applied-ai-018 commited on
Commit
f7598e4
·
verified ·
1 Parent(s): de38c38

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  2. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_aggregation.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_algos.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_common.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_downstream.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_errors.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_expressions.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_flags.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_multilevel.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_nanops.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_optional_dependency.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_register_accessor.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_sorting.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_take.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/__init__.py +0 -0
  16. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/dim2.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/dtype.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/index.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/interface.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/base/setitem.py +451 -0
  21. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/conftest.py +230 -0
  22. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/date/__init__.py +6 -0
  23. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/date/array.py +188 -0
  24. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/__init__.py +8 -0
  25. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/__init__.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/array.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/test_decimal.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/array.py +311 -0
  29. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/test_decimal.py +567 -0
  30. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/__init__.py +7 -0
  31. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/__pycache__/__init__.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/__pycache__/array.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/__pycache__/test_list.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/array.py +137 -0
  35. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/test_list.py +33 -0
  36. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_arrow.py +0 -0
  37. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_categorical.py +200 -0
  38. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_common.py +105 -0
  39. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_datetime.py +144 -0
  40. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_extension.py +26 -0
  41. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_interval.py +98 -0
  42. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_masked.py +417 -0
  43. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_numpy.py +426 -0
  44. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_period.py +119 -0
  45. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_sparse.py +498 -0
  46. env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_string.py +242 -0
  47. env-llmeval/lib/python3.10/site-packages/pandas/tests/interchange/__init__.py +0 -0
  48. env-llmeval/lib/python3.10/site-packages/pandas/tests/interchange/__pycache__/__init__.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/pandas/tests/interchange/__pycache__/test_impl.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/pandas/tests/interchange/__pycache__/test_spec_conformance.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (177 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_aggregation.cpython-310.pyc ADDED
Binary file (3.08 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_algos.cpython-310.pyc ADDED
Binary file (60.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_common.cpython-310.pyc ADDED
Binary file (7.96 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_downstream.cpython-310.pyc ADDED
Binary file (9.45 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_errors.cpython-310.pyc ADDED
Binary file (3.02 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_expressions.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_flags.cpython-310.pyc ADDED
Binary file (1.89 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_multilevel.cpython-310.pyc ADDED
Binary file (10.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_nanops.cpython-310.pyc ADDED
Binary file (32.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_optional_dependency.cpython-310.pyc ADDED
Binary file (2.71 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_register_accessor.cpython-310.pyc ADDED
Binary file (4.23 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_sorting.cpython-310.pyc ADDED
Binary file (14.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/__pycache__/test_take.cpython-310.pyc ADDED
Binary file (9.61 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/dim2.cpython-310.pyc ADDED
Binary file (9.38 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/dtype.cpython-310.pyc ADDED
Binary file (5.34 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/index.cpython-310.pyc ADDED
Binary file (991 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/interface.cpython-310.pyc ADDED
Binary file (4.35 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/base/setitem.py ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ class BaseSetitemTests:
9
+ @pytest.fixture(
10
+ params=[
11
+ lambda x: x.index,
12
+ lambda x: list(x.index),
13
+ lambda x: slice(None),
14
+ lambda x: slice(0, len(x)),
15
+ lambda x: range(len(x)),
16
+ lambda x: list(range(len(x))),
17
+ lambda x: np.ones(len(x), dtype=bool),
18
+ ],
19
+ ids=[
20
+ "index",
21
+ "list[index]",
22
+ "null_slice",
23
+ "full_slice",
24
+ "range",
25
+ "list(range)",
26
+ "mask",
27
+ ],
28
+ )
29
+ def full_indexer(self, request):
30
+ """
31
+ Fixture for an indexer to pass to obj.loc to get/set the full length of the
32
+ object.
33
+
34
+ In some cases, assumes that obj.index is the default RangeIndex.
35
+ """
36
+ return request.param
37
+
38
+ @pytest.fixture(autouse=True)
39
+ def skip_if_immutable(self, dtype, request):
40
+ if dtype._is_immutable:
41
+ node = request.node
42
+ if node.name.split("[")[0] == "test_is_immutable":
43
+ # This fixture is auto-used, but we want to not-skip
44
+ # test_is_immutable.
45
+ return
46
+
47
+ # When BaseSetitemTests is mixed into ExtensionTests, we only
48
+ # want this fixture to operate on the tests defined in this
49
+ # class/file.
50
+ defined_in = node.function.__qualname__.split(".")[0]
51
+ if defined_in == "BaseSetitemTests":
52
+ pytest.skip("__setitem__ test not applicable with immutable dtype")
53
+
54
+ def test_is_immutable(self, data):
55
+ if data.dtype._is_immutable:
56
+ with pytest.raises(TypeError):
57
+ data[0] = data[0]
58
+ else:
59
+ data[0] = data[1]
60
+ assert data[0] == data[1]
61
+
62
+ def test_setitem_scalar_series(self, data, box_in_series):
63
+ if box_in_series:
64
+ data = pd.Series(data)
65
+ data[0] = data[1]
66
+ assert data[0] == data[1]
67
+
68
+ def test_setitem_sequence(self, data, box_in_series):
69
+ if box_in_series:
70
+ data = pd.Series(data)
71
+ original = data.copy()
72
+
73
+ data[[0, 1]] = [data[1], data[0]]
74
+ assert data[0] == original[1]
75
+ assert data[1] == original[0]
76
+
77
+ def test_setitem_sequence_mismatched_length_raises(self, data, as_array):
78
+ ser = pd.Series(data)
79
+ original = ser.copy()
80
+ value = [data[0]]
81
+ if as_array:
82
+ value = data._from_sequence(value, dtype=data.dtype)
83
+
84
+ xpr = "cannot set using a {} indexer with a different length"
85
+ with pytest.raises(ValueError, match=xpr.format("list-like")):
86
+ ser[[0, 1]] = value
87
+ # Ensure no modifications made before the exception
88
+ tm.assert_series_equal(ser, original)
89
+
90
+ with pytest.raises(ValueError, match=xpr.format("slice")):
91
+ ser[slice(3)] = value
92
+ tm.assert_series_equal(ser, original)
93
+
94
+ def test_setitem_empty_indexer(self, data, box_in_series):
95
+ if box_in_series:
96
+ data = pd.Series(data)
97
+ original = data.copy()
98
+ data[np.array([], dtype=int)] = []
99
+ tm.assert_equal(data, original)
100
+
101
+ def test_setitem_sequence_broadcasts(self, data, box_in_series):
102
+ if box_in_series:
103
+ data = pd.Series(data)
104
+ data[[0, 1]] = data[2]
105
+ assert data[0] == data[2]
106
+ assert data[1] == data[2]
107
+
108
+ @pytest.mark.parametrize("setter", ["loc", "iloc"])
109
+ def test_setitem_scalar(self, data, setter):
110
+ arr = pd.Series(data)
111
+ setter = getattr(arr, setter)
112
+ setter[0] = data[1]
113
+ assert arr[0] == data[1]
114
+
115
+ def test_setitem_loc_scalar_mixed(self, data):
116
+ df = pd.DataFrame({"A": np.arange(len(data)), "B": data})
117
+ df.loc[0, "B"] = data[1]
118
+ assert df.loc[0, "B"] == data[1]
119
+
120
+ def test_setitem_loc_scalar_single(self, data):
121
+ df = pd.DataFrame({"B": data})
122
+ df.loc[10, "B"] = data[1]
123
+ assert df.loc[10, "B"] == data[1]
124
+
125
+ def test_setitem_loc_scalar_multiple_homogoneous(self, data):
126
+ df = pd.DataFrame({"A": data, "B": data})
127
+ df.loc[10, "B"] = data[1]
128
+ assert df.loc[10, "B"] == data[1]
129
+
130
+ def test_setitem_iloc_scalar_mixed(self, data):
131
+ df = pd.DataFrame({"A": np.arange(len(data)), "B": data})
132
+ df.iloc[0, 1] = data[1]
133
+ assert df.loc[0, "B"] == data[1]
134
+
135
+ def test_setitem_iloc_scalar_single(self, data):
136
+ df = pd.DataFrame({"B": data})
137
+ df.iloc[10, 0] = data[1]
138
+ assert df.loc[10, "B"] == data[1]
139
+
140
+ def test_setitem_iloc_scalar_multiple_homogoneous(self, data):
141
+ df = pd.DataFrame({"A": data, "B": data})
142
+ df.iloc[10, 1] = data[1]
143
+ assert df.loc[10, "B"] == data[1]
144
+
145
+ @pytest.mark.parametrize(
146
+ "mask",
147
+ [
148
+ np.array([True, True, True, False, False]),
149
+ pd.array([True, True, True, False, False], dtype="boolean"),
150
+ pd.array([True, True, True, pd.NA, pd.NA], dtype="boolean"),
151
+ ],
152
+ ids=["numpy-array", "boolean-array", "boolean-array-na"],
153
+ )
154
+ def test_setitem_mask(self, data, mask, box_in_series):
155
+ arr = data[:5].copy()
156
+ expected = arr.take([0, 0, 0, 3, 4])
157
+ if box_in_series:
158
+ arr = pd.Series(arr)
159
+ expected = pd.Series(expected)
160
+ arr[mask] = data[0]
161
+ tm.assert_equal(expected, arr)
162
+
163
+ def test_setitem_mask_raises(self, data, box_in_series):
164
+ # wrong length
165
+ mask = np.array([True, False])
166
+
167
+ if box_in_series:
168
+ data = pd.Series(data)
169
+
170
+ with pytest.raises(IndexError, match="wrong length"):
171
+ data[mask] = data[0]
172
+
173
+ mask = pd.array(mask, dtype="boolean")
174
+ with pytest.raises(IndexError, match="wrong length"):
175
+ data[mask] = data[0]
176
+
177
+ def test_setitem_mask_boolean_array_with_na(self, data, box_in_series):
178
+ mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
179
+ mask[:3] = True
180
+ mask[3:5] = pd.NA
181
+
182
+ if box_in_series:
183
+ data = pd.Series(data)
184
+
185
+ data[mask] = data[0]
186
+
187
+ assert (data[:3] == data[0]).all()
188
+
189
+ @pytest.mark.parametrize(
190
+ "idx",
191
+ [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
192
+ ids=["list", "integer-array", "numpy-array"],
193
+ )
194
+ def test_setitem_integer_array(self, data, idx, box_in_series):
195
+ arr = data[:5].copy()
196
+ expected = data.take([0, 0, 0, 3, 4])
197
+
198
+ if box_in_series:
199
+ arr = pd.Series(arr)
200
+ expected = pd.Series(expected)
201
+
202
+ arr[idx] = arr[0]
203
+ tm.assert_equal(arr, expected)
204
+
205
+ @pytest.mark.parametrize(
206
+ "idx, box_in_series",
207
+ [
208
+ ([0, 1, 2, pd.NA], False),
209
+ pytest.param(
210
+ [0, 1, 2, pd.NA], True, marks=pytest.mark.xfail(reason="GH-31948")
211
+ ),
212
+ (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
213
+ (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
214
+ ],
215
+ ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
216
+ )
217
+ def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
218
+ arr = data.copy()
219
+
220
+ # TODO(xfail) this raises KeyError about labels not found (it tries label-based)
221
+ # for list of labels with Series
222
+ if box_in_series:
223
+ arr = pd.Series(data, index=[chr(100 + i) for i in range(len(data))])
224
+
225
+ msg = "Cannot index with an integer indexer containing NA values"
226
+ with pytest.raises(ValueError, match=msg):
227
+ arr[idx] = arr[0]
228
+
229
+ @pytest.mark.parametrize("as_callable", [True, False])
230
+ @pytest.mark.parametrize("setter", ["loc", None])
231
+ def test_setitem_mask_aligned(self, data, as_callable, setter):
232
+ ser = pd.Series(data)
233
+ mask = np.zeros(len(data), dtype=bool)
234
+ mask[:2] = True
235
+
236
+ if as_callable:
237
+ mask2 = lambda x: mask
238
+ else:
239
+ mask2 = mask
240
+
241
+ if setter:
242
+ # loc
243
+ target = getattr(ser, setter)
244
+ else:
245
+ # Series.__setitem__
246
+ target = ser
247
+
248
+ target[mask2] = data[5:7]
249
+
250
+ ser[mask2] = data[5:7]
251
+ assert ser[0] == data[5]
252
+ assert ser[1] == data[6]
253
+
254
+ @pytest.mark.parametrize("setter", ["loc", None])
255
+ def test_setitem_mask_broadcast(self, data, setter):
256
+ ser = pd.Series(data)
257
+ mask = np.zeros(len(data), dtype=bool)
258
+ mask[:2] = True
259
+
260
+ if setter: # loc
261
+ target = getattr(ser, setter)
262
+ else: # __setitem__
263
+ target = ser
264
+
265
+ target[mask] = data[10]
266
+ assert ser[0] == data[10]
267
+ assert ser[1] == data[10]
268
+
269
+ def test_setitem_expand_columns(self, data):
270
+ df = pd.DataFrame({"A": data})
271
+ result = df.copy()
272
+ result["B"] = 1
273
+ expected = pd.DataFrame({"A": data, "B": [1] * len(data)})
274
+ tm.assert_frame_equal(result, expected)
275
+
276
+ result = df.copy()
277
+ result.loc[:, "B"] = 1
278
+ tm.assert_frame_equal(result, expected)
279
+
280
+ # overwrite with new type
281
+ result["B"] = data
282
+ expected = pd.DataFrame({"A": data, "B": data})
283
+ tm.assert_frame_equal(result, expected)
284
+
285
+ def test_setitem_expand_with_extension(self, data):
286
+ df = pd.DataFrame({"A": [1] * len(data)})
287
+ result = df.copy()
288
+ result["B"] = data
289
+ expected = pd.DataFrame({"A": [1] * len(data), "B": data})
290
+ tm.assert_frame_equal(result, expected)
291
+
292
+ result = df.copy()
293
+ result.loc[:, "B"] = data
294
+ tm.assert_frame_equal(result, expected)
295
+
296
+ def test_setitem_frame_invalid_length(self, data):
297
+ df = pd.DataFrame({"A": [1] * len(data)})
298
+ xpr = (
299
+ rf"Length of values \({len(data[:5])}\) "
300
+ rf"does not match length of index \({len(df)}\)"
301
+ )
302
+ with pytest.raises(ValueError, match=xpr):
303
+ df["B"] = data[:5]
304
+
305
+ def test_setitem_tuple_index(self, data):
306
+ ser = pd.Series(data[:2], index=[(0, 0), (0, 1)])
307
+ expected = pd.Series(data.take([1, 1]), index=ser.index)
308
+ ser[(0, 0)] = data[1]
309
+ tm.assert_series_equal(ser, expected)
310
+
311
+ def test_setitem_slice(self, data, box_in_series):
312
+ arr = data[:5].copy()
313
+ expected = data.take([0, 0, 0, 3, 4])
314
+ if box_in_series:
315
+ arr = pd.Series(arr)
316
+ expected = pd.Series(expected)
317
+
318
+ arr[:3] = data[0]
319
+ tm.assert_equal(arr, expected)
320
+
321
+ def test_setitem_loc_iloc_slice(self, data):
322
+ arr = data[:5].copy()
323
+ s = pd.Series(arr, index=["a", "b", "c", "d", "e"])
324
+ expected = pd.Series(data.take([0, 0, 0, 3, 4]), index=s.index)
325
+
326
+ result = s.copy()
327
+ result.iloc[:3] = data[0]
328
+ tm.assert_equal(result, expected)
329
+
330
+ result = s.copy()
331
+ result.loc[:"c"] = data[0]
332
+ tm.assert_equal(result, expected)
333
+
334
+ def test_setitem_slice_mismatch_length_raises(self, data):
335
+ arr = data[:5]
336
+ with pytest.raises(ValueError):
337
+ arr[:1] = arr[:2]
338
+
339
+ def test_setitem_slice_array(self, data):
340
+ arr = data[:5].copy()
341
+ arr[:5] = data[-5:]
342
+ tm.assert_extension_array_equal(arr, data[-5:])
343
+
344
+ def test_setitem_scalar_key_sequence_raise(self, data):
345
+ arr = data[:5].copy()
346
+ with pytest.raises(ValueError):
347
+ arr[0] = arr[[0, 1]]
348
+
349
+ def test_setitem_preserves_views(self, data):
350
+ # GH#28150 setitem shouldn't swap the underlying data
351
+ view1 = data.view()
352
+ view2 = data[:]
353
+
354
+ data[0] = data[1]
355
+ assert view1[0] == data[1]
356
+ assert view2[0] == data[1]
357
+
358
+ def test_setitem_with_expansion_dataframe_column(self, data, full_indexer):
359
+ # https://github.com/pandas-dev/pandas/issues/32395
360
+ df = expected = pd.DataFrame({0: pd.Series(data)})
361
+ result = pd.DataFrame(index=df.index)
362
+
363
+ key = full_indexer(df)
364
+ result.loc[key, 0] = df[0]
365
+
366
+ tm.assert_frame_equal(result, expected)
367
+
368
+ def test_setitem_with_expansion_row(self, data, na_value):
369
+ df = pd.DataFrame({"data": data[:1]})
370
+
371
+ df.loc[1, "data"] = data[1]
372
+ expected = pd.DataFrame({"data": data[:2]})
373
+ tm.assert_frame_equal(df, expected)
374
+
375
+ # https://github.com/pandas-dev/pandas/issues/47284
376
+ df.loc[2, "data"] = na_value
377
+ expected = pd.DataFrame(
378
+ {"data": pd.Series([data[0], data[1], na_value], dtype=data.dtype)}
379
+ )
380
+ tm.assert_frame_equal(df, expected)
381
+
382
+ def test_setitem_series(self, data, full_indexer):
383
+ # https://github.com/pandas-dev/pandas/issues/32395
384
+ ser = pd.Series(data, name="data")
385
+ result = pd.Series(index=ser.index, dtype=object, name="data")
386
+
387
+ # because result has object dtype, the attempt to do setting inplace
388
+ # is successful, and object dtype is retained
389
+ key = full_indexer(ser)
390
+ result.loc[key] = ser
391
+
392
+ expected = pd.Series(
393
+ data.astype(object), index=ser.index, name="data", dtype=object
394
+ )
395
+ tm.assert_series_equal(result, expected)
396
+
397
+ def test_setitem_frame_2d_values(self, data):
398
+ # GH#44514
399
+ df = pd.DataFrame({"A": data})
400
+
401
+ # Avoiding using_array_manager fixture
402
+ # https://github.com/pandas-dev/pandas/pull/44514#discussion_r754002410
403
+ using_array_manager = isinstance(df._mgr, pd.core.internals.ArrayManager)
404
+ using_copy_on_write = pd.options.mode.copy_on_write
405
+
406
+ blk_data = df._mgr.arrays[0]
407
+
408
+ orig = df.copy()
409
+
410
+ df.iloc[:] = df.copy()
411
+ tm.assert_frame_equal(df, orig)
412
+
413
+ df.iloc[:-1] = df.iloc[:-1].copy()
414
+ tm.assert_frame_equal(df, orig)
415
+
416
+ df.iloc[:] = df.values
417
+ tm.assert_frame_equal(df, orig)
418
+ if not using_array_manager and not using_copy_on_write:
419
+ # GH#33457 Check that this setting occurred in-place
420
+ # FIXME(ArrayManager): this should work there too
421
+ assert df._mgr.arrays[0] is blk_data
422
+
423
+ df.iloc[:-1] = df.values[:-1]
424
+ tm.assert_frame_equal(df, orig)
425
+
426
+ def test_delitem_series(self, data):
427
+ # GH#40763
428
+ ser = pd.Series(data, name="data")
429
+
430
+ taker = np.arange(len(ser))
431
+ taker = np.delete(taker, 1)
432
+
433
+ expected = ser[taker]
434
+ del ser[1]
435
+ tm.assert_series_equal(ser, expected)
436
+
437
+ def test_setitem_invalid(self, data, invalid_scalar):
438
+ msg = "" # messages vary by subclass, so we do not test it
439
+ with pytest.raises((ValueError, TypeError), match=msg):
440
+ data[0] = invalid_scalar
441
+
442
+ with pytest.raises((ValueError, TypeError), match=msg):
443
+ data[:] = invalid_scalar
444
+
445
+ def test_setitem_2d_values(self, data):
446
+ # GH50085
447
+ original = data.copy()
448
+ df = pd.DataFrame({"a": data, "b": data})
449
+ df.loc[[0, 1], :] = df.loc[[1, 0], :].values
450
+ assert (df.loc[0, :] == original[1]).all()
451
+ assert (df.loc[1, :] == original[0]).all()
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/conftest.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import pytest
4
+
5
+ from pandas._config.config import _get_option
6
+
7
+ from pandas import (
8
+ Series,
9
+ options,
10
+ )
11
+
12
+
13
+ @pytest.fixture
14
+ def dtype():
15
+ """A fixture providing the ExtensionDtype to validate."""
