Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- llmeval-env/lib/python3.10/site-packages/safetensors/_safetensors_rust.cpython-310-x86_64-linux-gnu.so +3 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_config_module.py +369 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_contextlib.py +152 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_cpp_extension_versioner.py +58 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_cuda_trace.py +99 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_cxx_pytree.py +970 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_import_utils.py +42 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_stats.py +21 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_traceback.py +254 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/backend_registration.py +339 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/checkpoint.py +1439 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/collect_env.py +624 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/cpp_backtrace.py +11 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/cpp_extension.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/__init__.py +76 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/backward_compatibility.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/dataloader.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/dataset.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/distributed.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/graph.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/graph_settings.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/sampler.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/backward_compatibility.py +5 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/dataloader.py +1479 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/__init__.py +3 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/_decorator.py +184 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/_hook_iterator.py +248 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/_typing.py +430 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/__init__.py +11 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/__pycache__/datapipes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/__pycache__/structures.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/dataframes.py +433 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/datapipes.py +131 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/structures.py +18 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/datapipe.py +404 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/datapipe.pyi +689 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/gen_pyi.py +246 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/dataset.py +488 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/distributed.py +137 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/graph.py +149 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/graph_settings.py +160 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/data/sampler.py +305 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/dlpack.py +121 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/file_baton.py +49 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/flop_counter.py +559 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/hooks.py +252 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/mkldnn.py +233 -0
.gitattributes
CHANGED
@@ -198,3 +198,4 @@ llmeval-env/lib/python3.10/site-packages/pandas/_libs/groupby.cpython-310-x86_64
|
|
198 |
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
199 |
llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashtable.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
200 |
llmeval-env/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
198 |
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
199 |
llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashtable.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
200 |
llmeval-env/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 filter=lfs diff=lfs merge=lfs -text
|
201 |
+
llmeval-env/lib/python3.10/site-packages/safetensors/_safetensors_rust.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
llmeval-env/lib/python3.10/site-packages/safetensors/_safetensors_rust.cpython-310-x86_64-linux-gnu.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6345c716b5d67adb2d3f2477c07c0b1a214a70aa7cb71101d99327aba0bfaa0
|
3 |
+
size 4438576
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_config_module.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
|
3 |
+
import copy
|
4 |
+
import hashlib
|
5 |
+
import inspect
|
6 |
+
import io
|
7 |
+
import pickle
|
8 |
+
import tokenize
|
9 |
+
import unittest
|
10 |
+
import warnings
|
11 |
+
from types import FunctionType, ModuleType
|
12 |
+
from typing import Any, Dict, Optional, Set, Union
|
13 |
+
from unittest import mock
|
14 |
+
|
15 |
+
# Types saved/loaded in configs
|
16 |
+
CONFIG_TYPES = (int, float, bool, type(None), str, list, set, tuple, dict)
|
17 |
+
|
18 |
+
|
19 |
+
def install_config_module(module):
|
20 |
+
"""
|
21 |
+
Converts a module-level config into a `ConfigModule()`.
|
22 |
+
|
23 |
+
See _config_typing.pyi for instructions on how to get the converted module to typecheck.
|
24 |
+
"""
|
25 |
+
|
26 |
+
class ConfigModuleInstance(ConfigModule):
|
27 |
+
_bypass_keys = set({"_is_dirty", "_hash_digest"})
|
28 |
+
|
29 |
+
def visit(source, dest, prefix):
|
30 |
+
"""Walk the module structure and move everything to module._config"""
|
31 |
+
for key, value in list(source.__dict__.items()):
|
32 |
+
if (
|
33 |
+
key.startswith("__")
|
34 |
+
or isinstance(value, (ModuleType, FunctionType))
|
35 |
+
or (hasattr(value, "__module__") and value.__module__ == "typing")
|
36 |
+
):
|
37 |
+
continue
|
38 |
+
|
39 |
+
name = f"{prefix}{key}"
|
40 |
+
if isinstance(value, CONFIG_TYPES):
|
41 |
+
config[name] = value
|
42 |
+
default[name] = value
|
43 |
+
if dest is module:
|
44 |
+
delattr(module, key)
|
45 |
+
elif isinstance(value, type):
|
46 |
+
assert value.__module__ == module.__name__
|
47 |
+
# a subconfig with `class Blah:` syntax
|
48 |
+
proxy = SubConfigProxy(module, f"{name}.")
|
49 |
+
visit(value, proxy, f"{name}.")
|
50 |
+
setattr(dest, key, proxy)
|
51 |
+
else:
|
52 |
+
raise AssertionError(f"Unhandled config {key}={value} ({type(value)})")
|
53 |
+
|
54 |
+
config: Dict[str, Any] = dict()
|
55 |
+
default: Dict[str, Any] = dict()
|
56 |
+
|
57 |
+
compile_ignored_keys = get_assignments_with_compile_ignored_comments(module)
|
58 |
+
|
59 |
+
visit(module, module, "")
|
60 |
+
module._config = config
|
61 |
+
module._default = default
|
62 |
+
module._allowed_keys = set(config.keys())
|
63 |
+
module._compile_ignored_keys = compile_ignored_keys
|
64 |
+
module.__class__ = ConfigModuleInstance
|
65 |
+
module._is_dirty = True
|
66 |
+
module._hash_digest = None
|
67 |
+
|
68 |
+
|
69 |
+
COMPILE_IGNORED_MARKER = "@compile_ignored"
|
70 |
+
|
71 |
+
|
72 |
+
# Gets all the keys (i.e. assignments) with a @compile_ignored comment
|
73 |
+
def get_assignments_with_compile_ignored_comments(module):
|
74 |
+
source_code = inspect.getsource(module)
|
75 |
+
assignments = set()
|
76 |
+
|
77 |
+
# Tokenize the source code to retrieve comments
|
78 |
+
tokens = tokenize.tokenize(io.BytesIO(source_code.encode("utf-8")).readline)
|
79 |
+
current_comment = "", -1
|
80 |
+
prev_name = ""
|
81 |
+
|
82 |
+
for token in tokens:
|
83 |
+
if token.type == tokenize.COMMENT:
|
84 |
+
prev_name = ""
|
85 |
+
maybe_current = token.string.strip()
|
86 |
+
if COMPILE_IGNORED_MARKER in maybe_current:
|
87 |
+
assert current_comment == (
|
88 |
+
"",
|
89 |
+
-1,
|
90 |
+
), f"unconsumed {COMPILE_IGNORED_MARKER}"
|
91 |
+
current_comment = maybe_current, token.start[0]
|
92 |
+
elif token.type == tokenize.NAME:
|
93 |
+
# Only accept the first name token, to handle if you have
|
94 |
+
# something like foo: Bar = ...
|
95 |
+
if not prev_name:
|
96 |
+
prev_name = token.string
|
97 |
+
elif token.type == tokenize.OP and token.string == "=":
|
98 |
+
# Check if the current assignment follows a comment
|
99 |
+
# with COMPILE_IGNORED_MARKER
|
100 |
+
if (
|
101 |
+
COMPILE_IGNORED_MARKER in current_comment[0]
|
102 |
+
and current_comment[1] == token.start[0] - 1
|
103 |
+
):
|
104 |
+
assignments.add(prev_name)
|
105 |
+
current_comment = "", -1 # reset
|
106 |
+
prev_name = ""
|
107 |
+
assert current_comment == ("", -1), f"unconsumed {COMPILE_IGNORED_MARKER}"
|
108 |
+
return assignments
|
109 |
+
|
110 |
+
|
111 |
+
class ConfigModule(ModuleType):
|
112 |
+
# NOTE: This should be kept in sync with _config_typing.pyi.
|
113 |
+
|
114 |
+
# The default values of the configuration settings. This can be used to
|
115 |
+
# determine if the config has been changed or not.
|
116 |
+
_default: Dict[str, Any]
|
117 |
+
# The actual configuration settings. E.g., torch._dynamo.config.debug
|
118 |
+
# would live as "debug" in the key, and torch._inductor.config.triton.cudagraphs
|
119 |
+
# maps as "triton.cudagraphs"
|
120 |
+
_config: Dict[str, Any]
|
121 |
+
_allowed_keys: Set[str]
|
122 |
+
_bypass_keys: Set[str]
|
123 |
+
_compile_ignored_keys: Set[str]
|
124 |
+
_is_dirty: bool
|
125 |
+
_hash_digest: Optional[bytes]
|
126 |
+
|
127 |
+
def __init__(self):
|
128 |
+
raise NotImplementedError(
|
129 |
+
f"use {__name__}.install_config_module(sys.modules[__name__])"
|
130 |
+
)
|
131 |
+
|
132 |
+
def __setattr__(self, name, value):
|
133 |
+
if name in self._bypass_keys:
|
134 |
+
super().__setattr__(name, value)
|
135 |
+
elif name not in self._allowed_keys:
|
136 |
+
raise AttributeError(f"{self.__name__}.{name} does not exist")
|
137 |
+
else:
|
138 |
+
self._config[name] = value
|
139 |
+
|
140 |
+
def __getattr__(self, name):
|
141 |
+
try:
|
142 |
+
return self._config[name]
|
143 |
+
except KeyError as e:
|
144 |
+
# make hasattr() work properly
|
145 |
+
raise AttributeError(f"{self.__name__}.{name} does not exist") from e
|
146 |
+
|
147 |
+
def __delattr__(self, name):
|
148 |
+
# must support delete because unittest.mock.patch deletes
|
149 |
+
# then recreate things
|
150 |
+
del self._config[name]
|
151 |
+
|
152 |
+
def save_config(self) -> bytes:
|
153 |
+
"""Convert config to a pickled blob"""
|
154 |
+
config = dict(self._config)
|
155 |
+
for key in config.get("_save_config_ignore", ()):
|
156 |
+
config.pop(key)
|
157 |
+
return pickle.dumps(config, protocol=2)
|
158 |
+
|
159 |
+
def codegen_config(self) -> str:
|
160 |
+
"""Convert config to Python statements that replicate current config.
|
161 |
+
This does NOT include config settings that are at default values.
|
162 |
+
"""
|
163 |
+
lines = []
|
164 |
+
mod = self.__name__
|
165 |
+
for k, v in self._config.items():
|
166 |
+
if k in self._config.get("_save_config_ignore", ()):
|
167 |
+
continue
|
168 |
+
if v == self._default[k]:
|
169 |
+
continue
|
170 |
+
lines.append(f"{mod}.{k} = {v!r}")
|
171 |
+
return "\n".join(lines)
|
172 |
+
|
173 |
+
def get_hash(self) -> bytes:
|
174 |
+
"""Hashes the configs that are not compile_ignored"""
|
175 |
+
if self._is_dirty or self._hash_digest is None:
|
176 |
+
dict_to_hash = {
|
177 |
+
k: v
|
178 |
+
for k, v in self._config.items()
|
179 |
+
if k not in self._compile_ignored_keys
|
180 |
+
}
|
181 |
+
string_to_hash = repr(sorted(dict_to_hash.items()))
|
182 |
+
self._hash_digest = hashlib.md5(string_to_hash.encode("utf-8")).digest()
|
183 |
+
self._is_dirty = False
|
184 |
+
return self._hash_digest
|
185 |
+
|
186 |
+
def to_dict(self) -> Dict[str, Any]:
|
187 |
+
warnings.warn(
|
188 |
+
"config.to_dict() has been deprecated. It may no longer change the underlying config."
|
189 |
+
" use config.shallow_copy_dict() or config.get_config_copy() instead",
|
190 |
+
DeprecationWarning,
|
191 |
+
)
|
192 |
+
return self.shallow_copy_dict()
|
193 |
+
|
194 |
+
def shallow_copy_dict(self) -> Dict[str, Any]:
|
195 |
+
return {**self._config}
|
196 |
+
|
197 |
+
def load_config(self, maybe_pickled_config: Union[bytes, Dict[str, Any]]) -> None:
|
198 |
+
"""Restore from a prior call to save_config() or shallow_copy_dict()"""
|
199 |
+
if not isinstance(maybe_pickled_config, dict):
|
200 |
+
config = pickle.loads(maybe_pickled_config)
|
201 |
+
else:
|
202 |
+
config = maybe_pickled_config
|
203 |
+
self._config.update(config)
|
204 |
+
|
205 |
+
def get_config_copy(self) -> Dict[str, Any]:
|
206 |
+
return copy.deepcopy(self._config)
|
207 |
+
|
208 |
+
def patch(
|
209 |
+
self,
|
210 |
+
arg1: Optional[Union[str, Dict[str, Any]]] = None,
|
211 |
+
arg2: Any = None,
|
212 |
+
**kwargs,
|
213 |
+
):
|
214 |
+
"""
|
215 |
+
Decorator and/or context manager to make temporary changes to a config.
|
216 |
+
|
217 |
+
As a decorator:
|
218 |
+
|
219 |
+
@config.patch("name", val)
|
220 |
+
@config.patch(name1=val1, name2=val2)
|
221 |
+
@config.patch({"name1": val1, "name2", val2})
|
222 |
+
def foo(...):
|
223 |
+
...
|
224 |
+
|
225 |
+
As a context manager:
|
226 |
+
|
227 |
+
with config.patch("name", val):
|
228 |
+
...
|
229 |
+
"""
|
230 |
+
changes: Dict[str, Any]
|
231 |
+
if arg1 is not None:
|
232 |
+
if arg2 is not None:
|
233 |
+
assert isinstance(arg1, str)
|
234 |
+
# patch("key", True) syntax
|
235 |
+
changes = {arg1: arg2}
|
236 |
+
else:
|
237 |
+
assert isinstance(arg1, dict)
|
238 |
+
# patch({"key": True}) syntax
|
239 |
+
changes = arg1
|
240 |
+
assert not kwargs
|
241 |
+
else:
|
242 |
+
# patch(key=True) syntax
|
243 |
+
changes = kwargs
|
244 |
+
assert arg2 is None
|
245 |
+
assert isinstance(changes, dict), f"expected `dict` got {type(changes)}"
|
246 |
+
prior: Dict[str, Any] = {}
|
247 |
+
config = self
|
248 |
+
dirty = False
|
249 |
+
|
250 |
+
class ConfigPatch(ContextDecorator):
|
251 |
+
def __enter__(self):
|
252 |
+
assert not prior
|
253 |
+
nonlocal dirty
|
254 |
+
for key in changes.keys():
|
255 |
+
# KeyError on invalid entry
|
256 |
+
prior[key] = config._config[key]
|
257 |
+
dirty = key not in config._compile_ignored_keys
|
258 |
+
config._config.update(changes)
|
259 |
+
config._is_dirty = dirty
|
260 |
+
|
261 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
262 |
+
nonlocal dirty
|
263 |
+
config._config.update(prior)
|
264 |
+
config._is_dirty = dirty
|
265 |
+
prior.clear()
|
266 |
+
|
267 |
+
return ConfigPatch()
|
268 |
+
|
269 |
+
def _make_closure_patcher(self, **changes):
|
270 |
+
"""
|
271 |
+
A lower-overhead version of patch() for things on the critical path.
|
272 |
+
|
273 |
+
Usage:
|
274 |
+
|
275 |
+
# do this off the critical path
|
276 |
+
change_fn = config.make_closure_patcher(foo=True)
|
277 |
+
|
278 |
+
...
|
279 |
+
|
280 |
+
revert = change_fn()
|
281 |
+
try:
|
282 |
+
...
|
283 |
+
finally:
|
284 |
+
revert()
|
285 |
+
|
286 |
+
"""
|
287 |
+
config = self._config
|
288 |
+
|
289 |
+
def change():
|
290 |
+
prior = {k: config[k] for k in changes}
|
291 |
+
config.update(changes)
|
292 |
+
|
293 |
+
def revert():
|
294 |
+
config.update(prior)
|
295 |
+
|
296 |
+
return revert
|
297 |
+
|
298 |
+
return change
|
299 |
+
|
300 |
+
|
301 |
+
class ContextDecorator(contextlib.ContextDecorator):
|
302 |
+
"""
|
303 |
+
Same as contextlib.ContextDecorator, but with support for
|
304 |
+
`unittest.TestCase`
|
305 |
+
"""
|
306 |
+
|
307 |
+
def __enter__(self):
|
308 |
+
raise NotImplementedError("NYI")
|
309 |
+
|
310 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
311 |
+
raise NotImplementedError("NYI")
|
312 |
+
|
313 |
+
def __call__(self, func):
|
314 |
+
if isinstance(func, type) and issubclass(func, unittest.TestCase):
|
315 |
+
|
316 |
+
class _TestCase(func): # type: ignore[valid-type, misc]
|
317 |
+
@classmethod
|
318 |
+
def setUpClass(cls):
|
319 |
+
self.__enter__()
|
320 |
+
try:
|
321 |
+
super().setUpClass()
|
322 |
+
except Exception:
|
323 |
+
self.__exit__(None, None, None)
|
324 |
+
raise
|
325 |
+
|
326 |
+
@classmethod
|
327 |
+
def tearDownClass(cls):
|
328 |
+
try:
|
329 |
+
super().tearDownClass()
|
330 |
+
finally:
|
331 |
+
self.__exit__(None, None, None)
|
332 |
+
|
333 |
+
_TestCase.__name__ = func.__name__
|
334 |
+
_TestCase.__qualname__ = func.__qualname__
|
335 |
+
_TestCase.__module__ = func.__module__
|
336 |
+
|
337 |
+
return _TestCase
|
338 |
+
|
339 |
+
return super().__call__(func)
|
340 |
+
|
341 |
+
|
342 |
+
class SubConfigProxy:
|
343 |
+
"""
|
344 |
+
Shim to redirect to main config.
|
345 |
+
`config.triton.cudagraphs` maps to _config["triton.cudagraphs"]
|
346 |
+
"""
|
347 |
+
|
348 |
+
def __init__(self, config, prefix):
|
349 |
+
# `super().__setattr__` to bypass custom `__setattr__`
|
350 |
+
super().__setattr__("_config", config)
|
351 |
+
super().__setattr__("_prefix", prefix)
|
352 |
+
|
353 |
+
def __setattr__(self, name, value):
|
354 |
+
return self._config.__setattr__(self._prefix + name, value)
|
355 |
+
|
356 |
+
def __getattr__(self, name):
|
357 |
+
return self._config.__getattr__(self._prefix + name)
|
358 |
+
|
359 |
+
def __delattr__(self, name):
|
360 |
+
return self._config.__delattr__(self._prefix + name)
|
361 |
+
|
362 |
+
|
363 |
+
def patch_object(obj, name, value):
|
364 |
+
"""
|
365 |
+
Workaround `mock.patch.object` issue with ConfigModule
|
366 |
+
"""
|
367 |
+
if isinstance(obj, ConfigModule):
|
368 |
+
return obj.patch(name, value)
|
369 |
+
return mock.patch.object(obj, name, value)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_contextlib.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Extra utilities for working with context managers that should have been
|
2 |
+
# in the standard library but are not
|
3 |
+
|
4 |
+
import functools
|
5 |
+
import inspect
|
6 |
+
import warnings
|
7 |
+
import sys
|
8 |
+
from typing import Any, Callable, TypeVar, cast
|
9 |
+
|
10 |
+
# Used for annotating the decorator usage of _DecoratorContextManager (e.g.,
|
11 |
+
# 'no_grad' and 'enable_grad').
|
12 |
+
# See https://mypy.readthedocs.io/en/latest/generics.html#declaring-decorators
|
13 |
+
FuncType = Callable[..., Any]
|
14 |
+
F = TypeVar('F', bound=FuncType)
|
15 |
+
|
16 |
+
|
17 |
+
def _wrap_generator(ctx_factory, func):
|
18 |
+
"""
|
19 |
+
Wrap each generator invocation with the context manager factory.
|
20 |
+
|
21 |
+
The input should be a function that returns a context manager,
|
22 |
+
not a context manager itself, to handle one-shot context managers.
|
23 |
+
"""
|
24 |
+
@functools.wraps(func)
|
25 |
+
def generator_context(*args, **kwargs):
|
26 |
+
gen = func(*args, **kwargs)
|
27 |
+
|
28 |
+
# Generators are suspended and unsuspended at `yield`, hence we
|
29 |
+
# make sure the grad mode is properly set every time the execution
|
30 |
+
# flow returns into the wrapped generator and restored when it
|
31 |
+
# returns through our `yield` to our caller (see PR #49017).
|
32 |
+
try:
|
33 |
+
# Issuing `None` to a generator fires it up
|
34 |
+
with ctx_factory():
|
35 |
+
response = gen.send(None)
|
36 |
+
|
37 |
+
while True:
|
38 |
+
try:
|
39 |
+
# Forward the response to our caller and get its next request
|
40 |
+
request = yield response
|
41 |
+
|
42 |
+
except GeneratorExit:
|
43 |
+
# Inform the still active generator about its imminent closure
|
44 |
+
with ctx_factory():
|
45 |
+
gen.close()
|
46 |
+
raise
|
47 |
+
|
48 |
+
except BaseException:
|
49 |
+
# Propagate the exception thrown at us by the caller
|
50 |
+
with ctx_factory():
|
51 |
+
response = gen.throw(*sys.exc_info())
|
52 |
+
|
53 |
+
else:
|
54 |
+
# Pass the last request to the generator and get its response
|
55 |
+
with ctx_factory():
|
56 |
+
response = gen.send(request)
|
57 |
+
|
58 |
+
# We let the exceptions raised above by the generator's `.throw` or
|
59 |
+
# `.send` methods bubble up to our caller, except for StopIteration
|
60 |
+
except StopIteration as e:
|
61 |
+
# The generator informed us that it is done: take whatever its
|
62 |
+
# returned value (if any) was and indicate that we're done too
|
63 |
+
# by returning it (see docs for python's return-statement).
|
64 |
+
return e.value
|
65 |
+
|
66 |
+
return generator_context
|
67 |
+
|
68 |
+
|
69 |
+
def context_decorator(ctx, func):
|
70 |
+
"""
|
71 |
+
Like contextlib.ContextDecorator.
|
72 |
+
|
73 |
+
But with the following differences:
|
74 |
+
1. Is done by wrapping, rather than inheritance, so it works with context
|
75 |
+
managers that are implemented from C and thus cannot easily inherit from
|
76 |
+
Python classes
|
77 |
+
2. Wraps generators in the intuitive way (c.f. https://bugs.python.org/issue37743)
|
78 |
+
3. Errors out if you try to wrap a class, because it is ambiguous whether
|
79 |
+
or not you intended to wrap only the constructor
|
80 |
+
|
81 |
+
The input argument can either be a context manager (in which case it must
|
82 |
+
be a multi-shot context manager that can be directly invoked multiple times)
|
83 |
+
or a callable that produces a context manager.
|
84 |
+
"""
|
85 |
+
assert not (callable(ctx) and hasattr(ctx, '__enter__')), (
|
86 |
+
f"Passed in {ctx} is both callable and also a valid context manager "
|
87 |
+
"(has __enter__), making it ambiguous which interface to use. If you "
|
88 |
+
"intended to pass a context manager factory, rewrite your call as "
|
89 |
+
"context_decorator(lambda: ctx()); if you intended to pass a context "
|
90 |
+
"manager directly, rewrite your call as context_decorator(lambda: ctx)"
|
91 |
+
)
|
92 |
+
|
93 |
+
if not callable(ctx):
|
94 |
+
def ctx_factory():
|
95 |
+
return ctx
|
96 |
+
else:
|
97 |
+
ctx_factory = ctx
|
98 |
+
|
99 |
+
if inspect.isclass(func):
|
100 |
+
raise RuntimeError(
|
101 |
+
"Cannot decorate classes; it is ambiguous whether or not only the "
|
102 |
+
"constructor or all methods should have the context manager applied; "
|
103 |
+
"additionally, decorating a class at definition-site will prevent "
|
104 |
+
"use of the identifier as a conventional type. "
|
105 |
+
"To specify which methods to decorate, decorate each of them "
|
106 |
+
"individually."
|
107 |
+
)
|
108 |
+
|
109 |
+
if inspect.isgeneratorfunction(func):
|
110 |
+
return _wrap_generator(ctx_factory, func)
|
111 |
+
|
112 |
+
@functools.wraps(func)
|
113 |
+
def decorate_context(*args, **kwargs):
|
114 |
+
with ctx_factory():
|
115 |
+
return func(*args, **kwargs)
|
116 |
+
|
117 |
+
return decorate_context
|
118 |
+
|
119 |
+
|
120 |
+
class _DecoratorContextManager:
|
121 |
+
"""Allow a context manager to be used as a decorator."""
|
122 |
+
|
123 |
+
def __call__(self, orig_func: F) -> F:
|
124 |
+
if inspect.isclass(orig_func):
|
125 |
+
warnings.warn("Decorating classes is deprecated and will be disabled in "
|
126 |
+
"future versions. You should only decorate functions or methods. "
|
127 |
+
"To preserve the current behavior of class decoration, you can "
|
128 |
+
"directly decorate the `__init__` method and nothing else.")
|
129 |
+
func = cast(F, lambda *args, **kwargs: orig_func(*args, **kwargs))
|
130 |
+
else:
|
131 |
+
func = orig_func
|
132 |
+
|
133 |
+
return cast(F, context_decorator(self.clone, func))
|
134 |
+
|
135 |
+
def __enter__(self) -> None:
|
136 |
+
raise NotImplementedError
|
137 |
+
|
138 |
+
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
|
139 |
+
raise NotImplementedError
|
140 |
+
|
141 |
+
def clone(self):
|
142 |
+
# override this method if your children class takes __init__ parameters
|
143 |
+
return self.__class__()
|
144 |
+
|
145 |
+
|
146 |
+
class _NoParamDecoratorContextManager(_DecoratorContextManager):
|
147 |
+
"""Allow a context manager to be used as a decorator without parentheses."""
|
148 |
+
|
149 |
+
def __new__(cls, orig_func=None):
|
150 |
+
if orig_func is None:
|
151 |
+
return super().__new__(cls)
|
152 |
+
return cls()(orig_func)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_cpp_extension_versioner.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
|
3 |
+
|
4 |
+
Entry = collections.namedtuple('Entry', 'version, hash')
|
5 |
+
|
6 |
+
|
7 |
+
def update_hash(seed, value):
|
8 |
+
# Good old boost::hash_combine
|
9 |
+
# https://www.boost.org/doc/libs/1_35_0/doc/html/boost/hash_combine_id241013.html
|
10 |
+
return seed ^ (hash(value) + 0x9e3779b9 + (seed << 6) + (seed >> 2))
|
11 |
+
|
12 |
+
|
13 |
+
def hash_source_files(hash_value, source_files):
|
14 |
+
for filename in source_files:
|
15 |
+
with open(filename) as file:
|
16 |
+
hash_value = update_hash(hash_value, file.read())
|
17 |
+
return hash_value
|
18 |
+
|
19 |
+
|
20 |
+
def hash_build_arguments(hash_value, build_arguments):
|
21 |
+
for group in build_arguments:
|
22 |
+
if group:
|
23 |
+
for argument in group:
|
24 |
+
hash_value = update_hash(hash_value, argument)
|
25 |
+
return hash_value
|
26 |
+
|
27 |
+
|
28 |
+
class ExtensionVersioner:
|
29 |
+
def __init__(self):
|
30 |
+
self.entries = {}
|
31 |
+
|
32 |
+
def get_version(self, name):
|
33 |
+
entry = self.entries.get(name)
|
34 |
+
return None if entry is None else entry.version
|
35 |
+
|
36 |
+
def bump_version_if_changed(self,
|
37 |
+
name,
|
38 |
+
source_files,
|
39 |
+
build_arguments,
|
40 |
+
build_directory,
|
41 |
+
with_cuda,
|
42 |
+
is_python_module,
|
43 |
+
is_standalone):
|
44 |
+
hash_value = 0
|
45 |
+
hash_value = hash_source_files(hash_value, source_files)
|
46 |
+
hash_value = hash_build_arguments(hash_value, build_arguments)
|
47 |
+
hash_value = update_hash(hash_value, build_directory)
|
48 |
+
hash_value = update_hash(hash_value, with_cuda)
|
49 |
+
hash_value = update_hash(hash_value, is_python_module)
|
50 |
+
hash_value = update_hash(hash_value, is_standalone)
|
51 |
+
|
52 |
+
entry = self.entries.get(name)
|
53 |
+
if entry is None:
|
54 |
+
self.entries[name] = entry = Entry(0, hash_value)
|
55 |
+
elif hash_value != entry.hash:
|
56 |
+
self.entries[name] = entry = Entry(entry.version + 1, hash_value)
|
57 |
+
|
58 |
+
return entry.version
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_cuda_trace.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Callable, Generic, List
|
3 |
+
|
4 |
+
from typing_extensions import ParamSpec # Python 3.10+
|
5 |
+
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
P = ParamSpec("P")
|
8 |
+
|
9 |
+
|
10 |
+
class CallbackRegistry(Generic[P]):
|
11 |
+
def __init__(self, name: str):
|
12 |
+
self.name = name
|
13 |
+
self.callback_list: List[Callable[P, None]] = []
|
14 |
+
|
15 |
+
def add_callback(self, cb: Callable[P, None]) -> None:
|
16 |
+
self.callback_list.append(cb)
|
17 |
+
|
18 |
+
def fire_callbacks(self, *args: P.args, **kwargs: P.kwargs) -> None:
|
19 |
+
for cb in self.callback_list:
|
20 |
+
try:
|
21 |
+
cb(*args, **kwargs)
|
22 |
+
except Exception as e:
|
23 |
+
logger.exception(
|
24 |
+
"Exception in callback for %s registered with CUDA trace", self.name
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
CUDAEventCreationCallbacks: "CallbackRegistry[int]" = CallbackRegistry(
|
29 |
+
"CUDA event creation"
|
30 |
+
)
|
31 |
+
CUDAEventDeletionCallbacks: "CallbackRegistry[int]" = CallbackRegistry(
|
32 |
+
"CUDA event deletion"
|
33 |
+
)
|
34 |
+
CUDAEventRecordCallbacks: "CallbackRegistry[int, int]" = CallbackRegistry(
|
35 |
+
"CUDA event record"
|
36 |
+
)
|
37 |
+
CUDAEventWaitCallbacks: "CallbackRegistry[int, int]" = CallbackRegistry(
|
38 |
+
"CUDA event wait"
|
39 |
+
)
|
40 |
+
CUDAMemoryAllocationCallbacks: "CallbackRegistry[int]" = CallbackRegistry(
|
41 |
+
"CUDA memory allocation"
|
42 |
+
)
|
43 |
+
CUDAMemoryDeallocationCallbacks: "CallbackRegistry[int]" = CallbackRegistry(
|
44 |
+
"CUDA memory deallocation"
|
45 |
+
)
|
46 |
+
CUDAStreamCreationCallbacks: "CallbackRegistry[int]" = CallbackRegistry(
|
47 |
+
"CUDA stream creation"
|
48 |
+
)
|
49 |
+
CUDADeviceSynchronizationCallbacks: "CallbackRegistry[[]]" = CallbackRegistry(
|
50 |
+
"CUDA device synchronization"
|
51 |
+
)
|
52 |
+
CUDAStreamSynchronizationCallbacks: "CallbackRegistry[int]" = CallbackRegistry(
|
53 |
+
"CUDA stream synchronization"
|
54 |
+
)
|
55 |
+
CUDAEventSynchronizationCallbacks: "CallbackRegistry[int]" = CallbackRegistry(
|
56 |
+
"CUDA event synchronization"
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
def register_callback_for_cuda_event_creation(cb: Callable[[int], None]) -> None:
|
61 |
+
CUDAEventCreationCallbacks.add_callback(cb)
|
62 |
+
|
63 |
+
|
64 |
+
def register_callback_for_cuda_event_deletion(cb: Callable[[int], None]) -> None:
|
65 |
+
CUDAEventDeletionCallbacks.add_callback(cb)
|
66 |
+
|
67 |
+
|
68 |
+
def register_callback_for_cuda_event_record(cb: Callable[[int, int], None]) -> None:
|
69 |
+
CUDAEventRecordCallbacks.add_callback(cb)
|
70 |
+
|
71 |
+
|
72 |
+
def register_callback_for_cuda_event_wait(cb: Callable[[int, int], None]) -> None:
|
73 |
+
CUDAEventWaitCallbacks.add_callback(cb)
|
74 |
+
|
75 |
+
|
76 |
+
def register_callback_for_cuda_memory_allocation(cb: Callable[[int], None]) -> None:
|
77 |
+
CUDAMemoryAllocationCallbacks.add_callback(cb)
|
78 |
+
|
79 |
+
|
80 |
+
def register_callback_for_cuda_memory_deallocation(cb: Callable[[int], None]) -> None:
|
81 |
+
CUDAMemoryDeallocationCallbacks.add_callback(cb)
|
82 |
+
|
83 |
+
|
84 |
+
def register_callback_for_cuda_stream_creation(cb: Callable[[int], None]) -> None:
|
85 |
+
CUDAStreamCreationCallbacks.add_callback(cb)
|
86 |
+
|
87 |
+
|
88 |
+
def register_callback_for_cuda_device_synchronization(cb: Callable[[], None]) -> None:
|
89 |
+
CUDADeviceSynchronizationCallbacks.add_callback(cb)
|
90 |
+
|
91 |
+
|
92 |
+
def register_callback_for_cuda_stream_synchronization(
|
93 |
+
cb: Callable[[int], None]
|
94 |
+
) -> None:
|
95 |
+
CUDAStreamSynchronizationCallbacks.add_callback(cb)
|
96 |
+
|
97 |
+
|
98 |
+
def register_callback_for_cuda_event_synchronization(cb: Callable[[int], None]) -> None:
|
99 |
+
CUDAEventSynchronizationCallbacks.add_callback(cb)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_cxx_pytree.py
ADDED
@@ -0,0 +1,970 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Contains utility functions for working with nested python data structures.
|
3 |
+
|
4 |
+
A *pytree* is Python nested data structure. It is a tree in the sense that
|
5 |
+
nodes are Python collections (e.g., list, tuple, dict) and the leaves are
|
6 |
+
Python values. Furthermore, a pytree should not contain reference cycles.
|
7 |
+
|
8 |
+
pytrees are useful for working with nested collections of Tensors. For example,
|
9 |
+
one can use `tree_map` to map a function over all Tensors inside some nested
|
10 |
+
collection of Tensors and `tree_leaves` to get a flat list of all Tensors
|
11 |
+
inside some nested collection. pytrees are helpful for implementing nested
|
12 |
+
collection support for PyTorch APIs.
|
13 |
+
"""
|
14 |
+
|
15 |
+
import functools
|
16 |
+
import sys
|
17 |
+
import types
|
18 |
+
import warnings
|
19 |
+
from typing import (
|
20 |
+
Any,
|
21 |
+
Callable,
|
22 |
+
Iterable,
|
23 |
+
List,
|
24 |
+
Optional,
|
25 |
+
overload,
|
26 |
+
Tuple,
|
27 |
+
Type,
|
28 |
+
TypeVar,
|
29 |
+
Union,
|
30 |
+
)
|
31 |
+
|
32 |
+
import torch
|
33 |
+
|
34 |
+
if torch._running_with_deploy(): # type: ignore[no-untyped-call]
|
35 |
+
raise ImportError("C++ pytree utilities do not work with torch::deploy.")
|
36 |
+
|
37 |
+
import optree
|
38 |
+
from optree import PyTreeSpec # direct import for type annotations
|
39 |
+
|
40 |
+
from torch.utils._pytree import KeyEntry
|
41 |
+
|
42 |
+
|
43 |
+
__all__ = [
|
44 |
+
"PyTree",
|
45 |
+
"Context",
|
46 |
+
"FlattenFunc",
|
47 |
+
"UnflattenFunc",
|
48 |
+
"DumpableContext",
|
49 |
+
"ToDumpableContextFn",
|
50 |
+
"FromDumpableContextFn",
|
51 |
+
"TreeSpec",
|
52 |
+
"LeafSpec",
|
53 |
+
"keystr",
|
54 |
+
"key_get",
|
55 |
+
"register_pytree_node",
|
56 |
+
"tree_flatten",
|
57 |
+
"tree_flatten_with_path",
|
58 |
+
"tree_unflatten",
|
59 |
+
"tree_leaves",
|
60 |
+
"tree_leaves_with_path",
|
61 |
+
"tree_structure",
|
62 |
+
"tree_map",
|
63 |
+
"tree_map_with_path",
|
64 |
+
"tree_map_",
|
65 |
+
"tree_map_only",
|
66 |
+
"tree_map_only_",
|
67 |
+
"tree_all",
|
68 |
+
"tree_any",
|
69 |
+
"tree_all_only",
|
70 |
+
"tree_any_only",
|
71 |
+
"treespec_dumps",
|
72 |
+
"treespec_loads",
|
73 |
+
"treespec_pprint",
|
74 |
+
]
|
75 |
+
|
76 |
+
|
77 |
+
T = TypeVar("T")
|
78 |
+
S = TypeVar("S")
|
79 |
+
U = TypeVar("U")
|
80 |
+
R = TypeVar("R")
|
81 |
+
|
82 |
+
|
83 |
+
Context = Any
|
84 |
+
PyTree = Any
|
85 |
+
TreeSpec = PyTreeSpec
|
86 |
+
FlattenFunc = Callable[[PyTree], Tuple[List[Any], Context]]
|
87 |
+
UnflattenFunc = Callable[[Iterable[Any], Context], PyTree]
|
88 |
+
OpTreeUnflattenFunc = Callable[[Context, Iterable[Any]], PyTree]
|
89 |
+
DumpableContext = Any # Any json dumpable text
|
90 |
+
ToDumpableContextFn = Callable[[Context], DumpableContext]
|
91 |
+
FromDumpableContextFn = Callable[[DumpableContext], Context]
|
92 |
+
KeyPath = Tuple[KeyEntry, ...]
|
93 |
+
FlattenWithKeysFunc = Callable[[PyTree], Tuple[List[Tuple[KeyEntry, Any]], Any]]
|
94 |
+
|
95 |
+
|
96 |
+
def _reverse_args(func: UnflattenFunc) -> OpTreeUnflattenFunc:
|
97 |
+
@functools.wraps(func)
|
98 |
+
def wrapped(*args: Any, **kwargs: Any) -> Any:
|
99 |
+
return func(*reversed(args), **kwargs)
|
100 |
+
|
101 |
+
return wrapped
|
102 |
+
|
103 |
+
|
104 |
+
def register_pytree_node(
|
105 |
+
cls: Type[Any],
|
106 |
+
flatten_fn: FlattenFunc,
|
107 |
+
unflatten_fn: UnflattenFunc,
|
108 |
+
*,
|
109 |
+
serialized_type_name: Optional[str] = None,
|
110 |
+
to_dumpable_context: Optional[ToDumpableContextFn] = None,
|
111 |
+
from_dumpable_context: Optional[FromDumpableContextFn] = None,
|
112 |
+
flatten_with_keys_fn: Optional[FlattenWithKeysFunc] = None,
|
113 |
+
) -> None:
|
114 |
+
"""Register a container-like type as pytree node.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
cls (type): A Python type to treat as an internal pytree node.
|
118 |
+
flatten_fn (callable): A function to be used during flattening, taking an instance of
|
119 |
+
``cls`` and returning a pair, with (1) an iterable for the children to be flattened
|
120 |
+
recursively, and (2) some hashable auxiliary data to be stored in the treespec and to be
|
121 |
+
passed to the ``unflatten_fn``.
