoundOptions(); }
88
+ /// Rounding precision (number of digits to round to)
89
+ int64_t ndigits;
90
+ /// Rounding and tie-breaking mode
91
+ RoundMode round_mode;
92
+ };
93
+
94
+ class ARROW_EXPORT RoundBinaryOptions : public FunctionOptions {
95
+ public:
96
+ explicit RoundBinaryOptions(RoundMode round_mode = RoundMode::HALF_TO_EVEN);
97
+ static constexpr char const kTypeName[] = "RoundBinaryOptions";
98
+ static RoundBinaryOptions Defaults() { return RoundBinaryOptions(); }
99
+ /// Rounding and tie-breaking mode
100
+ RoundMode round_mode;
101
+ };
102
+
103
+ enum class CalendarUnit : int8_t {
104
+ NANOSECOND,
105
+ MICROSECOND,
106
+ MILLISECOND,
107
+ SECOND,
108
+ MINUTE,
109
+ HOUR,
110
+ DAY,
111
+ WEEK,
112
+ MONTH,
113
+ QUARTER,
114
+ YEAR
115
+ };
116
+
117
+ class ARROW_EXPORT RoundTemporalOptions : public FunctionOptions {
118
+ public:
119
+ explicit RoundTemporalOptions(int multiple = 1, CalendarUnit unit = CalendarUnit::DAY,
120
+ bool week_starts_monday = true,
121
+ bool ceil_is_strictly_greater = false,
122
+ bool calendar_based_origin = false);
123
+ static constexpr char const kTypeName[] = "RoundTemporalOptions";
124
+ static RoundTemporalOptions Defaults() { return RoundTemporalOptions(); }
125
+
126
+ /// Number of units to round to
127
+ int multiple;
128
+ /// The unit used for rounding of time
129
+ CalendarUnit unit;
130
+ /// What day does the week start with (Monday=true, Sunday=false)
131
+ bool week_starts_monday;
132
+ /// Enable this flag to return a rounded value that is strictly greater than the input.
133
+ /// For example: ceiling 1970-01-01T00:00:00 to 3 hours would yield 1970-01-01T03:00:00
134
+ /// if set to true and 1970-01-01T00:00:00 if set to false.
135
+ /// This applies for ceiling only.
136
+ bool ceil_is_strictly_greater;
137
+ /// By default time is rounded to a multiple of units since 1970-01-01T00:00:00.
138
+ /// By setting calendar_based_origin to true, time will be rounded to a number
139
+ /// of units since the last greater calendar unit.
140
+ /// For example: rounding to a multiple of days since the beginning of the month or
141
+ /// to hours since the beginning of the day.
142
+ /// Exceptions: week and quarter are not used as greater units, therefore days will
143
+ /// will be rounded to the beginning of the month not week. Greater unit of week
144
+ /// is year.
145
+ /// Note that ceiling and rounding might change sorting order of an array near greater
146
+ /// unit change. For example rounding YYYY-mm-dd 23:00:00 to 5 hours will ceil and
147
+ /// round to YYYY-mm-dd+1 01:00:00 and floor to YYYY-mm-dd 20:00:00. On the other hand
148
+ /// YYYY-mm-dd+1 00:00:00 will ceil, round and floor to YYYY-mm-dd+1 00:00:00. This
149
+ /// can break the order of an already ordered array.
150
+ bool calendar_based_origin;
151
+ };
152
+
153
+ class ARROW_EXPORT RoundToMultipleOptions : public FunctionOptions {
154
+ public:
155
+ explicit RoundToMultipleOptions(double multiple = 1.0,
156
+ RoundMode round_mode = RoundMode::HALF_TO_EVEN);
157
+ explicit RoundToMultipleOptions(std::shared_ptr<Scalar> multiple,
158
+ RoundMode round_mode = RoundMode::HALF_TO_EVEN);
159
+ static constexpr char const kTypeName[] = "RoundToMultipleOptions";
160
+ static RoundToMultipleOptions Defaults() { return RoundToMultipleOptions(); }
161
+ /// Rounding scale (multiple to round to).
162
+ ///
163
+ /// Should be a positive numeric scalar of a type compatible with the
164
+ /// argument to be rounded. The cast kernel is used to convert the rounding
165
+ /// multiple to match the result type.
166
+ std::shared_ptr<Scalar> multiple;
167
+ /// Rounding and tie-breaking mode
168
+ RoundMode round_mode;
169
+ };
170
+
171
+ /// Options for var_args_join.
172
+ class ARROW_EXPORT JoinOptions : public FunctionOptions {
173
+ public:
174
+ /// How to handle null values. (A null separator always results in a null output.)
175
+ enum NullHandlingBehavior {
176
+ /// A null in any input results in a null in the output.
177
+ EMIT_NULL,
178
+ /// Nulls in inputs are skipped.
179
+ SKIP,
180
+ /// Nulls in inputs are replaced with the replacement string.
181
+ REPLACE,
182
+ };
183
+ explicit JoinOptions(NullHandlingBehavior null_handling = EMIT_NULL,
184
+ std::string null_replacement = "");
185
+ static constexpr char const kTypeName[] = "JoinOptions";
186
+ static JoinOptions Defaults() { return JoinOptions(); }
187
+ NullHandlingBehavior null_handling;
188
+ std::string null_replacement;
189
+ };
190
+
191
+ class ARROW_EXPORT MatchSubstringOptions : public FunctionOptions {
192
+ public:
193
+ explicit MatchSubstringOptions(std::string pattern, bool ignore_case = false);
194
+ MatchSubstringOptions();
195
+ static constexpr char const kTypeName[] = "MatchSubstringOptions";
196
+
197
+ /// The exact substring (or regex, depending on kernel) to look for inside input values.
198
+ std::string pattern;
199
+ /// Whether to perform a case-insensitive match.
200
+ bool ignore_case;
201
+ };
202
+
203
+ class ARROW_EXPORT SplitOptions : public FunctionOptions {
204
+ public:
205
+ explicit SplitOptions(int64_t max_splits = -1, bool reverse = false);
206
+ static constexpr char const kTypeName[] = "SplitOptions";
207
+
208
+ /// Maximum number of splits allowed, or unlimited when -1
209
+ int64_t max_splits;
210
+ /// Start splitting from the end of the string (only relevant when max_splits != -1)
211
+ bool reverse;
212
+ };
213
+
214
+ class ARROW_EXPORT SplitPatternOptions : public FunctionOptions {
215
+ public:
216
+ explicit SplitPatternOptions(std::string pattern, int64_t max_splits = -1,
217
+ bool reverse = false);
218
+ SplitPatternOptions();
219
+ static constexpr char const kTypeName[] = "SplitPatternOptions";
220
+
221
+ /// The exact substring to split on.
222
+ std::string pattern;
223
+ /// Maximum number of splits allowed, or unlimited when -1
224
+ int64_t max_splits;
225
+ /// Start splitting from the end of the string (only relevant when max_splits != -1)
226
+ bool reverse;
227
+ };
228
+
229
+ class ARROW_EXPORT ReplaceSliceOptions : public FunctionOptions {
230
+ public:
231
+ explicit ReplaceSliceOptions(int64_t start, int64_t stop, std::string replacement);
232
+ ReplaceSliceOptions();
233
+ static constexpr char const kTypeName[] = "ReplaceSliceOptions";
234
+
235
+ /// Index to start slicing at
236
+ int64_t start;
237
+ /// Index to stop slicing at
238
+ int64_t stop;
239
+ /// String to replace the slice with
240
+ std::string replacement;
241
+ };
242
+
243
+ class ARROW_EXPORT ReplaceSubstringOptions : public FunctionOptions {
244
+ public:
245
+ explicit ReplaceSubstringOptions(std::string pattern, std::string replacement,
246
+ int64_t max_replacements = -1);
247
+ ReplaceSubstringOptions();
248
+ static constexpr char const kTypeName[] = "ReplaceSubstringOptions";
249
+
250
+ /// Pattern to match, literal, or regular expression depending on which kernel is used
251
+ std::string pattern;
252
+ /// String to replace the pattern with
253
+ std::string replacement;
254
+ /// Max number of substrings to replace (-1 means unbounded)
255
+ int64_t max_replacements;
256
+ };
257
+
258
+ class ARROW_EXPORT ExtractRegexOptions : public FunctionOptions {
259
+ public:
260
+ explicit ExtractRegexOptions(std::string pattern);
261
+ ExtractRegexOptions();
262
+ static constexpr char const kTypeName[] = "ExtractRegexOptions";
263
+
264
+ /// Regular expression with named capture fields
265
+ std::string pattern;
266
+ };
267
+
268
+ /// Options for IsIn and IndexIn functions
269
+ class ARROW_EXPORT SetLookupOptions : public FunctionOptions {
270
+ public:
271
+ /// How to handle null values.
272
+ enum NullMatchingBehavior {
273
+ /// MATCH, any null in `value_set` is successfully matched in
274
+ /// the input.
275
+ MATCH,
276
+ /// SKIP, any null in `value_set` is ignored and nulls in the input
277
+ /// produce null (IndexIn) or false (IsIn) values in the output.
278
+ SKIP,
279
+ /// EMIT_NULL, any null in `value_set` is ignored and nulls in the
280
+ /// input produce null (IndexIn and IsIn) values in the output.
281
+ EMIT_NULL,
282
+ /// INCONCLUSIVE, null values are regarded as unknown values, which is
283
+ /// sql-compatible. nulls in the input produce null (IndexIn and IsIn)
284
+ /// values in the output. Besides, if `value_set` contains a null,
285
+ /// non-null unmatched values in the input also produce null values
286
+ /// (IndexIn and IsIn) in the output.
287
+ INCONCLUSIVE
288
+ };
289
+
290
+ explicit SetLookupOptions(Datum value_set, NullMatchingBehavior = MATCH);
291
+ SetLookupOptions();
292
+
293
+ // DEPRECATED(will be removed after removing of skip_nulls)
294
+ explicit SetLookupOptions(Datum value_set, bool skip_nulls);
295
+
296
+ static constexpr char const kTypeName[] = "SetLookupOptions";
297
+
298
+ /// The set of values to look up input values into.
299
+ Datum value_set;
300
+
301
+ NullMatchingBehavior null_matching_behavior;
302
+
303
+ // DEPRECATED(will be removed after removing of skip_nulls)
304
+ NullMatchingBehavior GetNullMatchingBehavior() const;
305
+
306
+ // DEPRECATED(use null_matching_behavior instead)
307
+ /// Whether nulls in `value_set` count for lookup.
308
+ ///
309
+ /// If true, any null in `value_set` is ignored and nulls in the input
310
+ /// produce null (IndexIn) or false (IsIn) values in the output.
311
+ /// If false, any null in `value_set` is successfully matched in
312
+ /// the input.
313
+ std::optional<bool> skip_nulls;
314
+ };
315
+
316
+ /// Options for struct_field function
317
+ class ARROW_EXPORT StructFieldOptions : public FunctionOptions {
318
+ public:
319
+ explicit StructFieldOptions(std::vector<int> indices);
320
+ explicit StructFieldOptions(std::initializer_list<int>);
321
+ explicit StructFieldOptions(FieldRef field_ref);
322
+ StructFieldOptions();
323
+ static constexpr char const kTypeName[] = "StructFieldOptions";
324
+
325
+ /// The FieldRef specifying what to extract from struct or union.
326
+ FieldRef field_ref;
327
+ };
328
+
329
+ class ARROW_EXPORT StrptimeOptions : public FunctionOptions {
330
+ public:
331
+ explicit StrptimeOptions(std::string format, TimeUnit::type unit,
332
+ bool error_is_null = false);
333
+ StrptimeOptions();
334
+ static constexpr char const kTypeName[] = "StrptimeOptions";
335
+
336
+ /// The desired format string.
337
+ std::string format;
338
+ /// The desired time resolution
339
+ TimeUnit::type unit;
340
+ /// Return null on parsing errors if true or raise if false
341
+ bool error_is_null;
342
+ };
343
+
344
+ class ARROW_EXPORT StrftimeOptions : public FunctionOptions {
345
+ public:
346
+ explicit StrftimeOptions(std::string format, std::string locale = "C");
347
+ StrftimeOptions();
348
+
349
+ static constexpr char const kTypeName[] = "StrftimeOptions";
350
+
351
+ static constexpr const char* kDefaultFormat = "%Y-%m-%dT%H:%M:%S";
352
+
353
+ /// The desired format string.
354
+ std::string format;
355
+ /// The desired output locale string.
356
+ std::string locale;
357
+ };
358
+
359
+ class ARROW_EXPORT PadOptions : public FunctionOptions {
360
+ public:
361
+ explicit PadOptions(int64_t width, std::string padding = " ");
362
+ PadOptions();
363
+ static constexpr char const kTypeName[] = "PadOptions";
364
+
365
+ /// The desired string length.
366
+ int64_t width;
367
+ /// What to pad the string with. Should be one codepoint (Unicode)/byte (ASCII).
368
+ std::string padding;
369
+ };
370
+
371
+ class ARROW_EXPORT TrimOptions : public FunctionOptions {
372
+ public:
373
+ explicit TrimOptions(std::string characters);
374
+ TrimOptions();
375
+ static constexpr char const kTypeName[] = "TrimOptions";
376
+
377
+ /// The individual characters to be trimmed from the string.
378
+ std::string characters;
379
+ };
380
+
381
+ class ARROW_EXPORT SliceOptions : public FunctionOptions {
382
+ public:
383
+ explicit SliceOptions(int64_t start, int64_t stop = std::numeric_limits<int64_t>::max(),
384
+ int64_t step = 1);
385
+ SliceOptions();
386
+ static constexpr char const kTypeName[] = "SliceOptions";
387
+ int64_t start, stop, step;
388
+ };
389
+
390
+ class ARROW_EXPORT ListSliceOptions : public FunctionOptions {
391
+ public:
392
+ explicit ListSliceOptions(int64_t start, std::optional<int64_t> stop = std::nullopt,
393
+ int64_t step = 1,
394
+ std::optional<bool> return_fixed_size_list = std::nullopt);
395
+ ListSliceOptions();
396
+ static constexpr char const kTypeName[] = "ListSliceOptions";
397
+ /// The start of list slicing.
398
+ int64_t start;
399
+ /// Optional stop of list slicing. If not set, then slice to end. (NotImplemented)
400
+ std::optional<int64_t> stop;
401
+ /// Slicing step
402
+ int64_t step;
403
+ // Whether to return a FixedSizeListArray. If true _and_ stop is after
404
+ // a list element's length, nulls will be appended to create the requested slice size.
405
+ // Default of `nullopt` will return whatever type it got in.
406
+ std::optional<bool> return_fixed_size_list;
407
+ };
408
+
409
+ class ARROW_EXPORT NullOptions : public FunctionOptions {
410
+ public:
411
+ explicit NullOptions(bool nan_is_null = false);
412
+ static constexpr char const kTypeName[] = "NullOptions";
413
+ static NullOptions Defaults() { return NullOptions{}; }
414
+
415
+ bool nan_is_null;
416
+ };
417
+
418
+ enum CompareOperator : int8_t {
419
+ EQUAL,
420
+ NOT_EQUAL,
421
+ GREATER,
422
+ GREATER_EQUAL,
423
+ LESS,
424
+ LESS_EQUAL,
425
+ };
426
+
427
+ struct ARROW_EXPORT CompareOptions {
428
+ explicit CompareOptions(CompareOperator op) : op(op) {}
429
+ CompareOptions() : CompareOptions(CompareOperator::EQUAL) {}
430
+ enum CompareOperator op;
431
+ };
432
+
433
+ class ARROW_EXPORT MakeStructOptions : public FunctionOptions {
434
+ public:
435
+ MakeStructOptions(std::vector<std::string> n, std::vector<bool> r,
436
+ std::vector<std::shared_ptr<const KeyValueMetadata>> m);
437
+ explicit MakeStructOptions(std::vector<std::string> n);
438
+ MakeStructOptions();
439
+ static constexpr char const kTypeName[] = "MakeStructOptions";
440
+
441
+ /// Names for wrapped columns
442
+ std::vector<std::string> field_names;
443
+
444
+ /// Nullability bits for wrapped columns
445
+ std::vector<bool> field_nullability;
446
+
447
+ /// Metadata attached to wrapped columns
448
+ std::vector<std::shared_ptr<const KeyValueMetadata>> field_metadata;
449
+ };
450
+
451
+ struct ARROW_EXPORT DayOfWeekOptions : public FunctionOptions {
452
+ public:
453
+ explicit DayOfWeekOptions(bool count_from_zero = true, uint32_t week_start = 1);
454
+ static constexpr char const kTypeName[] = "DayOfWeekOptions";
455
+ static DayOfWeekOptions Defaults() { return DayOfWeekOptions(); }
456
+
457
+ /// Number days from 0 if true and from 1 if false
458
+ bool count_from_zero;
459
+ /// What day does the week start with (Monday=1, Sunday=7).
460
+ /// The numbering is unaffected by the count_from_zero parameter.
461
+ uint32_t week_start;
462
+ };
463
+
464
+ /// Used to control timestamp timezone conversion and handling ambiguous/nonexistent
465
+ /// times.
466
+ struct ARROW_EXPORT AssumeTimezoneOptions : public FunctionOptions {
467
+ public:
468
+ /// \brief How to interpret ambiguous local times that can be interpreted as
469
+ /// multiple instants (normally two) due to DST shifts.
470
+ ///
471
+ /// AMBIGUOUS_EARLIEST emits the earliest instant amongst possible interpretations.
472
+ /// AMBIGUOUS_LATEST emits the latest instant amongst possible interpretations.
473
+ enum Ambiguous { AMBIGUOUS_RAISE, AMBIGUOUS_EARLIEST, AMBIGUOUS_LATEST };
474
+
475
+ /// \brief How to handle local times that do not exist due to DST shifts.
476
+ ///
477
+ /// NONEXISTENT_EARLIEST emits the instant "just before" the DST shift instant
478
+ /// in the given timestamp precision (for example, for a nanoseconds precision
479
+ /// timestamp, this is one nanosecond before the DST shift instant).
480
+ /// NONEXISTENT_LATEST emits the DST shift instant.
481
+ enum Nonexistent { NONEXISTENT_RAISE, NONEXISTENT_EARLIEST, NONEXISTENT_LATEST };
482
+
483
+ explicit AssumeTimezoneOptions(std::string timezone,
484
+ Ambiguous ambiguous = AMBIGUOUS_RAISE,
485
+ Nonexistent nonexistent = NONEXISTENT_RAISE);
486
+ AssumeTimezoneOptions();
487
+ static constexpr char const kTypeName[] = "AssumeTimezoneOptions";
488
+
489
+ /// Timezone to convert timestamps from
490
+ std::string timezone;
491
+
492
+ /// How to interpret ambiguous local times (due to DST shifts)
493
+ Ambiguous ambiguous;
494
+ /// How to interpret nonexistent local times (due to DST shifts)
495
+ Nonexistent nonexistent;
496
+ };
497
+
498
+ struct ARROW_EXPORT WeekOptions : public FunctionOptions {
499
+ public:
500
+ explicit WeekOptions(bool week_starts_monday = true, bool count_from_zero = false,
501
+ bool first_week_is_fully_in_year = false);
502
+ static constexpr char const kTypeName[] = "WeekOptions";
503
+ static WeekOptions Defaults() { return WeekOptions{}; }
504
+ static WeekOptions ISODefaults() {
505
+ return WeekOptions{/*week_starts_monday*/ true,
506
+ /*count_from_zero=*/false,
507
+ /*first_week_is_fully_in_year=*/false};
508
+ }
509
+ static WeekOptions USDefaults() {
510
+ return WeekOptions{/*week_starts_monday*/ false,
511
+ /*count_from_zero=*/false,
512
+ /*first_week_is_fully_in_year=*/false};
513
+ }
514
+
515
+ /// What day does the week start with (Monday=true, Sunday=false)
516
+ bool week_starts_monday;
517
+ /// Dates from current year that fall into last ISO week of the previous year return
518
+ /// 0 if true and 52 or 53 if false.
519
+ bool count_from_zero;
520
+ /// Must the first week be fully in January (true), or is a week that begins on
521
+ /// December 29, 30, or 31 considered to be the first week of the new year (false)?
522
+ bool first_week_is_fully_in_year;
523
+ };
524
+
525
+ struct ARROW_EXPORT Utf8NormalizeOptions : public FunctionOptions {
526
+ public:
527
+ enum Form { NFC, NFKC, NFD, NFKD };
528
+
529
+ explicit Utf8NormalizeOptions(Form form = NFC);
530
+ static Utf8NormalizeOptions Defaults() { return Utf8NormalizeOptions(); }
531
+ static constexpr char const kTypeName[] = "Utf8NormalizeOptions";
532
+
533
+ /// The Unicode normalization form to apply
534
+ Form form;
535
+ };
536
+
537
+ class ARROW_EXPORT RandomOptions : public FunctionOptions {
538
+ public:
539
+ enum Initializer { SystemRandom, Seed };
540
+
541
+ static RandomOptions FromSystemRandom() { return RandomOptions{SystemRandom, 0}; }
542
+ static RandomOptions FromSeed(uint64_t seed) { return RandomOptions{Seed, seed}; }
543
+
544
+ RandomOptions(Initializer initializer, uint64_t seed);
545
+ RandomOptions();
546
+ static constexpr char const kTypeName[] = "RandomOptions";
547
+ static RandomOptions Defaults() { return RandomOptions(); }
548
+
549
+ /// The type of initialization for random number generation - system or provided seed.
550
+ Initializer initializer;
551
+ /// The seed value used to initialize the random number generation.
552
+ uint64_t seed;
553
+ };
554
+
555
+ /// Options for map_lookup function
556
+ class ARROW_EXPORT MapLookupOptions : public FunctionOptions {
557
+ public:
558
+ enum Occurrence {
559
+ /// Return the first matching value
560
+ FIRST,
561
+ /// Return the last matching value
562
+ LAST,
563
+ /// Return all matching values
564
+ ALL
565
+ };
566
+
567
+ explicit MapLookupOptions(std::shared_ptr<Scalar> query_key, Occurrence occurrence);
568
+ MapLookupOptions();
569
+
570
+ constexpr static char const kTypeName[] = "MapLookupOptions";
571
+
572
+ /// The key to lookup in the map
573
+ std::shared_ptr<Scalar> query_key;
574
+
575
+ /// Whether to return the first, last, or all matching values
576
+ Occurrence occurrence;
577
+ };
578
+
579
+ /// @}
580
+
581
+ /// \brief Get the absolute value of a value.
582
+ ///
583
+ /// If argument is null the result will be null.
584
+ ///
585
+ /// \param[in] arg the value transformed
586
+ /// \param[in] options arithmetic options (overflow handling), optional
587
+ /// \param[in] ctx the function execution context, optional
588
+ /// \return the elementwise absolute value
589
+ ARROW_EXPORT
590
+ Result<Datum> AbsoluteValue(const Datum& arg,
591
+ ArithmeticOptions options = ArithmeticOptions(),
592
+ ExecContext* ctx = NULLPTR);
593
+
594
+ /// \brief Add two values together. Array values must be the same length. If
595
+ /// either addend is null the result will be null.
596
+ ///
597
+ /// \param[in] left the first addend
598
+ /// \param[in] right the second addend
599
+ /// \param[in] options arithmetic options (overflow handling), optional
600
+ /// \param[in] ctx the function execution context, optional
601
+ /// \return the elementwise sum
602
+ ARROW_EXPORT
603
+ Result<Datum> Add(const Datum& left, const Datum& right,
604
+ ArithmeticOptions options = ArithmeticOptions(),
605
+ ExecContext* ctx = NULLPTR);
606
+
607
+ /// \brief Subtract two values. Array values must be the same length. If the
608
+ /// minuend or subtrahend is null the result will be null.
609
+ ///
610
+ /// \param[in] left the value subtracted from (minuend)
611
+ /// \param[in] right the value by which the minuend is reduced (subtrahend)
612
+ /// \param[in] options arithmetic options (overflow handling), optional
613
+ /// \param[in] ctx the function execution context, optional
614
+ /// \return the elementwise difference
615
+ ARROW_EXPORT
616
+ Result<Datum> Subtract(const Datum& left, const Datum& right,
617
+ ArithmeticOptions options = ArithmeticOptions(),
618
+ ExecContext* ctx = NULLPTR);
619
+
620
+ /// \brief Multiply two values. Array values must be the same length. If either
621
+ /// factor is null the result will be null.
622
+ ///
623
+ /// \param[in] left the first factor
624
+ /// \param[in] right the second factor
625
+ /// \param[in] options arithmetic options (overflow handling), optional
626
+ /// \param[in] ctx the function execution context, optional
627
+ /// \return the elementwise product
628
+ ARROW_EXPORT
629
+ Result<Datum> Multiply(const Datum& left, const Datum& right,
630
+ ArithmeticOptions options = ArithmeticOptions(),
631
+ ExecContext* ctx = NULLPTR);
632
+
633
+ /// \brief Divide two values. Array values must be the same length. If either
634
+ /// argument is null the result will be null. For integer types, if there is
635
+ /// a zero divisor, an error will be raised.
636
+ ///
637
+ /// \param[in] left the dividend
638
+ /// \param[in] right the divisor
639
+ /// \param[in] options arithmetic options (enable/disable overflow checking), optional
640
+ /// \param[in] ctx the function execution context, optional
641
+ /// \return the elementwise quotient
642
+ ARROW_EXPORT
643
+ Result<Datum> Divide(const Datum& left, const Datum& right,
644
+ ArithmeticOptions options = ArithmeticOptions(),
645
+ ExecContext* ctx = NULLPTR);
646
+
647
+ /// \brief Negate values.
648
+ ///
649
+ /// If argument is null the result will be null.
650
+ ///
651
+ /// \param[in] arg the value negated
652
+ /// \param[in] options arithmetic options (overflow handling), optional
653
+ /// \param[in] ctx the function execution context, optional
654
+ /// \return the elementwise negation
655
+ ARROW_EXPORT
656
+ Result<Datum> Negate(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
657
+ ExecContext* ctx = NULLPTR);
658
+
659
+ /// \brief Raise the values of base array to the power of the exponent array values.
660
+ /// Array values must be the same length. If either base or exponent is null the result
661
+ /// will be null.
662
+ ///
663
+ /// \param[in] left the base
664
+ /// \param[in] right the exponent
665
+ /// \param[in] options arithmetic options (enable/disable overflow checking), optional
666
+ /// \param[in] ctx the function execution context, optional
667
+ /// \return the elementwise base value raised to the power of exponent
668
+ ARROW_EXPORT
669
+ Result<Datum> Power(const Datum& left, const Datum& right,
670
+ ArithmeticOptions options = ArithmeticOptions(),
671
+ ExecContext* ctx = NULLPTR);
672
+
673
+ /// \brief Raise Euler's number to the power of specified exponent, element-wise.
674
+ /// If the exponent value is null the result will be null.
675
+ ///
676
+ /// \param[in] arg the exponent
677
+ /// \param[in] ctx the function execution context, optional
678
+ /// \return the element-wise Euler's number raised to the power of exponent
679
+ ARROW_EXPORT
680
+ Result<Datum> Exp(const Datum& arg, ExecContext* ctx = NULLPTR);
681
+
682
+ /// \brief Left shift the left array by the right array. Array values must be the
683
+ /// same length. If either operand is null, the result will be null.
684
+ ///
685
+ /// \param[in] left the value to shift
686
+ /// \param[in] right the value to shift by
687
+ /// \param[in] options arithmetic options (enable/disable overflow checking), optional
688
+ /// \param[in] ctx the function execution context, optional
689
+ /// \return the elementwise left value shifted left by the right value
690
+ ARROW_EXPORT
691
+ Result<Datum> ShiftLeft(const Datum& left, const Datum& right,
692
+ ArithmeticOptions options = ArithmeticOptions(),
693
+ ExecContext* ctx = NULLPTR);
694
+
695
+ /// \brief Right shift the left array by the right array. Array values must be the
696
+ /// same length. If either operand is null, the result will be null. Performs a
697
+ /// logical shift for unsigned values, and an arithmetic shift for signed values.
698
+ ///
699
+ /// \param[in] left the value to shift
700
+ /// \param[in] right the value to shift by
701
+ /// \param[in] options arithmetic options (enable/disable overflow checking), optional
702
+ /// \param[in] ctx the function execution context, optional
703
+ /// \return the elementwise left value shifted right by the right value
704
+ ARROW_EXPORT
705
+ Result<Datum> ShiftRight(const Datum& left, const Datum& right,
706
+ ArithmeticOptions options = ArithmeticOptions(),
707
+ ExecContext* ctx = NULLPTR);
708
+
709
+ /// \brief Compute the sine of the array values.
710
+ /// \param[in] arg The values to compute the sine for.
711
+ /// \param[in] options arithmetic options (enable/disable overflow checking), optional
712
+ /// \param[in] ctx the function execution context, optional
713
+ /// \return the elementwise sine of the values
714
+ ARROW_EXPORT
715
+ Result<Datum> Sin(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
716
+ ExecContext* ctx = NULLPTR);
717
+
718
+ /// \brief Compute the cosine of the array values.
719
+ /// \param[in] arg The values to compute the cosine for.
720
+ /// \param[in] options arithmetic options (enable/disable overflow checking), optional
721
+ /// \param[in] ctx the function execution context, optional
722
+ /// \return the elementwise cosine of the values
723
+ ARROW_EXPORT
724
+ Result<Datum> Cos(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
725
+ ExecContext* ctx = NULLPTR);
726
+
727
+ /// \brief Compute the inverse sine (arcsine) of the array values.
728
+ /// \param[in] arg The values to compute the inverse sine for.
729
+ /// \param[in] options arithmetic options (enable/disable overflow checking), optional
730
+ /// \param[in] ctx the function execution context, optional
731
+ /// \return the elementwise inverse sine of the values
732
+ ARROW_EXPORT
733
+ Result<Datum> Asin(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
734
+ ExecContext* ctx = NULLPTR);
735
+
736
+ /// \brief Compute the inverse cosine (arccosine) of the array values.
737
+ /// \param[in] arg The values to compute the inverse cosine for.
738
+ /// \param[in] options arithmetic options (enable/disable overflow checking), optional
739
+ /// \param[in] ctx the function execution context, optional
740
+ /// \return the elementwise inverse cosine of the values
741
+ ARROW_EXPORT
742
+ Result<Datum> Acos(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
743
+ ExecContext* ctx = NULLPTR);
744
+
745
+ /// \brief Compute the tangent of the array values.