16
+ raise NotImplementedError
17
+
18
+
19
+ @pytest.fixture
20
+ def data():
21
+ """
22
+ Length-100 array for this type.
23
+
24
+ * data[0] and data[1] should both be non missing
25
+ * data[0] and data[1] should not be equal
26
+ """
27
+ raise NotImplementedError
28
+
29
+
30
+ @pytest.fixture
31
+ def data_for_twos(dtype):
32
+ """
33
+ Length-100 array in which all the elements are two.
34
+
35
+ Call pytest.skip in your fixture if the dtype does not support divmod.
36
+ """
37
+ if not (dtype._is_numeric or dtype.kind == "m"):
38
+ # Object-dtypes may want to allow this, but for the most part
39
+ # only numeric and timedelta-like dtypes will need to implement this.
40
+ pytest.skip(f"{dtype} is not a numeric dtype")
41
+
42
+ raise NotImplementedError
43
+
44
+
45
+ @pytest.fixture
46
+ def data_missing():
47
+ """Length-2 array with [NA, Valid]"""
48
+ raise NotImplementedError
49
+
50
+
51
+ @pytest.fixture(params=["data", "data_missing"])
52
+ def all_data(request, data, data_missing):
53
+ """Parametrized fixture giving 'data' and 'data_missing'"""
54
+ if request.param == "data":
55
+ return data
56
+ elif request.param == "data_missing":
57
+ return data_missing
58
+
59
+
60
+ @pytest.fixture
61
+ def data_repeated(data):
62
+ """
63
+ Generate many datasets.
64
+
65
+ Parameters
66
+ ----------
67
+ data : fixture implementing `data`
68
+
69
+ Returns
70
+ -------
71
+ Callable[[int], Generator]:
72
+ A callable that takes a `count` argument and
73
+ returns a generator yielding `count` datasets.
74
+ """
75
+
76
+ def gen(count):
77
+ for _ in range(count):
78
+ yield data
79
+
80
+ return gen
81
+
82
+
83
+ @pytest.fixture
84
+ def data_for_sorting():
85
+ """
86
+ Length-3 array with a known sort order.
87
+
88
+ This should be three items [B, C, A] with
89
+ A < B < C
90
+
91
+ For boolean dtypes (for which there are only 2 values available),
92
+ set B=C=True
93
+ """
94
+ raise NotImplementedError
95
+
96
+
97
+ @pytest.fixture
98
+ def data_missing_for_sorting():
99
+ """
100
+ Length-3 array with a known sort order.
101
+
102
+ This should be three items [B, NA, A] with
103
+ A < B and NA missing.
104
+ """
105
+ raise NotImplementedError
106
+
107
+
108
+ @pytest.fixture
109
+ def na_cmp():
110
+ """
111
+ Binary operator for comparing NA values.
112
+
113
+ Should return a function of two arguments that returns
114
+ True if both arguments are (scalar) NA for your type.
115
+
116
+ By default, uses ``operator.is_``
117
+ """
118
+ return operator.is_
119
+
120
+
121
+ @pytest.fixture
122
+ def na_value(dtype):
123
+ """
124
+ The scalar missing value for this type. Default dtype.na_value.
125
+
126
+ TODO: can be removed in 3.x (see https://github.com/pandas-dev/pandas/pull/54930)
127
+ """
128
+ return dtype.na_value
129
+
130
+
131
+ @pytest.fixture
132
+ def data_for_grouping():
133
+ """
134
+ Data for factorization, grouping, and unique tests.
135
+
136
+ Expected to be like [B, B, NA, NA, A, A, B, C]
137
+
138
+ Where A < B < C and NA is missing.
139
+
140
+ If a dtype has _is_boolean = True, i.e. only 2 unique non-NA entries,
141
+ then set C=B.
142
+ """
143
+ raise NotImplementedError
144
+
145
+
146
+ @pytest.fixture(params=[True, False])
147
+ def box_in_series(request):
148
+ """Whether to box the data in a Series"""
149
+ return request.param
150
+
151
+
152
+ @pytest.fixture(
153
+ params=[
154
+ lambda x: 1,
155
+ lambda x: [1] * len(x),
156
+ lambda x: Series([1] * len(x)),
157
+ lambda x: x,
158
+ ],
159
+ ids=["scalar", "list", "series", "object"],
160
+ )
161
+ def groupby_apply_op(request):
162
+ """
163
+ Functions to test groupby.apply().
164
+ """
165
+ return request.param
166
+
167
+
168
+ @pytest.fixture(params=[True, False])
169
+ def as_frame(request):
170
+ """
171
+ Boolean fixture to support Series and Series.to_frame() comparison testing.
172
+ """
173
+ return request.param
174
+
175
+
176
+ @pytest.fixture(params=[True, False])
177
+ def as_series(request):
178
+ """
179
+ Boolean fixture to support arr and Series(arr) comparison testing.
180
+ """
181
+ return request.param
182
+
183
+
184
+ @pytest.fixture(params=[True, False])
185
+ def use_numpy(request):
186
+ """
187
+ Boolean fixture to support comparison testing of ExtensionDtype array
188
+ and numpy array.
189
+ """
190
+ return request.param
191
+
192
+
193
+ @pytest.fixture(params=["ffill", "bfill"])
194
+ def fillna_method(request):
195
+ """
196
+ Parametrized fixture giving method parameters 'ffill' and 'bfill' for
197
+ Series.fillna(method=<method>) testing.
198
+ """
199
+ return request.param
200
+
201
+
202
+ @pytest.fixture(params=[True, False])
203
+ def as_array(request):
204
+ """
205
+ Boolean fixture to support ExtensionDtype _from_sequence method testing.
206
+ """
207
+ return request.param
208
+
209
+
210
+ @pytest.fixture
211
+ def invalid_scalar(data):
212
+ """
213
+ A scalar that *cannot* be held by this ExtensionArray.
214
+
215
+ The default should work for most subclasses, but is not guaranteed.
216
+
217
+ If the array can hold any item (i.e. object dtype), then use pytest.skip.
218
+ """
219
+ return object.__new__(object)
220
+
221
+
222
+ @pytest.fixture
223
+ def using_copy_on_write() -> bool:
224
+ """
225
+ Fixture to check if Copy-on-Write is enabled.
226
+ """
227
+ return (
228
+ options.mode.copy_on_write is True
229
+ and _get_option("mode.data_manager", silent=True) == "block"
230
+ )
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/date/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from pandas.tests.extension.date.array import (
2
+ DateArray,
3
+ DateDtype,
4
+ )
5
+
6
+ __all__ = ["DateArray", "DateDtype"]
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/date/array.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import datetime as dt
4
+ from typing import (
5
+ TYPE_CHECKING,
6
+ Any,
7
+ cast,
8
+ )
9
+
10
+ import numpy as np
11
+
12
+ from pandas.core.dtypes.dtypes import register_extension_dtype
13
+
14
+ from pandas.api.extensions import (
15
+ ExtensionArray,
16
+ ExtensionDtype,
17
+ )
18
+ from pandas.api.types import pandas_dtype
19
+
20
+ if TYPE_CHECKING:
21
+ from collections.abc import Sequence
22
+
23
+ from pandas._typing import (
24
+ Dtype,
25
+ PositionalIndexer,
26
+ )
27
+
28
+
29
+ @register_extension_dtype
30
+ class DateDtype(ExtensionDtype):
31
+ @property
32
+ def type(self):
33
+ return dt.date
34
+
35
+ @property
36
+ def name(self):
37
+ return "DateDtype"
38
+
39
+ @classmethod
40
+ def construct_from_string(cls, string: str):
41
+ if not isinstance(string, str):
42
+ raise TypeError(
43
+ f"'construct_from_string' expects a string, got {type(string)}"
44
+ )
45
+
46
+ if string == cls.__name__:
47
+ return cls()
48
+ else:
49
+ raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'")
50
+
51
+ @classmethod
52
+ def construct_array_type(cls):
53
+ return DateArray
54
+
55
+ @property
56
+ def na_value(self):
57
+ return dt.date.min
58
+
59
+ def __repr__(self) -> str:
60
+ return self.name
61
+
62
+
63
+ class DateArray(ExtensionArray):
64
+ def __init__(
65
+ self,
66
+ dates: (
67
+ dt.date
68
+ | Sequence[dt.date]
69
+ | tuple[np.ndarray, np.ndarray, np.ndarray]
70
+ | np.ndarray
71
+ ),
72
+ ) -> None:
73
+ if isinstance(dates, dt.date):
74
+ self._year = np.array([dates.year])
75
+ self._month = np.array([dates.month])
76
+ self._day = np.array([dates.year])
77
+ return
78
+
79
+ ldates = len(dates)
80
+ if isinstance(dates, list):
81
+ # pre-allocate the arrays since we know the size before hand
82
+ self._year = np.zeros(ldates, dtype=np.uint16) # 65535 (0, 9999)
83
+ self._month = np.zeros(ldates, dtype=np.uint8) # 255 (1, 31)
84
+ self._day = np.zeros(ldates, dtype=np.uint8) # 255 (1, 12)
85
+ # populate them
86
+ for i, (y, m, d) in enumerate(
87
+ (date.year, date.month, date.day) for date in dates
88
+ ):
89
+ self._year[i] = y
90
+ self._month[i] = m
91
+ self._day[i] = d
92
+
93
+ elif isinstance(dates, tuple):
94
+ # only support triples
95
+ if ldates != 3:
96
+ raise ValueError("only triples are valid")
97
+ # check if all elements have the same type
98
+ if any(not isinstance(x, np.ndarray) for x in dates):
99
+ raise TypeError("invalid type")
100
+ ly, lm, ld = (len(cast(np.ndarray, d)) for d in dates)
101
+ if not ly == lm == ld:
102
+ raise ValueError(
103
+ f"tuple members must have the same length: {(ly, lm, ld)}"
104
+ )
105
+ self._year = dates[0].astype(np.uint16)
106
+ self._month = dates[1].astype(np.uint8)
107
+ self._day = dates[2].astype(np.uint8)
108
+
109
+ elif isinstance(dates, np.ndarray) and dates.dtype == "U10":
110
+ self._year = np.zeros(ldates, dtype=np.uint16) # 65535 (0, 9999)
111
+ self._month = np.zeros(ldates, dtype=np.uint8) # 255 (1, 31)
112
+ self._day = np.zeros(ldates, dtype=np.uint8) # 255 (1, 12)
113
+
114
+ # error: "object_" object is not iterable
115
+ obj = np.char.split(dates, sep="-")
116
+ for (i,), (y, m, d) in np.ndenumerate(obj): # type: ignore[misc]
117
+ self._year[i] = int(y)
118
+ self._month[i] = int(m)
119
+ self._day[i] = int(d)
120
+
121
+ else:
122
+ raise TypeError(f"{type(dates)} is not supported")
123
+
124
+ @property
125
+ def dtype(self) -> ExtensionDtype:
126
+ return DateDtype()
127
+
128
+ def astype(self, dtype, copy=True):
129
+ dtype = pandas_dtype(dtype)
130
+
131
+ if isinstance(dtype, DateDtype):
132
+ data = self.copy() if copy else self
133
+ else:
134
+ data = self.to_numpy(dtype=dtype, copy=copy, na_value=dt.date.min)
135
+
136
+ return data
137
+
138
+ @property
139
+ def nbytes(self) -> int:
140
+ return self._year.nbytes + self._month.nbytes + self._day.nbytes
141
+
142
+ def __len__(self) -> int:
143
+ return len(self._year) # all 3 arrays are enforced to have the same length
144
+
145
+ def __getitem__(self, item: PositionalIndexer):
146
+ if isinstance(item, int):
147
+ return dt.date(self._year[item], self._month[item], self._day[item])
148
+ else:
149
+ raise NotImplementedError("only ints are supported as indexes")
150
+
151
+ def __setitem__(self, key: int | slice | np.ndarray, value: Any) -> None:
152
+ if not isinstance(key, int):
153
+ raise NotImplementedError("only ints are supported as indexes")
154
+
155
+ if not isinstance(value, dt.date):
156
+ raise TypeError("you can only set datetime.date types")
157
+
158
+ self._year[key] = value.year
159
+ self._month[key] = value.month
160
+ self._day[key] = value.day
161
+
162
+ def __repr__(self) -> str:
163
+ return f"DateArray{list(zip(self._year, self._month, self._day))}"
164
+
165
+ def copy(self) -> DateArray:
166
+ return DateArray((self._year.copy(), self._month.copy(), self._day.copy()))
167
+
168
+ def isna(self) -> np.ndarray:
169
+ return np.logical_and(
170
+ np.logical_and(
171
+ self._year == dt.date.min.year, self._month == dt.date.min.month
172
+ ),
173
+ self._day == dt.date.min.day,
174
+ )
175
+
176
+ @classmethod
177
+ def _from_sequence(cls, scalars, *, dtype: Dtype | None = None, copy=False):
178
+ if isinstance(scalars, dt.date):
179
+ raise TypeError
180
+ elif isinstance(scalars, DateArray):
181
+ if dtype is not None:
182
+ return scalars.astype(dtype, copy=copy)
183
+ if copy:
184
+ return scalars.copy()
185
+ return scalars[:]
186
+ elif isinstance(scalars, np.ndarray):
187
+ scalars = scalars.astype("U10") # 10 chars for yyyy-mm-dd
188
+ return DateArray(scalars)
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from pandas.tests.extension.decimal.array import (
2
+ DecimalArray,
3
+ DecimalDtype,
4
+ make_data,
5
+ to_decimal,
6
+ )
7
+
8
+ __all__ = ["DecimalArray", "DecimalDtype", "to_decimal", "make_data"]
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (373 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/array.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/test_decimal.cpython-310.pyc ADDED
Binary file (18.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/array.py ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import decimal
4
+ import numbers
5
+ import sys
6
+ from typing import TYPE_CHECKING
7
+
8
+ import numpy as np
9
+
10
+ from pandas.core.dtypes.base import ExtensionDtype
11
+ from pandas.core.dtypes.common import (
12
+ is_dtype_equal,
13
+ is_float,
14
+ is_integer,
15
+ pandas_dtype,
16
+ )
17
+
18
+ import pandas as pd
19
+ from pandas.api.extensions import (
20
+ no_default,
21
+ register_extension_dtype,
22
+ )
23
+ from pandas.api.types import (
24
+ is_list_like,
25
+ is_scalar,
26
+ )
27
+ from pandas.core import arraylike
28
+ from pandas.core.algorithms import value_counts_internal as value_counts
29
+ from pandas.core.arraylike import OpsMixin
30
+ from pandas.core.arrays import (
31
+ ExtensionArray,
32
+ ExtensionScalarOpsMixin,
33
+ )
34
+ from pandas.core.indexers import check_array_indexer
35
+
36
+ if TYPE_CHECKING:
37
+ from pandas._typing import type_t
38
+
39
+
40
+ @register_extension_dtype
41
+ class DecimalDtype(ExtensionDtype):
42
+ type = decimal.Decimal
43
+ name = "decimal"
44
+ na_value = decimal.Decimal("NaN")
45
+ _metadata = ("context",)
46
+
47
+ def __init__(self, context=None) -> None:
48
+ self.context = context or decimal.getcontext()
49
+
50
+ def __repr__(self) -> str:
51
+ return f"DecimalDtype(context={self.context})"
52
+
53
+ @classmethod
54
+ def construct_array_type(cls) -> type_t[DecimalArray]:
55
+ """
56
+ Return the array type associated with this dtype.
57
+
58
+ Returns
59
+ -------
60
+ type
61
+ """
62
+ return DecimalArray
63
+
64
+ @property
65
+ def _is_numeric(self) -> bool:
66
+ return True
67
+
68
+
69
+ class DecimalArray(OpsMixin, ExtensionScalarOpsMixin, ExtensionArray):
70
+ __array_priority__ = 1000
71
+
72
+ def __init__(self, values, dtype=None, copy=False, context=None) -> None:
73
+ for i, val in enumerate(values):
74
+ if is_float(val) or is_integer(val):
75
+ if np.isnan(val):
76
+ values[i] = DecimalDtype.na_value
77
+ else:
78
+ # error: Argument 1 has incompatible type "float | int |
79
+ # integer[Any]"; expected "Decimal | float | str | tuple[int,
80
+ # Sequence[int], int]"
81
+ values[i] = DecimalDtype.type(val) # type: ignore[arg-type]
82
+ elif not isinstance(val, decimal.Decimal):
83
+ raise TypeError("All values must be of type " + str(decimal.Decimal))
84
+ values = np.asarray(values, dtype=object)
85
+
86
+ self._data = values
87
+ # Some aliases for common attribute names to ensure pandas supports
88
+ # these
89
+ self._items = self.data = self._data
90
+ # those aliases are currently not working due to assumptions
91
+ # in internal code (GH-20735)
92
+ # self._values = self.values = self.data
93
+ self._dtype = DecimalDtype(context)
94
+
95
+ @property
96
+ def dtype(self):
97
+ return self._dtype
98
+
99
+ @classmethod
100
+ def _from_sequence(cls, scalars, *, dtype=None, copy=False):
101
+ return cls(scalars)
102
+
103
+ @classmethod
104
+ def _from_sequence_of_strings(cls, strings, dtype=None, copy=False):
105
+ return cls._from_sequence(
106
+ [decimal.Decimal(x) for x in strings], dtype=dtype, copy=copy
107
+ )
108
+
109
+ @classmethod
110
+ def _from_factorized(cls, values, original):
111
+ return cls(values)
112
+
113
+ _HANDLED_TYPES = (decimal.Decimal, numbers.Number, np.ndarray)
114
+
115
+ def to_numpy(
116
+ self,
117
+ dtype=None,
118
+ copy: bool = False,
119
+ na_value: object = no_default,
120
+ decimals=None,
121
+ ) -> np.ndarray:
122
+ result = np.asarray(self, dtype=dtype)
123
+ if decimals is not None:
124
+ result = np.asarray([round(x, decimals) for x in result])
125
+ return result
126
+
127
+ def __array_ufunc__(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
128
+ #
129
+ if not all(
130
+ isinstance(t, self._HANDLED_TYPES + (DecimalArray,)) for t in inputs
131
+ ):
132
+ return NotImplemented
133
+
134
+ result = arraylike.maybe_dispatch_ufunc_to_dunder_op(
135
+ self, ufunc, method, *inputs, **kwargs
136
+ )
137
+ if result is not NotImplemented:
138
+ # e.g. test_array_ufunc_series_scalar_other
139
+ return result
140
+
141
+ if "out" in kwargs:
142
+ return arraylike.dispatch_ufunc_with_out(
143
+ self, ufunc, method, *inputs, **kwargs
144
+ )
145
+
146
+ inputs = tuple(x._data if isinstance(x, DecimalArray) else x for x in inputs)
147
+ result = getattr(ufunc, method)(*inputs, **kwargs)
148
+
149
+ if method == "reduce":
150
+ result = arraylike.dispatch_reduction_ufunc(
151
+ self, ufunc, method, *inputs, **kwargs
152
+ )
153
+ if result is not NotImplemented:
154
+ return result
155
+
156
+ def reconstruct(x):
157
+ if isinstance(x, (decimal.Decimal, numbers.Number)):
158
+ return x
159
+ else:
160
+ return type(self)._from_sequence(x, dtype=self.dtype)
161
+
162
+ if ufunc.nout > 1:
163
+ return tuple(reconstruct(x) for x in result)
164
+ else:
165
+ return reconstruct(result)
166
+
167
+ def __getitem__(self, item):
168
+ if isinstance(item, numbers.Integral):
169
+ return self._data[item]
170
+ else:
171
+ # array, slice.