|
122 |
+
unflatten_fn (callable): A function taking two arguments: the auxiliary data that was
|
123 |
+
returned by ``flatten_fn`` and stored in the treespec, and the unflattened children.
|
124 |
+
The function should return an instance of ``cls``.
|
125 |
+
serialized_type_name (str, optional): A keyword argument used to specify the fully
|
126 |
+
qualified name used when serializing the tree spec.
|
127 |
+
to_dumpable_context (callable, optional): An optional keyword argument to custom specify how
|
128 |
+
to convert the context of the pytree to a custom json dumpable representation. This is
|
129 |
+
used for json serialization, which is being used in :mod:`torch.export` right now.
|
130 |
+
from_dumpable_context (callable, optional): An optional keyword argument to custom specify
|
131 |
+
how to convert the custom json dumpable representation of the context back to the
|
132 |
+
original context. This is used for json deserialization, which is being used in
|
133 |
+
:mod:`torch.export` right now.
|
134 |
+
|
135 |
+
Example::
|
136 |
+
|
137 |
+
>>> # xdoctest: +SKIP
|
138 |
+
>>> # Registry a Python type with lambda functions
|
139 |
+
>>> register_pytree_node(
|
140 |
+
... set,
|
141 |
+
... lambda s: (sorted(s), None, None),
|
142 |
+
... lambda children, _: set(children),
|
143 |
+
... )
|
144 |
+
"""
|
145 |
+
if flatten_with_keys_fn is not None:
|
146 |
+
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
|
147 |
+
|
148 |
+
_private_register_pytree_node(
|
149 |
+
cls,
|
150 |
+
flatten_fn,
|
151 |
+
unflatten_fn,
|
152 |
+
serialized_type_name=serialized_type_name,
|
153 |
+
to_dumpable_context=to_dumpable_context,
|
154 |
+
from_dumpable_context=from_dumpable_context,
|
155 |
+
)
|
156 |
+
|
157 |
+
from . import _pytree as python
|
158 |
+
|
159 |
+
python._private_register_pytree_node(
|
160 |
+
cls,
|
161 |
+
flatten_fn,
|
162 |
+
unflatten_fn,
|
163 |
+
serialized_type_name=serialized_type_name,
|
164 |
+
to_dumpable_context=to_dumpable_context,
|
165 |
+
from_dumpable_context=from_dumpable_context,
|
166 |
+
)
|
167 |
+
|
168 |
+
|
169 |
+
def _register_pytree_node(
|
170 |
+
cls: Type[Any],
|
171 |
+
flatten_fn: FlattenFunc,
|
172 |
+
unflatten_fn: UnflattenFunc,
|
173 |
+
*,
|
174 |
+
serialized_type_name: Optional[str] = None,
|
175 |
+
to_dumpable_context: Optional[ToDumpableContextFn] = None,
|
176 |
+
from_dumpable_context: Optional[FromDumpableContextFn] = None,
|
177 |
+
) -> None:
|
178 |
+
"""Register a container-like type as pytree node for the C++ pytree only.
|
179 |
+
|
180 |
+
The ``namespace`` argument is used to avoid collisions that occur when different libraries
|
181 |
+
register the same Python type with different behaviors. It is recommended to add a unique prefix
|
182 |
+
to the namespace to avoid conflicts with other libraries. Namespaces can also be used to specify
|
183 |
+
the same class in different namespaces for different use cases.
|
184 |
+
|
185 |
+
.. warning::
|
186 |
+
For safety reasons, a ``namespace`` must be specified while registering a custom type. It is
|
187 |
+
used to isolate the behavior of flattening and unflattening a pytree node type. This is to
|
188 |
+
prevent accidental collisions between different libraries that may register the same type.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
cls (type): A Python type to treat as an internal pytree node.
|
192 |
+
flatten_fn (callable): A function to be used during flattening, taking an instance of
|
193 |
+
``cls`` and returning a pair, with (1) an iterable for the children to be flattened
|
194 |
+
recursively, and (2) some hashable auxiliary data to be stored in the treespec and to be
|
195 |
+
passed to the ``unflatten_fn``.
|
196 |
+
unflatten_fn (callable): A function taking two arguments: the auxiliary data that was
|
197 |
+
returned by ``flatten_fn`` and stored in the treespec, and the unflattened children.
|
198 |
+
The function should return an instance of ``cls``.
|
199 |
+
serialized_type_name (str, optional): A keyword argument used to specify the fully
|
200 |
+
qualified name used when serializing the tree spec.
|
201 |
+
to_dumpable_context (callable, optional): An optional keyword argument to custom specify how
|
202 |
+
to convert the context of the pytree to a custom json dumpable representation. This is
|
203 |
+
used for json serialization, which is being used in :mod:`torch.export` right now.
|
204 |
+
from_dumpable_context (callable, optional): An optional keyword argument to custom specify
|
205 |
+
how to convert the custom json dumpable representation of the context back to the
|
206 |
+
original context. This is used for json deserialization, which is being used in
|
207 |
+
:mod:`torch.export` right now.
|
208 |
+
"""
|
209 |
+
warnings.warn(
|
210 |
+
"torch.utils._cxx_pytree._register_pytree_node is deprecated. "
|
211 |
+
"Please use torch.utils._cxx_pytree.register_pytree_node instead.",
|
212 |
+
stacklevel=2,
|
213 |
+
)
|
214 |
+
|
215 |
+
_private_register_pytree_node(
|
216 |
+
cls,
|
217 |
+
flatten_fn,
|
218 |
+
unflatten_fn,
|
219 |
+
serialized_type_name=serialized_type_name,
|
220 |
+
to_dumpable_context=to_dumpable_context,
|
221 |
+
from_dumpable_context=from_dumpable_context,
|
222 |
+
)
|
223 |
+
|
224 |
+
|
225 |
+
def _private_register_pytree_node(
|
226 |
+
cls: Type[Any],
|
227 |
+
flatten_fn: FlattenFunc,
|
228 |
+
unflatten_fn: UnflattenFunc,
|
229 |
+
*,
|
230 |
+
serialized_type_name: Optional[str] = None,
|
231 |
+
to_dumpable_context: Optional[ToDumpableContextFn] = None,
|
232 |
+
from_dumpable_context: Optional[FromDumpableContextFn] = None,
|
233 |
+
) -> None:
|
234 |
+
"""This is an internal function that is used to register a pytree node type
|
235 |
+
for the C++ pytree only. End-users should use :func:`register_pytree_node`
|
236 |
+
instead.
|
237 |
+
"""
|
238 |
+
# TODO(XuehaiPan): remove this condition when we make Python pytree out-of-box support
|
239 |
+
# PyStructSequence types
|
240 |
+
if not optree.is_structseq_class(cls):
|
241 |
+
optree.register_pytree_node(
|
242 |
+
cls,
|
243 |
+
flatten_fn,
|
244 |
+
_reverse_args(unflatten_fn),
|
245 |
+
namespace="torch",
|
246 |
+
)
|
247 |
+
|
248 |
+
|
249 |
+
def tree_flatten(
|
250 |
+
tree: PyTree,
|
251 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
252 |
+
) -> Tuple[List[Any], TreeSpec]:
|
253 |
+
"""Flatten a pytree.
|
254 |
+
|
255 |
+
See also :func:`tree_unflatten`.
|
256 |
+
|
257 |
+
The flattening order (i.e., the order of elements in the output list) is deterministic,
|
258 |
+
corresponding to a left-to-right depth-first tree traversal.
|
259 |
+
|
260 |
+
>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
|
261 |
+
>>> tree_flatten(tree)
|
262 |
+
([1, 2, 3, 4, None, 5], PyTreeSpec({'a': *, 'b': (*, [*, *]), 'c': *, 'd': *}, NoneIsLeaf))
|
263 |
+
>>> tree_flatten(1)
|
264 |
+
([1], PyTreeSpec(*, NoneIsLeaf))
|
265 |
+
>>> tree_flatten(None)
|
266 |
+
([None], PyTreeSpec(*, NoneIsLeaf))
|
267 |
+
|
268 |
+
For unordered dictionaries, :class:`dict` and :class:`collections.defaultdict`, the order is
|
269 |
+
dependent on the **sorted** keys in the dictionary. Please use :class:`collections.OrderedDict`
|
270 |
+
if you want to keep the keys in the insertion order.
|
271 |
+
|
272 |
+
>>> from collections import OrderedDict
|
273 |
+
>>> tree = OrderedDict([('b', (2, [3, 4])), ('a', 1), ('c', None), ('d', 5)])
|
274 |
+
>>> tree_flatten(tree)
|
275 |
+
([2, 3, 4, 1, None, 5], PyTreeSpec(OrderedDict([('b', (*, [*, *])), ('a', *), ('c', *), ('d', *)]), NoneIsLeaf))
|
276 |
+
|
277 |
+
Args:
|
278 |
+
tree (pytree): A pytree to flatten.
|
279 |
+
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
|
280 |
+
flattening step. The function should have a single argument with signature
|
281 |
+
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
|
282 |
+
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
|
283 |
+
leaf or not. If the function is not specified, the default pytree registry will be used.
|
284 |
+
|
285 |
+
Returns:
|
286 |
+
A pair ``(leaves, treespec)`` where the first element is a list of leaf values and the
|
287 |
+
second element is a treespec representing the structure of the pytree.
|
288 |
+
"""
|
289 |
+
return optree.tree_flatten( # type: ignore[return-value]
|
290 |
+
tree,
|
291 |
+
is_leaf=is_leaf,
|
292 |
+
none_is_leaf=True,
|
293 |
+
namespace="torch",
|
294 |
+
)
|
295 |
+
|
296 |
+
|
297 |
+
def tree_unflatten(leaves: Iterable[Any], treespec: TreeSpec) -> PyTree:
|
298 |
+
"""Reconstruct a pytree from the treespec and the leaves.
|
299 |
+
|
300 |
+
The inverse of :func:`tree_flatten`.
|
301 |
+
|
302 |
+
>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
|
303 |
+
>>> leaves, treespec = tree_flatten(tree)
|
304 |
+
>>> tree == tree_unflatten(leaves, treespec)
|
305 |
+
True
|
306 |
+
|
307 |
+
Args:
|
308 |
+
leaves (iterable): The list of leaves to use for reconstruction. The list must match the
|
309 |
+
number of leaves of the treespec.
|
310 |
+
treespec (TreeSpec): The treespec to reconstruct.
|
311 |
+
|
312 |
+
Returns:
|
313 |
+
The reconstructed pytree, containing the ``leaves`` placed in the structure described by
|
314 |
+
``treespec``.
|
315 |
+
"""
|
316 |
+
if not isinstance(treespec, TreeSpec):
|
317 |
+
raise TypeError(
|
318 |
+
f"tree_unflatten(values, spec): Expected `spec` to be instance of "
|
319 |
+
f"TreeSpec but got item of type {type(treespec)}."
|
320 |
+
)
|
321 |
+
return optree.tree_unflatten(treespec, leaves) # type: ignore[arg-type]
|
322 |
+
|
323 |
+
|
324 |
+
def tree_leaves(
|
325 |
+
tree: PyTree,
|
326 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
327 |
+
) -> List[Any]:
|
328 |
+
"""Get the leaves of a pytree.
|
329 |
+
|
330 |
+
See also :func:`tree_flatten`.
|
331 |
+
|
332 |
+
>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
|
333 |
+
>>> tree_leaves(tree)
|
334 |
+
[1, 2, 3, 4, None, 5]
|
335 |
+
>>> tree_leaves(1)
|
336 |
+
[1]
|
337 |
+
>>> tree_leaves(None)
|
338 |
+
[None]
|
339 |
+
|
340 |
+
Args:
|
341 |
+
tree (pytree): A pytree to flatten.
|
342 |
+
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
|
343 |
+
flattening step. The function should have a single argument with signature
|
344 |
+
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
|
345 |
+
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
|
346 |
+
leaf or not. If the function is not specified, the default pytree registry will be used.
|
347 |
+
|
348 |
+
Returns:
|
349 |
+
A list of leaf values.
|
350 |
+
"""
|
351 |
+
return optree.tree_leaves(
|
352 |
+
tree,
|
353 |
+
is_leaf=is_leaf,
|
354 |
+
none_is_leaf=True,
|
355 |
+
namespace="torch",
|
356 |
+
)
|
357 |
+
|
358 |
+
|
359 |
+
def tree_structure(
|
360 |
+
tree: PyTree,
|
361 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
362 |
+
) -> TreeSpec:
|
363 |
+
"""Get the treespec for a pytree.
|
364 |
+
|
365 |
+
See also :func:`tree_flatten`.
|
366 |
+
|
367 |
+
>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
|
368 |
+
>>> tree_structure(tree)
|
369 |
+
PyTreeSpec({'a': *, 'b': (*, [*, *]), 'c': *, 'd': *}, NoneIsLeaf)
|
370 |
+
>>> tree_structure(1)
|
371 |
+
PyTreeSpec(*, NoneIsLeaf)
|
372 |
+
>>> tree_structure(None)
|
373 |
+
PyTreeSpec(*, NoneIsLeaf)
|
374 |
+
|
375 |
+
Args:
|
376 |
+
tree (pytree): A pytree to flatten.
|
377 |
+
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
|
378 |
+
flattening step. The function should have a single argument with signature
|
379 |
+
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
|
380 |
+
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
|
381 |
+
leaf or not. If the function is not specified, the default pytree registry will be used.
|
382 |
+
|
383 |
+
Returns:
|
384 |
+
A treespec object representing the structure of the pytree.
|
385 |
+
"""
|
386 |
+
return optree.tree_structure( # type: ignore[return-value]
|
387 |
+
tree,
|
388 |
+
is_leaf=is_leaf,
|
389 |
+
none_is_leaf=True,
|
390 |
+
namespace="torch",
|
391 |
+
)
|
392 |
+
|
393 |
+
|
394 |
+
def tree_map(
|
395 |
+
func: Callable[..., Any],
|
396 |
+
tree: PyTree,
|
397 |
+
*rests: PyTree,
|
398 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
399 |
+
) -> PyTree:
|
400 |
+
"""Map a multi-input function over pytree args to produce a new pytree.
|
401 |
+
|
402 |
+
See also :func:`tree_map_`.
|
403 |
+
|
404 |
+
>>> tree_map(lambda x: x + 1, {'x': 7, 'y': (42, 64)})
|
405 |
+
{'x': 8, 'y': (43, 65)}
|
406 |
+
>>> tree_map(lambda x: x is None, {'x': 7, 'y': (42, 64), 'z': None})
|
407 |
+
{'x': False, 'y': (False, False), 'z': True}
|
408 |
+
|
409 |
+
If multiple inputs are given, the structure of the tree is taken from the first input;
|
410 |
+
subsequent inputs need only have ``tree`` as a prefix:
|
411 |
+
|
412 |
+
>>> tree_map(lambda x, y: [x] + y, [5, 6], [[7, 9], [1, 2]])
|
413 |
+
[[5, 7, 9], [6, 1, 2]]
|
414 |
+
|
415 |
+
Args:
|
416 |
+
func (callable): A function that takes ``1 + len(rests)`` arguments, to be applied at the
|
417 |
+
corresponding leaves of the pytrees.
|
418 |
+
tree (pytree): A pytree to be mapped over, with each leaf providing the first positional
|
419 |
+
argument to function ``func``.
|
420 |
+
rests (tuple of pytree): A tuple of pytrees, each of which has the same structure as
|
421 |
+
``tree`` or has ``tree`` as a prefix.
|
422 |
+
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
|
423 |
+
flattening step. The function should have a single argument with signature
|
424 |
+
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
|
425 |
+
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
|
426 |
+
leaf or not. If the function is not specified, the default pytree registry will be used.
|
427 |
+
|
428 |
+
Returns:
|
429 |
+
A new pytree with the same structure as ``tree`` but with the value at each leaf given by
|
430 |
+
``func(x, *xs)`` where ``x`` is the value at the corresponding leaf in ``tree`` and ``xs``
|
431 |
+
is the tuple of values at corresponding nodes in ``rests``.
|
432 |
+
"""
|
433 |
+
return optree.tree_map(
|
434 |
+
func,
|
435 |
+
tree,
|
436 |
+
*rests,
|
437 |
+
is_leaf=is_leaf,
|
438 |
+
none_is_leaf=True,
|
439 |
+
namespace="torch",
|
440 |
+
)
|
441 |
+
|
442 |
+
|
443 |
+
def tree_map_(
|
444 |
+
func: Callable[..., Any],
|
445 |
+
tree: PyTree,
|
446 |
+
*rests: PyTree,
|
447 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
448 |
+
) -> PyTree:
|
449 |
+
"""Like :func:`tree_map`, but do an inplace call on each leaf and return the original tree.
|
450 |
+
|
451 |
+
See also :func:`tree_map`.
|
452 |
+
|
453 |
+
Args:
|
454 |
+
func (callable): A function that takes ``1 + len(rests)`` arguments, to be applied at the
|
455 |
+
corresponding leaves of the pytrees.
|
456 |
+
tree (pytree): A pytree to be mapped over, with each leaf providing the first positional
|
457 |
+
argument to function ``func``.
|
458 |
+
rests (tuple of pytree): A tuple of pytrees, each of which has the same structure as
|
459 |
+
``tree`` or has ``tree`` as a prefix.
|
460 |
+
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
|
461 |
+
flattening step. The function should have a single argument with signature
|
462 |
+
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
|
463 |
+
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
|
464 |
+
leaf or not. If the function is not specified, the default pytree registry will be used.
|
465 |
+
|
466 |
+
Returns:
|
467 |
+
The original ``tree`` with the value at each leaf is given by the side-effect of function
|
468 |
+
``func(x, *xs)`` (not the return value) where ``x`` is the value at the corresponding leaf
|
469 |
+
in ``tree`` and ``xs`` is the tuple of values at values at corresponding nodes in ``rests``.
|
470 |
+
"""
|
471 |
+
return optree.tree_map_(
|
472 |
+
func,
|
473 |
+
tree,
|
474 |
+
*rests,
|
475 |
+
is_leaf=is_leaf,
|
476 |
+
none_is_leaf=True,
|
477 |
+
namespace="torch",
|
478 |
+
)
|
479 |
+
|
480 |
+
|
481 |
+
Type2 = Tuple[Type[T], Type[S]]
|
482 |
+
Type3 = Tuple[Type[T], Type[S], Type[U]]
|
483 |
+
if sys.version_info >= (3, 10):
|
484 |
+
TypeAny = Union[Type[Any], Tuple[Type[Any], ...], types.UnionType]
|
485 |
+
else:
|
486 |
+
TypeAny = Union[Type[Any], Tuple[Type[Any], ...]]
|
487 |
+
|
488 |
+
Fn2 = Callable[[Union[T, S]], R]
|
489 |
+
Fn3 = Callable[[Union[T, S, U]], R]
|
490 |
+
Fn = Callable[[T], R]
|
491 |
+
FnAny = Callable[[Any], R]
|
492 |
+
|
493 |
+
MapOnlyFn = Callable[[T], Callable[[Any], Any]]
|
494 |
+
|
495 |
+
|
496 |
+
# These specializations help with type inference on the lambda passed to this
|
497 |
+
# function
|
498 |
+
@overload
|
499 |
+
def map_only(__type_or_types_or_pred: Type2[T, S]) -> MapOnlyFn[Fn2[T, S, Any]]:
|
500 |
+
...
|
501 |
+
|
502 |
+
|
503 |
+
@overload
|
504 |
+
def map_only(__type_or_types_or_pred: Type3[T, S, U]) -> MapOnlyFn[Fn3[T, S, U, Any]]:
|
505 |
+
...
|
506 |
+
|
507 |
+
|
508 |
+
@overload
|
509 |
+
def map_only(__type_or_types_or_pred: Type[T]) -> MapOnlyFn[Fn[T, Any]]:
|
510 |
+
...
|
511 |
+
|
512 |
+
|
513 |
+
# This specialization is needed for the implementations below that call
|
514 |
+
@overload
|
515 |
+
def map_only(__type_or_types_or_pred: TypeAny) -> MapOnlyFn[FnAny[Any]]:
|
516 |
+
...
|
517 |
+
|
518 |
+
|
519 |
+
@overload
|
520 |
+
def map_only(__type_or_types_or_pred: Callable[[Any], bool]) -> MapOnlyFn[FnAny[Any]]:
|
521 |
+
...
|
522 |
+
|
523 |
+
|
524 |
+
def map_only(
|
525 |
+
__type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]]
|
526 |
+
) -> MapOnlyFn[FnAny[Any]]:
|
527 |
+
"""
|
528 |
+
Suppose you are writing a tree_map over tensors, leaving everything
|
529 |
+
else unchanged. Ordinarily you would have to write:
|
530 |
+
|
531 |
+
def go(t):
|
532 |
+
if isinstance(t, Tensor):
|
533 |
+
return ...
|
534 |
+
else:
|
535 |
+
return t
|
536 |
+
|
537 |
+
With this function, you only need to write:
|
538 |
+
|
539 |
+
@map_only(Tensor)
|
540 |
+
def go(t):
|
541 |
+
return ...
|
542 |
+
|
543 |
+
You can also directly use 'tree_map_only'
|
544 |
+
"""
|
545 |
+
if isinstance(__type_or_types_or_pred, (type, tuple)) or (
|
546 |
+
sys.version_info >= (3, 10)
|
547 |
+
and isinstance(__type_or_types_or_pred, types.UnionType)
|
548 |
+
):
|
549 |
+
|
550 |
+
def pred(x: Any) -> bool:
|
551 |
+
return isinstance(x, __type_or_types_or_pred) # type: ignore[arg-type]
|
552 |
+
|
553 |
+
elif callable(__type_or_types_or_pred):
|
554 |
+
pred = __type_or_types_or_pred # type: ignore[assignment]
|
555 |
+
else:
|
556 |
+
raise TypeError("Argument must be a type, a tuple of types, or a callable.")
|
557 |
+
|
558 |
+
def wrapper(func: Callable[[T], Any]) -> Callable[[Any], Any]:
|
559 |
+
@functools.wraps(func)
|
560 |
+
def wrapped(x: T) -> Any:
|
561 |
+
if pred(x):
|
562 |
+
return func(x)
|
563 |
+
return x
|
564 |
+
|
565 |
+
return wrapped
|
566 |
+
|
567 |
+
return wrapper
|
568 |
+
|
569 |
+
|
570 |
+
@overload
|
571 |
+
def tree_map_only(
|
572 |
+
__type_or_types_or_pred: Type[T],
|
573 |
+
func: Fn[T, Any],
|
574 |
+
tree: PyTree,
|
575 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
576 |
+
) -> PyTree:
|
577 |
+
...
|
578 |
+
|
579 |
+
|
580 |
+
@overload
|
581 |
+
def tree_map_only(
|
582 |
+
__type_or_types_or_pred: Type2[T, S],
|
583 |
+
func: Fn2[T, S, Any],
|
584 |
+
tree: PyTree,
|
585 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
586 |
+
) -> PyTree:
|
587 |
+
...
|
588 |
+
|
589 |
+
|
590 |
+
@overload
|
591 |
+
def tree_map_only(
|
592 |
+
__type_or_types_or_pred: Type3[T, S, U],
|
593 |
+
func: Fn3[T, S, U, Any],
|
594 |
+
tree: PyTree,
|
595 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
596 |
+
) -> PyTree:
|
597 |
+
...
|
598 |
+
|
599 |
+
|
600 |
+
@overload
|
601 |
+
def tree_map_only(
|
602 |
+
__type_or_types_or_pred: Callable[[Any], bool],
|
603 |
+
func: FnAny[Any],
|
604 |
+
tree: PyTree,
|
605 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
606 |
+
) -> PyTree:
|
607 |
+
...
|
608 |
+
|
609 |
+
|
610 |
+
def tree_map_only(
|
611 |
+
__type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]],
|
612 |
+
func: FnAny[Any],
|
613 |
+
tree: PyTree,
|
614 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
615 |
+
) -> PyTree:
|
616 |
+
return tree_map(map_only(__type_or_types_or_pred)(func), tree, is_leaf=is_leaf)
|
617 |
+
|
618 |
+
|
619 |
+
@overload
|
620 |
+
def tree_map_only_(
|
621 |
+
__type_or_types_or_pred: Type[T],
|
622 |
+
func: Fn[T, Any],
|
623 |
+
tree: PyTree,
|
624 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
625 |
+
) -> PyTree:
|
626 |
+
...
|
627 |
+
|
628 |
+
|
629 |
+
@overload
|
630 |
+
def tree_map_only_(
|
631 |
+
__type_or_types_or_pred: Type2[T, S],
|
632 |
+
func: Fn2[T, S, Any],
|
633 |
+
tree: PyTree,
|
634 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
635 |
+
) -> PyTree:
|
636 |
+
...
|
637 |
+
|
638 |
+
|
639 |
+
@overload
|
640 |
+
def tree_map_only_(
|
641 |
+
__type_or_types_or_pred: Type3[T, S, U],
|
642 |
+
func: Fn3[T, S, U, Any],
|
643 |
+
tree: PyTree,
|
644 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
645 |
+
) -> PyTree:
|
646 |
+
...
|
647 |
+
|
648 |
+
|
649 |
+
@overload
|
650 |
+
def tree_map_only_(
|
651 |
+
__type_or_types_or_pred: Callable[[Any], bool],
|
652 |
+
func: FnAny[Any],
|
653 |
+
tree: PyTree,
|
654 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
655 |
+
) -> PyTree:
|
656 |
+
...
|
657 |
+
|
658 |
+
|
659 |
+
def tree_map_only_(
|
660 |
+
__type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]],
|
661 |
+
func: FnAny[Any],
|
662 |
+
tree: PyTree,
|
663 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
664 |
+
) -> PyTree:
|
665 |
+
return tree_map_(map_only(__type_or_types_or_pred)(func), tree, is_leaf=is_leaf)
|
666 |
+
|
667 |
+
|
668 |
+
def tree_all(
|
669 |
+
pred: Callable[[Any], bool],
|
670 |
+
tree: PyTree,
|
671 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
672 |
+
) -> bool:
|
673 |
+
flat_args = tree_leaves(tree, is_leaf=is_leaf)
|
674 |
+
return all(map(pred, flat_args))
|
675 |
+
|
676 |
+
|
677 |
+
def tree_any(
|
678 |
+
pred: Callable[[Any], bool],
|
679 |
+
tree: PyTree,
|
680 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
681 |
+
) -> bool:
|
682 |
+
flat_args = tree_leaves(tree, is_leaf=is_leaf)
|
683 |
+
return any(map(pred, flat_args))
|
684 |
+
|
685 |
+
|
686 |
+
@overload
|
687 |
+
def tree_all_only(
|
688 |
+
__type_or_types: Type[T],
|
689 |
+
pred: Fn[T, bool],
|
690 |
+
tree: PyTree,
|
691 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
692 |
+
) -> bool:
|
693 |
+
...
|
694 |
+
|
695 |
+
|
696 |
+
@overload
|
697 |
+
def tree_all_only(
|
698 |
+
__type_or_types: Type2[T, S],
|
699 |
+
pred: Fn2[T, S, bool],
|
700 |
+
tree: PyTree,
|
701 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
702 |
+
) -> bool:
|
703 |
+
...
|
704 |
+
|
705 |
+
|
706 |
+
@overload
|
707 |
+
def tree_all_only(
|
708 |
+
__type_or_types: Type3[T, S, U],
|
709 |
+
pred: Fn3[T, S, U, bool],
|
710 |
+
tree: PyTree,
|
711 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
712 |
+
) -> bool:
|
713 |
+
...
|
714 |
+
|
715 |
+
|
716 |
+
def tree_all_only(
|
717 |
+
__type_or_types: TypeAny,
|
718 |
+
pred: FnAny[bool],
|
719 |
+
tree: PyTree,
|
720 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
721 |
+
) -> bool:
|
722 |
+
flat_args = tree_leaves(tree, is_leaf=is_leaf)
|
723 |
+
return all(pred(x) for x in flat_args if isinstance(x, __type_or_types))
|
724 |
+
|
725 |
+
|
726 |
+
@overload
|
727 |
+
def tree_any_only(
|
728 |
+
__type_or_types: Type[T],
|
729 |
+
pred: Fn[T, bool],
|
730 |
+
tree: PyTree,
|
731 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
732 |
+
) -> bool:
|
733 |
+
...
|
734 |
+
|
735 |
+
|
736 |
+
@overload
|
737 |
+
def tree_any_only(
|
738 |
+
__type_or_types: Type2[T, S],
|
739 |
+
pred: Fn2[T, S, bool],
|
740 |
+
tree: PyTree,
|
741 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
742 |
+
) -> bool:
|
743 |
+
...
|
744 |
+
|
745 |
+
|
746 |
+
@overload
|
747 |
+
def tree_any_only(
|
748 |
+
__type_or_types: Type3[T, S, U],
|
749 |
+
pred: Fn3[T, S, U, bool],
|
750 |
+
tree: PyTree,
|
751 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
752 |
+
) -> bool:
|
753 |
+
...
|
754 |
+
|
755 |
+
|
756 |
+
def tree_any_only(
|
757 |
+
__type_or_types: TypeAny,
|
758 |
+
pred: FnAny[bool],
|
759 |
+
tree: PyTree,
|
760 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
761 |
+
) -> bool:
|
762 |
+
flat_args = tree_leaves(tree, is_leaf=is_leaf)
|
763 |
+
return any(pred(x) for x in flat_args if isinstance(x, __type_or_types))
|
764 |
+
|
765 |
+
|
766 |
+
def broadcast_prefix(
|
767 |
+
prefix_tree: PyTree,
|
768 |
+
full_tree: PyTree,
|
769 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
770 |
+
) -> List[Any]:
|
771 |
+
"""Return a list of broadcasted leaves in ``prefix_tree`` to match the number of leaves in ``full_tree``.
|
772 |
+
|
773 |
+
If a ``prefix_tree`` is a prefix of a ``full_tree``, this means the ``full_tree`` can be
|
774 |
+
constructed by replacing the leaves of ``prefix_tree`` with appropriate **subtrees**.
|
775 |
+
|
776 |
+
This function returns a list of leaves with the same size as ``full_tree``. The leaves are
|
777 |
+
replicated from ``prefix_tree``. The number of replicas is determined by the corresponding
|
778 |
+
subtree in ``full_tree``.
|
779 |
+
|
780 |
+
>>> broadcast_prefix(1, [1, 2, 3])
|
781 |
+
[1, 1, 1]
|
782 |
+
>>> broadcast_prefix([1, 2, 3], [1, 2, 3])
|
783 |
+
[1, 2, 3]
|
784 |
+
>>> broadcast_prefix([1, 2, 3], [1, 2, 3, 4])
|
785 |
+
Traceback (most recent call last):
|
786 |
+
...
|
787 |
+
ValueError: list arity mismatch; expected: 3, got: 4; list: [1, 2, 3, 4].
|
788 |
+
>>> broadcast_prefix([1, 2, 3], [1, 2, (3, 4)])
|
789 |
+
[1, 2, 3, 3]
|
790 |
+
>>> broadcast_prefix([1, 2, 3], [1, 2, {'a': 3, 'b': 4, 'c': (None, 5)}])
|
791 |
+
[1, 2, 3, 3, 3, 3]
|
792 |
+
|
793 |
+
Args:
|
794 |
+
prefix_tree (pytree): A pytree with the same structure as a prefix of ``full_tree``.
|
795 |
+
full_tree (pytree): A pytree with the same structure as a suffix of ``prefix_tree``.
|
796 |
+
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
|
797 |
+
flattening step. The function should have a single argument with signature
|
798 |
+
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
|
799 |
+
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
|
800 |
+
leaf or not. If the function is not specified, the default pytree registry will be used.
|
801 |
+
|
802 |
+
Returns:
|
803 |
+
A list of leaves in ``prefix_tree`` broadcasted to match the number of leaves in ``full_tree``.
|
804 |
+
"""
|
805 |
+
return optree.broadcast_prefix(
|
806 |
+
prefix_tree,
|
807 |
+
full_tree,
|
808 |
+
is_leaf=is_leaf,
|
809 |
+
none_is_leaf=True,
|
810 |
+
namespace="torch",
|
811 |
+
)
|
812 |
+
|
813 |
+
|
814 |
+
# Broadcasts a pytree to the provided TreeSpec and returns the flattened
|
815 |
+
# values. If this is not possible, then this function returns None.
|
816 |
+
#
|
817 |
+
# For example, given pytree=0 and spec=TreeSpec(list, None, [LeafSpec(), LeafSpec()]),
|
818 |
+
# would return [0, 0]. This is useful for part of the vmap implementation:
|
819 |
+
# a user can pass in vmap(fn, in_dims)(*inputs). `in_dims` should be
|
820 |
+
# broadcastable to the tree structure of `inputs` and we use
|
821 |
+
# _broadcast_to_and_flatten to check this.
|
822 |
+
def _broadcast_to_and_flatten(
|
823 |
+
tree: PyTree,
|
824 |
+
treespec: TreeSpec,
|
825 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
826 |
+
) -> Optional[List[Any]]:
|
827 |
+
assert isinstance(treespec, TreeSpec)
|
828 |
+
full_tree = tree_unflatten([0] * treespec.num_leaves, treespec)
|
829 |
+
try:
|
830 |
+
return broadcast_prefix(tree, full_tree, is_leaf=is_leaf)
|
831 |
+
except ValueError:
|
832 |
+
return None
|
833 |
+
|
834 |
+
|
835 |
+
def treespec_dumps(treespec: TreeSpec, protocol: Optional[int] = None) -> str:
|
836 |
+
"""Serialize a treespec to a JSON string."""
|
837 |
+
if not isinstance(treespec, TreeSpec):
|
838 |
+
raise TypeError(
|
839 |
+
f"treespec_dumps(spec): Expected `spec` to be instance of "
|
840 |
+
f"TreeSpec but got item of type {type(treespec)}."
|
841 |
+
)
|
842 |
+
from ._pytree import (
|
843 |
+
tree_structure as _tree_structure,
|
844 |
+
treespec_dumps as _treespec_dumps,
|
845 |
+
)
|
846 |
+
|
847 |
+
orig_treespec = _tree_structure(tree_unflatten([0] * treespec.num_leaves, treespec))
|
848 |
+
return _treespec_dumps(orig_treespec, protocol=protocol)
|
849 |
+
|
850 |
+
|
851 |
+
def treespec_loads(serialized: str) -> TreeSpec:
|
852 |
+
"""Deserialize a treespec from a JSON string."""
|
853 |
+
from ._pytree import (
|
854 |
+
tree_unflatten as _tree_unflatten,
|
855 |
+
treespec_loads as _treespec_loads,
|
856 |
+
)
|
857 |
+
|
858 |
+
orig_treespec = _treespec_loads(serialized)
|
859 |
+
dummy_tree = _tree_unflatten([0] * orig_treespec.num_leaves, orig_treespec)
|
860 |
+
treespec = tree_structure(dummy_tree)
|
861 |
+
return treespec
|
862 |
+
|
863 |
+
|
864 |
+
class _DummyLeaf:
|
865 |
+
def __repr__(self) -> str:
|
866 |
+
return "*"
|
867 |
+
|
868 |
+
|
869 |
+
def treespec_pprint(treespec: TreeSpec) -> str:
|
870 |
+
dummy_tree = tree_unflatten(
|
871 |
+
[_DummyLeaf() for _ in range(treespec.num_leaves)],
|
872 |
+
treespec,
|
873 |
+
)
|
874 |
+
return repr(dummy_tree)
|
875 |
+
|
876 |
+
|
877 |
+
class LeafSpecMeta(type(TreeSpec)): # type: ignore[misc]
|
878 |
+
def __instancecheck__(self, instance: object) -> bool:
|
879 |
+
return isinstance(instance, TreeSpec) and instance.is_leaf()
|
880 |
+
|
881 |
+
|
882 |
+
class LeafSpec(TreeSpec, metaclass=LeafSpecMeta):
|
883 |
+
def __new__(cls) -> "LeafSpec":
|
884 |
+
return optree.treespec_leaf(none_is_leaf=True) # type: ignore[return-value]
|
885 |
+
|
886 |
+
|
887 |
+
def tree_flatten_with_path(
|
888 |
+
tree: PyTree,
|
889 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
890 |
+
) -> Tuple[List[Tuple[KeyPath, Any]], TreeSpec]:
|
891 |
+
"""Flattens a pytree like :func:`tree_flatten`, but also returns each leaf's key path.
|
892 |
+
|
893 |
+
Args:
|
894 |
+
tree: a pytree to flatten. If it contains a custom type, that type must be
|
895 |
+
registered with an appropriate `tree_flatten_with_path_fn` when registered
|
896 |
+
with :func:`register_pytree_node`.
|
897 |
+
is_leaf: An extra leaf predicate function that will be called at each
|
898 |
+
flattening step. The function should have a single argument with signature
|
899 |
+
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
|
900 |
+
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
|
901 |
+
leaf or not. If the function is not specified, the default pytree registry will be used.
|
902 |
+
Returns:
|
903 |
+
A tuple where the first element is a list of (key path, leaf) pairs, and the
|
904 |
+
second element is a :class:`TreeSpec` representing the structure of the flattened
|
905 |
+
tree.
|
906 |
+
"""
|
907 |
+
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
|
908 |
+
|
909 |
+
|
910 |
+
def tree_leaves_with_path(
|
911 |
+
tree: PyTree,
|
912 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
913 |
+
) -> List[Tuple[KeyPath, Any]]:
|
914 |
+
"""Gets the leaves of a pytree like ``tree_leaves`` and returns each leaf's key path.
|
915 |
+
|
916 |
+
Args:
|
917 |
+
tree: a pytree. If it contains a custom type, that type must be
|
918 |
+
registered with an appropriate `tree_flatten_with_path_fn` when registered
|
919 |
+
with :func:`register_pytree_node`.
|
920 |
+
is_leaf: An extra leaf predicate function that will be called at each
|
921 |
+
flattening step. The function should have a single argument with signature
|
922 |
+
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
|
923 |
+
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
|
924 |
+
leaf or not. If the function is not specified, the default pytree registry will be used.
|
925 |
+
Returns:
|
926 |
+
A list of (key path, leaf) pairs.
|
927 |
+
"""
|
928 |
+
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
|
929 |
+
|
930 |
+
|
931 |
+
def tree_map_with_path(
|
932 |
+
func: Callable[..., Any],
|
933 |
+
tree: PyTree,
|
934 |
+
*rests: PyTree,
|
935 |
+
is_leaf: Optional[Callable[[PyTree], bool]] = None,
|
936 |
+
) -> PyTree:
|
937 |
+
"""Like :func:`tree_map`, but the provided callable takes an additional key path argument.
|
938 |
+
|
939 |
+
Args:
|
940 |
+
func: A function that takes ``2 + len(rests)`` arguments, to be applied at the
|
941 |
+
corresponding leaves of the pytrees. The first positional argument
|
942 |
+
to ``func`` is the key path of the leaf in question. The second
|
943 |
+
positional argument is the value of the leaf.
|
944 |
+
tree: A pytree to be mapped over, with each leaf providing the first positional
|
945 |
+
argument to function ``func``.
|
946 |
+
rests: A tuple of pytrees, each of which has the same structure as
|
947 |
+
``tree`` or has ``tree`` as a prefix.