746
+ /// \param[in] arg The values to compute the tangent for.
747
+ /// \param[in] options arithmetic options (enable/disable overflow checking), optional
748
+ /// \param[in] ctx the function execution context, optional
749
+ /// \return the elementwise tangent of the values
750
+ ARROW_EXPORT
751
+ Result<Datum> Tan(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
752
+ ExecContext* ctx = NULLPTR);
753
+
754
+ /// \brief Compute the inverse tangent (arctangent) of the array values.
755
+ /// \param[in] arg The values to compute the inverse tangent for.
756
+ /// \param[in] ctx the function execution context, optional
757
+ /// \return the elementwise inverse tangent of the values
758
+ ARROW_EXPORT
759
+ Result<Datum> Atan(const Datum& arg, ExecContext* ctx = NULLPTR);
760
+
761
+ /// \brief Compute the inverse tangent (arctangent) of y/x, using the
762
+ /// argument signs to determine the correct quadrant.
763
+ /// \param[in] y The y-values to compute the inverse tangent for.
764
+ /// \param[in] x The x-values to compute the inverse tangent for.
765
+ /// \param[in] ctx the function execution context, optional
766
+ /// \return the elementwise inverse tangent of the values
767
+ ARROW_EXPORT
768
+ Result<Datum> Atan2(const Datum& y, const Datum& x, ExecContext* ctx = NULLPTR);
769
+
770
+ /// \brief Get the natural log of a value.
771
+ ///
772
+ /// If argument is null the result will be null.
773
+ ///
774
+ /// \param[in] arg The values to compute the logarithm for.
775
+ /// \param[in] options arithmetic options (overflow handling), optional
776
+ /// \param[in] ctx the function execution context, optional
777
+ /// \return the elementwise natural log
778
+ ARROW_EXPORT
779
+ Result<Datum> Ln(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
780
+ ExecContext* ctx = NULLPTR);
781
+
782
+ /// \brief Get the log base 10 of a value.
783
+ ///
784
+ /// If argument is null the result will be null.
785
+ ///
786
+ /// \param[in] arg The values to compute the logarithm for.
787
+ /// \param[in] options arithmetic options (overflow handling), optional
788
+ /// \param[in] ctx the function execution context, optional
789
+ /// \return the elementwise log base 10
790
+ ARROW_EXPORT
791
+ Result<Datum> Log10(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
792
+ ExecContext* ctx = NULLPTR);
793
+
794
+ /// \brief Get the log base 2 of a value.
795
+ ///
796
+ /// If argument is null the result will be null.
797
+ ///
798
+ /// \param[in] arg The values to compute the logarithm for.
799
+ /// \param[in] options arithmetic options (overflow handling), optional
800
+ /// \param[in] ctx the function execution context, optional
801
+ /// \return the elementwise log base 2
802
+ ARROW_EXPORT
803
+ Result<Datum> Log2(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
804
+ ExecContext* ctx = NULLPTR);
805
+
806
+ /// \brief Get the natural log of (1 + value).
807
+ ///
808
+ /// If argument is null the result will be null.
809
+ /// This function may be more accurate than Log(1 + value) for values close to zero.
810
+ ///
811
+ /// \param[in] arg The values to compute the logarithm for.
812
+ /// \param[in] options arithmetic options (overflow handling), optional
813
+ /// \param[in] ctx the function execution context, optional
814
+ /// \return the elementwise natural log
815
+ ARROW_EXPORT
816
+ Result<Datum> Log1p(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
817
+ ExecContext* ctx = NULLPTR);
818
+
819
+ /// \brief Get the log of a value to the given base.
820
+ ///
821
+ /// If argument is null the result will be null.
822
+ ///
823
+ /// \param[in] arg The values to compute the logarithm for.
824
+ /// \param[in] base The given base.
825
+ /// \param[in] options arithmetic options (overflow handling), optional
826
+ /// \param[in] ctx the function execution context, optional
827
+ /// \return the elementwise log to the given base
828
+ ARROW_EXPORT
829
+ Result<Datum> Logb(const Datum& arg, const Datum& base,
830
+ ArithmeticOptions options = ArithmeticOptions(),
831
+ ExecContext* ctx = NULLPTR);
832
+
833
+ /// \brief Get the square-root of a value.
834
+ ///
835
+ /// If argument is null the result will be null.
836
+ ///
837
+ /// \param[in] arg The values to compute the square-root for.
838
+ /// \param[in] options arithmetic options (overflow handling), optional
839
+ /// \param[in] ctx the function execution context, optional
840
+ /// \return the elementwise square-root
841
+ ARROW_EXPORT
842
+ Result<Datum> Sqrt(const Datum& arg, ArithmeticOptions options = ArithmeticOptions(),
843
+ ExecContext* ctx = NULLPTR);
844
+
845
+ /// \brief Round to the nearest integer less than or equal in magnitude to the
846
+ /// argument.
847
+ ///
848
+ /// If argument is null the result will be null.
849
+ ///
850
+ /// \param[in] arg the value to round
851
+ /// \param[in] ctx the function execution context, optional
852
+ /// \return the rounded value
853
+ ARROW_EXPORT
854
+ Result<Datum> Floor(const Datum& arg, ExecContext* ctx = NULLPTR);
855
+
856
+ /// \brief Round to the nearest integer greater than or equal in magnitude to the
857
+ /// argument.
858
+ ///
859
+ /// If argument is null the result will be null.
860
+ ///
861
+ /// \param[in] arg the value to round
862
+ /// \param[in] ctx the function execution context, optional
863
+ /// \return the rounded value
864
+ ARROW_EXPORT
865
+ Result<Datum> Ceil(const Datum& arg, ExecContext* ctx = NULLPTR);
866
+
867
+ /// \brief Get the integral part without fractional digits.
868
+ ///
869
+ /// If argument is null the result will be null.
870
+ ///
871
+ /// \param[in] arg the value to truncate
872
+ /// \param[in] ctx the function execution context, optional
873
+ /// \return the truncated value
874
+ ARROW_EXPORT
875
+ Result<Datum> Trunc(const Datum& arg, ExecContext* ctx = NULLPTR);
876
+
877
+ /// \brief Find the element-wise maximum of any number of arrays or scalars.
878
+ /// Array values must be the same length.
879
+ ///
880
+ /// \param[in] args arrays or scalars to operate on.
881
+ /// \param[in] options options for handling nulls, optional
882
+ /// \param[in] ctx the function execution context, optional
883
+ /// \return the element-wise maximum
884
+ ARROW_EXPORT
885
+ Result<Datum> MaxElementWise(
886
+ const std::vector<Datum>& args,
887
+ ElementWiseAggregateOptions options = ElementWiseAggregateOptions::Defaults(),
888
+ ExecContext* ctx = NULLPTR);
889
+
890
+ /// \brief Find the element-wise minimum of any number of arrays or scalars.
891
+ /// Array values must be the same length.
892
+ ///
893
+ /// \param[in] args arrays or scalars to operate on.
894
+ /// \param[in] options options for handling nulls, optional
895
+ /// \param[in] ctx the function execution context, optional
896
+ /// \return the element-wise minimum
897
+ ARROW_EXPORT
898
+ Result<Datum> MinElementWise(
899
+ const std::vector<Datum>& args,
900
+ ElementWiseAggregateOptions options = ElementWiseAggregateOptions::Defaults(),
901
+ ExecContext* ctx = NULLPTR);
902
+
903
+ /// \brief Get the sign of a value. Array values can be of arbitrary length. If argument
904
+ /// is null the result will be null.
905
+ ///
906
+ /// \param[in] arg the value to extract sign from
907
+ /// \param[in] ctx the function execution context, optional
908
+ /// \return the element-wise sign function
909
+ ARROW_EXPORT
910
+ Result<Datum> Sign(const Datum& arg, ExecContext* ctx = NULLPTR);
911
+
912
+ /// \brief Round a value to a given precision.
913
+ ///
914
+ /// If arg is null the result will be null.
915
+ ///
916
+ /// \param[in] arg the value to be rounded
917
+ /// \param[in] options rounding options (rounding mode and number of digits), optional
918
+ /// \param[in] ctx the function execution context, optional
919
+ /// \return the element-wise rounded value
920
+ ARROW_EXPORT
921
+ Result<Datum> Round(const Datum& arg, RoundOptions options = RoundOptions::Defaults(),
922
+ ExecContext* ctx = NULLPTR);
923
+
924
+ /// \brief Round a value to a given precision.
925
+ ///
926
+ /// If arg1 is null the result will be null.
927
+ /// If arg2 is null then the result will be null. If arg2 is negative, then the rounding
928
+ /// place will be shifted to the left (thus -1 would correspond to rounding to the nearest
929
+ /// ten). If positive, the rounding place will shift to the right (and +1 would
930
+ /// correspond to rounding to the nearest tenth).
931
+ ///
932
+ /// \param[in] arg1 the value to be rounded
933
+ /// \param[in] arg2 the number of significant digits to round to
934
+ /// \param[in] options rounding options, optional
935
+ /// \param[in] ctx the function execution context, optional
936
+ /// \return the element-wise rounded value
937
+ ARROW_EXPORT
938
+ Result<Datum> RoundBinary(const Datum& arg1, const Datum& arg2,
939
+ RoundBinaryOptions options = RoundBinaryOptions::Defaults(),
940
+ ExecContext* ctx = NULLPTR);
941
+
942
+ /// \brief Round a value to a given multiple.
943
+ ///
944
+ /// If argument is null the result will be null.
945
+ ///
946
+ /// \param[in] arg the value to round
947
+ /// \param[in] options rounding options (rounding mode and multiple), optional
948
+ /// \param[in] ctx the function execution context, optional
949
+ /// \return the element-wise rounded value
950
+ ARROW_EXPORT
951
+ Result<Datum> RoundToMultiple(
952
+ const Datum& arg, RoundToMultipleOptions options = RoundToMultipleOptions::Defaults(),
953
+ ExecContext* ctx = NULLPTR);
954
+
955
+ /// \brief Ceil a temporal value to a given frequency
956
+ ///
957
+ /// If argument is null the result will be null.
958
+ ///
959
+ /// \param[in] arg the temporal value to ceil
960
+ /// \param[in] options temporal rounding options, optional
961
+ /// \param[in] ctx the function execution context, optional
962
+ /// \return the element-wise rounded value
963
+ ///
964
+ /// \since 7.0.0
965
+ /// \note API not yet finalized
966
+ ARROW_EXPORT
967
+ Result<Datum> CeilTemporal(
968
+ const Datum& arg, RoundTemporalOptions options = RoundTemporalOptions::Defaults(),
969
+ ExecContext* ctx = NULLPTR);
970
+
971
+ /// \brief Floor a temporal value to a given frequency
972
+ ///
973
+ /// If argument is null the result will be null.
974
+ ///
975
+ /// \param[in] arg the temporal value to floor
976
+ /// \param[in] options temporal rounding options, optional
977
+ /// \param[in] ctx the function execution context, optional
978
+ /// \return the element-wise rounded value
979
+ ///
980
+ /// \since 7.0.0
981
+ /// \note API not yet finalized
982
+ ARROW_EXPORT
983
+ Result<Datum> FloorTemporal(
984
+ const Datum& arg, RoundTemporalOptions options = RoundTemporalOptions::Defaults(),
985
+ ExecContext* ctx = NULLPTR);
986
+
987
+ /// \brief Round a temporal value to a given frequency
988
+ ///
989
+ /// If argument is null the result will be null.
990
+ ///
991
+ /// \param[in] arg the temporal value to round
992
+ /// \param[in] options temporal rounding options, optional
993
+ /// \param[in] ctx the function execution context, optional
994
+ /// \return the element-wise rounded value
995
+ ///
996
+ /// \since 7.0.0
997
+ /// \note API not yet finalized
998
+ ARROW_EXPORT
999
+ Result<Datum> RoundTemporal(
1000
+ const Datum& arg, RoundTemporalOptions options = RoundTemporalOptions::Defaults(),
1001
+ ExecContext* ctx = NULLPTR);
1002
+
1003
+ /// \brief Invert the values of a boolean datum
1004
+ /// \param[in] value datum to invert
1005
+ /// \param[in] ctx the function execution context, optional
1006
+ /// \return the resulting datum
1007
+ ///
1008
+ /// \since 1.0.0
1009
+ /// \note API not yet finalized
1010
+ ARROW_EXPORT
1011
+ Result<Datum> Invert(const Datum& value, ExecContext* ctx = NULLPTR);
1012
+
1013
+ /// \brief Element-wise AND of two boolean datums which always propagates nulls
1014
+ /// (null and false is null).
1015
+ ///
1016
+ /// \param[in] left left operand
1017
+ /// \param[in] right right operand
1018
+ /// \param[in] ctx the function execution context, optional
1019
+ /// \return the resulting datum
1020
+ ///
1021
+ /// \since 1.0.0
1022
+ /// \note API not yet finalized
1023
+ ARROW_EXPORT
1024
+ Result<Datum> And(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
1025
+
1026
+ /// \brief Element-wise AND of two boolean datums with a Kleene truth table
1027
+ /// (null and false is false).
1028
+ ///
1029
+ /// \param[in] left left operand
1030
+ /// \param[in] right right operand
1031
+ /// \param[in] ctx the function execution context, optional
1032
+ /// \return the resulting datum
1033
+ ///
1034
+ /// \since 1.0.0
1035
+ /// \note API not yet finalized
1036
+ ARROW_EXPORT
1037
+ Result<Datum> KleeneAnd(const Datum& left, const Datum& right,
1038
+ ExecContext* ctx = NULLPTR);
1039
+
1040
+ /// \brief Element-wise OR of two boolean datums which always propagates nulls
1041
+ /// (null and true is null).
1042
+ ///
1043
+ /// \param[in] left left operand
1044
+ /// \param[in] right right operand
1045
+ /// \param[in] ctx the function execution context, optional
1046
+ /// \return the resulting datum
1047
+ ///
1048
+ /// \since 1.0.0
1049
+ /// \note API not yet finalized
1050
+ ARROW_EXPORT
1051
+ Result<Datum> Or(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
1052
+
1053
+ /// \brief Element-wise OR of two boolean datums with a Kleene truth table
1054
+ /// (null or true is true).
1055
+ ///
1056
+ /// \param[in] left left operand
1057
+ /// \param[in] right right operand
1058
+ /// \param[in] ctx the function execution context, optional
1059
+ /// \return the resulting datum
1060
+ ///
1061
+ /// \since 1.0.0
1062
+ /// \note API not yet finalized
1063
+ ARROW_EXPORT
1064
+ Result<Datum> KleeneOr(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
1065
+
1066
+ /// \brief Element-wise XOR of two boolean datums
1067
+ /// \param[in] left left operand
1068
+ /// \param[in] right right operand
1069
+ /// \param[in] ctx the function execution context, optional
1070
+ /// \return the resulting datum
1071
+ ///
1072
+ /// \since 1.0.0
1073
+ /// \note API not yet finalized
1074
+ ARROW_EXPORT
1075
+ Result<Datum> Xor(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
1076
+
1077
+ /// \brief Element-wise AND NOT of two boolean datums which always propagates nulls
1078
+ /// (null and not true is null).
1079
+ ///
1080
+ /// \param[in] left left operand
1081
+ /// \param[in] right right operand
1082
+ /// \param[in] ctx the function execution context, optional
1083
+ /// \return the resulting datum
1084
+ ///
1085
+ /// \since 3.0.0
1086
+ /// \note API not yet finalized
1087
+ ARROW_EXPORT
1088
+ Result<Datum> AndNot(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
1089
+
1090
+ /// \brief Element-wise AND NOT of two boolean datums with a Kleene truth table
1091
+ /// (false and not null is false, null and not true is false).
1092
+ ///
1093
+ /// \param[in] left left operand
1094
+ /// \param[in] right right operand
1095
+ /// \param[in] ctx the function execution context, optional
1096
+ /// \return the resulting datum
1097
+ ///
1098
+ /// \since 3.0.0
1099
+ /// \note API not yet finalized
1100
+ ARROW_EXPORT
1101
+ Result<Datum> KleeneAndNot(const Datum& left, const Datum& right,
1102
+ ExecContext* ctx = NULLPTR);
1103
+
1104
+ /// \brief IsIn returns true for each element of `values` that is contained in
1105
+ /// `value_set`
1106
+ ///
1107
+ /// Behaviour of nulls is governed by SetLookupOptions::skip_nulls.
1108
+ ///
1109
+ /// \param[in] values array-like input to look up in value_set
1110
+ /// \param[in] options SetLookupOptions
1111
+ /// \param[in] ctx the function execution context, optional
1112
+ /// \return the resulting datum
1113
+ ///
1114
+ /// \since 1.0.0
1115
+ /// \note API not yet finalized
1116
+ ARROW_EXPORT
1117
+ Result<Datum> IsIn(const Datum& values, const SetLookupOptions& options,
1118
+ ExecContext* ctx = NULLPTR);
1119
+ ARROW_EXPORT
1120
+ Result<Datum> IsIn(const Datum& values, const Datum& value_set,
1121
+ ExecContext* ctx = NULLPTR);
1122
+
1123
+ /// \brief IndexIn examines each slot in the values against a value_set array.
1124
+ /// If the value is not found in value_set, null will be output.
1125
+ /// If found, the index of occurrence within value_set (ignoring duplicates)
1126
+ /// will be output.
1127
+ ///
1128
+ /// For example given values = [99, 42, 3, null] and
1129
+ /// value_set = [3, 3, 99], the output will be = [2, null, 0, null]
1130
+ ///
1131
+ /// Behaviour of nulls is governed by SetLookupOptions::skip_nulls.
1132
+ ///
1133
+ /// \param[in] values array-like input
1134
+ /// \param[in] options SetLookupOptions
1135
+ /// \param[in] ctx the function execution context, optional
1136
+ /// \return the resulting datum
1137
+ ///
1138
+ /// \since 1.0.0
1139
+ /// \note API not yet finalized
1140
+ ARROW_EXPORT
1141
+ Result<Datum> IndexIn(const Datum& values, const SetLookupOptions& options,
1142
+ ExecContext* ctx = NULLPTR);
1143
+ ARROW_EXPORT
1144
+ Result<Datum> IndexIn(const Datum& values, const Datum& value_set,
1145
+ ExecContext* ctx = NULLPTR);
1146
+
1147
+ /// \brief IsValid returns true for each element of `values` that is not null,
1148
+ /// false otherwise
1149
+ ///
1150
+ /// \param[in] values input to examine for validity
1151
+ /// \param[in] ctx the function execution context, optional
1152
+ /// \return the resulting datum
1153
+ ///
1154
+ /// \since 1.0.0
1155
+ /// \note API not yet finalized
1156
+ ARROW_EXPORT
1157
+ Result<Datum> IsValid(const Datum& values, ExecContext* ctx = NULLPTR);
1158
+
1159
+ /// \brief IsNull returns true for each element of `values` that is null,
1160
+ /// false otherwise
1161
+ ///
1162
+ /// \param[in] values input to examine for nullity
1163
+ /// \param[in] options NullOptions
1164
+ /// \param[in] ctx the function execution context, optional
1165
+ /// \return the resulting datum
1166
+ ///
1167
+ /// \since 1.0.0
1168
+ /// \note API not yet finalized
1169
+ ARROW_EXPORT
1170
+ Result<Datum> IsNull(const Datum& values, NullOptions options = NullOptions::Defaults(),
1171
+ ExecContext* ctx = NULLPTR);
1172
+
1173
+ /// \brief IsNan returns true for each element of `values` that is NaN,
1174
+ /// false otherwise
1175
+ ///
1176
+ /// \param[in] values input to look for NaN
1177
+ /// \param[in] ctx the function execution context, optional
1178
+ /// \return the resulting datum
1179
+ ///
1180
+ /// \since 3.0.0
1181
+ /// \note API not yet finalized
1182
+ ARROW_EXPORT
1183
+ Result<Datum> IsNan(const Datum& values, ExecContext* ctx = NULLPTR);
1184
+
1185
+ /// \brief IfElse returns elements chosen from `left` or `right`
1186
+ /// depending on `cond`. `null` values in `cond` will be promoted to the result
1187
+ ///
1188
+ /// \param[in] cond `Boolean` condition Scalar/ Array
1189
+ /// \param[in] left Scalar/ Array
1190
+ /// \param[in] right Scalar/ Array
1191
+ /// \param[in] ctx the function execution context, optional
1192
+ ///
1193
+ /// \return the resulting datum
1194
+ ///
1195
+ /// \since 5.0.0
1196
+ /// \note API not yet finalized
1197
+ ARROW_EXPORT
1198
+ Result<Datum> IfElse(const Datum& cond, const Datum& left, const Datum& right,
1199
+ ExecContext* ctx = NULLPTR);
1200
+
1201
+ /// \brief CaseWhen behaves like a switch/case or if-else if-else statement: for
1202
+ /// each row, select the first value for which the corresponding condition is
1203
+ /// true, or (if given) select the 'else' value, else emit null. Note that a
1204
+ /// null condition is the same as false.
1205
+ ///
1206
+ /// \param[in] cond Conditions (Boolean)
1207
+ /// \param[in] cases Values (any type), along with an optional 'else' value.
1208
+ /// \param[in] ctx the function execution context, optional
1209
+ ///
1210
+ /// \return the resulting datum
1211
+ ///
1212
+ /// \since 5.0.0
1213
+ /// \note API not yet finalized
1214
+ ARROW_EXPORT
1215
+ Result<Datum> CaseWhen(const Datum& cond, const std::vector<Datum>& cases,
1216
+ ExecContext* ctx = NULLPTR);
1217
+
1218
+ /// \brief Year returns year for each element of `values`
1219
+ ///
1220
+ /// \param[in] values input to extract year from
1221
+ /// \param[in] ctx the function execution context, optional
1222
+ /// \return the resulting datum
1223
+ ///
1224
+ /// \since 5.0.0
1225
+ /// \note API not yet finalized
1226
+ ARROW_EXPORT
1227
+ Result<Datum> Year(const Datum& values, ExecContext* ctx = NULLPTR);
1228
+
1229
+ /// \brief IsLeapYear returns if a year is a leap year for each element of `values`
1230
+ ///
1231
+ /// \param[in] values input to extract leap year indicator from
1232
+ /// \param[in] ctx the function execution context, optional
1233
+ /// \return the resulting datum
1234
+ ///
1235
+ /// \since 8.0.0
1236
+ /// \note API not yet finalized
1237
+ ARROW_EXPORT
1238
+ Result<Datum> IsLeapYear(const Datum& values, ExecContext* ctx = NULLPTR);
1239
+
1240
+ /// \brief Month returns month for each element of `values`.
1241
+ /// Month is encoded as January=1, December=12
1242
+ ///
1243
+ /// \param[in] values input to extract month from
1244
+ /// \param[in] ctx the function execution context, optional
1245
+ /// \return the resulting datum
1246
+ ///
1247
+ /// \since 5.0.0
1248
+ /// \note API not yet finalized
1249
+ ARROW_EXPORT
1250
+ Result<Datum> Month(const Datum& values, ExecContext* ctx = NULLPTR);
1251
+
1252
+ /// \brief Day returns day number for each element of `values`
1253
+ ///
1254
+ /// \param[in] values input to extract day from
1255
+ /// \param[in] ctx the function execution context, optional
1256
+ /// \return the resulting datum
1257
+ ///
1258
+ /// \since 5.0.0
1259
+ /// \note API not yet finalized
1260
+ ARROW_EXPORT
1261
+ Result<Datum> Day(const Datum& values, ExecContext* ctx = NULLPTR);
1262
+
1263
+ /// \brief YearMonthDay returns a struct containing the Year, Month and Day value for
1264
+ /// each element of `values`.
1265
+ ///
1266
+ /// \param[in] values input to extract (year, month, day) struct from
1267
+ /// \param[in] ctx the function execution context, optional
1268
+ /// \return the resulting datum
1269
+ ///
1270
+ /// \since 7.0.0
1271
+ /// \note API not yet finalized
1272
+ ARROW_EXPORT
1273
+ Result<Datum> YearMonthDay(const Datum& values, ExecContext* ctx = NULLPTR);
1274
+
1275
+ /// \brief DayOfWeek returns number of the day of the week value for each element of
1276
+ /// `values`.
1277
+ ///
1278
+ /// By default week starts on Monday denoted by 0 and ends on Sunday denoted
1279
+ /// by 6. Start day of the week (Monday=1, Sunday=7) and numbering base (0 or 1) can be
1280
+ /// set using DayOfWeekOptions
1281
+ ///
1282
+ /// \param[in] values input to extract number of the day of the week from
1283
+ /// \param[in] options for setting start of the week and day numbering
1284
+ /// \param[in] ctx the function execution context, optional
1285
+ /// \return the resulting datum
1286
+ ///
1287
+ /// \since 5.0.0
1288
+ /// \note API not yet finalized
1289
+ ARROW_EXPORT Result<Datum> DayOfWeek(const Datum& values,
1290
+ DayOfWeekOptions options = DayOfWeekOptions(),
1291
+ ExecContext* ctx = NULLPTR);
1292
+
1293
+ /// \brief DayOfYear returns number of day of the year for each element of `values`.
1294
+ /// January 1st maps to day number 1, February 1st to 32, etc.
1295
+ ///
1296
+ /// \param[in] values input to extract number of day of the year from
1297
+ /// \param[in] ctx the function execution context, optional
1298
+ /// \return the resulting datum
1299
+ ///
1300
+ /// \since 5.0.0
1301
+ /// \note API not yet finalized
1302
+ ARROW_EXPORT Result<Datum> DayOfYear(const Datum& values, ExecContext* ctx = NULLPTR);
1303
+
1304
+ /// \brief ISOYear returns ISO year number for each element of `values`.
1305
+ /// First week of an ISO year has the majority (4 or more) of its days in January.
1306
+ ///
1307
+ /// \param[in] values input to extract ISO year from
1308
+ /// \param[in] ctx the function execution context, optional
1309
+ /// \return the resulting datum
1310
+ ///
1311
+ /// \since 5.0.0
1312
+ /// \note API not yet finalized
1313
+ ARROW_EXPORT
1314
+ Result<Datum> ISOYear(const Datum& values, ExecContext* ctx = NULLPTR);
1315
+
1316
+ /// \brief USYear returns US epidemiological year number for each element of `values`.
1317
+ /// First week of US epidemiological year has the majority (4 or more) of it's
1318
+ /// days in January. Last week of US epidemiological year has the year's last
1319
+ /// Wednesday in it. US epidemiological week starts on Sunday.
1320
+ ///
1321
+ /// \param[in] values input to extract US epidemiological year from
1322
+ /// \param[in] ctx the function execution context, optional
1323
+ /// \return the resulting datum
1324
+ ///
1325
+ /// \since 8.0.0
1326
+ /// \note API not yet finalized
1327
+ ARROW_EXPORT
1328
+ Result<Datum> USYear(const Datum& values, ExecContext* ctx = NULLPTR);
1329
+
1330
+ /// \brief ISOWeek returns ISO week of year number for each element of `values`.
1331
+ /// First ISO week has the majority (4 or more) of its days in January.
1332
+ /// ISO week starts on Monday. Year can have 52 or 53 weeks.
1333
+ /// Week numbering can start with 1.
1334
+ ///
1335
+ /// \param[in] values input to extract ISO week of year from
1336
+ /// \param[in] ctx the function execution context, optional
1337
+ /// \return the resulting datum
1338
+ ///
1339
+ /// \since 5.0.0
1340
+ /// \note API not yet finalized
1341
+ ARROW_EXPORT Result<Datum> ISOWeek(const Datum& values, ExecContext* ctx = NULLPTR);
1342
+
1343
+ /// \brief USWeek returns US week of year number for each element of `values`.
1344
+ /// First US week has the majority (4 or more) of its days in January.
1345
+ /// US week starts on Sunday. Year can have 52 or 53 weeks.
1346
+ /// Week numbering starts with 1.
1347
+ ///
1348
+ /// \param[in] values input to extract US week of year from
1349
+ /// \param[in] ctx the function execution context, optional
1350
+ /// \return the resulting datum
1351
+ ///
1352
+ /// \since 6.0.0
1353
+ /// \note API not yet finalized
1354
+ ARROW_EXPORT Result<Datum> USWeek(const Datum& values, ExecContext* ctx = NULLPTR);
1355
+
1356
+ /// \brief Week returns week of year number for each element of `values`.
1357
+ /// First ISO week has the majority (4 or more) of its days in January.
1358
+ /// Year can have 52 or 53 weeks. Week numbering can start with 0 or 1
1359
+ /// depending on DayOfWeekOptions.count_from_zero.
1360
+ ///
1361
+ /// \param[in] values input to extract week of year from
1362
+ /// \param[in] options for setting numbering start
1363
+ /// \param[in] ctx the function execution context, optional
1364
+ /// \return the resulting datum
1365
+ ///
1366
+ /// \since 6.0.0
1367
+ /// \note API not yet finalized
1368
+ ARROW_EXPORT Result<Datum> Week(const Datum& values, WeekOptions options = WeekOptions(),
1369
+ ExecContext* ctx = NULLPTR);
1370
+
1371
+ /// \brief ISOCalendar returns a (ISO year, ISO week, ISO day of week) struct for
1372
+ /// each element of `values`.
1373
+ /// ISO week starts on Monday denoted by 1 and ends on Sunday denoted by 7.
1374
+ ///
1375
+ /// \param[in] values input to ISO calendar struct from
1376
+ /// \param[in] ctx the function execution context, optional
1377
+ /// \return the resulting datum
1378
+ ///
1379
+ /// \since 5.0.0
1380
+ /// \note API not yet finalized
1381
+ ARROW_EXPORT Result<Datum> ISOCalendar(const Datum& values, ExecContext* ctx = NULLPTR);
1382
+
1383
+ /// \brief Quarter returns the quarter of year number for each element of `values`
1384
+ /// First quarter maps to 1 and fourth quarter maps to 4.