172
+ item = pd.api.indexers.check_array_indexer(self, item)
173
+ return type(self)(self._data[item])
174
+
175
+ def take(self, indexer, allow_fill=False, fill_value=None):
176
+ from pandas.api.extensions import take
177
+
178
+ data = self._data
179
+ if allow_fill and fill_value is None:
180
+ fill_value = self.dtype.na_value
181
+
182
+ result = take(data, indexer, fill_value=fill_value, allow_fill=allow_fill)
183
+ return self._from_sequence(result, dtype=self.dtype)
184
+
185
+ def copy(self):
186
+ return type(self)(self._data.copy(), dtype=self.dtype)
187
+
188
+ def astype(self, dtype, copy=True):
189
+ if is_dtype_equal(dtype, self._dtype):
190
+ if not copy:
191
+ return self
192
+ dtype = pandas_dtype(dtype)
193
+ if isinstance(dtype, type(self.dtype)):
194
+ return type(self)(self._data, copy=copy, context=dtype.context)
195
+
196
+ return super().astype(dtype, copy=copy)
197
+
198
+ def __setitem__(self, key, value) -> None:
199
+ if is_list_like(value):
200
+ if is_scalar(key):
201
+ raise ValueError("setting an array element with a sequence.")
202
+ value = [decimal.Decimal(v) for v in value]
203
+ else:
204
+ value = decimal.Decimal(value)
205
+
206
+ key = check_array_indexer(self, key)
207
+ self._data[key] = value
208
+
209
+ def __len__(self) -> int:
210
+ return len(self._data)
211
+
212
+ def __contains__(self, item) -> bool | np.bool_:
213
+ if not isinstance(item, decimal.Decimal):
214
+ return False
215
+ elif item.is_nan():
216
+ return self.isna().any()
217
+ else:
218
+ return super().__contains__(item)
219
+
220
+ @property
221
+ def nbytes(self) -> int:
222
+ n = len(self)
223
+ if n:
224
+ return n * sys.getsizeof(self[0])
225
+ return 0
226
+
227
+ def isna(self):
228
+ return np.array([x.is_nan() for x in self._data], dtype=bool)
229
+
230
+ @property
231
+ def _na_value(self):
232
+ return decimal.Decimal("NaN")
233
+
234
+ def _formatter(self, boxed=False):
235
+ if boxed:
236
+ return "Decimal: {}".format
237
+ return repr
238
+
239
+ @classmethod
240
+ def _concat_same_type(cls, to_concat):
241
+ return cls(np.concatenate([x._data for x in to_concat]))
242
+
243
+ def _reduce(
244
+ self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs
245
+ ):
246
+ if skipna and self.isna().any():
247
+ # If we don't have any NAs, we can ignore skipna
248
+ other = self[~self.isna()]
249
+ result = other._reduce(name, **kwargs)
250
+ elif name == "sum" and len(self) == 0:
251
+ # GH#29630 avoid returning int 0 or np.bool_(False) on old numpy
252
+ result = decimal.Decimal(0)
253
+ else:
254
+ try:
255
+ op = getattr(self.data, name)
256
+ except AttributeError as err:
257
+ raise NotImplementedError(
258
+ f"decimal does not support the {name} operation"
259
+ ) from err
260
+ result = op(axis=0)
261
+
262
+ if keepdims:
263
+ return type(self)([result])
264
+ else:
265
+ return result
266
+
267
+ def _cmp_method(self, other, op):
268
+ # For use with OpsMixin
269
+ def convert_values(param):
270
+ if isinstance(param, ExtensionArray) or is_list_like(param):
271
+ ovalues = param
272
+ else:
273
+ # Assume it's an object
274
+ ovalues = [param] * len(self)
275
+ return ovalues
276
+
277
+ lvalues = self
278
+ rvalues = convert_values(other)
279
+
280
+ # If the operator is not defined for the underlying objects,
281
+ # a TypeError should be raised
282
+ res = [op(a, b) for (a, b) in zip(lvalues, rvalues)]
283
+
284
+ return np.asarray(res, dtype=bool)
285
+
286
+ def value_counts(self, dropna: bool = True):
287
+ return value_counts(self.to_numpy(), dropna=dropna)
288
+
289
+ # We override fillna here to simulate a 3rd party EA that has done so. This
290
+ # lets us test the deprecation telling authors to implement _pad_or_backfill
291
+ # Simulate a 3rd-party EA that has not yet updated to include a "copy"
292
+ # keyword in its fillna method.
293
+ # error: Signature of "fillna" incompatible with supertype "ExtensionArray"
294
+ def fillna( # type: ignore[override]
295
+ self,
296
+ value=None,
297
+ method=None,
298
+ limit: int | None = None,
299
+ ):
300
+ return super().fillna(value=value, method=method, limit=limit, copy=True)
301
+
302
+
303
+ def to_decimal(values, context=None):
304
+ return DecimalArray([decimal.Decimal(x) for x in values], context=context)
305
+
306
+
307
+ def make_data():
308
+ return [decimal.Decimal(val) for val in np.random.default_rng(2).random(100)]
309
+
310
+
311
+ DecimalArray._add_arithmetic_ops()
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/decimal/test_decimal.py ADDED
@@ -0,0 +1,567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import decimal
4
+ import operator
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ import pandas as pd
10
+ import pandas._testing as tm
11
+ from pandas.tests.extension import base
12
+ from pandas.tests.extension.decimal.array import (
13
+ DecimalArray,
14
+ DecimalDtype,
15
+ make_data,
16
+ to_decimal,
17
+ )
18
+
19
+
20
+ @pytest.fixture
21
+ def dtype():
22
+ return DecimalDtype()
23
+
24
+
25
+ @pytest.fixture
26
+ def data():
27
+ return DecimalArray(make_data())
28
+
29
+
30
+ @pytest.fixture
31
+ def data_for_twos():
32
+ return DecimalArray([decimal.Decimal(2) for _ in range(100)])
33
+
34
+
35
+ @pytest.fixture
36
+ def data_missing():
37
+ return DecimalArray([decimal.Decimal("NaN"), decimal.Decimal(1)])
38
+
39
+
40
+ @pytest.fixture
41
+ def data_for_sorting():
42
+ return DecimalArray(
43
+ [decimal.Decimal("1"), decimal.Decimal("2"), decimal.Decimal("0")]
44
+ )
45
+
46
+
47
+ @pytest.fixture
48
+ def data_missing_for_sorting():
49
+ return DecimalArray(
50
+ [decimal.Decimal("1"), decimal.Decimal("NaN"), decimal.Decimal("0")]
51
+ )
52
+
53
+
54
+ @pytest.fixture
55
+ def na_cmp():
56
+ return lambda x, y: x.is_nan() and y.is_nan()
57
+
58
+
59
+ @pytest.fixture
60
+ def data_for_grouping():
61
+ b = decimal.Decimal("1.0")
62
+ a = decimal.Decimal("0.0")
63
+ c = decimal.Decimal("2.0")
64
+ na = decimal.Decimal("NaN")
65
+ return DecimalArray([b, b, na, na, a, a, b, c])
66
+
67
+
68
+ class TestDecimalArray(base.ExtensionTests):
69
+ def _get_expected_exception(
70
+ self, op_name: str, obj, other
71
+ ) -> type[Exception] | None:
72
+ return None
73
+
74
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
75
+ return True
76
+
77
+ def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
78
+ if op_name == "count":
79
+ return super().check_reduce(ser, op_name, skipna)
80
+ else:
81
+ result = getattr(ser, op_name)(skipna=skipna)
82
+ expected = getattr(np.asarray(ser), op_name)()
83
+ tm.assert_almost_equal(result, expected)
84
+
85
+ def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna, request):
86
+ if all_numeric_reductions in ["kurt", "skew", "sem", "median"]:
87
+ mark = pytest.mark.xfail(raises=NotImplementedError)
88
+ request.applymarker(mark)
89
+ super().test_reduce_series_numeric(data, all_numeric_reductions, skipna)
90
+
91
+ def test_reduce_frame(self, data, all_numeric_reductions, skipna, request):
92
+ op_name = all_numeric_reductions
93
+ if op_name in ["skew", "median"]:
94
+ mark = pytest.mark.xfail(raises=NotImplementedError)
95
+ request.applymarker(mark)
96
+
97
+ return super().test_reduce_frame(data, all_numeric_reductions, skipna)
98
+
99
+ def test_compare_scalar(self, data, comparison_op):
100
+ ser = pd.Series(data)
101
+ self._compare_other(ser, data, comparison_op, 0.5)
102
+
103
+ def test_compare_array(self, data, comparison_op):
104
+ ser = pd.Series(data)
105
+
106
+ alter = np.random.default_rng(2).choice([-1, 0, 1], len(data))
107
+ # Randomly double, halve or keep same value
108
+ other = pd.Series(data) * [decimal.Decimal(pow(2.0, i)) for i in alter]
109
+ self._compare_other(ser, data, comparison_op, other)
110
+
111
+ def test_arith_series_with_array(self, data, all_arithmetic_operators):
112
+ op_name = all_arithmetic_operators
113
+ ser = pd.Series(data)
114
+
115
+ context = decimal.getcontext()
116
+ divbyzerotrap = context.traps[decimal.DivisionByZero]
117
+ invalidoptrap = context.traps[decimal.InvalidOperation]
118
+ context.traps[decimal.DivisionByZero] = 0
119
+ context.traps[decimal.InvalidOperation] = 0
120
+
121
+ # Decimal supports ops with int, but not float
122
+ other = pd.Series([int(d * 100) for d in data])
123
+ self.check_opname(ser, op_name, other)
124
+
125
+ if "mod" not in op_name:
126
+ self.check_opname(ser, op_name, ser * 2)
127
+
128
+ self.check_opname(ser, op_name, 0)
129
+ self.check_opname(ser, op_name, 5)
130
+ context.traps[decimal.DivisionByZero] = divbyzerotrap
131
+ context.traps[decimal.InvalidOperation] = invalidoptrap
132
+
133
+ def test_fillna_frame(self, data_missing):
134
+ msg = "ExtensionArray.fillna added a 'copy' keyword"
135
+ with tm.assert_produces_warning(
136
+ DeprecationWarning, match=msg, check_stacklevel=False
137
+ ):
138
+ super().test_fillna_frame(data_missing)
139
+
140
+ def test_fillna_limit_pad(self, data_missing):
141
+ msg = "ExtensionArray.fillna 'method' keyword is deprecated"
142
+ with tm.assert_produces_warning(
143
+ DeprecationWarning,
144
+ match=msg,
145
+ check_stacklevel=False,
146
+ raise_on_extra_warnings=False,
147
+ ):
148
+ super().test_fillna_limit_pad(data_missing)
149
+
150
+ msg = "The 'method' keyword in DecimalArray.fillna is deprecated"
151
+ with tm.assert_produces_warning(
152
+ FutureWarning,
153
+ match=msg,
154
+ check_stacklevel=False,
155
+ raise_on_extra_warnings=False,
156
+ ):
157
+ super().test_fillna_limit_pad(data_missing)
158
+
159
+ @pytest.mark.parametrize(
160
+ "limit_area, input_ilocs, expected_ilocs",
161
+ [
162
+ ("outside", [1, 0, 0, 0, 1], [1, 0, 0, 0, 1]),
163
+ ("outside", [1, 0, 1, 0, 1], [1, 0, 1, 0, 1]),
164
+ ("outside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 1]),
165
+ ("outside", [0, 1, 0, 1, 0], [0, 1, 0, 1, 1]),
166
+ ("inside", [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]),
167
+ ("inside", [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]),
168
+ ("inside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 0]),
169
+ ("inside", [0, 1, 0, 1, 0], [0, 1, 1, 1, 0]),
170
+ ],
171
+ )
172
+ def test_ffill_limit_area(
173
+ self, data_missing, limit_area, input_ilocs, expected_ilocs
174
+ ):
175
+ # GH#56616
176
+ msg = "ExtensionArray.fillna 'method' keyword is deprecated"
177
+ with tm.assert_produces_warning(
178
+ DeprecationWarning,
179
+ match=msg,
180
+ check_stacklevel=False,
181
+ raise_on_extra_warnings=False,
182
+ ):
183
+ msg = "DecimalArray does not implement limit_area"
184
+ with pytest.raises(NotImplementedError, match=msg):
185
+ super().test_ffill_limit_area(
186
+ data_missing, limit_area, input_ilocs, expected_ilocs
187
+ )
188
+
189
+ def test_fillna_limit_backfill(self, data_missing):
190
+ msg = "Series.fillna with 'method' is deprecated"
191
+ with tm.assert_produces_warning(
192
+ FutureWarning,
193
+ match=msg,
194
+ check_stacklevel=False,
195
+ raise_on_extra_warnings=False,
196
+ ):
197
+ super().test_fillna_limit_backfill(data_missing)
198
+
199
+ msg = "ExtensionArray.fillna 'method' keyword is deprecated"
200
+ with tm.assert_produces_warning(
201
+ DeprecationWarning,
202
+ match=msg,
203
+ check_stacklevel=False,
204
+ raise_on_extra_warnings=False,
205
+ ):
206
+ super().test_fillna_limit_backfill(data_missing)
207
+
208
+ msg = "The 'method' keyword in DecimalArray.fillna is deprecated"
209
+ with tm.assert_produces_warning(
210
+ FutureWarning,
211
+ match=msg,
212
+ check_stacklevel=False,
213
+ raise_on_extra_warnings=False,
214
+ ):
215
+ super().test_fillna_limit_backfill(data_missing)
216
+
217
+ def test_fillna_no_op_returns_copy(self, data):
218
+ msg = "|".join(
219
+ [
220
+ "ExtensionArray.fillna 'method' keyword is deprecated",
221
+ "The 'method' keyword in DecimalArray.fillna is deprecated",
222
+ ]
223
+ )
224
+ with tm.assert_produces_warning(
225
+ (FutureWarning, DeprecationWarning), match=msg, check_stacklevel=False
226
+ ):
227
+ super().test_fillna_no_op_returns_copy(data)
228
+
229
+ def test_fillna_series(self, data_missing):
230
+ msg = "ExtensionArray.fillna added a 'copy' keyword"
231
+ with tm.assert_produces_warning(
232
+ DeprecationWarning, match=msg, check_stacklevel=False
233
+ ):
234
+ super().test_fillna_series(data_missing)
235
+
236
+ def test_fillna_series_method(self, data_missing, fillna_method):
237
+ msg = "|".join(
238
+ [
239
+ "ExtensionArray.fillna 'method' keyword is deprecated",
240
+ "The 'method' keyword in DecimalArray.fillna is deprecated",
241
+ ]
242
+ )
243
+ with tm.assert_produces_warning(
244
+ (FutureWarning, DeprecationWarning), match=msg, check_stacklevel=False
245
+ ):
246
+ super().test_fillna_series_method(data_missing, fillna_method)
247
+
248
+ def test_fillna_copy_frame(self, data_missing, using_copy_on_write):
249
+ warn = DeprecationWarning if not using_copy_on_write else None
250
+ msg = "ExtensionArray.fillna added a 'copy' keyword"
251
+ with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False):
252
+ super().test_fillna_copy_frame(data_missing)
253
+
254
+ def test_fillna_copy_series(self, data_missing, using_copy_on_write):
255
+ warn = DeprecationWarning if not using_copy_on_write else None
256
+ msg = "ExtensionArray.fillna added a 'copy' keyword"
257
+ with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False):
258
+ super().test_fillna_copy_series(data_missing)
259
+
260
+ @pytest.mark.parametrize("dropna", [True, False])
261
+ def test_value_counts(self, all_data, dropna, request):
262
+ all_data = all_data[:10]
263
+ if dropna:
264
+ other = np.array(all_data[~all_data.isna()])
265
+ else:
266
+ other = all_data
267
+
268
+ vcs = pd.Series(all_data).value_counts(dropna=dropna)
269
+ vcs_ex = pd.Series(other).value_counts(dropna=dropna)
270
+
271
+ with decimal.localcontext() as ctx:
272
+ # avoid raising when comparing Decimal("NAN") < Decimal(2)
273
+ ctx.traps[decimal.InvalidOperation] = False
274
+
275
+ result = vcs.sort_index()
276
+ expected = vcs_ex.sort_index()
277
+
278
+ tm.assert_series_equal(result, expected)
279
+
280
+ def test_series_repr(self, data):
281
+ # Overriding this base test to explicitly test that
282
+ # the custom _formatter is used
283
+ ser = pd.Series(data)
284
+ assert data.dtype.name in repr(ser)
285
+ assert "Decimal: " in repr(ser)
286
+
287
+ @pytest.mark.xfail(reason="Inconsistent array-vs-scalar behavior")
288
+ @pytest.mark.parametrize("ufunc", [np.positive, np.negative, np.abs])
289
+ def test_unary_ufunc_dunder_equivalence(self, data, ufunc):
290
+ super().test_unary_ufunc_dunder_equivalence(data, ufunc)
291
+
292
+
293
+ def test_take_na_value_other_decimal():
294
+ arr = DecimalArray([decimal.Decimal("1.0"), decimal.Decimal("2.0")])
295
+ result = arr.take([0, -1], allow_fill=True, fill_value=decimal.Decimal("-1.0"))
296
+ expected = DecimalArray([decimal.Decimal("1.0"), decimal.Decimal("-1.0")])
297
+ tm.assert_extension_array_equal(result, expected)
298
+
299
+
300
+ def test_series_constructor_coerce_data_to_extension_dtype():
301
+ dtype = DecimalDtype()
302
+ ser = pd.Series([0, 1, 2], dtype=dtype)
303
+
304
+ arr = DecimalArray(
305
+ [decimal.Decimal(0), decimal.Decimal(1), decimal.Decimal(2)],
306
+ dtype=dtype,
307
+ )
308
+ exp = pd.Series(arr)
309
+ tm.assert_series_equal(ser, exp)
310
+
311
+
312
+ def test_series_constructor_with_dtype():
313
+ arr = DecimalArray([decimal.Decimal("10.0")])
314
+ result = pd.Series(arr, dtype=DecimalDtype())
315
+ expected = pd.Series(arr)
316
+ tm.assert_series_equal(result, expected)
317
+
318
+ result = pd.Series(arr, dtype="int64")
319
+ expected = pd.Series([10])
320
+ tm.assert_series_equal(result, expected)
321
+
322
+
323
+ def test_dataframe_constructor_with_dtype():
324
+ arr = DecimalArray([decimal.Decimal("10.0")])
325
+
326
+ result = pd.DataFrame({"A": arr}, dtype=DecimalDtype())
327
+ expected = pd.DataFrame({"A": arr})
328
+ tm.assert_frame_equal(result, expected)
329
+
330
+ arr = DecimalArray([decimal.Decimal("10.0")])
331
+ result = pd.DataFrame({"A": arr}, dtype="int64")
332
+ expected = pd.DataFrame({"A": [10]})
333
+ tm.assert_frame_equal(result, expected)
334
+
335
+
336
+ @pytest.mark.parametrize("frame", [True, False])
337
+ def test_astype_dispatches(frame):
338
+ # This is a dtype-specific test that ensures Series[decimal].astype
339
+ # gets all the way through to ExtensionArray.astype
340
+ # Designing a reliable smoke test that works for arbitrary data types
341
+ # is difficult.
342
+ data = pd.Series(DecimalArray([decimal.Decimal(2)]), name="a")
343
+ ctx = decimal.Context()
344
+ ctx.prec = 5
345
+
346
+ if frame:
347
+ data = data.to_frame()
348
+
349
+ result = data.astype(DecimalDtype(ctx))
350
+
351
+ if frame:
352
+ result = result["a"]
353
+
354
+ assert result.dtype.context.prec == ctx.prec
355
+
356
+
357
+ class DecimalArrayWithoutFromSequence(DecimalArray):
358
+ """Helper class for testing error handling in _from_sequence."""