|
948 |
+
is_leaf: An extra leaf predicate function that will be called at each
|
949 |
+
flattening step. The function should have a single argument with signature
|
950 |
+
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
|
951 |
+
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
|
952 |
+
leaf or not. If the function is not specified, the default pytree registry will be used.
|
953 |
+
|
954 |
+
Returns
|
955 |
+
A new pytree with the same structure as ``tree`` but with the value at each leaf given by
|
956 |
+
``func(keypath, x, *xs)`` where ``keypath`` is the key path at the
|
957 |
+
corresponding leaf in ``tree``, ``x`` is the value at that leaf, and
|
958 |
+
``xs`` is the tuple of values at corresponding nodes in ``rests``.
|
959 |
+
"""
|
960 |
+
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
|
961 |
+
|
962 |
+
|
963 |
+
def keystr(kp: KeyPath) -> str:
|
964 |
+
"""Given a key path, return a pretty-printed representation."""
|
965 |
+
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
|
966 |
+
|
967 |
+
|
968 |
+
def key_get(obj: Any, kp: KeyPath) -> Any:
|
969 |
+
"""Given an object and a key path, return the value at the key path."""
|
970 |
+
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_import_utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import importlib.util
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
def _check_module_exists(name: str) -> bool:
|
8 |
+
r"""Returns if a top-level module with :attr:`name` exists *without**
|
9 |
+
importing it. This is generally safer than try-catch block around a
|
10 |
+
`import X`. It avoids third party libraries breaking assumptions of some of
|
11 |
+
our tests, e.g., setting multiprocessing start method when imported
|
12 |
+
(see librosa/#747, torchvision/#544).
|
13 |
+
"""
|
14 |
+
try:
|
15 |
+
spec = importlib.util.find_spec(name)
|
16 |
+
return spec is not None
|
17 |
+
except ImportError:
|
18 |
+
return False
|
19 |
+
|
20 |
+
|
21 |
+
@functools.lru_cache
|
22 |
+
def dill_available():
|
23 |
+
return (
|
24 |
+
_check_module_exists("dill")
|
25 |
+
# dill fails to import under torchdeploy
|
26 |
+
and not torch._running_with_deploy()
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
@functools.lru_cache
|
31 |
+
def import_dill():
|
32 |
+
if not dill_available():
|
33 |
+
return None
|
34 |
+
|
35 |
+
import dill
|
36 |
+
|
37 |
+
# XXX: By default, dill writes the Pickler dispatch table to inject its
|
38 |
+
# own logic there. This globally affects the behavior of the standard library
|
39 |
+
# pickler for any user who transitively depends on this module!
|
40 |
+
# Undo this extension to avoid altering the behavior of the pickler globally.
|
41 |
+
dill.extend(use_dill=False)
|
42 |
+
return dill
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_stats.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NOTE! PLEASE KEEP THIS FILE *FREE* OF TORCH DEPS! IT SHOULD BE IMPORTABLE ANYWHERE.
|
2 |
+
# IF YOU FEEL AN OVERWHELMING URGE TO ADD A TORCH DEP, MAKE A TRAMPOLINE FILE A LA torch._dynamo.utils
|
3 |
+
# AND SCRUB AWAY TORCH NOTIONS THERE.
|
4 |
+
import collections
|
5 |
+
import functools
|
6 |
+
from typing import OrderedDict
|
7 |
+
|
8 |
+
simple_call_counter: OrderedDict[str, int] = collections.OrderedDict()
|
9 |
+
|
10 |
+
def count_label(label):
|
11 |
+
prev = simple_call_counter.setdefault(label, 0)
|
12 |
+
simple_call_counter[label] = prev + 1
|
13 |
+
|
14 |
+
def count(fn):
|
15 |
+
@functools.wraps(fn)
|
16 |
+
def wrapper(*args, **kwargs):
|
17 |
+
if fn.__qualname__ not in simple_call_counter:
|
18 |
+
simple_call_counter[fn.__qualname__] = 0
|
19 |
+
simple_call_counter[fn.__qualname__] = simple_call_counter[fn.__qualname__] + 1
|
20 |
+
return fn(*args, **kwargs)
|
21 |
+
return wrapper
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_traceback.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from types import TracebackType
|
2 |
+
from typing import List, Optional
|
3 |
+
import tempfile
|
4 |
+
import traceback
|
5 |
+
import contextlib
|
6 |
+
import inspect
|
7 |
+
import os.path
|
8 |
+
|
9 |
+
# This file contains utilities for ensuring dynamically compile()'d
|
10 |
+
# code fragments display their line numbers in backtraces.
|
11 |
+
#
|
12 |
+
# The constraints:
|
13 |
+
#
|
14 |
+
# - We don't have control over the user exception printer (in particular,
|
15 |
+
# we cannot assume the linecache trick will work, c.f.
|
16 |
+
# https://stackoverflow.com/q/50515651/23845 )
|
17 |
+
#
|
18 |
+
# - We don't want to create temporary files every time we compile()
|
19 |
+
# some code; file creation should happen lazily only at exception
|
20 |
+
# time. Arguably, you *should* be willing to write out your
|
21 |
+
# generated Python code to file system, but in some situations
|
22 |
+
# (esp. library code) it would violate user expectation to write
|
23 |
+
# to the file system, so we try to avoid it. In particular, we'd
|
24 |
+
# like to keep the files around, so users can open up the files
|
25 |
+
# mentioned in the trace; if the file is invisible, we want to
|
26 |
+
# avoid clogging up the filesystem.
|
27 |
+
#
|
28 |
+
# If this is not a constraint for you, there is a substantially simpler
|
29 |
+
# way to implement the functionality in this PR: instead of using
|
30 |
+
# eval/exec directly, just always write a Python file to filesystem
|
31 |
+
# and compile that.
|
32 |
+
#
|
33 |
+
# - You have control over a context where the compiled code will get
|
34 |
+
# executed, so that we can interpose while the stack is unwinding
|
35 |
+
# (otherwise, we have no way to interpose on the exception printing
|
36 |
+
# process.)
|
37 |
+
#
|
38 |
+
# There are two things you have to do to make use of the utilities here:
|
39 |
+
#
|
40 |
+
# - When you compile your source code, you must save its string source
|
41 |
+
# in its f_globals under the magic name "__compile_source__"
|
42 |
+
#
|
43 |
+
# - Before running the compiled code, enter the
|
44 |
+
# report_compile_source_on_error() context manager.
|
45 |
+
|
46 |
+
@contextlib.contextmanager
|
47 |
+
def report_compile_source_on_error():
|
48 |
+
try:
|
49 |
+
yield
|
50 |
+
except Exception as exc:
|
51 |
+
tb = exc.__traceback__
|
52 |
+
|
53 |
+
# Walk the traceback, looking for frames that have
|
54 |
+
# source attached
|
55 |
+
stack = []
|
56 |
+
while tb is not None:
|
57 |
+
filename = tb.tb_frame.f_code.co_filename
|
58 |
+
source = tb.tb_frame.f_globals.get("__compile_source__")
|
59 |
+
|
60 |
+
if filename == "<string>" and source is not None:
|
61 |
+
# What black magic are we doing here? Intuitively, what
|
62 |
+
# we would like to do is overwrite the co_filename on any
|
63 |
+
# frames that were generated from exec/eval so that they
|
64 |
+
# point to a temporary file that has the actual line
|
65 |
+
# information, so Python's default error printer can print
|
66 |
+
# useful line information on it.
|
67 |
+
#
|
68 |
+
# Writing out the temporary file is easy. But overwriting
|
69 |
+
# co_filename is not! You can't modify the code object
|
70 |
+
# associated with a frame. You can, however, reconstruct
|
71 |
+
# a traceback with entirely new frames from scratch, so that's
|
72 |
+
# what we do. But there's another problem, which is how to
|
73 |
+
# make the frame?
|
74 |
+
#
|
75 |
+
# The black magic is we make a frankenstein frame and code
|
76 |
+
# object which resembles the original frame/code enough so
|
77 |
+
# that it will print properly under traceback and the default
|
78 |
+
# error printer, but IT IS NOT THE ORIGINAL FRAME (you
|
79 |
+
# couldn't, e.g., execute its code with different variables
|
80 |
+
# and expect it to work.)
|
81 |
+
|
82 |
+
# Don't delete the temporary file so the user can inspect it
|
83 |
+
# TODO: This creates a temporary file for every frame, but we
|
84 |
+
# technically only need one per distinct __compile_source__
|
85 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".py") as f:
|
86 |
+
f.write(source)
|
87 |
+
# Create a frame. Python doesn't let you construct
|
88 |
+
# FrameType directly, so just make one with compile
|
89 |
+
frame = tb.tb_frame
|
90 |
+
code = compile('__inspect_currentframe()', f.name, 'eval')
|
91 |
+
code = code.replace(co_name=frame.f_code.co_name)
|
92 |
+
# Python 3.11 only
|
93 |
+
if hasattr(frame.f_code, 'co_linetable'):
|
94 |
+
# We can't copy ALL of the metadata over, because you
|
95 |
+
# can cause Python to segfault this way. What exactly
|
96 |
+
# do we need? We need enough information for
|
97 |
+
# traceback to be able to print the exception
|
98 |
+
# correctly. Code reading Lib/traceback.py reveals
|
99 |
+
# that traceback calls code.co_positions() in order to
|
100 |
+
# get the augmented line/col numbers. Objects/codeobject.c,
|
101 |
+
# specifically _PyCode_InitAddressRange, reveals that
|
102 |
+
# this iterator is initialized from co_linetable and
|
103 |
+
# co_firstfileno. So copy these we must!
|
104 |
+
code = code.replace( # type: ignore[call-arg]
|
105 |
+
co_linetable=frame.f_code.co_linetable, # type: ignore[attr-defined]
|
106 |
+
co_firstlineno=frame.f_code.co_firstlineno, # type: ignore[attr-defined]
|
107 |
+
)
|
108 |
+
fake_frame = eval(
|
109 |
+
code,
|
110 |
+
frame.f_globals,
|
111 |
+
{
|
112 |
+
**frame.f_locals,
|
113 |
+
'__inspect_currentframe': inspect.currentframe
|
114 |
+
}
|
115 |
+
)
|
116 |
+
fake_tb = TracebackType(
|
117 |
+
None, fake_frame, tb.tb_lasti, tb.tb_lineno
|
118 |
+
)
|
119 |
+
stack.append(fake_tb)
|
120 |
+
else:
|
121 |
+
stack.append(tb)
|
122 |
+
|
123 |
+
tb = tb.tb_next
|
124 |
+
|
125 |
+
# Reconstruct the linked list
|
126 |
+
tb_next = None
|
127 |
+
for tb in reversed(stack):
|
128 |
+
tb.tb_next = tb_next
|
129 |
+
tb_next = tb
|
130 |
+
|
131 |
+
raise exc.with_traceback(tb_next) # noqa: TRY200
|
132 |
+
|
133 |
+
def shorten_filename(fn, *, base=None):
|
134 |
+
"""Shorten a source filepath, with the assumption that torch/ subdirectories don't need to be shown to user."""
|
135 |
+
if base is None:
|
136 |
+
base = os.path.dirname(os.path.dirname(__file__))
|
137 |
+
# Truncate torch/foo.py to foo.py
|
138 |
+
try:
|
139 |
+
prefix = os.path.commonpath([fn, base])
|
140 |
+
except ValueError:
|
141 |
+
return fn
|
142 |
+
else:
|
143 |
+
return fn[len(prefix) + 1:]
|
144 |
+
|
145 |
+
def format_frame(frame, *, base=None, line=False):
|
146 |
+
"""
|
147 |
+
Format a FrameSummary in a short way, without printing full absolute path or code.
|
148 |
+
|
149 |
+
The idea is the result fits on a single line.
|
150 |
+
"""
|
151 |
+
extra_line = ""
|
152 |
+
if line:
|
153 |
+
extra_line = f"{frame.line} # "
|
154 |
+
return f"{extra_line}{shorten_filename(frame.filename, base=base)}:{frame.lineno} in {frame.name}"
|
155 |
+
|
156 |
+
def format_traceback_short(tb):
|
157 |
+
"""Format a TracebackType in a short way, printing only the inner-most frame."""
|
158 |
+
return format_frame(traceback.extract_tb(tb)[-1])
|
159 |
+
|
160 |
+
class CapturedTraceback:
|
161 |
+
__slots__ = ['tb', 'skip']
|
162 |
+
|
163 |
+
def __init__(self, tb, skip=0):
|
164 |
+
self.tb = tb
|
165 |
+
self.skip = skip
|
166 |
+
|
167 |
+
def cleanup(self):
|
168 |
+
self.tb = None
|
169 |
+
|
170 |
+
def summary(self):
|
171 |
+
import torch._C._profiler
|
172 |
+
|
173 |
+
if self.tb is None:
|
174 |
+
# TODO: Maybe indicate that the traceback was elided?
|
175 |
+
return traceback.StackSummary()
|
176 |
+
|
177 |
+
return _extract_symbolized_tb(
|
178 |
+
torch._C._profiler.symbolize_tracebacks([self.tb])[0],
|
179 |
+
self.skip
|
180 |
+
)
|
181 |
+
|
182 |
+
def __getstate__(self):
|
183 |
+
return (None, {
|
184 |
+
'tb': None, # TB is not pickleable
|
185 |
+
'skip': self.skip,
|
186 |
+
})
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def extract(*, script=False, cpp=False, skip=0):
|
190 |
+
"""
|
191 |
+
Like traceback.extract_stack(), but faster (approximately 20x faster); it
|
192 |
+
is fast enough that you can unconditionally log stacks this way as part of
|
193 |
+
normal execution. It returns a torch._C._profiler.CapturedTraceback
|
194 |
+
object that must be formatted specially with format_captured_tb.
|
195 |
+
|
196 |
+
By default, this only reports Python backtraces (like extract_stack). You
|
197 |
+
can set the script/cpp kwargs to also turn on TorchScript/C++ trace
|
198 |
+
reporting.
|
199 |
+
"""
|
200 |
+
import torch._C._profiler
|
201 |
+
|
202 |
+
if script or cpp:
|
203 |
+
assert skip == 0, "skip with script/cpp NYI"
|
204 |
+
|
205 |
+
return CapturedTraceback(
|
206 |
+
torch._C._profiler.gather_traceback(python=True, script=script, cpp=cpp),
|
207 |
+
# Elide extract() frame if we don't have script/cpp frames. If
|
208 |
+
# we do have those frames, it doesn't work so force zero.
|
209 |
+
0 if script or cpp else skip + 1
|
210 |
+
)
|
211 |
+
|
212 |
+
def format(self):
|
213 |
+
"""
|
214 |
+
Formats a single torch._C._profiler.CapturedTraceback into a list of
|
215 |
+
strings equivalent to the output of traceback.format_list. Note that if
|
216 |
+
pass it CapturedTraceback with C++ traces, it is better not to use this
|
217 |
+
function and use the batch formatting API format_captured_tbs to amortize
|
218 |
+
the cost of symbolization
|
219 |
+
"""
|
220 |
+
return traceback.format_list(self.summary())
|
221 |
+
|
222 |
+
@staticmethod
|
223 |
+
def format_all(tbs):
|
224 |
+
"""
|
225 |
+
Bulk version of CapturedTraceback.format. Returns a list of list of strings.
|
226 |
+
"""
|
227 |
+
import torch._C._profiler
|
228 |
+
|
229 |
+
# Directly populate tracebacks that already have cached summaries
|
230 |
+
rs: List[Optional[List[str]]] = []
|
231 |
+
delayed_idxs = []
|
232 |
+
for i, tb in enumerate(tbs):
|
233 |
+
if tb.tb is None:
|
234 |
+
rs.append([])
|
235 |
+
else:
|
236 |
+
rs.append(None)
|
237 |
+
delayed_idxs.append(i)
|
238 |
+
|
239 |
+
stbs = torch._C._profiler.symbolize_tracebacks([tbs[i].tb for i in delayed_idxs])
|
240 |
+
for i, stb in zip(delayed_idxs, stbs):
|
241 |
+
rs[i] = traceback.format_list(tbs[i].summary())
|
242 |
+
|
243 |
+
return rs
|
244 |
+
|
245 |
+
|
246 |
+
def _extract_symbolized_tb(tb, skip):
|
247 |
+
"""
|
248 |
+
Given a symbolized traceback from symbolize_tracebacks, return a StackSummary object of
|
249 |
+
pre-processed stack trace entries.
|
250 |
+
"""
|
251 |
+
stack = traceback.StackSummary()
|
252 |
+
for f in reversed(tb[skip:]):
|
253 |
+
stack.append(traceback.FrameSummary(f['filename'], f['line'], f['name']))
|
254 |
+
return stack
|
llmeval-env/lib/python3.10/site-packages/torch/utils/backend_registration.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch._C import _rename_privateuse1_backend, _get_privateuse1_backend_name
|
3 |
+
from typing import List, Optional, Union
|
4 |
+
|
5 |
+
__all__ = ["rename_privateuse1_backend", "generate_methods_for_privateuse1_backend"]
|
6 |
+
|
7 |
+
# TODO: Should use `torch._C._get_privateuse1_backend_name()` to get
|
8 |
+
# renamed-backend name for `privateuse1`, but the func will cause an
|
9 |
+
# error with torch.jit.script, so we use the global variable named
|
10 |
+
# `_privateuse1_backend_name`.
|
11 |
+
_privateuse1_backend_name = "privateuseone"
|
12 |
+
|
13 |
+
def rename_privateuse1_backend(backend_name: str) -> None:
|
14 |
+
r"""
|
15 |
+
Rename the privateuse1 backend device to make it more convenient to use as a device name within PyTorch APIs.
|
16 |
+
|
17 |
+
The steps are:
|
18 |
+
|
19 |
+
(1) (In C++) implement kernels for various torch operations, and register them
|
20 |
+
to the PrivateUse1 dispatch key.
|
21 |
+
(2) (In python) call torch.utils.rename_privateuse1_backend("foo")
|
22 |
+
|
23 |
+
You can now use "foo" as an ordinary device string in python.
|
24 |
+
|
25 |
+
Note: this API can only be called once per process. Attempting to change
|
26 |
+
the external backend after it's already been set will result in an error.
|
27 |
+
|
28 |
+
Note(AMP): If you want to support AMP on your device, you can register a custom backend module.
|
29 |
+
The backend must register a custom backend module with ``torch._register_device_module("foo", BackendModule)``.
|
30 |
+
BackendModule needs to have the following API's:
|
31 |
+
|
32 |
+
(1) ``get_amp_supported_dtype() -> List[torch.dtype]``
|
33 |
+
get the supported dtypes on your "foo" device in AMP, maybe the "foo" device supports one more dtype.
|
34 |
+
|
35 |
+
(2) ``is_autocast_enabled() -> bool``
|
36 |
+
check the AMP is enabled or not on your "foo" device.
|
37 |
+
|
38 |
+
(3) ``get_autocast_dtype() -> torch.dtype``
|
39 |
+
get the supported dtype on your "foo" device in AMP, which is set by ``set_autocast_dtype`` or the
|
40 |
+
default dtype, and the default dtype is ``torch.float16``.
|
41 |
+
|
42 |
+
(4) ``set_autocast_enabled(bool) -> None``
|
43 |
+
enable the AMP or not on your "foo" device.
|
44 |
+
|
45 |
+
(5) ``set_autocast_dtype(dtype) -> None``
|
46 |
+
set the supported dtype on your "foo" device in AMP, and the dtype be contained in the dtypes got
|
47 |
+
from ``get_amp_supported_dtype``.
|
48 |
+
|
49 |
+
Note(random): If you want to support to set seed for your device, BackendModule needs to have the following API's:
|
50 |
+
|
51 |
+
(1) ``_is_in_bad_fork() -> bool``
|
52 |
+
Return ``True`` if now it is in bad_fork, else return ``False``.
|
53 |
+
|
54 |
+
(2) ``manual_seed_all(seed int) -> None``
|
55 |
+
Sets the seed for generating random numbers for your devices.
|
56 |
+
|
57 |
+
(3) ``device_count() -> int``
|
58 |
+
Returns the number of "foo"s available.
|
59 |
+
|
60 |
+
(4) ``get_rng_state(device: Union[int, str, torch.device] = 'foo') -> Tensor``
|
61 |
+
Returns a list of ByteTensor representing the random number states of all devices.
|
62 |
+
|
63 |
+
(5) ``set_rng_state(new_state: Tensor, device: Union[int, str, torch.device] = 'foo') -> None``
|
64 |
+
Sets the random number generator state of the specified "foo" device.
|
65 |
+
|
66 |
+
And there are some common funcs:
|
67 |
+
|
68 |
+
(1) ``is_available() -> bool``
|
69 |
+
Returns a bool indicating if "foo" is currently available.
|
70 |
+
|
71 |
+
(2) ``current_device() -> int``
|
72 |
+
Returns the index of a currently selected device.
|
73 |
+
|
74 |
+
For more details, see https://pytorch.org/tutorials/advanced/extend_dispatcher.html#get-a-dispatch-key-for-your-backend
|
75 |
+
For an existing example, see https://github.com/bdhirsh/pytorch_open_registration_example
|
76 |
+
|
77 |
+
Example::
|
78 |
+
|
79 |
+
>>> # xdoctest: +SKIP("failing")
|
80 |
+
>>> torch.utils.rename_privateuse1_backend("foo")
|
81 |
+
# This will work, assuming that you've implemented the right C++ kernels
|
82 |
+
# to implement torch.ones.
|
83 |
+
>>> a = torch.ones(2, device="foo")
|
84 |
+
|
85 |
+
"""
|
86 |
+
_rename_privateuse1_backend(backend_name)
|
87 |
+
global _privateuse1_backend_name
|
88 |
+
_privateuse1_backend_name = backend_name
|
89 |
+
|
90 |
+
def _check_register_once(module, attr):
|
91 |
+
if hasattr(module, attr):
|
92 |
+
raise RuntimeError(f"The custom device module of {module} has already been registered with {attr}")
|
93 |
+
|
94 |
+
|
95 |
+
def _normalization_device(custom_backend_name: str, device: Optional[Union[int, str, torch.device]] = None) -> int:
|
96 |
+
def _get_current_device_index():
|
97 |
+
_get_device_index = "current_device"
|
98 |
+
if hasattr(torch, custom_backend_name) and \
|
99 |
+
hasattr(getattr(torch, custom_backend_name), _get_device_index):
|
100 |
+
return getattr(getattr(torch, custom_backend_name), _get_device_index)()
|
101 |
+
else:
|
102 |
+
# The default device index is 0.
|
103 |
+
return 0
|
104 |
+
|
105 |
+
if device is None:
|
106 |
+
return _get_current_device_index()
|
107 |
+
# if isinstance(device, str), this means that the parameter passed in is in the string format "foo:0"
|
108 |
+
# convert str object to torch.device object, and then process it uniformly
|
109 |
+
elif isinstance(device, str):
|
110 |
+
device = torch.device(device)
|
111 |
+
|
112 |
+
# variable devcie can only be torch.device type or int type
|
113 |
+
if isinstance(device, torch.device):
|
114 |
+
if device.type != custom_backend_name:
|
115 |
+
raise RuntimeError(f"Invalid device, must be {custom_backend_name} device")
|
116 |
+
elif device.index is None:
|
117 |
+
device_idx = _get_current_device_index()
|
118 |
+
else:
|
119 |
+
device_idx = device.index
|
120 |
+
# if isinstance(device, int), we can take the index number directly
|
121 |
+
else:
|
122 |
+
device_idx = device
|
123 |
+
return device_idx
|
124 |
+
|
125 |
+
|
126 |
+
def _generate_tensor_methods_for_privateuse1_backend(custom_backend_name: str) -> None:
|
127 |
+
@property # type: ignore[misc]
|
128 |
+
def wrap_tensor_backend(self: torch.Tensor) -> bool:
|
129 |
+
return self.device.type == custom_backend_name
|
130 |
+
|
131 |
+
_check_register_once(torch.Tensor, f'is_{custom_backend_name}')
|
132 |
+
setattr(torch.Tensor, f'is_{custom_backend_name}', wrap_tensor_backend)
|
133 |
+
|
134 |
+
def wrap_tensor_to(self: torch.Tensor, device: Optional[Union[int, torch.device]] = None, non_blocking=False,
|
135 |
+
**kwargs) -> torch.Tensor:
|
136 |
+
r"""Perform Tensor device conversion. Call the to operator implementation.
|
137 |
+
|
138 |
+
.. note::
|
139 |
+
If the ``self`` Tensor already
|
140 |
+
has the correct :class:`torch.device`, then ``self`` is returned.
|
141 |
+
Otherwise, the returned tensor is a copy of ``self`` with the desired :class:`torch.device`.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
device (int, optional): if specified, all parameters will be copied to that device
|
145 |
+
non_blocking (bool): If ``True`` and the source is in pinned memory,
|
146 |
+
the copy will be asynchronous with respect to the host. Otherwise,
|
147 |
+
the argument has no effect.
|
148 |
+
**kwargs (dict): For compatibility, may contain the key ``memory_format`` argument.
|
149 |
+
"""
|
150 |
+
device_idx = _normalization_device(custom_backend_name, device)
|
151 |
+
return self.to(device=torch.device(f'{custom_backend_name}:{device_idx}'), non_blocking=non_blocking, **kwargs)
|
152 |
+
|
153 |
+
_check_register_once(torch.Tensor, custom_backend_name)
|
154 |
+
setattr(torch.Tensor, custom_backend_name, wrap_tensor_to)
|
155 |
+
|
156 |
+
|
157 |
+
def _generate_module_methods_for_privateuse1_backend(custom_backend_name: str) -> None:
|
158 |
+
# Generate Module attributes and methods depends on Tensor methods,
|
159 |
+
# so we need to check whether Tensor methods is already registered.
|
160 |
+
if not hasattr(torch.Tensor, custom_backend_name):
|
161 |
+
raise RuntimeError(
|
162 |
+
f"Can not automatically generate {custom_backend_name}() method for torch.nn.Module."
|
163 |
+
f"Because torch.Tensor doesn't has the method {custom_backend_name}()."
|
164 |
+
f"For this error, you can try setting for_tensor=True.")
|
165 |
+
|
166 |
+
def wrap_module_to(self: torch.nn.modules.module.T,
|
167 |
+
device: Optional[Union[int, torch.device]] = None) -> torch.nn.modules.module.T:
|
168 |
+
r"""Move all model parameters and buffers to the custom device.
|
169 |
+
|
170 |
+
This also makes associated parameters and buffers different objects. So
|
171 |
+
it should be called before constructing optimizer if the module will
|
172 |
+
live on device while being optimized.
|
173 |
+
|
174 |
+
.. note::
|
175 |
+
This method modifies the module in-place.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
device (int, optional): if specified, all parameters will be copied to that device
|
179 |
+
"""
|
180 |
+
return self._apply(lambda t: getattr(t, custom_backend_name)(device))
|
181 |
+
|
182 |
+
_check_register_once(torch.nn.Module, custom_backend_name)
|
183 |
+
setattr(torch.nn.Module, custom_backend_name, wrap_module_to)
|
184 |
+
|
185 |
+
|
186 |
+
def _generate_storage_methods_for_privateuse1_backend(custom_backend_name: str,
|
187 |
+
unsupported_dtype: Optional[List[torch.dtype]] = None) -> None:
|
188 |
+
# Attribute is registered in the _StorageBase class
|
189 |
+
# and UntypedStorage obtains through inheritance.
|
190 |
+
@property # type: ignore[misc]
|
191 |
+
def wrap_storage_backend(self: torch.storage._StorageBase) -> bool:
|
192 |
+
r"""Return the internal :class:`torch.UntypedStorage`."""
|
193 |
+
return self.device.type == custom_backend_name
|
194 |
+
|
195 |
+
_check_register_once(torch.storage._StorageBase, f'is_{custom_backend_name}')
|
196 |
+
setattr(torch.storage._StorageBase, f'is_{custom_backend_name}', wrap_storage_backend)
|
197 |
+
|
198 |
+
def wrap_storage_to(self, device=None, non_blocking=False):
|
199 |
+
r"""Return a copy of this object in custom device memory.
|
200 |
+
|
201 |
+
If this object is already in device memory and on the correct device, then
|
202 |
+
no copy is performed and the original object is returned.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
device (int): The destination device id. Defaults to the current device.
|
206 |
+
non_blocking (bool): If ``True`` and the source is in pinned memory,
|
207 |
+
the copy will be asynchronous with respect to the host. Otherwise,
|
208 |
+
the argument has no effect.
|
209 |
+
"""
|
210 |
+
# There should be a judgment related to storage device and a judgment related to storage type,
|
211 |
+
# but it depends on the extended function, so this part is temporarily omitted in the automatic generation.
|
212 |
+
device_idx = _normalization_device(custom_backend_name, device)
|
213 |
+
|
214 |
+
if getattr(self, f'is_{custom_backend_name}'):
|
215 |
+
# storage has already on expected device.
|
216 |
+
if self.get_device() == device_idx:
|
217 |
+
return self
|
218 |
+
# For sparse storage, custom need to extend the implementation by themselves.
|
219 |
+
if self.is_sparse:
|
220 |
+
raise RuntimeError(f"Can not support a sparse storage move to {custom_backend_name} backend")
|
221 |
+
# create untyped_storage and copy data
|
222 |
+
untyped_storage = torch.UntypedStorage(
|
223 |
+
self.size(), device=torch.device(f'{custom_backend_name}:{device_idx}')
|
224 |
+
)
|
225 |
+
untyped_storage.copy_(self, non_blocking)
|
226 |
+
return untyped_storage
|
227 |
+
|
228 |
+
_check_register_once(torch.storage._StorageBase, custom_backend_name)
|
229 |
+
setattr(torch.storage._StorageBase, custom_backend_name, wrap_storage_to)
|
230 |
+
|
231 |
+
# Register the corresponding attribute for the TypedStorage class.
|
232 |
+
# When the TypedStorage class is removed, the registration is also removed.
|
233 |
+
|
234 |
+
@property # type: ignore[misc]
|
235 |
+
def wrap_typed_storage_backend(self: torch.storage.TypedStorage) -> bool:
|
236 |
+
torch.storage._warn_typed_storage_removal()
|
237 |
+
return self._untyped_storage.device.type == custom_backend_name
|
238 |
+
|
239 |
+
_check_register_once(torch.TypedStorage, f'is_{custom_backend_name}')
|
240 |
+
setattr(torch.storage.TypedStorage, f'is_{custom_backend_name}', wrap_typed_storage_backend)
|
241 |
+
|
242 |
+
def wrap_typed_storage_to(self: torch.storage.TypedStorage,
|
243 |
+
device=None, non_blocking=False, **kwargs) -> torch.storage.TypedStorage:
|
244 |
+
torch.storage._warn_typed_storage_removal()
|
245 |
+
if unsupported_dtype and self.dtype in unsupported_dtype:
|
246 |
+
raise RuntimeError(f"Cannot create {custom_backend_name} storage "
|
247 |
+
f"as {self.dtype} dtype is not supported by this backend")
|
248 |
+
custom_backend_storage: torch.UntypedStorage = getattr(
|
249 |
+
self._untyped_storage, custom_backend_name)(device, non_blocking, **kwargs)
|
250 |
+
return self._new_wrapped_storage(custom_backend_storage)
|
251 |
+
|
252 |
+
_check_register_once(torch.TypedStorage, custom_backend_name)
|
253 |
+
setattr(torch.TypedStorage, custom_backend_name, wrap_typed_storage_to)
|
254 |
+
|
255 |
+
|
256 |
+
def generate_methods_for_privateuse1_backend(for_tensor: bool = True, for_module: bool = True,
|
257 |
+
for_storage: bool = False,
|
258 |
+
unsupported_dtype: Optional[List[torch.dtype]] = None) -> None:
|
259 |
+
r"""
|
260 |
+
Automatically generate attributes and methods for the custom backend after rename privateuse1 backend.
|
261 |
+
|
262 |
+
In the default scenario, storage-related methods will not be generated automatically.
|
263 |
+
|
264 |
+
When you implement kernels for various torch operations, and register them to the PrivateUse1 dispatch key.
|
265 |
+
And call the function torch.rename_privateuse1_backend("foo") to rename your backend name.
|
266 |
+
At this point, you can easily register specific methods and attributes by calling this function.
|
267 |
+
Just like torch.Tensor.foo(), torch.Tensor.is_foo, torch.Storage.foo(), torch.Storage.is_foo.
|
268 |
+
|
269 |
+
Note: We recommend you use generic functions (check devices are equal or to(device=)).
|
270 |
+
We provide these methods for convenience only and they will be "monkey patched" onto the objects
|
271 |
+
and so will not be properly typed. For Storage methods generate, if you need to support sparse data storage,
|
272 |
+
you need to extend the implementation yourself.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
for_tensor (bool): whether register related methods for torch.Tensor class.
|
276 |
+
for_module (bool): whether register related methods for torch.nn.Module class.
|
277 |
+
for_storage (bool): whether register related methods for torch.Storage class.
|
278 |
+
unsupported_dtype (List[torch.dtype]): takes effect only when the storage method needs to be generated,
|
279 |
+
indicating that the storage does not support the torch.dtype type.
|
280 |
+
|
281 |
+
Example::
|
282 |
+
|
283 |
+
>>> # xdoctest: +SKIP("failing")
|
284 |
+
>>> torch.utils.rename_privateuse1_backend("foo")
|
285 |
+
>>> torch.utils.generate_methods_for_privateuse1_backend()
|
286 |
+
# Then automatically generate backend-related attributes and methods.
|
287 |
+
>>> a = torch.tensor(2).foo()
|
288 |
+
>>> a.is_foo
|
289 |
+
>>> hasattr(torch.nn.Module, 'foo')
|
290 |
+
"""
|
291 |
+
custom_backend_name = _get_privateuse1_backend_name()
|
292 |
+
|
293 |
+
if for_tensor:
|
294 |
+
_generate_tensor_methods_for_privateuse1_backend(custom_backend_name)
|
295 |
+
|
296 |
+
if for_module:
|
297 |
+
_generate_module_methods_for_privateuse1_backend(custom_backend_name)
|
298 |
+
|
299 |
+
if for_storage:
|
300 |
+
_generate_storage_methods_for_privateuse1_backend(custom_backend_name, unsupported_dtype)
|
301 |
+
|
302 |
+
def _get_custom_mod_func(func_name: str):
|
303 |
+
r"""
|
304 |
+
Return the func named `func_name` defined in custom device module. If not defined,
|
305 |
+
return `None`. And the func is registered with `torch.utils.rename_privateuse1_backend('foo')`
|
306 |
+
and `torch._register_device_module('foo', BackendModule)`.
|
307 |
+
If the custom device module or the func is not defined, it will give warning or error message.
|
308 |
+
Args:
|
309 |
+
func_name (str): return the callable func named func_name defined in custom device module.
|
310 |
+
Example::
|
311 |
+
class DummyfooModule:
|
312 |
+
@staticmethod
|
313 |
+
def is_available():
|
314 |
+
return True
|
315 |
+
@staticmethod
|
316 |
+
def func_name(*args, **kwargs):
|
317 |
+
....
|
318 |
+
torch.utils.rename_privateuse1_backend("foo")
|
319 |
+
torch._register_device_module("foo", DummyfooModule)
|
320 |
+
foo_is_available_func = torch.utils.backend_registration._get_custom_mod_func("is_available")
|
321 |
+
if foo_is_available_func:
|
322 |
+
foo_is_available = foo_is_available_func()
|
323 |
+
func_ = torch.utils.backend_registration._get_custom_mod_func("func_name")
|
324 |
+
if func_:
|
325 |
+
result = func_(*args, **kwargs)
|
326 |
+
Attention: This function is not meant to be used directly by users, which is why
|
327 |
+
it is marked as private. It is a convenience function for backend implementers to
|
328 |
+
more easily call the hooks into their backend extensions.
|
329 |
+
"""
|
330 |
+
assert isinstance(func_name, str), f"func_name must be `str`, but got `{type(func_name)}`."
|
331 |
+
backend_name = _get_privateuse1_backend_name()
|
332 |
+
custom_device_mod = getattr(torch, backend_name, None) # type: ignore[arg-type]
|
333 |
+
function = getattr(custom_device_mod, func_name, None) # type: ignore[arg-type]
|
334 |
+
if custom_device_mod is None or function is None:
|
335 |
+
message = f'Try to call torch.{backend_name}.{func_name}. The backend must register a custom backend '
|
336 |
+
message += f"module with `torch._register_device_module('{backend_name}', BackendModule)`. And "
|
337 |
+
message += f"BackendModule needs to have the following API's:\n `{func_name}(*args, **kwargs)`. \n"
|
338 |
+
raise RuntimeError(message)
|
339 |
+
return function
|
llmeval-env/lib/python3.10/site-packages/torch/utils/checkpoint.py
ADDED
@@ -0,0 +1,1439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import platform
|
3 |
+
import uuid
|
4 |
+
import warnings
|
5 |
+
import weakref
|
6 |
+
from collections import defaultdict
|
7 |
+
from itertools import count
|
8 |
+
from typing import (
|
9 |
+
Any,
|
10 |
+
Callable,
|
11 |
+
ContextManager,
|
12 |
+
DefaultDict,
|
13 |
+
Dict,
|
14 |
+
Iterable,
|
15 |
+
List,
|
16 |
+
Optional,
|
17 |
+
Tuple,
|
18 |
+
)
|
19 |
+
from weakref import ReferenceType
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.fx.traceback as fx_traceback
|
23 |
+
from torch._functorch._aot_autograd.functional_utils import is_fun
|
24 |
+
from torch.utils._pytree import tree_map
|
25 |
+
from torch.testing._internal.logging_tensor import capture_logs, LoggingTensorMode
|
26 |
+
from torch.utils._python_dispatch import TorchDispatchMode
|
27 |
+
|
28 |
+
__all__ = [
|
29 |
+
"checkpoint",
|
30 |
+
"checkpoint_sequential",
|
31 |
+
"CheckpointError",
|
32 |
+
"CheckpointFunction",
|
33 |
+
"check_backward_validity",
|
34 |
+
"detach_variable",
|
35 |
+
"get_device_states",
|
36 |
+
"set_device_states",
|
37 |
+
"noop_context_fn",
|
38 |
+
"set_checkpoint_early_stop",
|
39 |
+
"DefaultDeviceType",
|
40 |
+
"set_checkpoint_debug_enabled",
|
41 |
+
]
|
42 |
+
|
43 |
+
_DEFAULT_DETERMINISM_MODE = "default"
|
44 |
+
|
45 |
+
_checkpoint_debug_enabled: Optional[bool] = None
|
46 |
+
|
47 |
+
|
48 |
+
@contextlib.contextmanager
|
49 |
+
def set_checkpoint_debug_enabled(enabled: Optional[bool]):
|
50 |
+
"""
|
51 |
+
Context manager that sets whether checkpoint should print additional debug
|
52 |
+
information when running. See the ``debug`` flag for
|
53 |
+
:func:`~torch.utils.checkpoint.checkpoint` for more information. Note that
|
54 |
+
when set, this context manager overrides the value of ``debug`` passed to
|
55 |
+
checkpoint. To defer to the local setting, pass ``None`` to this context.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
enabled (bool): Whether checkpoint should print debug information.
|
59 |
+
Default is 'None'.