1385
+ ///
1386
+ /// \param[in] values input to extract quarter of year from
1387
+ /// \param[in] ctx the function execution context, optional
1388
+ /// \return the resulting datum
1389
+ ///
1390
+ /// \since 5.0.0
1391
+ /// \note API not yet finalized
1392
+ ARROW_EXPORT Result<Datum> Quarter(const Datum& values, ExecContext* ctx = NULLPTR);
1393
+
1394
+ /// \brief Hour returns hour value for each element of `values`
1395
+ ///
1396
+ /// \param[in] values input to extract hour from
1397
+ /// \param[in] ctx the function execution context, optional
1398
+ /// \return the resulting datum
1399
+ ///
1400
+ /// \since 5.0.0
1401
+ /// \note API not yet finalized
1402
+ ARROW_EXPORT
1403
+ Result<Datum> Hour(const Datum& values, ExecContext* ctx = NULLPTR);
1404
+
1405
+ /// \brief Minute returns minutes value for each element of `values`
1406
+ ///
1407
+ /// \param[in] values input to extract minutes from
1408
+ /// \param[in] ctx the function execution context, optional
1409
+ /// \return the resulting datum
1410
+ ///
1411
+ /// \since 5.0.0
1412
+ /// \note API not yet finalized
1413
+ ARROW_EXPORT
1414
+ Result<Datum> Minute(const Datum& values, ExecContext* ctx = NULLPTR);
1415
+
1416
+ /// \brief Second returns seconds value for each element of `values`
1417
+ ///
1418
+ /// \param[in] values input to extract seconds from
1419
+ /// \param[in] ctx the function execution context, optional
1420
+ /// \return the resulting datum
1421
+ ///
1422
+ /// \since 5.0.0
1423
+ /// \note API not yet finalized
1424
+ ARROW_EXPORT
1425
+ Result<Datum> Second(const Datum& values, ExecContext* ctx = NULLPTR);
1426
+
1427
+ /// \brief Millisecond returns number of milliseconds since the last full second
1428
+ /// for each element of `values`
1429
+ ///
1430
+ /// \param[in] values input to extract milliseconds from
1431
+ /// \param[in] ctx the function execution context, optional
1432
+ /// \return the resulting datum
1433
+ ///
1434
+ /// \since 5.0.0
1435
+ /// \note API not yet finalized
1436
+ ARROW_EXPORT
1437
+ Result<Datum> Millisecond(const Datum& values, ExecContext* ctx = NULLPTR);
1438
+
1439
+ /// \brief Microsecond returns number of microseconds since the last full millisecond
1440
+ /// for each element of `values`
1441
+ ///
1442
+ /// \param[in] values input to extract microseconds from
1443
+ /// \param[in] ctx the function execution context, optional
1444
+ /// \return the resulting datum
1445
+ ///
1446
+ /// \since 5.0.0
1447
+ /// \note API not yet finalized
1448
+ ARROW_EXPORT
1449
+ Result<Datum> Microsecond(const Datum& values, ExecContext* ctx = NULLPTR);
1450
+
1451
+ /// \brief Nanosecond returns number of nanoseconds since the last full millisecond
1452
+ /// for each element of `values`
1453
+ ///
1454
+ /// \param[in] values input to extract nanoseconds from
1455
+ /// \param[in] ctx the function execution context, optional
1456
+ /// \return the resulting datum
1457
+ ///
1458
+ /// \since 5.0.0
1459
+ /// \note API not yet finalized
1460
+ ARROW_EXPORT
1461
+ Result<Datum> Nanosecond(const Datum& values, ExecContext* ctx = NULLPTR);
1462
+
1463
+ /// \brief Subsecond returns the fraction of second elapsed since last full second
1464
+ /// as a float for each element of `values`
1465
+ ///
1466
+ /// \param[in] values input to extract subsecond from
1467
+ /// \param[in] ctx the function execution context, optional
1468
+ /// \return the resulting datum
1469
+ ///
1470
+ /// \since 5.0.0
1471
+ /// \note API not yet finalized
1472
+ ARROW_EXPORT Result<Datum> Subsecond(const Datum& values, ExecContext* ctx = NULLPTR);
1473
+
1474
+ /// \brief Format timestamps according to a format string
1475
+ ///
1476
+ /// Return formatted time strings according to the format string
1477
+ /// `StrftimeOptions::format` and to the locale specifier `Strftime::locale`.
1478
+ ///
1479
+ /// \param[in] values input timestamps
1480
+ /// \param[in] options for setting format string and locale
1481
+ /// \param[in] ctx the function execution context, optional
1482
+ /// \return the resulting datum
1483
+ ///
1484
+ /// \since 6.0.0
1485
+ /// \note API not yet finalized
1486
+ ARROW_EXPORT Result<Datum> Strftime(const Datum& values, StrftimeOptions options,
1487
+ ExecContext* ctx = NULLPTR);
1488
+
1489
+ /// \brief Parse timestamps according to a format string
1490
+ ///
1491
+ /// Return parsed timestamps according to the format string
1492
+ /// `StrptimeOptions::format` at time resolution `Strftime::unit`. Parse errors are
1493
+ /// raised depending on the `Strftime::error_is_null` setting.
1494
+ ///
1495
+ /// \param[in] values input strings
1496
+ /// \param[in] options for setting format string, unit and error_is_null
1497
+ /// \param[in] ctx the function execution context, optional
1498
+ /// \return the resulting datum
1499
+ ///
1500
+ /// \since 8.0.0
1501
+ /// \note API not yet finalized
1502
+ ARROW_EXPORT Result<Datum> Strptime(const Datum& values, StrptimeOptions options,
1503
+ ExecContext* ctx = NULLPTR);
1504
+
1505
+ /// \brief Converts timestamps from local timestamp without a timezone to a timestamp with
1506
+ /// timezone, interpreting the local timestamp as being in the specified timezone for each
1507
+ /// element of `values`
1508
+ ///
1509
+ /// \param[in] values input to convert
1510
+ /// \param[in] options for setting source timezone, exception and ambiguous timestamp
1511
+ /// handling.
1512
+ /// \param[in] ctx the function execution context, optional
1513
+ /// \return the resulting datum
1514
+ ///
1515
+ /// \since 6.0.0
1516
+ /// \note API not yet finalized
1517
+ ARROW_EXPORT Result<Datum> AssumeTimezone(const Datum& values,
1518
+ AssumeTimezoneOptions options,
1519
+ ExecContext* ctx = NULLPTR);
1520
+
1521
+ /// \brief IsDaylightSavings extracts if currently observing daylight savings for each
1522
+ /// element of `values`
1523
+ ///
1524
+ /// \param[in] values input to extract daylight savings indicator from
1525
+ /// \param[in] ctx the function execution context, optional
1526
+ /// \return the resulting datum
1527
+ ///
1528
+ /// \since 8.0.0
1529
+ /// \note API not yet finalized
1530
+ ARROW_EXPORT Result<Datum> IsDaylightSavings(const Datum& values,
1531
+ ExecContext* ctx = NULLPTR);
1532
+
1533
+ /// \brief LocalTimestamp converts timestamp to timezone naive local timestamp
1534
+ ///
1535
+ /// \param[in] values input to convert to local time
1536
+ /// \param[in] ctx the function execution context, optional
1537
+ /// \return the resulting datum
1538
+ ///
1539
+ /// \since 12.0.0
1540
+ /// \note API not yet finalized
1541
+ ARROW_EXPORT Result<Datum> LocalTimestamp(const Datum& values,
1542
+ ExecContext* ctx = NULLPTR);
1543
+
1544
+ /// \brief Years Between finds the number of years between two values
1545
+ ///
1546
+ /// \param[in] left input treated as the start time
1547
+ /// \param[in] right input treated as the end time
1548
+ /// \param[in] ctx the function execution context, optional
1549
+ /// \return the resulting datum
1550
+ ///
1551
+ /// \since 8.0.0
1552
+ /// \note API not yet finalized
1553
+ ARROW_EXPORT Result<Datum> YearsBetween(const Datum& left, const Datum& right,
1554
+ ExecContext* ctx = NULLPTR);
1555
+
1556
+ /// \brief Quarters Between finds the number of quarters between two values
1557
+ ///
1558
+ /// \param[in] left input treated as the start time
1559
+ /// \param[in] right input treated as the end time
1560
+ /// \param[in] ctx the function execution context, optional
1561
+ /// \return the resulting datum
1562
+ ///
1563
+ /// \since 8.0.0
1564
+ /// \note API not yet finalized
1565
+ ARROW_EXPORT Result<Datum> QuartersBetween(const Datum& left, const Datum& right,
1566
+ ExecContext* ctx = NULLPTR);
1567
+
1568
+ /// \brief Months Between finds the number of month between two values
1569
+ ///
1570
+ /// \param[in] left input treated as the start time
1571
+ /// \param[in] right input treated as the end time
1572
+ /// \param[in] ctx the function execution context, optional
1573
+ /// \return the resulting datum
1574
+ ///
1575
+ /// \since 8.0.0
1576
+ /// \note API not yet finalized
1577
+ ARROW_EXPORT Result<Datum> MonthsBetween(const Datum& left, const Datum& right,
1578
+ ExecContext* ctx = NULLPTR);
1579
+
1580
+ /// \brief Weeks Between finds the number of weeks between two values
1581
+ ///
1582
+ /// \param[in] left input treated as the start time
1583
+ /// \param[in] right input treated as the end time
1584
+ /// \param[in] ctx the function execution context, optional
1585
+ /// \return the resulting datum
1586
+ ///
1587
+ /// \since 8.0.0
1588
+ /// \note API not yet finalized
1589
+ ARROW_EXPORT Result<Datum> WeeksBetween(const Datum& left, const Datum& right,
1590
+ ExecContext* ctx = NULLPTR);
1591
+
1592
+ /// \brief Month Day Nano Between finds the number of months, days, and nanoseconds
1593
+ /// between two values
1594
+ ///
1595
+ /// \param[in] left input treated as the start time
1596
+ /// \param[in] right input treated as the end time
1597
+ /// \param[in] ctx the function execution context, optional
1598
+ /// \return the resulting datum
1599
+ ///
1600
+ /// \since 8.0.0
1601
+ /// \note API not yet finalized
1602
+ ARROW_EXPORT Result<Datum> MonthDayNanoBetween(const Datum& left, const Datum& right,
1603
+ ExecContext* ctx = NULLPTR);
1604
+
1605
+ /// \brief DayTime Between finds the number of days and milliseconds between two values
1606
+ ///
1607
+ /// \param[in] left input treated as the start time
1608
+ /// \param[in] right input treated as the end time
1609
+ /// \param[in] ctx the function execution context, optional
1610
+ /// \return the resulting datum
1611
+ ///
1612
+ /// \since 8.0.0
1613
+ /// \note API not yet finalized
1614
+ ARROW_EXPORT Result<Datum> DayTimeBetween(const Datum& left, const Datum& right,
1615
+ ExecContext* ctx = NULLPTR);
1616
+
1617
+ /// \brief Days Between finds the number of days between two values
1618
+ ///
1619
+ /// \param[in] left input treated as the start time
1620
+ /// \param[in] right input treated as the end time
1621
+ /// \param[in] ctx the function execution context, optional
1622
+ /// \return the resulting datum
1623
+ ///
1624
+ /// \since 8.0.0
1625
+ /// \note API not yet finalized
1626
+ ARROW_EXPORT Result<Datum> DaysBetween(const Datum& left, const Datum& right,
1627
+ ExecContext* ctx = NULLPTR);
1628
+
1629
+ /// \brief Hours Between finds the number of hours between two values
1630
+ ///
1631
+ /// \param[in] left input treated as the start time
1632
+ /// \param[in] right input treated as the end time
1633
+ /// \param[in] ctx the function execution context, optional
1634
+ /// \return the resulting datum
1635
+ ///
1636
+ /// \since 8.0.0
1637
+ /// \note API not yet finalized
1638
+ ARROW_EXPORT Result<Datum> HoursBetween(const Datum& left, const Datum& right,
1639
+ ExecContext* ctx = NULLPTR);
1640
+
1641
+ /// \brief Minutes Between finds the number of minutes between two values
1642
+ ///
1643
+ /// \param[in] left input treated as the start time
1644
+ /// \param[in] right input treated as the end time
1645
+ /// \param[in] ctx the function execution context, optional
1646
+ /// \return the resulting datum
1647
+ ///
1648
+ /// \since 8.0.0
1649
+ /// \note API not yet finalized
1650
+ ARROW_EXPORT Result<Datum> MinutesBetween(const Datum& left, const Datum& right,
1651
+ ExecContext* ctx = NULLPTR);
1652
+
1653
+ /// \brief Seconds Between finds the number of hours between two values
1654
+ ///
1655
+ /// \param[in] left input treated as the start time
1656
+ /// \param[in] right input treated as the end time
1657
+ /// \param[in] ctx the function execution context, optional
1658
+ /// \return the resulting datum
1659
+ ///
1660
+ /// \since 8.0.0
1661
+ /// \note API not yet finalized
1662
+ ARROW_EXPORT Result<Datum> SecondsBetween(const Datum& left, const Datum& right,
1663
+ ExecContext* ctx = NULLPTR);
1664
+
1665
+ /// \brief Milliseconds Between finds the number of milliseconds between two values
1666
+ ///
1667
+ /// \param[in] left input treated as the start time
1668
+ /// \param[in] right input treated as the end time
1669
+ /// \param[in] ctx the function execution context, optional
1670
+ /// \return the resulting datum
1671
+ ///
1672
+ /// \since 8.0.0
1673
+ /// \note API not yet finalized
1674
+ ARROW_EXPORT Result<Datum> MillisecondsBetween(const Datum& left, const Datum& right,
1675
+ ExecContext* ctx = NULLPTR);
1676
+
1677
+ /// \brief Microseconds Between finds the number of microseconds between two values
1678
+ ///
1679
+ /// \param[in] left input treated as the start time
1680
+ /// \param[in] right input treated as the end time
1681
+ /// \param[in] ctx the function execution context, optional
1682
+ /// \return the resulting datum
1683
+ ///
1684
+ /// \since 8.0.0
1685
+ /// \note API not yet finalized
1686
+ ARROW_EXPORT Result<Datum> MicrosecondsBetween(const Datum& left, const Datum& right,
1687
+ ExecContext* ctx = NULLPTR);
1688
+
1689
+ /// \brief Nanoseconds Between finds the number of nanoseconds between two values
1690
+ ///
1691
+ /// \param[in] left input treated as the start time
1692
+ /// \param[in] right input treated as the end time
1693
+ /// \param[in] ctx the function execution context, optional
1694
+ /// \return the resulting datum
1695
+ ///
1696
+ /// \since 8.0.0
1697
+ /// \note API not yet finalized
1698
+ ARROW_EXPORT Result<Datum> NanosecondsBetween(const Datum& left, const Datum& right,
1699
+ ExecContext* ctx = NULLPTR);
1700
+
1701
+ /// \brief Finds either the FIRST, LAST, or ALL items with a key that matches the given
1702
+ /// query key in a map.
1703
+ ///
1704
+ /// Returns an array of items for FIRST and LAST, and an array of list of items for ALL.
1705
+ ///
1706
+ /// \param[in] map to look in
1707
+ /// \param[in] options to pass a query key and choose which matching keys to return
1708
+ /// (FIRST, LAST or ALL)
1709
+ /// \param[in] ctx the function execution context, optional
1710
+ /// \return the resulting datum
1711
+ ///
1712
+ /// \since 8.0.0
1713
+ /// \note API not yet finalized
1714
+ ARROW_EXPORT Result<Datum> MapLookup(const Datum& map, MapLookupOptions options,
1715
+ ExecContext* ctx = NULLPTR);
1716
+ } // namespace compute
1717
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/api_vector.h ADDED
@@ -0,0 +1,697 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <memory>
21
+ #include <utility>
22
+
23
+ #include "arrow/compute/function_options.h"
24
+ #include "arrow/compute/ordering.h"
25
+ #include "arrow/result.h"
26
+ #include "arrow/type_fwd.h"
27
+
28
+ namespace arrow {
29
+ namespace compute {
30
+
31
+ class ExecContext;
32
+
33
+ /// \addtogroup compute-concrete-options
34
+ /// @{
35
+
36
+ class ARROW_EXPORT FilterOptions : public FunctionOptions {
37
+ public:
38
+ /// Configure the action taken when a slot of the selection mask is null
39
+ enum NullSelectionBehavior {
40
+ /// The corresponding filtered value will be removed in the output.
41
+ DROP,
42
+ /// The corresponding filtered value will be null in the output.
43
+ EMIT_NULL,
44
+ };
45
+
46
+ explicit FilterOptions(NullSelectionBehavior null_selection = DROP);
47
+ static constexpr char const kTypeName[] = "FilterOptions";
48
+ static FilterOptions Defaults() { return FilterOptions(); }
49
+
50
+ NullSelectionBehavior null_selection_behavior = DROP;
51
+ };
52
+
53
+ class ARROW_EXPORT TakeOptions : public FunctionOptions {
54
+ public:
55
+ explicit TakeOptions(bool boundscheck = true);
56
+ static constexpr char const kTypeName[] = "TakeOptions";
57
+ static TakeOptions BoundsCheck() { return TakeOptions(true); }
58
+ static TakeOptions NoBoundsCheck() { return TakeOptions(false); }
59
+ static TakeOptions Defaults() { return BoundsCheck(); }
60
+
61
+ bool boundscheck = true;
62
+ };
63
+
64
+ /// \brief Options for the dictionary encode function
65
+ class ARROW_EXPORT DictionaryEncodeOptions : public FunctionOptions {
66
+ public:
67
+ /// Configure how null values will be encoded
68
+ enum NullEncodingBehavior {
69
+ /// The null value will be added to the dictionary with a proper index.
70
+ ENCODE,
71
+ /// The null value will be masked in the indices array.
72
+ MASK
73
+ };
74
+
75
+ explicit DictionaryEncodeOptions(NullEncodingBehavior null_encoding = MASK);
76
+ static constexpr char const kTypeName[] = "DictionaryEncodeOptions";
77
+ static DictionaryEncodeOptions Defaults() { return DictionaryEncodeOptions(); }
78
+
79
+ NullEncodingBehavior null_encoding_behavior = MASK;
80
+ };
81
+
82
+ /// \brief Options for the run-end encode function
83
+ class ARROW_EXPORT RunEndEncodeOptions : public FunctionOptions {
84
+ public:
85
+ explicit RunEndEncodeOptions(std::shared_ptr<DataType> run_end_type = int32());
86
+ static constexpr char const kTypeName[] = "RunEndEncodeOptions";
87
+ static RunEndEncodeOptions Defaults() { return RunEndEncodeOptions(); }
88
+
89
+ std::shared_ptr<DataType> run_end_type;
90
+ };
91
+
92
+ class ARROW_EXPORT ArraySortOptions : public FunctionOptions {
93
+ public:
94
+ explicit ArraySortOptions(SortOrder order = SortOrder::Ascending,
95
+ NullPlacement null_placement = NullPlacement::AtEnd);
96
+ static constexpr char const kTypeName[] = "ArraySortOptions";
97
+ static ArraySortOptions Defaults() { return ArraySortOptions(); }
98
+
99
+ /// Sorting order
100
+ SortOrder order;
101
+ /// Whether nulls and NaNs are placed at the start or at the end
102
+ NullPlacement null_placement;
103
+ };
104
+
105
+ class ARROW_EXPORT SortOptions : public FunctionOptions {
106
+ public:
107
+ explicit SortOptions(std::vector<SortKey> sort_keys = {},
108
+ NullPlacement null_placement = NullPlacement::AtEnd);
109
+ explicit SortOptions(const Ordering& ordering);
110
+ static constexpr char const kTypeName[] = "SortOptions";
111
+ static SortOptions Defaults() { return SortOptions(); }
112
+ /// Convenience constructor to create an ordering from SortOptions
113
+ ///
114
+ /// Note: Both classes contain the exact same information. However,
115
+ /// sort_options should only be used in a "function options" context while Ordering
116
+ /// is used more generally.
117
+ Ordering AsOrdering() && { return Ordering(std::move(sort_keys), null_placement); }
118
+ Ordering AsOrdering() const& { return Ordering(sort_keys, null_placement); }
119
+
120
+ /// Column key(s) to order by and how to order by these sort keys.
121
+ std::vector<SortKey> sort_keys;
122
+ /// Whether nulls and NaNs are placed at the start or at the end
123
+ NullPlacement null_placement;
124
+ };
125
+
126
+ /// \brief SelectK options
127
+ class ARROW_EXPORT SelectKOptions : public FunctionOptions {
128
+ public:
129
+ explicit SelectKOptions(int64_t k = -1, std::vector<SortKey> sort_keys = {});
130
+ static constexpr char const kTypeName[] = "SelectKOptions";
131
+ static SelectKOptions Defaults() { return SelectKOptions(); }
132
+
133
+ static SelectKOptions TopKDefault(int64_t k, std::vector<std::string> key_names = {}) {
134
+ std::vector<SortKey> keys;
135
+ for (const auto& name : key_names) {
136
+ keys.emplace_back(SortKey(name, SortOrder::Descending));
137
+ }
138
+ if (key_names.empty()) {
139
+ keys.emplace_back(SortKey("not-used", SortOrder::Descending));
140
+ }
141
+ return SelectKOptions{k, keys};
142
+ }
143
+ static SelectKOptions BottomKDefault(int64_t k,
144
+ std::vector<std::string> key_names = {}) {
145
+ std::vector<SortKey> keys;
146
+ for (const auto& name : key_names) {
147
+ keys.emplace_back(SortKey(name, SortOrder::Ascending));
148
+ }
149
+ if (key_names.empty()) {
150
+ keys.emplace_back(SortKey("not-used", SortOrder::Ascending));
151
+ }
152
+ return SelectKOptions{k, keys};
153
+ }
154
+
155
+ /// The number of `k` elements to keep.
156
+ int64_t k;
157
+ /// Column key(s) to order by and how to order by these sort keys.
158
+ std::vector<SortKey> sort_keys;
159
+ };
160
+
161
+ /// \brief Rank options
162
+ class ARROW_EXPORT RankOptions : public FunctionOptions {
163
+ public:
164
+ /// Configure how ties between equal values are handled
165
+ enum Tiebreaker {
166
+ /// Ties get the smallest possible rank in sorted order.
167
+ Min,
168
+ /// Ties get the largest possible rank in sorted order.
169
+ Max,
170
+ /// Ranks are assigned in order of when ties appear in the input.
171
+ /// This ensures the ranks are a stable permutation of the input.
172
+ First,
173
+ /// The ranks span a dense [1, M] interval where M is the number
174
+ /// of distinct values in the input.
175
+ Dense
176
+ };
177
+
178
+ explicit RankOptions(std::vector<SortKey> sort_keys = {},
179
+ NullPlacement null_placement = NullPlacement::AtEnd,
180
+ Tiebreaker tiebreaker = RankOptions::First);
181
+ /// Convenience constructor for array inputs
182
+ explicit RankOptions(SortOrder order,
183
+ NullPlacement null_placement = NullPlacement::AtEnd,
184
+ Tiebreaker tiebreaker = RankOptions::First)
185
+ : RankOptions({SortKey("", order)}, null_placement, tiebreaker) {}
186
+
187
+ static constexpr char const kTypeName[] = "RankOptions";
188
+ static RankOptions Defaults() { return RankOptions(); }
189
+
190
+ /// Column key(s) to order by and how to order by these sort keys.
191
+ std::vector<SortKey> sort_keys;
192
+ /// Whether nulls and NaNs are placed at the start or at the end
193
+ NullPlacement null_placement;
194
+ /// Tiebreaker for dealing with equal values in ranks
195
+ Tiebreaker tiebreaker;
196
+ };
197
+
198
+ /// \brief Partitioning options for NthToIndices
199
+ class ARROW_EXPORT PartitionNthOptions : public FunctionOptions {
200
+ public:
201
+ explicit PartitionNthOptions(int64_t pivot,
202
+ NullPlacement null_placement = NullPlacement::AtEnd);
203
+ PartitionNthOptions() : PartitionNthOptions(0) {}
204
+ static constexpr char const kTypeName[] = "PartitionNthOptions";
205
+
206
+ /// The index into the equivalent sorted array of the partition pivot element.
207
+ int64_t pivot;
208
+ /// Whether nulls and NaNs are partitioned at the start or at the end
209
+ NullPlacement null_placement;
210
+ };
211
+
212
+ /// \brief Options for cumulative functions
213
+ /// \note Also aliased as CumulativeSumOptions for backward compatibility
214
+ class ARROW_EXPORT CumulativeOptions : public FunctionOptions {
215
+ public:
216
+ explicit CumulativeOptions(bool skip_nulls = false);
217
+ explicit CumulativeOptions(double start, bool skip_nulls = false);
218
+ explicit CumulativeOptions(std::shared_ptr<Scalar> start, bool skip_nulls = false);
219
+ static constexpr char const kTypeName[] = "CumulativeOptions";
220
+ static CumulativeOptions Defaults() { return CumulativeOptions(); }
221
+
222
+ /// Optional starting value for cumulative operation computation, default depends on the
223
+ /// operation and input type.
224
+ /// - sum: 0
225
+ /// - prod: 1
226
+ /// - min: maximum of the input type
227
+ /// - max: minimum of the input type
228
+ /// - mean: start is ignored because it has no meaning for mean
229
+ std::optional<std::shared_ptr<Scalar>> start;
230
+
231
+ /// If true, nulls in the input are ignored and produce a corresponding null output.
232
+ /// When false, the first null encountered is propagated through the remaining output.
233
+ bool skip_nulls = false;
234
+ };
235
+ using CumulativeSumOptions = CumulativeOptions; // For backward compatibility
236
+
237
+ /// \brief Options for pairwise functions
238
+ class ARROW_EXPORT PairwiseOptions : public FunctionOptions {
239
+ public:
240
+ explicit PairwiseOptions(int64_t periods = 1);
241
+ static constexpr char const kTypeName[] = "PairwiseOptions";
242
+ static PairwiseOptions Defaults() { return PairwiseOptions(); }
243
+
244
+ /// Periods to shift for applying the binary operation, accepts negative values.
245
+ int64_t periods = 1;
246
+ };
247
+
248
+ /// @}
249
+
250
+ /// \brief Filter with a boolean selection filter
251
+ ///
252
+ /// The output will be populated with values from the input at positions
253
+ /// where the selection filter is not 0. Nulls in the filter will be handled
254
+ /// based on options.null_selection_behavior.
255
+ ///
256
+ /// For example given values = ["a", "b", "c", null, "e", "f"] and
257
+ /// filter = [0, 1, 1, 0, null, 1], the output will be
258
+ /// (null_selection_behavior == DROP) = ["b", "c", "f"]
259
+ /// (null_selection_behavior == EMIT_NULL) = ["b", "c", null, "f"]
260
+ ///
261
+ /// \param[in] values array to filter
262
+ /// \param[in] filter indicates which values should be filtered out
263
+ /// \param[in] options configures null_selection_behavior
264
+ /// \param[in] ctx the function execution context, optional
265
+ /// \return the resulting datum
266
+ ARROW_EXPORT
267
+ Result<Datum> Filter(const Datum& values, const Datum& filter,
268
+ const FilterOptions& options = FilterOptions::Defaults(),
269
+ ExecContext* ctx = NULLPTR);
270
+
271
+ namespace internal {
272
+
273
+ // These internal functions are implemented in kernels/vector_selection.cc
274
+
275
+ /// \brief Return the number of selected indices in the boolean filter
276
+ ///
277
+ /// \param filter a plain or run-end encoded boolean array with or without nulls
278
+ /// \param null_selection how to handle nulls in the filter
279
+ ARROW_EXPORT
280
+ int64_t GetFilterOutputSize(const ArraySpan& filter,
281
+ FilterOptions::NullSelectionBehavior null_selection);
282
+
283
+ /// \brief Compute uint64 selection indices for use with Take given a boolean
284
+ /// filter
285
+ ///
286
+ /// \param filter a plain or run-end encoded boolean array with or without nulls
287
+ /// \param null_selection how to handle nulls in the filter
288
+ ARROW_EXPORT
289
+ Result<std::shared_ptr<ArrayData>> GetTakeIndices(
290
+ const ArraySpan& filter, FilterOptions::NullSelectionBehavior null_selection,
291
+ MemoryPool* memory_pool = default_memory_pool());
292
+
293
+ } // namespace internal
294
+
295
+ /// \brief ReplaceWithMask replaces each value in the array corresponding
296
+ /// to a true value in the mask with the next element from `replacements`.
297
+ ///
298
+ /// \param[in] values Array input to replace
299
+ /// \param[in] mask Array or Scalar of Boolean mask values
300
+ /// \param[in] replacements The replacement values to draw from. There must
301
+ /// be as many replacement values as true values in the mask.
302
+ /// \param[in] ctx the function execution context, optional
303
+ ///
304
+ /// \return the resulting datum
305
+ ///
306
+ /// \since 5.0.0
307
+ /// \note API not yet finalized
308
+ ARROW_EXPORT
309
+ Result<Datum> ReplaceWithMask(const Datum& values, const Datum& mask,
310
+ const Datum& replacements, ExecContext* ctx = NULLPTR);
311
+
312
+ /// \brief FillNullForward fill null values in forward direction
313
+ ///
314
+ /// The output array will be of the same type as the input values
315
+ /// array, with replaced null values in forward direction.
316
+ ///
317
+ /// For example given values = ["a", "b", "c", null, null, "f"],
318
+ /// the output will be = ["a", "b", "c", "c", "c", "f"]
319
+ ///
320
+ /// \param[in] values datum from which to take
321
+ /// \param[in] ctx the function execution context, optional
322
+ /// \return the resulting datum
323
+ ARROW_EXPORT
324
+ Result<Datum> FillNullForward(const Datum& values, ExecContext* ctx = NULLPTR);
325
+
326
+ /// \brief FillNullBackward fill null values in backward direction
327
+ ///
328
+ /// The output array will be of the same type as the input values
329
+ /// array, with replaced null values in backward direction.
330
+ ///
331
+ /// For example given values = ["a", "b", "c", null, null, "f"],
332
+ /// the output will be = ["a", "b", "c", "f", "f", "f"]
333
+ ///
334
+ /// \param[in] values datum from which to take
335
+ /// \param[in] ctx the function execution context, optional
336
+ /// \return the resulting datum
337
+ ARROW_EXPORT
338
+ Result<Datum> FillNullBackward(const Datum& values, ExecContext* ctx = NULLPTR);
339
+
340
+ /// \brief Take from an array of values at indices in another array
341
+ ///
342
+ /// The output array will be of the same type as the input values
343
+ /// array, with elements taken from the values array at the given
344
+ /// indices. If an index is null then the taken element will be null.