359
+
360
+ @classmethod
361
+ def _from_sequence(cls, scalars, *, dtype=None, copy=False):
362
+ raise KeyError("For the test")
363
+
364
+
365
+ class DecimalArrayWithoutCoercion(DecimalArrayWithoutFromSequence):
366
+ @classmethod
367
+ def _create_arithmetic_method(cls, op):
368
+ return cls._create_method(op, coerce_to_dtype=False)
369
+
370
+
371
+ DecimalArrayWithoutCoercion._add_arithmetic_ops()
372
+
373
+
374
+ def test_combine_from_sequence_raises(monkeypatch):
375
+ # https://github.com/pandas-dev/pandas/issues/22850
376
+ cls = DecimalArrayWithoutFromSequence
377
+
378
+ @classmethod
379
+ def construct_array_type(cls):
380
+ return DecimalArrayWithoutFromSequence
381
+
382
+ monkeypatch.setattr(DecimalDtype, "construct_array_type", construct_array_type)
383
+
384
+ arr = cls([decimal.Decimal("1.0"), decimal.Decimal("2.0")])
385
+ ser = pd.Series(arr)
386
+ result = ser.combine(ser, operator.add)
387
+
388
+ # note: object dtype
389
+ expected = pd.Series(
390
+ [decimal.Decimal("2.0"), decimal.Decimal("4.0")], dtype="object"
391
+ )
392
+ tm.assert_series_equal(result, expected)
393
+
394
+
395
+ @pytest.mark.parametrize(
396
+ "class_", [DecimalArrayWithoutFromSequence, DecimalArrayWithoutCoercion]
397
+ )
398
+ def test_scalar_ops_from_sequence_raises(class_):
399
+ # op(EA, EA) should return an EA, or an ndarray if it's not possible
400
+ # to return an EA with the return values.
401
+ arr = class_([decimal.Decimal("1.0"), decimal.Decimal("2.0")])
402
+ result = arr + arr
403
+ expected = np.array(
404
+ [decimal.Decimal("2.0"), decimal.Decimal("4.0")], dtype="object"
405
+ )
406
+ tm.assert_numpy_array_equal(result, expected)
407
+
408
+
409
+ @pytest.mark.parametrize(
410
+ "reverse, expected_div, expected_mod",
411
+ [(False, [0, 1, 1, 2], [1, 0, 1, 0]), (True, [2, 1, 0, 0], [0, 0, 2, 2])],
412
+ )
413
+ def test_divmod_array(reverse, expected_div, expected_mod):
414
+ # https://github.com/pandas-dev/pandas/issues/22930
415
+ arr = to_decimal([1, 2, 3, 4])
416
+ if reverse:
417
+ div, mod = divmod(2, arr)
418
+ else:
419
+ div, mod = divmod(arr, 2)
420
+ expected_div = to_decimal(expected_div)
421
+ expected_mod = to_decimal(expected_mod)
422
+
423
+ tm.assert_extension_array_equal(div, expected_div)
424
+ tm.assert_extension_array_equal(mod, expected_mod)
425
+
426
+
427
+ def test_ufunc_fallback(data):
428
+ a = data[:5]
429
+ s = pd.Series(a, index=range(3, 8))
430
+ result = np.abs(s)
431
+ expected = pd.Series(np.abs(a), index=range(3, 8))
432
+ tm.assert_series_equal(result, expected)
433
+
434
+
435
+ def test_array_ufunc():
436
+ a = to_decimal([1, 2, 3])
437
+ result = np.exp(a)
438
+ expected = to_decimal(np.exp(a._data))
439
+ tm.assert_extension_array_equal(result, expected)
440
+
441
+
442
+ def test_array_ufunc_series():
443
+ a = to_decimal([1, 2, 3])
444
+ s = pd.Series(a)
445
+ result = np.exp(s)
446
+ expected = pd.Series(to_decimal(np.exp(a._data)))
447
+ tm.assert_series_equal(result, expected)
448
+
449
+
450
+ def test_array_ufunc_series_scalar_other():
451
+ # check _HANDLED_TYPES
452
+ a = to_decimal([1, 2, 3])
453
+ s = pd.Series(a)
454
+ result = np.add(s, decimal.Decimal(1))
455
+ expected = pd.Series(np.add(a, decimal.Decimal(1)))
456
+ tm.assert_series_equal(result, expected)
457
+
458
+
459
+ def test_array_ufunc_series_defer():
460
+ a = to_decimal([1, 2, 3])
461
+ s = pd.Series(a)
462
+
463
+ expected = pd.Series(to_decimal([2, 4, 6]))
464
+ r1 = np.add(s, a)
465
+ r2 = np.add(a, s)
466
+
467
+ tm.assert_series_equal(r1, expected)
468
+ tm.assert_series_equal(r2, expected)
469
+
470
+
471
+ def test_groupby_agg():
472
+ # Ensure that the result of agg is inferred to be decimal dtype
473
+ # https://github.com/pandas-dev/pandas/issues/29141
474
+
475
+ data = make_data()[:5]
476
+ df = pd.DataFrame(
477
+ {"id1": [0, 0, 0, 1, 1], "id2": [0, 1, 0, 1, 1], "decimals": DecimalArray(data)}
478
+ )
479
+
480
+ # single key, selected column
481
+ expected = pd.Series(to_decimal([data[0], data[3]]))
482
+ result = df.groupby("id1")["decimals"].agg(lambda x: x.iloc[0])
483
+ tm.assert_series_equal(result, expected, check_names=False)
484
+ result = df["decimals"].groupby(df["id1"]).agg(lambda x: x.iloc[0])
485
+ tm.assert_series_equal(result, expected, check_names=False)
486
+
487
+ # multiple keys, selected column
488
+ expected = pd.Series(
489
+ to_decimal([data[0], data[1], data[3]]),
490
+ index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 1)]),
491
+ )
492
+ result = df.groupby(["id1", "id2"])["decimals"].agg(lambda x: x.iloc[0])
493
+ tm.assert_series_equal(result, expected, check_names=False)
494
+ result = df["decimals"].groupby([df["id1"], df["id2"]]).agg(lambda x: x.iloc[0])
495
+ tm.assert_series_equal(result, expected, check_names=False)
496
+
497
+ # multiple columns
498
+ expected = pd.DataFrame({"id2": [0, 1], "decimals": to_decimal([data[0], data[3]])})
499
+ result = df.groupby("id1").agg(lambda x: x.iloc[0])
500
+ tm.assert_frame_equal(result, expected, check_names=False)
501
+
502
+
503
+ def test_groupby_agg_ea_method(monkeypatch):
504
+ # Ensure that the result of agg is inferred to be decimal dtype
505
+ # https://github.com/pandas-dev/pandas/issues/29141
506
+
507
+ def DecimalArray__my_sum(self):
508
+ return np.sum(np.array(self))
509
+
510
+ monkeypatch.setattr(DecimalArray, "my_sum", DecimalArray__my_sum, raising=False)
511
+
512
+ data = make_data()[:5]
513
+ df = pd.DataFrame({"id": [0, 0, 0, 1, 1], "decimals": DecimalArray(data)})
514
+ expected = pd.Series(to_decimal([data[0] + data[1] + data[2], data[3] + data[4]]))
515
+
516
+ result = df.groupby("id")["decimals"].agg(lambda x: x.values.my_sum())
517
+ tm.assert_series_equal(result, expected, check_names=False)
518
+ s = pd.Series(DecimalArray(data))
519
+ grouper = np.array([0, 0, 0, 1, 1], dtype=np.int64)
520
+ result = s.groupby(grouper).agg(lambda x: x.values.my_sum())
521
+ tm.assert_series_equal(result, expected, check_names=False)
522
+
523
+
524
+ def test_indexing_no_materialize(monkeypatch):
525
+ # See https://github.com/pandas-dev/pandas/issues/29708
526
+ # Ensure that indexing operations do not materialize (convert to a numpy
527
+ # array) the ExtensionArray unnecessary
528
+
529
+ def DecimalArray__array__(self, dtype=None):
530
+ raise Exception("tried to convert a DecimalArray to a numpy array")
531
+
532
+ monkeypatch.setattr(DecimalArray, "__array__", DecimalArray__array__, raising=False)
533
+
534
+ data = make_data()
535
+ s = pd.Series(DecimalArray(data))
536
+ df = pd.DataFrame({"a": s, "b": range(len(s))})
537
+
538
+ # ensure the following operations do not raise an error
539
+ s[s > 0.5]
540
+ df[s > 0.5]
541
+ s.at[0]
542
+ df.at[0, "a"]
543
+
544
+
545
+ def test_to_numpy_keyword():
546
+ # test the extra keyword
547
+ values = [decimal.Decimal("1.1111"), decimal.Decimal("2.2222")]
548
+ expected = np.array(
549
+ [decimal.Decimal("1.11"), decimal.Decimal("2.22")], dtype="object"
550
+ )
551
+ a = pd.array(values, dtype="decimal")
552
+ result = a.to_numpy(decimals=2)
553
+ tm.assert_numpy_array_equal(result, expected)
554
+
555
+ result = pd.Series(a).to_numpy(decimals=2)
556
+ tm.assert_numpy_array_equal(result, expected)
557
+
558
+
559
+ def test_array_copy_on_write(using_copy_on_write):
560
+ df = pd.DataFrame({"a": [decimal.Decimal(2), decimal.Decimal(3)]}, dtype="object")
561
+ df2 = df.astype(DecimalDtype())
562
+ df.iloc[0, 0] = 0
563
+ if using_copy_on_write:
564
+ expected = pd.DataFrame(
565
+ {"a": [decimal.Decimal(2), decimal.Decimal(3)]}, dtype=DecimalDtype()
566
+ )
567
+ tm.assert_equal(df2.values, expected.values)
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from pandas.tests.extension.list.array import (
2
+ ListArray,
3
+ ListDtype,
4
+ make_data,
5
+ )
6
+
7
+ __all__ = ["ListArray", "ListDtype", "make_data"]
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (318 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/__pycache__/array.cpython-310.pyc ADDED
Binary file (5.12 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/__pycache__/test_list.cpython-310.pyc ADDED
Binary file (902 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/array.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Test extension array for storing nested data in a pandas container.
3
+
4
+ The ListArray stores an ndarray of lists.
5
+ """
6
+ from __future__ import annotations
7
+
8
+ import numbers
9
+ import string
10
+ from typing import TYPE_CHECKING
11
+
12
+ import numpy as np
13
+
14
+ from pandas.core.dtypes.base import ExtensionDtype
15
+
16
+ import pandas as pd
17
+ from pandas.api.types import (
18
+ is_object_dtype,
19
+ is_string_dtype,
20
+ )
21
+ from pandas.core.arrays import ExtensionArray
22
+
23
+ if TYPE_CHECKING:
24
+ from pandas._typing import type_t
25
+
26
+
27
+ class ListDtype(ExtensionDtype):
28
+ type = list
29
+ name = "list"
30
+ na_value = np.nan
31
+
32
+ @classmethod
33
+ def construct_array_type(cls) -> type_t[ListArray]:
34
+ """
35
+ Return the array type associated with this dtype.
36
+
37
+ Returns
38
+ -------
39
+ type
40
+ """
41
+ return ListArray
42
+
43
+
44
+ class ListArray(ExtensionArray):
45
+ dtype = ListDtype()
46
+ __array_priority__ = 1000
47
+
48
+ def __init__(self, values, dtype=None, copy=False) -> None:
49
+ if not isinstance(values, np.ndarray):
50
+ raise TypeError("Need to pass a numpy array as values")
51
+ for val in values:
52
+ if not isinstance(val, self.dtype.type) and not pd.isna(val):
53
+ raise TypeError("All values must be of type " + str(self.dtype.type))
54
+ self.data = values
55
+
56
+ @classmethod
57
+ def _from_sequence(cls, scalars, *, dtype=None, copy=False):
58
+ data = np.empty(len(scalars), dtype=object)
59
+ data[:] = scalars
60
+ return cls(data)
61
+
62
+ def __getitem__(self, item):
63
+ if isinstance(item, numbers.Integral):
64
+ return self.data[item]
65
+ else:
66
+ # slice, list-like, mask
67
+ return type(self)(self.data[item])
68
+
69
+ def __len__(self) -> int:
70
+ return len(self.data)
71
+
72
+ def isna(self):
73
+ return np.array(
74
+ [not isinstance(x, list) and np.isnan(x) for x in self.data], dtype=bool
75
+ )
76
+
77
+ def take(self, indexer, allow_fill=False, fill_value=None):
78
+ # re-implement here, since NumPy has trouble setting
79
+ # sized objects like UserDicts into scalar slots of
80
+ # an ndarary.
81
+ indexer = np.asarray(indexer)
82
+ msg = (
83
+ "Index is out of bounds or cannot do a "
84
+ "non-empty take from an empty array."
85
+ )
86
+
87
+ if allow_fill:
88
+ if fill_value is None:
89
+ fill_value = self.dtype.na_value
90
+ # bounds check
91
+ if (indexer < -1).any():
92
+ raise ValueError
93
+ try:
94
+ output = [
95
+ self.data[loc] if loc != -1 else fill_value for loc in indexer
96
+ ]
97
+ except IndexError as err:
98
+ raise IndexError(msg) from err
99
+ else:
100
+ try:
101
+ output = [self.data[loc] for loc in indexer]
102
+ except IndexError as err:
103
+ raise IndexError(msg) from err
104
+
105
+ return self._from_sequence(output)
106
+
107
+ def copy(self):
108
+ return type(self)(self.data[:])
109
+
110
+ def astype(self, dtype, copy=True):
111
+ if isinstance(dtype, type(self.dtype)) and dtype == self.dtype:
112
+ if copy:
113
+ return self.copy()
114
+ return self
115
+ elif is_string_dtype(dtype) and not is_object_dtype(dtype):
116
+ # numpy has problems with astype(str) for nested elements
117
+ return np.array([str(x) for x in self.data], dtype=dtype)
118
+ elif not copy:
119
+ return np.asarray(self.data, dtype=dtype)
120
+ else:
121
+ return np.array(self.data, dtype=dtype, copy=copy)
122
+
123
+ @classmethod
124
+ def _concat_same_type(cls, to_concat):
125
+ data = np.concatenate([x.data for x in to_concat])
126
+ return cls(data)
127
+
128
+
129
+ def make_data():
130
+ # TODO: Use a regular dict. See _NDFrameIndexer._setitem_with_indexer
131
+ rng = np.random.default_rng(2)
132
+ data = np.empty(100, dtype=object)
133
+ data[:] = [
134
+ [rng.choice(list(string.ascii_letters)) for _ in range(rng.integers(0, 10))]
135
+ for _ in range(100)
136
+ ]
137
+ return data
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/list/test_list.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas as pd
4
+ from pandas.tests.extension.list.array import (
5
+ ListArray,
6
+ ListDtype,
7
+ make_data,
8
+ )
9
+
10
+
11
+ @pytest.fixture
12
+ def dtype():
13
+ return ListDtype()
14
+
15
+
16
+ @pytest.fixture
17
+ def data():
18
+ """Length-100 ListArray for semantics test."""
19
+ data = make_data()
20
+
21
+ while len(data[0]) == len(data[1]):
22
+ data = make_data()
23
+
24
+ return ListArray(data)
25
+
26
+
27
+ def test_to_csv(data):
28
+ # https://github.com/pandas-dev/pandas/issues/28840
29
+ # array with list-likes fail when doing astype(str) on the numpy array
30
+ # which was done in get_values_for_csv
31
+ df = pd.DataFrame({"a": data})
32
+ res = df.to_csv()
33
+ assert str(data[0]) in res
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_arrow.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_categorical.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ import string
17
+
18
+ import numpy as np
19
+ import pytest
20
+
21
+ from pandas._config import using_pyarrow_string_dtype
22
+
23
+ import pandas as pd
24
+ from pandas import Categorical
25
+ import pandas._testing as tm
26
+ from pandas.api.types import CategoricalDtype
27
+ from pandas.tests.extension import base
28
+
29
+
30
+ def make_data():
31
+ while True:
32
+ values = np.random.default_rng(2).choice(list(string.ascii_letters), size=100)
33
+ # ensure we meet the requirements
34
+ # 1. first two not null
35
+ # 2. first and second are different
36
+ if values[0] != values[1]:
37
+ break
38
+ return values
39
+
40
+
41
+ @pytest.fixture
42
+ def dtype():
43
+ return CategoricalDtype()
44
+
45
+
46
+ @pytest.fixture
47
+ def data():
48
+ """Length-100 array for this type.
49
+
50
+ * data[0] and data[1] should both be non missing
51
+ * data[0] and data[1] should not be equal
52
+ """
53
+ return Categorical(make_data())
54
+
55
+
56
+ @pytest.fixture
57
+ def data_missing():
58
+ """Length 2 array with [NA, Valid]"""
59
+ return Categorical([np.nan, "A"])
60
+
61
+
62
+ @pytest.fixture
63
+ def data_for_sorting():
64
+ return Categorical(["A", "B", "C"], categories=["C", "A", "B"], ordered=True)
65
+
66
+
67
+ @pytest.fixture
68
+ def data_missing_for_sorting():
69
+ return Categorical(["A", None, "B"], categories=["B", "A"], ordered=True)
70
+
71
+
72
+ @pytest.fixture
73
+ def data_for_grouping():
74
+ return Categorical(["a", "a", None, None, "b", "b", "a", "c"])
75
+
76
+
77
+ class TestCategorical(base.ExtensionTests):
78
+ @pytest.mark.xfail(reason="Memory usage doesn't match")
79
+ def test_memory_usage(self, data):
80
+ # TODO: Is this deliberate?
81
+ super().test_memory_usage(data)
82
+
83
+ def test_contains(self, data, data_missing):
84
+ # GH-37867
85
+ # na value handling in Categorical.__contains__ is deprecated.
86
+ # See base.BaseInterFaceTests.test_contains for more details.
87
+
88
+ na_value = data.dtype.na_value
89
+ # ensure data without missing values
90
+ data = data[~data.isna()]
91
+
92
+ # first elements are non-missing
93
+ assert data[0] in data
94
+ assert data_missing[0] in data_missing
95
+
96
+ # check the presence of na_value
97
+ assert na_value in data_missing
98
+ assert na_value not in data
99
+
100
+ # Categoricals can contain other nan-likes than na_value
101
+ for na_value_obj in tm.NULL_OBJECTS:
102
+ if na_value_obj is na_value:
103
+ continue
104
+ assert na_value_obj not in data
105
+ # this section suffers from super method
106
+ if not using_pyarrow_string_dtype():
107
+ assert na_value_obj in data_missing
108
+
109
+ def test_empty(self, dtype):
110
+ cls = dtype.construct_array_type()
111
+ result = cls._empty((4,), dtype=dtype)
112
+
113
+ assert isinstance(result, cls)
114
+ # the dtype we passed is not initialized, so will not match the
115
+ # dtype on our result.
116
+ assert result.dtype == CategoricalDtype([])
117
+
118
+ @pytest.mark.skip(reason="Backwards compatibility")
119
+ def test_getitem_scalar(self, data):
120
+ # CategoricalDtype.type isn't "correct" since it should
121
+ # be a parent of the elements (object). But don't want
122
+ # to break things by changing.