|
60 |
+
"""
|
61 |
+
global _checkpoint_debug_enabled
|
62 |
+
try:
|
63 |
+
prev = _checkpoint_debug_enabled
|
64 |
+
_checkpoint_debug_enabled = enabled
|
65 |
+
yield
|
66 |
+
finally:
|
67 |
+
_checkpoint_debug_enabled = prev
|
68 |
+
|
69 |
+
|
70 |
+
def detach_variable(inputs: Tuple[Any, ...]) -> Tuple[torch.Tensor, ...]:
|
71 |
+
if isinstance(inputs, tuple):
|
72 |
+
out = []
|
73 |
+
for inp in inputs:
|
74 |
+
if not isinstance(inp, torch.Tensor):
|
75 |
+
out.append(inp)
|
76 |
+
continue
|
77 |
+
|
78 |
+
x = inp.detach()
|
79 |
+
x.requires_grad = inp.requires_grad
|
80 |
+
out.append(x)
|
81 |
+
return tuple(out)
|
82 |
+
else:
|
83 |
+
raise RuntimeError(
|
84 |
+
"Only tuple of tensors is supported. Got Unsupported input type: ",
|
85 |
+
type(inputs).__name__,
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
def check_backward_validity(inputs: Iterable[Any]) -> None:
|
90 |
+
if not any(inp.requires_grad for inp in inputs if isinstance(inp, torch.Tensor)):
|
91 |
+
warnings.warn(
|
92 |
+
"None of the inputs have requires_grad=True. Gradients will be None"
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
def _get_device_module(device="cuda"):
|
97 |
+
device_module = getattr(torch, device)
|
98 |
+
return device_module
|
99 |
+
|
100 |
+
|
101 |
+
class DefaultDeviceType:
|
102 |
+
r"""
|
103 |
+
A class that manages the default device type for checkpointing.
|
104 |
+
|
105 |
+
If no non-CPU tensors are present, the default device type will
|
106 |
+
be used. The default value is 'cuda'. The device type is used in
|
107 |
+
the checkpointing process when determining which device states
|
108 |
+
to save and restore for recomputation.
|
109 |
+
"""
|
110 |
+
|
111 |
+
_default_device_type = "cuda"
|
112 |
+
|
113 |
+
@staticmethod
|
114 |
+
def set_device_type(device: str = "cuda"):
|
115 |
+
"""
|
116 |
+
Set the default device type for checkpointing.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
device (str): The device type to be set as default. Default is 'cuda'.
|
120 |
+
"""
|
121 |
+
DefaultDeviceType._default_device_type = device
|
122 |
+
|
123 |
+
@staticmethod
|
124 |
+
def get_device_type() -> str:
|
125 |
+
"""
|
126 |
+
Get the current default device type for checkpointing.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
str: The current default device type.
|
130 |
+
"""
|
131 |
+
return DefaultDeviceType._default_device_type
|
132 |
+
|
133 |
+
|
134 |
+
def _infer_device_type(*args):
|
135 |
+
device_types = list(
|
136 |
+
{
|
137 |
+
arg.device.type
|
138 |
+
for arg in args
|
139 |
+
if isinstance(arg, torch.Tensor) and not arg.device.type == "cpu"
|
140 |
+
}
|
141 |
+
)
|
142 |
+
if len(device_types) > 1:
|
143 |
+
warnings.warn(
|
144 |
+
"Tensor arguments, excluding CPU tensors, are detected on at least two types of devices. "
|
145 |
+
"Device state will only be saved for devices of a single device type, and the remaining "
|
146 |
+
"devices will be ignored. Consequently, if any checkpointed functions involve randomness, "
|
147 |
+
"this may result in incorrect gradients. (Note that if CUDA devices are among the devices "
|
148 |
+
"detected, it will be prioritized; otherwise, the first device encountered will be selected.)"
|
149 |
+
)
|
150 |
+
if len(device_types) == 0:
|
151 |
+
return DefaultDeviceType.get_device_type()
|
152 |
+
elif "cuda" in device_types:
|
153 |
+
return "cuda"
|
154 |
+
else:
|
155 |
+
return device_types[0]
|
156 |
+
|
157 |
+
|
158 |
+
# We can't know if the run_fn will internally move some args to different devices,
|
159 |
+
# which would require logic to preserve rng states for those devices as well.
|
160 |
+
# We could paranoically stash and restore ALL the rng states for all visible devices,
|
161 |
+
# but that seems very wasteful for most cases. Compromise: Stash the RNG state for
|
162 |
+
# the device of all Tensor args.
|
163 |
+
#
|
164 |
+
# To consider: maybe get_device_states and set_device_states should reside in torch/random.py?
|
165 |
+
def get_device_states(*args) -> Tuple[List[int], List[torch.Tensor]]:
|
166 |
+
# This will not error out if "arg" is a CPU tensor or a non-tensor type because
|
167 |
+
# the conditionals short-circuit.
|
168 |
+
fwd_device_ids = list(
|
169 |
+
{
|
170 |
+
arg.get_device()
|
171 |
+
for arg in args
|
172 |
+
if isinstance(arg, torch.Tensor) and not arg.device.type == "cpu"
|
173 |
+
}
|
174 |
+
)
|
175 |
+
|
176 |
+
fwd_device_states = []
|
177 |
+
device_module = _get_device_module(_infer_device_type(*args))
|
178 |
+
|
179 |
+
for device_id in fwd_device_ids:
|
180 |
+
with device_module.device(device_id):
|
181 |
+
fwd_device_states.append(device_module.get_rng_state())
|
182 |
+
|
183 |
+
return fwd_device_ids, fwd_device_states
|
184 |
+
|
185 |
+
|
186 |
+
def set_device_states(devices, states) -> None:
|
187 |
+
device_module = _get_device_module(_infer_device_type(*states))
|
188 |
+
for device, state in zip(devices, states):
|
189 |
+
with device_module.device(device):
|
190 |
+
device_module.set_rng_state(state)
|
191 |
+
|
192 |
+
|
193 |
+
def _get_autocast_kwargs(device="cuda"):
|
194 |
+
if device == "cuda":
|
195 |
+
device_autocast_kwargs = {
|
196 |
+
"enabled": torch.is_autocast_enabled(),
|
197 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
198 |
+
"cache_enabled": torch.is_autocast_cache_enabled(),
|
199 |
+
}
|
200 |
+
elif _supports_autocast(device):
|
201 |
+
device_module = _get_device_module(device)
|
202 |
+
device_autocast_kwargs = {
|
203 |
+
"enabled": device_module.is_autocast_enabled(),
|
204 |
+
"dtype": device_module.get_autocast_dtype(),
|
205 |
+
"cache_enabled": torch.is_autocast_cache_enabled(),
|
206 |
+
}
|
207 |
+
else:
|
208 |
+
device_autocast_kwargs = None
|
209 |
+
|
210 |
+
cpu_autocast_kwargs = {
|
211 |
+
"enabled": torch.is_autocast_cpu_enabled(),
|
212 |
+
"dtype": torch.get_autocast_cpu_dtype(),
|
213 |
+
"cache_enabled": torch.is_autocast_cache_enabled(),
|
214 |
+
}
|
215 |
+
|
216 |
+
return device_autocast_kwargs, cpu_autocast_kwargs
|
217 |
+
|
218 |
+
def _supports_autocast(device):
|
219 |
+
device_module = _get_device_module(device)
|
220 |
+
return device == "cuda" or (hasattr(device_module, "is_autocast_enabled")
|
221 |
+
and hasattr(device_module, "get_autocast_dtype"))
|
222 |
+
|
223 |
+
class CheckpointFunction(torch.autograd.Function):
|
224 |
+
@staticmethod
|
225 |
+
def forward(ctx, run_function, preserve_rng_state, *args):
|
226 |
+
check_backward_validity(args)
|
227 |
+
ctx.run_function = run_function
|
228 |
+
ctx.preserve_rng_state = preserve_rng_state
|
229 |
+
# Accommodates the (remote) possibility that autocast is enabled for cpu AND gpu.
|
230 |
+
ctx.device = _infer_device_type(*args)
|
231 |
+
ctx.device_autocast_kwargs, ctx.cpu_autocast_kwargs = _get_autocast_kwargs(
|
232 |
+
ctx.device
|
233 |
+
)
|
234 |
+
if preserve_rng_state:
|
235 |
+
ctx.fwd_cpu_state = torch.get_rng_state()
|
236 |
+
# Don't eagerly initialize the cuda context by accident.
|
237 |
+
# (If the user intends that the context is initialized later, within their
|
238 |
+
# run_function, we SHOULD actually stash the cuda state here. Unfortunately,
|
239 |
+
# we have no way to anticipate this will happen before we run the function.)
|
240 |
+
ctx.had_device_in_fwd = False
|
241 |
+
device_module = _get_device_module(ctx.device)
|
242 |
+
if getattr(device_module, "_initialized", False):
|
243 |
+
ctx.had_device_in_fwd = True
|
244 |
+
ctx.fwd_devices, ctx.fwd_device_states = get_device_states(*args)
|
245 |
+
|
246 |
+
# Save non-tensor inputs in ctx, keep a placeholder None for tensors
|
247 |
+
# to be filled out during the backward.
|
248 |
+
ctx.inputs = []
|
249 |
+
ctx.tensor_indices = []
|
250 |
+
tensor_inputs = []
|
251 |
+
for i, arg in enumerate(args):
|
252 |
+
if torch.is_tensor(arg):
|
253 |
+
tensor_inputs.append(arg)
|
254 |
+
ctx.tensor_indices.append(i)
|
255 |
+
ctx.inputs.append(None)
|
256 |
+
else:
|
257 |
+
ctx.inputs.append(arg)
|
258 |
+
|
259 |
+
ctx.save_for_backward(*tensor_inputs)
|
260 |
+
|
261 |
+
with torch.no_grad():
|
262 |
+
outputs = run_function(*args)
|
263 |
+
return outputs
|
264 |
+
|
265 |
+
@staticmethod
|
266 |
+
def backward(ctx, *args):
|
267 |
+
if not torch.autograd._is_checkpoint_valid():
|
268 |
+
raise RuntimeError(
|
269 |
+
"Checkpointing is not compatible with .grad() or when an `inputs` parameter"
|
270 |
+
" is passed to .backward(). Please use .backward() and do not pass its `inputs`"
|
271 |
+
" argument."
|
272 |
+
)
|
273 |
+
# Copy the list to avoid modifying original list.
|
274 |
+
inputs = list(ctx.inputs)
|
275 |
+
tensor_indices = ctx.tensor_indices
|
276 |
+
tensors = ctx.saved_tensors
|
277 |
+
device_module = _get_device_module(ctx.device)
|
278 |
+
|
279 |
+
# Fill in inputs with appropriate saved tensors.
|
280 |
+
for i, idx in enumerate(tensor_indices):
|
281 |
+
inputs[idx] = tensors[i]
|
282 |
+
|
283 |
+
# Stash the surrounding rng state, and mimic the state that was
|
284 |
+
# present at this time during forward. Restore the surrounding state
|
285 |
+
# when we're done.
|
286 |
+
rng_devices = []
|
287 |
+
if ctx.preserve_rng_state and ctx.had_device_in_fwd:
|
288 |
+
rng_devices = ctx.fwd_devices
|
289 |
+
with torch.random.fork_rng(
|
290 |
+
devices=rng_devices, enabled=ctx.preserve_rng_state, device_type=ctx.device
|
291 |
+
):
|
292 |
+
if ctx.preserve_rng_state:
|
293 |
+
torch.set_rng_state(ctx.fwd_cpu_state)
|
294 |
+
if ctx.had_device_in_fwd:
|
295 |
+
set_device_states(ctx.fwd_devices, ctx.fwd_device_states)
|
296 |
+
detached_inputs = detach_variable(tuple(inputs))
|
297 |
+
|
298 |
+
device_autocast_ctx = device_module.amp.autocast(
|
299 |
+
**ctx.device_autocast_kwargs
|
300 |
+
) if _supports_autocast(ctx.device) else contextlib.nullcontext()
|
301 |
+
with torch.enable_grad(), device_autocast_ctx, \
|
302 |
+
torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs):
|
303 |
+
outputs = ctx.run_function(*detached_inputs)
|
304 |
+
|
305 |
+
if isinstance(outputs, torch.Tensor):
|
306 |
+
outputs = (outputs,)
|
307 |
+
|
308 |
+
# run backward() with only tensor that requires grad
|
309 |
+
outputs_with_grad = []
|
310 |
+
args_with_grad = []
|
311 |
+
for i in range(len(outputs)):
|
312 |
+
if torch.is_tensor(outputs[i]) and outputs[i].requires_grad:
|
313 |
+
outputs_with_grad.append(outputs[i])
|
314 |
+
args_with_grad.append(args[i])
|
315 |
+
if len(outputs_with_grad) == 0:
|
316 |
+
raise RuntimeError(
|
317 |
+
"none of output has requires_grad=True,"
|
318 |
+
" this checkpoint() is not necessary"
|
319 |
+
)
|
320 |
+
torch.autograd.backward(outputs_with_grad, args_with_grad)
|
321 |
+
grads = tuple(
|
322 |
+
inp.grad if isinstance(inp, torch.Tensor) else None
|
323 |
+
for inp in detached_inputs
|
324 |
+
)
|
325 |
+
|
326 |
+
return (None, None) + grads
|
327 |
+
|
328 |
+
|
329 |
+
def noop_context_fn():
|
330 |
+
return contextlib.nullcontext(), contextlib.nullcontext()
|
331 |
+
|
332 |
+
# TorchDynamo does not step inside utils.checkpoint function. The flow
|
333 |
+
# looks likes this
|
334 |
+
# 1) TorchDynamo tries to wrap utils.checkpoint in a HigherOrderOp by
|
335 |
+
# speculatively checking if the forward function is safe to trace.
|
336 |
+
# 2) If yes, then Dynamo-generated Fx graph has the wrapped higher
|
337 |
+
# order op. As a result, TorchDynamo does not look inside utils.checkpoint.
|
338 |
+
# 3) If not, then TorchDynamo falls back to eager by performing a graph
|
339 |
+
# break. And here, the following disable wrapper ensures that
|
340 |
+
# TorchDynamo does not trigger again on the frames created by
|
341 |
+
# utils.checkpoint innards.
|
342 |
+
@torch._disable_dynamo
|
343 |
+
def checkpoint(
|
344 |
+
function,
|
345 |
+
*args,
|
346 |
+
use_reentrant: Optional[bool] = None,
|
347 |
+
context_fn: Callable[[], Tuple[ContextManager, ContextManager]] = noop_context_fn,
|
348 |
+
determinism_check: str = _DEFAULT_DETERMINISM_MODE,
|
349 |
+
debug: bool = False,
|
350 |
+
**kwargs
|
351 |
+
):
|
352 |
+
r"""Checkpoint a model or part of the model.
|
353 |
+
|
354 |
+
Activation checkpointing is a technique that trades compute for memory.
|
355 |
+
Instead of keeping tensors needed for backward alive until they are used in
|
356 |
+
gradient computation during backward, forward computation in checkpointed
|
357 |
+
regions omits saving tensors for backward and recomputes them during the
|
358 |
+
backward pass. Activation checkpointing can be applied to any part of a
|
359 |
+
model.
|
360 |
+
|
361 |
+
There are currently two checkpointing implementations available, determined
|
362 |
+
by the :attr:`use_reentrant` parameter. It is recommended that you use
|
363 |
+
``use_reentrant=False``. Please refer the note below for a discussion of
|
364 |
+
their differences.
|
365 |
+
|
366 |
+
.. warning::
|
367 |
+
|
368 |
+
If the :attr:`function` invocation during the backward pass differs
|
369 |
+
from the forward pass, e.g., due to a global variable, the checkpointed
|
370 |
+
version may not be equivalent, potentially causing an
|
371 |
+
error being raised or leading to silently incorrect gradients.
|
372 |
+
|
373 |
+
.. warning::
|
374 |
+
|
375 |
+
The ``use_reentrant`` parameter should be passed explicitly. In version
|
376 |
+
2.4 we will raise an exception if ``use_reentrant`` is not passed.
|
377 |
+
If you are using the ``use_reentrant=True`` variant, please refer to the
|
378 |
+
note below for important considerations and potential limitations.
|
379 |
+
|
380 |
+
.. note::
|
381 |
+
|
382 |
+
The reentrant variant of checkpoint (``use_reentrant=True``) and
|
383 |
+
the non-reentrant variant of checkpoint (``use_reentrant=False``)
|
384 |
+
differ in the following ways:
|
385 |
+
|
386 |
+
* Non-reentrant checkpoint stops recomputation as soon as all needed
|
387 |
+
intermediate activations have been recomputed. This feature is enabled
|
388 |
+
by default, but can be disabled with :func:`set_checkpoint_early_stop`.
|
389 |
+
Reentrant checkpoint always recomputes :attr:`function` in its
|
390 |
+
entirety during the backward pass.
|
391 |
+
|
392 |
+
* The reentrant variant does not record the autograd graph during the
|
393 |
+
forward pass, as it runs with the forward pass under
|
394 |
+
:func:`torch.no_grad`. The non-reentrant version does record the
|
395 |
+
autograd graph, allowing one to perform backward on the graph within
|
396 |
+
checkpointed regions.
|
397 |
+
|
398 |
+
* The reentrant checkpoint only supports the
|
399 |
+
:func:`torch.autograd.backward` API for the backward pass without its
|
400 |
+
`inputs` argument, while the non-reentrant version supports all ways
|
401 |
+
of performing the backward pass.
|
402 |
+
|
403 |
+
* At least one input and output must have ``requires_grad=True`` for the
|
404 |
+
reentrant variant. If this condition is unmet, the checkpointed part
|
405 |
+
of the model will not have gradients. The non-reentrant version does
|
406 |
+
not have this requirement.
|
407 |
+
|
408 |
+
* The reentrant version does not consider tensors in nested structures
|
409 |
+
(e.g., custom objects, lists, dicts, etc) as participating in
|
410 |
+
autograd, while the non-reentrant version does.
|
411 |
+
|
412 |
+
* The reentrant checkpoint does not support checkpointed regions with
|
413 |
+
detached tensors from the computational graph, whereas the
|
414 |
+
non-reentrant version does. For the reentrant variant, if the
|
415 |
+
checkpointed segment contains tensors detached using ``detach()`` or
|
416 |
+
with :func:`torch.no_grad`, the backward pass will raise an error.
|
417 |
+
This is because ``checkpoint`` makes all the outputs require gradients
|
418 |
+
and this causes issues when a tensor is defined to have no gradient in
|
419 |
+
the model. To avoid this, detach the tensors outside of the
|
420 |
+
``checkpoint`` function.
|
421 |
+
|
422 |
+
Args:
|
423 |
+
function: describes what to run in the forward pass of the model or
|
424 |
+
part of the model. It should also know how to handle the inputs
|
425 |
+
passed as the tuple. For example, in LSTM, if user passes
|
426 |
+
``(activation, hidden)``, :attr:`function` should correctly use the
|
427 |
+
first input as ``activation`` and the second input as ``hidden``
|
428 |
+
preserve_rng_state(bool, optional): Omit stashing and restoring
|
429 |
+
the RNG state during each checkpoint. Note that under torch.compile,
|
430 |
+
this flag doesn't take effect and we always preserve RNG state.
|
431 |
+
Default: ``True``
|
432 |
+
use_reentrant(bool):
|
433 |
+
specify whether to use the activation checkpoint variant that
|
434 |
+
requires reentrant autograd. This parameter should be passed
|
435 |
+
explicitly. In version 2.4 we will raise an exception if
|
436 |
+
``use_reentrant`` is not passed. If ``use_reentrant=False``,
|
437 |
+
``checkpoint`` will use an implementation that does not require
|
438 |
+
reentrant autograd. This allows ``checkpoint`` to support additional
|
439 |
+
functionality, such as working as expected with
|
440 |
+
``torch.autograd.grad`` and support for keyword arguments input into
|
441 |
+
the checkpointed function.
|
442 |
+
context_fn(Callable, optional): A callable returning a tuple of two
|
443 |
+
context managers. The function and its recomputation will be run
|
444 |
+
under the first and second context managers respectively.
|
445 |
+
This argument is only supported if ``use_reentrant=False``.
|
446 |
+
determinism_check(str, optional): A string specifying the determinism
|
447 |
+
check to perform. By default it is set to ``"default"`` which
|
448 |
+
compares the shapes, dtypes, and devices of the recomputed tensors
|
449 |
+
against those the saved tensors. To turn off this check, specify
|
450 |
+
``"none"``. Currently these are the only two supported values.
|
451 |
+
Please open an issue if you would like to see more determinism
|
452 |
+
checks. This argument is only supported if ``use_reentrant=False``,
|
453 |
+
if ``use_reentrant=True``, the determinism check is always disabled.
|
454 |
+
debug(bool, optional): If ``True``, error messages will also include
|
455 |
+
a trace of the operators ran during the original forward computation
|
456 |
+
as well as the recomputation. This argument is only supported if
|
457 |
+
``use_reentrant=False``.
|
458 |
+
args: tuple containing inputs to the :attr:`function`
|
459 |
+
|
460 |
+
Returns:
|
461 |
+
Output of running :attr:`function` on :attr:`*args`
|
462 |
+
"""
|
463 |
+
if use_reentrant is None:
|
464 |
+
warnings.warn(
|
465 |
+
"torch.utils.checkpoint: the use_reentrant parameter should be "
|
466 |
+
"passed explicitly. In version 2.4 we will raise an exception "
|
467 |
+
"if use_reentrant is not passed. use_reentrant=False is "
|
468 |
+
"recommended, but if you need to preserve the current default "
|
469 |
+
"behavior, you can pass use_reentrant=True. Refer to docs for more "
|
470 |
+
"details on the differences between the two variants."
|
471 |
+
)
|
472 |
+
use_reentrant = True
|
473 |
+
|
474 |
+
# Hack to mix *args with **kwargs in a python 2.7-compliant way
|
475 |
+
preserve = kwargs.pop("preserve_rng_state", True)
|
476 |
+
if kwargs and use_reentrant:
|
477 |
+
raise ValueError(
|
478 |
+
"Unexpected keyword arguments: " + ",".join(arg for arg in kwargs)
|
479 |
+
)
|
480 |
+
|
481 |
+
if use_reentrant:
|
482 |
+
if context_fn is not noop_context_fn or debug is not False:
|
483 |
+
raise ValueError(
|
484 |
+
"Passing `context_fn` or `debug` is only supported when "
|
485 |
+
"use_reentrant=False."
|
486 |
+
)
|
487 |
+
return CheckpointFunction.apply(function, preserve, *args)
|
488 |
+
else:
|
489 |
+
gen = _checkpoint_without_reentrant_generator(
|
490 |
+
function, preserve, context_fn, determinism_check, debug, *args, **kwargs
|
491 |
+
)
|
492 |
+
# Runs pre-forward logic
|
493 |
+
next(gen)
|
494 |
+
ret = function(*args, **kwargs)
|
495 |
+
# Runs post-forward logic
|
496 |
+
try:
|
497 |
+
next(gen)
|
498 |
+
except StopIteration:
|
499 |
+
return ret
|
500 |
+
|
501 |
+
|
502 |
+
def checkpoint_sequential(functions, segments, input, use_reentrant=None, **kwargs):
|
503 |
+
r"""Checkpoint a sequential model to save memory.
|
504 |
+
|
505 |
+
Sequential models execute a list of modules/functions in order
|
506 |
+
(sequentially). Therefore, we can divide such a model in various segments
|
507 |
+
and checkpoint each segment. All segments except the last will not store
|
508 |
+
the intermediate activations. The inputs of each checkpointed segment will
|
509 |
+
be saved for re-running the segment in the backward pass.
|
510 |
+
|
511 |
+
.. warning::
|
512 |
+
The ``use_reentrant`` parameter should be passed explicitly. In version
|
513 |
+
2.4 we will raise an exception if ``use_reentrant`` is not passed.
|
514 |
+
If you are using the ``use_reentrant=True` variant, please see
|
515 |
+
:func:`~torch.utils.checkpoint.checkpoint` for
|
516 |
+
the important considerations and limitations of this variant. It is
|
517 |
+
recommended that you use ``use_reentrant=False``.
|
518 |
+
|
519 |
+
.. warning:
|
520 |
+
Since PyTorch 1.4, it allows only one Tensor as the input and
|
521 |
+
intermediate outputs, just like :class:`torch.nn.Sequential`.
|
522 |
+
|
523 |
+
Args:
|
524 |
+
functions: A :class:`torch.nn.Sequential` or the list of modules or
|
525 |
+
functions (comprising the model) to run sequentially.
|
526 |
+
segments: Number of chunks to create in the model
|
527 |
+
input: A Tensor that is input to :attr:`functions`
|
528 |
+
preserve_rng_state(bool, optional): Omit stashing and restoring
|
529 |
+
the RNG state during each checkpoint.
|
530 |
+
Default: ``True``
|
531 |
+
use_reentrant(bool):
|
532 |
+
specify whether to use the activation checkpoint variant that
|
533 |
+
requires reentrant autograd. This parameter should be passed
|
534 |
+
explicitly. In version 2.4 we will raise an exception if
|
535 |
+
``use_reentrant`` is not passed. If ``use_reentrant=False``,
|
536 |
+
``checkpoint`` will use an implementation that does not require
|
537 |
+
reentrant autograd. This allows ``checkpoint`` to support additional
|
538 |
+
functionality, such as working as expected with
|
539 |
+
``torch.autograd.grad`` and support for keyword arguments input into
|
540 |
+
the checkpointed function.
|
541 |
+
|
542 |
+
Returns:
|
543 |
+
Output of running :attr:`functions` sequentially on :attr:`*inputs`
|
544 |
+
|
545 |
+
Example:
|
546 |
+
>>> # xdoctest: +SKIP("stub")
|
547 |
+
>>> model = nn.Sequential(...)
|
548 |
+
>>> input_var = checkpoint_sequential(model, chunks, input_var)
|
549 |
+
"""
|
550 |
+
if use_reentrant is None:
|
551 |
+
warnings.warn(
|
552 |
+
"torch.utils.checkpoint.checkpoint_sequential: the use_reentrant "
|
553 |
+
"parameter should be passed explicitly. "
|
554 |
+
"In version 2.4 we will raise an exception if use_reentrant "
|
555 |
+
"is not passed. use_reentrant=False is "
|
556 |
+
"recommended, but if you need to preserve the current default "
|
557 |
+
"behavior, you can pass use_reentrant=True. Refer to docs for more "
|
558 |
+
"details on the differences between the two variants."
|
559 |
+
)
|
560 |
+
use_reentrant = True
|
561 |
+
|
562 |
+
# Hack for keyword-only parameter in a python 2.7-compliant way
|
563 |
+
preserve = kwargs.pop("preserve_rng_state", True)
|
564 |
+
if kwargs:
|
565 |
+
raise ValueError(
|
566 |
+
"Unexpected keyword arguments: " + ",".join(arg for arg in kwargs)
|
567 |
+
)
|
568 |
+
|
569 |
+
def run_function(start, end, functions):
|
570 |
+
def forward(input):
|
571 |
+
for j in range(start, end + 1):
|
572 |
+
input = functions[j](input)
|
573 |
+
return input
|
574 |
+
|
575 |
+
return forward
|
576 |
+
|
577 |
+
if isinstance(functions, torch.nn.Sequential):
|
578 |
+
functions = list(functions.children())
|
579 |
+
|
580 |
+
segment_size = len(functions) // segments
|
581 |
+
# the last chunk has to be non-volatile
|
582 |
+
end = -1
|
583 |
+
for start in range(0, segment_size * (segments - 1), segment_size):
|
584 |
+
end = start + segment_size - 1
|
585 |
+
input = checkpoint(
|
586 |
+
run_function(start, end, functions),
|
587 |
+
input,
|
588 |
+
use_reentrant=use_reentrant,
|
589 |
+
preserve_rng_state=preserve,
|
590 |
+
)
|
591 |
+
return run_function(end + 1, len(functions) - 1, functions)(input)
|
592 |
+
|
593 |
+
|
594 |
+
def _internal_assert(cond):
|
595 |
+
if not cond:
|
596 |
+
raise AssertionError(
|
597 |
+
"Something went unexpectedly wrong in activation checkpoint. "
|
598 |
+
"Please report this bug by filing an issue to PyTorch."
|
599 |
+
)
|
600 |
+
|
601 |
+
|
602 |
+
# NOTE [ Nestable Checkpoint ]
|
603 |
+
#
|
604 |
+
# The semantics of nested checkpoint can be defined by two basic rules.
|
605 |
+
# Following the two rules leads to an important implication that is central
|
606 |
+
# to motivating the design.
|
607 |
+
#
|
608 |
+
# Rule 1. Saved tensors are managed by inner-most checkpoint only and hidden
|
609 |
+
# from any outer layers of checkpoint.
|
610 |
+
#
|
611 |
+
# Rule 2. The inputs of inner checkpoints are treated as tensors saved to its
|
612 |
+
# parent checkpoint.
|
613 |
+
#
|
614 |
+
# Implication: To recompute any given saved tensor, we need to recompute all of
|
615 |
+
# the checkpoints wrapping it.
|
616 |
+
#
|
617 |
+
# Why is this implied? To unpack a saved tensor X during backward we need to
|
618 |
+
# recompute the inner-most checkpoint (#1), and in order to recompute that
|
619 |
+
# checkpoint I need to have its inputs, which are managed by that checkpoint's
|
620 |
+
# parent (#2), which thus also needs to be recomputed first. Continue this line
|
621 |
+
# of reasoning and we realize that in order to unpack X, all checkpoints that
|
622 |
+
# were active at the time X was saved need to be recomputed. (unless we have
|
623 |
+
# already done so in that backward for some other saved tensor).
|
624 |
+
#
|
625 |
+
# In practice, we use a noop autograd Function to save inputs as saved tensors.
|
626 |
+
# During unpack calling ctx.saved_tensor triggers the parent checkpoint to
|
627 |
+
# recompute.
|
628 |
+
#
|
629 |
+
# Rule 3. We should start recomputation as if there are no checkpoints currently
|
630 |
+
# active. Checkpoints encountered during recomputation are still
|
631 |
+
# respected.
|
632 |
+
#
|
633 |
+
# When we start recomputation, we push the saved variable hook meant for
|
634 |
+
# recomputation on the stack. See examples in Rule 6 for more context.
|
635 |
+
#
|
636 |
+
# * * * *
|
637 |
+
#
|
638 |
+
# Beyond the basic semantics specific to nested checkpoint, we impose several
|
639 |
+
# more constraints that may apply to checkpointing in general.
|
640 |
+
#
|
641 |
+
# Rule 4. Lifetime of recomputed tensors
|
642 |
+
#
|
643 |
+
# Recomputed tensors are considered specific to particular invocations
|
644 |
+
# of backward and are always cleared immediately as they are unpacked
|
645 |
+
# Particularly, we require this to happen even if retain_graph=True.
|
646 |
+
#
|
647 |
+
# [ Implementation details of Rule 4 ]
|
648 |
+
#
|
649 |
+
# If we were okay with recomputed tensors staying alive after backward is run
|
650 |
+
# with retain_graph=True, we would store recomputed variables as the values of a
|
651 |
+
# WeakKeyDictionary and pack strong references to the keys, so that as we
|
652 |
+
# backward, those packed keys would be cleared as long as retain_graph=False.
|
653 |
+
# Clearing the packed key clears the corresponding entry in the WKD.
|
654 |
+
#
|
655 |
+
# If we wish recomputed variables to be immediately cleared as we unpack them in
|
656 |
+
# the retain_graph=True case, we cannot rely on the packed keys to be cleared by
|
657 |
+
# backward automatically. Instead of packing the strong reference to the key
|
658 |
+
# directly, we pack a container object, which we manually clear as we unpack.
|
659 |
+
#
|
660 |
+
# An important detail is that if a second backward happens, the second
|
661 |
+
# recomputation needs to reset the container with a newly created key.
|
662 |
+
#
|
663 |
+
# Rule 5. Stop recomputation as soon as we've recomputed the saved tensors we
|
664 |
+
# know we need.
|
665 |
+
#
|
666 |
+
# [ Implementation details of Rule 5 ]
|
667 |
+
#
|
668 |
+
# During recomputation, raise an exception if the number of recomputed tensors
|
669 |
+
# matches the number of tensors that we expected to recompute. We wrap the
|
670 |
+
# recomputation call with a try-catch to catch this specific exception. See
|
671 |
+
# Rule #6 below for some examples.
|
672 |
+
#
|
673 |
+
# Rule 6. We support doing backward inside checkpoint context
|
674 |
+
#
|
675 |
+
# [ retain_graph is True]
|
676 |
+
#
|
677 |
+
# def fn(x):
|
678 |
+
# y = x.sin()
|
679 |
+
# z = y.cos()
|
680 |
+
# gx, = torch.autograd.grad(z, x, retains_grad=True)
|
681 |
+
# return gx, z
|
682 |
+
#
|
683 |
+
# out = checkpoint(fn)(inp)
|
684 |
+
# out.backward()
|
685 |
+
#
|
686 |
+
# Because z is saved by cos while checkpoint is enabled, it would not be
|
687 |
+
# actually saved, and so the .grad() call inside must trigger a recomputation.
|
688 |
+
#
|
689 |
+
# During recomputation the "inner pack hook" has two responsibilities:
|
690 |
+
#
|
691 |
+
# 1) As usual, populating the WeakKeyDictionary storing recomputed tensors
|
692 |
+
# 2) Pack the actual tensor (detached) so that one may perform backward on the
|
693 |
+
# recomputed graph. The tensors saved to this graph will live until the end
|
694 |
+
# of recomputation, or die earlier if someone performs backward with
|
695 |
+
# retain_graph=False.
|
696 |
+
#
|
697 |
+
# More generally performing backward on the recomputed graph occurs in the
|
698 |
+
# following cases:
|
699 |
+
# - If backward is performed inside forward,
|
700 |
+
# - During the original forward IF early-stop is disabled
|
701 |
+
# - During the original backward
|
702 |
+
# - If there are multiple .grad()/.backward() calls, we would perform backward
|
703 |
+
# on the recomputed graph even if early-stop is enabled (see the example below)
|
704 |
+
#
|
705 |
+
# [ retain_graph is False ]
|
706 |
+
#
|
707 |
+
# The example below shows what happens if during recomputation we find that some
|
708 |
+
# of the tensors we are trying to recompute have already been cleared.
|
709 |
+
#
|
710 |
+
# Spoiler: we don't do anything special, we just skip over them!
|
711 |
+
#
|
712 |
+
# def fn(x):
|
713 |
+
# y = x.sin() # (1)
|
714 |
+
# z = y.cos() # (2)
|
715 |
+
# gx, = torch.autograd.grad(z, x) # (3)
|
716 |
+
# return x.cos() * gx # (4)
|
717 |
+
#
|
718 |
+
# out = checkpoint(fn)(inp)
|
719 |
+
# out.backward() # (5)
|
720 |
+
#
|
721 |
+
# 1, 2. Don't save x and y since we are inside a checkpoint.
|
722 |
+
# 3. Trigger a recompute of fn since x and y weren't saved.
|
723 |
+
# And depending on whether early stop is enabled, either stop at (2) or
|
724 |
+
# continue running the function.
|
725 |
+
# Because we are running backward with retain_graph=False, we clear x and y's
|
726 |
+
# holders.
|
727 |
+
# 4. Don't save x since we are inside a checkpoint.
|
728 |
+
# 5. Calling backward triggers another recompute of fn. During recompute, we see
|
729 |
+
# that x and y have already been cleared in the original graph as indicated
|
730 |
+
# by holder=None. We skip over them. We still save x at (4) (since its holder
|
731 |
+
# is still alive.)
|
732 |
+
|
733 |
+
_enable_checkpoint_early_stop = True
|
734 |
+
|
735 |
+
|
736 |
+
@contextlib.contextmanager
|
737 |
+
def set_checkpoint_early_stop(enable: bool):
|
738 |
+
"""Context manager that sets whether checkpoint should stop recomputation early.
|
739 |
+
|
740 |
+
By default, non-reentrant checkpoint stops recomputation as soon as it
|
741 |
+
has computed all needed Tensors. This context manager can be used to disable
|
742 |
+
that feature if it is problematic for your specific application.
|
743 |
+
|
744 |
+
This context manager only needs to be active when forward is run. It does
|
745 |
+
not need to be active during backward.
|
746 |
+
|
747 |
+
Example::
|
748 |
+
|
749 |
+
>>> # xdoctest: +SKIP(failing)
|
750 |
+
>>> message = "saved tensors default hooks are disabled"
|
751 |
+
>>> with set_checkpoint_early_stop(False):
|
752 |
+
... # Any checkpoint under this context manager will respect this
|
753 |
+
... # context manager, even if its backward is performed outside.
|
754 |
+
... out = checkpoint(fn, inputs)
|
755 |
+
...