345
+ ///
346
+ /// For example given values = ["a", "b", "c", null, "e", "f"] and
347
+ /// indices = [2, 1, null, 3], the output will be
348
+ /// = [values[2], values[1], null, values[3]]
349
+ /// = ["c", "b", null, null]
350
+ ///
351
+ /// \param[in] values datum from which to take
352
+ /// \param[in] indices which values to take
353
+ /// \param[in] options options
354
+ /// \param[in] ctx the function execution context, optional
355
+ /// \return the resulting datum
356
+ ARROW_EXPORT
357
+ Result<Datum> Take(const Datum& values, const Datum& indices,
358
+ const TakeOptions& options = TakeOptions::Defaults(),
359
+ ExecContext* ctx = NULLPTR);
360
+
361
+ /// \brief Take with Array inputs and output
362
+ ARROW_EXPORT
363
+ Result<std::shared_ptr<Array>> Take(const Array& values, const Array& indices,
364
+ const TakeOptions& options = TakeOptions::Defaults(),
365
+ ExecContext* ctx = NULLPTR);
366
+
367
+ /// \brief Drop Null from an array of values
368
+ ///
369
+ /// The output array will be of the same type as the input values
370
+ /// array, with elements taken from the values array without nulls.
371
+ ///
372
+ /// For example given values = ["a", "b", "c", null, "e", "f"],
373
+ /// the output will be = ["a", "b", "c", "e", "f"]
374
+ ///
375
+ /// \param[in] values datum from which to take
376
+ /// \param[in] ctx the function execution context, optional
377
+ /// \return the resulting datum
378
+ ARROW_EXPORT
379
+ Result<Datum> DropNull(const Datum& values, ExecContext* ctx = NULLPTR);
380
+
381
+ /// \brief DropNull with Array inputs and output
382
+ ARROW_EXPORT
383
+ Result<std::shared_ptr<Array>> DropNull(const Array& values, ExecContext* ctx = NULLPTR);
384
+
385
+ /// \brief Return indices that partition an array around n-th sorted element.
386
+ ///
387
+ /// Find index of n-th(0 based) smallest value and perform indirect
388
+ /// partition of an array around that element. Output indices[0 ~ n-1]
389
+ /// holds values no greater than n-th element, and indices[n+1 ~ end]
390
+ /// holds values no less than n-th element. Elements in each partition
391
+ /// is not sorted. Nulls will be partitioned to the end of the output.
392
+ /// Output is not guaranteed to be stable.
393
+ ///
394
+ /// \param[in] values array to be partitioned
395
+ /// \param[in] n pivot array around sorted n-th element
396
+ /// \param[in] ctx the function execution context, optional
397
+ /// \return offsets indices that would partition an array
398
+ ARROW_EXPORT
399
+ Result<std::shared_ptr<Array>> NthToIndices(const Array& values, int64_t n,
400
+ ExecContext* ctx = NULLPTR);
401
+
402
+ /// \brief Return indices that partition an array around n-th sorted element.
403
+ ///
404
+ /// This overload takes a PartitionNthOptions specifying the pivot index
405
+ /// and the null handling.
406
+ ///
407
+ /// \param[in] values array to be partitioned
408
+ /// \param[in] options options including pivot index and null handling
409
+ /// \param[in] ctx the function execution context, optional
410
+ /// \return offsets indices that would partition an array
411
+ ARROW_EXPORT
412
+ Result<std::shared_ptr<Array>> NthToIndices(const Array& values,
413
+ const PartitionNthOptions& options,
414
+ ExecContext* ctx = NULLPTR);
415
+
416
+ /// \brief Return indices that would select the first `k` elements.
417
+ ///
418
+ /// Perform an indirect sort of the datum, keeping only the first `k` elements. The output
419
+ /// array will contain indices such that the item indicated by the k-th index will be in
420
+ /// the position it would be if the datum were sorted by `options.sort_keys`. However,
421
+ /// indices of null values will not be part of the output. The sort is not guaranteed to
422
+ /// be stable.
423
+ ///
424
+ /// \param[in] datum datum to be partitioned
425
+ /// \param[in] options options
426
+ /// \param[in] ctx the function execution context, optional
427
+ /// \return a datum with the same schema as the input
428
+ ARROW_EXPORT
429
+ Result<std::shared_ptr<Array>> SelectKUnstable(const Datum& datum,
430
+ const SelectKOptions& options,
431
+ ExecContext* ctx = NULLPTR);
432
+
433
+ /// \brief Return the indices that would sort an array.
434
+ ///
435
+ /// Perform an indirect sort of array. The output array will contain
436
+ /// indices that would sort an array, which would be the same length
437
+ /// as input. Nulls will be stably partitioned to the end of the output
438
+ /// regardless of order.
439
+ ///
440
+ /// For example given array = [null, 1, 3.3, null, 2, 5.3] and order
441
+ /// = SortOrder::DESCENDING, the output will be [5, 2, 4, 1, 0,
442
+ /// 3].
443
+ ///
444
+ /// \param[in] array array to sort
445
+ /// \param[in] order ascending or descending
446
+ /// \param[in] ctx the function execution context, optional
447
+ /// \return offsets indices that would sort an array
448
+ ARROW_EXPORT
449
+ Result<std::shared_ptr<Array>> SortIndices(const Array& array,
450
+ SortOrder order = SortOrder::Ascending,
451
+ ExecContext* ctx = NULLPTR);
452
+
453
+ /// \brief Return the indices that would sort an array.
454
+ ///
455
+ /// This overload takes a ArraySortOptions specifying the sort order
456
+ /// and the null handling.
457
+ ///
458
+ /// \param[in] array array to sort
459
+ /// \param[in] options options including sort order and null handling
460
+ /// \param[in] ctx the function execution context, optional
461
+ /// \return offsets indices that would sort an array
462
+ ARROW_EXPORT
463
+ Result<std::shared_ptr<Array>> SortIndices(const Array& array,
464
+ const ArraySortOptions& options,
465
+ ExecContext* ctx = NULLPTR);
466
+
467
+ /// \brief Return the indices that would sort a chunked array.
468
+ ///
469
+ /// Perform an indirect sort of chunked array. The output array will
470
+ /// contain indices that would sort a chunked array, which would be
471
+ /// the same length as input. Nulls will be stably partitioned to the
472
+ /// end of the output regardless of order.
473
+ ///
474
+ /// For example given chunked_array = [[null, 1], [3.3], [null, 2,
475
+ /// 5.3]] and order = SortOrder::DESCENDING, the output will be [5, 2,
476
+ /// 4, 1, 0, 3].
477
+ ///
478
+ /// \param[in] chunked_array chunked array to sort
479
+ /// \param[in] order ascending or descending
480
+ /// \param[in] ctx the function execution context, optional
481
+ /// \return offsets indices that would sort an array
482
+ ARROW_EXPORT
483
+ Result<std::shared_ptr<Array>> SortIndices(const ChunkedArray& chunked_array,
484
+ SortOrder order = SortOrder::Ascending,
485
+ ExecContext* ctx = NULLPTR);
486
+
487
+ /// \brief Return the indices that would sort a chunked array.
488
+ ///
489
+ /// This overload takes a ArraySortOptions specifying the sort order
490
+ /// and the null handling.
491
+ ///
492
+ /// \param[in] chunked_array chunked array to sort
493
+ /// \param[in] options options including sort order and null handling
494
+ /// \param[in] ctx the function execution context, optional
495
+ /// \return offsets indices that would sort an array
496
+ ARROW_EXPORT
497
+ Result<std::shared_ptr<Array>> SortIndices(const ChunkedArray& chunked_array,
498
+ const ArraySortOptions& options,
499
+ ExecContext* ctx = NULLPTR);
500
+
501
+ /// \brief Return the indices that would sort an input in the
502
+ /// specified order. Input is one of array, chunked array record batch
503
+ /// or table.
504
+ ///
505
+ /// Perform an indirect sort of input. The output array will contain
506
+ /// indices that would sort an input, which would be the same length
507
+ /// as input. Nulls will be stably partitioned to the start or to the end
508
+ /// of the output depending on SortOrder::null_placement.
509
+ ///
510
+ /// For example given input (table) = {
511
+ /// "column1": [[null, 1], [ 3, null, 2, 1]],
512
+ /// "column2": [[ 5], [3, null, null, 5, 5]],
513
+ /// } and options = {
514
+ /// {"column1", SortOrder::Ascending},
515
+ /// {"column2", SortOrder::Descending},
516
+ /// }, the output will be [5, 1, 4, 2, 0, 3].
517
+ ///
518
+ /// \param[in] datum array, chunked array, record batch or table to sort
519
+ /// \param[in] options options
520
+ /// \param[in] ctx the function execution context, optional
521
+ /// \return offsets indices that would sort a table
522
+ ARROW_EXPORT
523
+ Result<std::shared_ptr<Array>> SortIndices(const Datum& datum, const SortOptions& options,
524
+ ExecContext* ctx = NULLPTR);
525
+
526
+ /// \brief Compute unique elements from an array-like object
527
+ ///
528
+ /// Note if a null occurs in the input it will NOT be included in the output.
529
+ ///
530
+ /// \param[in] datum array-like input
531
+ /// \param[in] ctx the function execution context, optional
532
+ /// \return result as Array
533
+ ///
534
+ /// \since 1.0.0
535
+ /// \note API not yet finalized
536
+ ARROW_EXPORT
537
+ Result<std::shared_ptr<Array>> Unique(const Datum& datum, ExecContext* ctx = NULLPTR);
538
+
539
+ // Constants for accessing the output of ValueCounts
540
+ ARROW_EXPORT extern const char kValuesFieldName[];
541
+ ARROW_EXPORT extern const char kCountsFieldName[];
542
+ ARROW_EXPORT extern const int32_t kValuesFieldIndex;
543
+ ARROW_EXPORT extern const int32_t kCountsFieldIndex;
544
+
545
+ /// \brief Return counts of unique elements from an array-like object.
546
+ ///
547
+ /// Note that the counts do not include counts for nulls in the array. These can be
548
+ /// obtained separately from metadata.
549
+ ///
550
+ /// For floating point arrays there is no attempt to normalize -0.0, 0.0 and NaN values
551
+ /// which can lead to unexpected results if the input Array has these values.
552
+ ///
553
+ /// \param[in] value array-like input
554
+ /// \param[in] ctx the function execution context, optional
555
+ /// \return counts An array of <input type "Values", int64_t "Counts"> structs.
556
+ ///
557
+ /// \since 1.0.0
558
+ /// \note API not yet finalized
559
+ ARROW_EXPORT
560
+ Result<std::shared_ptr<StructArray>> ValueCounts(const Datum& value,
561
+ ExecContext* ctx = NULLPTR);
562
+
563
+ /// \brief Dictionary-encode values in an array-like object
564
+ ///
565
+ /// Any nulls encountered in the dictionary will be handled according to the
566
+ /// specified null encoding behavior.
567
+ ///
568
+ /// For example, given values ["a", "b", null, "a", null] the output will be
569
+ /// (null_encoding == ENCODE) Indices: [0, 1, 2, 0, 2] / Dict: ["a", "b", null]
570
+ /// (null_encoding == MASK) Indices: [0, 1, null, 0, null] / Dict: ["a", "b"]
571
+ ///
572
+ /// If the input is already dictionary encoded this function is a no-op unless
573
+ /// it needs to modify the null_encoding (TODO)
574
+ ///
575
+ /// \param[in] data array-like input
576
+ /// \param[in] ctx the function execution context, optional
577
+ /// \param[in] options configures null encoding behavior
578
+ /// \return result with same shape and type as input
579
+ ///
580
+ /// \since 1.0.0
581
+ /// \note API not yet finalized
582
+ ARROW_EXPORT
583
+ Result<Datum> DictionaryEncode(
584
+ const Datum& data,
585
+ const DictionaryEncodeOptions& options = DictionaryEncodeOptions::Defaults(),
586
+ ExecContext* ctx = NULLPTR);
587
+
588
+ /// \brief Run-end-encode values in an array-like object
589
+ ///
590
+ /// The returned run-end encoded type uses the same value type of the input and
591
+ /// run-end type defined in the options.
592
+ ///
593
+ /// \param[in] value array-like input
594
+ /// \param[in] options configures encoding behavior
595
+ /// \param[in] ctx the function execution context, optional
596
+ /// \return result with same shape but run-end encoded
597
+ ///
598
+ /// \since 12.0.0
599
+ /// \note API not yet finalized
600
+ ARROW_EXPORT
601
+ Result<Datum> RunEndEncode(
602
+ const Datum& value,
603
+ const RunEndEncodeOptions& options = RunEndEncodeOptions::Defaults(),
604
+ ExecContext* ctx = NULLPTR);
605
+
606
+ /// \brief Decode a Run-End Encoded array to a plain array
607
+ ///
608
+ /// The output data type is the same as the values array type of run-end encoded
609
+ /// input.
610
+ ///
611
+ /// \param[in] value run-end-encoded input
612
+ /// \param[in] ctx the function execution context, optional
613
+ /// \return plain array resulting from decoding the run-end encoded input
614
+ ///
615
+ /// \since 12.0.0
616
+ /// \note API not yet finalized
617
+ ARROW_EXPORT
618
+ Result<Datum> RunEndDecode(const Datum& value, ExecContext* ctx = NULLPTR);
619
+
620
+ /// \brief Compute the cumulative sum of an array-like object
621
+ ///
622
+ /// \param[in] values array-like input
623
+ /// \param[in] options configures cumulative sum behavior
624
+ /// \param[in] check_overflow whether to check for overflow, if true, return Invalid
625
+ /// status on overflow, otherwise wrap around on overflow
626
+ /// \param[in] ctx the function execution context, optional
627
+ ARROW_EXPORT
628
+ Result<Datum> CumulativeSum(
629
+ const Datum& values, const CumulativeOptions& options = CumulativeOptions::Defaults(),
630
+ bool check_overflow = false, ExecContext* ctx = NULLPTR);
631
+
632
+ /// \brief Compute the cumulative product of an array-like object
633
+ ///
634
+ /// \param[in] values array-like input
635
+ /// \param[in] options configures cumulative prod behavior
636
+ /// \param[in] check_overflow whether to check for overflow, if true, return Invalid
637
+ /// status on overflow, otherwise wrap around on overflow
638
+ /// \param[in] ctx the function execution context, optional
639
+ ARROW_EXPORT
640
+ Result<Datum> CumulativeProd(
641
+ const Datum& values, const CumulativeOptions& options = CumulativeOptions::Defaults(),
642
+ bool check_overflow = false, ExecContext* ctx = NULLPTR);
643
+
644
+ /// \brief Compute the cumulative max of an array-like object
645
+ ///
646
+ /// \param[in] values array-like input
647
+ /// \param[in] options configures cumulative max behavior
648
+ /// \param[in] ctx the function execution context, optional
649
+ ARROW_EXPORT
650
+ Result<Datum> CumulativeMax(
651
+ const Datum& values, const CumulativeOptions& options = CumulativeOptions::Defaults(),
652
+ ExecContext* ctx = NULLPTR);
653
+
654
+ /// \brief Compute the cumulative min of an array-like object
655
+ ///
656
+ /// \param[in] values array-like input
657
+ /// \param[in] options configures cumulative min behavior
658
+ /// \param[in] ctx the function execution context, optional
659
+ ARROW_EXPORT
660
+ Result<Datum> CumulativeMin(
661
+ const Datum& values, const CumulativeOptions& options = CumulativeOptions::Defaults(),
662
+ ExecContext* ctx = NULLPTR);
663
+
664
+ /// \brief Compute the cumulative mean of an array-like object
665
+ ///
666
+ /// \param[in] values array-like input
667
+ /// \param[in] options configures cumulative mean behavior, `start` is ignored
668
+ /// \param[in] ctx the function execution context, optional
669
+ ARROW_EXPORT
670
+ Result<Datum> CumulativeMean(
671
+ const Datum& values, const CumulativeOptions& options = CumulativeOptions::Defaults(),
672
+ ExecContext* ctx = NULLPTR);
673
+
674
+ /// \brief Return the first order difference of an array.
675
+ ///
676
+ /// Computes the first order difference of an array, i.e.
677
+ /// output[i] = input[i] - input[i - p] if i >= p
678
+ /// output[i] = null otherwise
679
+ /// where p is the period. For example, with p = 1,
680
+ /// Diff([1, 4, 9, 10, 15]) = [null, 3, 5, 1, 5].
681
+ /// With p = 2,
682
+ /// Diff([1, 4, 9, 10, 15]) = [null, null, 8, 6, 6]
683
+ /// p can also be negative, in which case the diff is computed in
684
+ /// the opposite direction.
685
+ /// \param[in] array array input
686
+ /// \param[in] options options, specifying overflow behavior and period
687
+ /// \param[in] check_overflow whether to return error on overflow
688
+ /// \param[in] ctx the function execution context, optional
689
+ /// \return result as array
690
+ ARROW_EXPORT
691
+ Result<std::shared_ptr<Array>> PairwiseDiff(const Array& array,
692
+ const PairwiseOptions& options,
693
+ bool check_overflow = false,
694
+ ExecContext* ctx = NULLPTR);
695
+
696
+ } // namespace compute
697
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/cast.h ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <memory>
21
+ #include <string>
22
+ #include <vector>
23
+
24
+ #include "arrow/compute/function.h"
25
+ #include "arrow/compute/function_options.h"
26
+ #include "arrow/compute/type_fwd.h"
27
+ #include "arrow/result.h"
28
+ #include "arrow/status.h"
29
+ #include "arrow/type.h"
30
+ #include "arrow/util/macros.h"
31
+ #include "arrow/util/visibility.h"
32
+
33
+ namespace arrow {
34
+
35
+ class Array;
36
+
37
+ namespace compute {
38
+
39
+ class ExecContext;
40
+
41
+ /// \addtogroup compute-concrete-options
42
+ /// @{
43
+
44
+ class ARROW_EXPORT CastOptions : public FunctionOptions {
45
+ public:
46
+ explicit CastOptions(bool safe = true);
47
+
48
+ static constexpr char const kTypeName[] = "CastOptions";
49
+ static CastOptions Safe(TypeHolder to_type = {}) {
50
+ CastOptions safe(true);
51
+ safe.to_type = std::move(to_type);
52
+ return safe;
53
+ }
54
+
55
+ static CastOptions Unsafe(TypeHolder to_type = {}) {
56
+ CastOptions unsafe(false);
57
+ unsafe.to_type = std::move(to_type);
58
+ return unsafe;
59
+ }
60
+
61
+ // Type being casted to. May be passed separate to eager function
62
+ // compute::Cast
63
+ TypeHolder to_type;
64
+
65
+ bool allow_int_overflow;
66
+ bool allow_time_truncate;
67
+ bool allow_time_overflow;
68
+ bool allow_decimal_truncate;
69
+ bool allow_float_truncate;
70
+ // Indicate if conversions from Binary/FixedSizeBinary to string must
71
+ // validate the utf8 payload.
72
+ bool allow_invalid_utf8;
73
+
74
+ /// true if the safety options all match CastOptions::Safe
75
+ ///
76
+ /// Note, if this returns false it does not mean is_unsafe will return true
77
+ bool is_safe() const;
78
+ /// true if the safety options all match CastOptions::Unsafe
79
+ ///
80
+ /// Note, if this returns false it does not mean is_safe will return true
81
+ bool is_unsafe() const;
82
+ };
83
+
84
+ /// @}
85
+
86
+ /// \brief Return true if a cast function is defined
87
+ ARROW_EXPORT
88
+ bool CanCast(const DataType& from_type, const DataType& to_type);
89
+
90
+ // ----------------------------------------------------------------------
91
+ // Convenience invocation APIs for a number of kernels
92
+
93
+ /// \brief Cast from one array type to another
94
+ /// \param[in] value array to cast
95
+ /// \param[in] to_type type to cast to
96
+ /// \param[in] options casting options
97
+ /// \param[in] ctx the function execution context, optional
98
+ /// \return the resulting array
99
+ ///
100
+ /// \since 1.0.0
101
+ /// \note API not yet finalized
102
+ ARROW_EXPORT
103
+ Result<std::shared_ptr<Array>> Cast(const Array& value, const TypeHolder& to_type,
104
+ const CastOptions& options = CastOptions::Safe(),
105
+ ExecContext* ctx = NULLPTR);
106
+
107
+ /// \brief Cast from one array type to another
108
+ /// \param[in] value array to cast
109
+ /// \param[in] options casting options. The "to_type" field must be populated
110
+ /// \param[in] ctx the function execution context, optional
111
+ /// \return the resulting array
112
+ ///
113
+ /// \since 1.0.0
114
+ /// \note API not yet finalized
115
+ ARROW_EXPORT
116
+ Result<Datum> Cast(const Datum& value, const CastOptions& options,
117
+ ExecContext* ctx = NULLPTR);
118
+
119
+ /// \brief Cast from one value to another
120
+ /// \param[in] value datum to cast
121
+ /// \param[in] to_type type to cast to
122
+ /// \param[in] options casting options
123
+ /// \param[in] ctx the function execution context, optional
124
+ /// \return the resulting datum
125
+ ///
126
+ /// \since 1.0.0
127
+ /// \note API not yet finalized
128
+ ARROW_EXPORT
129
+ Result<Datum> Cast(const Datum& value, const TypeHolder& to_type,
130
+ const CastOptions& options = CastOptions::Safe(),
131
+ ExecContext* ctx = NULLPTR);
132
+
133
+ } // namespace compute
134
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/exec.h ADDED
@@ -0,0 +1,489 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ // NOTE: API is EXPERIMENTAL and will change without going through a
19
+ // deprecation cycle
20
+
21
+ #pragma once
22
+
23
+ #include <atomic>
24
+ #include <cstdint>
25
+ #include <limits>
26
+ #include <memory>
27
+ #include <optional>
28
+ #include <string>
29
+ #include <utility>
30
+ #include <vector>
31
+
32
+ #include "arrow/array/data.h"
33
+ #include "arrow/compute/expression.h"
34
+ #include "arrow/compute/type_fwd.h"
35
+ #include "arrow/datum.h"
36
+ #include "arrow/result.h"
37
+ #include "arrow/type_fwd.h"
38
+ #include "arrow/util/macros.h"
39
+ #include "arrow/util/type_fwd.h"
40
+ #include "arrow/util/visibility.h"
41
+
42
+ namespace arrow {
43
+ namespace compute {
44
+
45
+ // It seems like 64K might be a good default chunksize to use for execution
46
+ // based on the experience of other query processing systems. The current
47
+ // default is not to chunk contiguous arrays, though, but this may change in
48
+ // the future once parallel execution is implemented
49
+ static constexpr int64_t kDefaultExecChunksize = UINT16_MAX;
50
+
51
+ /// \brief Context for expression-global variables and options used by
52
+ /// function evaluation
53
+ class ARROW_EXPORT ExecContext {
54
+ public:
55
+ // If no function registry passed, the default is used.
56
+ explicit ExecContext(MemoryPool* pool = default_memory_pool(),
57
+ ::arrow::internal::Executor* executor = NULLPTR,
58
+ FunctionRegistry* func_registry = NULLPTR);
59
+
60
+ /// \brief The MemoryPool used for allocations, default is
61
+ /// default_memory_pool().
62
+ MemoryPool* memory_pool() const { return pool_; }
63
+
64
+ const ::arrow::internal::CpuInfo* cpu_info() const;
65
+
66
+ /// \brief An Executor which may be used to parallelize execution.
67
+ ::arrow::internal::Executor* executor() const { return executor_; }
68
+
69
+ /// \brief The FunctionRegistry for looking up functions by name and
70
+ /// selecting kernels for execution. Defaults to the library-global function
71
+ /// registry provided by GetFunctionRegistry.
72
+ FunctionRegistry* func_registry() const { return func_registry_; }
73
+
74
+ // \brief Set maximum length unit of work for kernel execution. Larger
75
+ // contiguous array inputs will be split into smaller chunks, and, if
76
+ // possible and enabled, processed in parallel. The default chunksize is
77
+ // INT64_MAX, so contiguous arrays are not split.
78
+ void set_exec_chunksize(int64_t chunksize) { exec_chunksize_ = chunksize; }
79
+
80
+ // \brief Maximum length for ExecBatch data chunks processed by
81
+ // kernels. Contiguous array inputs with longer length will be split into
82
+ // smaller chunks.
83
+ int64_t exec_chunksize() const { return exec_chunksize_; }
84
+
85
+ /// \brief Set whether to use multiple threads for function execution. This
86
+ /// is not yet used.
87
+ void set_use_threads(bool use_threads = true) { use_threads_ = use_threads; }
88
+
89
+ /// \brief If true, then utilize multiple threads where relevant for function
90
+ /// execution. This is not yet used.
91
+ bool use_threads() const { return use_threads_; }
92
+
93
+ // Set the preallocation strategy for kernel execution as it relates to
94
+ // chunked execution. For chunked execution, whether via ChunkedArray inputs
95
+ // or splitting larger Array arguments into smaller pieces, contiguous
96
+ // allocation (if permitted by the kernel) will allocate one large array to
97
+ // write output into yielding it to the caller at the end. If this option is
98
+ // set to off, then preallocations will be performed independently for each
99
+ // chunk of execution
100
+ //
101
+ // TODO: At some point we might want the limit the size of contiguous
102
+ // preallocations. For example, even if the exec_chunksize is 64K or less, we
103
+ // might limit contiguous allocations to 1M records, say.
104
+ void set_preallocate_contiguous(bool preallocate) {
105
+ preallocate_contiguous_ = preallocate;
106
+ }
107
+
108
+ /// \brief If contiguous preallocations should be used when doing chunked
109
+ /// execution as specified by exec_chunksize(). See
110
+ /// set_preallocate_contiguous() for more information.
111
+ bool preallocate_contiguous() const { return preallocate_contiguous_; }
112
+
113
+ private:
114
+ MemoryPool* pool_;
115
+ ::arrow::internal::Executor* executor_;
116
+ FunctionRegistry* func_registry_;
117
+ int64_t exec_chunksize_ = std::numeric_limits<int64_t>::max();
118
+ bool preallocate_contiguous_ = true;
119
+ bool use_threads_ = true;
120
+ };
121
+
122
+ // TODO: Consider standardizing on uint16 selection vectors and only use them
123
+ // when we can ensure that each value is 64K length or smaller
124
+
125
+ /// \brief Container for an array of value selection indices that were
126
+ /// materialized from a filter.
127
+ ///
128
+ /// Columnar query engines (see e.g. [1]) have found that rather than
129
+ /// materializing filtered data, the filter can instead be converted to an
130
+ /// array of the "on" indices and then "fusing" these indices in operator
131
+ /// implementations. This is especially relevant for aggregations but also
132
+ /// applies to scalar operations.
133
+ ///
134
+ /// We are not yet using this so this is mostly a placeholder for now.
135
+ ///
136
+ /// [1]: http://cidrdb.org/cidr2005/papers/P19.pdf
137
+ class ARROW_EXPORT SelectionVector {
138
+ public:
139
+ explicit SelectionVector(std::shared_ptr<ArrayData> data);
140
+
141
+ explicit SelectionVector(const Array& arr);
142
+
143
+ /// \brief Create SelectionVector from boolean mask
144
+ static Result<std::shared_ptr<SelectionVector>> FromMask(const BooleanArray& arr);
145
+
146
+ const int32_t* indices() const { return indices_; }
147
+ int32_t length() const;
148
+
149
+ private:
150
+ std::shared_ptr<ArrayData> data_;
151
+ const int32_t* indices_;
152
+ };
153
+
154
+ /// An index to represent that a batch does not belong to an ordered stream
155
+ constexpr int64_t kUnsequencedIndex = -1;
156
+
157
+ /// \brief A unit of work for kernel execution. It contains a collection of
158
+ /// Array and Scalar values and an optional SelectionVector indicating that
159
+ /// there is an unmaterialized filter that either must be materialized, or (if
160
+ /// the kernel supports it) pushed down into the kernel implementation.
161
+ ///
162
+ /// ExecBatch is semantically similar to RecordBatch in that in a SQL context
163
+ /// it represents a collection of records, but constant "columns" are
164
+ /// represented by Scalar values rather than having to be converted into arrays
165
+ /// with repeated values.
166
+ ///
167
+ /// TODO: Datum uses arrow/util/variant.h which may be a bit heavier-weight
168
+ /// than is desirable for this class. Microbenchmarks would help determine for
169
+ /// sure. See ARROW-8928.
170
+
171
+ /// \addtogroup acero-internals
172
+ /// @{
173
+
174
+ struct ARROW_EXPORT ExecBatch {
175
+ ExecBatch() = default;
176
+ ExecBatch(std::vector<Datum> values, int64_t length)
177
+ : values(std::move(values)), length(length) {}
178
+
179
+ explicit ExecBatch(const RecordBatch& batch);
180
+
181
+ /// \brief Infer the ExecBatch length from values.
182
+ static Result<int64_t> InferLength(const std::vector<Datum>& values);
183
+
184
+ /// Creates an ExecBatch with length-validation.
185
+ ///
186
+ /// If any value is given, then all values must have a common length. If the given
187
+ /// length is negative, then the length of the ExecBatch is set to this common length,
188
+ /// or to 1 if no values are given. Otherwise, the given length must equal the common
189
+ /// length, if any value is given.
190
+ static Result<ExecBatch> Make(std::vector<Datum> values, int64_t length = -1);
191
+
192
+ Result<std::shared_ptr<RecordBatch>> ToRecordBatch(
193
+ std::shared_ptr<Schema> schema, MemoryPool* pool = default_memory_pool()) const;
194
+
195
+ /// The values representing positional arguments to be passed to a kernel's
196
+ /// exec function for processing.
197
+ std::vector<Datum> values;
198
+
199
+ /// A deferred filter represented as an array of indices into the values.
200
+ ///
201
+ /// For example, the filter [true, true, false, true] would be represented as
202
+ /// the selection vector [0, 1, 3]. When the selection vector is set,
203
+ /// ExecBatch::length is equal to the length of this array.
204
+ std::shared_ptr<SelectionVector> selection_vector;
205
+
206
+ /// A predicate Expression guaranteed to evaluate to true for all rows in this batch.
207
+ Expression guarantee = literal(true);
208
+
209
+ /// The semantic length of the ExecBatch. When the values are all scalars,
210
+ /// the length should be set to 1 for non-aggregate kernels, otherwise the
211
+ /// length is taken from the array values, except when there is a selection
212
+ /// vector. When there is a selection vector set, the length of the batch is
213
+ /// the length of the selection. Aggregate kernels can have an ExecBatch
214
+ /// formed by projecting just the partition columns from a batch in which
215
+ /// case, it would have scalar rows with length greater than 1.