123
+ super().test_getitem_scalar(data)
124
+
125
+ @pytest.mark.xfail(reason="Unobserved categories included")
126
+ def test_value_counts(self, all_data, dropna):
127
+ return super().test_value_counts(all_data, dropna)
128
+
129
+ def test_combine_add(self, data_repeated):
130
+ # GH 20825
131
+ # When adding categoricals in combine, result is a string
132
+ orig_data1, orig_data2 = data_repeated(2)
133
+ s1 = pd.Series(orig_data1)
134
+ s2 = pd.Series(orig_data2)
135
+ result = s1.combine(s2, lambda x1, x2: x1 + x2)
136
+ expected = pd.Series(
137
+ [a + b for (a, b) in zip(list(orig_data1), list(orig_data2))]
138
+ )
139
+ tm.assert_series_equal(result, expected)
140
+
141
+ val = s1.iloc[0]
142
+ result = s1.combine(val, lambda x1, x2: x1 + x2)
143
+ expected = pd.Series([a + val for a in list(orig_data1)])
144
+ tm.assert_series_equal(result, expected)
145
+
146
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
147
+ def test_map(self, data, na_action):
148
+ result = data.map(lambda x: x, na_action=na_action)
149
+ tm.assert_extension_array_equal(result, data)
150
+
151
+ def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
152
+ # frame & scalar
153
+ op_name = all_arithmetic_operators
154
+ if op_name == "__rmod__":
155
+ request.applymarker(
156
+ pytest.mark.xfail(
157
+ reason="rmod never called when string is first argument"
158
+ )
159
+ )
160
+ super().test_arith_frame_with_scalar(data, op_name)
161
+
162
+ def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request):
163
+ op_name = all_arithmetic_operators
164
+ if op_name == "__rmod__":
165
+ request.applymarker(
166
+ pytest.mark.xfail(
167
+ reason="rmod never called when string is first argument"
168
+ )
169
+ )
170
+ super().test_arith_series_with_scalar(data, op_name)
171
+
172
+ def _compare_other(self, ser: pd.Series, data, op, other):
173
+ op_name = f"__{op.__name__}__"
174
+ if op_name not in ["__eq__", "__ne__"]:
175
+ msg = "Unordered Categoricals can only compare equality or not"
176
+ with pytest.raises(TypeError, match=msg):
177
+ op(data, other)
178
+ else:
179
+ return super()._compare_other(ser, data, op, other)
180
+
181
+ @pytest.mark.xfail(reason="Categorical overrides __repr__")
182
+ @pytest.mark.parametrize("size", ["big", "small"])
183
+ def test_array_repr(self, data, size):
184
+ super().test_array_repr(data, size)
185
+
186
+ @pytest.mark.xfail(reason="TBD")
187
+ @pytest.mark.parametrize("as_index", [True, False])
188
+ def test_groupby_extension_agg(self, as_index, data_for_grouping):
189
+ super().test_groupby_extension_agg(as_index, data_for_grouping)
190
+
191
+
192
+ class Test2DCompat(base.NDArrayBacked2DTests):
193
+ def test_repr_2d(self, data):
194
+ # Categorical __repr__ doesn't include "Categorical", so we need
195
+ # to special-case
196
+ res = repr(data.reshape(1, -1))
197
+ assert res.count("\nCategories") == 1
198
+
199
+ res = repr(data.reshape(-1, 1))
200
+ assert res.count("\nCategories") == 1
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_common.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes import dtypes
5
+ from pandas.core.dtypes.common import is_extension_array_dtype
6
+
7
+ import pandas as pd
8
+ import pandas._testing as tm
9
+ from pandas.core.arrays import ExtensionArray
10
+
11
+
12
+ class DummyDtype(dtypes.ExtensionDtype):
13
+ pass
14
+
15
+
16
+ class DummyArray(ExtensionArray):
17
+ def __init__(self, data) -> None:
18
+ self.data = data
19
+
20
+ def __array__(self, dtype=None, copy=None):
21
+ return self.data
22
+
23
+ @property
24
+ def dtype(self):
25
+ return DummyDtype()
26
+
27
+ def astype(self, dtype, copy=True):
28
+ # we don't support anything but a single dtype
29
+ if isinstance(dtype, DummyDtype):
30
+ if copy:
31
+ return type(self)(self.data)
32
+ return self
33
+ elif not copy:
34
+ return np.asarray(self, dtype=dtype)
35
+ else:
36
+ return np.array(self, dtype=dtype, copy=copy)
37
+
38
+
39
+ class TestExtensionArrayDtype:
40
+ @pytest.mark.parametrize(
41
+ "values",
42
+ [
43
+ pd.Categorical([]),
44
+ pd.Categorical([]).dtype,
45
+ pd.Series(pd.Categorical([])),
46
+ DummyDtype(),
47
+ DummyArray(np.array([1, 2])),
48
+ ],
49
+ )
50
+ def test_is_extension_array_dtype(self, values):
51
+ assert is_extension_array_dtype(values)
52
+
53
+ @pytest.mark.parametrize("values", [np.array([]), pd.Series(np.array([]))])
54
+ def test_is_not_extension_array_dtype(self, values):
55
+ assert not is_extension_array_dtype(values)
56
+
57
+
58
+ def test_astype():
59
+ arr = DummyArray(np.array([1, 2, 3]))
60
+ expected = np.array([1, 2, 3], dtype=object)
61
+
62
+ result = arr.astype(object)
63
+ tm.assert_numpy_array_equal(result, expected)
64
+
65
+ result = arr.astype("object")
66
+ tm.assert_numpy_array_equal(result, expected)
67
+
68
+
69
+ def test_astype_no_copy():
70
+ arr = DummyArray(np.array([1, 2, 3], dtype=np.int64))
71
+ result = arr.astype(arr.dtype, copy=False)
72
+
73
+ assert arr is result
74
+
75
+ result = arr.astype(arr.dtype)
76
+ assert arr is not result
77
+
78
+
79
+ @pytest.mark.parametrize("dtype", [dtypes.CategoricalDtype(), dtypes.IntervalDtype()])
80
+ def test_is_extension_array_dtype(dtype):
81
+ assert isinstance(dtype, dtypes.ExtensionDtype)
82
+ assert is_extension_array_dtype(dtype)
83
+
84
+
85
+ class CapturingStringArray(pd.arrays.StringArray):
86
+ """Extend StringArray to capture arguments to __getitem__"""
87
+
88
+ def __getitem__(self, item):
89
+ self.last_item_arg = item
90
+ return super().__getitem__(item)
91
+
92
+
93
+ def test_ellipsis_index():
94
+ # GH#42430 1D slices over extension types turn into N-dimensional slices
95
+ # over ExtensionArrays
96
+ df = pd.DataFrame(
97
+ {"col1": CapturingStringArray(np.array(["hello", "world"], dtype=object))}
98
+ )
99
+ _ = df.iloc[:1]
100
+
101
+ # String comparison because there's no native way to compare slices.
102
+ # Before the fix for GH#42430, last_item_arg would get set to the 2D slice
103
+ # (Ellipsis, slice(None, 1, None))
104
+ out = df["col1"].array.last_item_arg
105
+ assert str(out) == "slice(None, 1, None)"
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_datetime.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ import numpy as np
17
+ import pytest
18
+
19
+ from pandas.core.dtypes.dtypes import DatetimeTZDtype
20
+
21
+ import pandas as pd
22
+ import pandas._testing as tm
23
+ from pandas.core.arrays import DatetimeArray
24
+ from pandas.tests.extension import base
25
+
26
+
27
+ @pytest.fixture(params=["US/Central"])
28
+ def dtype(request):
29
+ return DatetimeTZDtype(unit="ns", tz=request.param)
30
+
31
+
32
+ @pytest.fixture
33
+ def data(dtype):
34
+ data = DatetimeArray._from_sequence(
35
+ pd.date_range("2000", periods=100, tz=dtype.tz), dtype=dtype
36
+ )
37
+ return data
38
+
39
+
40
+ @pytest.fixture
41
+ def data_missing(dtype):
42
+ return DatetimeArray._from_sequence(
43
+ np.array(["NaT", "2000-01-01"], dtype="datetime64[ns]"), dtype=dtype
44
+ )
45
+
46
+
47
+ @pytest.fixture
48
+ def data_for_sorting(dtype):
49
+ a = pd.Timestamp("2000-01-01")
50
+ b = pd.Timestamp("2000-01-02")
51
+ c = pd.Timestamp("2000-01-03")
52
+ return DatetimeArray._from_sequence(
53
+ np.array([b, c, a], dtype="datetime64[ns]"), dtype=dtype
54
+ )
55
+
56
+
57
+ @pytest.fixture
58
+ def data_missing_for_sorting(dtype):
59
+ a = pd.Timestamp("2000-01-01")
60
+ b = pd.Timestamp("2000-01-02")
61
+ return DatetimeArray._from_sequence(
62
+ np.array([b, "NaT", a], dtype="datetime64[ns]"), dtype=dtype
63
+ )
64
+
65
+
66
+ @pytest.fixture
67
+ def data_for_grouping(dtype):
68
+ """
69
+ Expected to be like [B, B, NA, NA, A, A, B, C]
70
+
71
+ Where A < B < C and NA is missing
72
+ """
73
+ a = pd.Timestamp("2000-01-01")
74
+ b = pd.Timestamp("2000-01-02")
75
+ c = pd.Timestamp("2000-01-03")
76
+ na = "NaT"
77
+ return DatetimeArray._from_sequence(
78
+ np.array([b, b, na, na, a, a, b, c], dtype="datetime64[ns]"), dtype=dtype
79
+ )
80
+
81
+
82
+ @pytest.fixture
83
+ def na_cmp():
84
+ def cmp(a, b):
85
+ return a is pd.NaT and a is b
86
+
87
+ return cmp
88
+
89
+
90
+ # ----------------------------------------------------------------------------
91
+ class TestDatetimeArray(base.ExtensionTests):
92
+ def _get_expected_exception(self, op_name, obj, other):
93
+ if op_name in ["__sub__", "__rsub__"]:
94
+ return None
95
+ return super()._get_expected_exception(op_name, obj, other)
96
+
97
+ def _supports_accumulation(self, ser, op_name: str) -> bool:
98
+ return op_name in ["cummin", "cummax"]
99
+
100
+ def _supports_reduction(self, obj, op_name: str) -> bool:
101
+ return op_name in ["min", "max", "median", "mean", "std", "any", "all"]
102
+
103
+ @pytest.mark.parametrize("skipna", [True, False])
104
+ def test_reduce_series_boolean(self, data, all_boolean_reductions, skipna):
105
+ meth = all_boolean_reductions
106
+ msg = f"'{meth}' with datetime64 dtypes is deprecated and will raise in"
107
+ with tm.assert_produces_warning(
108
+ FutureWarning, match=msg, check_stacklevel=False
109
+ ):
110
+ super().test_reduce_series_boolean(data, all_boolean_reductions, skipna)
111
+
112
+ def test_series_constructor(self, data):
113
+ # Series construction drops any .freq attr
114
+ data = data._with_freq(None)
115
+ super().test_series_constructor(data)
116
+
117
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
118
+ def test_map(self, data, na_action):
119
+ result = data.map(lambda x: x, na_action=na_action)
120
+ tm.assert_extension_array_equal(result, data)
121
+
122
+ def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
123
+ if op_name in ["median", "mean", "std"]:
124
+ alt = ser.astype("int64")
125
+
126
+ res_op = getattr(ser, op_name)
127
+ exp_op = getattr(alt, op_name)
128
+ result = res_op(skipna=skipna)
129
+ expected = exp_op(skipna=skipna)
130
+ if op_name in ["mean", "median"]:
131
+ # error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype"
132
+ # has no attribute "tz"
133
+ tz = ser.dtype.tz # type: ignore[union-attr]
134
+ expected = pd.Timestamp(expected, tz=tz)
135
+ else:
136
+ expected = pd.Timedelta(expected)
137
+ tm.assert_almost_equal(result, expected)
138
+
139
+ else:
140
+ return super().check_reduce(ser, op_name, skipna)
141
+
142
+
143
+ class Test2DCompat(base.NDArrayBacked2DTests):
144
+ pass
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_extension.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for behavior if an author does *not* implement EA methods.
3
+ """
4
+ import numpy as np
5
+ import pytest
6
+
7
+ from pandas.core.arrays import ExtensionArray
8
+
9
+
10
+ class MyEA(ExtensionArray):
11
+ def __init__(self, values) -> None:
12
+ self._values = values
13
+
14
+
15
+ @pytest.fixture
16
+ def data():
17
+ arr = np.arange(10)
18
+ return MyEA(arr)
19
+
20
+
21
+ class TestExtensionArray:
22
+ def test_errors(self, data, all_arithmetic_operators):
23
+ # invalid ops
24
+ op_name = all_arithmetic_operators
25
+ with pytest.raises(AttributeError):
26
+ getattr(data, op_name)
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_interval.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ from __future__ import annotations
17
+
18
+ from typing import TYPE_CHECKING
19
+
20
+ import numpy as np
21
+ import pytest
22
+
23
+ from pandas.core.dtypes.dtypes import IntervalDtype
24
+
25
+ from pandas import Interval
26
+ from pandas.core.arrays import IntervalArray
27
+ from pandas.tests.extension import base
28
+
29
+ if TYPE_CHECKING:
30
+ import pandas as pd
31
+
32
+
33
+ def make_data():
34
+ N = 100
35
+ left_array = np.random.default_rng(2).uniform(size=N).cumsum()
36
+ right_array = left_array + np.random.default_rng(2).uniform(size=N)
37
+ return [Interval(left, right) for left, right in zip(left_array, right_array)]
38
+
39
+
40
+ @pytest.fixture
41
+ def dtype():
42
+ return IntervalDtype()
43
+
44
+
45
+ @pytest.fixture
46
+ def data():
47
+ """Length-100 PeriodArray for semantics test."""
48
+ return IntervalArray(make_data())
49
+
50
+
51
+ @pytest.fixture
52
+ def data_missing():
53
+ """Length 2 array with [NA, Valid]"""
54
+ return IntervalArray.from_tuples([None, (0, 1)])
55
+
56
+
57
+ @pytest.fixture
58
+ def data_for_twos():
59
+ pytest.skip("Interval is not a numeric dtype")
60
+
61
+
62
+ @pytest.fixture
63
+ def data_for_sorting():
64
+ return IntervalArray.from_tuples([(1, 2), (2, 3), (0, 1)])
65
+
66
+
67
+ @pytest.fixture
68
+ def data_missing_for_sorting():
69
+ return IntervalArray.from_tuples([(1, 2), None, (0, 1)])
70
+
71
+
72
+ @pytest.fixture
73
+ def data_for_grouping():
74
+ a = (0, 1)
75
+ b = (1, 2)
76
+ c = (2, 3)
77
+ return IntervalArray.from_tuples([b, b, None, None, a, a, b, c])
78
+
79
+
80
+ class TestIntervalArray(base.ExtensionTests):
81
+ divmod_exc = TypeError
82
+
83
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
84
+ return op_name in ["min", "max"]
85
+
86
+ @pytest.mark.xfail(
87
+ reason="Raises with incorrect message bc it disallows *all* listlikes "
88
+ "instead of just wrong-length listlikes"
89
+ )
90
+ def test_fillna_length_mismatch(self, data_missing):
91
+ super().test_fillna_length_mismatch(data_missing)
92
+
93
+
94
+ # TODO: either belongs in tests.arrays.interval or move into base tests.
95
+ def test_fillna_non_scalar_raises(data_missing):
96
+ msg = "can only insert Interval objects and NA into an IntervalArray"
97
+ with pytest.raises(TypeError, match=msg):
98
+ data_missing.fillna([1, 1])
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_masked.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ import warnings
17
+
18
+ import numpy as np
19
+ import pytest
20
+
21
+ from pandas.compat import (
22
+ IS64,
23
+ is_platform_windows,
24
+ )
25
+ from pandas.compat.numpy import np_version_gt2
26
+
27
+ from pandas.core.dtypes.common import (
28
+ is_float_dtype,
29
+ is_signed_integer_dtype,
30
+ is_unsigned_integer_dtype,
31
+ )
32
+
33
+ import pandas as pd
34
+ import pandas._testing as tm
35
+ from pandas.core.arrays.boolean import BooleanDtype
36
+ from pandas.core.arrays.floating import (
37
+ Float32Dtype,
38
+ Float64Dtype,
39
+ )
40
+ from pandas.core.arrays.integer import (
41
+ Int8Dtype,
42
+ Int16Dtype,
43
+ Int32Dtype,
44
+ Int64Dtype,
45
+ UInt8Dtype,
46
+ UInt16Dtype,
47
+ UInt32Dtype,
48
+ UInt64Dtype,
49
+ )
50
+ from pandas.tests.extension import base
51
+
52
+ is_windows_or_32bit = (is_platform_windows() and not np_version_gt2) or not IS64
53
+
54
+ pytestmark = [
55
+ pytest.mark.filterwarnings(
56
+ "ignore:invalid value encountered in divide:RuntimeWarning"
57
+ ),
58
+ pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning"),
59
+ # overflow only relevant for Floating dtype cases cases
60
+ pytest.mark.filterwarnings("ignore:overflow encountered in reduce:RuntimeWarning"),
61
+ ]
62
+
63
+
64
+ def make_data():
65
+ return list(range(1, 9)) + [pd.NA] + list(range(10, 98)) + [pd.NA] + [99, 100]
66
+
67
+
68
+ def make_float_data():
69
+ return (
70
+ list(np.arange(0.1, 0.9, 0.1))
71
+ + [pd.NA]
72
+ + list(np.arange(1, 9.8, 0.1))
73
+ + [pd.NA]
74
+ + [9.9, 10.0]
75
+ )
76
+
77
+
78
+ def make_bool_data():
79
+ return [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False]
80
+
81
+
82
+ @pytest.fixture(
83
+ params=[
84
+ Int8Dtype,
85
+ Int16Dtype,
86
+ Int32Dtype,
87
+ Int64Dtype,
88
+ UInt8Dtype,
89
+ UInt16Dtype,
90
+ UInt32Dtype,
91
+ UInt64Dtype,
92
+ Float32Dtype,
93
+ Float64Dtype,
94
+ BooleanDtype,
95
+ ]
96
+ )
97
+ def dtype(request):
98
+ return request.param()
99
+
100
+
101
+ @pytest.fixture
102
+ def data(dtype):
103
+ if dtype.kind == "f":
104
+ data = make_float_data()
105
+ elif dtype.kind == "b":
106
+ data = make_bool_data()
107
+ else:
108
+ data = make_data()
109
+ return pd.array(data, dtype=dtype)
110
+
111
+
112
+ @pytest.fixture
113
+ def data_for_twos(dtype):
114
+ if dtype.kind == "b":
115
+ return pd.array(np.ones(100), dtype=dtype)
116
+ return pd.array(np.ones(100) * 2, dtype=dtype)
117
+
118
+
119
+ @pytest.fixture
120
+ def data_missing(dtype):
121
+ if dtype.kind == "f":
122
+ return pd.array([pd.NA, 0.1], dtype=dtype)
123
+ elif dtype.kind == "b":
124
+ return pd.array([np.nan, True], dtype=dtype)
125
+ return pd.array([pd.NA, 1], dtype=dtype)
126
+
127
+
128
+ @pytest.fixture
129
+ def data_for_sorting(dtype):
130
+ if dtype.kind == "f":
131
+ return pd.array([0.1, 0.2, 0.0], dtype=dtype)
132
+ elif dtype.kind == "b":
133
+ return pd.array([True, True, False], dtype=dtype)
134
+ return pd.array([1, 2, 0], dtype=dtype)
135
+
136
+
137
+ @pytest.fixture
138
+ def data_missing_for_sorting(dtype):
139
+ if dtype.kind == "f":
140
+ return pd.array([0.1, pd.NA, 0.0], dtype=dtype)
141
+ elif dtype.kind == "b":
142
+ return pd.array([True, np.nan, False], dtype=dtype)
143
+ return pd.array([1, pd.NA, 0], dtype=dtype)
144
+
145
+
146
+ @pytest.fixture
147
+ def na_cmp():
148
+ # we are pd.NA
149
+ return lambda x, y: x is pd.NA and y is pd.NA
150
+
151
+
152
+ @pytest.fixture
153
+ def data_for_grouping(dtype):
154
+ if dtype.kind == "f":
155
+ b = 0.1
156
+ a = 0.0
157
+ c = 0.2
158
+ elif dtype.kind == "b":
159
+ b = True
160
+ a = False
161
+ c = b
162
+ else:
163
+ b = 1
164
+ a = 0
165
+ c = 2
166
+
167
+ na = pd.NA
168
+ return pd.array([b, b, na, na, a, a, b, c], dtype=dtype)
169
+
170
+
171
+ class TestMaskedArrays(base.ExtensionTests):
172
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
173
+ def test_map(self, data_missing, na_action):
174
+ result = data_missing.map(lambda x: x, na_action=na_action)
175
+ if data_missing.dtype == Float32Dtype():
176
+ # map roundtrips through objects, which converts to float64
177
+ expected = data_missing.to_numpy(dtype="float64", na_value=np.nan)
178
+ else:
179
+ expected = data_missing.to_numpy()
180
+ tm.assert_numpy_array_equal(result, expected)
181
+
182
+ def test_map_na_action_ignore(self, data_missing_for_sorting):
183
+ zero = data_missing_for_sorting[2]
184
+ result = data_missing_for_sorting.map(lambda x: zero, na_action="ignore")
185
+ if data_missing_for_sorting.dtype.kind == "b":
186
+ expected = np.array([False, pd.NA, False], dtype=object)
187
+ else:
188
+ expected = np.array([zero, np.nan, zero])
189
+ tm.assert_numpy_array_equal(result, expected)
190
+
191
+ def _get_expected_exception(self, op_name, obj, other):
192
+ try:
193
+ dtype = tm.get_dtype(obj)
194
+ except AttributeError:
195
+ # passed arguments reversed
196
+ dtype = tm.get_dtype(other)
197
+
198
+ if dtype.kind == "b":
199
+ if op_name.strip("_").lstrip("r") in ["pow", "truediv", "floordiv"]:
200
+ # match behavior with non-masked bool dtype
201
+ return NotImplementedError
202
+ elif op_name in ["__sub__", "__rsub__"]:
203
+ # exception message would include "numpy boolean subtract""
204
+ return TypeError
205
+ return None
206
+ return None
207
+
208
+ def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
209
+ sdtype = tm.get_dtype(obj)
210
+ expected = pointwise_result
211
+
212
+ if op_name in ("eq", "ne", "le", "ge", "lt", "gt"):
213
+ return expected.astype("boolean")
214
+
215
+ if sdtype.kind in "iu":
216
+ if op_name in ("__rtruediv__", "__truediv__", "__div__"):
217
+ with warnings.catch_warnings():
218
+ warnings.filterwarnings(
219
+ "ignore",
220
+ "Downcasting object dtype arrays",
221
+ category=FutureWarning,
222
+ )
223
+ filled = expected.fillna(np.nan)
224
+ expected = filled.astype("Float64")
225
+ else:
226
+ # combine method result in 'biggest' (int64) dtype
227
+ expected = expected.astype(sdtype)
228
+ elif sdtype.kind == "b":
229
+ if op_name in (
230
+ "__floordiv__",
231
+ "__rfloordiv__",
232
+ "__pow__",
233
+ "__rpow__",
234
+ "__mod__",
235
+ "__rmod__",
236
+ ):
237
+ # combine keeps boolean type
238
+ expected = expected.astype("Int8")
239
+
240
+ elif op_name in ("__truediv__", "__rtruediv__"):
241
+ # combine with bools does not generate the correct result
242
+ # (numpy behaviour for div is to regard the bools as numeric)
243
+ op = self.get_op_from_name(op_name)
244
+ expected = self._combine(obj.astype(float), other, op)
245
+ expected = expected.astype("Float64")
246
+
247
+ if op_name == "__rpow__":
248
+ # for rpow, combine does not propagate NaN
249
+ result = getattr(obj, op_name)(other)
250
+ expected[result.isna()] = np.nan
251
+ else:
252
+ # combine method result in 'biggest' (float64) dtype
253
+ expected = expected.astype(sdtype)
254
+ return expected
255
+
256
+ def test_divmod_series_array(self, data, data_for_twos, request):
257
+ if data.dtype.kind == "b":
258
+ mark = pytest.mark.xfail(
259
+ reason="Inconsistency between floordiv and divmod; we raise for "
260
+ "floordiv but not for divmod. This matches what we do for "
261
+ "non-masked bool dtype."