|
756 |
+
>>> out.backward()
|
757 |
+
"""
|
758 |
+
global _enable_checkpoint_early_stop
|
759 |
+
try:
|
760 |
+
prev = _enable_checkpoint_early_stop
|
761 |
+
_enable_checkpoint_early_stop = enable
|
762 |
+
yield
|
763 |
+
finally:
|
764 |
+
_enable_checkpoint_early_stop = prev
|
765 |
+
|
766 |
+
|
767 |
+
class _Handle:
|
768 |
+
pass
|
769 |
+
|
770 |
+
|
771 |
+
class _Holder:
|
772 |
+
def __init__(self):
|
773 |
+
self.handles: Dict[int, Optional[_Handle]] = dict()
|
774 |
+
|
775 |
+
|
776 |
+
class _NoopSaveInputs(torch.autograd.Function):
|
777 |
+
@staticmethod
|
778 |
+
def forward(*args):
|
779 |
+
return torch.empty((0,))
|
780 |
+
|
781 |
+
@staticmethod
|
782 |
+
def setup_context(ctx: Any, inputs: Tuple[Any, ...], output: Any) -> None:
|
783 |
+
# Only tensors can be saved with ctx.save_for_backward, everything else
|
784 |
+
# is captured by get_args, which is saved directly on ctx
|
785 |
+
tensor_indices, tensors = zip(
|
786 |
+
*[(i, o) for i, o in enumerate(inputs) if isinstance(o, torch.Tensor)]
|
787 |
+
)
|
788 |
+
idx2saved_idx = {b: a for a, b in enumerate(tensor_indices)}
|
789 |
+
# args but with tensors replaced with None as placeholders
|
790 |
+
args = [None if isinstance(o, torch.Tensor) else o for o in inputs]
|
791 |
+
|
792 |
+
def get_args(saved_tensors):
|
793 |
+
# restore the placeholders with the original tensors grabbed from
|
794 |
+
# ctx.saved_tensors (which may be saved on a parent checkpoint if
|
795 |
+
# this checkpoint is nested, and that would trigger a recursive
|
796 |
+
# unpack!)
|
797 |
+
ret = [
|
798 |
+
saved_tensors[idx2saved_idx[i]] if i in tensor_indices else o
|
799 |
+
for i, o in enumerate(args)
|
800 |
+
]
|
801 |
+
# grab the tail since we also saved the dummy to avoid having to explicitly
|
802 |
+
# handle the case where there are no tensor inputs
|
803 |
+
return ret[1:]
|
804 |
+
|
805 |
+
ctx.get_args = get_args
|
806 |
+
ctx.save_for_backward(*tensors)
|
807 |
+
|
808 |
+
@staticmethod
|
809 |
+
def backward(ctx, *grad_outputs):
|
810 |
+
raise AssertionError("Did not expect to backward on this graph")
|
811 |
+
|
812 |
+
|
813 |
+
class _CheckpointFrame:
|
814 |
+
def __init__(self, recompute_fn, early_stop, unpack_error_cb, metadata_fn):
|
815 |
+
self.recompute_fn = recompute_fn
|
816 |
+
self.input_saver = None
|
817 |
+
self.weak_holders: List[ReferenceType] = []
|
818 |
+
# We store this as a weakkeydictionary so that in the case of a partial
|
819 |
+
# backward, the entries in the dict are cleared alongside the Holder
|
820 |
+
# which will be removed when the SavedVariable is cleared.
|
821 |
+
self.recomputed: DefaultDict[
|
822 |
+
int, weakref.WeakKeyDictionary[_Handle, torch.Tensor]
|
823 |
+
] = defaultdict(weakref.WeakKeyDictionary)
|
824 |
+
# We need both recomp_counter and recomputed since they can diverge
|
825 |
+
# https://github.com/pytorch/pytorch/pull/90105#discussion_r1135889885
|
826 |
+
self.recomp_counter: DefaultDict[int, int] = defaultdict(int)
|
827 |
+
self.is_recomputed: DefaultDict[int, bool] = defaultdict(bool)
|
828 |
+
|
829 |
+
# See Rule 5
|
830 |
+
self.early_stop = early_stop
|
831 |
+
|
832 |
+
# Debugging
|
833 |
+
self.metadata_fn = metadata_fn
|
834 |
+
self.unpack_error_cb = unpack_error_cb
|
835 |
+
self.x_metadatas = []
|
836 |
+
self.forward_completed = False
|
837 |
+
self.ignore_saved_mismatch = False
|
838 |
+
|
839 |
+
def check_recomputed_tensors_match(self, gid):
|
840 |
+
if self.ignore_saved_mismatch:
|
841 |
+
# TODO: we can probably make this check stricter by checking that
|
842 |
+
# the metadata of the first tensors still match.
|
843 |
+
return
|
844 |
+
# NOTE [ Error handling for checkpoint ]
|
845 |
+
#
|
846 |
+
# At a high level, we need to check that the tensors saved
|
847 |
+
# during original forward matches tensors saved during recompute
|
848 |
+
# This means handling 3 cases:
|
849 |
+
#
|
850 |
+
# 1. During recompute, more tensors were saved.
|
851 |
+
#
|
852 |
+
# Usually this is hidden due to the StopRecomputationError
|
853 |
+
# but if early stop is not enabled, or we would have errored
|
854 |
+
# anyway because there aren't enough weak_holders. But we
|
855 |
+
# do want to have a nice error. See the _recomputation_hook
|
856 |
+
# for details.
|
857 |
+
if not len(self.weak_holders) == self.recomp_counter[gid]:
|
858 |
+
# 2. During recompute, fewer tensors were saved
|
859 |
+
#
|
860 |
+
# We know that everytime we save something do original forward
|
861 |
+
# we append to weak_holder, and every time we save a tensor
|
862 |
+
# during recompute we increment recompute_counter.
|
863 |
+
raise CheckpointError(
|
864 |
+
"torch.utils.checkpoint: A different number of tensors was saved "
|
865 |
+
"during the original forward and recomputation.\n"
|
866 |
+
f"Number of tensors saved during forward: {len(self.weak_holders)}\n"
|
867 |
+
f"Number of tensors saved during recomputation: {self.recomp_counter[gid]}"
|
868 |
+
)
|
869 |
+
|
870 |
+
# 3. During recompute, the same tensors were saved, but they
|
871 |
+
# have different metadata
|
872 |
+
nb_meta_different = []
|
873 |
+
for idx, weak_holder in enumerate(self.weak_holders):
|
874 |
+
holder = weak_holder()
|
875 |
+
if holder is None:
|
876 |
+
continue
|
877 |
+
# We've seen all holders since we iterate over them in order
|
878 |
+
# For every holder that is still alive now, it must've been
|
879 |
+
# alive when we saw it during recompute, therefore, the
|
880 |
+
# gid must be set.
|
881 |
+
_internal_assert(gid in holder.handles)
|
882 |
+
# We know this is the first unpack, so it couldn't have been set
|
883 |
+
# to None yet.
|
884 |
+
_internal_assert(holder.handles[gid] is not None)
|
885 |
+
# We always set these together in the recomputation hook
|
886 |
+
_internal_assert(holder.handles[gid] in self.recomputed[gid])
|
887 |
+
# see pack hook, x_metadata is 1:1 with weak_holders.
|
888 |
+
x_meta = self.x_metadatas[idx]
|
889 |
+
recomputed_x = self.recomputed[gid][holder.handles[gid]]
|
890 |
+
if x_meta != self.metadata_fn(recomputed_x):
|
891 |
+
nb_meta_different.append((idx, x_meta, self.metadata_fn(recomputed_x)))
|
892 |
+
|
893 |
+
if len(nb_meta_different) > 0:
|
894 |
+
mismatched_tensors = ""
|
895 |
+
for idx, x_meta, recomputed_meta in nb_meta_different:
|
896 |
+
mismatched_tensors += (
|
897 |
+
f"tensor at position {idx}:\n"
|
898 |
+
f"saved metadata: {x_meta}\n"
|
899 |
+
f"recomputed metadata: {recomputed_meta}\n"
|
900 |
+
)
|
901 |
+
raise CheckpointError(
|
902 |
+
"torch.utils.checkpoint: Recomputed values for the following tensors "
|
903 |
+
"have different metadata than during the forward pass.\n"
|
904 |
+
f"{mismatched_tensors}"
|
905 |
+
)
|
906 |
+
|
907 |
+
|
908 |
+
_checkpoint_error_template = """ \
|
909 |
+
An error happened while unpacking tensors; dumping logs of latest computation
|
910 |
+
because you passed `debug=True` to `torch.utils.checkpoint.checkpoint()`.
|
911 |
+
Scroll all the way down for guidance on how to navigate these logs.
|
912 |
+
|
913 |
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
|
914 |
+
| 1. Stack traces of the operators that ran in the original forward |
|
915 |
+
+------------------------------------------------------------------------------+
|
916 |
+
|
917 |
+
{forward_traces}
|
918 |
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
|
919 |
+
| 2. Stack traces of the operators that ran during recomputation |
|
920 |
+
+------------------------------------------------------------------------------+
|
921 |
+
|
922 |
+
{recompute_traces}
|
923 |
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
|
924 |
+
| 3. Log of operators in the original forward and recomputation |
|
925 |
+
+------------------------------------------------------------------------------+
|
926 |
+
(Scroll up to correlate stack traces with each operation listed below. This
|
927 |
+
helps identify their source in the code.)
|
928 |
+
|
929 |
+
IMPORTANT: Differences in "detach" calls between the original forward and the
|
930 |
+
recomputation are expected. They are introduced by the checkpointing
|
931 |
+
mechanism and can be ignored.
|
932 |
+
|
933 |
+
Operations executed during the original forward:
|
934 |
+
|
935 |
+
{forward_ops}
|
936 |
+
|
937 |
+
Operations executed during recomputation:
|
938 |
+
|
939 |
+
{recompute_ops}
|
940 |
+
|
941 |
+
+------------------------------------------------------------------------------+
|
942 |
+
ERROR: Detected non-determinism while running activation checkpointing
|
943 |
+
|
944 |
+
You are seeing this error because you passed `debug=True` to checkpoint and
|
945 |
+
tensors to be saved during the original forward and differ between those saved
|
946 |
+
during recomputation. This can happen if different operators were ran in the
|
947 |
+
original forward and in the recomputation.
|
948 |
+
|
949 |
+
To identify where the mismatch may be coming from, you can do the following:
|
950 |
+
|
951 |
+
1) Compare the operators ran during original forward and recomputation to
|
952 |
+
see where they differ. These operators are printed above in the order they
|
953 |
+
were executed.
|
954 |
+
|
955 |
+
2) Review the stack trace for each operator to locate its invocation source.
|
956 |
+
Each operator's stack trace is printed in their execution order.
|
957 |
+
|
958 |
+
Note that the logs can be quite long. Here's how they are structured:
|
959 |
+
(Tip: you can Ctrl-f for these headers)
|
960 |
+
|
961 |
+
1. Stack traces of the operators that ran in the original forward
|
962 |
+
2. Stack traces of the operators that ran during recomputation
|
963 |
+
3. Log of operators in the original forward and recomputation
|
964 |
+
4. Error message <--- You are here
|
965 |
+
--------------------------------------------------------------------------------
|
966 |
+
"""
|
967 |
+
|
968 |
+
class CheckpointError(RuntimeError):
|
969 |
+
pass
|
970 |
+
|
971 |
+
|
972 |
+
def _get_debug_context_and_cb() -> Tuple[Callable[[], Any], Callable[[CheckpointError], None]]:
|
973 |
+
# This function returns the context_fn and error_cb to be used by the
|
974 |
+
# checkpointing mechanism. error_cb is invoked when an error is detected
|
975 |
+
# during unpack.
|
976 |
+
|
977 |
+
# record_context_cpp is not support on non-linux non-x86_64 platforms
|
978 |
+
cpp_tb = platform.machine() == 'x86_64' and platform.system() == 'Linux'
|
979 |
+
|
980 |
+
class CaptureLogs:
|
981 |
+
def __init__(self):
|
982 |
+
self.logs = None
|
983 |
+
self.tbs = None
|
984 |
+
|
985 |
+
def get_context_manager(self):
|
986 |
+
@contextlib.contextmanager
|
987 |
+
def logging_mode():
|
988 |
+
with LoggingTensorMode(), \
|
989 |
+
capture_logs(True, python_tb=True, script_tb=True, cpp_tb=cpp_tb) as logs_and_tb:
|
990 |
+
self.logs, self.tbs = logs_and_tb
|
991 |
+
yield logs_and_tb
|
992 |
+
return logging_mode()
|
993 |
+
|
994 |
+
capture_logs_fwd = CaptureLogs()
|
995 |
+
capture_logs_recompute = CaptureLogs()
|
996 |
+
|
997 |
+
def unpack_error_cb(e: CheckpointError):
|
998 |
+
def get_str_tb(label, capture_logs):
|
999 |
+
out = ""
|
1000 |
+
total_len = len(capture_logs.logs)
|
1001 |
+
for i, (log, tb) in enumerate(zip(capture_logs.logs, capture_logs.tbs)):
|
1002 |
+
out += f"{log} ({i + 1} of {total_len} in {label})\n\n"
|
1003 |
+
found_torch_dispatch = False
|
1004 |
+
for line in tb:
|
1005 |
+
# Start printing stack trace only after __torch_dispatch__ is found
|
1006 |
+
is_torch_dispatch = line['name'] == '__torch_dispatch__'
|
1007 |
+
if not found_torch_dispatch and not is_torch_dispatch:
|
1008 |
+
continue
|
1009 |
+
elif is_torch_dispatch:
|
1010 |
+
found_torch_dispatch = True
|
1011 |
+
continue
|
1012 |
+
out += f"{line['filename']}:{line['line']}:{line['name']}\n"
|
1013 |
+
out += "\n\n"
|
1014 |
+
return out
|
1015 |
+
assert capture_logs_fwd.logs is not None
|
1016 |
+
assert capture_logs_recompute.logs is not None
|
1017 |
+
raise CheckpointError(
|
1018 |
+
_checkpoint_error_template.format(
|
1019 |
+
forward_traces=get_str_tb("original", capture_logs_fwd),
|
1020 |
+
recompute_traces=get_str_tb("recompute", capture_logs_recompute),
|
1021 |
+
forward_ops="\n".join(capture_logs_fwd.logs),
|
1022 |
+
recompute_ops="\n".join(capture_logs_recompute.logs)
|
1023 |
+
)
|
1024 |
+
) from e
|
1025 |
+
|
1026 |
+
def context_fn():
|
1027 |
+
return capture_logs_fwd.get_context_manager(), capture_logs_recompute.get_context_manager()
|
1028 |
+
|
1029 |
+
return context_fn, unpack_error_cb
|
1030 |
+
|
1031 |
+
def _default_meta_extractor(x: torch.Tensor) -> Dict[str, Any]:
|
1032 |
+
# These properties are fast to check, easy to understand
|
1033 |
+
return {
|
1034 |
+
"shape": x.shape,
|
1035 |
+
"dtype": x.dtype,
|
1036 |
+
"device": x.device
|
1037 |
+
}
|
1038 |
+
|
1039 |
+
_allowed_determinism_checks_to_fns: Dict[str, Callable[[torch.Tensor], Any]] = {
|
1040 |
+
_DEFAULT_DETERMINISM_MODE: _default_meta_extractor,
|
1041 |
+
"none": lambda _: None,
|
1042 |
+
}
|
1043 |
+
|
1044 |
+
# See Rule 5
|
1045 |
+
class _StopRecomputationError(Exception):
|
1046 |
+
pass
|
1047 |
+
|
1048 |
+
|
1049 |
+
class _recomputation_hook(torch.autograd.graph.saved_tensors_hooks):
|
1050 |
+
def __init__(self, target_frame_ref: ReferenceType, gid: int):
|
1051 |
+
def pack_hook(x):
|
1052 |
+
target_frame = target_frame_ref()
|
1053 |
+
assert target_frame is not None # appease mypy
|
1054 |
+
recomp_idx = target_frame.recomp_counter[gid]
|
1055 |
+
target_frame.recomp_counter[gid] += 1
|
1056 |
+
|
1057 |
+
if recomp_idx >= len(target_frame.weak_holders):
|
1058 |
+
assert not target_frame.early_stop
|
1059 |
+
if not target_frame.forward_completed:
|
1060 |
+
# We run into this case when early stop is not enabled and do
|
1061 |
+
# grad within checkpoint.
|
1062 |
+
# We need to set this flag, so we don't error out later when
|
1063 |
+
# we check if the number of tensors saved during forward and
|
1064 |
+
# recomputation match.
|
1065 |
+
target_frame.ignore_saved_mismatch = True
|
1066 |
+
return x.detach()
|
1067 |
+
raise CheckpointError(
|
1068 |
+
"torch.utils.checkpoint: trying to save more tensors during "
|
1069 |
+
"recomputation than during the original forward pass."
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
holder = target_frame.weak_holders[recomp_idx]()
|
1073 |
+
|
1074 |
+
# This holder may have been cleared because someone may have called
|
1075 |
+
# backward within forward. If so, we don't need to save.
|
1076 |
+
if holder is not None:
|
1077 |
+
_internal_assert(holder.handles.get(gid, None) is None)
|
1078 |
+
holder.handles[gid] = _Handle()
|
1079 |
+
target_frame.recomputed[gid][holder.handles[gid]] = x.detach()
|
1080 |
+
|
1081 |
+
if target_frame.early_stop and target_frame.recomp_counter[gid] == len(
|
1082 |
+
target_frame.weak_holders
|
1083 |
+
):
|
1084 |
+
raise _StopRecomputationError()
|
1085 |
+
# See Rule 6: [ retain_graph is True ] above
|
1086 |
+
return x.detach()
|
1087 |
+
|
1088 |
+
def unpack_hook(x):
|
1089 |
+
# See Rule 6: [ retain_graph is True ] above for an example of when
|
1090 |
+
# the graph created during recomputation could be backwarded.
|
1091 |
+
return x
|
1092 |
+
|
1093 |
+
super().__init__(pack_hook, unpack_hook)
|
1094 |
+
|
1095 |
+
|
1096 |
+
class _checkpoint_hook(torch.autograd.graph.saved_tensors_hooks):
|
1097 |
+
def __init__(self, frame):
|
1098 |
+
def pack_hook(x):
|
1099 |
+
# See Rule 4 above
|
1100 |
+
holder = _Holder()
|
1101 |
+
frame.weak_holders.append(weakref.ref(holder))
|
1102 |
+
# Save metadata to detect non-determinism
|
1103 |
+
if frame.metadata_fn is not None:
|
1104 |
+
with torch.no_grad():
|
1105 |
+
frame.x_metadatas.append(frame.metadata_fn(x))
|
1106 |
+
return holder
|
1107 |
+
|
1108 |
+
def unpack_hook(holder):
|
1109 |
+
gid = torch._C._current_graph_task_id()
|
1110 |
+
if gid == -1:
|
1111 |
+
# generate a temporary id if we trigger unpack outside of a backward call
|
1112 |
+
gid = int(uuid.uuid4())
|
1113 |
+
|
1114 |
+
if not frame.is_recomputed[gid]:
|
1115 |
+
ctx = frame.input_saver.grad_fn
|
1116 |
+
args = ctx.get_args(ctx.saved_tensors)
|
1117 |
+
|
1118 |
+
try:
|
1119 |
+
with _recomputation_hook(
|
1120 |
+
weakref.ref(frame), gid
|
1121 |
+
), torch.autograd.enable_grad():
|
1122 |
+
frame.recompute_fn(*args)
|
1123 |
+
except _StopRecomputationError:
|
1124 |
+
pass
|
1125 |
+
frame.is_recomputed[gid] = True
|
1126 |
+
frame.check_recomputed_tensors_match(gid)
|
1127 |
+
|
1128 |
+
_internal_assert(gid in holder.handles)
|
1129 |
+
|
1130 |
+
if holder.handles[gid] is None:
|
1131 |
+
raise CheckpointError(
|
1132 |
+
"torch.utils.checkpoint: Unpack is being triggered for a tensor that was already "
|
1133 |
+
"unpacked once. If you are calling ctx.saved_tensors in backward, make sure to do "
|
1134 |
+
"so only once. Otherwise please open an issue with details on your use case."
|
1135 |
+
)
|
1136 |
+
_internal_assert(holder.handles[gid] in frame.recomputed[gid])
|
1137 |
+
ret = frame.recomputed[gid][holder.handles[gid]]
|
1138 |
+
holder.handles[gid] = None
|
1139 |
+
return ret
|
1140 |
+
|
1141 |
+
if frame.unpack_error_cb is not None:
|
1142 |
+
def unpack_hook_with_error_cb(holder):
|
1143 |
+
try:
|
1144 |
+
return unpack_hook(holder)
|
1145 |
+
except CheckpointError as e:
|
1146 |
+
frame.unpack_error_cb(e)
|
1147 |
+
super().__init__(pack_hook, unpack_hook_with_error_cb)
|
1148 |
+
else:
|
1149 |
+
super().__init__(pack_hook, unpack_hook)
|
1150 |
+
|
1151 |
+
|
1152 |
+
def _is_compiling(func, args, kwargs):
|
1153 |
+
# Check if we are under AOTAutograd tracing
|
1154 |
+
# There should probably be a better way to do this...
|
1155 |
+
# TODO: unify _is_compiling across all compile stacks
|
1156 |
+
for arg in args:
|
1157 |
+
if isinstance(arg, torch.Tensor) and is_fun(arg):
|
1158 |
+
return True
|
1159 |
+
return False
|
1160 |
+
|
1161 |
+
|
1162 |
+
def _detach(x):
|
1163 |
+
if isinstance(x, torch.Tensor):
|
1164 |
+
return x.detach()
|
1165 |
+
return x
|
1166 |
+
|
1167 |
+
|
1168 |
+
uid = count(1)
|
1169 |
+
|
1170 |
+
|
1171 |
+
# NOTE: torch.utils.checkpoint internal logic will call these two functions unknown number of times
|
1172 |
+
# (i.e. there could be _CachedTorchDispatchMode calls that doesn't map to a _CachingTorchDispatchMode call),
|
1173 |
+
# so we ignore these ops and just always recompute them.
|
1174 |
+
_ignored_ops = {
|
1175 |
+
torch.ops.prim.device.default,
|
1176 |
+
torch.ops.aten.detach.default,
|
1177 |
+
} | set(torch._subclasses.functional_tensor.FunctionalTensor.metadata_fns)
|
1178 |
+
|
1179 |
+
|
1180 |
+
class _CachingTorchDispatchMode(TorchDispatchMode):
|
1181 |
+
r"""
|
1182 |
+
A :class:`TorchDispatchMode` to implement selective activation checkpointing
|
1183 |
+
that's compatible with torch.compile. Used together with _CachedTorchDispatchMode.
|
1184 |
+
"""
|
1185 |
+
def __init__(self, policy_fn, storage):
|
1186 |
+
self.policy_fn = policy_fn
|
1187 |
+
self.storage = storage
|
1188 |
+
|
1189 |
+
def push_into_storage(self, out, func, args, kwargs):
|
1190 |
+
out_detached = tree_map(_detach, out)
|
1191 |
+
self.storage[func].append(out_detached)
|
1192 |
+
|
1193 |
+
def _handle_compile_in_forward_ctx(self, should_not_recompute, func, args, kwargs):
|
1194 |
+
if func in _ignored_ops:
|
1195 |
+
return func(*args, **kwargs)
|
1196 |
+
if should_not_recompute:
|
1197 |
+
fx_traceback.current_meta["recompute"] = 0
|
1198 |
+
# NOTE: Here we just store and reuse output of all ops, since in torch.compile mode
|
1199 |
+
# we decide and handle recomputation in the partitioner.
|
1200 |
+
out = func(*args, **kwargs)
|
1201 |
+
self.push_into_storage(out, func, args, kwargs)
|
1202 |
+
return out
|
1203 |
+
|
1204 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
1205 |
+
if kwargs is None:
|
1206 |
+
kwargs = {}
|
1207 |
+
should_not_recompute = self.policy_fn("forward", func, *args, **kwargs)
|
1208 |
+
if _is_compiling(func, args, kwargs):
|
1209 |
+
return self._handle_compile_in_forward_ctx(should_not_recompute, func, args, kwargs)
|
1210 |
+
else:
|
1211 |
+
if should_not_recompute:
|
1212 |
+
out = func(*args, **kwargs)
|
1213 |
+
self.push_into_storage(out, func, args, kwargs)
|
1214 |
+
else:
|
1215 |
+
out = func(*args, **kwargs)
|
1216 |
+
return out
|
1217 |
+
|
1218 |
+
|
1219 |
+
class _CachedTorchDispatchMode(TorchDispatchMode):
|
1220 |
+
r"""
|
1221 |
+
A :class:`TorchDispatchMode` to implement selective activation checkpointing
|
1222 |
+
that's compatible with torch.compile. Used together with _CachingTorchDispatchMode.
|
1223 |
+
"""
|
1224 |
+
def __init__(self, policy_fn, storage):
|
1225 |
+
self.policy_fn = policy_fn
|
1226 |
+
self.storage = storage
|
1227 |
+
|
1228 |
+
def pop_from_storage(self, func, args, kwargs):
|
1229 |
+
assert func in self.storage
|
1230 |
+
out = self.storage[func].pop(0)
|
1231 |
+
return out
|
1232 |
+
|
1233 |
+
def _handle_compile_in_recompute_ctx(self, should_not_recompute, func, args, kwargs):
|
1234 |
+
if func in _ignored_ops:
|
1235 |
+
return func(*args, **kwargs)
|
1236 |
+
out = self.pop_from_storage(func, args, kwargs)
|
1237 |
+
return out
|
1238 |
+
|
1239 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
1240 |
+
if kwargs is None:
|
1241 |
+
kwargs = {}
|
1242 |
+
should_not_recompute = self.policy_fn("recompute", func, *args, **kwargs)
|
1243 |
+
if _is_compiling(func, args, kwargs):
|
1244 |
+
return self._handle_compile_in_recompute_ctx(should_not_recompute, func, args, kwargs)
|
1245 |
+
else:
|
1246 |
+
if should_not_recompute:
|
1247 |
+
out = self.pop_from_storage(func, args, kwargs)
|
1248 |
+
else:
|
1249 |
+
out = func(*args, **kwargs)
|
1250 |
+
return out
|
1251 |
+
|
1252 |
+
|
1253 |
+
def _pt2_selective_checkpoint_context_fn_gen(policy_fn):
|
1254 |
+
"""
|
1255 |
+
A helper function that generates a pair of contexts to be later passed into
|
1256 |
+
`torch.utils.checkpoint` API to implment selective checkpointing.
|
1257 |
+
|
1258 |
+
.. warning::
|
1259 |
+
This is context_fn is intended for use with torch.compile only.
|
1260 |
+
|
1261 |
+
Args:
|
1262 |
+
policy_fn (Callable[[Callable, List[Any], Dict[str, Any]], bool]): Policy function
|
1263 |
+
to decide whether a particular op should be recomputed in backward pass or not.
|
1264 |
+
In eager mode:
|
1265 |
+
If policy_fn(...) returns True, the op is guaranteed to NOT be recomputed.
|
1266 |
+
If policy_fn(...) returns False, the op is guaranteed to be recomputed.
|
1267 |
+
In torch.compile mode:
|
1268 |
+
If policy_fn(...) returns True, the op is guaranteed to NOT be recomputed.
|
1269 |
+
If policy_fn(...) returns False, the op may or may not be recomputed
|
1270 |
+
(it's up to the partitioner to decide).
|
1271 |
+
|
1272 |
+
Returns:
|
1273 |
+
A pair of generated contexts.
|
1274 |
+
|
1275 |
+
Example:
|
1276 |
+
>>> # xdoctest: +REQUIRES(LINUX)
|
1277 |
+
>>>
|
1278 |
+
>>> def get_custom_policy():
|
1279 |
+
>>> no_recompute_list = [
|
1280 |
+
>>> torch.ops.aten.mm.default,
|
1281 |
+
>>> ]
|
1282 |
+
>>> def custom_policy(mode, func, *args, **kwargs):
|
1283 |
+
>>> return func in no_recompute_list
|
1284 |
+
>>> return custom_policy
|
1285 |
+
>>>
|
1286 |
+
>>> def selective_checkpointing_context_fn():
|
1287 |
+
>>> return _pt2_selective_checkpoint_context_fn_gen(get_custom_policy())
|
1288 |
+
>>>
|
1289 |
+
>>> def gn(x, y):
|
1290 |
+
>>> return torch.sigmoid(torch.matmul(torch.matmul(x, y), y)) * y
|
1291 |
+
>>>
|
1292 |
+
>>> def fn(x, y):
|
1293 |
+
>>> return torch.utils.checkpoint.checkpoint(
|
1294 |
+
>>> gn, x, y,
|
1295 |
+
>>> use_reentrant=False,
|
1296 |
+
>>> context_fn=selective_checkpointing_context_fn,
|
1297 |
+
>>> )
|
1298 |
+
>>>
|
1299 |
+
>>> x = torch.randn(4, 4, requires_grad=True)
|
1300 |
+
>>> y = torch.randn(4, 4, requires_grad=True)
|
1301 |
+
>>>
|
1302 |
+
>>> compiled_fn = torch.compile(fn)
|
1303 |
+
"""
|
1304 |
+
storage: Dict[Any, List[Any]] = defaultdict(list)
|
1305 |
+
return _CachingTorchDispatchMode(policy_fn, storage), _CachedTorchDispatchMode(policy_fn, storage)
|
1306 |
+
|
1307 |
+
|
1308 |
+
# NB: this helper wraps fn before calling checkpoint_impl. kwargs and
|
1309 |
+
# saving/restoring of global state is handled here.
|
1310 |
+
|
1311 |
+
def _checkpoint_without_reentrant_generator(
|
1312 |
+
fn,
|
1313 |
+
preserve_rng_state=True,
|
1314 |
+
context_fn: Callable[[], Tuple[ContextManager, ContextManager]] = noop_context_fn,
|
1315 |
+
determinism_check: str = _DEFAULT_DETERMINISM_MODE,
|
1316 |
+
debug: bool = False,
|
1317 |
+
*args,
|
1318 |
+
**kwargs
|
1319 |
+
):
|
1320 |
+
"""Checkpointing without reentrant autograd.
|
1321 |
+
|
1322 |
+
Args:
|
1323 |
+
function: describes what to run in the forward pass of the model or
|
1324 |
+
part of the model. It should also know how to handle the inputs
|
1325 |
+
passed as the tuple. For example, in LSTM, if user passes
|
1326 |
+
``(activation, hidden)``, :attr:`function` should correctly use the
|
1327 |
+
first input as ``activation`` and the second input as ``hidden``
|
1328 |
+
preserve_rng_state(bool, optional): Omit stashing and restoring
|
1329 |
+
the RNG state during each checkpoint.
|
1330 |
+
Default: ``True``
|
1331 |
+
context_fn(Callable, optional): A callable returning a tuple of two
|
1332 |
+
context managers. The function and its recomputation will be run
|
1333 |
+
under the first and second context managers respectively.
|
1334 |
+
determinism_check(str, optional): A string specifying the determinism
|
1335 |
+
check to perform. By default it is set to ``"default"`` which
|
1336 |
+
compares the shapes, dtypes, and devices of the recomputed tensors
|
1337 |
+
against those the saved tensors. To turn off this check, specify
|
1338 |
+
``"none"``. Currently these are the only two supported values.
|
1339 |
+
Please open an issue if you would like to see more determinism
|
1340 |
+
checks.
|
1341 |
+
debug(bool, optional): If ``True``, error messages will also include
|
1342 |
+
a trace of the operators ran during the original forward computation
|
1343 |
+
as well as the recomputation.
|
1344 |
+
*args: Arguments to pass in to the given ``function``.
|
1345 |
+
**kwargs: Keyword arguments to pass into the given ``function``.
|
1346 |
+
"""
|
1347 |
+
unpack_error_cb = None
|
1348 |
+
|
1349 |
+
if _checkpoint_debug_enabled if _checkpoint_debug_enabled is not None else debug:
|
1350 |
+
if context_fn != noop_context_fn:
|
1351 |
+
raise ValueError(
|
1352 |
+
"debug=True is incompatible with non-default context_fn"
|
1353 |
+
)
|
1354 |
+
context_fn, unpack_error_cb = _get_debug_context_and_cb()
|
1355 |
+
|
1356 |
+
if determinism_check in _allowed_determinism_checks_to_fns:
|
1357 |
+
metadata_fn = _allowed_determinism_checks_to_fns[determinism_check]
|
1358 |
+
else:
|
1359 |
+
raise ValueError(
|
1360 |
+
f"determinism_check should be one of {list(_allowed_determinism_checks_to_fns.keys())}, "
|
1361 |
+
f"but got {determinism_check}"
|
1362 |
+
)
|
1363 |
+
|
1364 |
+
device = _infer_device_type(*args)
|
1365 |
+
device_module = _get_device_module(device)
|
1366 |
+
forward_context, recompute_context = context_fn()
|
1367 |
+
if _is_compiling(fn, args, kwargs) and context_fn != noop_context_fn:
|
1368 |
+
assert (
|
1369 |
+
isinstance(forward_context, TorchDispatchMode) and
|
1370 |
+
isinstance(recompute_context, TorchDispatchMode)
|
1371 |
+
), \
|
1372 |
+
"In torch.compile mode, `context_fn` arg passed to `torch.utils.checkpoint` " + \
|
1373 |
+
"must generate a tuple of two `TorchDispatchMode`s."
|
1374 |
+
# Accommodates the (remote) possibility that autocast is enabled for cpu AND gpu.
|
1375 |
+
device_autocast_kwargs, cpu_autocast_kwargs = _get_autocast_kwargs(device=device)
|
1376 |
+
|
1377 |
+
if preserve_rng_state:
|
1378 |
+
fwd_cpu_state = torch.get_rng_state()
|
1379 |
+
# Don't eagerly initialize the cuda context by accident.
|
1380 |
+
# (If the user intends that the context is initialized later, within their
|
1381 |
+
# run_function, we SHOULD actually stash the cuda state here. Unfortunately,
|
1382 |
+
# we have no way to anticipate this will happen before we run the function.
|
1383 |
+
# If they do so, we raise an error.)
|
1384 |
+
had_device_in_fwd = False
|
1385 |
+
if getattr(device_module, "_initialized", False):
|
1386 |
+
had_device_in_fwd = True
|
1387 |
+
fwd_devices, fwd_device_states = get_device_states(*args)
|
1388 |
+
|
1389 |
+
def recompute_fn(*inputs):
|
1390 |
+
kwargs, *args = inputs
|
1391 |
+
# This will be called later during recomputation. This wrapping enables
|
1392 |
+
# the necessary global state to be captured.
|
1393 |
+
rng_devices = []
|
1394 |
+
if preserve_rng_state and had_device_in_fwd:
|
1395 |
+
rng_devices = fwd_devices
|
1396 |
+
with torch.random.fork_rng(
|
1397 |
+
devices=rng_devices, enabled=preserve_rng_state, device_type=device
|
1398 |
+
):
|
1399 |
+
if preserve_rng_state:
|
1400 |
+
torch.set_rng_state(fwd_cpu_state)
|
1401 |
+
if had_device_in_fwd:
|
1402 |
+
set_device_states(fwd_devices, fwd_device_states)
|
1403 |
+
|
1404 |
+
device_autocast_ctx = device_module.amp.autocast(
|
1405 |
+
**device_autocast_kwargs
|
1406 |
+
) if _supports_autocast(device) else contextlib.nullcontext()
|
1407 |
+
with device_autocast_ctx, torch.cpu.amp.autocast(**cpu_autocast_kwargs), \
|
1408 |
+
recompute_context:
|
1409 |
+
fn(*args, **kwargs)
|
1410 |
+
|
1411 |
+
new_frame = _CheckpointFrame(
|
1412 |
+
recompute_fn,
|
1413 |
+
_enable_checkpoint_early_stop,
|
1414 |
+
unpack_error_cb,
|
1415 |
+
metadata_fn
|
1416 |
+
)
|
1417 |
+
dummy = torch.empty((0,), requires_grad=True)
|
1418 |
+
new_frame.input_saver = _NoopSaveInputs.apply(dummy, kwargs, *args)
|
1419 |
+
|
1420 |
+
# When ambient grad_mode is False
|
1421 |
+
if new_frame.input_saver.grad_fn is None:
|
1422 |
+
yield
|
1423 |
+
return
|
1424 |
+
|
1425 |
+
with _checkpoint_hook(new_frame), forward_context:
|
1426 |
+
yield
|
1427 |
+
new_frame.forward_completed = True
|
1428 |
+
|
1429 |
+
if getattr(device_module, "_initialized", False) and \
|
1430 |
+
preserve_rng_state and not had_device_in_fwd: # type: ignore[possibly-undefined]
|
1431 |
+
# Device was not initialized before running the forward, so we didn't
|
1432 |
+
# stash the device state.
|
1433 |
+
raise RuntimeError(
|
1434 |
+
"PyTorch's device state was initialized in the forward pass "
|
1435 |
+
"of a Checkpoint, which is not allowed. Please open an issue "
|
1436 |
+
"if you need this feature."
|
1437 |
+
)
|
1438 |
+
|
1439 |
+
return
|
llmeval-env/lib/python3.10/site-packages/torch/utils/collect_env.py
ADDED
@@ -0,0 +1,624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Unlike the rest of the PyTorch this file must be python2 compliant.
|
3 |
+
# This script outputs relevant system environment info
|
4 |
+
# Run it with `python collect_env.py` or `python -m torch.utils.collect_env`
|
5 |
+
import datetime
|
6 |
+
import locale
|
7 |
+
import re
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
import os
|
11 |
+
from collections import namedtuple
|
12 |
+
|
13 |
+
|
14 |
+
try:
|
15 |
+
import torch
|
16 |
+
TORCH_AVAILABLE = True
|
17 |
+
except (ImportError, NameError, AttributeError, OSError):
|
18 |
+
TORCH_AVAILABLE = False
|
19 |
+
|
20 |
+
# System Environment Information
|
21 |
+
SystemEnv = namedtuple('SystemEnv', [
|
22 |
+
'torch_version',
|
23 |
+
'is_debug_build',
|
24 |
+
'cuda_compiled_version',
|
25 |
+
'gcc_version',
|
26 |
+
'clang_version',
|
27 |
+
'cmake_version',
|
28 |
+
'os',
|
29 |
+
'libc_version',
|
30 |
+
'python_version',
|
31 |
+
'python_platform',
|
32 |
+
'is_cuda_available',
|
33 |
+
'cuda_runtime_version',
|
34 |
+
'cuda_module_loading',
|
35 |
+
'nvidia_driver_version',
|
36 |
+
'nvidia_gpu_models',
|
37 |
+
'cudnn_version',
|
38 |
+
'pip_version', # 'pip' or 'pip3'
|
39 |
+
'pip_packages',
|
40 |
+
'conda_packages',
|
41 |
+
'hip_compiled_version',
|
42 |
+
'hip_runtime_version',
|
43 |
+
'miopen_runtime_version',
|
44 |
+
'caching_allocator_config',
|
45 |
+
'is_xnnpack_available',
|
46 |
+
'cpu_info',
|
47 |
+
])
|
48 |
+
|
49 |
+
DEFAULT_CONDA_PATTERNS = {
|
50 |
+
"torch",
|
51 |
+
"numpy",
|
52 |
+
"cudatoolkit",
|
53 |
+
"soumith",
|
54 |
+
"mkl",
|
55 |
+
"magma",
|
56 |
+
"triton",
|
57 |
+
"optree",
|
58 |
+
}
|
59 |
+
|
60 |
+
DEFAULT_PIP_PATTERNS = {
|
61 |
+
"torch",
|
62 |
+
"numpy",
|
63 |
+
"mypy",
|
64 |
+
"flake8",
|
65 |
+
"triton",
|
66 |
+
"optree",
|
67 |
+
"onnx",
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
def run(command):
|
72 |
+
"""Return (return-code, stdout, stderr)."""
|
73 |
+
shell = True if type(command) is str else False
|
74 |
+
p = subprocess.Popen(command, stdout=subprocess.PIPE,
|
75 |
+
stderr=subprocess.PIPE, shell=shell)
|
76 |
+
raw_output, raw_err = p.communicate()
|
77 |
+
rc = p.returncode
|
78 |
+
if get_platform() == 'win32':
|
79 |
+
enc = 'oem'
|
80 |
+
else:
|
81 |
+
enc = locale.getpreferredencoding()
|
82 |
+
output = raw_output.decode(enc)
|
83 |
+
err = raw_err.decode(enc)
|
84 |
+
return rc, output.strip(), err.strip()
|
85 |
+
|
86 |
+
|
87 |
+
def run_and_read_all(run_lambda, command):
|
88 |
+
"""Run command using run_lambda; reads and returns entire output if rc is 0."""
|
89 |
+
rc, out, _ = run_lambda(command)
|
90 |
+
if rc != 0:
|
91 |
+
return None
|
92 |
+
return out
|
93 |
+
|
94 |
+
|
95 |
+
def run_and_parse_first_match(run_lambda, command, regex):
|
96 |
+
"""Run command using run_lambda, returns the first regex match if it exists."""
|
97 |
+
rc, out, _ = run_lambda(command)
|
98 |
+
if rc != 0:
|
99 |
+
return None
|
100 |
+
match = re.search(regex, out)
|
101 |
+
if match is None:
|
102 |
+
return None
|
103 |
+
return match.group(1)
|
104 |
+
|
105 |
+
def run_and_return_first_line(run_lambda, command):
|
106 |
+
"""Run command using run_lambda and returns first line if output is not empty."""