216
+ ///
217
+ /// If the array values are of length 0 then the length is 0 regardless of
218
+ /// whether any values are Scalar.
219
+ int64_t length = 0;
220
+
221
+ /// \brief index of this batch in a sorted stream of batches
222
+ ///
223
+ /// This index must be strictly monotonic starting at 0 without gaps or
224
+ /// it can be set to kUnsequencedIndex if there is no meaningful order
225
+ int64_t index = kUnsequencedIndex;
226
+
227
+ /// \brief The sum of bytes in each buffer referenced by the batch
228
+ ///
229
+ /// Note: Scalars are not counted
230
+ /// Note: Some values may referenced only part of a buffer, for
231
+ /// example, an array with an offset. The actual data
232
+ /// visible to this batch will be smaller than the total
233
+ /// buffer size in this case.
234
+ int64_t TotalBufferSize() const;
235
+
236
+ /// \brief Return the value at the i-th index
237
+ template <typename index_type>
238
+ inline const Datum& operator[](index_type i) const {
239
+ return values[i];
240
+ }
241
+
242
+ bool Equals(const ExecBatch& other) const;
243
+
244
+ /// \brief A convenience for the number of values / arguments.
245
+ int num_values() const { return static_cast<int>(values.size()); }
246
+
247
+ ExecBatch Slice(int64_t offset, int64_t length) const;
248
+
249
+ Result<ExecBatch> SelectValues(const std::vector<int>& ids) const;
250
+
251
+ /// \brief A convenience for returning the types from the batch.
252
+ std::vector<TypeHolder> GetTypes() const {
253
+ std::vector<TypeHolder> result;
254
+ for (const auto& value : this->values) {
255
+ result.emplace_back(value.type());
256
+ }
257
+ return result;
258
+ }
259
+
260
+ std::string ToString() const;
261
+ };
262
+
263
+ inline bool operator==(const ExecBatch& l, const ExecBatch& r) { return l.Equals(r); }
264
+ inline bool operator!=(const ExecBatch& l, const ExecBatch& r) { return !l.Equals(r); }
265
+
266
+ ARROW_EXPORT void PrintTo(const ExecBatch&, std::ostream*);
267
+
268
+ /// @}
269
+
270
+ /// \defgroup compute-internals Utilities for calling functions, useful for those
271
+ /// extending the function registry
272
+ ///
273
+ /// @{
274
+
275
+ struct ExecValue {
276
+ ArraySpan array = {};
277
+ const Scalar* scalar = NULLPTR;
278
+
279
+ ExecValue(Scalar* scalar) // NOLINT implicit conversion
280
+ : scalar(scalar) {}
281
+
282
+ ExecValue(ArraySpan array) // NOLINT implicit conversion
283
+ : array(std::move(array)) {}
284
+
285
+ ExecValue(const ArrayData& array) { // NOLINT implicit conversion
286
+ this->array.SetMembers(array);
287
+ }
288
+
289
+ ExecValue() = default;
290
+ ExecValue(const ExecValue& other) = default;
291
+ ExecValue& operator=(const ExecValue& other) = default;
292
+ ExecValue(ExecValue&& other) = default;
293
+ ExecValue& operator=(ExecValue&& other) = default;
294
+
295
+ int64_t length() const { return this->is_array() ? this->array.length : 1; }
296
+
297
+ bool is_array() const { return this->scalar == NULLPTR; }
298
+ bool is_scalar() const { return !this->is_array(); }
299
+
300
+ void SetArray(const ArrayData& array) {
301
+ this->array.SetMembers(array);
302
+ this->scalar = NULLPTR;
303
+ }
304
+
305
+ void SetScalar(const Scalar* scalar) { this->scalar = scalar; }
306
+
307
+ template <typename ExactType>
308
+ const ExactType& scalar_as() const {
309
+ return ::arrow::internal::checked_cast<const ExactType&>(*this->scalar);
310
+ }
311
+
312
+ /// XXX: here temporarily for compatibility with datum, see
313
+ /// e.g. MakeStructExec in scalar_nested.cc
314
+ int64_t null_count() const {
315
+ if (this->is_array()) {
316
+ return this->array.GetNullCount();
317
+ } else {
318
+ return this->scalar->is_valid ? 0 : 1;
319
+ }
320
+ }
321
+
322
+ const DataType* type() const {
323
+ if (this->is_array()) {
324
+ return array.type;
325
+ } else {
326
+ return scalar->type.get();
327
+ }
328
+ }
329
+ };
330
+
331
+ struct ARROW_EXPORT ExecResult {
332
+ // The default value of the variant is ArraySpan
333
+ std::variant<ArraySpan, std::shared_ptr<ArrayData>> value;
334
+
335
+ int64_t length() const {
336
+ if (this->is_array_span()) {
337
+ return this->array_span()->length;
338
+ } else {
339
+ return this->array_data()->length;
340
+ }
341
+ }
342
+
343
+ const DataType* type() const {
344
+ if (this->is_array_span()) {
345
+ return this->array_span()->type;
346
+ } else {
347
+ return this->array_data()->type.get();
348
+ }
349
+ }
350
+
351
+ const ArraySpan* array_span() const { return &std::get<ArraySpan>(this->value); }
352
+ ArraySpan* array_span_mutable() { return &std::get<ArraySpan>(this->value); }
353
+
354
+ bool is_array_span() const { return this->value.index() == 0; }
355
+
356
+ const std::shared_ptr<ArrayData>& array_data() const {
357
+ return std::get<std::shared_ptr<ArrayData>>(this->value);
358
+ }
359
+ ArrayData* array_data_mutable() {
360
+ return std::get<std::shared_ptr<ArrayData>>(this->value).get();
361
+ }
362
+
363
+ bool is_array_data() const { return this->value.index() == 1; }
364
+ };
365
+
366
+ /// \brief A "lightweight" column batch object which contains no
367
+ /// std::shared_ptr objects and does not have any memory ownership
368
+ /// semantics. Can represent a view onto an "owning" ExecBatch.
369
+ struct ARROW_EXPORT ExecSpan {
370
+ ExecSpan() = default;
371
+ ExecSpan(const ExecSpan& other) = default;
372
+ ExecSpan& operator=(const ExecSpan& other) = default;
373
+ ExecSpan(ExecSpan&& other) = default;
374
+ ExecSpan& operator=(ExecSpan&& other) = default;
375
+
376
+ explicit ExecSpan(std::vector<ExecValue> values, int64_t length)
377
+ : length(length), values(std::move(values)) {}
378
+
379
+ explicit ExecSpan(const ExecBatch& batch) {
380
+ this->length = batch.length;
381
+ this->values.resize(batch.values.size());
382
+ for (size_t i = 0; i < batch.values.size(); ++i) {
383
+ const Datum& in_value = batch[i];
384
+ ExecValue* out_value = &this->values[i];
385
+ if (in_value.is_array()) {
386
+ out_value->SetArray(*in_value.array());
387
+ } else {
388
+ out_value->SetScalar(in_value.scalar().get());
389
+ }
390
+ }
391
+ }
392
+
393
+ /// \brief Return the value at the i-th index
394
+ template <typename index_type>
395
+ inline const ExecValue& operator[](index_type i) const {
396
+ return values[i];
397
+ }
398
+
399
+ /// \brief A convenience for the number of values / arguments.
400
+ int num_values() const { return static_cast<int>(values.size()); }
401
+
402
+ std::vector<TypeHolder> GetTypes() const {
403
+ std::vector<TypeHolder> result;
404
+ for (const auto& value : this->values) {
405
+ result.emplace_back(value.type());
406
+ }
407
+ return result;
408
+ }
409
+
410
+ ExecBatch ToExecBatch() const {
411
+ ExecBatch result;
412
+ result.length = this->length;
413
+ for (const ExecValue& value : this->values) {
414
+ if (value.is_array()) {
415
+ result.values.push_back(value.array.ToArrayData());
416
+ } else {
417
+ result.values.push_back(value.scalar->GetSharedPtr());
418
+ }
419
+ }
420
+ return result;
421
+ }
422
+
423
+ int64_t length = 0;
424
+ std::vector<ExecValue> values;
425
+ };
426
+
427
+ /// \defgroup compute-call-function One-shot calls to compute functions
428
+ ///
429
+ /// @{
430
+
431
+ /// \brief One-shot invoker for all types of functions.
432
+ ///
433
+ /// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs,
434
+ /// and wrapping of outputs.
435
+ ARROW_EXPORT
436
+ Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
437
+ const FunctionOptions* options, ExecContext* ctx = NULLPTR);
438
+
439
+ /// \brief Variant of CallFunction which uses a function's default options.
440
+ ///
441
+ /// NB: Some functions require FunctionOptions be provided.
442
+ ARROW_EXPORT
443
+ Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
444
+ ExecContext* ctx = NULLPTR);
445
+
446
+ /// \brief One-shot invoker for all types of functions.
447
+ ///
448
+ /// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs,
449
+ /// and wrapping of outputs.
450
+ ARROW_EXPORT
451
+ Result<Datum> CallFunction(const std::string& func_name, const ExecBatch& batch,
452
+ const FunctionOptions* options, ExecContext* ctx = NULLPTR);
453
+
454
+ /// \brief Variant of CallFunction which uses a function's default options.
455
+ ///
456
+ /// NB: Some functions require FunctionOptions be provided.
457
+ ARROW_EXPORT
458
+ Result<Datum> CallFunction(const std::string& func_name, const ExecBatch& batch,
459
+ ExecContext* ctx = NULLPTR);
460
+
461
+ /// @}
462
+
463
+ /// \defgroup compute-function-executor One-shot calls to obtain function executors
464
+ ///
465
+ /// @{
466
+
467
+ /// \brief One-shot executor provider for all types of functions.
468
+ ///
469
+ /// This function creates and initializes a `FunctionExecutor` appropriate
470
+ /// for the given function name, input types and function options.
471
+ ARROW_EXPORT
472
+ Result<std::shared_ptr<FunctionExecutor>> GetFunctionExecutor(
473
+ const std::string& func_name, std::vector<TypeHolder> in_types,
474
+ const FunctionOptions* options = NULLPTR, FunctionRegistry* func_registry = NULLPTR);
475
+
476
+ /// \brief One-shot executor provider for all types of functions.
477
+ ///
478
+ /// This function creates and initializes a `FunctionExecutor` appropriate
479
+ /// for the given function name, input types (taken from the Datum arguments)
480
+ /// and function options.
481
+ ARROW_EXPORT
482
+ Result<std::shared_ptr<FunctionExecutor>> GetFunctionExecutor(
483
+ const std::string& func_name, const std::vector<Datum>& args,
484
+ const FunctionOptions* options = NULLPTR, FunctionRegistry* func_registry = NULLPTR);
485
+
486
+ /// @}
487
+
488
+ } // namespace compute
489
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/function.h ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ // NOTE: API is EXPERIMENTAL and will change without going through a
19
+ // deprecation cycle.
20
+
21
+ #pragma once
22
+
23
+ #include <string>
24
+ #include <utility>
25
+ #include <vector>
26
+
27
+ #include "arrow/compute/kernel.h"
28
+ #include "arrow/compute/type_fwd.h"
29
+ #include "arrow/datum.h"
30
+ #include "arrow/result.h"
31
+ #include "arrow/status.h"
32
+ #include "arrow/util/compare.h"
33
+ #include "arrow/util/macros.h"
34
+ #include "arrow/util/visibility.h"
35
+
36
+ namespace arrow {
37
+ namespace compute {
38
+
39
+ /// \addtogroup compute-functions
40
+ /// @{
41
+
42
+ /// \brief Contains the number of required arguments for the function.
43
+ ///
44
+ /// Naming conventions taken from https://en.wikipedia.org/wiki/Arity.
45
+ struct ARROW_EXPORT Arity {
46
+ /// \brief A function taking no arguments
47
+ static Arity Nullary() { return Arity(0, false); }
48
+
49
+ /// \brief A function taking 1 argument
50
+ static Arity Unary() { return Arity(1, false); }
51
+
52
+ /// \brief A function taking 2 arguments
53
+ static Arity Binary() { return Arity(2, false); }
54
+
55
+ /// \brief A function taking 3 arguments
56
+ static Arity Ternary() { return Arity(3, false); }
57
+
58
+ /// \brief A function taking a variable number of arguments
59
+ ///
60
+ /// \param[in] min_args the minimum number of arguments required when
61
+ /// invoking the function
62
+ static Arity VarArgs(int min_args = 0) { return Arity(min_args, true); }
63
+
64
+ // NOTE: the 0-argument form (default constructor) is required for Cython
65
+ explicit Arity(int num_args = 0, bool is_varargs = false)
66
+ : num_args(num_args), is_varargs(is_varargs) {}
67
+
68
+ /// The number of required arguments (or the minimum number for varargs
69
+ /// functions).
70
+ int num_args;
71
+
72
+ /// If true, then the num_args is the minimum number of required arguments.
73
+ bool is_varargs = false;
74
+ };
75
+
76
+ struct ARROW_EXPORT FunctionDoc {
77
+ /// \brief A one-line summary of the function, using a verb.
78
+ ///
79
+ /// For example, "Add two numeric arrays or scalars".
80
+ std::string summary;
81
+
82
+ /// \brief A detailed description of the function, meant to follow the summary.
83
+ std::string description;
84
+
85
+ /// \brief Symbolic names (identifiers) for the function arguments.
86
+ ///
87
+ /// Some bindings may use this to generate nicer function signatures.
88
+ std::vector<std::string> arg_names;
89
+
90
+ // TODO add argument descriptions?
91
+
92
+ /// \brief Name of the options class, if any.
93
+ std::string options_class;
94
+
95
+ /// \brief Whether options are required for function execution
96
+ ///
97
+ /// If false, then either the function does not have an options class
98
+ /// or there is a usable default options value.
99
+ bool options_required;
100
+
101
+ FunctionDoc() = default;
102
+
103
+ FunctionDoc(std::string summary, std::string description,
104
+ std::vector<std::string> arg_names, std::string options_class = "",
105
+ bool options_required = false)
106
+ : summary(std::move(summary)),
107
+ description(std::move(description)),
108
+ arg_names(std::move(arg_names)),
109
+ options_class(std::move(options_class)),
110
+ options_required(options_required) {}
111
+
112
+ static const FunctionDoc& Empty();
113
+ };
114
+
115
+ /// \brief An executor of a function with a preconfigured kernel
116
+ class ARROW_EXPORT FunctionExecutor {
117
+ public:
118
+ virtual ~FunctionExecutor() = default;
119
+ /// \brief Initialize or re-initialize the preconfigured kernel
120
+ ///
121
+ /// This method may be called zero or more times. Depending on how
122
+ /// the FunctionExecutor was obtained, it may already have been initialized.
123
+ virtual Status Init(const FunctionOptions* options = NULLPTR,
124
+ ExecContext* exec_ctx = NULLPTR) = 0;
125
+ /// \brief Execute the preconfigured kernel with arguments that must fit it
126
+ ///
127
+ /// The method requires the arguments be castable to the preconfigured types.
128
+ ///
129
+ /// \param[in] args Arguments to execute the function on
130
+ /// \param[in] length Length of arguments batch or -1 to default it. If the
131
+ /// function has no parameters, this determines the batch length, defaulting
132
+ /// to 0. Otherwise, if the function is scalar, this must equal the argument
133
+ /// batch's inferred length or be -1 to default to it. This is ignored for
134
+ /// vector functions.
135
+ virtual Result<Datum> Execute(const std::vector<Datum>& args, int64_t length = -1) = 0;
136
+ };
137
+
138
+ /// \brief Base class for compute functions. Function implementations contain a
139
+ /// collection of "kernels" which are implementations of the function for
140
+ /// specific argument types. Selecting a viable kernel for executing a function
141
+ /// is referred to as "dispatching".
142
+ class ARROW_EXPORT Function {
143
+ public:
144
+ /// \brief The kind of function, which indicates in what contexts it is
145
+ /// valid for use.
146
+ enum Kind {
147
+ /// A function that performs scalar data operations on whole arrays of
148
+ /// data. Can generally process Array or Scalar values. The size of the
149
+ /// output will be the same as the size (or broadcasted size, in the case
150
+ /// of mixing Array and Scalar inputs) of the input.
151
+ SCALAR,
152
+
153
+ /// A function with array input and output whose behavior depends on the
154
+ /// values of the entire arrays passed, rather than the value of each scalar
155
+ /// value.
156
+ VECTOR,
157
+
158
+ /// A function that computes scalar summary statistics from array input.
159
+ SCALAR_AGGREGATE,
160
+
161
+ /// A function that computes grouped summary statistics from array input
162
+ /// and an array of group identifiers.
163
+ HASH_AGGREGATE,
164
+
165
+ /// A function that dispatches to other functions and does not contain its
166
+ /// own kernels.
167
+ META
168
+ };
169
+
170
+ virtual ~Function() = default;
171
+
172
+ /// \brief The name of the kernel. The registry enforces uniqueness of names.
173
+ const std::string& name() const { return name_; }
174
+
175
+ /// \brief The kind of kernel, which indicates in what contexts it is valid
176
+ /// for use.
177
+ Function::Kind kind() const { return kind_; }
178
+
179
+ /// \brief Contains the number of arguments the function requires, or if the
180
+ /// function accepts variable numbers of arguments.
181
+ const Arity& arity() const { return arity_; }
182
+
183
+ /// \brief Return the function documentation
184
+ const FunctionDoc& doc() const { return doc_; }
185
+
186
+ /// \brief Returns the number of registered kernels for this function.
187
+ virtual int num_kernels() const = 0;
188
+
189
+ /// \brief Return a kernel that can execute the function given the exact
190
+ /// argument types (without implicit type casts).
191
+ ///
192
+ /// NB: This function is overridden in CastFunction.
193
+ virtual Result<const Kernel*> DispatchExact(const std::vector<TypeHolder>& types) const;
194
+
195
+ /// \brief Return a best-match kernel that can execute the function given the argument
196
+ /// types, after implicit casts are applied.
197
+ ///
198
+ /// \param[in,out] values Argument types. An element may be modified to
199
+ /// indicate that the returned kernel only approximately matches the input
200
+ /// value descriptors; callers are responsible for casting inputs to the type
201
+ /// required by the kernel.
202
+ virtual Result<const Kernel*> DispatchBest(std::vector<TypeHolder>* values) const;
203
+
204
+ /// \brief Get a function executor with a best-matching kernel
205
+ ///
206
+ /// The returned executor will by default work with the default FunctionOptions
207
+ /// and KernelContext. If you want to change that, call `FunctionExecutor::Init`.
208
+ virtual Result<std::shared_ptr<FunctionExecutor>> GetBestExecutor(
209
+ std::vector<TypeHolder> inputs) const;
210
+
211
+ /// \brief Execute the function eagerly with the passed input arguments with
212
+ /// kernel dispatch, batch iteration, and memory allocation details taken
213
+ /// care of.
214
+ ///
215
+ /// If the `options` pointer is null, then `default_options()` will be used.
216
+ ///
217
+ /// This function can be overridden in subclasses.
218
+ virtual Result<Datum> Execute(const std::vector<Datum>& args,
219
+ const FunctionOptions* options, ExecContext* ctx) const;
220
+
221
+ virtual Result<Datum> Execute(const ExecBatch& batch, const FunctionOptions* options,
222
+ ExecContext* ctx) const;
223
+
224
+ /// \brief Returns the default options for this function.
225
+ ///
226
+ /// Whatever option semantics a Function has, implementations must guarantee
227
+ /// that default_options() is valid to pass to Execute as options.
228
+ const FunctionOptions* default_options() const { return default_options_; }
229
+
230
+ virtual Status Validate() const;
231
+
232
+ /// \brief Returns the pure property for this function.
233
+ ///
234
+ /// Impure functions are those that may return different results for the same
235
+ /// input arguments. For example, a function that returns a random number is
236
+ /// not pure. An expression containing only pure functions can be simplified by
237
+ /// pre-evaluating any sub-expressions that have constant arguments.
238
+ virtual bool is_pure() const { return true; }
239
+
240
+ protected:
241
+ Function(std::string name, Function::Kind kind, const Arity& arity, FunctionDoc doc,
242
+ const FunctionOptions* default_options)
243
+ : name_(std::move(name)),
244
+ kind_(kind),
245
+ arity_(arity),
246
+ doc_(std::move(doc)),
247
+ default_options_(default_options) {}
248
+
249
+ Status CheckArity(size_t num_args) const;
250
+
251
+ std::string name_;
252
+ Function::Kind kind_;
253
+ Arity arity_;
254
+ const FunctionDoc doc_;
255
+ const FunctionOptions* default_options_ = NULLPTR;
256
+ };
257
+
258
+ namespace detail {
259
+
260
+ template <typename KernelType>
261
+ class FunctionImpl : public Function {
262
+ public:
263
+ /// \brief Return pointers to current-available kernels for inspection
264
+ std::vector<const KernelType*> kernels() const {
265
+ std::vector<const KernelType*> result;
266
+ for (const auto& kernel : kernels_) {
267
+ result.push_back(&kernel);
268
+ }
269
+ return result;
270
+ }
271
+
272
+ int num_kernels() const override { return static_cast<int>(kernels_.size()); }
273
+
274
+ protected:
275
+ FunctionImpl(std::string name, Function::Kind kind, const Arity& arity, FunctionDoc doc,
276
+ const FunctionOptions* default_options)
277
+ : Function(std::move(name), kind, arity, std::move(doc), default_options) {}
278
+
279
+ std::vector<KernelType> kernels_;
280
+ };
281
+
282
+ /// \brief Look up a kernel in a function. If no Kernel is found, nullptr is returned.
283
+ ARROW_EXPORT
284
+ const Kernel* DispatchExactImpl(const Function* func, const std::vector<TypeHolder>&);
285
+
286
+ /// \brief Return an error message if no Kernel is found.
287
+ ARROW_EXPORT
288
+ Status NoMatchingKernel(const Function* func, const std::vector<TypeHolder>&);
289
+
290
+ } // namespace detail
291
+
292
+ /// \brief A function that executes elementwise operations on arrays or
293
+ /// scalars, and therefore whose results generally do not depend on the order
294
+ /// of the values in the arguments. Accepts and returns arrays that are all of
295
+ /// the same size. These functions roughly correspond to the functions used in
296
+ /// SQL expressions.
297
+ class ARROW_EXPORT ScalarFunction : public detail::FunctionImpl<ScalarKernel> {
298
+ public:
299
+ using KernelType = ScalarKernel;
300
+
301
+ ScalarFunction(std::string name, const Arity& arity, FunctionDoc doc,
302
+ const FunctionOptions* default_options = NULLPTR, bool is_pure = true)
303
+ : detail::FunctionImpl<ScalarKernel>(std::move(name), Function::SCALAR, arity,
304
+ std::move(doc), default_options),
305
+ is_pure_(is_pure) {}
306
+
307
+ /// \brief Add a kernel with given input/output types, no required state
308
+ /// initialization, preallocation for fixed-width types, and default null
309
+ /// handling (intersect validity bitmaps of inputs).
310
+ Status AddKernel(std::vector<InputType> in_types, OutputType out_type,
311
+ ArrayKernelExec exec, KernelInit init = NULLPTR);
312
+
313
+ /// \brief Add a kernel (function implementation). Returns error if the
314
+ /// kernel's signature does not match the function's arity.
315
+ Status AddKernel(ScalarKernel kernel);
316
+
317
+ /// \brief Returns the pure property for this function.
318
+ bool is_pure() const override { return is_pure_; }
319
+
320
+ private:
321
+ const bool is_pure_;
322
+ };
323
+
324
+ /// \brief A function that executes general array operations that may yield
325
+ /// outputs of different sizes or have results that depend on the whole array
326
+ /// contents. These functions roughly correspond to the functions found in
327
+ /// non-SQL array languages like APL and its derivatives.
328
+ class ARROW_EXPORT VectorFunction : public detail::FunctionImpl<VectorKernel> {
329
+ public:
330
+ using KernelType = VectorKernel;
331
+
332
+ VectorFunction(std::string name, const Arity& arity, FunctionDoc doc,
333
+ const FunctionOptions* default_options = NULLPTR)
334
+ : detail::FunctionImpl<VectorKernel>(std::move(name), Function::VECTOR, arity,
335
+ std::move(doc), default_options) {}
336
+
337
+ /// \brief Add a simple kernel with given input/output types, no required
338
+ /// state initialization, no data preallocation, and no preallocation of the
339
+ /// validity bitmap.
340
+ Status AddKernel(std::vector<InputType> in_types, OutputType out_type,
341
+ ArrayKernelExec exec, KernelInit init = NULLPTR);
342
+
343
+ /// \brief Add a kernel (function implementation). Returns error if the
344
+ /// kernel's signature does not match the function's arity.
345
+ Status AddKernel(VectorKernel kernel);
346
+ };
347
+
348
+ class ARROW_EXPORT ScalarAggregateFunction
349
+ : public detail::FunctionImpl<ScalarAggregateKernel> {
350
+ public:
351
+ using KernelType = ScalarAggregateKernel;
352
+
353
+ ScalarAggregateFunction(std::string name, const Arity& arity, FunctionDoc doc,
354
+ const FunctionOptions* default_options = NULLPTR)
355
+ : detail::FunctionImpl<ScalarAggregateKernel>(std::move(name),
356
+ Function::SCALAR_AGGREGATE, arity,
357
+ std::move(doc), default_options) {}
358
+
359
+ /// \brief Add a kernel (function implementation). Returns error if the
360
+ /// kernel's signature does not match the function's arity.
361
+ Status AddKernel(ScalarAggregateKernel kernel);
362
+ };
363
+
364
+ class ARROW_EXPORT HashAggregateFunction
365
+ : public detail::FunctionImpl<HashAggregateKernel> {
366
+ public:
367
+ using KernelType = HashAggregateKernel;
368
+
369
+ HashAggregateFunction(std::string name, const Arity& arity, FunctionDoc doc,
370
+ const FunctionOptions* default_options = NULLPTR)
371
+ : detail::FunctionImpl<HashAggregateKernel>(std::move(name),
372
+ Function::HASH_AGGREGATE, arity,
373
+ std::move(doc), default_options) {}
374
+
375
+ /// \brief Add a kernel (function implementation). Returns error if the
376
+ /// kernel's signature does not match the function's arity.
377
+ Status AddKernel(HashAggregateKernel kernel);
378
+ };
379
+
380
+ /// \brief A function that dispatches to other functions. Must implement
381
+ /// MetaFunction::ExecuteImpl.
382
+ ///
383
+ /// For Array, ChunkedArray, and Scalar Datum kinds, may rely on the execution
384
+ /// of concrete Function types, but must handle other Datum kinds on its own.
385
+ class ARROW_EXPORT MetaFunction : public Function {
386
+ public:
387
+ int num_kernels() const override { return 0; }
388
+
389
+ Result<Datum> Execute(const std::vector<Datum>& args, const FunctionOptions* options,
390
+ ExecContext* ctx) const override;
391
+
392
+ Result<Datum> Execute(const ExecBatch& batch, const FunctionOptions* options,
393
+ ExecContext* ctx) const override;
394
+
395
+ protected:
396
+ virtual Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
397
+ const FunctionOptions* options,
398
+ ExecContext* ctx) const = 0;
399
+
400
+ MetaFunction(std::string name, const Arity& arity, FunctionDoc doc,
401
+ const FunctionOptions* default_options = NULLPTR)
402
+ : Function(std::move(name), Function::META, arity, std::move(doc),
403
+ default_options) {}
404
+ };
405
+
406
+ /// @}
407
+
408
+ } // namespace compute
409
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/function_options.h ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ // NOTE: API is EXPERIMENTAL and will change without going through a
19
+ // deprecation cycle.
20
+
21
+ #pragma once
22
+
23
+ #include "arrow/compute/type_fwd.h"
24
+ #include "arrow/result.h"
25
+ #include "arrow/status.h"
26
+ #include "arrow/type_fwd.h"
27
+ #include "arrow/util/visibility.h"
28
+
29
+ namespace arrow {
30
+ namespace compute {
31
+
32
+ /// \addtogroup compute-functions
33
+ /// @{
34
+
35
+ /// \brief Extension point for defining options outside libarrow (but
36
+ /// still within this project).
37
+ class ARROW_EXPORT FunctionOptionsType {
38
+ public:
39
+ virtual ~FunctionOptionsType() = default;
40
+
41
+ virtual const char* type_name() const = 0;
42
+ virtual std::string Stringify(const FunctionOptions&) const = 0;
43
+ virtual bool Compare(const FunctionOptions&, const FunctionOptions&) const = 0;
44
+ virtual Result<std::shared_ptr<Buffer>> Serialize(const FunctionOptions&) const;
45
+ virtual Result<std::unique_ptr<FunctionOptions>> Deserialize(
46
+ const Buffer& buffer) const;
47
+ virtual std::unique_ptr<FunctionOptions> Copy(const FunctionOptions&) const = 0;
48
+ };
49
+
50
+ /// \brief Base class for specifying options configuring a function's behavior,
51
+ /// such as error handling.
52
+ class ARROW_EXPORT FunctionOptions : public util::EqualityComparable<FunctionOptions> {
53
+ public:
54
+ virtual ~FunctionOptions() = default;
55
+
56
+ const FunctionOptionsType* options_type() const { return options_type_; }
57
+ const char* type_name() const { return options_type()->type_name(); }
58
+
59
+ bool Equals(const FunctionOptions& other) const;
60
+ std::string ToString() const;
61
+ std::unique_ptr<FunctionOptions> Copy() const;
62
+ /// \brief Serialize an options struct to a buffer.
63
+ Result<std::shared_ptr<Buffer>> Serialize() const;
64
+ /// \brief Deserialize an options struct from a buffer.
65
+ /// Note: this will only look for `type_name` in the default FunctionRegistry;
66
+ /// to use a custom FunctionRegistry, look up the FunctionOptionsType, then
67
+ /// call FunctionOptionsType::Deserialize().