262
+ )
263
+ request.applymarker(mark)
264
+ super().test_divmod_series_array(data, data_for_twos)
265
+
266
+ def test_combine_le(self, data_repeated):
267
+ # TODO: patching self is a bad pattern here
268
+ orig_data1, orig_data2 = data_repeated(2)
269
+ if orig_data1.dtype.kind == "b":
270
+ self._combine_le_expected_dtype = "boolean"
271
+ else:
272
+ # TODO: can we make this boolean?
273
+ self._combine_le_expected_dtype = object
274
+ super().test_combine_le(data_repeated)
275
+
276
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
277
+ if op_name in ["any", "all"] and ser.dtype.kind != "b":
278
+ pytest.skip(reason="Tested in tests/reductions/test_reductions.py")
279
+ return True
280
+
281
+ def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
282
+ # overwrite to ensure pd.NA is tested instead of np.nan
283
+ # https://github.com/pandas-dev/pandas/issues/30958
284
+
285
+ cmp_dtype = "int64"
286
+ if ser.dtype.kind == "f":
287
+ # Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" has
288
+ # no attribute "numpy_dtype"
289
+ cmp_dtype = ser.dtype.numpy_dtype # type: ignore[union-attr]
290
+ elif ser.dtype.kind == "b":
291
+ if op_name in ["min", "max"]:
292
+ cmp_dtype = "bool"
293
+
294
+ # TODO: prod with integer dtypes does *not* match the result we would
295
+ # get if we used object for cmp_dtype. In that cae the object result
296
+ # is a large integer while the non-object case overflows and returns 0
297
+ alt = ser.dropna().astype(cmp_dtype)
298
+ if op_name == "count":
299
+ result = getattr(ser, op_name)()
300
+ expected = getattr(alt, op_name)()
301
+ else:
302
+ result = getattr(ser, op_name)(skipna=skipna)
303
+ expected = getattr(alt, op_name)(skipna=skipna)
304
+ if not skipna and ser.isna().any() and op_name not in ["any", "all"]:
305
+ expected = pd.NA
306
+ tm.assert_almost_equal(result, expected)
307
+
308
+ def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool):
309
+ if is_float_dtype(arr.dtype):
310
+ cmp_dtype = arr.dtype.name
311
+ elif op_name in ["mean", "median", "var", "std", "skew"]:
312
+ cmp_dtype = "Float64"
313
+ elif op_name in ["max", "min"]:
314
+ cmp_dtype = arr.dtype.name
315
+ elif arr.dtype in ["Int64", "UInt64"]:
316
+ cmp_dtype = arr.dtype.name
317
+ elif is_signed_integer_dtype(arr.dtype):
318
+ # TODO: Why does Window Numpy 2.0 dtype depend on skipna?
319
+ cmp_dtype = (
320
+ "Int32"
321
+ if (is_platform_windows() and (not np_version_gt2 or not skipna))
322
+ or not IS64
323
+ else "Int64"
324
+ )
325
+ elif is_unsigned_integer_dtype(arr.dtype):
326
+ cmp_dtype = (
327
+ "UInt32"
328
+ if (is_platform_windows() and (not np_version_gt2 or not skipna))
329
+ or not IS64
330
+ else "UInt64"
331
+ )
332
+ elif arr.dtype.kind == "b":
333
+ if op_name in ["mean", "median", "var", "std", "skew"]:
334
+ cmp_dtype = "Float64"
335
+ elif op_name in ["min", "max"]:
336
+ cmp_dtype = "boolean"
337
+ elif op_name in ["sum", "prod"]:
338
+ cmp_dtype = (
339
+ "Int32"
340
+ if (is_platform_windows() and (not np_version_gt2 or not skipna))
341
+ or not IS64
342
+ else "Int64"
343
+ )
344
+ else:
345
+ raise TypeError("not supposed to reach this")
346
+ else:
347
+ raise TypeError("not supposed to reach this")
348
+ return cmp_dtype
349
+
350
+ def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool:
351
+ return True
352
+
353
+ def check_accumulate(self, ser: pd.Series, op_name: str, skipna: bool):
354
+ # overwrite to ensure pd.NA is tested instead of np.nan
355
+ # https://github.com/pandas-dev/pandas/issues/30958
356
+ length = 64
357
+ if is_windows_or_32bit:
358
+ # Item "ExtensionDtype" of "Union[dtype[Any], ExtensionDtype]" has
359
+ # no attribute "itemsize"
360
+ if not ser.dtype.itemsize == 8: # type: ignore[union-attr]
361
+ length = 32
362
+
363
+ if ser.dtype.name.startswith("U"):
364
+ expected_dtype = f"UInt{length}"
365
+ elif ser.dtype.name.startswith("I"):
366
+ expected_dtype = f"Int{length}"
367
+ elif ser.dtype.name.startswith("F"):
368
+ # Incompatible types in assignment (expression has type
369
+ # "Union[dtype[Any], ExtensionDtype]", variable has type "str")
370
+ expected_dtype = ser.dtype # type: ignore[assignment]
371
+ elif ser.dtype.kind == "b":
372
+ if op_name in ("cummin", "cummax"):
373
+ expected_dtype = "boolean"
374
+ else:
375
+ expected_dtype = f"Int{length}"
376
+
377
+ if expected_dtype == "Float32" and op_name == "cumprod" and skipna:
378
+ # TODO: xfail?
379
+ pytest.skip(
380
+ f"Float32 precision lead to large differences with op {op_name} "
381
+ f"and skipna={skipna}"
382
+ )
383
+
384
+ if op_name == "cumsum":
385
+ result = getattr(ser, op_name)(skipna=skipna)
386
+ expected = pd.Series(
387
+ pd.array(
388
+ getattr(ser.astype("float64"), op_name)(skipna=skipna),
389
+ dtype=expected_dtype,
390
+ )
391
+ )
392
+ tm.assert_series_equal(result, expected)
393
+ elif op_name in ["cummax", "cummin"]:
394
+ result = getattr(ser, op_name)(skipna=skipna)
395
+ expected = pd.Series(
396
+ pd.array(
397
+ getattr(ser.astype("float64"), op_name)(skipna=skipna),
398
+ dtype=ser.dtype,
399
+ )
400
+ )
401
+ tm.assert_series_equal(result, expected)
402
+ elif op_name == "cumprod":
403
+ result = getattr(ser[:12], op_name)(skipna=skipna)
404
+ expected = pd.Series(
405
+ pd.array(
406
+ getattr(ser[:12].astype("float64"), op_name)(skipna=skipna),
407
+ dtype=expected_dtype,
408
+ )
409
+ )
410
+ tm.assert_series_equal(result, expected)
411
+
412
+ else:
413
+ raise NotImplementedError(f"{op_name} not supported")
414
+
415
+
416
+ class Test2DCompat(base.Dim2CompatTests):
417
+ pass
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_numpy.py ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ Note: we do not bother with base.BaseIndexTests because NumpyExtensionArray
16
+ will never be held in an Index.
17
+ """
18
+ import numpy as np
19
+ import pytest
20
+
21
+ from pandas.core.dtypes.dtypes import NumpyEADtype
22
+
23
+ import pandas as pd
24
+ import pandas._testing as tm
25
+ from pandas.api.types import is_object_dtype
26
+ from pandas.core.arrays.numpy_ import NumpyExtensionArray
27
+ from pandas.tests.extension import base
28
+
29
+ orig_assert_attr_equal = tm.assert_attr_equal
30
+
31
+
32
+ def _assert_attr_equal(attr: str, left, right, obj: str = "Attributes"):
33
+ """
34
+ patch tm.assert_attr_equal so NumpyEADtype("object") is closed enough to
35
+ np.dtype("object")
36
+ """
37
+ if attr == "dtype":
38
+ lattr = getattr(left, "dtype", None)
39
+ rattr = getattr(right, "dtype", None)
40
+ if isinstance(lattr, NumpyEADtype) and not isinstance(rattr, NumpyEADtype):
41
+ left = left.astype(lattr.numpy_dtype)
42
+ elif isinstance(rattr, NumpyEADtype) and not isinstance(lattr, NumpyEADtype):
43
+ right = right.astype(rattr.numpy_dtype)
44
+
45
+ orig_assert_attr_equal(attr, left, right, obj)
46
+
47
+
48
+ @pytest.fixture(params=["float", "object"])
49
+ def dtype(request):
50
+ return NumpyEADtype(np.dtype(request.param))
51
+
52
+
53
+ @pytest.fixture
54
+ def allow_in_pandas(monkeypatch):
55
+ """
56
+ A monkeypatch to tells pandas to let us in.
57
+
58
+ By default, passing a NumpyExtensionArray to an index / series / frame
59
+ constructor will unbox that NumpyExtensionArray to an ndarray, and treat
60
+ it as a non-EA column. We don't want people using EAs without
61
+ reason.
62
+
63
+ The mechanism for this is a check against ABCNumpyExtensionArray
64
+ in each constructor.
65
+
66
+ But, for testing, we need to allow them in pandas. So we patch
67
+ the _typ of NumpyExtensionArray, so that we evade the ABCNumpyExtensionArray
68
+ check.
69
+ """
70
+ with monkeypatch.context() as m:
71
+ m.setattr(NumpyExtensionArray, "_typ", "extension")
72
+ m.setattr(tm.asserters, "assert_attr_equal", _assert_attr_equal)
73
+ yield
74
+
75
+
76
+ @pytest.fixture
77
+ def data(allow_in_pandas, dtype):
78
+ if dtype.numpy_dtype == "object":
79
+ return pd.Series([(i,) for i in range(100)]).array
80
+ return NumpyExtensionArray(np.arange(1, 101, dtype=dtype._dtype))
81
+
82
+
83
+ @pytest.fixture
84
+ def data_missing(allow_in_pandas, dtype):
85
+ if dtype.numpy_dtype == "object":
86
+ return NumpyExtensionArray(np.array([np.nan, (1,)], dtype=object))
87
+ return NumpyExtensionArray(np.array([np.nan, 1.0]))
88
+
89
+
90
+ @pytest.fixture
91
+ def na_cmp():
92
+ def cmp(a, b):
93
+ return np.isnan(a) and np.isnan(b)
94
+
95
+ return cmp
96
+
97
+
98
+ @pytest.fixture
99
+ def data_for_sorting(allow_in_pandas, dtype):
100
+ """Length-3 array with a known sort order.
101
+
102
+ This should be three items [B, C, A] with
103
+ A < B < C
104
+ """
105
+ if dtype.numpy_dtype == "object":
106
+ # Use an empty tuple for first element, then remove,
107
+ # to disable np.array's shape inference.
108
+ return NumpyExtensionArray(np.array([(), (2,), (3,), (1,)], dtype=object)[1:])
109
+ return NumpyExtensionArray(np.array([1, 2, 0]))
110
+
111
+
112
+ @pytest.fixture
113
+ def data_missing_for_sorting(allow_in_pandas, dtype):
114
+ """Length-3 array with a known sort order.
115
+
116
+ This should be three items [B, NA, A] with
117
+ A < B and NA missing.
118
+ """
119
+ if dtype.numpy_dtype == "object":
120
+ return NumpyExtensionArray(np.array([(1,), np.nan, (0,)], dtype=object))
121
+ return NumpyExtensionArray(np.array([1, np.nan, 0]))
122
+
123
+
124
+ @pytest.fixture
125
+ def data_for_grouping(allow_in_pandas, dtype):
126
+ """Data for factorization, grouping, and unique tests.
127
+
128
+ Expected to be like [B, B, NA, NA, A, A, B, C]
129
+
130
+ Where A < B < C and NA is missing
131
+ """
132
+ if dtype.numpy_dtype == "object":
133
+ a, b, c = (1,), (2,), (3,)
134
+ else:
135
+ a, b, c = np.arange(3)
136
+ return NumpyExtensionArray(
137
+ np.array([b, b, np.nan, np.nan, a, a, b, c], dtype=dtype.numpy_dtype)
138
+ )
139
+
140
+
141
+ @pytest.fixture
142
+ def data_for_twos(dtype):
143
+ if dtype.kind == "O":
144
+ pytest.skip(f"{dtype} is not a numeric dtype")
145
+ arr = np.ones(100) * 2
146
+ return NumpyExtensionArray._from_sequence(arr, dtype=dtype)
147
+
148
+
149
+ @pytest.fixture
150
+ def skip_numpy_object(dtype, request):
151
+ """
152
+ Tests for NumpyExtensionArray with nested data. Users typically won't create
153
+ these objects via `pd.array`, but they can show up through `.array`
154
+ on a Series with nested data. Many of the base tests fail, as they aren't
155
+ appropriate for nested data.
156
+
157
+ This fixture allows these tests to be skipped when used as a usefixtures
158
+ marker to either an individual test or a test class.
159
+ """
160
+ if dtype == "object":
161
+ mark = pytest.mark.xfail(reason="Fails for object dtype")
162
+ request.applymarker(mark)
163
+
164
+
165
+ skip_nested = pytest.mark.usefixtures("skip_numpy_object")
166
+
167
+
168
+ class TestNumpyExtensionArray(base.ExtensionTests):
169
+ @pytest.mark.skip(reason="We don't register our dtype")
170
+ # We don't want to register. This test should probably be split in two.
171
+ def test_from_dtype(self, data):
172
+ pass
173
+
174
+ @skip_nested
175
+ def test_series_constructor_scalar_with_index(self, data, dtype):
176
+ # ValueError: Length of passed values is 1, index implies 3.
177
+ super().test_series_constructor_scalar_with_index(data, dtype)
178
+
179
+ def test_check_dtype(self, data, request, using_infer_string):
180
+ if data.dtype.numpy_dtype == "object":
181
+ request.applymarker(
182
+ pytest.mark.xfail(
183
+ reason=f"NumpyExtensionArray expectedly clashes with a "
184
+ f"NumPy name: {data.dtype.numpy_dtype}"
185
+ )
186
+ )
187
+ super().test_check_dtype(data)
188
+
189
+ def test_is_not_object_type(self, dtype, request):
190
+ if dtype.numpy_dtype == "object":
191
+ # Different from BaseDtypeTests.test_is_not_object_type
192
+ # because NumpyEADtype(object) is an object type
193
+ assert is_object_dtype(dtype)
194
+ else:
195
+ super().test_is_not_object_type(dtype)
196
+
197
+ @skip_nested
198
+ def test_getitem_scalar(self, data):
199
+ # AssertionError
200
+ super().test_getitem_scalar(data)
201
+
202
+ @skip_nested
203
+ def test_shift_fill_value(self, data):
204
+ # np.array shape inference. Shift implementation fails.
205
+ super().test_shift_fill_value(data)
206
+
207
+ @skip_nested
208
+ def test_fillna_copy_frame(self, data_missing):
209
+ # The "scalar" for this array isn't a scalar.
210
+ super().test_fillna_copy_frame(data_missing)
211
+
212
+ @skip_nested
213
+ def test_fillna_copy_series(self, data_missing):
214
+ # The "scalar" for this array isn't a scalar.
215
+ super().test_fillna_copy_series(data_missing)
216
+
217
+ @skip_nested
218
+ def test_searchsorted(self, data_for_sorting, as_series):
219
+ # TODO: NumpyExtensionArray.searchsorted calls ndarray.searchsorted which
220
+ # isn't quite what we want in nested data cases. Instead we need to
221
+ # adapt something like libindex._bin_search.
222
+ super().test_searchsorted(data_for_sorting, as_series)
223
+
224
+ @pytest.mark.xfail(reason="NumpyExtensionArray.diff may fail on dtype")
225
+ def test_diff(self, data, periods):
226
+ return super().test_diff(data, periods)
227
+
228
+ def test_insert(self, data, request):
229
+ if data.dtype.numpy_dtype == object:
230
+ mark = pytest.mark.xfail(reason="Dimension mismatch in np.concatenate")
231
+ request.applymarker(mark)
232
+
233
+ super().test_insert(data)
234
+
235
+ @skip_nested
236
+ def test_insert_invalid(self, data, invalid_scalar):
237
+ # NumpyExtensionArray[object] can hold anything, so skip
238
+ super().test_insert_invalid(data, invalid_scalar)
239
+
240
+ divmod_exc = None
241
+ series_scalar_exc = None
242
+ frame_scalar_exc = None
243
+ series_array_exc = None
244
+
245
+ def test_divmod(self, data):
246
+ divmod_exc = None
247
+ if data.dtype.kind == "O":
248
+ divmod_exc = TypeError
249
+ self.divmod_exc = divmod_exc
250
+ super().test_divmod(data)
251
+
252
+ def test_divmod_series_array(self, data):
253
+ ser = pd.Series(data)
254
+ exc = None
255
+ if data.dtype.kind == "O":
256
+ exc = TypeError
257
+ self.divmod_exc = exc
258
+ self._check_divmod_op(ser, divmod, data)
259
+
260
+ def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request):
261
+ opname = all_arithmetic_operators
262
+ series_scalar_exc = None
263
+ if data.dtype.numpy_dtype == object:
264
+ if opname in ["__mul__", "__rmul__"]:
265
+ mark = pytest.mark.xfail(
266
+ reason="the Series.combine step raises but not the Series method."