|
107 |
+
rc, out, _ = run_lambda(command)
|
108 |
+
if rc != 0:
|
109 |
+
return None
|
110 |
+
return out.split('\n')[0]
|
111 |
+
|
112 |
+
|
113 |
+
def get_conda_packages(run_lambda, patterns=None):
|
114 |
+
if patterns is None:
|
115 |
+
patterns = DEFAULT_CONDA_PATTERNS
|
116 |
+
conda = os.environ.get('CONDA_EXE', 'conda')
|
117 |
+
out = run_and_read_all(run_lambda, "{} list".format(conda))
|
118 |
+
if out is None:
|
119 |
+
return out
|
120 |
+
|
121 |
+
return "\n".join(
|
122 |
+
line
|
123 |
+
for line in out.splitlines()
|
124 |
+
if not line.startswith("#")
|
125 |
+
and any(name in line for name in patterns)
|
126 |
+
)
|
127 |
+
|
128 |
+
def get_gcc_version(run_lambda):
|
129 |
+
return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)')
|
130 |
+
|
131 |
+
def get_clang_version(run_lambda):
|
132 |
+
return run_and_parse_first_match(run_lambda, 'clang --version', r'clang version (.*)')
|
133 |
+
|
134 |
+
|
135 |
+
def get_cmake_version(run_lambda):
|
136 |
+
return run_and_parse_first_match(run_lambda, 'cmake --version', r'cmake (.*)')
|
137 |
+
|
138 |
+
|
139 |
+
def get_nvidia_driver_version(run_lambda):
|
140 |
+
if get_platform() == 'darwin':
|
141 |
+
cmd = 'kextstat | grep -i cuda'
|
142 |
+
return run_and_parse_first_match(run_lambda, cmd,
|
143 |
+
r'com[.]nvidia[.]CUDA [(](.*?)[)]')
|
144 |
+
smi = get_nvidia_smi()
|
145 |
+
return run_and_parse_first_match(run_lambda, smi, r'Driver Version: (.*?) ')
|
146 |
+
|
147 |
+
|
148 |
+
def get_gpu_info(run_lambda):
|
149 |
+
if get_platform() == 'darwin' or (TORCH_AVAILABLE and hasattr(torch.version, 'hip') and torch.version.hip is not None):
|
150 |
+
if TORCH_AVAILABLE and torch.cuda.is_available():
|
151 |
+
if torch.version.hip is not None:
|
152 |
+
prop = torch.cuda.get_device_properties(0)
|
153 |
+
if hasattr(prop, "gcnArchName"):
|
154 |
+
gcnArch = " ({})".format(prop.gcnArchName)
|
155 |
+
else:
|
156 |
+
gcnArch = "NoGCNArchNameOnOldPyTorch"
|
157 |
+
else:
|
158 |
+
gcnArch = ""
|
159 |
+
return torch.cuda.get_device_name(None) + gcnArch
|
160 |
+
return None
|
161 |
+
smi = get_nvidia_smi()
|
162 |
+
uuid_regex = re.compile(r' \(UUID: .+?\)')
|
163 |
+
rc, out, _ = run_lambda(smi + ' -L')
|
164 |
+
if rc != 0:
|
165 |
+
return None
|
166 |
+
# Anonymize GPUs by removing their UUID
|
167 |
+
return re.sub(uuid_regex, '', out)
|
168 |
+
|
169 |
+
|
170 |
+
def get_running_cuda_version(run_lambda):
|
171 |
+
return run_and_parse_first_match(run_lambda, 'nvcc --version', r'release .+ V(.*)')
|
172 |
+
|
173 |
+
|
174 |
+
def get_cudnn_version(run_lambda):
|
175 |
+
"""Return a list of libcudnn.so; it's hard to tell which one is being used."""
|
176 |
+
if get_platform() == 'win32':
|
177 |
+
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
178 |
+
cuda_path = os.environ.get('CUDA_PATH', "%CUDA_PATH%")
|
179 |
+
where_cmd = os.path.join(system_root, 'System32', 'where')
|
180 |
+
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
|
181 |
+
elif get_platform() == 'darwin':
|
182 |
+
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
|
183 |
+
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
|
184 |
+
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
|
185 |
+
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
|
186 |
+
cudnn_cmd = 'ls /usr/local/cuda/lib/libcudnn*'
|
187 |
+
else:
|
188 |
+
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
|
189 |
+
rc, out, _ = run_lambda(cudnn_cmd)
|
190 |
+
# find will return 1 if there are permission errors or if not found
|
191 |
+
if len(out) == 0 or (rc != 1 and rc != 0):
|
192 |
+
l = os.environ.get('CUDNN_LIBRARY')
|
193 |
+
if l is not None and os.path.isfile(l):
|
194 |
+
return os.path.realpath(l)
|
195 |
+
return None
|
196 |
+
files_set = set()
|
197 |
+
for fn in out.split('\n'):
|
198 |
+
fn = os.path.realpath(fn) # eliminate symbolic links
|
199 |
+
if os.path.isfile(fn):
|
200 |
+
files_set.add(fn)
|
201 |
+
if not files_set:
|
202 |
+
return None
|
203 |
+
# Alphabetize the result because the order is non-deterministic otherwise
|
204 |
+
files = sorted(files_set)
|
205 |
+
if len(files) == 1:
|
206 |
+
return files[0]
|
207 |
+
result = '\n'.join(files)
|
208 |
+
return 'Probably one of the following:\n{}'.format(result)
|
209 |
+
|
210 |
+
|
211 |
+
def get_nvidia_smi():
|
212 |
+
# Note: nvidia-smi is currently available only on Windows and Linux
|
213 |
+
smi = 'nvidia-smi'
|
214 |
+
if get_platform() == 'win32':
|
215 |
+
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
216 |
+
program_files_root = os.environ.get('PROGRAMFILES', 'C:\\Program Files')
|
217 |
+
legacy_path = os.path.join(program_files_root, 'NVIDIA Corporation', 'NVSMI', smi)
|
218 |
+
new_path = os.path.join(system_root, 'System32', smi)
|
219 |
+
smis = [new_path, legacy_path]
|
220 |
+
for candidate_smi in smis:
|
221 |
+
if os.path.exists(candidate_smi):
|
222 |
+
smi = '"{}"'.format(candidate_smi)
|
223 |
+
break
|
224 |
+
return smi
|
225 |
+
|
226 |
+
|
227 |
+
# example outputs of CPU infos
|
228 |
+
# * linux
|
229 |
+
# Architecture: x86_64
|
230 |
+
# CPU op-mode(s): 32-bit, 64-bit
|
231 |
+
# Address sizes: 46 bits physical, 48 bits virtual
|
232 |
+
# Byte Order: Little Endian
|
233 |
+
# CPU(s): 128
|
234 |
+
# On-line CPU(s) list: 0-127
|
235 |
+
# Vendor ID: GenuineIntel
|
236 |
+
# Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
|
237 |
+
# CPU family: 6
|
238 |
+
# Model: 106
|
239 |
+
# Thread(s) per core: 2
|
240 |
+
# Core(s) per socket: 32
|
241 |
+
# Socket(s): 2
|
242 |
+
# Stepping: 6
|
243 |
+
# BogoMIPS: 5799.78
|
244 |
+
# Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
|
245 |
+
# sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl
|
246 |
+
# xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16
|
247 |
+
# pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
|
248 |
+
# hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced
|
249 |
+
# fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap
|
250 |
+
# avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1
|
251 |
+
# xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq
|
252 |
+
# avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
|
253 |
+
# Virtualization features:
|
254 |
+
# Hypervisor vendor: KVM
|
255 |
+
# Virtualization type: full
|
256 |
+
# Caches (sum of all):
|
257 |
+
# L1d: 3 MiB (64 instances)
|
258 |
+
# L1i: 2 MiB (64 instances)
|
259 |
+
# L2: 80 MiB (64 instances)
|
260 |
+
# L3: 108 MiB (2 instances)
|
261 |
+
# NUMA:
|
262 |
+
# NUMA node(s): 2
|
263 |
+
# NUMA node0 CPU(s): 0-31,64-95
|
264 |
+
# NUMA node1 CPU(s): 32-63,96-127
|
265 |
+
# Vulnerabilities:
|
266 |
+
# Itlb multihit: Not affected
|
267 |
+
# L1tf: Not affected
|
268 |
+
# Mds: Not affected
|
269 |
+
# Meltdown: Not affected
|
270 |
+
# Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
|
271 |
+
# Retbleed: Not affected
|
272 |
+
# Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
|
273 |
+
# Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
|
274 |
+
# Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
|
275 |
+
# Srbds: Not affected
|
276 |
+
# Tsx async abort: Not affected
|
277 |
+
# * win32
|
278 |
+
# Architecture=9
|
279 |
+
# CurrentClockSpeed=2900
|
280 |
+
# DeviceID=CPU0
|
281 |
+
# Family=179
|
282 |
+
# L2CacheSize=40960
|
283 |
+
# L2CacheSpeed=
|
284 |
+
# Manufacturer=GenuineIntel
|
285 |
+
# MaxClockSpeed=2900
|
286 |
+
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
|
287 |
+
# ProcessorType=3
|
288 |
+
# Revision=27142
|
289 |
+
#
|
290 |
+
# Architecture=9
|
291 |
+
# CurrentClockSpeed=2900
|
292 |
+
# DeviceID=CPU1
|
293 |
+
# Family=179
|
294 |
+
# L2CacheSize=40960
|
295 |
+
# L2CacheSpeed=
|
296 |
+
# Manufacturer=GenuineIntel
|
297 |
+
# MaxClockSpeed=2900
|
298 |
+
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
|
299 |
+
# ProcessorType=3
|
300 |
+
# Revision=27142
|
301 |
+
|
302 |
+
def get_cpu_info(run_lambda):
|
303 |
+
rc, out, err = 0, '', ''
|
304 |
+
if get_platform() == 'linux':
|
305 |
+
rc, out, err = run_lambda('lscpu')
|
306 |
+
elif get_platform() == 'win32':
|
307 |
+
rc, out, err = run_lambda('wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \
|
308 |
+
CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE')
|
309 |
+
elif get_platform() == 'darwin':
|
310 |
+
rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string")
|
311 |
+
cpu_info = 'None'
|
312 |
+
if rc == 0:
|
313 |
+
cpu_info = out
|
314 |
+
else:
|
315 |
+
cpu_info = err
|
316 |
+
return cpu_info
|
317 |
+
|
318 |
+
|
319 |
+
def get_platform():
|
320 |
+
if sys.platform.startswith('linux'):
|
321 |
+
return 'linux'
|
322 |
+
elif sys.platform.startswith('win32'):
|
323 |
+
return 'win32'
|
324 |
+
elif sys.platform.startswith('cygwin'):
|
325 |
+
return 'cygwin'
|
326 |
+
elif sys.platform.startswith('darwin'):
|
327 |
+
return 'darwin'
|
328 |
+
else:
|
329 |
+
return sys.platform
|
330 |
+
|
331 |
+
|
332 |
+
def get_mac_version(run_lambda):
|
333 |
+
return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion', r'(.*)')
|
334 |
+
|
335 |
+
|
336 |
+
def get_windows_version(run_lambda):
|
337 |
+
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
338 |
+
wmic_cmd = os.path.join(system_root, 'System32', 'Wbem', 'wmic')
|
339 |
+
findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
|
340 |
+
return run_and_read_all(run_lambda, '{} os get Caption | {} /v Caption'.format(wmic_cmd, findstr_cmd))
|
341 |
+
|
342 |
+
|
343 |
+
def get_lsb_version(run_lambda):
|
344 |
+
return run_and_parse_first_match(run_lambda, 'lsb_release -a', r'Description:\t(.*)')
|
345 |
+
|
346 |
+
|
347 |
+
def check_release_file(run_lambda):
|
348 |
+
return run_and_parse_first_match(run_lambda, 'cat /etc/*-release',
|
349 |
+
r'PRETTY_NAME="(.*)"')
|
350 |
+
|
351 |
+
|
352 |
+
def get_os(run_lambda):
|
353 |
+
from platform import machine
|
354 |
+
platform = get_platform()
|
355 |
+
|
356 |
+
if platform == 'win32' or platform == 'cygwin':
|
357 |
+
return get_windows_version(run_lambda)
|
358 |
+
|
359 |
+
if platform == 'darwin':
|
360 |
+
version = get_mac_version(run_lambda)
|
361 |
+
if version is None:
|
362 |
+
return None
|
363 |
+
return 'macOS {} ({})'.format(version, machine())
|
364 |
+
|
365 |
+
if platform == 'linux':
|
366 |
+
# Ubuntu/Debian based
|
367 |
+
desc = get_lsb_version(run_lambda)
|
368 |
+
if desc is not None:
|
369 |
+
return '{} ({})'.format(desc, machine())
|
370 |
+
|
371 |
+
# Try reading /etc/*-release
|
372 |
+
desc = check_release_file(run_lambda)
|
373 |
+
if desc is not None:
|
374 |
+
return '{} ({})'.format(desc, machine())
|
375 |
+
|
376 |
+
return '{} ({})'.format(platform, machine())
|
377 |
+
|
378 |
+
# Unknown platform
|
379 |
+
return platform
|
380 |
+
|
381 |
+
|
382 |
+
def get_python_platform():
|
383 |
+
import platform
|
384 |
+
return platform.platform()
|
385 |
+
|
386 |
+
|
387 |
+
def get_libc_version():
|
388 |
+
import platform
|
389 |
+
if get_platform() != 'linux':
|
390 |
+
return 'N/A'
|
391 |
+
return '-'.join(platform.libc_ver())
|
392 |
+
|
393 |
+
|
394 |
+
def get_pip_packages(run_lambda, patterns=None):
|
395 |
+
"""Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages."""
|
396 |
+
if patterns is None:
|
397 |
+
patterns = DEFAULT_PIP_PATTERNS
|
398 |
+
|
399 |
+
# People generally have `pip` as `pip` or `pip3`
|
400 |
+
# But here it is invoked as `python -mpip`
|
401 |
+
def run_with_pip(pip):
|
402 |
+
out = run_and_read_all(run_lambda, pip + ["list", "--format=freeze"])
|
403 |
+
return "\n".join(
|
404 |
+
line
|
405 |
+
for line in out.splitlines()
|
406 |
+
if any(name in line for name in patterns)
|
407 |
+
)
|
408 |
+
|
409 |
+
pip_version = 'pip3' if sys.version[0] == '3' else 'pip'
|
410 |
+
out = run_with_pip([sys.executable, '-mpip'])
|
411 |
+
|
412 |
+
return pip_version, out
|
413 |
+
|
414 |
+
|
415 |
+
def get_cachingallocator_config():
|
416 |
+
ca_config = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', '')
|
417 |
+
return ca_config
|
418 |
+
|
419 |
+
|
420 |
+
def get_cuda_module_loading_config():
|
421 |
+
if TORCH_AVAILABLE and torch.cuda.is_available():
|
422 |
+
torch.cuda.init()
|
423 |
+
config = os.environ.get('CUDA_MODULE_LOADING', '')
|
424 |
+
return config
|
425 |
+
else:
|
426 |
+
return "N/A"
|
427 |
+
|
428 |
+
|
429 |
+
def is_xnnpack_available():
|
430 |
+
if TORCH_AVAILABLE:
|
431 |
+
import torch.backends.xnnpack
|
432 |
+
return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
|
433 |
+
else:
|
434 |
+
return "N/A"
|
435 |
+
|
436 |
+
def get_env_info():
|
437 |
+
run_lambda = run
|
438 |
+
pip_version, pip_list_output = get_pip_packages(run_lambda)
|
439 |
+
|
440 |
+
if TORCH_AVAILABLE:
|
441 |
+
version_str = torch.__version__
|
442 |
+
debug_mode_str = str(torch.version.debug)
|
443 |
+
cuda_available_str = str(torch.cuda.is_available())
|
444 |
+
cuda_version_str = torch.version.cuda
|
445 |
+
if not hasattr(torch.version, 'hip') or torch.version.hip is None: # cuda version
|
446 |
+
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
|
447 |
+
else: # HIP version
|
448 |
+
def get_version_or_na(cfg, prefix):
|
449 |
+
_lst = [s.rsplit(None, 1)[-1] for s in cfg if prefix in s]
|
450 |
+
return _lst[0] if _lst else 'N/A'
|
451 |
+
|
452 |
+
cfg = torch._C._show_config().split('\n')
|
453 |
+
hip_runtime_version = get_version_or_na(cfg, 'HIP Runtime')
|
454 |
+
miopen_runtime_version = get_version_or_na(cfg, 'MIOpen')
|
455 |
+
cuda_version_str = 'N/A'
|
456 |
+
hip_compiled_version = torch.version.hip
|
457 |
+
else:
|
458 |
+
version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A'
|
459 |
+
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
|
460 |
+
|
461 |
+
sys_version = sys.version.replace("\n", " ")
|
462 |
+
|
463 |
+
conda_packages = get_conda_packages(run_lambda)
|
464 |
+
|
465 |
+
return SystemEnv(
|
466 |
+
torch_version=version_str,
|
467 |
+
is_debug_build=debug_mode_str,
|
468 |
+
python_version='{} ({}-bit runtime)'.format(sys_version, sys.maxsize.bit_length() + 1),
|
469 |
+
python_platform=get_python_platform(),
|
470 |
+
is_cuda_available=cuda_available_str,
|
471 |
+
cuda_compiled_version=cuda_version_str,
|
472 |
+
cuda_runtime_version=get_running_cuda_version(run_lambda),
|
473 |
+
cuda_module_loading=get_cuda_module_loading_config(),
|
474 |
+
nvidia_gpu_models=get_gpu_info(run_lambda),
|
475 |
+
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
|
476 |
+
cudnn_version=get_cudnn_version(run_lambda),
|
477 |
+
hip_compiled_version=hip_compiled_version,
|
478 |
+
hip_runtime_version=hip_runtime_version,
|
479 |
+
miopen_runtime_version=miopen_runtime_version,
|
480 |
+
pip_version=pip_version,
|
481 |
+
pip_packages=pip_list_output,
|
482 |
+
conda_packages=conda_packages,
|
483 |
+
os=get_os(run_lambda),
|
484 |
+
libc_version=get_libc_version(),
|
485 |
+
gcc_version=get_gcc_version(run_lambda),
|
486 |
+
clang_version=get_clang_version(run_lambda),
|
487 |
+
cmake_version=get_cmake_version(run_lambda),
|
488 |
+
caching_allocator_config=get_cachingallocator_config(),
|
489 |
+
is_xnnpack_available=is_xnnpack_available(),
|
490 |
+
cpu_info=get_cpu_info(run_lambda),
|
491 |
+
)
|
492 |
+
|
493 |
+
env_info_fmt = """
|
494 |
+
PyTorch version: {torch_version}
|
495 |
+
Is debug build: {is_debug_build}
|
496 |
+
CUDA used to build PyTorch: {cuda_compiled_version}
|
497 |
+
ROCM used to build PyTorch: {hip_compiled_version}
|
498 |
+
|
499 |
+
OS: {os}
|
500 |
+
GCC version: {gcc_version}
|
501 |
+
Clang version: {clang_version}
|
502 |
+
CMake version: {cmake_version}
|
503 |
+
Libc version: {libc_version}
|
504 |
+
|
505 |
+
Python version: {python_version}
|
506 |
+
Python platform: {python_platform}
|
507 |
+
Is CUDA available: {is_cuda_available}
|
508 |
+
CUDA runtime version: {cuda_runtime_version}
|
509 |
+
CUDA_MODULE_LOADING set to: {cuda_module_loading}
|
510 |
+
GPU models and configuration: {nvidia_gpu_models}
|
511 |
+
Nvidia driver version: {nvidia_driver_version}
|
512 |
+
cuDNN version: {cudnn_version}
|
513 |
+
HIP runtime version: {hip_runtime_version}
|
514 |
+
MIOpen runtime version: {miopen_runtime_version}
|
515 |
+
Is XNNPACK available: {is_xnnpack_available}
|
516 |
+
|
517 |
+
CPU:
|
518 |
+
{cpu_info}
|
519 |
+
|
520 |
+
Versions of relevant libraries:
|
521 |
+
{pip_packages}
|
522 |
+
{conda_packages}
|
523 |
+
""".strip()
|
524 |
+
|
525 |
+
|
526 |
+
def pretty_str(envinfo):
|
527 |
+
def replace_nones(dct, replacement='Could not collect'):
|
528 |
+
for key in dct.keys():
|
529 |
+
if dct[key] is not None:
|
530 |
+
continue
|
531 |
+
dct[key] = replacement
|
532 |
+
return dct
|
533 |
+
|
534 |
+
def replace_bools(dct, true='Yes', false='No'):
|
535 |
+
for key in dct.keys():
|
536 |
+
if dct[key] is True:
|
537 |
+
dct[key] = true
|
538 |
+
elif dct[key] is False:
|
539 |
+
dct[key] = false
|
540 |
+
return dct
|
541 |
+
|
542 |
+
def prepend(text, tag='[prepend]'):
|
543 |
+
lines = text.split('\n')
|
544 |
+
updated_lines = [tag + line for line in lines]
|
545 |
+
return '\n'.join(updated_lines)
|
546 |
+
|
547 |
+
def replace_if_empty(text, replacement='No relevant packages'):
|
548 |
+
if text is not None and len(text) == 0:
|
549 |
+
return replacement
|
550 |
+
return text
|
551 |
+
|
552 |
+
def maybe_start_on_next_line(string):
|
553 |
+
# If `string` is multiline, prepend a \n to it.
|
554 |
+
if string is not None and len(string.split('\n')) > 1:
|
555 |
+
return '\n{}\n'.format(string)
|
556 |
+
return string
|
557 |
+
|
558 |
+
mutable_dict = envinfo._asdict()
|
559 |
+
|
560 |
+
# If nvidia_gpu_models is multiline, start on the next line
|
561 |
+
mutable_dict['nvidia_gpu_models'] = \
|
562 |
+
maybe_start_on_next_line(envinfo.nvidia_gpu_models)
|
563 |
+
|
564 |
+
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
|
565 |
+
dynamic_cuda_fields = [
|
566 |
+
'cuda_runtime_version',
|
567 |
+
'nvidia_gpu_models',
|
568 |
+
'nvidia_driver_version',
|
569 |
+
]
|
570 |
+
all_cuda_fields = dynamic_cuda_fields + ['cudnn_version']
|
571 |
+
all_dynamic_cuda_fields_missing = all(
|
572 |
+
mutable_dict[field] is None for field in dynamic_cuda_fields)
|
573 |
+
if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing:
|
574 |
+
for field in all_cuda_fields:
|
575 |
+
mutable_dict[field] = 'No CUDA'
|
576 |
+
if envinfo.cuda_compiled_version is None:
|
577 |
+
mutable_dict['cuda_compiled_version'] = 'None'
|
578 |
+
|
579 |
+
# Replace True with Yes, False with No
|
580 |
+
mutable_dict = replace_bools(mutable_dict)
|
581 |
+
|
582 |
+
# Replace all None objects with 'Could not collect'
|
583 |
+
mutable_dict = replace_nones(mutable_dict)
|
584 |
+
|
585 |
+
# If either of these are '', replace with 'No relevant packages'
|
586 |
+
mutable_dict['pip_packages'] = replace_if_empty(mutable_dict['pip_packages'])
|
587 |
+
mutable_dict['conda_packages'] = replace_if_empty(mutable_dict['conda_packages'])
|
588 |
+
|
589 |
+
# Tag conda and pip packages with a prefix
|
590 |
+
# If they were previously None, they'll show up as ie '[conda] Could not collect'
|
591 |
+
if mutable_dict['pip_packages']:
|
592 |
+
mutable_dict['pip_packages'] = prepend(mutable_dict['pip_packages'],
|
593 |
+
'[{}] '.format(envinfo.pip_version))
|
594 |
+
if mutable_dict['conda_packages']:
|
595 |
+
mutable_dict['conda_packages'] = prepend(mutable_dict['conda_packages'],
|
596 |
+
'[conda] ')
|
597 |
+
mutable_dict['cpu_info'] = envinfo.cpu_info
|
598 |
+
return env_info_fmt.format(**mutable_dict)
|
599 |
+
|
600 |
+
|
601 |
+
def get_pretty_env_info():
|
602 |
+
return pretty_str(get_env_info())
|
603 |
+
|
604 |
+
|
605 |
+
def main():
|
606 |
+
print("Collecting environment information...")
|
607 |
+
output = get_pretty_env_info()
|
608 |
+
print(output)
|
609 |
+
|
610 |
+
if TORCH_AVAILABLE and hasattr(torch, 'utils') and hasattr(torch.utils, '_crash_handler'):
|
611 |
+
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
|
612 |
+
if sys.platform == "linux" and os.path.exists(minidump_dir):
|
613 |
+
dumps = [os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)]
|
614 |
+
latest = max(dumps, key=os.path.getctime)
|
615 |
+
ctime = os.path.getctime(latest)
|
616 |
+
creation_time = datetime.datetime.fromtimestamp(ctime).strftime('%Y-%m-%d %H:%M:%S')
|
617 |
+
msg = "\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time) + \
|
618 |
+
"if this is related to your bug please include it when you file a report ***"
|
619 |
+
print(msg, file=sys.stderr)
|
620 |
+
|
621 |
+
|
622 |
+
|
623 |
+
if __name__ == '__main__':
|
624 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/torch/utils/cpp_backtrace.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch._C import _get_cpp_backtrace
|
2 |
+
|
3 |
+
def get_cpp_backtrace(frames_to_skip=0, maximum_number_of_frames=64) -> str:
|
4 |
+
r"""
|
5 |
+
Return a string containing the C++ stack trace of the current thread.
|
6 |
+
|
7 |
+
Args:
|
8 |
+
frames_to_skip (int): the number of frames to skip from the top of the stack
|
9 |
+
maximum_number_of_frames (int): the maximum number of frames to return
|
10 |
+
"""
|
11 |
+
return _get_cpp_backtrace(frames_to_skip, maximum_number_of_frames)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/cpp_extension.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/__init__.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO(VitalyFedyunin): Rearranging this imports leads to crash,
|
2 |
+
# need to cleanup dependencies and fix it
|
3 |
+
from torch.utils.data.sampler import (
|
4 |
+
BatchSampler,
|
5 |
+
RandomSampler,
|
6 |
+
Sampler,
|
7 |
+
SequentialSampler,
|
8 |
+
SubsetRandomSampler,
|
9 |
+
WeightedRandomSampler,
|
10 |
+
)
|
11 |
+
from torch.utils.data.dataset import (
|
12 |
+
ChainDataset,
|
13 |
+
ConcatDataset,
|
14 |
+
Dataset,
|
15 |
+
IterableDataset,
|
16 |
+
StackDataset,
|
17 |
+
Subset,
|
18 |
+
TensorDataset,
|
19 |
+
random_split,
|
20 |
+
)
|
21 |
+
from torch.utils.data.datapipes.datapipe import (
|
22 |
+
DFIterDataPipe,
|
23 |
+
DataChunk,
|
24 |
+
IterDataPipe,
|
25 |
+
MapDataPipe,
|
26 |
+
)
|
27 |
+
from torch.utils.data.dataloader import (
|
28 |
+
DataLoader,
|
29 |
+
_DatasetKind,
|
30 |
+
get_worker_info,
|
31 |
+
default_collate,
|
32 |
+
default_convert,
|
33 |
+
)
|
34 |
+
from torch.utils.data.distributed import DistributedSampler
|
35 |
+
from torch.utils.data.datapipes._decorator import (
|
36 |
+
argument_validation,
|
37 |
+
functional_datapipe,
|
38 |
+
guaranteed_datapipes_determinism,
|
39 |
+
non_deterministic,
|
40 |
+
runtime_validation,
|
41 |
+
runtime_validation_disabled,
|
42 |
+
)
|
43 |
+
|
44 |
+
__all__ = ['BatchSampler',
|
45 |
+
'ChainDataset',
|
46 |
+
'ConcatDataset',
|
47 |
+
'DFIterDataPipe',
|
48 |
+
'DataChunk',
|
49 |
+
'DataLoader',
|
50 |
+
'Dataset',
|
51 |
+
'DistributedSampler',
|
52 |
+
'IterDataPipe',
|
53 |
+
'IterableDataset',
|
54 |
+
'MapDataPipe',
|
55 |
+
'RandomSampler',
|
56 |
+
'Sampler',
|
57 |
+
'SequentialSampler',
|
58 |
+
'StackDataset',
|
59 |
+
'Subset',
|
60 |
+
'SubsetRandomSampler',
|
61 |
+
'TensorDataset',
|
62 |
+
'WeightedRandomSampler',
|
63 |
+
'_DatasetKind',
|
64 |
+
'argument_validation',
|
65 |
+
'default_collate',
|
66 |
+
'default_convert',
|
67 |
+
'functional_datapipe',
|
68 |
+
'get_worker_info',
|
69 |
+
'guaranteed_datapipes_determinism',
|
70 |
+
'non_deterministic',
|
71 |
+
'random_split',
|
72 |
+
'runtime_validation',
|
73 |
+
'runtime_validation_disabled']
|
74 |
+
|
75 |
+
# Please keep this list sorted
|
76 |
+
assert __all__ == sorted(__all__)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/backward_compatibility.cpython-310.pyc
ADDED
Binary file (481 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/dataloader.cpython-310.pyc
ADDED
Binary file (28 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/dataset.cpython-310.pyc
ADDED
Binary file (19.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/distributed.cpython-310.pyc
ADDED
Binary file (5.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/graph.cpython-310.pyc
ADDED
Binary file (4.61 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/graph_settings.cpython-310.pyc
ADDED
Binary file (4.85 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/__pycache__/sampler.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/backward_compatibility.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
def worker_init_fn(worker_id):
|
4 |
+
warnings.warn("Usage of backward_compatibility.worker_init_fn is deprecated"
|
5 |
+
" as DataLoader automatically applies sharding in every worker")
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/dataloader.py
ADDED
@@ -0,0 +1,1479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""Definition of the DataLoader and associated iterators that subclass _BaseDataLoaderIter.
|
2 |
+
|
3 |
+
To support these two classes, in `./_utils` we define many utility methods and
|
4 |
+
functions to be run in multiprocessing. E.g., the data loading worker loop is
|
5 |
+
in `./_utils/worker.py`.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import functools
|
9 |
+
import itertools
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
import queue
|
13 |
+
import threading
|
14 |
+
import warnings
|
15 |
+
|
16 |
+
from typing import Any, Callable, Iterable, TypeVar, Generic, List, Optional, Union
|
17 |
+
|
18 |
+
import multiprocessing as python_multiprocessing
|
19 |
+
import torch
|
20 |
+
import torch.distributed as dist
|
21 |
+
import torch.multiprocessing as multiprocessing
|
22 |
+
import torch.utils.data.graph_settings
|
23 |
+
|
24 |
+
from torch._utils import ExceptionWrapper
|
25 |
+
|
26 |
+
from . import (
|
27 |
+
IterDataPipe,
|
28 |
+
MapDataPipe,
|
29 |
+
IterableDataset,
|
30 |
+
Sampler,
|
31 |
+
SequentialSampler,
|
32 |
+
RandomSampler,
|
33 |
+
BatchSampler,
|
34 |
+
Dataset,)
|
35 |
+
|
36 |
+
from torch.utils.data.datapipes.datapipe import _IterDataPipeSerializationWrapper, _MapDataPipeSerializationWrapper
|
37 |
+
|
38 |
+
from . import _utils
|
39 |
+
|
40 |
+
__all__ = [
|
41 |
+
"DataLoader",
|
42 |
+
"get_worker_info",
|
43 |
+
"default_collate",
|
44 |
+
"default_convert",
|
45 |
+
]
|
46 |
+
|
47 |
+
T_co = TypeVar('T_co', covariant=True)
|
48 |
+
T = TypeVar('T')
|
49 |
+
_worker_init_fn_t = Callable[[int], None]
|
50 |
+
|
51 |
+
# Ideally we would parameterize `DataLoader` by the return type of `collate_fn`, but there is currently no way to have that
|
52 |
+
# type parameter set to a default value if the user doesn't pass in a custom 'collate_fn'.
|
53 |
+
# See https://github.com/python/mypy/issues/3737.
|
54 |
+
_collate_fn_t = Callable[[List[T]], Any]
|
55 |
+
|
56 |
+
|
57 |
+
# These functions used to be defined in this file. However, it was moved to
|
58 |
+
# _utils/collate.py. Although it is rather hard to access this from user land
|
59 |
+
# (one has to explicitly directly `import torch.utils.data.dataloader`), there
|
60 |
+
# probably is user code out there using it. This aliasing maintains BC in this
|
61 |
+
# aspect.
|
62 |
+
default_collate: _collate_fn_t = _utils.collate.default_collate
|
63 |
+
default_convert = _utils.collate.default_convert
|
64 |
+
|
65 |
+
get_worker_info = _utils.worker.get_worker_info
|
66 |
+
|
67 |
+
logger = logging.getLogger(__name__)
|
68 |
+
|
69 |
+
|
70 |
+
class _DatasetKind:
|
71 |
+
Map = 0
|
72 |
+
Iterable = 1
|
73 |
+
|
74 |
+
@staticmethod
|
75 |
+
def create_fetcher(kind, dataset, auto_collation, collate_fn, drop_last):
|
76 |
+
if kind == _DatasetKind.Map:
|
77 |
+
return _utils.fetch._MapDatasetFetcher(dataset, auto_collation, collate_fn, drop_last)
|
78 |
+
else:
|
79 |
+
return _utils.fetch._IterableDatasetFetcher(dataset, auto_collation, collate_fn, drop_last)
|
80 |
+
|
81 |
+
|
82 |
+
class _InfiniteConstantSampler(Sampler):
|
83 |
+
r"""Analogous to ``itertools.repeat(None, None)``.
|
84 |
+
|
85 |
+
Used as sampler for :class:`~torch.utils.data.IterableDataset`.
|
86 |
+
"""
|
87 |
+
|
88 |
+
def __iter__(self):
|
89 |
+
while True:
|
90 |
+
yield None
|
91 |
+
|
92 |
+
|
93 |
+
def _get_distributed_settings():
|
94 |
+
if dist.is_available() and dist.is_initialized():
|
95 |
+
return dist.get_world_size(), dist.get_rank()
|
96 |
+
else:
|
97 |
+
return 1, 0
|
98 |
+
|
99 |
+
|
100 |
+
def _sharding_worker_init_fn(worker_init_fn, world_size, rank_id, worker_id):
|
101 |
+
global_worker_id = worker_id
|
102 |
+
info = torch.utils.data.get_worker_info()
|
103 |
+
assert info is not None
|
104 |
+
total_workers = info.num_workers
|
105 |
+
datapipe = info.dataset
|
106 |
+
assert isinstance(datapipe, (IterDataPipe, MapDataPipe))
|
107 |
+
# To distribute elements across distributed process evenly, we should shard data on distributed
|
108 |
+
# processes first then shard on worker processes
|
109 |
+
total_workers *= world_size
|
110 |
+
global_worker_id = global_worker_id * world_size + rank_id
|
111 |
+
# For BC, use default SHARDING_PRIORITIES
|
112 |
+
torch.utils.data.graph_settings.apply_sharding(datapipe, total_workers, global_worker_id)
|
113 |
+
if worker_init_fn is not None:
|
114 |
+
worker_init_fn(worker_id)
|
115 |
+
|
116 |
+
|
117 |
+
def _share_dist_seed(generator, pg):
|
118 |
+
_shared_seed = torch.empty((), dtype=torch.int64).random_(generator=generator)
|
119 |
+
if isinstance(pg, dist.ProcessGroup):
|
120 |
+
dist.broadcast(_shared_seed, src=0, group=pg)
|
121 |
+
return _shared_seed.item()
|
122 |
+
|
123 |
+
|
124 |
+
class DataLoader(Generic[T_co]):
|
125 |
+
r"""
|
126 |
+
Data loader combines a dataset and a sampler, and provides an iterable over the given dataset.
|
127 |
+
|
128 |
+
The :class:`~torch.utils.data.DataLoader` supports both map-style and
|
129 |
+
iterable-style datasets with single- or multi-process loading, customizing
|
130 |
+
loading order and optional automatic batching (collation) and memory pinning.
|
131 |
+
|
132 |
+
See :py:mod:`torch.utils.data` documentation page for more details.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
dataset (Dataset): dataset from which to load the data.
|
136 |
+
batch_size (int, optional): how many samples per batch to load
|
137 |
+
(default: ``1``).
|
138 |
+
shuffle (bool, optional): set to ``True`` to have the data reshuffled
|
139 |
+
at every epoch (default: ``False``).
|
140 |
+
sampler (Sampler or Iterable, optional): defines the strategy to draw
|
141 |
+
samples from the dataset. Can be any ``Iterable`` with ``__len__``
|
142 |
+
implemented. If specified, :attr:`shuffle` must not be specified.
|
143 |
+
batch_sampler (Sampler or Iterable, optional): like :attr:`sampler`, but
|
144 |
+
returns a batch of indices at a time. Mutually exclusive with
|
145 |
+
:attr:`batch_size`, :attr:`shuffle`, :attr:`sampler`,
|
146 |
+
and :attr:`drop_last`.
|
147 |
+
num_workers (int, optional): how many subprocesses to use for data
|
148 |
+
loading. ``0`` means that the data will be loaded in the main process.
|
149 |
+
(default: ``0``)
|
150 |
+
collate_fn (Callable, optional): merges a list of samples to form a
|
151 |
+
mini-batch of Tensor(s). Used when using batched loading from a
|
152 |
+
map-style dataset.
|
153 |
+
pin_memory (bool, optional): If ``True``, the data loader will copy Tensors
|
154 |
+
into device/CUDA pinned memory before returning them. If your data elements
|
155 |
+
are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type,
|
156 |
+
see the example below.
|
157 |
+
drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
|
158 |
+
if the dataset size is not divisible by the batch size. If ``False`` and
|
159 |
+
the size of dataset is not divisible by the batch size, then the last batch
|
160 |
+
will be smaller. (default: ``False``)
|
161 |
+
timeout (numeric, optional): if positive, the timeout value for collecting a batch
|
162 |
+
from workers. Should always be non-negative. (default: ``0``)
|
163 |
+
worker_init_fn (Callable, optional): If not ``None``, this will be called on each
|
164 |
+
worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as
|
165 |
+
input, after seeding and before data loading. (default: ``None``)
|
166 |
+
multiprocessing_context (str or multiprocessing.context.BaseContext, optional): If
|
167 |
+
``None``, the default `multiprocessing context`_ of your operating system will
|
168 |
+
be used. (default: ``None``)
|
169 |
+
generator (torch.Generator, optional): If not ``None``, this RNG will be used
|
170 |
+
by RandomSampler to generate random indexes and multiprocessing to generate
|
171 |
+
``base_seed`` for workers. (default: ``None``)
|
172 |
+
prefetch_factor (int, optional, keyword-only arg): Number of batches loaded
|
173 |
+
in advance by each worker. ``2`` means there will be a total of
|
174 |
+
2 * num_workers batches prefetched across all workers. (default value depends
|
175 |
+
on the set value for num_workers. If value of num_workers=0 default is ``None``.
|
176 |
+
Otherwise, if value of ``num_workers > 0`` default is ``2``).
|
177 |
+
persistent_workers (bool, optional): If ``True``, the data loader will not shut down
|
178 |
+
the worker processes after a dataset has been consumed once. This allows to
|
179 |
+
maintain the workers `Dataset` instances alive. (default: ``False``)
|
180 |
+
pin_memory_device (str, optional): the device to :attr:`pin_memory` to if ``pin_memory`` is
|
181 |
+
``True``.