68
+ static Result<std::unique_ptr<FunctionOptions>> Deserialize(
69
+ const std::string& type_name, const Buffer& buffer);
70
+
71
+ protected:
72
+ explicit FunctionOptions(const FunctionOptionsType* type) : options_type_(type) {}
73
+ const FunctionOptionsType* options_type_;
74
+ };
75
+
76
+ ARROW_EXPORT void PrintTo(const FunctionOptions&, std::ostream*);
77
+
78
+ /// @}
79
+
80
+ } // namespace compute
81
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/ordering.h ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <string>
21
+ #include <vector>
22
+
23
+ #include "arrow/type.h"
24
+ #include "arrow/util/compare.h"
25
+ #include "arrow/util/visibility.h"
26
+
27
+ namespace arrow {
28
+ namespace compute {
29
+
30
+ enum class SortOrder {
31
+ /// Arrange values in increasing order
32
+ Ascending,
33
+ /// Arrange values in decreasing order
34
+ Descending,
35
+ };
36
+
37
+ enum class NullPlacement {
38
+ /// Place nulls and NaNs before any non-null values.
39
+ /// NaNs will come after nulls.
40
+ AtStart,
41
+ /// Place nulls and NaNs after any non-null values.
42
+ /// NaNs will come before nulls.
43
+ AtEnd,
44
+ };
45
+
46
+ /// \brief One sort key for PartitionNthIndices (TODO) and SortIndices
47
+ class ARROW_EXPORT SortKey : public util::EqualityComparable<SortKey> {
48
+ public:
49
+ explicit SortKey(FieldRef target, SortOrder order = SortOrder::Ascending)
50
+ : target(std::move(target)), order(order) {}
51
+
52
+ bool Equals(const SortKey& other) const;
53
+ std::string ToString() const;
54
+
55
+ /// A FieldRef targeting the sort column.
56
+ FieldRef target;
57
+ /// How to order by this sort key.
58
+ SortOrder order;
59
+ };
60
+
61
+ class ARROW_EXPORT Ordering : public util::EqualityComparable<Ordering> {
62
+ public:
63
+ Ordering(std::vector<SortKey> sort_keys,
64
+ NullPlacement null_placement = NullPlacement::AtStart)
65
+ : sort_keys_(std::move(sort_keys)), null_placement_(null_placement) {}
66
+ /// true if data ordered by other is also ordered by this
67
+ ///
68
+ /// For example, if data is ordered by [a, b, c] then it is also ordered
69
+ /// by [a, b] but not by [b, c] or [a, b, c, d].
70
+ ///
71
+ /// [a, b].IsSuborderOf([a, b, c]) - true
72
+ /// [a, b, c].IsSuborderOf([a, b, c]) - true
73
+ /// [b, c].IsSuborderOf([a, b, c]) - false
74
+ /// [a, b, c, d].IsSuborderOf([a, b, c]) - false
75
+ ///
76
+ /// The implicit ordering is not a suborder of any other ordering and
77
+ /// no other ordering is a suborder of it. The implicit ordering is not a
78
+ /// suborder of itself.
79
+ ///
80
+ /// The unordered ordering is a suborder of all other orderings but no
81
+ /// other ordering is a suborder of it. The unordered ordering is a suborder
82
+ /// of itself.
83
+ ///
84
+ /// The unordered ordering is a suborder of the implicit ordering.
85
+ bool IsSuborderOf(const Ordering& other) const;
86
+
87
+ bool Equals(const Ordering& other) const;
88
+ std::string ToString() const;
89
+
90
+ bool is_implicit() const { return is_implicit_; }
91
+ bool is_unordered() const { return !is_implicit_ && sort_keys_.empty(); }
92
+
93
+ const std::vector<SortKey>& sort_keys() const { return sort_keys_; }
94
+ NullPlacement null_placement() const { return null_placement_; }
95
+
96
+ static const Ordering& Implicit() {
97
+ static const Ordering kImplicit(true);
98
+ return kImplicit;
99
+ }
100
+
101
+ static const Ordering& Unordered() {
102
+ static const Ordering kUnordered(false);
103
+ // It is also possible to get an unordered ordering by passing in an empty vector
104
+ // using the normal constructor. This is ok and useful when ordering comes from user
105
+ // input.
106
+ return kUnordered;
107
+ }
108
+
109
+ private:
110
+ explicit Ordering(bool is_implicit)
111
+ : null_placement_(NullPlacement::AtStart), is_implicit_(is_implicit) {}
112
+ /// Column key(s) to order by and how to order by these sort keys.
113
+ std::vector<SortKey> sort_keys_;
114
+ /// Whether nulls and NaNs are placed at the start or at the end
115
+ NullPlacement null_placement_;
116
+ bool is_implicit_ = false;
117
+ };
118
+
119
+ } // namespace compute
120
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/registry.h ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ // NOTE: API is EXPERIMENTAL and will change without going through a
19
+ // deprecation cycle
20
+
21
+ #pragma once
22
+
23
+ #include <memory>
24
+ #include <string>
25
+ #include <vector>
26
+
27
+ #include "arrow/result.h"
28
+ #include "arrow/status.h"
29
+ #include "arrow/util/visibility.h"
30
+
31
+ namespace arrow {
32
+ namespace compute {
33
+
34
+ class Function;
35
+ class FunctionOptionsType;
36
+
37
+ /// \brief A mutable central function registry for built-in functions as well
38
+ /// as user-defined functions. Functions are implementations of
39
+ /// arrow::compute::Function.
40
+ ///
41
+ /// Generally, each function contains kernels which are implementations of a
42
+ /// function for a specific argument signature. After looking up a function in
43
+ /// the registry, one can either execute it eagerly with Function::Execute or
44
+ /// use one of the function's dispatch methods to pick a suitable kernel for
45
+ /// lower-level function execution.
46
+ class ARROW_EXPORT FunctionRegistry {
47
+ public:
48
+ ~FunctionRegistry();
49
+
50
+ /// \brief Construct a new registry.
51
+ ///
52
+ /// Most users only need to use the global registry.
53
+ static std::unique_ptr<FunctionRegistry> Make();
54
+
55
+ /// \brief Construct a new nested registry with the given parent.
56
+ ///
57
+ /// Most users only need to use the global registry. The returned registry never changes
58
+ /// its parent, even when an operation allows overwriting.
59
+ static std::unique_ptr<FunctionRegistry> Make(FunctionRegistry* parent);
60
+
61
+ /// \brief Check whether a new function can be added to the registry.
62
+ ///
63
+ /// \returns Status::KeyError if a function with the same name is already registered.
64
+ Status CanAddFunction(std::shared_ptr<Function> function, bool allow_overwrite = false);
65
+
66
+ /// \brief Add a new function to the registry.
67
+ ///
68
+ /// \returns Status::KeyError if a function with the same name is already registered.
69
+ Status AddFunction(std::shared_ptr<Function> function, bool allow_overwrite = false);
70
+
71
+ /// \brief Check whether an alias can be added for the given function name.
72
+ ///
73
+ /// \returns Status::KeyError if the function with the given name is not registered.
74
+ Status CanAddAlias(const std::string& target_name, const std::string& source_name);
75
+
76
+ /// \brief Add alias for the given function name.
77
+ ///
78
+ /// \returns Status::KeyError if the function with the given name is not registered.
79
+ Status AddAlias(const std::string& target_name, const std::string& source_name);
80
+
81
+ /// \brief Check whether a new function options type can be added to the registry.
82
+ ///
83
+ /// \return Status::KeyError if a function options type with the same name is already
84
+ /// registered.
85
+ Status CanAddFunctionOptionsType(const FunctionOptionsType* options_type,
86
+ bool allow_overwrite = false);
87
+
88
+ /// \brief Add a new function options type to the registry.
89
+ ///
90
+ /// \returns Status::KeyError if a function options type with the same name is already
91
+ /// registered.
92
+ Status AddFunctionOptionsType(const FunctionOptionsType* options_type,
93
+ bool allow_overwrite = false);
94
+
95
+ /// \brief Retrieve a function by name from the registry.
96
+ Result<std::shared_ptr<Function>> GetFunction(const std::string& name) const;
97
+
98
+ /// \brief Return vector of all entry names in the registry.
99
+ ///
100
+ /// Helpful for displaying a manifest of available functions.
101
+ std::vector<std::string> GetFunctionNames() const;
102
+
103
+ /// \brief Retrieve a function options type by name from the registry.
104
+ Result<const FunctionOptionsType*> GetFunctionOptionsType(
105
+ const std::string& name) const;
106
+
107
+ /// \brief The number of currently registered functions.
108
+ int num_functions() const;
109
+
110
+ /// \brief The cast function object registered in AddFunction.
111
+ ///
112
+ /// Helpful for get cast function as needed.
113
+ const Function* cast_function() const;
114
+
115
+ private:
116
+ FunctionRegistry();
117
+
118
+ // Use PIMPL pattern to not have std::unordered_map here
119
+ class FunctionRegistryImpl;
120
+ std::unique_ptr<FunctionRegistryImpl> impl_;
121
+
122
+ explicit FunctionRegistry(FunctionRegistryImpl* impl);
123
+ };
124
+
125
+ } // namespace compute
126
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/compute/type_fwd.h ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include "arrow/util/visibility.h"
21
+
22
+ namespace arrow {
23
+
24
+ struct Datum;
25
+ struct TypeHolder;
26
+
27
+ namespace compute {
28
+
29
+ class Function;
30
+ class ScalarAggregateFunction;
31
+ class FunctionExecutor;
32
+ class FunctionOptions;
33
+ class FunctionRegistry;
34
+
35
+ /// \brief Return the process-global function registry.
36
+ // Defined in registry.cc
37
+ ARROW_EXPORT FunctionRegistry* GetFunctionRegistry();
38
+
39
+ class CastOptions;
40
+
41
+ struct ExecBatch;
42
+ class ExecContext;
43
+ class KernelContext;
44
+
45
+ struct Kernel;
46
+ struct ScalarKernel;
47
+ struct ScalarAggregateKernel;
48
+ struct VectorKernel;
49
+
50
+ struct KernelState;
51
+
52
+ class Expression;
53
+
54
+ ARROW_EXPORT ExecContext* default_exec_context();
55
+ ARROW_EXPORT ExecContext* threaded_exec_context();
56
+
57
+ } // namespace compute
58
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/config.h ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <optional>
21
+ #include <string>
22
+
23
+ #include "arrow/status.h"
24
+ #include "arrow/util/config.h" // IWYU pragma: export
25
+ #include "arrow/util/visibility.h"
26
+
27
+ namespace arrow {
28
+
29
+ struct BuildInfo {
30
+ /// The packed version number, e.g. 1002003 (decimal) for Arrow 1.2.3
31
+ int version;
32
+ /// The "major" version number, e.g. 1 for Arrow 1.2.3
33
+ int version_major;
34
+ /// The "minor" version number, e.g. 2 for Arrow 1.2.3
35
+ int version_minor;
36
+ /// The "patch" version number, e.g. 3 for Arrow 1.2.3
37
+ int version_patch;
38
+ /// The version string, e.g. "1.2.3"
39
+ std::string version_string;
40
+ std::string so_version;
41
+ std::string full_so_version;
42
+
43
+ /// The CMake compiler identifier, e.g. "GNU"
44
+ std::string compiler_id;
45
+ std::string compiler_version;
46
+ std::string compiler_flags;
47
+
48
+ /// The git changeset id, if available
49
+ std::string git_id;
50
+ /// The git changeset description, if available
51
+ std::string git_description;
52
+ std::string package_kind;
53
+
54
+ /// The uppercase build type, e.g. "DEBUG" or "RELEASE"
55
+ std::string build_type;
56
+ };
57
+
58
+ struct RuntimeInfo {
59
+ /// The enabled SIMD level
60
+ ///
61
+ /// This can be less than `detected_simd_level` if the ARROW_USER_SIMD_LEVEL
62
+ /// environment variable is set to another value.
63
+ std::string simd_level;
64
+
65
+ /// The SIMD level available on the OS and CPU
66
+ std::string detected_simd_level;
67
+
68
+ /// Whether using the OS-based timezone database
69
+ /// This is set at compile-time.
70
+ bool using_os_timezone_db;
71
+
72
+ /// The path to the timezone database; by default None.
73
+ std::optional<std::string> timezone_db_path;
74
+ };
75
+
76
+ /// \brief Get runtime build info.
77
+ ///
78
+ /// The returned values correspond to exact loaded version of the Arrow library,
79
+ /// rather than the values frozen at application compile-time through the `ARROW_*`
80
+ /// preprocessor definitions.
81
+ ARROW_EXPORT
82
+ const BuildInfo& GetBuildInfo();
83
+
84
+ /// \brief Get runtime info.
85
+ ///
86
+ ARROW_EXPORT
87
+ RuntimeInfo GetRuntimeInfo();
88
+
89
+ struct GlobalOptions {
90
+ /// Path to text timezone database. This is only configurable on Windows,
91
+ /// which does not have a compatible OS timezone database.
92
+ std::optional<std::string> timezone_db_path;
93
+ };
94
+
95
+ ARROW_EXPORT
96
+ Status Initialize(const GlobalOptions& options) noexcept;
97
+
98
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/datum.h ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <cstdint>
21
+ #include <memory>
22
+ #include <string>
23
+ #include <type_traits>
24
+ #include <utility>
25
+ #include <variant>
26
+ #include <vector>
27
+
28
+ #include "arrow/array/data.h"
29
+ #include "arrow/scalar.h"
30
+ #include "arrow/type.h"
31
+ #include "arrow/type_traits.h"
32
+ #include "arrow/util/checked_cast.h"
33
+ #include "arrow/util/macros.h"
34
+ #include "arrow/util/visibility.h"
35
+
36
+ namespace arrow {
37
+
38
+ class Array;
39
+ class ChunkedArray;
40
+ class RecordBatch;
41
+ class Table;
42
+
43
+ /// \class Datum
44
+ /// \brief Variant type for various Arrow C++ data structures
45
+ struct ARROW_EXPORT Datum {
46
+ /// \brief The kind of datum stored
47
+ enum Kind { NONE, SCALAR, ARRAY, CHUNKED_ARRAY, RECORD_BATCH, TABLE };
48
+
49
+ /// \brief A placeholder type to represent empty datum
50
+ struct Empty {};
51
+
52
+ /// \brief Datums variants may have a length. This special value indicate that the
53
+ /// current variant does not have a length.
54
+ static constexpr int64_t kUnknownLength = -1;
55
+
56
+ /// \brief Storage of the actual datum.
57
+ ///
58
+ /// Note: For arrays, ArrayData is stored instead of Array for easier processing
59
+ std::variant<Empty, std::shared_ptr<Scalar>, std::shared_ptr<ArrayData>,
60
+ std::shared_ptr<ChunkedArray>, std::shared_ptr<RecordBatch>,
61
+ std::shared_ptr<Table>>
62
+ value;
63
+
64
+ /// \brief Empty datum, to be populated elsewhere
65
+ Datum() = default;
66
+
67
+ Datum(const Datum& other) = default;
68
+ Datum& operator=(const Datum& other) = default;
69
+ Datum(Datum&& other) = default;
70
+ Datum& operator=(Datum&& other) = default;
71
+
72
+ /// \brief Construct from a Scalar
73
+ Datum(std::shared_ptr<Scalar> value) // NOLINT implicit conversion
74
+ : value(std::move(value)) {}
75
+
76
+ /// \brief Construct from an ArrayData
77
+ Datum(std::shared_ptr<ArrayData> value) // NOLINT implicit conversion
78
+ : value(std::move(value)) {}
79
+
80
+ /// \brief Construct from an ArrayData
81
+ Datum(ArrayData arg) // NOLINT implicit conversion
82
+ : value(std::make_shared<ArrayData>(std::move(arg))) {}
83
+
84
+ /// \brief Construct from an Array
85
+ Datum(const Array& value); // NOLINT implicit conversion
86
+
87
+ /// \brief Construct from an Array
88
+ Datum(const std::shared_ptr<Array>& value); // NOLINT implicit conversion
89
+
90
+ /// \brief Construct from a ChunkedArray
91
+ Datum(std::shared_ptr<ChunkedArray> value); // NOLINT implicit conversion
92
+
93
+ /// \brief Construct from a RecordBatch
94
+ Datum(std::shared_ptr<RecordBatch> value); // NOLINT implicit conversion
95
+
96
+ /// \brief Construct from a Table
97
+ Datum(std::shared_ptr<Table> value); // NOLINT implicit conversion
98
+
99
+ /// \brief Construct from a ChunkedArray.
100
+ ///
101
+ /// This can be expensive, prefer the shared_ptr<ChunkedArray> constructor
102
+ explicit Datum(const ChunkedArray& value);
103
+
104
+ /// \brief Construct from a RecordBatch.
105
+ ///
106
+ /// This can be expensive, prefer the shared_ptr<RecordBatch> constructor
107
+ explicit Datum(const RecordBatch& value);
108
+
109
+ /// \brief Construct from a Table.
110
+ ///
111
+ /// This can be expensive, prefer the shared_ptr<Table> constructor
112
+ explicit Datum(const Table& value);
113
+
114
+ /// \brief Cast from concrete subtypes of Array or Scalar to Datum
115
+ template <typename T, bool IsArray = std::is_base_of_v<Array, T>,
116
+ bool IsScalar = std::is_base_of_v<Scalar, T>,
117
+ typename = enable_if_t<IsArray || IsScalar>>
118
+ Datum(std::shared_ptr<T> value) // NOLINT implicit conversion
119
+ : Datum(std::shared_ptr<typename std::conditional<IsArray, Array, Scalar>::type>(
120
+ std::move(value))) {}
121
+
122
+ /// \brief Cast from concrete subtypes of Array or Scalar to Datum
123
+ template <typename T, typename TV = typename std::remove_reference_t<T>,
124
+ bool IsArray = std::is_base_of_v<Array, T>,
125
+ bool IsScalar = std::is_base_of_v<Scalar, T>,
126
+ typename = enable_if_t<IsArray || IsScalar>>
127
+ Datum(T&& value) // NOLINT implicit conversion
128
+ : Datum(std::make_shared<TV>(std::forward<T>(value))) {}
129
+
130
+ /// \brief Copy from concrete subtypes of Scalar.
131
+ ///
132
+ /// The concrete scalar type must be copyable (not all of them are).
133
+ template <typename T, typename = enable_if_t<std::is_base_of_v<Scalar, T>>>
134
+ Datum(const T& value) // NOLINT implicit conversion
135
+ : Datum(std::make_shared<T>(value)) {}
136
+
137
+ // Convenience constructors
138
+ /// \brief Convenience constructor storing a bool scalar.
139
+ explicit Datum(bool value);
140
+ /// \brief Convenience constructor storing an int8 scalar.
141
+ explicit Datum(int8_t value);
142
+ /// \brief Convenience constructor storing a uint8 scalar.
143
+ explicit Datum(uint8_t value);
144
+ /// \brief Convenience constructor storing an int16 scalar.
145
+ explicit Datum(int16_t value);
146
+ /// \brief Convenience constructor storing a uint16 scalar.
147
+ explicit Datum(uint16_t value);
148
+ /// \brief Convenience constructor storing an int32 scalar.
149
+ explicit Datum(int32_t value);
150
+ /// \brief Convenience constructor storing a uint32 scalar.
151
+ explicit Datum(uint32_t value);
152
+ /// \brief Convenience constructor storing an int64 scalar.
153
+ explicit Datum(int64_t value);
154
+ /// \brief Convenience constructor storing a uint64 scalar.
155
+ explicit Datum(uint64_t value);
156
+ /// \brief Convenience constructor storing a float scalar.
157
+ explicit Datum(float value);
158
+ /// \brief Convenience constructor storing a double scalar.
159
+ explicit Datum(double value);
160
+ /// \brief Convenience constructor storing a string scalar.
161
+ explicit Datum(std::string value);
162
+ /// \brief Convenience constructor storing a string scalar.
163
+ explicit Datum(const char* value);
164
+
165
+ /// \brief Convenience constructor for a DurationScalar from std::chrono::duration
166
+ template <template <typename, typename> class StdDuration, typename Rep,
167
+ typename Period,
168
+ typename = decltype(DurationScalar{StdDuration<Rep, Period>{}})>
169
+ explicit Datum(StdDuration<Rep, Period> d) : Datum{DurationScalar(d)} {}
170
+
171
+ /// \brief The kind of data stored in Datum
172
+ Datum::Kind kind() const {
173
+ switch (this->value.index()) {
174
+ case 0:
175
+ return Datum::NONE;
176
+ case 1:
177
+ return Datum::SCALAR;
178
+ case 2:
179
+ return Datum::ARRAY;
180
+ case 3:
181
+ return Datum::CHUNKED_ARRAY;
182
+ case 4:
183
+ return Datum::RECORD_BATCH;
184
+ case 5:
185
+ return Datum::TABLE;
186
+ default:
187
+ return Datum::NONE;
188
+ }
189
+ }
190
+
191
+ /// \brief Retrieve the stored array as ArrayData
192
+ ///
193
+ /// Use make_array() if an Array is desired (which is more expensive).
194
+ /// \throws std::bad_variant_access if the datum is not an array
195
+ const std::shared_ptr<ArrayData>& array() const {
196
+ return std::get<std::shared_ptr<ArrayData>>(this->value);
197
+ }
198
+
199
+ /// \brief The sum of bytes in each buffer referenced by the datum
200
+ /// Note: Scalars report a size of 0
201
+ /// \see arrow::util::TotalBufferSize for caveats
202
+ int64_t TotalBufferSize() const;
203
+
204
+ /// \brief Get the stored ArrayData in mutable form
205
+ ///
206
+ /// For internal use primarily. Keep in mind a shared_ptr<Datum> may have multiple
207
+ /// owners.
208
+ ArrayData* mutable_array() const { return this->array().get(); }
209
+
210
+ /// \brief Retrieve the stored array as Array
211
+ /// \throws std::bad_variant_access if the datum is not an array
212
+ std::shared_ptr<Array> make_array() const;
213
+
214
+ /// \brief Retrieve the chunked array stored
215
+ /// \throws std::bad_variant_access if the datum is not a chunked array
216
+ const std::shared_ptr<ChunkedArray>& chunked_array() const {
217
+ return std::get<std::shared_ptr<ChunkedArray>>(this->value);
218
+ }
219
+
220
+ /// \brief Retrieve the record batch stored
221
+ /// \throws std::bad_variant_access if the datum is not a record batch
222
+ const std::shared_ptr<RecordBatch>& record_batch() const {
223
+ return std::get<std::shared_ptr<RecordBatch>>(this->value);
224
+ }
225
+
226
+ /// \brief Retrieve the table stored
227
+ /// \throws std::bad_variant_access if the datum is not a table
228
+ const std::shared_ptr<Table>& table() const {
229
+ return std::get<std::shared_ptr<Table>>(this->value);
230
+ }
231
+
232
+ /// \brief Retrieve the scalar stored
233
+ /// \throws std::bad_variant_access if the datum is not a scalar
234
+ const std::shared_ptr<Scalar>& scalar() const {
235
+ return std::get<std::shared_ptr<Scalar>>(this->value);
236
+ }
237
+
238
+ /// \brief Retrieve the datum as its concrete array type
239
+ /// \throws std::bad_variant_access if the datum is not an array
240
+ /// \tparam ExactType the expected array type, may cause undefined behavior if it is not
241
+ /// the type of the stored array
242
+ template <typename ExactType>
243
+ std::shared_ptr<ExactType> array_as() const {
244
+ return internal::checked_pointer_cast<ExactType>(this->make_array());
245
+ }
246
+
247
+ /// \brief Retrieve the datum as its concrete scalar type
248
+ /// \throws std::bad_variant_access if the datum is not a scalar
249
+ /// \tparam ExactType the expected scalar type, may cause undefined behavior if it is
250
+ /// not the type of the stored scalar
251
+ template <typename ExactType>
252
+ const ExactType& scalar_as() const {
253
+ return internal::checked_cast<const ExactType&>(*this->scalar());
254
+ }
255
+
256
+ /// \brief True if Datum contains an array
257
+ bool is_array() const { return this->kind() == Datum::ARRAY; }
258
+
259
+ /// \brief True if Datum contains a chunked array
260
+ bool is_chunked_array() const { return this->kind() == Datum::CHUNKED_ARRAY; }
261
+
262
+ /// \brief True if Datum contains an array or a chunked array
263
+ bool is_arraylike() const {
264
+ return this->kind() == Datum::ARRAY || this->kind() == Datum::CHUNKED_ARRAY;
265
+ }
266
+
267
+ /// \brief True if Datum contains a scalar
268
+ bool is_scalar() const { return this->kind() == Datum::SCALAR; }
269
+
270
+ /// \brief True if Datum contains a scalar or array-like data
271
+ bool is_value() const { return this->is_arraylike() || this->is_scalar(); }
272
+
273
+ /// \brief Return the null count.
274
+ ///
275
+ /// Only valid for scalar and array-like data.
276
+ int64_t null_count() const;
277
+
278
+ /// \brief The value type of the variant, if any
279
+ ///
280
+ /// \return nullptr if no type
281
+ const std::shared_ptr<DataType>& type() const;
282
+
283
+ /// \brief The schema of the variant, if any
284
+ ///
285
+ /// \return nullptr if no schema
286
+ const std::shared_ptr<Schema>& schema() const;
287
+
288
+ /// \brief The value length of the variant, if any
289
+ ///
290
+ /// \return kUnknownLength if no type
291
+ int64_t length() const;
292
+
293
+ /// \brief The array chunks of the variant, if any
294
+ ///
295
+ /// \return empty if not arraylike
296
+ ArrayVector chunks() const;
297
+
298
+ /// \brief True if the two data are equal
299
+ bool Equals(const Datum& other) const;
300
+
301
+ bool operator==(const Datum& other) const { return Equals(other); }
302
+ bool operator!=(const Datum& other) const { return !Equals(other); }
303
+
304
+ std::string ToString() const;
305
+ };
306
+
307
+ ARROW_EXPORT void PrintTo(const Datum&, std::ostream*);
308
+
309
+ ARROW_EXPORT std::string ToString(Datum::Kind kind);
310
+
311
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/device.h ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <cstdint>
21
+ #include <functional>
22
+ #include <memory>
23
+ #include <string>
24
+
25
+ #include "arrow/io/type_fwd.h"
26
+ #include "arrow/result.h"
27
+ #include "arrow/status.h"
28
+ #include "arrow/type_fwd.h"
29
+ #include "arrow/util/compare.h"
30
+ #include "arrow/util/macros.h"
31
+ #include "arrow/util/visibility.h"
32
+
33
+ namespace arrow {
34
+
35
+ /// \brief EXPERIMENTAL: Device type enum which matches up with C Data Device types
36
+ enum class DeviceAllocationType : char {
37
+ kCPU = 1,
38
+ kCUDA = 2,
39
+ kCUDA_HOST = 3,
40
+ kOPENCL = 4,
41
+ kVULKAN = 7,
42
+ kMETAL = 8,
43
+ kVPI = 9,
44
+ kROCM = 10,
45
+ kROCM_HOST = 11,
46
+ kEXT_DEV = 12,
47
+ kCUDA_MANAGED = 13,
48
+ kONEAPI = 14,
49
+ kWEBGPU = 15,
50
+ kHEXAGON = 16,
51
+ };
52
+
53
+ class MemoryManager;
54
+
55
+ /// \brief EXPERIMENTAL: Abstract interface for hardware devices
56
+ ///
57
+ /// This object represents a device with access to some memory spaces.
58
+ /// When handling a Buffer or raw memory address, it allows deciding in which
59
+ /// context the raw memory address should be interpreted
60
+ /// (e.g. CPU-accessible memory, or embedded memory on some particular GPU).
61
+ class ARROW_EXPORT Device : public std::enable_shared_from_this<Device>,
62
+ public util::EqualityComparable<Device> {
63
+ public:
64
+ virtual ~Device();
65
+
66
+ /// \brief A shorthand for this device's type.
67
+ ///
68
+ /// The returned value is different for each device class, but is the
69
+ /// same for all instances of a given class. It can be used as a replacement
70
+ /// for RTTI.
71
+ virtual const char* type_name() const = 0;
72
+
73
+ /// \brief A human-readable description of the device.
74
+ ///
75
+ /// The returned value should be detailed enough to distinguish between
76
+ /// different instances, where necessary.
77
+ virtual std::string ToString() const = 0;
78
+
79
+ /// \brief Whether this instance points to the same device as another one.
80
+ virtual bool Equals(const Device&) const = 0;
81
+
82
+ /// \brief A device ID to identify this device if there are multiple of this type.
83
+ ///
84
+ /// If there is no "device_id" equivalent (such as for the main CPU device on
85
+ /// non-numa systems) returns -1.
86
+ virtual int64_t device_id() const { return -1; }
87
+
88
+ /// \brief Whether this device is the main CPU device.
89
+ ///
90
+ /// This shorthand method is very useful when deciding whether a memory address
91
+ /// is CPU-accessible.
92
+ bool is_cpu() const { return is_cpu_; }
93
+
94
+ /// \brief Return a MemoryManager instance tied to this device
95
+ ///
96
+ /// The returned instance uses default parameters for this device type's
97
+ /// MemoryManager implementation. Some devices also allow constructing
98
+ /// MemoryManager instances with non-default parameters.
99
+ virtual std::shared_ptr<MemoryManager> default_memory_manager() = 0;
100
+
101
+ /// \brief Return the DeviceAllocationType of this device
102
+ virtual DeviceAllocationType device_type() const = 0;
103
+
104
+ class SyncEvent;
105
+
106
+ /// \brief EXPERIMENTAL: An opaque wrapper for Device-specific streams
107
+ ///
108
+ /// In essence this is just a wrapper around a void* to represent the
109
+ /// standard concept of a stream/queue on a device. Derived classes
110
+ /// should be trivially constructible from it's device-specific counterparts.
111
+ class ARROW_EXPORT Stream {
112
+ public:
113
+ using release_fn_t = std::function<void(void*)>;
114
+
115
+ virtual ~Stream() = default;
116
+
117
+ virtual const void* get_raw() const { return stream_.get(); }
118
+
119
+ /// \brief Make the stream wait on the provided event.
120
+ ///
121
+ /// Tells the stream that it should wait until the synchronization
122
+ /// event is completed without blocking the CPU.
123
+ virtual Status WaitEvent(const SyncEvent&) = 0;
124
+
125
+ /// \brief Blocks the current thread until a stream's remaining tasks are completed
126
+ virtual Status Synchronize() const = 0;
127
+
128
+ protected:
129
+ explicit Stream(void* stream, release_fn_t release_stream)
130
+ : stream_{stream, release_stream} {}
131
+
132
+ std::unique_ptr<void, release_fn_t> stream_;
133
+ };
134
+
135
+ virtual Result<std::shared_ptr<Stream>> MakeStream() { return NULLPTR; }
136
+
137
+ /// \brief Create a new device stream
138
+ ///
139
+ /// This should create the appropriate stream type for the device,
140
+ /// derived from Device::Stream to allow for stream ordered events
141
+ /// and memory allocations.