267
+ )
268
+ request.node.add_marker(mark)
269
+ series_scalar_exc = TypeError
270
+ self.series_scalar_exc = series_scalar_exc
271
+ super().test_arith_series_with_scalar(data, all_arithmetic_operators)
272
+
273
+ def test_arith_series_with_array(self, data, all_arithmetic_operators):
274
+ opname = all_arithmetic_operators
275
+ series_array_exc = None
276
+ if data.dtype.numpy_dtype == object and opname not in ["__add__", "__radd__"]:
277
+ series_array_exc = TypeError
278
+ self.series_array_exc = series_array_exc
279
+ super().test_arith_series_with_array(data, all_arithmetic_operators)
280
+
281
+ def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
282
+ opname = all_arithmetic_operators
283
+ frame_scalar_exc = None
284
+ if data.dtype.numpy_dtype == object:
285
+ if opname in ["__mul__", "__rmul__"]:
286
+ mark = pytest.mark.xfail(
287
+ reason="the Series.combine step raises but not the Series method."
288
+ )
289
+ request.node.add_marker(mark)
290
+ frame_scalar_exc = TypeError
291
+ self.frame_scalar_exc = frame_scalar_exc
292
+ super().test_arith_frame_with_scalar(data, all_arithmetic_operators)
293
+
294
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
295
+ if ser.dtype.kind == "O":
296
+ return op_name in ["sum", "min", "max", "any", "all"]
297
+ return True
298
+
299
+ def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
300
+ res_op = getattr(ser, op_name)
301
+ # avoid coercing int -> float. Just cast to the actual numpy type.
302
+ # error: Item "ExtensionDtype" of "dtype[Any] | ExtensionDtype" has
303
+ # no attribute "numpy_dtype"
304
+ cmp_dtype = ser.dtype.numpy_dtype # type: ignore[union-attr]
305
+ alt = ser.astype(cmp_dtype)
306
+ exp_op = getattr(alt, op_name)
307
+ if op_name == "count":
308
+ result = res_op()
309
+ expected = exp_op()
310
+ else:
311
+ result = res_op(skipna=skipna)
312
+ expected = exp_op(skipna=skipna)
313
+ tm.assert_almost_equal(result, expected)
314
+
315
+ @pytest.mark.skip("TODO: tests not written yet")
316
+ @pytest.mark.parametrize("skipna", [True, False])
317
+ def test_reduce_frame(self, data, all_numeric_reductions, skipna):
318
+ pass
319
+
320
+ @skip_nested
321
+ def test_fillna_series(self, data_missing):
322
+ # Non-scalar "scalar" values.
323
+ super().test_fillna_series(data_missing)
324
+
325
+ @skip_nested
326
+ def test_fillna_frame(self, data_missing):
327
+ # Non-scalar "scalar" values.
328
+ super().test_fillna_frame(data_missing)
329
+
330
+ @skip_nested
331
+ def test_setitem_invalid(self, data, invalid_scalar):
332
+ # object dtype can hold anything, so doesn't raise
333
+ super().test_setitem_invalid(data, invalid_scalar)
334
+
335
+ @skip_nested
336
+ def test_setitem_sequence_broadcasts(self, data, box_in_series):
337
+ # ValueError: cannot set using a list-like indexer with a different
338
+ # length than the value
339
+ super().test_setitem_sequence_broadcasts(data, box_in_series)
340
+
341
+ @skip_nested
342
+ @pytest.mark.parametrize("setter", ["loc", None])
343
+ def test_setitem_mask_broadcast(self, data, setter):
344
+ # ValueError: cannot set using a list-like indexer with a different
345
+ # length than the value
346
+ super().test_setitem_mask_broadcast(data, setter)
347
+
348
+ @skip_nested
349
+ def test_setitem_scalar_key_sequence_raise(self, data):
350
+ # Failed: DID NOT RAISE <class 'ValueError'>
351
+ super().test_setitem_scalar_key_sequence_raise(data)
352
+
353
+ # TODO: there is some issue with NumpyExtensionArray, therefore,
354
+ # skip the setitem test for now, and fix it later (GH 31446)
355
+
356
+ @skip_nested
357
+ @pytest.mark.parametrize(
358
+ "mask",
359
+ [
360
+ np.array([True, True, True, False, False]),
361
+ pd.array([True, True, True, False, False], dtype="boolean"),
362
+ ],
363
+ ids=["numpy-array", "boolean-array"],
364
+ )
365
+ def test_setitem_mask(self, data, mask, box_in_series):
366
+ super().test_setitem_mask(data, mask, box_in_series)
367
+
368
+ @skip_nested
369
+ @pytest.mark.parametrize(
370
+ "idx",
371
+ [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
372
+ ids=["list", "integer-array", "numpy-array"],
373
+ )
374
+ def test_setitem_integer_array(self, data, idx, box_in_series):
375
+ super().test_setitem_integer_array(data, idx, box_in_series)
376
+
377
+ @pytest.mark.parametrize(
378
+ "idx, box_in_series",
379
+ [
380
+ ([0, 1, 2, pd.NA], False),
381
+ pytest.param([0, 1, 2, pd.NA], True, marks=pytest.mark.xfail),
382
+ (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
383
+ (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
384
+ ],
385
+ ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
386
+ )
387
+ def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
388
+ super().test_setitem_integer_with_missing_raises(data, idx, box_in_series)
389
+
390
+ @skip_nested
391
+ def test_setitem_slice(self, data, box_in_series):
392
+ super().test_setitem_slice(data, box_in_series)
393
+
394
+ @skip_nested
395
+ def test_setitem_loc_iloc_slice(self, data):
396
+ super().test_setitem_loc_iloc_slice(data)
397
+
398
+ def test_setitem_with_expansion_dataframe_column(self, data, full_indexer):
399
+ # https://github.com/pandas-dev/pandas/issues/32395
400
+ df = expected = pd.DataFrame({"data": pd.Series(data)})
401
+ result = pd.DataFrame(index=df.index)
402
+
403
+ # because result has object dtype, the attempt to do setting inplace
404
+ # is successful, and object dtype is retained
405
+ key = full_indexer(df)
406
+ result.loc[key, "data"] = df["data"]
407
+
408
+ # base class method has expected = df; NumpyExtensionArray behaves oddly because
409
+ # we patch _typ for these tests.
410
+ if data.dtype.numpy_dtype != object:
411
+ if not isinstance(key, slice) or key != slice(None):
412
+ expected = pd.DataFrame({"data": data.to_numpy()})
413
+ tm.assert_frame_equal(result, expected, check_column_type=False)
414
+
415
+ @pytest.mark.xfail(reason="NumpyEADtype is unpacked")
416
+ def test_index_from_listlike_with_dtype(self, data):
417
+ super().test_index_from_listlike_with_dtype(data)
418
+
419
+ @skip_nested
420
+ @pytest.mark.parametrize("engine", ["c", "python"])
421
+ def test_EA_types(self, engine, data, request):
422
+ super().test_EA_types(engine, data, request)
423
+
424
+
425
+ class Test2DCompat(base.NDArrayBacked2DTests):
426
+ pass
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_period.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ from __future__ import annotations
17
+
18
+ from typing import TYPE_CHECKING
19
+
20
+ import numpy as np
21
+ import pytest
22
+
23
+ from pandas._libs import (
24
+ Period,
25
+ iNaT,
26
+ )
27
+ from pandas.compat import is_platform_windows
28
+ from pandas.compat.numpy import np_version_gte1p24
29
+
30
+ from pandas.core.dtypes.dtypes import PeriodDtype
31
+
32
+ import pandas._testing as tm
33
+ from pandas.core.arrays import PeriodArray
34
+ from pandas.tests.extension import base
35
+
36
+ if TYPE_CHECKING:
37
+ import pandas as pd
38
+
39
+
40
+ @pytest.fixture(params=["D", "2D"])
41
+ def dtype(request):
42
+ return PeriodDtype(freq=request.param)
43
+
44
+
45
+ @pytest.fixture
46
+ def data(dtype):
47
+ return PeriodArray(np.arange(1970, 2070), dtype=dtype)
48
+
49
+
50
+ @pytest.fixture
51
+ def data_for_sorting(dtype):
52
+ return PeriodArray([2018, 2019, 2017], dtype=dtype)
53
+
54
+
55
+ @pytest.fixture
56
+ def data_missing(dtype):
57
+ return PeriodArray([iNaT, 2017], dtype=dtype)
58
+
59
+
60
+ @pytest.fixture
61
+ def data_missing_for_sorting(dtype):
62
+ return PeriodArray([2018, iNaT, 2017], dtype=dtype)
63
+
64
+
65
+ @pytest.fixture
66
+ def data_for_grouping(dtype):
67
+ B = 2018
68
+ NA = iNaT
69
+ A = 2017
70
+ C = 2019
71
+ return PeriodArray([B, B, NA, NA, A, A, B, C], dtype=dtype)
72
+
73
+
74
+ class TestPeriodArray(base.ExtensionTests):
75
+ def _get_expected_exception(self, op_name, obj, other):
76
+ if op_name in ("__sub__", "__rsub__"):
77
+ return None
78
+ return super()._get_expected_exception(op_name, obj, other)
79
+
80
+ def _supports_accumulation(self, ser, op_name: str) -> bool:
81
+ return op_name in ["cummin", "cummax"]
82
+
83
+ def _supports_reduction(self, obj, op_name: str) -> bool:
84
+ return op_name in ["min", "max", "median"]
85
+
86
+ def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
87
+ if op_name == "median":
88
+ res_op = getattr(ser, op_name)
89
+
90
+ alt = ser.astype("int64")
91
+
92
+ exp_op = getattr(alt, op_name)
93
+ result = res_op(skipna=skipna)
94
+ expected = exp_op(skipna=skipna)
95
+ # error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has no
96
+ # attribute "freq"
97
+ freq = ser.dtype.freq # type: ignore[union-attr]
98
+ expected = Period._from_ordinal(int(expected), freq=freq)
99
+ tm.assert_almost_equal(result, expected)
100
+
101
+ else:
102
+ return super().check_reduce(ser, op_name, skipna)
103
+
104
+ @pytest.mark.parametrize("periods", [1, -2])
105
+ def test_diff(self, data, periods):
106
+ if is_platform_windows() and np_version_gte1p24:
107
+ with tm.assert_produces_warning(RuntimeWarning, check_stacklevel=False):
108
+ super().test_diff(data, periods)
109
+ else:
110
+ super().test_diff(data, periods)
111
+
112
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
113
+ def test_map(self, data, na_action):
114
+ result = data.map(lambda x: x, na_action=na_action)
115
+ tm.assert_extension_array_equal(result, data)
116
+
117
+
118
+ class Test2DCompat(base.NDArrayBacked2DTests):
119
+ pass
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_sparse.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+
17
+ import numpy as np
18
+ import pytest
19
+
20
+ from pandas.errors import PerformanceWarning
21
+
22
+ import pandas as pd
23
+ from pandas import SparseDtype
24
+ import pandas._testing as tm
25
+ from pandas.arrays import SparseArray
26
+ from pandas.tests.extension import base
27
+
28
+
29
+ def make_data(fill_value):
30
+ rng = np.random.default_rng(2)
31
+ if np.isnan(fill_value):
32
+ data = rng.uniform(size=100)
33
+ else:
34
+ data = rng.integers(1, 100, size=100, dtype=int)
35
+ if data[0] == data[1]:
36
+ data[0] += 1
37
+
38
+ data[2::3] = fill_value
39
+ return data
40
+
41
+
42
+ @pytest.fixture
43
+ def dtype():
44
+ return SparseDtype()
45
+
46
+
47
+ @pytest.fixture(params=[0, np.nan])
48
+ def data(request):
49
+ """Length-100 PeriodArray for semantics test."""
50
+ res = SparseArray(make_data(request.param), fill_value=request.param)
51
+ return res
52
+
53
+
54
+ @pytest.fixture
55
+ def data_for_twos():
56
+ return SparseArray(np.ones(100) * 2)
57
+
58
+
59
+ @pytest.fixture(params=[0, np.nan])
60
+ def data_missing(request):
61
+ """Length 2 array with [NA, Valid]"""
62
+ return SparseArray([np.nan, 1], fill_value=request.param)
63
+
64
+
65
+ @pytest.fixture(params=[0, np.nan])
66
+ def data_repeated(request):
67
+ """Return different versions of data for count times"""
68
+
69
+ def gen(count):
70
+ for _ in range(count):
71
+ yield SparseArray(make_data(request.param), fill_value=request.param)
72
+
73
+ yield gen
74
+
75
+
76
+ @pytest.fixture(params=[0, np.nan])
77
+ def data_for_sorting(request):
78
+ return SparseArray([2, 3, 1], fill_value=request.param)
79
+
80
+
81
+ @pytest.fixture(params=[0, np.nan])
82
+ def data_missing_for_sorting(request):
83
+ return SparseArray([2, np.nan, 1], fill_value=request.param)
84
+
85
+
86
+ @pytest.fixture
87
+ def na_cmp():
88
+ return lambda left, right: pd.isna(left) and pd.isna(right)
89
+
90
+
91
+ @pytest.fixture(params=[0, np.nan])
92
+ def data_for_grouping(request):
93
+ return SparseArray([1, 1, np.nan, np.nan, 2, 2, 1, 3], fill_value=request.param)
94
+
95
+
96
+ @pytest.fixture(params=[0, np.nan])
97
+ def data_for_compare(request):
98
+ return SparseArray([0, 0, np.nan, -2, -1, 4, 2, 3, 0, 0], fill_value=request.param)
99
+
100
+
101
+ class TestSparseArray(base.ExtensionTests):
102
+ def _supports_reduction(self, obj, op_name: str) -> bool:
103
+ return True
104
+
105
+ @pytest.mark.parametrize("skipna", [True, False])
106
+ def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna, request):
107
+ if all_numeric_reductions in [
108
+ "prod",
109
+ "median",
110
+ "var",
111
+ "std",
112
+ "sem",
113
+ "skew",
114
+ "kurt",
115
+ ]:
116
+ mark = pytest.mark.xfail(
117
+ reason="This should be viable but is not implemented"
118
+ )
119
+ request.node.add_marker(mark)
120
+ elif (
121
+ all_numeric_reductions in ["sum", "max", "min", "mean"]
122
+ and data.dtype.kind == "f"
123
+ and not skipna
124
+ ):
125
+ mark = pytest.mark.xfail(reason="getting a non-nan float")
126
+ request.node.add_marker(mark)
127
+
128
+ super().test_reduce_series_numeric(data, all_numeric_reductions, skipna)
129
+
130
+ @pytest.mark.parametrize("skipna", [True, False])
131
+ def test_reduce_frame(self, data, all_numeric_reductions, skipna, request):
132
+ if all_numeric_reductions in [
133
+ "prod",
134
+ "median",
135
+ "var",
136
+ "std",
137
+ "sem",
138
+ "skew",
139
+ "kurt",
140
+ ]:
141
+ mark = pytest.mark.xfail(
142
+ reason="This should be viable but is not implemented"
143
+ )
144
+ request.node.add_marker(mark)
145
+ elif (
146
+ all_numeric_reductions in ["sum", "max", "min", "mean"]
147
+ and data.dtype.kind == "f"
148
+ and not skipna
149
+ ):
150
+ mark = pytest.mark.xfail(reason="ExtensionArray NA mask are different")
151
+ request.node.add_marker(mark)
152
+
153
+ super().test_reduce_frame(data, all_numeric_reductions, skipna)
154
+
155
+ def _check_unsupported(self, data):
156
+ if data.dtype == SparseDtype(int, 0):
157
+ pytest.skip("Can't store nan in int array.")
158
+
159
+ def test_concat_mixed_dtypes(self, data):
160
+ # https://github.com/pandas-dev/pandas/issues/20762
161
+ # This should be the same, aside from concat([sparse, float])
162
+ df1 = pd.DataFrame({"A": data[:3]})
163
+ df2 = pd.DataFrame({"A": [1, 2, 3]})
164
+ df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category")
165
+ dfs = [df1, df2, df3]
166
+
167
+ # dataframes
168
+ result = pd.concat(dfs)
169
+ expected = pd.concat(
170
+ [x.apply(lambda s: np.asarray(s).astype(object)) for x in dfs]
171
+ )
172
+ tm.assert_frame_equal(result, expected)
173
+
174
+ @pytest.mark.filterwarnings(
175
+ "ignore:The previous implementation of stack is deprecated"
176
+ )
177
+ @pytest.mark.parametrize(
178
+ "columns",
179
+ [
180
+ ["A", "B"],
181
+ pd.MultiIndex.from_tuples(
182
+ [("A", "a"), ("A", "b")], names=["outer", "inner"]
183
+ ),
184
+ ],
185
+ )
186
+ @pytest.mark.parametrize("future_stack", [True, False])
187
+ def test_stack(self, data, columns, future_stack):
188
+ super().test_stack(data, columns, future_stack)
189
+
190
+ def test_concat_columns(self, data, na_value):
191
+ self._check_unsupported(data)
192
+ super().test_concat_columns(data, na_value)
193
+
194
+ def test_concat_extension_arrays_copy_false(self, data, na_value):
195
+ self._check_unsupported(data)
196
+ super().test_concat_extension_arrays_copy_false(data, na_value)
197
+
198
+ def test_align(self, data, na_value):
199
+ self._check_unsupported(data)
200
+ super().test_align(data, na_value)
201
+
202
+ def test_align_frame(self, data, na_value):
203
+ self._check_unsupported(data)
204
+ super().test_align_frame(data, na_value)
205
+
206
+ def test_align_series_frame(self, data, na_value):
207
+ self._check_unsupported(data)
208
+ super().test_align_series_frame(data, na_value)
209
+
210
+ def test_merge(self, data, na_value):
211
+ self._check_unsupported(data)
212
+ super().test_merge(data, na_value)
213
+
214
+ def test_get(self, data):
215
+ ser = pd.Series(data, index=[2 * i for i in range(len(data))])
216
+ if np.isnan(ser.values.fill_value):
217
+ assert np.isnan(ser.get(4)) and np.isnan(ser.iloc[2])
218
+ else:
219
+ assert ser.get(4) == ser.iloc[2]
220
+ assert ser.get(2) == ser.iloc[1]
221
+
222
+ def test_reindex(self, data, na_value):
223
+ self._check_unsupported(data)
224
+ super().test_reindex(data, na_value)
225
+
226
+ def test_isna(self, data_missing):
227
+ sarr = SparseArray(data_missing)
228
+ expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value))
229
+ expected = SparseArray([True, False], dtype=expected_dtype)
230
+ result = sarr.isna()
231
+ tm.assert_sp_array_equal(result, expected)
232
+
233
+ # test isna for arr without na
234
+ sarr = sarr.fillna(0)
235
+ expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value))
236
+ expected = SparseArray([False, False], fill_value=False, dtype=expected_dtype)
237
+ tm.assert_equal(sarr.isna(), expected)
238
+
239
+ def test_fillna_limit_backfill(self, data_missing):
240
+ warns = (PerformanceWarning, FutureWarning)
241
+ with tm.assert_produces_warning(warns, check_stacklevel=False):
242
+ super().test_fillna_limit_backfill(data_missing)
243
+
244
+ def test_fillna_no_op_returns_copy(self, data, request):
245
+ if np.isnan(data.fill_value):
246
+ request.applymarker(
247
+ pytest.mark.xfail(reason="returns array with different fill value")
248
+ )
249
+ super().test_fillna_no_op_returns_copy(data)
250
+
251
+ @pytest.mark.xfail(reason="Unsupported")
252
+ def test_fillna_series(self, data_missing):
253
+ # this one looks doable.