|
182 |
+
|
183 |
+
|
184 |
+
.. warning:: If the ``spawn`` start method is used, :attr:`worker_init_fn`
|
185 |
+
cannot be an unpicklable object, e.g., a lambda function. See
|
186 |
+
:ref:`multiprocessing-best-practices` on more details related
|
187 |
+
to multiprocessing in PyTorch.
|
188 |
+
|
189 |
+
.. warning:: ``len(dataloader)`` heuristic is based on the length of the sampler used.
|
190 |
+
When :attr:`dataset` is an :class:`~torch.utils.data.IterableDataset`,
|
191 |
+
it instead returns an estimate based on ``len(dataset) / batch_size``, with proper
|
192 |
+
rounding depending on :attr:`drop_last`, regardless of multi-process loading
|
193 |
+
configurations. This represents the best guess PyTorch can make because PyTorch
|
194 |
+
trusts user :attr:`dataset` code in correctly handling multi-process
|
195 |
+
loading to avoid duplicate data.
|
196 |
+
|
197 |
+
However, if sharding results in multiple workers having incomplete last batches,
|
198 |
+
this estimate can still be inaccurate, because (1) an otherwise complete batch can
|
199 |
+
be broken into multiple ones and (2) more than one batch worth of samples can be
|
200 |
+
dropped when :attr:`drop_last` is set. Unfortunately, PyTorch can not detect such
|
201 |
+
cases in general.
|
202 |
+
|
203 |
+
See `Dataset Types`_ for more details on these two types of datasets and how
|
204 |
+
:class:`~torch.utils.data.IterableDataset` interacts with
|
205 |
+
`Multi-process data loading`_.
|
206 |
+
|
207 |
+
.. warning:: See :ref:`reproducibility`, and :ref:`dataloader-workers-random-seed`, and
|
208 |
+
:ref:`data-loading-randomness` notes for random seed related questions.
|
209 |
+
|
210 |
+
.. _multiprocessing context:
|
211 |
+
https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
|
212 |
+
"""
|
213 |
+
|
214 |
+
dataset: Dataset[T_co]
|
215 |
+
batch_size: Optional[int]
|
216 |
+
num_workers: int
|
217 |
+
pin_memory: bool
|
218 |
+
drop_last: bool
|
219 |
+
timeout: float
|
220 |
+
sampler: Union[Sampler, Iterable]
|
221 |
+
pin_memory_device: str
|
222 |
+
prefetch_factor: Optional[int]
|
223 |
+
_iterator : Optional['_BaseDataLoaderIter']
|
224 |
+
__initialized = False
|
225 |
+
|
226 |
+
def __init__(self, dataset: Dataset[T_co], batch_size: Optional[int] = 1,
|
227 |
+
shuffle: Optional[bool] = None, sampler: Union[Sampler, Iterable, None] = None,
|
228 |
+
batch_sampler: Union[Sampler[List], Iterable[List], None] = None,
|
229 |
+
num_workers: int = 0, collate_fn: Optional[_collate_fn_t] = None,
|
230 |
+
pin_memory: bool = False, drop_last: bool = False,
|
231 |
+
timeout: float = 0, worker_init_fn: Optional[_worker_init_fn_t] = None,
|
232 |
+
multiprocessing_context=None, generator=None,
|
233 |
+
*, prefetch_factor: Optional[int] = None,
|
234 |
+
persistent_workers: bool = False,
|
235 |
+
pin_memory_device: str = ""):
|
236 |
+
torch._C._log_api_usage_once("python.data_loader")
|
237 |
+
|
238 |
+
if num_workers < 0:
|
239 |
+
raise ValueError('num_workers option should be non-negative; '
|
240 |
+
'use num_workers=0 to disable multiprocessing.')
|
241 |
+
|
242 |
+
if timeout < 0:
|
243 |
+
raise ValueError('timeout option should be non-negative')
|
244 |
+
|
245 |
+
if num_workers == 0 and prefetch_factor is not None:
|
246 |
+
raise ValueError('prefetch_factor option could only be specified in multiprocessing.'
|
247 |
+
'let num_workers > 0 to enable multiprocessing, otherwise set prefetch_factor to None.')
|
248 |
+
elif num_workers > 0 and prefetch_factor is None:
|
249 |
+
prefetch_factor = 2
|
250 |
+
elif prefetch_factor is not None and prefetch_factor < 0:
|
251 |
+
raise ValueError('prefetch_factor option should be non-negative')
|
252 |
+
|
253 |
+
if persistent_workers and num_workers == 0:
|
254 |
+
raise ValueError('persistent_workers option needs num_workers > 0')
|
255 |
+
|
256 |
+
self.dataset = dataset
|
257 |
+
self.num_workers = num_workers
|
258 |
+
self.prefetch_factor = prefetch_factor
|
259 |
+
self.pin_memory = pin_memory
|
260 |
+
self.pin_memory_device = pin_memory_device
|
261 |
+
self.timeout = timeout
|
262 |
+
self.worker_init_fn = worker_init_fn
|
263 |
+
self.multiprocessing_context = multiprocessing_context
|
264 |
+
|
265 |
+
# Adds forward compatibilities so classic DataLoader can work with DataPipes:
|
266 |
+
# _DataPipeSerializationWrapper container makes it easier to serialize without redefining pickler
|
267 |
+
if isinstance(self.dataset, IterDataPipe):
|
268 |
+
self.dataset = _IterDataPipeSerializationWrapper(self.dataset)
|
269 |
+
elif isinstance(self.dataset, MapDataPipe):
|
270 |
+
self.dataset = _MapDataPipeSerializationWrapper(self.dataset)
|
271 |
+
|
272 |
+
# Arg-check dataset related before checking samplers because we want to
|
273 |
+
# tell users that iterable-style datasets are incompatible with custom
|
274 |
+
# samplers first, so that they don't learn that this combo doesn't work
|
275 |
+
# after spending time fixing the custom sampler errors.
|
276 |
+
if isinstance(dataset, IterableDataset):
|
277 |
+
self._dataset_kind = _DatasetKind.Iterable
|
278 |
+
# NOTE [ Custom Samplers and IterableDataset ]
|
279 |
+
#
|
280 |
+
# `IterableDataset` does not support custom `batch_sampler` or
|
281 |
+
# `sampler` since the key is irrelevant (unless we support
|
282 |
+
# generator-style dataset one day...).
|
283 |
+
#
|
284 |
+
# For `sampler`, we always create a dummy sampler. This is an
|
285 |
+
# infinite sampler even when the dataset may have an implemented
|
286 |
+
# finite `__len__` because in multi-process data loading, naive
|
287 |
+
# settings will return duplicated data (which may be desired), and
|
288 |
+
# thus using a sampler with length matching that of dataset will
|
289 |
+
# cause data lost (you may have duplicates of the first couple
|
290 |
+
# batches, but never see anything afterwards). Therefore,
|
291 |
+
# `Iterabledataset` always uses an infinite sampler, an instance of
|
292 |
+
# `_InfiniteConstantSampler` defined above.
|
293 |
+
#
|
294 |
+
# A custom `batch_sampler` essentially only controls the batch size.
|
295 |
+
# However, it is unclear how useful it would be since an iterable-style
|
296 |
+
# dataset can handle that within itself. Moreover, it is pointless
|
297 |
+
# in multi-process data loading as the assignment order of batches
|
298 |
+
# to workers is an implementation detail so users can not control
|
299 |
+
# how to batchify each worker's iterable. Thus, we disable this
|
300 |
+
# option. If this turns out to be useful in future, we can re-enable
|
301 |
+
# this, and support custom samplers that specify the assignments to
|
302 |
+
# specific workers.
|
303 |
+
if isinstance(dataset, IterDataPipe):
|
304 |
+
if shuffle is not None:
|
305 |
+
dataset = torch.utils.data.graph_settings.apply_shuffle_settings(dataset, shuffle=shuffle)
|
306 |
+
# We cannot check `shuffle is not None` here, since previously `shuffle=False` was the default.
|
307 |
+
elif shuffle not in {False, None}:
|
308 |
+
raise ValueError(
|
309 |
+
f"DataLoader with IterableDataset: expected unspecified shuffle option, but got shuffle={shuffle}")
|
310 |
+
|
311 |
+
if sampler is not None:
|
312 |
+
# See NOTE [ Custom Samplers and IterableDataset ]
|
313 |
+
raise ValueError(
|
314 |
+
f"DataLoader with IterableDataset: expected unspecified sampler option, but got sampler={sampler}")
|
315 |
+
elif batch_sampler is not None:
|
316 |
+
# See NOTE [ Custom Samplers and IterableDataset ]
|
317 |
+
raise ValueError(
|
318 |
+
"DataLoader with IterableDataset: expected unspecified "
|
319 |
+
f"batch_sampler option, but got batch_sampler={batch_sampler}")
|
320 |
+
else:
|
321 |
+
shuffle = bool(shuffle)
|
322 |
+
self._dataset_kind = _DatasetKind.Map
|
323 |
+
|
324 |
+
|
325 |
+
|
326 |
+
if sampler is not None and shuffle:
|
327 |
+
raise ValueError('sampler option is mutually exclusive with '
|
328 |
+
'shuffle')
|
329 |
+
|
330 |
+
if batch_sampler is not None:
|
331 |
+
# auto_collation with custom batch_sampler
|
332 |
+
if batch_size != 1 or shuffle or sampler is not None or drop_last:
|
333 |
+
raise ValueError('batch_sampler option is mutually exclusive '
|
334 |
+
'with batch_size, shuffle, sampler, and '
|
335 |
+
'drop_last')
|
336 |
+
batch_size = None
|
337 |
+
drop_last = False
|
338 |
+
elif batch_size is None:
|
339 |
+
# no auto_collation
|
340 |
+
if drop_last:
|
341 |
+
raise ValueError('batch_size=None option disables auto-batching '
|
342 |
+
'and is mutually exclusive with drop_last')
|
343 |
+
|
344 |
+
if sampler is None: # give default samplers
|
345 |
+
if self._dataset_kind == _DatasetKind.Iterable:
|
346 |
+
# See NOTE [ Custom Samplers and IterableDataset ]
|
347 |
+
sampler = _InfiniteConstantSampler()
|
348 |
+
else: # map-style
|
349 |
+
if shuffle:
|
350 |
+
sampler = RandomSampler(dataset, generator=generator) # type: ignore[arg-type]
|
351 |
+
else:
|
352 |
+
sampler = SequentialSampler(dataset) # type: ignore[arg-type]
|
353 |
+
|
354 |
+
if batch_size is not None and batch_sampler is None:
|
355 |
+
# auto_collation without custom batch_sampler
|
356 |
+
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
|
357 |
+
|
358 |
+
self.batch_size = batch_size
|
359 |
+
self.drop_last = drop_last
|
360 |
+
self.sampler = sampler
|
361 |
+
self.batch_sampler = batch_sampler
|
362 |
+
self.generator = generator
|
363 |
+
|
364 |
+
if collate_fn is None:
|
365 |
+
if self._auto_collation:
|
366 |
+
collate_fn = _utils.collate.default_collate
|
367 |
+
else:
|
368 |
+
collate_fn = _utils.collate.default_convert
|
369 |
+
|
370 |
+
self.collate_fn = collate_fn
|
371 |
+
self.persistent_workers = persistent_workers
|
372 |
+
|
373 |
+
self.__initialized = True
|
374 |
+
self._IterableDataset_len_called = None # See NOTE [ IterableDataset and __len__ ]
|
375 |
+
|
376 |
+
self._iterator = None
|
377 |
+
|
378 |
+
self.check_worker_number_rationality()
|
379 |
+
|
380 |
+
torch.set_vital('Dataloader', 'enabled', 'True') # type: ignore[attr-defined]
|
381 |
+
|
382 |
+
def _get_iterator(self) -> '_BaseDataLoaderIter':
|
383 |
+
if self.num_workers == 0:
|
384 |
+
return _SingleProcessDataLoaderIter(self)
|
385 |
+
else:
|
386 |
+
self.check_worker_number_rationality()
|
387 |
+
return _MultiProcessingDataLoaderIter(self)
|
388 |
+
|
389 |
+
@property
|
390 |
+
def multiprocessing_context(self):
|
391 |
+
return self.__multiprocessing_context
|
392 |
+
|
393 |
+
@multiprocessing_context.setter
|
394 |
+
def multiprocessing_context(self, multiprocessing_context):
|
395 |
+
if multiprocessing_context is not None:
|
396 |
+
if self.num_workers > 0:
|
397 |
+
if isinstance(multiprocessing_context, str):
|
398 |
+
valid_start_methods = multiprocessing.get_all_start_methods()
|
399 |
+
if multiprocessing_context not in valid_start_methods:
|
400 |
+
raise ValueError(
|
401 |
+
'multiprocessing_context option '
|
402 |
+
f'should specify a valid start method in {valid_start_methods!r}, but got '
|
403 |
+
f'multiprocessing_context={multiprocessing_context!r}')
|
404 |
+
multiprocessing_context = multiprocessing.get_context(multiprocessing_context)
|
405 |
+
|
406 |
+
if not isinstance(multiprocessing_context, python_multiprocessing.context.BaseContext):
|
407 |
+
raise TypeError('multiprocessing_context option should be a valid context '
|
408 |
+
'object or a string specifying the start method, but got '
|
409 |
+
f'multiprocessing_context={multiprocessing_context}')
|
410 |
+
else:
|
411 |
+
raise ValueError('multiprocessing_context can only be used with '
|
412 |
+
'multi-process loading (num_workers > 0), but got '
|
413 |
+
f'num_workers={self.num_workers}')
|
414 |
+
|
415 |
+
self.__multiprocessing_context = multiprocessing_context
|
416 |
+
|
417 |
+
def __setattr__(self, attr, val):
|
418 |
+
if self.__initialized and attr in (
|
419 |
+
'batch_size', 'batch_sampler', 'sampler', 'drop_last', 'dataset', 'persistent_workers'):
|
420 |
+
raise ValueError(f'{attr} attribute should not be set after {self.__class__.__name__} is initialized')
|
421 |
+
|
422 |
+
super().__setattr__(attr, val)
|
423 |
+
|
424 |
+
# We quote '_BaseDataLoaderIter' since it isn't defined yet and the definition can't be moved up
|
425 |
+
# since '_BaseDataLoaderIter' references 'DataLoader'.
|
426 |
+
def __iter__(self) -> '_BaseDataLoaderIter':
|
427 |
+
# When using a single worker the returned iterator should be
|
428 |
+
# created everytime to avoid resetting its state
|
429 |
+
# However, in the case of a multiple workers iterator
|
430 |
+
# the iterator is only created once in the lifetime of the
|
431 |
+
# DataLoader object so that workers can be reused
|
432 |
+
if self.persistent_workers and self.num_workers > 0:
|
433 |
+
if self._iterator is None:
|
434 |
+
self._iterator = self._get_iterator()
|
435 |
+
else:
|
436 |
+
self._iterator._reset(self)
|
437 |
+
return self._iterator
|
438 |
+
else:
|
439 |
+
return self._get_iterator()
|
440 |
+
|
441 |
+
@property
|
442 |
+
def _auto_collation(self):
|
443 |
+
return self.batch_sampler is not None
|
444 |
+
|
445 |
+
@property
|
446 |
+
def _index_sampler(self):
|
447 |
+
# The actual sampler used for generating indices for `_DatasetFetcher`
|
448 |
+
# (see _utils/fetch.py) to read data at each time. This would be
|
449 |
+
# `.batch_sampler` if in auto-collation mode, and `.sampler` otherwise.
|
450 |
+
# We can't change `.sampler` and `.batch_sampler` attributes for BC
|
451 |
+
# reasons.
|
452 |
+
if self._auto_collation:
|
453 |
+
return self.batch_sampler
|
454 |
+
else:
|
455 |
+
return self.sampler
|
456 |
+
|
457 |
+
def __len__(self) -> int:
|
458 |
+
if self._dataset_kind == _DatasetKind.Iterable:
|
459 |
+
# NOTE [ IterableDataset and __len__ ]
|
460 |
+
#
|
461 |
+
# For `IterableDataset`, `__len__` could be inaccurate when one naively
|
462 |
+
# does multi-processing data loading, since the samples will be duplicated.
|
463 |
+
# However, no real use case should be actually using that behavior, so
|
464 |
+
# it should count as a user error. We should generally trust user
|
465 |
+
# code to do the proper thing (e.g., configure each replica differently
|
466 |
+
# in `__iter__`), and give us the correct `__len__` if they choose to
|
467 |
+
# implement it (this will still throw if the dataset does not implement
|
468 |
+
# a `__len__`).
|
469 |
+
#
|
470 |
+
# To provide a further warning, we track if `__len__` was called on the
|
471 |
+
# `DataLoader`, save the returned value in `self._len_called`, and warn
|
472 |
+
# if the iterator ends up yielding more than this number of samples.
|
473 |
+
|
474 |
+
# Cannot statically verify that dataset is Sized
|
475 |
+
length = self._IterableDataset_len_called = len(self.dataset) # type: ignore[assignment, arg-type]
|
476 |
+
if self.batch_size is not None: # IterableDataset doesn't allow custom sampler or batch_sampler
|
477 |
+
from math import ceil
|
478 |
+
if self.drop_last:
|
479 |
+
length = length // self.batch_size
|
480 |
+
else:
|
481 |
+
length = ceil(length / self.batch_size)
|
482 |
+
return length
|
483 |
+
else:
|
484 |
+
return len(self._index_sampler)
|
485 |
+
|
486 |
+
def check_worker_number_rationality(self):
|
487 |
+
# This function check whether the dataloader's worker number is rational based on
|
488 |
+
# current system's resource. Current rule is that if the number of workers this
|
489 |
+
# Dataloader will create is bigger than the number of logical cpus that is allowed to
|
490 |
+
# use, than we will pop up a warning to let user pay attention.
|
491 |
+
#
|
492 |
+
# eg. If current system has 2 physical CPUs with 16 cores each. And each core support 2
|
493 |
+
# threads, then the total logical cpus here is 2 * 16 * 2 = 64. Let's say current
|
494 |
+
# DataLoader process can use half of them which is 32, then the rational max number of
|
495 |
+
# worker that initiated from this process is 32.
|
496 |
+
# Now, let's say the created DataLoader has num_works = 40, which is bigger than 32.
|
497 |
+
# So the warning message is triggered to notify the user to lower the worker number if
|
498 |
+
# necessary.
|
499 |
+
#
|
500 |
+
#
|
501 |
+
# [Note] Please note that this function repects `cpuset` only when os.sched_getaffinity is
|
502 |
+
# available (available in most of Linux system, but not OSX and Windows).
|
503 |
+
# When os.sched_getaffinity is not available, os.cpu_count() is called instead, but
|
504 |
+
# it doesn't repect cpuset.
|
505 |
+
# We don't take threading into account since each worker process is single threaded
|
506 |
+
# at this time.
|
507 |
+
#
|
508 |
+
# We don't set any threading flags (eg. OMP_NUM_THREADS, MKL_NUM_THREADS, etc)
|
509 |
+
# other than `torch.set_num_threads` to 1 in the worker process, if the passing
|
510 |
+
# in functions use 3rd party modules that rely on those threading flags to determine
|
511 |
+
# how many thread to create (eg. numpy, etc), then it is caller's responsibility to
|
512 |
+
# set those flags correctly.
|
513 |
+
def _create_warning_msg(num_worker_suggest, num_worker_created, cpuset_checked):
|
514 |
+
|
515 |
+
suggested_max_worker_msg = ((
|
516 |
+
"Our suggested max number of worker in current system is {}{}, which is smaller "
|
517 |
+
"than what this DataLoader is going to create.").format(
|
518 |
+
num_worker_suggest,
|
519 |
+
("" if cpuset_checked else " (`cpuset` is not taken into account)"))
|
520 |
+
) if num_worker_suggest is not None else (
|
521 |
+
"DataLoader is not able to compute a suggested max number of worker in current system.")
|
522 |
+
|
523 |
+
warn_msg = (
|
524 |
+
"This DataLoader will create {} worker processes in total. {} "
|
525 |
+
"Please be aware that excessive worker creation might get DataLoader running slow or even freeze, "
|
526 |
+
"lower the worker number to avoid potential slowness/freeze if necessary.").format(
|
527 |
+
num_worker_created,
|
528 |
+
suggested_max_worker_msg)
|
529 |
+
return warn_msg
|
530 |
+
|
531 |
+
if not self.num_workers or self.num_workers == 0:
|
532 |
+
return
|
533 |
+
|
534 |
+
# try to compute a suggested max number of worker based on system's resource
|
535 |
+
max_num_worker_suggest = None
|
536 |
+
cpuset_checked = False
|
537 |
+
if hasattr(os, 'sched_getaffinity'):
|
538 |
+
try:
|
539 |
+
max_num_worker_suggest = len(os.sched_getaffinity(0))
|
540 |
+
cpuset_checked = True
|
541 |
+
except Exception:
|
542 |
+
pass
|
543 |
+
if max_num_worker_suggest is None:
|
544 |
+
# os.cpu_count() could return Optional[int]
|
545 |
+
# get cpu count first and check None in order to satisfy mypy check
|
546 |
+
cpu_count = os.cpu_count()
|
547 |
+
if cpu_count is not None:
|
548 |
+
max_num_worker_suggest = cpu_count
|
549 |
+
|
550 |
+
if max_num_worker_suggest is None:
|
551 |
+
warnings.warn(_create_warning_msg(
|
552 |
+
max_num_worker_suggest,
|
553 |
+
self.num_workers,
|
554 |
+
cpuset_checked))
|
555 |
+
return
|
556 |
+
|
557 |
+
if self.num_workers > max_num_worker_suggest:
|
558 |
+
warnings.warn(_create_warning_msg(
|
559 |
+
max_num_worker_suggest,
|
560 |
+
self.num_workers,
|
561 |
+
cpuset_checked))
|
562 |
+
|
563 |
+
|
564 |
+
class _BaseDataLoaderIter:
|
565 |
+
def __init__(self, loader: DataLoader) -> None:
|
566 |
+
self._dataset = loader.dataset
|
567 |
+
self._shared_seed = None
|
568 |
+
self._pg = None
|
569 |
+
if isinstance(self._dataset, IterDataPipe):
|
570 |
+
if dist.is_available() and dist.is_initialized():
|
571 |
+
self._pg = dist.new_group(backend="gloo")
|
572 |
+
self._shared_seed = _share_dist_seed(loader.generator, self._pg)
|
573 |
+
shared_rng = torch.Generator()
|
574 |
+
shared_rng.manual_seed(self._shared_seed)
|
575 |
+
self._dataset = torch.utils.data.graph_settings.apply_random_seed(self._dataset, shared_rng)
|
576 |
+
self._dataset_kind = loader._dataset_kind
|
577 |
+
self._IterableDataset_len_called = loader._IterableDataset_len_called
|
578 |
+
self._auto_collation = loader._auto_collation
|
579 |
+
self._drop_last = loader.drop_last
|
580 |
+
self._index_sampler = loader._index_sampler
|
581 |
+
self._num_workers = loader.num_workers
|
582 |
+
ws, rank = _get_distributed_settings()
|
583 |
+
self._world_size = ws
|
584 |
+
self._rank = rank
|
585 |
+
# for other backends, pin_memory_device need to set. if not set
|
586 |
+
# default behaviour is CUDA device. if pin_memory_device is selected
|
587 |
+
# and pin_memory is not set, the default behaviour false.
|
588 |
+
if (len(loader.pin_memory_device) == 0):
|
589 |
+
self._pin_memory = loader.pin_memory and torch.cuda.is_available()
|
590 |
+
self._pin_memory_device = None
|
591 |
+
else:
|
592 |
+
if not loader.pin_memory:
|
593 |
+
warn_msg = ("pin memory device is set and pin_memory flag is not used then device pinned memory won't be used"
|
594 |
+
"please set pin_memory to true, if you need to use the device pin memory")
|
595 |
+
warnings.warn(warn_msg)
|
596 |
+
|
597 |
+
self._pin_memory = loader.pin_memory
|
598 |
+
self._pin_memory_device = loader.pin_memory_device
|
599 |
+
self._timeout = loader.timeout
|
600 |
+
self._collate_fn = loader.collate_fn
|
601 |
+
self._sampler_iter = iter(self._index_sampler)
|
602 |
+
self._base_seed = torch.empty((), dtype=torch.int64).random_(generator=loader.generator).item()
|
603 |
+
self._persistent_workers = loader.persistent_workers
|
604 |
+
self._num_yielded = 0
|
605 |
+
self._profile_name = f"enumerate(DataLoader)#{self.__class__.__name__}.__next__"
|
606 |
+
|
607 |
+
def __iter__(self) -> '_BaseDataLoaderIter':
|
608 |
+
return self
|
609 |
+
|
610 |
+
def _reset(self, loader, first_iter=False):
|
611 |
+
self._sampler_iter = iter(self._index_sampler)
|
612 |
+
self._num_yielded = 0
|
613 |
+
self._IterableDataset_len_called = loader._IterableDataset_len_called
|
614 |
+
if isinstance(self._dataset, IterDataPipe):
|
615 |
+
self._shared_seed = _share_dist_seed(loader.generator, self._pg)
|
616 |
+
shared_rng = torch.Generator()
|
617 |
+
shared_rng.manual_seed(self._shared_seed)
|
618 |
+
self._dataset = torch.utils.data.graph_settings.apply_random_seed(self._dataset, shared_rng)
|
619 |
+
|
620 |
+
def _next_index(self):
|
621 |
+
return next(self._sampler_iter) # may raise StopIteration
|
622 |
+
|
623 |
+
def _next_data(self):
|
624 |
+
raise NotImplementedError
|
625 |
+
|
626 |
+
def __next__(self) -> Any:
|
627 |
+
with torch.autograd.profiler.record_function(self._profile_name):
|
628 |
+
if self._sampler_iter is None:
|
629 |
+
# TODO(https://github.com/pytorch/pytorch/issues/76750)
|
630 |
+
self._reset() # type: ignore[call-arg]
|
631 |
+
data = self._next_data()
|
632 |
+
self._num_yielded += 1
|
633 |
+
if self._dataset_kind == _DatasetKind.Iterable and \
|
634 |
+
self._IterableDataset_len_called is not None and \
|
635 |
+
self._num_yielded > self._IterableDataset_len_called:
|
636 |
+
warn_msg = ("Length of IterableDataset {} was reported to be {} (when accessing len(dataloader)), but {} "
|
637 |
+
"samples have been fetched. ").format(self._dataset, self._IterableDataset_len_called,
|
638 |
+
self._num_yielded)
|
639 |
+
if self._num_workers > 0:
|
640 |
+
warn_msg += ("For multiprocessing data-loading, this could be caused by not properly configuring the "
|
641 |
+
"IterableDataset replica at each worker. Please see "
|
642 |
+
"https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset for examples.")
|
643 |
+
warnings.warn(warn_msg)
|
644 |
+
return data
|
645 |
+
|
646 |
+
def __len__(self) -> int:
|
647 |
+
return len(self._index_sampler)
|
648 |
+
|
649 |
+
def __getstate__(self):
|
650 |
+
# TODO: add limited pickling support for sharing an iterator
|
651 |
+
# across multiple threads for HOGWILD.
|
652 |
+
# Probably the best way to do this is by moving the sample pushing
|
653 |
+
# to a separate thread and then just sharing the data queue
|
654 |
+
# but signalling the end is tricky without a non-blocking API
|
655 |
+
raise NotImplementedError("{} cannot be pickled", self.__class__.__name__)
|
656 |
+
|
657 |
+
|
658 |
+
class _SingleProcessDataLoaderIter(_BaseDataLoaderIter):
|
659 |
+
def __init__(self, loader):
|
660 |
+
super().__init__(loader)
|
661 |
+
assert self._timeout == 0
|
662 |
+
assert self._num_workers == 0
|
663 |
+
|
664 |
+
# Adds forward compatibilities so classic DataLoader can work with DataPipes:
|
665 |
+
# Taking care of distributed sharding
|
666 |
+
if isinstance(self._dataset, (IterDataPipe, MapDataPipe)):
|
667 |
+
# For BC, use default SHARDING_PRIORITIES
|
668 |
+
torch.utils.data.graph_settings.apply_sharding(self._dataset, self._world_size, self._rank)
|
669 |
+
|
670 |
+
self._dataset_fetcher = _DatasetKind.create_fetcher(
|
671 |
+
self._dataset_kind, self._dataset, self._auto_collation, self._collate_fn, self._drop_last)
|
672 |
+
|
673 |
+
def _next_data(self):
|
674 |
+
index = self._next_index() # may raise StopIteration
|
675 |
+
data = self._dataset_fetcher.fetch(index) # may raise StopIteration
|
676 |
+
if self._pin_memory:
|
677 |
+
data = _utils.pin_memory.pin_memory(data, self._pin_memory_device)
|
678 |
+
return data
|
679 |
+
|
680 |
+
|
681 |
+
class _MultiProcessingDataLoaderIter(_BaseDataLoaderIter):
|
682 |
+
r"""Iterates once over the DataLoader's dataset, as specified by the sampler."""
|
683 |
+
|
684 |
+
# NOTE [ Data Loader Multiprocessing Shutdown Logic ]
|
685 |
+
#
|
686 |
+
# Preliminary:
|
687 |
+
#
|
688 |
+
# Our data model looks like this (queues are indicated with curly brackets):
|
689 |
+
#
|
690 |
+
# main process ||
|
691 |
+
# | ||
|
692 |
+
# {index_queue} ||
|
693 |
+
# | ||
|
694 |
+
# worker processes || DATA
|
695 |
+
# | ||
|
696 |
+
# {worker_result_queue} || FLOW
|
697 |
+
# | ||
|
698 |
+
# pin_memory_thread of main process || DIRECTION
|
699 |
+
# | ||
|
700 |
+
# {data_queue} ||
|
701 |
+
# | ||
|
702 |
+
# data output \/
|
703 |
+
#
|
704 |
+
# P.S. `worker_result_queue` and `pin_memory_thread` part may be omitted if
|
705 |
+
# `pin_memory=False`.
|
706 |
+
#
|
707 |
+
#
|
708 |
+
# Terminating multiprocessing logic requires very careful design. In
|
709 |
+
# particular, we need to make sure that
|
710 |
+
#
|
711 |
+
# 1. The iterator gracefully exits the workers when its last reference is
|
712 |
+
# gone or it is depleted.
|
713 |
+
#
|
714 |
+
# In this case, the workers should be gracefully exited because the
|
715 |
+
# main process may still need to continue to run, and we want cleaning
|
716 |
+
# up code in the workers to be executed (e.g., releasing GPU memory).
|
717 |
+
# Naturally, we implement the shutdown logic in `__del__` of
|
718 |
+
# DataLoaderIterator.
|
719 |
+
#
|
720 |
+
# We delay the discussion on the logic in this case until later.
|
721 |
+
#
|
722 |
+
# 2. The iterator exits the workers when the loader process and/or worker
|
723 |
+
# processes exits normally or with error.
|
724 |
+
#
|
725 |
+
# We set all workers and `pin_memory_thread` to have `daemon=True`.
|
726 |
+
#
|
727 |
+
# You may ask, why can't we make the workers non-daemonic, and
|
728 |
+
# gracefully exit using the same logic as we have in `__del__` when the
|
729 |
+
# iterator gets deleted (see 1 above)?
|
730 |
+
#
|
731 |
+
# First of all, `__del__` is **not** guaranteed to be called when
|
732 |
+
# interpreter exits. Even if it is called, by the time it executes,
|
733 |
+
# many Python core library resources may already be freed, and even
|
734 |
+
# simple things like acquiring an internal lock of a queue may hang.
|
735 |
+
# Therefore, in this case, we actually need to prevent `__del__` from
|
736 |
+
# being executed, and rely on the automatic termination of daemonic
|
737 |
+
# children.
|
738 |
+
#
|
739 |
+
# Thus, we register an `atexit` hook that sets a global flag
|
740 |
+
# `_utils.python_exit_status`. Since `atexit` hooks are executed in the
|
741 |
+
# reverse order of registration, we are guaranteed that this flag is
|
742 |
+
# set before library resources we use are freed (which, at least in
|
743 |
+
# CPython, is done via an `atexit` handler defined in
|
744 |
+
# `multiprocessing/util.py`
|
745 |
+
# https://github.com/python/cpython/blob/c606624af8d4cb3b4a052fb263bb983b3f87585b/Lib/multiprocessing/util.py#L320-L362
|
746 |
+
# registered when an object requiring this mechanism is first
|
747 |
+
# created, e.g., `mp.Queue`
|
748 |
+
# https://github.com/python/cpython/blob/c606624af8d4cb3b4a052fb263bb983b3f87585b/Lib/multiprocessing/context.py#L100-L103