142
+ virtual Result<std::shared_ptr<Stream>> MakeStream(unsigned int flags) {
143
+ return NULLPTR;
144
+ }
145
+
146
+ /// @brief Wrap an existing device stream alongside a release function
147
+ ///
148
+ /// @param device_stream a pointer to the stream to wrap
149
+ /// @param release_fn a function to call during destruction, `nullptr` or
150
+ /// a no-op function can be passed to indicate ownership is maintained
151
+ /// externally
152
+ virtual Result<std::shared_ptr<Stream>> WrapStream(void* device_stream,
153
+ Stream::release_fn_t release_fn) {
154
+ return NULLPTR;
155
+ }
156
+
157
+ /// \brief EXPERIMENTAL: An object that provides event/stream sync primitives
158
+ class ARROW_EXPORT SyncEvent {
159
+ public:
160
+ using release_fn_t = std::function<void(void*)>;
161
+
162
+ virtual ~SyncEvent() = default;
163
+
164
+ void* get_raw() { return sync_event_.get(); }
165
+
166
+ /// @brief Block until sync event is completed.
167
+ virtual Status Wait() = 0;
168
+
169
+ /// @brief Record the wrapped event on the stream so it triggers
170
+ /// the event when the stream gets to that point in its queue.
171
+ virtual Status Record(const Stream&) = 0;
172
+
173
+ protected:
174
+ /// If creating this with a passed in event, the caller must ensure
175
+ /// that the event lives until clear_event is called on this as it
176
+ /// won't own it.
177
+ explicit SyncEvent(void* sync_event, release_fn_t release_sync_event)
178
+ : sync_event_{sync_event, release_sync_event} {}
179
+
180
+ std::unique_ptr<void, release_fn_t> sync_event_;
181
+ };
182
+
183
+ protected:
184
+ ARROW_DISALLOW_COPY_AND_ASSIGN(Device);
185
+ explicit Device(bool is_cpu = false) : is_cpu_(is_cpu) {}
186
+
187
+ bool is_cpu_;
188
+ };
189
+
190
+ /// \brief EXPERIMENTAL: An object that provides memory management primitives
191
+ ///
192
+ /// A MemoryManager is always tied to a particular Device instance.
193
+ /// It can also have additional parameters (such as a MemoryPool to
194
+ /// allocate CPU memory).
195
+ class ARROW_EXPORT MemoryManager : public std::enable_shared_from_this<MemoryManager> {
196
+ public:
197
+ virtual ~MemoryManager();
198
+
199
+ /// \brief The device this MemoryManager is tied to
200
+ const std::shared_ptr<Device>& device() const { return device_; }
201
+
202
+ /// \brief Whether this MemoryManager is tied to the main CPU device.
203
+ ///
204
+ /// This shorthand method is very useful when deciding whether a memory address
205
+ /// is CPU-accessible.
206
+ bool is_cpu() const { return device_->is_cpu(); }
207
+
208
+ /// \brief Create a RandomAccessFile to read a particular buffer.
209
+ ///
210
+ /// The given buffer must be tied to this MemoryManager.
211
+ ///
212
+ /// See also the Buffer::GetReader shorthand.
213
+ virtual Result<std::shared_ptr<io::RandomAccessFile>> GetBufferReader(
214
+ std::shared_ptr<Buffer> buf) = 0;
215
+
216
+ /// \brief Create a OutputStream to write to a particular buffer.
217
+ ///
218
+ /// The given buffer must be mutable and tied to this MemoryManager.
219
+ /// The returned stream object writes into the buffer's underlying memory
220
+ /// (but it won't resize it).
221
+ ///
222
+ /// See also the Buffer::GetWriter shorthand.
223
+ virtual Result<std::shared_ptr<io::OutputStream>> GetBufferWriter(
224
+ std::shared_ptr<Buffer> buf) = 0;
225
+
226
+ /// \brief Allocate a (mutable) Buffer
227
+ ///
228
+ /// The buffer will be allocated in the device's memory.
229
+ virtual Result<std::unique_ptr<Buffer>> AllocateBuffer(int64_t size) = 0;
230
+
231
+ /// \brief Copy a Buffer to a destination MemoryManager
232
+ ///
233
+ /// See also the Buffer::Copy shorthand.
234
+ static Result<std::shared_ptr<Buffer>> CopyBuffer(
235
+ const std::shared_ptr<Buffer>& source, const std::shared_ptr<MemoryManager>& to);
236
+
237
+ /// \brief Copy a non-owned Buffer to a destination MemoryManager
238
+ ///
239
+ /// This is useful for cases where the source memory area is externally managed
240
+ /// (its lifetime not tied to the source Buffer), otherwise please use CopyBuffer().
241
+ static Result<std::unique_ptr<Buffer>> CopyNonOwned(
242
+ const Buffer& source, const std::shared_ptr<MemoryManager>& to);
243
+
244
+ /// \brief Make a no-copy Buffer view in a destination MemoryManager
245
+ ///
246
+ /// See also the Buffer::View shorthand.
247
+ static Result<std::shared_ptr<Buffer>> ViewBuffer(
248
+ const std::shared_ptr<Buffer>& source, const std::shared_ptr<MemoryManager>& to);
249
+
250
+ /// \brief Create a new SyncEvent.
251
+ ///
252
+ /// This version should construct the appropriate event for the device and
253
+ /// provide the unique_ptr with the correct deleter for the event type.
254
+ /// If the device does not require or work with any synchronization, it is
255
+ /// allowed for it to return a nullptr.
256
+ virtual Result<std::shared_ptr<Device::SyncEvent>> MakeDeviceSyncEvent();
257
+
258
+ /// \brief Wrap an event into a SyncEvent.
259
+ ///
260
+ /// @param sync_event passed in sync_event (should be a pointer to the appropriate type)
261
+ /// @param release_sync_event destructor to free sync_event. `nullptr` may be
262
+ /// passed to indicate that no destruction/freeing is necessary
263
+ virtual Result<std::shared_ptr<Device::SyncEvent>> WrapDeviceSyncEvent(
264
+ void* sync_event, Device::SyncEvent::release_fn_t release_sync_event);
265
+
266
+ protected:
267
+ ARROW_DISALLOW_COPY_AND_ASSIGN(MemoryManager);
268
+
269
+ explicit MemoryManager(const std::shared_ptr<Device>& device) : device_(device) {}
270
+
271
+ // Default implementations always return nullptr, should be overridden
272
+ // by subclasses that support data transfer.
273
+ // (returning nullptr means unsupported copy / view)
274
+ // In CopyBufferFrom and ViewBufferFrom, the `from` parameter is guaranteed to
275
+ // be equal to `buf->memory_manager()`.
276
+ virtual Result<std::shared_ptr<Buffer>> CopyBufferFrom(
277
+ const std::shared_ptr<Buffer>& buf, const std::shared_ptr<MemoryManager>& from);
278
+ virtual Result<std::shared_ptr<Buffer>> CopyBufferTo(
279
+ const std::shared_ptr<Buffer>& buf, const std::shared_ptr<MemoryManager>& to);
280
+ virtual Result<std::unique_ptr<Buffer>> CopyNonOwnedFrom(
281
+ const Buffer& buf, const std::shared_ptr<MemoryManager>& from);
282
+ virtual Result<std::unique_ptr<Buffer>> CopyNonOwnedTo(
283
+ const Buffer& buf, const std::shared_ptr<MemoryManager>& to);
284
+ virtual Result<std::shared_ptr<Buffer>> ViewBufferFrom(
285
+ const std::shared_ptr<Buffer>& buf, const std::shared_ptr<MemoryManager>& from);
286
+ virtual Result<std::shared_ptr<Buffer>> ViewBufferTo(
287
+ const std::shared_ptr<Buffer>& buf, const std::shared_ptr<MemoryManager>& to);
288
+
289
+ std::shared_ptr<Device> device_;
290
+ };
291
+
292
+ // ----------------------------------------------------------------------
293
+ // CPU backend implementation
294
+
295
+ class ARROW_EXPORT CPUDevice : public Device {
296
+ public:
297
+ const char* type_name() const override;
298
+ std::string ToString() const override;
299
+ bool Equals(const Device&) const override;
300
+ DeviceAllocationType device_type() const override { return DeviceAllocationType::kCPU; }
301
+
302
+ std::shared_ptr<MemoryManager> default_memory_manager() override;
303
+
304
+ /// \brief Return the global CPUDevice instance
305
+ static std::shared_ptr<Device> Instance();
306
+
307
+ /// \brief Create a MemoryManager
308
+ ///
309
+ /// The returned MemoryManager will use the given MemoryPool for allocations.
310
+ static std::shared_ptr<MemoryManager> memory_manager(MemoryPool* pool);
311
+
312
+ protected:
313
+ CPUDevice() : Device(true) {}
314
+ };
315
+
316
+ class ARROW_EXPORT CPUMemoryManager : public MemoryManager {
317
+ public:
318
+ Result<std::shared_ptr<io::RandomAccessFile>> GetBufferReader(
319
+ std::shared_ptr<Buffer> buf) override;
320
+ Result<std::shared_ptr<io::OutputStream>> GetBufferWriter(
321
+ std::shared_ptr<Buffer> buf) override;
322
+
323
+ Result<std::unique_ptr<Buffer>> AllocateBuffer(int64_t size) override;
324
+
325
+ /// \brief Return the MemoryPool associated with this MemoryManager.
326
+ MemoryPool* pool() const { return pool_; }
327
+
328
+ protected:
329
+ CPUMemoryManager(const std::shared_ptr<Device>& device, MemoryPool* pool)
330
+ : MemoryManager(device), pool_(pool) {}
331
+
332
+ static std::shared_ptr<MemoryManager> Make(const std::shared_ptr<Device>& device,
333
+ MemoryPool* pool = default_memory_pool());
334
+
335
+ Result<std::shared_ptr<Buffer>> CopyBufferFrom(
336
+ const std::shared_ptr<Buffer>& buf,
337
+ const std::shared_ptr<MemoryManager>& from) override;
338
+ Result<std::shared_ptr<Buffer>> CopyBufferTo(
339
+ const std::shared_ptr<Buffer>& buf,
340
+ const std::shared_ptr<MemoryManager>& to) override;
341
+ Result<std::unique_ptr<Buffer>> CopyNonOwnedFrom(
342
+ const Buffer& buf, const std::shared_ptr<MemoryManager>& from) override;
343
+ Result<std::unique_ptr<Buffer>> CopyNonOwnedTo(
344
+ const Buffer& buf, const std::shared_ptr<MemoryManager>& to) override;
345
+ Result<std::shared_ptr<Buffer>> ViewBufferFrom(
346
+ const std::shared_ptr<Buffer>& buf,
347
+ const std::shared_ptr<MemoryManager>& from) override;
348
+ Result<std::shared_ptr<Buffer>> ViewBufferTo(
349
+ const std::shared_ptr<Buffer>& buf,
350
+ const std::shared_ptr<MemoryManager>& to) override;
351
+
352
+ MemoryPool* pool_;
353
+
354
+ friend std::shared_ptr<MemoryManager> CPUDevice::memory_manager(MemoryPool* pool);
355
+ ARROW_FRIEND_EXPORT friend std::shared_ptr<MemoryManager> default_cpu_memory_manager();
356
+ };
357
+
358
+ /// \brief Return the default CPU MemoryManager instance
359
+ ///
360
+ /// The returned singleton instance uses the default MemoryPool.
361
+ /// This function is a faster spelling of
362
+ /// `CPUDevice::Instance()->default_memory_manager()`.
363
+ ARROW_EXPORT
364
+ std::shared_ptr<MemoryManager> default_cpu_memory_manager();
365
+
366
+ using DeviceMapper =
367
+ std::function<Result<std::shared_ptr<MemoryManager>>(int64_t device_id)>;
368
+
369
+ /// \brief Register a function to retrieve a MemoryManager for a Device type
370
+ ///
371
+ /// This registers the device type globally. A specific device type can only
372
+ /// be registered once. This method is thread-safe.
373
+ ///
374
+ /// Currently, this registry is only used for importing data through the C Device
375
+ /// Data Interface (for the default Device to MemoryManager mapper in
376
+ /// arrow::ImportDeviceArray/ImportDeviceRecordBatch).
377
+ ///
378
+ /// \param[in] device_type the device type for which to register a MemoryManager
379
+ /// \param[in] mapper function that takes a device id and returns the appropriate
380
+ /// MemoryManager for the registered device type and given device id
381
+ /// \return Status
382
+ ARROW_EXPORT
383
+ Status RegisterDeviceMapper(DeviceAllocationType device_type, DeviceMapper mapper);
384
+
385
+ /// \brief Get the registered function to retrieve a MemoryManager for the
386
+ /// given Device type
387
+ ///
388
+ /// \param[in] device_type the device type
389
+ /// \return function that takes a device id and returns the appropriate
390
+ /// MemoryManager for the registered device type and given device id
391
+ ARROW_EXPORT
392
+ Result<DeviceMapper> GetDeviceMapper(DeviceAllocationType device_type);
393
+
394
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/extension_type.h ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ /// User-defined extension types.
19
+ /// \since 0.13.0
20
+
21
+ #pragma once
22
+
23
+ #include <memory>
24
+ #include <string>
25
+
26
+ #include "arrow/array/array_base.h"
27
+ #include "arrow/array/data.h"
28
+ #include "arrow/result.h"
29
+ #include "arrow/status.h"
30
+ #include "arrow/type.h"
31
+ #include "arrow/type_fwd.h"
32
+ #include "arrow/util/checked_cast.h"
33
+ #include "arrow/util/macros.h"
34
+ #include "arrow/util/visibility.h"
35
+
36
+ namespace arrow {
37
+
38
+ /// \brief The base class for custom / user-defined types.
39
+ class ARROW_EXPORT ExtensionType : public DataType {
40
+ public:
41
+ static constexpr Type::type type_id = Type::EXTENSION;
42
+
43
+ static constexpr const char* type_name() { return "extension"; }
44
+
45
+ /// \brief The type of array used to represent this extension type's data
46
+ const std::shared_ptr<DataType>& storage_type() const { return storage_type_; }
47
+
48
+ /// \brief Return the type category of the storage type
49
+ Type::type storage_id() const override { return storage_type_->id(); }
50
+
51
+ DataTypeLayout layout() const override;
52
+
53
+ std::string ToString(bool show_metadata = false) const override;
54
+
55
+ std::string name() const override { return "extension"; }
56
+
57
+ /// \brief Unique name of extension type used to identify type for
58
+ /// serialization
59
+ /// \return the string name of the extension
60
+ virtual std::string extension_name() const = 0;
61
+
62
+ /// \brief Determine if two instances of the same extension types are
63
+ /// equal. Invoked from ExtensionType::Equals
64
+ /// \param[in] other the type to compare this type with
65
+ /// \return bool true if type instances are equal
66
+ virtual bool ExtensionEquals(const ExtensionType& other) const = 0;
67
+
68
+ /// \brief Wrap built-in Array type in a user-defined ExtensionArray instance
69
+ /// \param[in] data the physical storage for the extension type
70
+ virtual std::shared_ptr<Array> MakeArray(std::shared_ptr<ArrayData> data) const = 0;
71
+
72
+ /// \brief Create an instance of the ExtensionType given the actual storage
73
+ /// type and the serialized representation
74
+ /// \param[in] storage_type the physical storage type of the extension
75
+ /// \param[in] serialized_data the serialized representation produced by
76
+ /// Serialize
77
+ virtual Result<std::shared_ptr<DataType>> Deserialize(
78
+ std::shared_ptr<DataType> storage_type,
79
+ const std::string& serialized_data) const = 0;
80
+
81
+ /// \brief Create a serialized representation of the extension type's
82
+ /// metadata. The storage type will be handled automatically in IPC code
83
+ /// paths
84
+ /// \return the serialized representation
85
+ virtual std::string Serialize() const = 0;
86
+
87
+ /// \brief Wrap the given storage array as an extension array
88
+ static std::shared_ptr<Array> WrapArray(const std::shared_ptr<DataType>& ext_type,
89
+ const std::shared_ptr<Array>& storage);
90
+
91
+ /// \brief Wrap the given chunked storage array as a chunked extension array
92
+ static std::shared_ptr<ChunkedArray> WrapArray(
93
+ const std::shared_ptr<DataType>& ext_type,
94
+ const std::shared_ptr<ChunkedArray>& storage);
95
+
96
+ protected:
97
+ explicit ExtensionType(std::shared_ptr<DataType> storage_type)
98
+ : DataType(Type::EXTENSION), storage_type_(storage_type) {}
99
+
100
+ std::shared_ptr<DataType> storage_type_;
101
+ };
102
+
103
+ /// \brief Base array class for user-defined extension types
104
+ class ARROW_EXPORT ExtensionArray : public Array {
105
+ public:
106
+ using TypeClass = ExtensionType;
107
+ /// \brief Construct an ExtensionArray from an ArrayData.
108
+ ///
109
+ /// The ArrayData must have the right ExtensionType.
110
+ explicit ExtensionArray(const std::shared_ptr<ArrayData>& data);
111
+
112
+ /// \brief Construct an ExtensionArray from a type and the underlying storage.
113
+ ExtensionArray(const std::shared_ptr<DataType>& type,
114
+ const std::shared_ptr<Array>& storage);
115
+
116
+ const ExtensionType* extension_type() const {
117
+ return internal::checked_cast<const ExtensionType*>(data_->type.get());
118
+ }
119
+
120
+ /// \brief The physical storage for the extension array
121
+ const std::shared_ptr<Array>& storage() const { return storage_; }
122
+
123
+ protected:
124
+ void SetData(const std::shared_ptr<ArrayData>& data);
125
+ std::shared_ptr<Array> storage_;
126
+ };
127
+
128
+ class ARROW_EXPORT ExtensionTypeRegistry {
129
+ public:
130
+ /// \brief Provide access to the global registry to allow code to control for
131
+ /// race conditions in registry teardown when some types need to be
132
+ /// unregistered and destroyed first
133
+ static std::shared_ptr<ExtensionTypeRegistry> GetGlobalRegistry();
134
+
135
+ virtual ~ExtensionTypeRegistry() = default;
136
+
137
+ virtual Status RegisterType(std::shared_ptr<ExtensionType> type) = 0;
138
+ virtual Status UnregisterType(const std::string& type_name) = 0;
139
+ virtual std::shared_ptr<ExtensionType> GetType(const std::string& type_name) = 0;
140
+ };
141
+
142
+ /// \brief Register an extension type globally. The name returned by the type's
143
+ /// extension_name() method should be unique. This method is thread-safe
144
+ /// \param[in] type an instance of the extension type
145
+ /// \return Status
146
+ ARROW_EXPORT
147
+ Status RegisterExtensionType(std::shared_ptr<ExtensionType> type);
148
+
149
+ /// \brief Delete an extension type from the global registry. This method is
150
+ /// thread-safe
151
+ /// \param[in] type_name the unique name of a registered extension type
152
+ /// \return Status error if the type name is unknown
153
+ ARROW_EXPORT
154
+ Status UnregisterExtensionType(const std::string& type_name);
155
+
156
+ /// \brief Retrieve an extension type from the global registry. Returns nullptr
157
+ /// if not found. This method is thread-safe
158
+ /// \return the globally-registered extension type
159
+ ARROW_EXPORT
160
+ std::shared_ptr<ExtensionType> GetExtensionType(const std::string& type_name);
161
+
162
+ ARROW_EXPORT extern const char kExtensionTypeKeyName[];
163
+ ARROW_EXPORT extern const char kExtensionMetadataKeyName[];
164
+
165
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/memory_pool.h ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <atomic>
21
+ #include <cstdint>
22
+ #include <functional>
23
+ #include <memory>
24
+ #include <string>
25
+
26
+ #include "arrow/result.h"
27
+ #include "arrow/status.h"
28
+ #include "arrow/type_fwd.h"
29
+ #include "arrow/util/visibility.h"
30
+
31
+ namespace arrow {
32
+
33
+ namespace internal {
34
+
35
+ ///////////////////////////////////////////////////////////////////////
36
+ // Helper tracking memory statistics
37
+
38
+ /// \brief Memory pool statistics
39
+ ///
40
+ /// 64-byte aligned so that all atomic values are on the same cache line.
41
+ class alignas(64) MemoryPoolStats {
42
+ private:
43
+ // All atomics are updated according to Acquire-Release ordering.
44
+ // https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
45
+ //
46
+ // max_memory_, total_allocated_bytes_, and num_allocs_ only go up (they are
47
+ // monotonically increasing) which can allow some optimizations.
48
+ std::atomic<int64_t> max_memory_{0};
49
+ std::atomic<int64_t> bytes_allocated_{0};
50
+ std::atomic<int64_t> total_allocated_bytes_{0};
51
+ std::atomic<int64_t> num_allocs_{0};
52
+
53
+ public:
54
+ int64_t max_memory() const { return max_memory_.load(std::memory_order_acquire); }
55
+
56
+ int64_t bytes_allocated() const {
57
+ return bytes_allocated_.load(std::memory_order_acquire);
58
+ }
59
+
60
+ int64_t total_bytes_allocated() const {
61
+ return total_allocated_bytes_.load(std::memory_order_acquire);
62
+ }
63
+
64
+ int64_t num_allocations() const { return num_allocs_.load(std::memory_order_acquire); }
65
+
66
+ inline void DidAllocateBytes(int64_t size) {
67
+ // Issue the load before everything else. max_memory_ is monotonically increasing,
68
+ // so we can use a relaxed load before the read-modify-write.
69
+ auto max_memory = max_memory_.load(std::memory_order_relaxed);
70
+ const auto old_bytes_allocated =
71
+ bytes_allocated_.fetch_add(size, std::memory_order_acq_rel);
72
+ // Issue store operations on values that we don't depend on to proceed
73
+ // with execution. When done, max_memory and old_bytes_allocated have
74
+ // a higher chance of being available on CPU registers. This also has the
75
+ // nice side-effect of putting 3 atomic stores close to each other in the
76
+ // instruction stream.
77
+ total_allocated_bytes_.fetch_add(size, std::memory_order_acq_rel);
78
+ num_allocs_.fetch_add(1, std::memory_order_acq_rel);
79
+
80
+ // If other threads are updating max_memory_ concurrently we leave the loop without
81
+ // updating knowing that it already reached a value even higher than ours.
82
+ const auto allocated = old_bytes_allocated + size;
83
+ while (max_memory < allocated && !max_memory_.compare_exchange_weak(
84
+ /*expected=*/max_memory, /*desired=*/allocated,
85
+ std::memory_order_acq_rel)) {
86
+ }
87
+ }
88
+
89
+ inline void DidReallocateBytes(int64_t old_size, int64_t new_size) {
90
+ if (new_size > old_size) {
91
+ DidAllocateBytes(new_size - old_size);
92
+ } else {
93
+ DidFreeBytes(old_size - new_size);
94
+ }
95
+ }
96
+
97
+ inline void DidFreeBytes(int64_t size) {
98
+ bytes_allocated_.fetch_sub(size, std::memory_order_acq_rel);
99
+ }
100
+ };
101
+
102
+ } // namespace internal
103
+
104
+ /// Base class for memory allocation on the CPU.
105
+ ///
106
+ /// Besides tracking the number of allocated bytes, the allocator also should
107
+ /// take care of the required 64-byte alignment.
108
+ class ARROW_EXPORT MemoryPool {
109
+ public:
110
+ virtual ~MemoryPool() = default;
111
+
112
+ /// \brief EXPERIMENTAL. Create a new instance of the default MemoryPool
113
+ static std::unique_ptr<MemoryPool> CreateDefault();
114
+
115
+ /// Allocate a new memory region of at least size bytes.
116
+ ///
117
+ /// The allocated region shall be 64-byte aligned.
118
+ Status Allocate(int64_t size, uint8_t** out) {
119
+ return Allocate(size, kDefaultBufferAlignment, out);
120
+ }
121
+
122
+ /// Allocate a new memory region of at least size bytes aligned to alignment.
123
+ virtual Status Allocate(int64_t size, int64_t alignment, uint8_t** out) = 0;
124
+
125
+ /// Resize an already allocated memory section.
126
+ ///
127
+ /// As by default most default allocators on a platform don't support aligned
128
+ /// reallocation, this function can involve a copy of the underlying data.
129
+ virtual Status Reallocate(int64_t old_size, int64_t new_size, int64_t alignment,
130
+ uint8_t** ptr) = 0;
131
+ Status Reallocate(int64_t old_size, int64_t new_size, uint8_t** ptr) {
132
+ return Reallocate(old_size, new_size, kDefaultBufferAlignment, ptr);
133
+ }
134
+
135
+ /// Free an allocated region.
136
+ ///
137
+ /// @param buffer Pointer to the start of the allocated memory region
138
+ /// @param size Allocated size located at buffer. An allocator implementation
139
+ /// may use this for tracking the amount of allocated bytes as well as for
140
+ /// faster deallocation if supported by its backend.
141
+ /// @param alignment The alignment of the allocation. Defaults to 64 bytes.
142
+ virtual void Free(uint8_t* buffer, int64_t size, int64_t alignment) = 0;
143
+ void Free(uint8_t* buffer, int64_t size) {
144
+ Free(buffer, size, kDefaultBufferAlignment);
145
+ }
146
+
147
+ /// Return unused memory to the OS
148
+ ///
149
+ /// Only applies to allocators that hold onto unused memory. This will be
150
+ /// best effort, a memory pool may not implement this feature or may be
151
+ /// unable to fulfill the request due to fragmentation.
152
+ virtual void ReleaseUnused() {}
153
+
154
+ /// The number of bytes that were allocated and not yet free'd through
155
+ /// this allocator.
156
+ virtual int64_t bytes_allocated() const = 0;
157
+
158
+ /// Return peak memory allocation in this memory pool
159
+ ///
160
+ /// \return Maximum bytes allocated. If not known (or not implemented),
161
+ /// returns -1
162
+ virtual int64_t max_memory() const;
163
+
164
+ /// The number of bytes that were allocated.
165
+ virtual int64_t total_bytes_allocated() const = 0;
166
+
167
+ /// The number of allocations or reallocations that were requested.
168
+ virtual int64_t num_allocations() const = 0;
169
+
170
+ /// The name of the backend used by this MemoryPool (e.g. "system" or "jemalloc").
171
+ virtual std::string backend_name() const = 0;
172
+
173
+ protected:
174
+ MemoryPool() = default;
175
+ };
176
+
177
+ class ARROW_EXPORT LoggingMemoryPool : public MemoryPool {
178
+ public:
179
+ explicit LoggingMemoryPool(MemoryPool* pool);
180
+ ~LoggingMemoryPool() override = default;
181
+
182
+ using MemoryPool::Allocate;
183
+ using MemoryPool::Free;
184
+ using MemoryPool::Reallocate;
185
+
186
+ Status Allocate(int64_t size, int64_t alignment, uint8_t** out) override;
187
+ Status Reallocate(int64_t old_size, int64_t new_size, int64_t alignment,
188
+ uint8_t** ptr) override;
189
+ void Free(uint8_t* buffer, int64_t size, int64_t alignment) override;
190
+
191
+ int64_t bytes_allocated() const override;
192
+
193
+ int64_t max_memory() const override;
194
+
195
+ int64_t total_bytes_allocated() const override;
196
+
197
+ int64_t num_allocations() const override;
198
+
199
+ std::string backend_name() const override;
200
+
201
+ private:
202
+ MemoryPool* pool_;
203
+ };
204
+
205
+ /// Derived class for memory allocation.
206
+ ///
207
+ /// Tracks the number of bytes and maximum memory allocated through its direct
208
+ /// calls. Actual allocation is delegated to MemoryPool class.
209
+ class ARROW_EXPORT ProxyMemoryPool : public MemoryPool {
210
+ public:
211
+ explicit ProxyMemoryPool(MemoryPool* pool);
212
+ ~ProxyMemoryPool() override;
213
+
214
+ using MemoryPool::Allocate;
215
+ using MemoryPool::Free;
216
+ using MemoryPool::Reallocate;
217
+
218
+ Status Allocate(int64_t size, int64_t alignment, uint8_t** out) override;
219
+ Status Reallocate(int64_t old_size, int64_t new_size, int64_t alignment,
220
+ uint8_t** ptr) override;
221
+ void Free(uint8_t* buffer, int64_t size, int64_t alignment) override;
222
+
223
+ int64_t bytes_allocated() const override;
224
+
225
+ int64_t max_memory() const override;
226
+
227
+ int64_t total_bytes_allocated() const override;
228
+
229
+ int64_t num_allocations() const override;
230
+
231
+ std::string backend_name() const override;
232
+
233
+ private:
234
+ class ProxyMemoryPoolImpl;
235
+ std::unique_ptr<ProxyMemoryPoolImpl> impl_;
236
+ };
237
+
238
+ /// \brief Return a process-wide memory pool based on the system allocator.
239
+ ARROW_EXPORT MemoryPool* system_memory_pool();
240
+
241
+ /// \brief Return a process-wide memory pool based on jemalloc.
242
+ ///
243
+ /// May return NotImplemented if jemalloc is not available.
244
+ ARROW_EXPORT Status jemalloc_memory_pool(MemoryPool** out);
245
+
246
+ /// \brief Set jemalloc memory page purging behavior for future-created arenas
247
+ /// to the indicated number of milliseconds. See dirty_decay_ms and
248
+ /// muzzy_decay_ms options in jemalloc for a description of what these do. The
249
+ /// default is configured to 1000 (1 second) which releases memory more
250
+ /// aggressively to the operating system than the jemalloc default of 10
251
+ /// seconds. If you set the value to 0, dirty / muzzy pages will be released
252
+ /// immediately rather than with a time decay, but this may reduce application
253
+ /// performance.
254
+ ARROW_EXPORT
255
+ Status jemalloc_set_decay_ms(int ms);
256
+
257
+ /// \brief Get basic statistics from jemalloc's mallctl.
258
+ /// See the MALLCTL NAMESPACE section in jemalloc project documentation for
259
+ /// available stats.