254
+ # TODO: this fails bc we do not pass through data_missing. If we did,
255
+ # the 0-fill case would xpass
256
+ super().test_fillna_series()
257
+
258
+ def test_fillna_frame(self, data_missing):
259
+ # Have to override to specify that fill_value will change.
260
+ fill_value = data_missing[1]
261
+
262
+ result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value)
263
+
264
+ if pd.isna(data_missing.fill_value):
265
+ dtype = SparseDtype(data_missing.dtype, fill_value)
266
+ else:
267
+ dtype = data_missing.dtype
268
+
269
+ expected = pd.DataFrame(
270
+ {
271
+ "A": data_missing._from_sequence([fill_value, fill_value], dtype=dtype),
272
+ "B": [1, 2],
273
+ }
274
+ )
275
+
276
+ tm.assert_frame_equal(result, expected)
277
+
278
+ _combine_le_expected_dtype = "Sparse[bool]"
279
+
280
+ def test_fillna_copy_frame(self, data_missing, using_copy_on_write):
281
+ arr = data_missing.take([1, 1])
282
+ df = pd.DataFrame({"A": arr}, copy=False)
283
+
284
+ filled_val = df.iloc[0, 0]
285
+ result = df.fillna(filled_val)
286
+
287
+ if hasattr(df._mgr, "blocks"):
288
+ if using_copy_on_write:
289
+ assert df.values.base is result.values.base
290
+ else:
291
+ assert df.values.base is not result.values.base
292
+ assert df.A._values.to_dense() is arr.to_dense()
293
+
294
+ def test_fillna_copy_series(self, data_missing, using_copy_on_write):
295
+ arr = data_missing.take([1, 1])
296
+ ser = pd.Series(arr, copy=False)
297
+
298
+ filled_val = ser[0]
299
+ result = ser.fillna(filled_val)
300
+
301
+ if using_copy_on_write:
302
+ assert ser._values is result._values
303
+
304
+ else:
305
+ assert ser._values is not result._values
306
+ assert ser._values.to_dense() is arr.to_dense()
307
+
308
+ @pytest.mark.xfail(reason="Not Applicable")
309
+ def test_fillna_length_mismatch(self, data_missing):
310
+ super().test_fillna_length_mismatch(data_missing)
311
+
312
+ def test_where_series(self, data, na_value):
313
+ assert data[0] != data[1]
314
+ cls = type(data)
315
+ a, b = data[:2]
316
+
317
+ ser = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype))
318
+
319
+ cond = np.array([True, True, False, False])
320
+ result = ser.where(cond)
321
+
322
+ new_dtype = SparseDtype("float", 0.0)
323
+ expected = pd.Series(
324
+ cls._from_sequence([a, a, na_value, na_value], dtype=new_dtype)
325
+ )
326
+ tm.assert_series_equal(result, expected)
327
+
328
+ other = cls._from_sequence([a, b, a, b], dtype=data.dtype)
329
+ cond = np.array([True, False, True, True])
330
+ result = ser.where(cond, other)
331
+ expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype))
332
+ tm.assert_series_equal(result, expected)
333
+
334
+ def test_searchsorted(self, data_for_sorting, as_series):
335
+ with tm.assert_produces_warning(PerformanceWarning, check_stacklevel=False):
336
+ super().test_searchsorted(data_for_sorting, as_series)
337
+
338
+ def test_shift_0_periods(self, data):
339
+ # GH#33856 shifting with periods=0 should return a copy, not same obj
340
+ result = data.shift(0)
341
+
342
+ data._sparse_values[0] = data._sparse_values[1]
343
+ assert result._sparse_values[0] != result._sparse_values[1]
344
+
345
+ @pytest.mark.parametrize("method", ["argmax", "argmin"])
346
+ def test_argmin_argmax_all_na(self, method, data, na_value):
347
+ # overriding because Sparse[int64, 0] cannot handle na_value
348
+ self._check_unsupported(data)
349
+ super().test_argmin_argmax_all_na(method, data, na_value)
350
+
351
+ @pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame])
352
+ def test_equals(self, data, na_value, as_series, box):
353
+ self._check_unsupported(data)
354
+ super().test_equals(data, na_value, as_series, box)
355
+
356
+ @pytest.mark.parametrize(
357
+ "func, na_action, expected",
358
+ [
359
+ (lambda x: x, None, SparseArray([1.0, np.nan])),
360
+ (lambda x: x, "ignore", SparseArray([1.0, np.nan])),
361
+ (str, None, SparseArray(["1.0", "nan"], fill_value="nan")),
362
+ (str, "ignore", SparseArray(["1.0", np.nan])),
363
+ ],
364
+ )
365
+ def test_map(self, func, na_action, expected):
366
+ # GH52096
367
+ data = SparseArray([1, np.nan])
368
+ result = data.map(func, na_action=na_action)
369
+ tm.assert_extension_array_equal(result, expected)
370
+
371
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
372
+ def test_map_raises(self, data, na_action):
373
+ # GH52096
374
+ msg = "fill value in the sparse values not supported"
375
+ with pytest.raises(ValueError, match=msg):
376
+ data.map(lambda x: np.nan, na_action=na_action)
377
+
378
+ @pytest.mark.xfail(raises=TypeError, reason="no sparse StringDtype")
379
+ def test_astype_string(self, data, nullable_string_dtype):
380
+ # TODO: this fails bc we do not pass through nullable_string_dtype;
381
+ # If we did, the 0-cases would xpass
382
+ super().test_astype_string(data)
383
+
384
+ series_scalar_exc = None
385
+ frame_scalar_exc = None
386
+ divmod_exc = None
387
+ series_array_exc = None
388
+
389
+ def _skip_if_different_combine(self, data):
390
+ if data.fill_value == 0:
391
+ # arith ops call on dtype.fill_value so that the sparsity
392
+ # is maintained. Combine can't be called on a dtype in
393
+ # general, so we can't make the expected. This is tested elsewhere
394
+ pytest.skip("Incorrected expected from Series.combine and tested elsewhere")
395
+
396
+ def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
397
+ self._skip_if_different_combine(data)
398
+ super().test_arith_series_with_scalar(data, all_arithmetic_operators)
399
+
400
+ def test_arith_series_with_array(self, data, all_arithmetic_operators):
401
+ self._skip_if_different_combine(data)
402
+ super().test_arith_series_with_array(data, all_arithmetic_operators)
403
+
404
+ def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
405
+ if data.dtype.fill_value != 0:
406
+ pass
407
+ elif all_arithmetic_operators.strip("_") not in [
408
+ "mul",
409
+ "rmul",
410
+ "floordiv",
411
+ "rfloordiv",
412
+ "pow",
413
+ "mod",
414
+ "rmod",
415
+ ]:
416
+ mark = pytest.mark.xfail(reason="result dtype.fill_value mismatch")
417
+ request.applymarker(mark)
418
+ super().test_arith_frame_with_scalar(data, all_arithmetic_operators)
419
+
420
+ def _compare_other(
421
+ self, ser: pd.Series, data_for_compare: SparseArray, comparison_op, other
422
+ ):
423
+ op = comparison_op
424
+
425
+ result = op(data_for_compare, other)
426
+ if isinstance(other, pd.Series):
427
+ assert isinstance(result, pd.Series)
428
+ assert isinstance(result.dtype, SparseDtype)
429
+ else:
430
+ assert isinstance(result, SparseArray)
431
+ assert result.dtype.subtype == np.bool_
432
+
433
+ if isinstance(other, pd.Series):
434
+ fill_value = op(data_for_compare.fill_value, other._values.fill_value)
435
+ expected = SparseArray(
436
+ op(data_for_compare.to_dense(), np.asarray(other)),
437
+ fill_value=fill_value,
438
+ dtype=np.bool_,
439
+ )
440
+
441
+ else:
442
+ fill_value = np.all(
443
+ op(np.asarray(data_for_compare.fill_value), np.asarray(other))
444
+ )
445
+
446
+ expected = SparseArray(
447
+ op(data_for_compare.to_dense(), np.asarray(other)),
448
+ fill_value=fill_value,
449
+ dtype=np.bool_,
450
+ )
451
+ if isinstance(other, pd.Series):
452
+ # error: Incompatible types in assignment
453
+ expected = pd.Series(expected) # type: ignore[assignment]
454
+ tm.assert_equal(result, expected)
455
+
456
+ def test_scalar(self, data_for_compare: SparseArray, comparison_op):
457
+ ser = pd.Series(data_for_compare)
458
+ self._compare_other(ser, data_for_compare, comparison_op, 0)
459
+ self._compare_other(ser, data_for_compare, comparison_op, 1)
460
+ self._compare_other(ser, data_for_compare, comparison_op, -1)
461
+ self._compare_other(ser, data_for_compare, comparison_op, np.nan)
462
+
463
+ def test_array(self, data_for_compare: SparseArray, comparison_op, request):
464
+ if data_for_compare.dtype.fill_value == 0 and comparison_op.__name__ in [
465
+ "eq",
466
+ "ge",
467
+ "le",
468
+ ]:
469
+ mark = pytest.mark.xfail(reason="Wrong fill_value")
470
+ request.applymarker(mark)
471
+
472
+ arr = np.linspace(-4, 5, 10)
473
+ ser = pd.Series(data_for_compare)
474
+ self._compare_other(ser, data_for_compare, comparison_op, arr)
475
+
476
+ def test_sparse_array(self, data_for_compare: SparseArray, comparison_op, request):
477
+ if data_for_compare.dtype.fill_value == 0 and comparison_op.__name__ != "gt":
478
+ mark = pytest.mark.xfail(reason="Wrong fill_value")
479
+ request.applymarker(mark)
480
+
481
+ ser = pd.Series(data_for_compare)
482
+ arr = data_for_compare + 1
483
+ self._compare_other(ser, data_for_compare, comparison_op, arr)
484
+ arr = data_for_compare * 2
485
+ self._compare_other(ser, data_for_compare, comparison_op, arr)
486
+
487
+ @pytest.mark.xfail(reason="Different repr")
488
+ def test_array_repr(self, data, size):
489
+ super().test_array_repr(data, size)
490
+
491
+ @pytest.mark.xfail(reason="result does not match expected")
492
+ @pytest.mark.parametrize("as_index", [True, False])
493
+ def test_groupby_extension_agg(self, as_index, data_for_grouping):
494
+ super().test_groupby_extension_agg(as_index, data_for_grouping)
495
+
496
+
497
+ def test_array_type_with_arg(dtype):
498
+ assert dtype.construct_array_type() is SparseArray
env-llmeval/lib/python3.10/site-packages/pandas/tests/extension/test_string.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ from __future__ import annotations
17
+
18
+ import string
19
+ from typing import cast
20
+
21
+ import numpy as np
22
+ import pytest
23
+
24
+ import pandas as pd
25
+ import pandas._testing as tm
26
+ from pandas.api.types import is_string_dtype
27
+ from pandas.core.arrays import ArrowStringArray
28
+ from pandas.core.arrays.string_ import StringDtype
29
+ from pandas.tests.extension import base
30
+
31
+
32
+ def maybe_split_array(arr, chunked):
33
+ if not chunked:
34
+ return arr
35
+ elif arr.dtype.storage != "pyarrow":
36
+ return arr
37
+
38
+ pa = pytest.importorskip("pyarrow")
39
+
40
+ arrow_array = arr._pa_array
41
+ split = len(arrow_array) // 2
42
+ arrow_array = pa.chunked_array(
43
+ [*arrow_array[:split].chunks, *arrow_array[split:].chunks]
44
+ )
45
+ assert arrow_array.num_chunks == 2
46
+ return type(arr)(arrow_array)
47
+
48
+
49
+ @pytest.fixture(params=[True, False])
50
+ def chunked(request):
51
+ return request.param
52
+
53
+
54
+ @pytest.fixture
55
+ def dtype(string_storage):
56
+ return StringDtype(storage=string_storage)
57
+
58
+
59
+ @pytest.fixture
60
+ def data(dtype, chunked):
61
+ strings = np.random.default_rng(2).choice(list(string.ascii_letters), size=100)
62
+ while strings[0] == strings[1]:
63
+ strings = np.random.default_rng(2).choice(list(string.ascii_letters), size=100)
64
+
65
+ arr = dtype.construct_array_type()._from_sequence(strings, dtype=dtype)
66
+ return maybe_split_array(arr, chunked)
67
+
68
+
69
+ @pytest.fixture
70
+ def data_missing(dtype, chunked):
71
+ """Length 2 array with [NA, Valid]"""
72
+ arr = dtype.construct_array_type()._from_sequence([pd.NA, "A"], dtype=dtype)
73
+ return maybe_split_array(arr, chunked)
74
+
75
+
76
+ @pytest.fixture
77
+ def data_for_sorting(dtype, chunked):
78
+ arr = dtype.construct_array_type()._from_sequence(["B", "C", "A"], dtype=dtype)
79
+ return maybe_split_array(arr, chunked)
80
+
81
+
82
+ @pytest.fixture
83
+ def data_missing_for_sorting(dtype, chunked):
84
+ arr = dtype.construct_array_type()._from_sequence(["B", pd.NA, "A"], dtype=dtype)
85
+ return maybe_split_array(arr, chunked)
86
+
87
+
88
+ @pytest.fixture
89
+ def data_for_grouping(dtype, chunked):
90
+ arr = dtype.construct_array_type()._from_sequence(
91
+ ["B", "B", pd.NA, pd.NA, "A", "A", "B", "C"], dtype=dtype
92
+ )
93
+ return maybe_split_array(arr, chunked)
94
+
95
+
96
+ class TestStringArray(base.ExtensionTests):
97
+ def test_eq_with_str(self, dtype):
98
+ assert dtype == f"string[{dtype.storage}]"
99
+ super().test_eq_with_str(dtype)
100
+
101
+ def test_is_not_string_type(self, dtype):
102
+ # Different from BaseDtypeTests.test_is_not_string_type
103
+ # because StringDtype is a string type
104
+ assert is_string_dtype(dtype)
105
+
106
+ def test_view(self, data, request, arrow_string_storage):
107
+ if data.dtype.storage in arrow_string_storage:
108
+ pytest.skip(reason="2D support not implemented for ArrowStringArray")
109
+ super().test_view(data)
110
+
111
+ def test_from_dtype(self, data):
112
+ # base test uses string representation of dtype
113
+ pass
114
+
115
+ def test_transpose(self, data, request, arrow_string_storage):
116
+ if data.dtype.storage in arrow_string_storage:
117
+ pytest.skip(reason="2D support not implemented for ArrowStringArray")
118
+ super().test_transpose(data)
119
+
120
+ def test_setitem_preserves_views(self, data, request, arrow_string_storage):
121
+ if data.dtype.storage in arrow_string_storage:
122
+ pytest.skip(reason="2D support not implemented for ArrowStringArray")
123
+ super().test_setitem_preserves_views(data)
124
+
125
+ def test_dropna_array(self, data_missing):
126
+ result = data_missing.dropna()
127
+ expected = data_missing[[1]]
128
+ tm.assert_extension_array_equal(result, expected)
129
+
130
+ def test_fillna_no_op_returns_copy(self, data):
131
+ data = data[~data.isna()]
132
+
133
+ valid = data[0]
134
+ result = data.fillna(valid)
135
+ assert result is not data
136
+ tm.assert_extension_array_equal(result, data)
137
+
138
+ result = data.fillna(method="backfill")
139
+ assert result is not data
140
+ tm.assert_extension_array_equal(result, data)
141
+
142
+ def _get_expected_exception(
143
+ self, op_name: str, obj, other
144
+ ) -> type[Exception] | None:
145
+ if op_name in ["__divmod__", "__rdivmod__"]:
146
+ if isinstance(obj, pd.Series) and cast(
147
+ StringDtype, tm.get_dtype(obj)
148
+ ).storage in [
149
+ "pyarrow",
150
+ "pyarrow_numpy",
151
+ ]:
152
+ # TODO: re-raise as TypeError?
153
+ return NotImplementedError
154
+ elif isinstance(other, pd.Series) and cast(
155
+ StringDtype, tm.get_dtype(other)
156
+ ).storage in [
157
+ "pyarrow",
158
+ "pyarrow_numpy",
159
+ ]:
160
+ # TODO: re-raise as TypeError?
161
+ return NotImplementedError
162
+ return TypeError
163
+ elif op_name in ["__mod__", "__rmod__", "__pow__", "__rpow__"]:
164
+ if cast(StringDtype, tm.get_dtype(obj)).storage in [
165
+ "pyarrow",
166
+ "pyarrow_numpy",
167
+ ]:
168
+ return NotImplementedError
169
+ return TypeError
170
+ elif op_name in ["__mul__", "__rmul__"]:
171
+ # Can only multiply strings by integers
172
+ return TypeError
173
+ elif op_name in [
174
+ "__truediv__",
175
+ "__rtruediv__",
176
+ "__floordiv__",
177
+ "__rfloordiv__",
178
+ "__sub__",
179
+ "__rsub__",
180
+ ]:
181
+ if cast(StringDtype, tm.get_dtype(obj)).storage in [
182
+ "pyarrow",
183
+ "pyarrow_numpy",
184
+ ]:
185
+ import pyarrow as pa
186
+
187
+ # TODO: better to re-raise as TypeError?
188
+ return pa.ArrowNotImplementedError
189
+ return TypeError
190
+
191
+ return None
192
+
193
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
194
+ return (
195
+ op_name in ["min", "max"]
196
+ or ser.dtype.storage == "pyarrow_numpy" # type: ignore[union-attr]
197
+ and op_name in ("any", "all")
198
+ )
199
+
200
+ def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
201
+ dtype = cast(StringDtype, tm.get_dtype(obj))
202
+ if op_name in ["__add__", "__radd__"]:
203
+ cast_to = dtype
204
+ elif dtype.storage == "pyarrow":
205
+ cast_to = "boolean[pyarrow]" # type: ignore[assignment]
206
+ elif dtype.storage == "pyarrow_numpy":
207
+ cast_to = np.bool_ # type: ignore[assignment]
208
+ else:
209
+ cast_to = "boolean" # type: ignore[assignment]
210
+ return pointwise_result.astype(cast_to)
211
+
212
+ def test_compare_scalar(self, data, comparison_op):
213
+ ser = pd.Series(data)
214
+ self._compare_other(ser, data, comparison_op, "abc")
215
+
216
+ @pytest.mark.filterwarnings("ignore:Falling back:pandas.errors.PerformanceWarning")
217
+ def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
218
+ super().test_groupby_extension_apply(data_for_grouping, groupby_apply_op)
219
+
220
+
221
+ class Test2DCompat(base.Dim2CompatTests):
222
+ @pytest.fixture(autouse=True)
223
+ def arrow_not_supported(self, data):
224
+ if isinstance(data, ArrowStringArray):
225
+ pytest.skip(reason="2D support not implemented for ArrowStringArray")
226
+
227
+
228
+ def test_searchsorted_with_na_raises(data_for_sorting, as_series):
229
+ # GH50447
230
+ b, c, a = data_for_sorting
231
+ arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c]
232
+ arr[-1] = pd.NA
233
+
234
+ if as_series:
235
+ arr = pd.Series(arr)
236
+
237
+ msg = (
238
+ "searchsorted requires array to be sorted, "
239
+ "which is impossible with NAs present."
240
+ )
241
+ with pytest.raises(ValueError, match=msg):
242
+ arr.searchsorted(b)
env-llmeval/lib/python3.10/site-packages/pandas/tests/interchange/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/interchange/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (189 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/interchange/__pycache__/test_impl.cpython-310.pyc ADDED
Binary file (17.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/interchange/__pycache__/test_spec_conformance.cpython-310.pyc ADDED
Binary file (5.26 kB). View file