260
+ ARROW_EXPORT
261
+ Result<int64_t> jemalloc_get_stat(const char* name);
262
+
263
+ /// \brief Reset the counter for peak bytes allocated in the calling thread to zero.
264
+ /// This affects subsequent calls to thread.peak.read, but not the values returned by
265
+ /// thread.allocated or thread.deallocated.
266
+ ARROW_EXPORT
267
+ Status jemalloc_peak_reset();
268
+
269
+ /// \brief Print summary statistics in human-readable form to stderr.
270
+ /// See malloc_stats_print documentation in jemalloc project documentation for
271
+ /// available opt flags.
272
+ ARROW_EXPORT
273
+ Status jemalloc_stats_print(const char* opts = "");
274
+
275
+ /// \brief Print summary statistics in human-readable form using a callback
276
+ /// See malloc_stats_print documentation in jemalloc project documentation for
277
+ /// available opt flags.
278
+ ARROW_EXPORT
279
+ Status jemalloc_stats_print(std::function<void(const char*)> write_cb,
280
+ const char* opts = "");
281
+
282
+ /// \brief Get summary statistics in human-readable form.
283
+ /// See malloc_stats_print documentation in jemalloc project documentation for
284
+ /// available opt flags.
285
+ ARROW_EXPORT
286
+ Result<std::string> jemalloc_stats_string(const char* opts = "");
287
+
288
+ /// \brief Return a process-wide memory pool based on mimalloc.
289
+ ///
290
+ /// May return NotImplemented if mimalloc is not available.
291
+ ARROW_EXPORT Status mimalloc_memory_pool(MemoryPool** out);
292
+
293
+ /// \brief Return the names of the backends supported by this Arrow build.
294
+ ARROW_EXPORT std::vector<std::string> SupportedMemoryBackendNames();
295
+
296
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/memory_pool_test.h ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <algorithm>
21
+ #include <cstddef>
22
+ #include <cstdint>
23
+ #include <limits>
24
+
25
+ #include <gtest/gtest.h>
26
+
27
+ #include "arrow/memory_pool.h"
28
+ #include "arrow/status.h"
29
+ #include "arrow/testing/gtest_util.h"
30
+
31
+ namespace arrow {
32
+
33
+ class TestMemoryPoolBase : public ::testing::Test {
34
+ public:
35
+ virtual ::arrow::MemoryPool* memory_pool() = 0;
36
+
37
+ void TestMemoryTracking() {
38
+ auto pool = memory_pool();
39
+
40
+ uint8_t* data;
41
+ const auto old_bytes_allocated = pool->bytes_allocated();
42
+ ASSERT_OK(pool->Allocate(100, &data));
43
+ EXPECT_EQ(static_cast<uint64_t>(0), reinterpret_cast<uint64_t>(data) % 64);
44
+ ASSERT_EQ(old_bytes_allocated + 100, pool->bytes_allocated());
45
+
46
+ uint8_t* data2;
47
+ ASSERT_OK(pool->Allocate(27, &data2));
48
+ EXPECT_EQ(static_cast<uint64_t>(0), reinterpret_cast<uint64_t>(data2) % 64);
49
+ ASSERT_EQ(old_bytes_allocated + 127, pool->bytes_allocated());
50
+
51
+ pool->Free(data, 100);
52
+ ASSERT_EQ(old_bytes_allocated + 27, pool->bytes_allocated());
53
+ pool->Free(data2, 27);
54
+ ASSERT_EQ(old_bytes_allocated, pool->bytes_allocated());
55
+ }
56
+
57
+ void TestOOM() {
58
+ auto pool = memory_pool();
59
+
60
+ uint8_t* data;
61
+ int64_t max_alloc = std::min<uint64_t>(std::numeric_limits<int64_t>::max(),
62
+ std::numeric_limits<size_t>::max());
63
+ // subtract 63 to prevent overflow after the size is aligned
64
+ for (int64_t to_alloc : {max_alloc, max_alloc - 63, max_alloc - 127}) {
65
+ ASSERT_RAISES(OutOfMemory, pool->Allocate(to_alloc, &data));
66
+ }
67
+ }
68
+
69
+ void TestReallocate() {
70
+ auto pool = memory_pool();
71
+
72
+ uint8_t* data;
73
+ ASSERT_OK(pool->Allocate(10, &data));
74
+ ASSERT_EQ(10, pool->bytes_allocated());
75
+ data[0] = 35;
76
+ data[9] = 12;
77
+
78
+ // Expand
79
+ ASSERT_OK(pool->Reallocate(10, 20, &data));
80
+ ASSERT_EQ(data[9], 12);
81
+ ASSERT_EQ(20, pool->bytes_allocated());
82
+
83
+ // Shrink
84
+ ASSERT_OK(pool->Reallocate(20, 5, &data));
85
+ ASSERT_EQ(data[0], 35);
86
+ ASSERT_EQ(5, pool->bytes_allocated());
87
+
88
+ // Free
89
+ pool->Free(data, 5);
90
+ ASSERT_EQ(0, pool->bytes_allocated());
91
+ }
92
+
93
+ void TestAlignment() {
94
+ auto pool = memory_pool();
95
+ {
96
+ uint8_t* data64;
97
+ ASSERT_OK(pool->Allocate(10, &data64));
98
+ ASSERT_EQ(reinterpret_cast<uintptr_t>(data64) % kDefaultBufferAlignment, 0);
99
+ pool->Free(data64, 10);
100
+ }
101
+
102
+ {
103
+ uint8_t* data512;
104
+ ASSERT_OK(pool->Allocate(10, 512, &data512));
105
+ ASSERT_EQ(reinterpret_cast<uintptr_t>(data512) % 512, 0);
106
+ pool->Free(data512, 10, 512);
107
+ }
108
+ }
109
+ };
110
+
111
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/pch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ // Often-used headers, for precompiling.
19
+ // If updating this header, please make sure you check compilation speed
20
+ // before checking in. Adding headers which are not used extremely often
21
+ // may incur a slowdown, since it makes the precompiled header heavier to load.
22
+
23
+ #include "arrow/array.h"
24
+ #include "arrow/buffer.h"
25
+ #include "arrow/record_batch.h"
26
+ #include "arrow/result.h"
27
+ #include "arrow/status.h"
28
+ #include "arrow/table.h"
29
+ #include "arrow/type.h"
30
+ #include "arrow/type_traits.h"
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/pretty_print.h ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <iosfwd>
21
+ #include <string>
22
+ #include <utility>
23
+
24
+ #include "arrow/util/visibility.h"
25
+
26
+ namespace arrow {
27
+
28
+ class Array;
29
+ class ChunkedArray;
30
+ class RecordBatch;
31
+ class Schema;
32
+ class Status;
33
+ class Table;
34
+
35
+ /// \class PrettyPrintDelimiters
36
+ /// \brief Options for controlling which delimiters to use when printing
37
+ /// an Array or ChunkedArray.
38
+ struct ARROW_EXPORT PrettyPrintDelimiters {
39
+ /// Delimiter to use when opening an Array or ChunkedArray (e.g. "[")
40
+ std::string open = "[";
41
+
42
+ /// Delimiter to use when closing an Array or ChunkedArray (e.g. "]")
43
+ std::string close = "]";
44
+
45
+ /// Delimiter for separating individual elements of an Array (e.g. ","),
46
+ /// or individual chunks of a ChunkedArray
47
+ std::string element = ",";
48
+
49
+ /// Create a PrettyPrintDelimiters instance with default values
50
+ static PrettyPrintDelimiters Defaults() { return PrettyPrintDelimiters(); }
51
+ };
52
+
53
+ /// \class PrettyPrintOptions
54
+ /// \brief Options for controlling how various Arrow types should be printed.
55
+ struct ARROW_EXPORT PrettyPrintOptions {
56
+ PrettyPrintOptions() = default;
57
+
58
+ PrettyPrintOptions(int indent, // NOLINT runtime/explicit
59
+ int window = 10, int indent_size = 2, std::string null_rep = "null",
60
+ bool skip_new_lines = false, bool truncate_metadata = true,
61
+ int container_window = 2)
62
+ : indent(indent),
63
+ indent_size(indent_size),
64
+ window(window),
65
+ container_window(container_window),
66
+ null_rep(std::move(null_rep)),
67
+ skip_new_lines(skip_new_lines),
68
+ truncate_metadata(truncate_metadata) {}
69
+
70
+ /// Create a PrettyPrintOptions instance with default values
71
+ static PrettyPrintOptions Defaults() { return PrettyPrintOptions(); }
72
+
73
+ /// Number of spaces to shift entire formatted object to the right
74
+ int indent = 0;
75
+
76
+ /// Size of internal indents
77
+ int indent_size = 2;
78
+
79
+ /// Maximum number of elements to show at the beginning and at the end.
80
+ int window = 10;
81
+
82
+ /// Maximum number of elements to show at the beginning and at the end, for elements
83
+ /// that are containers (that is, list in ListArray and chunks in ChunkedArray)
84
+ int container_window = 2;
85
+
86
+ /// String to use for representing a null value, defaults to "null"
87
+ std::string null_rep = "null";
88
+
89
+ /// Skip new lines between elements, defaults to false
90
+ bool skip_new_lines = false;
91
+
92
+ /// Limit display of each KeyValueMetadata key/value pair to a single line at
93
+ /// 80 character width
94
+ bool truncate_metadata = true;
95
+
96
+ /// If true, display field metadata when pretty-printing a Schema
97
+ bool show_field_metadata = true;
98
+
99
+ /// If true, display schema metadata when pretty-printing a Schema
100
+ bool show_schema_metadata = true;
101
+
102
+ /// Delimiters to use when printing an Array
103
+ PrettyPrintDelimiters array_delimiters = PrettyPrintDelimiters::Defaults();
104
+
105
+ /// Delimiters to use when printing a ChunkedArray
106
+ PrettyPrintDelimiters chunked_array_delimiters = PrettyPrintDelimiters::Defaults();
107
+ };
108
+
109
+ /// \brief Print human-readable representation of RecordBatch
110
+ ARROW_EXPORT
111
+ Status PrettyPrint(const RecordBatch& batch, int indent, std::ostream* sink);
112
+
113
+ ARROW_EXPORT
114
+ Status PrettyPrint(const RecordBatch& batch, const PrettyPrintOptions& options,
115
+ std::ostream* sink);
116
+
117
+ /// \brief Print human-readable representation of Table
118
+ ARROW_EXPORT
119
+ Status PrettyPrint(const Table& table, const PrettyPrintOptions& options,
120
+ std::ostream* sink);
121
+
122
+ /// \brief Print human-readable representation of Array
123
+ ARROW_EXPORT
124
+ Status PrettyPrint(const Array& arr, int indent, std::ostream* sink);
125
+
126
+ /// \brief Print human-readable representation of Array
127
+ ARROW_EXPORT
128
+ Status PrettyPrint(const Array& arr, const PrettyPrintOptions& options,
129
+ std::ostream* sink);
130
+
131
+ /// \brief Print human-readable representation of Array
132
+ ARROW_EXPORT
133
+ Status PrettyPrint(const Array& arr, const PrettyPrintOptions& options,
134
+ std::string* result);
135
+
136
+ /// \brief Print human-readable representation of ChunkedArray
137
+ ARROW_EXPORT
138
+ Status PrettyPrint(const ChunkedArray& chunked_arr, const PrettyPrintOptions& options,
139
+ std::ostream* sink);
140
+
141
+ /// \brief Print human-readable representation of ChunkedArray
142
+ ARROW_EXPORT
143
+ Status PrettyPrint(const ChunkedArray& chunked_arr, const PrettyPrintOptions& options,
144
+ std::string* result);
145
+
146
+ ARROW_EXPORT
147
+ Status PrettyPrint(const Schema& schema, const PrettyPrintOptions& options,
148
+ std::ostream* sink);
149
+
150
+ ARROW_EXPORT
151
+ Status PrettyPrint(const Schema& schema, const PrettyPrintOptions& options,
152
+ std::string* result);
153
+
154
+ ARROW_EXPORT
155
+ Status DebugPrint(const Array& arr, int indent);
156
+
157
+ } // namespace arrow
llmeval-env/lib/python3.10/site-packages/pyarrow/include/arrow/record_batch.h ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Licensed to the Apache Software Foundation (ASF) under one
2
+ // or more contributor license agreements. See the NOTICE file
3
+ // distributed with this work for additional information
4
+ // regarding copyright ownership. The ASF licenses this file
5
+ // to you under the Apache License, Version 2.0 (the
6
+ // "License"); you may not use this file except in compliance
7
+ // with the License. You may obtain a copy of the License at
8
+ //
9
+ // http://www.apache.org/licenses/LICENSE-2.0
10
+ //
11
+ // Unless required by applicable law or agreed to in writing,
12
+ // software distributed under the License is distributed on an
13
+ // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ // KIND, either express or implied. See the License for the
15
+ // specific language governing permissions and limitations
16
+ // under the License.
17
+
18
+ #pragma once
19
+
20
+ #include <cstdint>
21
+ #include <memory>
22
+ #include <string>
23
+ #include <vector>
24
+
25
+ #include "arrow/compare.h"
26
+ #include "arrow/result.h"
27
+ #include "arrow/status.h"
28
+ #include "arrow/type_fwd.h"
29
+ #include "arrow/util/iterator.h"
30
+ #include "arrow/util/macros.h"
31
+ #include "arrow/util/visibility.h"
32
+
33
+ namespace arrow {
34
+
35
+ /// \class RecordBatch
36
+ /// \brief Collection of equal-length arrays matching a particular Schema
37
+ ///
38
+ /// A record batch is table-like data structure that is semantically a sequence
39
+ /// of fields, each a contiguous Arrow array
40
+ class ARROW_EXPORT RecordBatch {
41
+ public:
42
+ virtual ~RecordBatch() = default;
43
+
44
+ /// \param[in] schema The record batch schema
45
+ /// \param[in] num_rows length of fields in the record batch. Each array
46
+ /// should have the same length as num_rows
47
+ /// \param[in] columns the record batch fields as vector of arrays
48
+ static std::shared_ptr<RecordBatch> Make(std::shared_ptr<Schema> schema,
49
+ int64_t num_rows,
50
+ std::vector<std::shared_ptr<Array>> columns);
51
+
52
+ /// \brief Construct record batch from vector of internal data structures
53
+ /// \since 0.5.0
54
+ ///
55
+ /// This class is intended for internal use, or advanced users.
56
+ ///
57
+ /// \param schema the record batch schema
58
+ /// \param num_rows the number of semantic rows in the record batch. This
59
+ /// should be equal to the length of each field
60
+ /// \param columns the data for the batch's columns
61
+ static std::shared_ptr<RecordBatch> Make(
62
+ std::shared_ptr<Schema> schema, int64_t num_rows,
63
+ std::vector<std::shared_ptr<ArrayData>> columns);
64
+
65
+ /// \brief Create an empty RecordBatch of a given schema
66
+ ///
67
+ /// The output RecordBatch will be created with DataTypes from
68
+ /// the given schema.
69
+ ///
70
+ /// \param[in] schema the schema of the empty RecordBatch
71
+ /// \param[in] pool the memory pool to allocate memory from
72
+ /// \return the resulting RecordBatch
73
+ static Result<std::shared_ptr<RecordBatch>> MakeEmpty(
74
+ std::shared_ptr<Schema> schema, MemoryPool* pool = default_memory_pool());
75
+
76
+ /// \brief Convert record batch to struct array
77
+ ///
78
+ /// Create a struct array whose child arrays are the record batch's columns.
79
+ /// Note that the record batch's top-level field metadata cannot be reflected
80
+ /// in the resulting struct array.
81
+ Result<std::shared_ptr<StructArray>> ToStructArray() const;
82
+
83
+ /// \brief Convert record batch with one data type to Tensor
84
+ ///
85
+ /// Create a Tensor object with shape (number of rows, number of columns) and
86
+ /// strides (type size in bytes, type size in bytes * number of rows).
87
+ /// Generated Tensor will have column-major layout.
88
+ ///
89
+ /// \param[in] null_to_nan if true, convert nulls to NaN
90
+ /// \param[in] row_major if true, create row-major Tensor else column-major Tensor
91
+ /// \param[in] pool the memory pool to allocate the tensor buffer
92
+ /// \return the resulting Tensor
93
+ Result<std::shared_ptr<Tensor>> ToTensor(
94
+ bool null_to_nan = false, bool row_major = true,
95
+ MemoryPool* pool = default_memory_pool()) const;
96
+
97
+ /// \brief Construct record batch from struct array
98
+ ///
99
+ /// This constructs a record batch using the child arrays of the given
100
+ /// array, which must be a struct array.
101
+ ///
102
+ /// \param[in] array the source array, must be a StructArray
103
+ /// \param[in] pool the memory pool to allocate new validity bitmaps
104
+ ///
105
+ /// This operation will usually be zero-copy. However, if the struct array has an
106
+ /// offset or a validity bitmap then these will need to be pushed into the child arrays.
107
+ /// Pushing the offset is zero-copy but pushing the validity bitmap is not.
108
+ static Result<std::shared_ptr<RecordBatch>> FromStructArray(
109
+ const std::shared_ptr<Array>& array, MemoryPool* pool = default_memory_pool());
110
+
111
+ /// \brief Determine if two record batches are exactly equal
112
+ ///
113
+ /// \param[in] other the RecordBatch to compare with
114
+ /// \param[in] check_metadata if true, check that Schema metadata is the same
115
+ /// \param[in] opts the options for equality comparisons
116
+ /// \return true if batches are equal
117
+ bool Equals(const RecordBatch& other, bool check_metadata = false,
118
+ const EqualOptions& opts = EqualOptions::Defaults()) const;
119
+
120
+ /// \brief Determine if two record batches are approximately equal
121
+ ///
122
+ /// \param[in] other the RecordBatch to compare with
123
+ /// \param[in] opts the options for equality comparisons
124
+ /// \return true if batches are approximately equal
125
+ bool ApproxEquals(const RecordBatch& other,
126
+ const EqualOptions& opts = EqualOptions::Defaults()) const;
127
+
128
+ /// \return the record batch's schema
129
+ const std::shared_ptr<Schema>& schema() const { return schema_; }
130
+
131
+ /// \brief Replace the schema with another schema with the same types, but potentially
132
+ /// different field names and/or metadata.
133
+ Result<std::shared_ptr<RecordBatch>> ReplaceSchema(
134
+ std::shared_ptr<Schema> schema) const;
135
+
136
+ /// \brief Retrieve all columns at once
137
+ virtual const std::vector<std::shared_ptr<Array>>& columns() const = 0;
138
+
139
+ /// \brief Retrieve an array from the record batch
140
+ /// \param[in] i field index, does not boundscheck
141
+ /// \return an Array object
142
+ virtual std::shared_ptr<Array> column(int i) const = 0;
143
+
144
+ /// \brief Retrieve an array from the record batch
145
+ /// \param[in] name field name
146
+ /// \return an Array or null if no field was found
147
+ std::shared_ptr<Array> GetColumnByName(const std::string& name) const;
148
+
149
+ /// \brief Retrieve an array's internal data from the record batch
150
+ /// \param[in] i field index, does not boundscheck
151
+ /// \return an internal ArrayData object
152
+ virtual std::shared_ptr<ArrayData> column_data(int i) const = 0;
153
+
154
+ /// \brief Retrieve all arrays' internal data from the record batch.
155
+ virtual const ArrayDataVector& column_data() const = 0;
156
+
157
+ /// \brief Add column to the record batch, producing a new RecordBatch
158
+ ///
159
+ /// \param[in] i field index, which will be boundschecked
160
+ /// \param[in] field field to be added
161
+ /// \param[in] column column to be added
162
+ virtual Result<std::shared_ptr<RecordBatch>> AddColumn(
163
+ int i, const std::shared_ptr<Field>& field,
164
+ const std::shared_ptr<Array>& column) const = 0;
165
+
166
+ /// \brief Add new nullable column to the record batch, producing a new
167
+ /// RecordBatch.
168
+ ///
169
+ /// For non-nullable columns, use the Field-based version of this method.
170
+ ///
171
+ /// \param[in] i field index, which will be boundschecked
172
+ /// \param[in] field_name name of field to be added
173
+ /// \param[in] column column to be added
174
+ virtual Result<std::shared_ptr<RecordBatch>> AddColumn(
175
+ int i, std::string field_name, const std::shared_ptr<Array>& column) const;
176
+
177
+ /// \brief Replace a column in the record batch, producing a new RecordBatch
178
+ ///
179
+ /// \param[in] i field index, does boundscheck
180
+ /// \param[in] field field to be replaced
181
+ /// \param[in] column column to be replaced
182
+ virtual Result<std::shared_ptr<RecordBatch>> SetColumn(
183
+ int i, const std::shared_ptr<Field>& field,
184
+ const std::shared_ptr<Array>& column) const = 0;
185
+
186
+ /// \brief Remove column from the record batch, producing a new RecordBatch
187
+ ///
188
+ /// \param[in] i field index, does boundscheck
189
+ virtual Result<std::shared_ptr<RecordBatch>> RemoveColumn(int i) const = 0;
190
+
191
+ virtual std::shared_ptr<RecordBatch> ReplaceSchemaMetadata(
192
+ const std::shared_ptr<const KeyValueMetadata>& metadata) const = 0;
193
+
194
+ /// \brief Name in i-th column
195
+ const std::string& column_name(int i) const;
196
+
197
+ /// \return the number of columns in the table
198
+ int num_columns() const;
199
+
200
+ /// \return the number of rows (the corresponding length of each column)
201
+ int64_t num_rows() const { return num_rows_; }
202
+
203
+ /// \brief Copy the entire RecordBatch to destination MemoryManager
204
+ ///
205
+ /// This uses Array::CopyTo on each column of the record batch to create
206
+ /// a new record batch where all underlying buffers for the columns have
207
+ /// been copied to the destination MemoryManager. This uses
208
+ /// MemoryManager::CopyBuffer under the hood.
209
+ Result<std::shared_ptr<RecordBatch>> CopyTo(
210
+ const std::shared_ptr<MemoryManager>& to) const;
211
+
212
+ /// \brief View or Copy the entire RecordBatch to destination MemoryManager
213
+ ///
214
+ /// This uses Array::ViewOrCopyTo on each column of the record batch to create
215
+ /// a new record batch where all underlying buffers for the columns have
216
+ /// been zero-copy viewed on the destination MemoryManager, falling back
217
+ /// to performing a copy if it can't be viewed as a zero-copy buffer. This uses
218
+ /// Buffer::ViewOrCopy under the hood.
219
+ Result<std::shared_ptr<RecordBatch>> ViewOrCopyTo(
220
+ const std::shared_ptr<MemoryManager>& to) const;
221
+
222
+ /// \brief Slice each of the arrays in the record batch
223
+ /// \param[in] offset the starting offset to slice, through end of batch
224
+ /// \return new record batch
225
+ virtual std::shared_ptr<RecordBatch> Slice(int64_t offset) const;
226
+
227
+ /// \brief Slice each of the arrays in the record batch
228
+ /// \param[in] offset the starting offset to slice
229
+ /// \param[in] length the number of elements to slice from offset
230
+ /// \return new record batch
231
+ virtual std::shared_ptr<RecordBatch> Slice(int64_t offset, int64_t length) const = 0;
232
+
233
+ /// \return PrettyPrint representation suitable for debugging
234
+ std::string ToString() const;
235
+
236
+ /// \brief Return names of all columns
237
+ std::vector<std::string> ColumnNames() const;
238
+
239
+ /// \brief Rename columns with provided names
240
+ Result<std::shared_ptr<RecordBatch>> RenameColumns(
241
+ const std::vector<std::string>& names) const;
242
+
243
+ /// \brief Return new record batch with specified columns
244
+ Result<std::shared_ptr<RecordBatch>> SelectColumns(
245
+ const std::vector<int>& indices) const;
246
+
247
+ /// \brief Perform cheap validation checks to determine obvious inconsistencies
248
+ /// within the record batch's schema and internal data.
249
+ ///
250
+ /// This is O(k) where k is the total number of fields and array descendents.
251
+ ///
252
+ /// \return Status
253
+ virtual Status Validate() const;
254
+
255
+ /// \brief Perform extensive validation checks to determine inconsistencies
256
+ /// within the record batch's schema and internal data.
257
+ ///
258
+ /// This is potentially O(k*n) where n is the number of rows.
259
+ ///
260
+ /// \return Status
261
+ virtual Status ValidateFull() const;
262
+
263
+ protected:
264
+ RecordBatch(const std::shared_ptr<Schema>& schema, int64_t num_rows);
265
+
266
+ std::shared_ptr<Schema> schema_;
267
+ int64_t num_rows_;
268
+
269
+ private:
270
+ ARROW_DISALLOW_COPY_AND_ASSIGN(RecordBatch);
271
+ };
272
+
273
+ struct ARROW_EXPORT RecordBatchWithMetadata {
274
+ std::shared_ptr<RecordBatch> batch;
275
+ std::shared_ptr<KeyValueMetadata> custom_metadata;
276
+ };
277
+
278
+ /// \brief Abstract interface for reading stream of record batches
279
+ class ARROW_EXPORT RecordBatchReader {
280
+ public:
281
+ using ValueType = std::shared_ptr<RecordBatch>;
282
+
283
+ virtual ~RecordBatchReader();
284
+
285
+ /// \return the shared schema of the record batches in the stream
286
+ virtual std::shared_ptr<Schema> schema() const = 0;
287
+
288
+ /// \brief Read the next record batch in the stream. Return null for batch
289
+ /// when reaching end of stream
290
+ ///
291
+ /// \param[out] batch the next loaded batch, null at end of stream
292
+ /// \return Status
293
+ virtual Status ReadNext(std::shared_ptr<RecordBatch>* batch) = 0;
294
+
295
+ virtual Result<RecordBatchWithMetadata> ReadNext() {
296
+ return Status::NotImplemented("ReadNext with custom metadata");
297
+ }
298
+
299
+ /// \brief Iterator interface
300
+ Result<std::shared_ptr<RecordBatch>> Next() {
301
+ std::shared_ptr<RecordBatch> batch;
302
+ ARROW_RETURN_NOT_OK(ReadNext(&batch));
303
+ return batch;
304
+ }
305
+
306
+ /// \brief finalize reader
307
+ virtual Status Close() { return Status::OK(); }
308
+
309
+ class RecordBatchReaderIterator {
310
+ public:
311
+ using iterator_category = std::input_iterator_tag;
312
+ using difference_type = std::ptrdiff_t;
313
+ using value_type = std::shared_ptr<RecordBatch>;
314
+ using pointer = value_type const*;
315
+ using reference = value_type const&;
316
+
317
+ RecordBatchReaderIterator() : batch_(RecordBatchEnd()), reader_(NULLPTR) {}
318
+
319
+ explicit RecordBatchReaderIterator(RecordBatchReader* reader)
320
+ : batch_(RecordBatchEnd()), reader_(reader) {
321
+ Next();
322
+ }
323
+
324
+ bool operator==(const RecordBatchReaderIterator& other) const {
325
+ return batch_ == other.batch_;
326
+ }
327
+
328
+ bool operator!=(const RecordBatchReaderIterator& other) const {
329
+ return !(*this == other);
330
+ }
331
+
332
+ Result<std::shared_ptr<RecordBatch>> operator*() {
333
+ ARROW_RETURN_NOT_OK(batch_.status());
334
+
335
+ return batch_;
336
+ }
337
+
338
+ RecordBatchReaderIterator& operator++() {
339
+ Next();
340
+ return *this;
341
+ }
342
+
343
+ RecordBatchReaderIterator operator++(int) {
344
+ RecordBatchReaderIterator tmp(*this);
345
+ Next();
346
+ return tmp;
347
+ }
348
+
349
+ private:
350
+ std::shared_ptr<RecordBatch> RecordBatchEnd() {
351
+ return std::shared_ptr<RecordBatch>(NULLPTR);
352
+ }
353
+
354
+ void Next() {
355
+ if (reader_ == NULLPTR) {
356
+ batch_ = RecordBatchEnd();
357
+ return;
358
+ }
359
+ batch_ = reader_->Next();
360
+ }
361
+
362
+ Result<std::shared_ptr<RecordBatch>> batch_;
363
+ RecordBatchReader* reader_;
364
+ };
365
+ /// \brief Return an iterator to the first record batch in the stream
366
+ RecordBatchReaderIterator begin() { return RecordBatchReaderIterator(this); }
367
+
368
+ /// \brief Return an iterator to the end of the stream
369
+ RecordBatchReaderIterator end() { return RecordBatchReaderIterator(); }
370
+
371
+ /// \brief Consume entire stream as a vector of record batches
372
+ Result<RecordBatchVector> ToRecordBatches();
373
+
374
+ /// \brief Read all batches and concatenate as arrow::Table
375
+ Result<std::shared_ptr<Table>> ToTable();
376
+
377
+ /// \brief Create a RecordBatchReader from a vector of RecordBatch.
378
+ ///
379
+ /// \param[in] batches the vector of RecordBatch to read from
380
+ /// \param[in] schema schema to conform to. Will be inferred from the first
381
+ /// element if not provided.
382
+ static Result<std::shared_ptr<RecordBatchReader>> Make(
383
+ RecordBatchVector batches, std::shared_ptr<Schema> schema = NULLPTR);
384
+
385
+ /// \brief Create a RecordBatchReader from an Iterator of RecordBatch.
386
+ ///
387
+ /// \param[in] batches an iterator of RecordBatch to read from.
388
+ /// \param[in] schema schema that each record batch in iterator will conform to.
389
+ static Result<std::shared_ptr<RecordBatchReader>> MakeFromIterator(
390
+ Iterator<std::shared_ptr<RecordBatch>> batches, std::shared_ptr<Schema> schema);
391
+ };
392
+
393
+ /// \brief Concatenate record batches
394
+ ///
395
+ /// The columns of the new batch are formed by concatenate the same columns of each input
396
+ /// batch. Concatenate multiple batches into a new batch requires that the schema must be
397
+ /// consistent. It supports merging batches without columns (only length, scenarios such
398
+ /// as count(*)).
399
+ ///
400
+ /// \param[in] batches a vector of record batches to be concatenated
401
+ /// \param[in] pool memory to store the result will be allocated from this memory pool
402
+ /// \return the concatenated record batch
403
+ ARROW_EXPORT
404
+ Result<std::shared_ptr<RecordBatch>> ConcatenateRecordBatches(
405
+ const RecordBatchVector& batches, MemoryPool* pool = default_memory_pool());
406
+
407
+ } // namespace arrow