|
749 |
+
# https://github.com/python/cpython/blob/c606624af8d4cb3b4a052fb263bb983b3f87585b/Lib/multiprocessing/queues.py#L29
|
750 |
+
# )
|
751 |
+
#
|
752 |
+
# So in `__del__`, we check if `_utils.python_exit_status` is set or
|
753 |
+
# `None` (freed), and perform no-op if so.
|
754 |
+
#
|
755 |
+
# However, simply letting library clean-up codes run can also be bad,
|
756 |
+
# because such codes (i.e., `multiprocessing.util._exit_function()`)
|
757 |
+
# include join putting threads for `mp.Queue`, which can be blocking.
|
758 |
+
# Hence, the main process putting threads are called with
|
759 |
+
# `cancel_join_thread` at creation. See later section
|
760 |
+
# [ 3b. A process won't hang when putting into a queue; ]
|
761 |
+
# for more details.
|
762 |
+
#
|
763 |
+
# Here are two example cases where library clean-up codes can run
|
764 |
+
# before `__del__` is called:
|
765 |
+
#
|
766 |
+
# 1. If we hold onto a reference to the iterator, it more often
|
767 |
+
# than not tries to do `multiprocessing` library cleaning before
|
768 |
+
# clearing the alive referenced objects (https://github.com/pytorch/pytorch/issues/48666)
|
769 |
+
# and thus prevents our cleaning-up code to run first.
|
770 |
+
#
|
771 |
+
# 2. A similar issue araises when a `DataLoader` is used in a subprocess.
|
772 |
+
# When a process ends, it shuts the all its daemonic children
|
773 |
+
# down with a SIGTERM (instead of joining them without a timeout).
|
774 |
+
# Simiarly for threads, but by a different mechanism. This fact,
|
775 |
+
# together with a few implementation details of multiprocessing, forces
|
776 |
+
# us to make workers daemonic. All of our problems arise when a
|
777 |
+
# DataLoader is used in a subprocess, and are caused by multiprocessing
|
778 |
+
# code which looks more or less like this:
|
779 |
+
#
|
780 |
+
# try:
|
781 |
+
# your_function_using_a_dataloader()
|
782 |
+
# finally:
|
783 |
+
# multiprocessing.util._exit_function()
|
784 |
+
#
|
785 |
+
# The joining/termination mentioned above happens inside
|
786 |
+
# `_exit_function()`. Now, if `your_function_using_a_dataloader()`
|
787 |
+
# throws, the stack trace stored in the exception will prevent the
|
788 |
+
# frame which uses `DataLoaderIter` to be freed. If the frame has any
|
789 |
+
# reference to the `DataLoaderIter` (e.g., in a method of the iter),
|
790 |
+
# its `__del__`, which starts the shutdown procedure, will not be
|
791 |
+
# called. That, in turn, means that workers aren't notified. Attempting
|
792 |
+
# to join in `_exit_function` will then result in a hang.
|
793 |
+
#
|
794 |
+
# For context, `_exit_function` is also registered as an `atexit` call.
|
795 |
+
# So it is unclear to me (@ssnl) why this is needed in a finally block.
|
796 |
+
# The code dates back to 2008 and there is no comment on the original
|
797 |
+
# PEP 371 or patch https://bugs.python.org/issue3050 (containing both
|
798 |
+
# the finally block and the `atexit` registration) that explains this.
|
799 |
+
#
|
800 |
+
#
|
801 |
+
# Finally, another choice is to just shutdown workers with logic in 1
|
802 |
+
# above whenever we see an error in `next`. This isn't ideal because
|
803 |
+
# a. It prevents users from using try-catch to resume data loading.
|
804 |
+
# b. It doesn't prevent hanging if users have references to the
|
805 |
+
# iterator.
|
806 |
+
#
|
807 |
+
# 3. All processes exit if any of them die unexpectedly by fatal signals.
|
808 |
+
#
|
809 |
+
# As shown above, the workers are set as daemonic children of the main
|
810 |
+
# process. However, automatic cleaning-up of such child processes only
|
811 |
+
# happens if the parent process exits gracefully (e.g., not via fatal
|
812 |
+
# signals like SIGKILL). So we must ensure that each process will exit
|
813 |
+
# even the process that should send/receive data to/from it were
|
814 |
+
# killed, i.e.,
|
815 |
+
#
|
816 |
+
# a. A process won't hang when getting from a queue.
|
817 |
+
#
|
818 |
+
# Even with carefully designed data dependencies (i.e., a `put()`
|
819 |
+
# always corresponding to a `get()`), hanging on `get()` can still
|
820 |
+
# happen when data in queue is corrupted (e.g., due to
|
821 |
+
# `cancel_join_thread` or unexpected exit).
|
822 |
+
#
|
823 |
+
# For child exit, we set a timeout whenever we try to get data
|
824 |
+
# from `data_queue`, and check the workers' status on each timeout
|
825 |
+
# and error.
|
826 |
+
# See `_DataLoaderiter._get_batch()` and
|
827 |
+
# `_DataLoaderiter._try_get_data()` for details.
|
828 |
+
#
|
829 |
+
# Additionally, for child exit on non-Windows platforms, we also
|
830 |
+
# register a SIGCHLD handler (which is supported on Windows) on
|
831 |
+
# the main process, which checks if any of the workers fail in the
|
832 |
+
# (Python) handler. This is more efficient and faster in detecting
|
833 |
+
# worker failures, compared to only using the above mechanism.
|
834 |
+
# See `DataLoader.cpp` and `_utils/signal_handling.py` for details.
|
835 |
+
#
|
836 |
+
# For `.get()` calls where the sender(s) is not the workers, we
|
837 |
+
# guard them with timeouts, and check the status of the sender
|
838 |
+
# when timeout happens:
|
839 |
+
# + in the workers, the `_utils.worker.ManagerWatchdog` class
|
840 |
+
# checks the status of the main process.
|
841 |
+
# + if `pin_memory=True`, when getting from `pin_memory_thread`,
|
842 |
+
# check `pin_memory_thread` status periodically until `.get()`
|
843 |
+
# returns or see that `pin_memory_thread` died.
|
844 |
+
#
|
845 |
+
# b. A process won't hang when putting into a queue;
|
846 |
+
#
|
847 |
+
# We use `mp.Queue` which has a separate background thread to put
|
848 |
+
# objects from an unbounded buffer array. The background thread is
|
849 |
+
# daemonic and usually automatically joined when the process
|
850 |
+
# *exits*.
|
851 |
+
#
|
852 |
+
# In case that the receiver has ended abruptly while
|
853 |
+
# reading from the pipe, the join will hang forever. The usual
|
854 |
+
# solution for this in Python is calling `q.cancel_join_thread`,
|
855 |
+
# which prevents automatically joining it when finalizing
|
856 |
+
# (exiting).
|
857 |
+
#
|
858 |
+
# Nonetheless, `cancel_join_thread` must only be called when the
|
859 |
+
# queue is **not** going to be read from or write into by another
|
860 |
+
# process, because it may hold onto a lock or leave corrupted data
|
861 |
+
# in the queue, leading other readers/writers to hang.
|
862 |
+
#
|
863 |
+
# Hence,
|
864 |
+
# + For worker processes, we only do so (for their output
|
865 |
+
# queues, i.e., `worker_result_queue`) before exiting.
|
866 |
+
# + For `pin_memory_thread`, its output queue `data_queue` is a
|
867 |
+
# `queue.Queue` that does blocking `put` if the queue is full.
|
868 |
+
# So there is no above problem, but as a result, in
|
869 |
+
# `_pin_memory_loop`, we do need to wrap the `put` in a loop
|
870 |
+
# that breaks not only upon success, but also when the main
|
871 |
+
# process stops reading, i.e., is shutting down.
|
872 |
+
# + For loader process, we `cancel_join_thread()` for all
|
873 |
+
# `_index_queues` because the whole purpose of workers and
|
874 |
+
# `pin_memory_thread` is to serve the loader process. If
|
875 |
+
# loader process is already exiting, we don't really care if
|
876 |
+
# the queues are corrupted.
|
877 |
+
#
|
878 |
+
#
|
879 |
+
# Now let's get back to 1:
|
880 |
+
# how we gracefully exit the workers when the last reference to the
|
881 |
+
# iterator is gone.
|
882 |
+
#
|
883 |
+
# To achieve this, we implement the following logic along with the design
|
884 |
+
# choices mentioned above:
|
885 |
+
#
|
886 |
+
# `workers_done_event`:
|
887 |
+
# A `multiprocessing.Event` shared among the main process and all worker
|
888 |
+
# processes. This is used to signal the workers that the iterator is
|
889 |
+
# shutting down. After it is set, they will not send processed data to
|
890 |
+
# queues anymore, and only wait for the final `None` before exiting.
|
891 |
+
# `done_event` isn't strictly needed. I.e., we can just check for `None`
|
892 |
+
# from the input queue, but it allows us to skip wasting resources
|
893 |
+
# processing data if we are already shutting down.
|
894 |
+
#
|
895 |
+
# `pin_memory_thread_done_event`:
|
896 |
+
# A `threading.Event` for a similar purpose to that of
|
897 |
+
# `workers_done_event`, but is for the `pin_memory_thread`. The reason
|
898 |
+
# that separate events are needed is that `pin_memory_thread` reads from
|
899 |
+
# the output queue of the workers. But the workers, upon seeing that
|
900 |
+
# `workers_done_event` is set, only wants to see the final `None`, and is
|
901 |
+
# not required to flush all data in the output queue (e.g., it may call
|
902 |
+
# `cancel_join_thread` on that queue if its `IterableDataset` iterator
|
903 |
+
# happens to exhaust coincidentally, which is out of the control of the
|
904 |
+
# main process). Thus, since we will exit `pin_memory_thread` before the
|
905 |
+
# workers (see below), two separete events are used.
|
906 |
+
#
|
907 |
+
# NOTE: In short, the protocol is that the main process will set these
|
908 |
+
# `done_event`s and then the corresponding processes/threads a `None`,
|
909 |
+
# and that they may exit at any time after receiving the `None`.
|
910 |
+
#
|
911 |
+
# NOTE: Using `None` as the final signal is valid, since normal data will
|
912 |
+
# always be a 2-tuple with the 1st element being the index of the data
|
913 |
+
# transferred (different from dataset index/key), and the 2nd being
|
914 |
+
# either the dataset key or the data sample (depending on which part
|
915 |
+
# of the data model the queue is at).
|
916 |
+
#
|
917 |
+
# [ worker processes ]
|
918 |
+
# While loader process is alive:
|
919 |
+
# Get from `index_queue`.
|
920 |
+
# If get anything else,
|
921 |
+
# Check `workers_done_event`.
|
922 |
+
# If set, continue to next iteration
|
923 |
+
# i.e., keep getting until see the `None`, then exit.
|
924 |
+
# Otherwise, process data:
|
925 |
+
# If is fetching from an `IterableDataset` and the iterator
|
926 |
+
# is exhausted, send an `_IterableDatasetStopIteration`
|
927 |
+
# object to signal iteration end. The main process, upon
|
928 |
+
# receiving such an object, will send `None` to this
|
929 |
+
# worker and not use the corresponding `index_queue`
|
930 |
+
# anymore.
|
931 |
+
# If timed out,
|
932 |
+
# No matter `workers_done_event` is set (still need to see `None`)
|
933 |
+
# or not, must continue to next iteration.
|
934 |
+
# (outside loop)
|
935 |
+
# If `workers_done_event` is set, (this can be False with `IterableDataset`)
|
936 |
+
# `data_queue.cancel_join_thread()`. (Everything is ending here:
|
937 |
+
# main process won't read from it;
|
938 |
+
# other workers will also call
|
939 |
+
# `cancel_join_thread`.)
|
940 |
+
#
|
941 |
+
# [ pin_memory_thread ]
|
942 |
+
# # No need to check main thread. If this thread is alive, the main loader
|
943 |
+
# # thread must be alive, because this thread is set as daemonic.
|
944 |
+
# While `pin_memory_thread_done_event` is not set:
|
945 |
+
# Get from `worker_result_queue`.
|
946 |
+
# If timed out, continue to get in the next iteration.
|
947 |
+
# Otherwise, process data.
|
948 |
+
# While `pin_memory_thread_done_event` is not set:
|
949 |
+
# Put processed data to `data_queue` (a `queue.Queue` with blocking put)
|
950 |
+
# If timed out, continue to put in the next iteration.
|
951 |
+
# Otherwise, break, i.e., continuing to the out loop.
|
952 |
+
#
|
953 |
+
# NOTE: we don't check the status of the main thread because
|
954 |
+
# 1. if the process is killed by fatal signal, `pin_memory_thread`
|
955 |
+
# ends.
|
956 |
+
# 2. in other cases, either the cleaning-up in __del__ or the
|
957 |
+
# automatic exit of daemonic thread will take care of it.
|
958 |
+
# This won't busy-wait either because `.get(timeout)` does not
|
959 |
+
# busy-wait.
|
960 |
+
#
|
961 |
+
# [ main process ]
|
962 |
+
# In the DataLoader Iter's `__del__`
|
963 |
+
# b. Exit `pin_memory_thread`
|
964 |
+
# i. Set `pin_memory_thread_done_event`.
|
965 |
+
# ii Put `None` in `worker_result_queue`.
|
966 |
+
# iii. Join the `pin_memory_thread`.
|
967 |
+
# iv. `worker_result_queue.cancel_join_thread()`.
|
968 |
+
#
|
969 |
+
# c. Exit the workers.
|
970 |
+
# i. Set `workers_done_event`.
|
971 |
+
# ii. Put `None` in each worker's `index_queue`.
|
972 |
+
# iii. Join the workers.
|
973 |
+
# iv. Call `.cancel_join_thread()` on each worker's `index_queue`.
|
974 |
+
#
|
975 |
+
# NOTE: (c) is better placed after (b) because it may leave corrupted
|
976 |
+
# data in `worker_result_queue`, which `pin_memory_thread`
|
977 |
+
# reads from, in which case the `pin_memory_thread` can only
|
978 |
+
# happen at timing out, which is slow. Nonetheless, same thing
|
979 |
+
# happens if a worker is killed by signal at unfortunate times,
|
980 |
+
# but in other cases, we are better off having a non-corrupted
|
981 |
+
# `worker_result_queue` for `pin_memory_thread`.
|
982 |
+
#
|
983 |
+
# NOTE: If `pin_memory=False`, there is no `pin_memory_thread` and (b)
|
984 |
+
# can be omitted
|
985 |
+
#
|
986 |
+
# NB: `done_event`s isn't strictly needed. E.g., we can just check for
|
987 |
+
# `None` from `index_queue`, but it allows us to skip wasting resources
|
988 |
+
# processing indices already in `index_queue` if we are already shutting
|
989 |
+
# down.
|
990 |
+
|
991 |
+
def __init__(self, loader):
|
992 |
+
super().__init__(loader)
|
993 |
+
|
994 |
+
self._prefetch_factor = loader.prefetch_factor
|
995 |
+
|
996 |
+
assert self._num_workers > 0
|
997 |
+
assert self._prefetch_factor > 0
|
998 |
+
|
999 |
+
if loader.multiprocessing_context is None:
|
1000 |
+
multiprocessing_context = multiprocessing
|
1001 |
+
else:
|
1002 |
+
multiprocessing_context = loader.multiprocessing_context
|
1003 |
+
|
1004 |
+
self._worker_init_fn = loader.worker_init_fn
|
1005 |
+
|
1006 |
+
# Adds forward compatibilities so classic DataLoader can work with DataPipes:
|
1007 |
+
# Additional worker init function will take care of sharding in MP and Distributed
|
1008 |
+
if isinstance(self._dataset, (IterDataPipe, MapDataPipe)):
|
1009 |
+
self._worker_init_fn = functools.partial(
|
1010 |
+
_sharding_worker_init_fn, self._worker_init_fn, self._world_size, self._rank)
|
1011 |
+
|
1012 |
+
# No certainty which module multiprocessing_context is
|
1013 |
+
self._worker_result_queue = multiprocessing_context.Queue() # type: ignore[var-annotated]
|
1014 |
+
self._worker_pids_set = False
|
1015 |
+
self._shutdown = False
|
1016 |
+
self._workers_done_event = multiprocessing_context.Event()
|
1017 |
+
|
1018 |
+
self._index_queues = []
|
1019 |
+
self._workers = []
|
1020 |
+
for i in range(self._num_workers):
|
1021 |
+
# No certainty which module multiprocessing_context is
|
1022 |
+
index_queue = multiprocessing_context.Queue() # type: ignore[var-annotated]
|
1023 |
+
# Need to `cancel_join_thread` here!
|
1024 |
+
# See sections (2) and (3b) above.
|
1025 |
+
index_queue.cancel_join_thread()
|
1026 |
+
w = multiprocessing_context.Process(
|
1027 |
+
target=_utils.worker._worker_loop,
|
1028 |
+
args=(self._dataset_kind, self._dataset, index_queue,
|
1029 |
+
self._worker_result_queue, self._workers_done_event,
|
1030 |
+
self._auto_collation, self._collate_fn, self._drop_last,
|
1031 |
+
self._base_seed, self._worker_init_fn, i, self._num_workers,
|
1032 |
+
self._persistent_workers, self._shared_seed))
|
1033 |
+
w.daemon = True
|
1034 |
+
# NB: Process.start() actually take some time as it needs to
|
1035 |
+
# start a process and pass the arguments over via a pipe.
|
1036 |
+
# Therefore, we only add a worker to self._workers list after
|
1037 |
+
# it started, so that we do not call .join() if program dies
|
1038 |
+
# before it starts, and __del__ tries to join but will get:
|
1039 |
+
# AssertionError: can only join a started process.
|
1040 |
+
w.start()
|
1041 |
+
self._index_queues.append(index_queue)
|
1042 |
+
self._workers.append(w)
|
1043 |
+
|
1044 |
+
if self._pin_memory:
|
1045 |
+
self._pin_memory_thread_done_event = threading.Event()
|
1046 |
+
|
1047 |
+
# Queue is not type-annotated
|
1048 |
+
self._data_queue = queue.Queue() # type: ignore[var-annotated]
|
1049 |
+
if self._pin_memory_device == "xpu":
|
1050 |
+
current_device = torch.xpu.current_device() # type: ignore[attr-defined]
|
1051 |
+
elif self._pin_memory_device == torch._C._get_privateuse1_backend_name():
|
1052 |
+
custom_device_mod = getattr(torch, torch._C._get_privateuse1_backend_name())
|
1053 |
+
current_device = custom_device_mod.current_device()
|
1054 |
+
else:
|
1055 |
+
current_device = torch.cuda.current_device() # choose cuda for default
|
1056 |
+
pin_memory_thread = threading.Thread(
|
1057 |
+
target=_utils.pin_memory._pin_memory_loop,
|
1058 |
+
args=(self._worker_result_queue, self._data_queue,
|
1059 |
+
current_device,
|
1060 |
+
self._pin_memory_thread_done_event, self._pin_memory_device))
|
1061 |
+
pin_memory_thread.daemon = True
|
1062 |
+
pin_memory_thread.start()
|
1063 |
+
# Similar to workers (see comment above), we only register
|
1064 |
+
# pin_memory_thread once it is started.
|
1065 |
+
self._pin_memory_thread = pin_memory_thread
|
1066 |
+
else:
|
1067 |
+
self._data_queue = self._worker_result_queue # type: ignore[assignment]
|
1068 |
+
|
1069 |
+
# In some rare cases, persistent workers (daemonic processes)
|
1070 |
+
# would be terminated before `__del__` of iterator is invoked
|
1071 |
+
# when main process exits
|
1072 |
+
# It would cause failure when pin_memory_thread tries to read
|
1073 |
+
# corrupted data from worker_result_queue
|
1074 |
+
# atexit is used to shutdown thread and child processes in the
|
1075 |
+
# right sequence before main process exits
|
1076 |
+
if self._persistent_workers and self._pin_memory:
|
1077 |
+
import atexit
|
1078 |
+
for w in self._workers:
|
1079 |
+
atexit.register(_MultiProcessingDataLoaderIter._clean_up_worker, w)
|
1080 |
+
|
1081 |
+
# .pid can be None only before process is spawned (not the case, so ignore)
|
1082 |
+
_utils.signal_handling._set_worker_pids(id(self), tuple(w.pid for w in self._workers)) # type: ignore[misc]
|
1083 |
+
_utils.signal_handling._set_SIGCHLD_handler()
|
1084 |
+
self._worker_pids_set = True
|
1085 |
+
self._reset(loader, first_iter=True)
|
1086 |
+
|
1087 |
+
def _reset(self, loader, first_iter=False):
|
1088 |
+
super()._reset(loader, first_iter)
|
1089 |
+
self._send_idx = 0 # idx of the next task to be sent to workers
|
1090 |
+
self._rcvd_idx = 0 # idx of the next task to be returned in __next__
|
1091 |
+
# information about data not yet yielded, i.e., tasks w/ indices in range [rcvd_idx, send_idx).
|
1092 |
+
# map: task idx => - (worker_id,) if data isn't fetched (outstanding)
|
1093 |
+
# \ (worker_id, data) if data is already fetched (out-of-order)
|
1094 |
+
self._task_info = {}
|
1095 |
+
self._tasks_outstanding = 0 # always equal to count(v for v in task_info.values() if len(v) == 1)
|
1096 |
+
# A list of booleans representing whether each worker still has work to
|
1097 |
+
# do, i.e., not having exhausted its iterable dataset object. It always
|
1098 |
+
# contains all `True`s if not using an iterable-style dataset
|
1099 |
+
# (i.e., if kind != Iterable).
|
1100 |
+
# Not that this indicates that a worker still has work to do *for this epoch*.
|
1101 |
+
# It does not mean that a worker is dead. In case of `_persistent_workers`,
|
1102 |
+
# the worker will be reset to available in the next epoch.
|
1103 |
+
self._workers_status = [True for i in range(self._num_workers)]
|
1104 |
+
# Reset the worker queue cycle so it resumes next epoch at worker 0
|
1105 |
+
self._worker_queue_idx_cycle = itertools.cycle(range(self._num_workers))
|
1106 |
+
# We resume the prefetching in case it was enabled
|
1107 |
+
if not first_iter:
|
1108 |
+
for idx in range(self._num_workers):
|
1109 |
+
self._index_queues[idx].put(_utils.worker._ResumeIteration(self._shared_seed))
|
1110 |
+
resume_iteration_cnt = self._num_workers
|
1111 |
+
while resume_iteration_cnt > 0:
|
1112 |
+
return_idx, return_data = self._get_data()
|
1113 |
+
if isinstance(return_idx, _utils.worker._ResumeIteration):
|
1114 |
+
assert return_data is None
|
1115 |
+
resume_iteration_cnt -= 1
|
1116 |
+
# prime the prefetch loop
|
1117 |
+
for _ in range(self._prefetch_factor * self._num_workers):
|
1118 |
+
self._try_put_index()
|
1119 |
+
|
1120 |
+
def _try_get_data(self, timeout=_utils.MP_STATUS_CHECK_INTERVAL):
|
1121 |
+
# Tries to fetch data from `self._data_queue` once for a given timeout.
|
1122 |
+
# This can also be used as inner loop of fetching without timeout, with
|
1123 |
+
# the sender status as the loop condition.
|
1124 |
+
#
|
1125 |
+
# This raises a `RuntimeError` if any worker died expectedly. This error
|
1126 |
+
# can come from either the SIGCHLD handler in `_utils/signal_handling.py`
|
1127 |
+
# (only for non-Windows platforms), or the manual check below on errors
|
1128 |
+
# and timeouts.
|
1129 |
+
#
|
1130 |
+
# Returns a 2-tuple:
|
1131 |
+
# (bool: whether successfully get data, any: data if successful else None)
|
1132 |
+
try:
|
1133 |
+
data = self._data_queue.get(timeout=timeout)
|
1134 |
+
return (True, data)
|
1135 |
+
except Exception as e:
|
1136 |
+
# At timeout and error, we manually check whether any worker has
|
1137 |
+
# failed. Note that this is the only mechanism for Windows to detect
|
1138 |
+
# worker failures.
|
1139 |
+
failed_workers = []
|
1140 |
+
for worker_id, w in enumerate(self._workers):
|
1141 |
+
if self._workers_status[worker_id] and not w.is_alive():
|
1142 |
+
failed_workers.append(w)
|
1143 |
+
self._mark_worker_as_unavailable(worker_id)
|
1144 |
+
if len(failed_workers) > 0:
|
1145 |
+
pids_str = ', '.join(str(w.pid) for w in failed_workers)
|
1146 |
+
raise RuntimeError(f'DataLoader worker (pid(s) {pids_str}) exited unexpectedly') from e
|
1147 |
+
if isinstance(e, queue.Empty):
|
1148 |
+
return (False, None)
|
1149 |
+
import tempfile
|
1150 |
+
import errno
|
1151 |
+
try:
|
1152 |
+
# Raise an exception if we are this close to the FDs limit.
|
1153 |
+
# Apparently, trying to open only one file is not a sufficient
|
1154 |
+
# test.
|
1155 |
+
# See NOTE [ DataLoader on Linux and open files limit ]
|
1156 |
+
fds_limit_margin = 10
|
1157 |
+
fs = [tempfile.NamedTemporaryFile() for i in range(fds_limit_margin)]
|
1158 |
+
except OSError as e:
|
1159 |
+
if e.errno == errno.EMFILE:
|
1160 |
+
raise RuntimeError(
|
1161 |
+
"Too many open files. Communication with the"
|
1162 |
+
" workers is no longer possible. Please increase the"
|
1163 |
+
" limit using `ulimit -n` in the shell or change the"
|
1164 |
+
" sharing strategy by calling"
|
1165 |
+
" `torch.multiprocessing.set_sharing_strategy('file_system')`"
|
1166 |
+
" at the beginning of your code") from None
|
1167 |
+
raise
|
1168 |
+
|
1169 |
+
# NOTE [ DataLoader on Linux and open files limit ]
|
1170 |
+
#
|
1171 |
+
# On Linux when DataLoader is used with multiprocessing we pass the data between
|
1172 |
+
# the root process and the workers through SHM files. We remove those files from
|
1173 |
+
# the filesystem as soon as they are created and keep them alive by
|
1174 |
+
# passing around their file descriptors through AF_UNIX sockets. (See
|
1175 |
+
# docs/source/multiprocessing.rst and 'Multiprocessing Technical Notes` in
|
1176 |
+
# the wiki (https://github.com/pytorch/pytorch/wiki).)
|
1177 |
+
#
|
1178 |
+
# This sometimes leads us to exceeding the open files limit. When that happens,
|
1179 |
+
# and the offending file descriptor is coming over a socket, the `socket` Python
|
1180 |
+
# package silently strips the file descriptor from the message, setting only the
|
1181 |
+
# `MSG_CTRUNC` flag (which might be a bit misleading since the manpage says that
|
1182 |
+
# it _indicates that some control data were discarded due to lack of space in
|
1183 |
+
# the buffer for ancillary data_). This might reflect the C implementation of
|
1184 |
+
# AF_UNIX sockets.
|
1185 |
+
#
|
1186 |
+
# This behaviour can be reproduced with the script and instructions at the
|
1187 |
+
# bottom of this note.
|
1188 |
+
#
|
1189 |
+
# When that happens, the standard Python `multiprocessing` (and not
|
1190 |
+
# `torch.multiprocessing`) raises a `RuntimeError: received 0 items of ancdata`
|
1191 |
+
#
|
1192 |
+
# Sometimes, instead of the FD being stripped, you may get an `OSError:
|
1193 |
+
# Too many open files`, both in the script below and in DataLoader. However,
|
1194 |
+
# this is rare and seems to be nondeterministic.
|
1195 |
+
#
|
1196 |
+
#
|
1197 |
+
# #!/usr/bin/env python3
|
1198 |
+
# import sys
|
1199 |
+
# import socket
|
1200 |
+
# import os
|
1201 |
+
# import array
|
1202 |
+
# import shutil
|
1203 |
+
# import socket
|
1204 |
+
#
|
1205 |
+
#
|
1206 |
+
# if len(sys.argv) != 4:
|
1207 |
+
# print("Usage: ", sys.argv[0], " tmp_dirname iteration (send|recv)")
|
1208 |
+
# sys.exit(1)
|
1209 |
+
#
|
1210 |
+
# if __name__ == '__main__':
|
1211 |
+
# dirname = sys.argv[1]
|
1212 |
+
# sock_path = dirname + "/sock"
|
1213 |
+
# iterations = int(sys.argv[2])
|
1214 |
+
# def dummy_path(i):
|
1215 |
+
# return dirname + "/" + str(i) + ".dummy"
|
1216 |
+
#
|
1217 |
+
#
|
1218 |
+
# if sys.argv[3] == 'send':
|
1219 |
+
# while not os.path.exists(sock_path):
|
1220 |
+
# pass
|
1221 |
+
# client = socket.socket(socket.AF_UNIX, socket.SOCK_DGRAM)
|
1222 |
+
# client.connect(sock_path)
|
1223 |
+
# for i in range(iterations):
|
1224 |
+
# fd = os.open(dummy_path(i), os.O_WRONLY | os.O_CREAT)
|
1225 |
+
# ancdata = array.array('i', [fd])
|
1226 |
+
# msg = bytes([i % 256])
|
1227 |
+
# print("Sending fd ", fd, " (iteration #", i, ")")
|
1228 |
+
# client.sendmsg([msg], [(socket.SOL_SOCKET, socket.SCM_RIGHTS, ancdata)])
|
1229 |
+
#
|
1230 |
+
#
|
1231 |
+
# else:
|
1232 |
+
# assert sys.argv[3] == 'recv'
|
1233 |
+
#
|
1234 |
+
# if os.path.exists(dirname):
|
1235 |
+
# raise Exception("Directory exists")
|
1236 |
+
#
|
1237 |
+
# os.mkdir(dirname)
|
1238 |
+
#
|
1239 |
+
# print("Opening socket...")
|
1240 |
+
# server = socket.socket(socket.AF_UNIX, socket.SOCK_DGRAM)
|
1241 |
+
# server.bind(sock_path)
|
1242 |
+
#
|
1243 |
+
# print("Listening...")
|
1244 |
+
# for i in range(iterations):
|
1245 |
+
# a = array.array('i')
|
1246 |
+
# msg, ancdata, flags, addr = server.recvmsg(1, socket.CMSG_SPACE(a.itemsize))
|
1247 |
+
# assert(len(ancdata) == 1)
|
1248 |
+
# cmsg_level, cmsg_type, cmsg_data = ancdata[0]
|
1249 |
+
# a.frombytes(cmsg_data)
|
1250 |
+
# print("Received fd ", a[0], " (iteration #", i, ")")
|
1251 |
+
#
|
1252 |
+
# shutil.rmtree(dirname)
|
1253 |
+
#
|
1254 |
+
# Steps to reproduce:
|
1255 |
+
#
|
1256 |
+
# 1. Run two shells and set lower file descriptor limit in the receiving one:
|
1257 |
+
# (shell1) ulimit -n 1020
|
1258 |
+
# (shell2) ulimit -n 1022
|
1259 |
+
#
|
1260 |
+
# 2. Run the script above with the `recv` option in the first shell
|
1261 |
+
# (shell1) ./test_socket.py sock_tmp 1017 recv
|
1262 |
+
#
|
1263 |
+
# 3. Run the script with the `send` option in the second shell:
|
1264 |
+
# (shell2) ./test_socket.py sock_tmp 1017 send
|
1265 |
+
|
1266 |
+
def _get_data(self):
|
1267 |
+
# Fetches data from `self._data_queue`.
|
1268 |
+
#
|
1269 |
+
# We check workers' status every `MP_STATUS_CHECK_INTERVAL` seconds,
|
1270 |
+
# which we achieve by running `self._try_get_data(timeout=MP_STATUS_CHECK_INTERVAL)`
|
1271 |
+
# in a loop. This is the only mechanism to detect worker failures for
|
1272 |
+
# Windows. For other platforms, a SIGCHLD handler is also used for
|
1273 |
+
# worker failure detection.
|
1274 |
+
#
|
1275 |
+
# If `pin_memory=True`, we also need check if `pin_memory_thread` had
|
1276 |
+
# died at timeouts.
|
1277 |
+
if self._timeout > 0:
|
1278 |
+
success, data = self._try_get_data(self._timeout)
|
1279 |
+
if success:
|
1280 |
+
return data
|
1281 |
+
else:
|
1282 |
+
raise RuntimeError(f'DataLoader timed out after {self._timeout} seconds')
|
1283 |
+
elif self._pin_memory:
|
1284 |
+
while self._pin_memory_thread.is_alive():
|
1285 |
+
success, data = self._try_get_data()
|
1286 |
+
if success:
|
1287 |
+
return data
|
1288 |
+
else:
|
1289 |
+
# while condition is false, i.e., pin_memory_thread died.
|
1290 |
+
raise RuntimeError('Pin memory thread exited unexpectedly')
|
1291 |
+
# In this case, `self._data_queue` is a `queue.Queue`,. But we don't
|
1292 |
+
# need to call `.task_done()` because we don't use `.join()`.
|
1293 |
+
else:
|
1294 |
+
while True:
|
1295 |
+
success, data = self._try_get_data()
|
1296 |
+
if success:
|
1297 |
+
return data
|
1298 |
+
|
1299 |
+
def _next_data(self):
|
1300 |
+
while True:
|
1301 |
+
# If the worker responsible for `self._rcvd_idx` has already ended
|
1302 |
+
# and was unable to fulfill this task (due to exhausting an `IterableDataset`),
|
1303 |
+
# we try to advance `self._rcvd_idx` to find the next valid index.
|
1304 |
+
#
|
1305 |
+
# This part needs to run in the loop because both the `self._get_data()`
|
1306 |
+
# call and `_IterableDatasetStopIteration` check below can mark
|
1307 |
+
# extra worker(s) as dead.
|
1308 |
+
while self._rcvd_idx < self._send_idx:
|
1309 |
+
info = self._task_info[self._rcvd_idx]
|
1310 |
+
worker_id = info[0]
|
1311 |
+
if len(info) == 2 or self._workers_status[worker_id]: # has data or is still active
|
1312 |
+
break
|
1313 |
+
del self._task_info[self._rcvd_idx]
|
1314 |
+
self._rcvd_idx += 1
|
1315 |
+
else:
|
1316 |
+
# no valid `self._rcvd_idx` is found (i.e., didn't break)
|
1317 |
+
if not self._persistent_workers:
|
1318 |
+
self._shutdown_workers()
|
1319 |
+
raise StopIteration
|
1320 |
+
|
1321 |
+
# Now `self._rcvd_idx` is the batch index we want to fetch
|
1322 |
+
|
1323 |
+
# Check if the next sample has already been generated
|
1324 |
+
if len(self._task_info[self._rcvd_idx]) == 2:
|
1325 |
+
data = self._task_info.pop(self._rcvd_idx)[1]
|
1326 |
+
return self._process_data(data)
|
1327 |
+
|
1328 |
+
assert not self._shutdown and self._tasks_outstanding > 0
|
1329 |
+
idx, data = self._get_data()
|
1330 |
+
self._tasks_outstanding -= 1
|
1331 |
+
if self._dataset_kind == _DatasetKind.Iterable:
|
1332 |
+
# Check for _IterableDatasetStopIteration
|
1333 |
+
if isinstance(data, _utils.worker._IterableDatasetStopIteration):
|
1334 |
+
if self._persistent_workers:
|
1335 |
+
self._workers_status[data.worker_id] = False
|
1336 |
+
else:
|
1337 |
+
self._mark_worker_as_unavailable(data.worker_id)
|
1338 |
+
self._try_put_index()
|
1339 |
+
continue
|
1340 |
+
|
1341 |
+
if idx != self._rcvd_idx:
|
1342 |
+
# store out-of-order samples
|
1343 |
+
self._task_info[idx] += (data,)
|
1344 |
+
else:
|
1345 |
+
del self._task_info[idx]
|
1346 |
+
return self._process_data(data)
|
1347 |
+
|
1348 |
+
def _try_put_index(self):
|
1349 |
+
assert self._tasks_outstanding < self._prefetch_factor * self._num_workers
|
1350 |
+
|
1351 |
+
try:
|
1352 |
+
index = self._next_index()
|
1353 |
+
except StopIteration:
|
1354 |
+
return
|
1355 |
+
for _ in range(self._num_workers): # find the next active worker, if any
|
1356 |
+
worker_queue_idx = next(self._worker_queue_idx_cycle)
|
1357 |
+
if self._workers_status[worker_queue_idx]:
|
1358 |
+
break
|
1359 |
+
else:
|
1360 |
+
# not found (i.e., didn't break)
|
1361 |
+
return
|
1362 |
+
|
1363 |
+
self._index_queues[worker_queue_idx].put((self._send_idx, index)) # type: ignore[possibly-undefined]
|
1364 |
+
self._task_info[self._send_idx] = (worker_queue_idx,)
|
1365 |
+
self._tasks_outstanding += 1
|
1366 |
+
self._send_idx += 1
|
1367 |
+
|
1368 |
+
def _process_data(self, data):
|
1369 |
+
self._rcvd_idx += 1
|
1370 |
+
self._try_put_index()
|
1371 |
+
if isinstance(data, ExceptionWrapper):
|
1372 |
+
data.reraise()
|
1373 |
+
return data
|
1374 |
+
|
1375 |
+
def _mark_worker_as_unavailable(self, worker_id, shutdown=False):
|
1376 |
+
# Mark a worker as having finished its work e.g., due to
|
1377 |
+
# exhausting an `IterableDataset`. This should be used only when this
|
1378 |
+
# `_MultiProcessingDataLoaderIter` is going to continue running.
|
1379 |
+
|
1380 |
+
assert self._workers_status[worker_id] or (self._persistent_workers and shutdown)
|
1381 |
+
|
1382 |
+
# Signal termination to that specific worker.
|
1383 |
+
q = self._index_queues[worker_id]
|
1384 |
+
# Indicate that no more data will be put on this queue by the current
|
1385 |
+
# process.
|
1386 |
+
q.put(None)
|
1387 |
+
|
1388 |
+
# Note that we don't actually join the worker here, nor do we remove the
|
1389 |
+
# worker's pid from C side struct because (1) joining may be slow, and
|
1390 |
+
# (2) since we don't join, the worker may still raise error, and we
|
1391 |
+
# prefer capturing those, rather than ignoring them, even though they
|
1392 |
+
# are raised after the worker has finished its job.
|
1393 |
+
# Joinning is deferred to `_shutdown_workers`, which it is called when
|
1394 |
+
# all workers finish their jobs (e.g., `IterableDataset` replicas) or
|
1395 |
+
# when this iterator is garbage collected.
|
1396 |
+
|
1397 |
+
self._workers_status[worker_id] = False
|
1398 |
+
|
1399 |
+
assert self._workers_done_event.is_set() == shutdown
|
1400 |
+
|
1401 |
+
def _shutdown_workers(self):
|
1402 |
+
# Called when shutting down this `_MultiProcessingDataLoaderIter`.
|
1403 |
+
# See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on
|
1404 |
+
# the logic of this function.
|
1405 |
+
if _utils is None or _utils.python_exit_status is True or _utils.python_exit_status is None:
|
1406 |
+
# See (2) of the note. If Python is shutting down, do no-op.
|
1407 |
+
return
|
1408 |
+
# Normal exit when last reference is gone / iterator is depleted.
|
1409 |
+
# See (1) and the second half of the note.
|
1410 |
+
if not self._shutdown:
|
1411 |
+
self._shutdown = True
|
1412 |
+
try:
|
1413 |
+
# Normal exit when last reference is gone / iterator is depleted.
|
1414 |
+
# See (1) and the second half of the note.
|
1415 |
+
|
1416 |
+
# Exit `pin_memory_thread` first because exiting workers may leave
|
1417 |
+
# corrupted data in `worker_result_queue` which `pin_memory_thread`
|
1418 |
+
# reads from.
|
1419 |
+
if hasattr(self, '_pin_memory_thread'):
|
1420 |
+
# Use hasattr in case error happens before we set the attribute.
|
1421 |
+
self._pin_memory_thread_done_event.set()
|
1422 |
+
# Send something to pin_memory_thread in case it is waiting
|
1423 |
+
# so that it can wake up and check `pin_memory_thread_done_event`
|
1424 |
+
self._worker_result_queue.put((None, None))
|
1425 |
+
self._pin_memory_thread.join()
|
1426 |
+
self._worker_result_queue.cancel_join_thread()
|
1427 |
+
self._worker_result_queue.close()
|
1428 |
+
|
1429 |
+
# Exit workers now.
|
1430 |
+
self._workers_done_event.set()
|
1431 |
+
for worker_id in range(len(self._workers)):
|
1432 |
+
# Get number of workers from `len(self._workers)` instead of
|
1433 |
+
# `self._num_workers` in case we error before starting all
|
1434 |
+
# workers.
|
1435 |
+
# If we are using workers_status with persistent_workers
|
1436 |
+
# we have to shut it down because the worker is paused
|
1437 |
+
if self._persistent_workers or self._workers_status[worker_id]:
|
1438 |
+
self._mark_worker_as_unavailable(worker_id, shutdown=True)
|
1439 |
+
for w in self._workers:
|
1440 |
+
# We should be able to join here, but in case anything went
|
1441 |
+
# wrong, we set a timeout and if the workers fail to join,
|
1442 |
+
# they are killed in the `finally` block.
|
1443 |
+
w.join(timeout=_utils.MP_STATUS_CHECK_INTERVAL)
|
1444 |
+
for q in self._index_queues:
|
1445 |
+
q.cancel_join_thread()
|
1446 |
+
q.close()
|
1447 |
+
finally:
|
1448 |
+
# Even though all this function does is putting into queues that
|
1449 |
+
# we have called `cancel_join_thread` on, weird things can
|
1450 |
+
# happen when a worker is killed by a signal, e.g., hanging in
|
1451 |
+
# `Event.set()`. So we need to guard this with SIGCHLD handler,
|
1452 |
+
# and remove pids from the C side data structure only at the
|
1453 |
+
# end.
|
1454 |
+
#
|
1455 |
+
# FIXME: Unfortunately, for Windows, we are missing a worker
|
1456 |
+
# error detection mechanism here in this function, as it
|
1457 |
+
# doesn't provide a SIGCHLD handler.
|
1458 |
+
if self._worker_pids_set:
|
1459 |
+
_utils.signal_handling._remove_worker_pids(id(self))
|
1460 |
+
self._worker_pids_set = False
|
1461 |
+
for w in self._workers:
|
1462 |
+
if w.is_alive():
|
1463 |
+
# Existing mechanisms try to make the workers exit
|
1464 |
+
# peacefully, but in case that we unfortunately reach
|
1465 |
+
# here, which we shouldn't, (e.g., pytorch/pytorch#39570),
|
1466 |
+
# we kill the worker.
|
1467 |
+
w.terminate()
|
1468 |
+
|
1469 |
+
# staticmethod is used to remove reference to `_MultiProcessingDataLoaderIter`
|
1470 |
+
@staticmethod
|
1471 |
+
def _clean_up_worker(w):
|
1472 |
+
try:
|
1473 |
+
w.join(timeout=_utils.MP_STATUS_CHECK_INTERVAL)
|
1474 |
+
finally:
|
1475 |
+
if w.is_alive():
|
1476 |
+
w.terminate()
|
1477 |
+
|
1478 |
+
def __del__(self):
|
1479 |
+
self._shutdown_workers()
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from . import iter
|
2 |
+
from . import map
|
3 |
+
from . import dataframe
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/_decorator.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from functools import wraps
|
3 |
+
from typing import Any, Callable, Optional, Type, Union, get_type_hints
|
4 |
+
from torch.utils.data.datapipes.datapipe import IterDataPipe, MapDataPipe
|
5 |
+
from torch.utils.data.datapipes._typing import _DataPipeMeta
|
6 |
+
|
7 |
+
|
8 |
+
######################################################
|
9 |
+
# Functional API
|
10 |
+
######################################################
|
11 |
+
class functional_datapipe:
|
12 |
+
name: str
|
13 |
+
|
14 |
+
def __init__(self, name: str, enable_df_api_tracing=False) -> None:
|
15 |
+
"""
|
16 |
+
Define a functional datapipe.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
enable_df_api_tracing - if set, any returned DataPipe would accept
|
20 |
+
DataFrames API in tracing mode.
|
21 |
+
"""
|
22 |
+
self.name = name
|
23 |
+
self.enable_df_api_tracing = enable_df_api_tracing
|
24 |
+
|
25 |
+
def __call__(self, cls):
|
26 |
+
if issubclass(cls, IterDataPipe):
|
27 |
+
if isinstance(cls, Type): # type: ignore[arg-type]
|
28 |
+
if not isinstance(cls, _DataPipeMeta):
|
29 |
+
raise TypeError('`functional_datapipe` can only decorate IterDataPipe')
|
30 |
+
# with non_deterministic decorator
|
31 |
+
else:
|
32 |
+
if not isinstance(cls, non_deterministic) and \
|
33 |
+
not (hasattr(cls, '__self__') and
|
34 |
+
isinstance(cls.__self__, non_deterministic)):
|
35 |
+
raise TypeError('`functional_datapipe` can only decorate IterDataPipe')
|
36 |
+
IterDataPipe.register_datapipe_as_function(self.name, cls, enable_df_api_tracing=self.enable_df_api_tracing)
|
37 |
+
elif issubclass(cls, MapDataPipe):
|
38 |
+
MapDataPipe.register_datapipe_as_function(self.name, cls)
|
39 |
+
|
40 |
+
return cls
|
41 |
+
|
42 |
+
|
43 |
+
######################################################
|
44 |
+
# Determinism
|
45 |
+
######################################################
|
46 |
+
_determinism: bool = False
|
47 |
+
|
48 |
+
|
49 |
+
class guaranteed_datapipes_determinism:
|
50 |
+
prev: bool
|
51 |
+
|
52 |
+
def __init__(self) -> None:
|
53 |
+
global _determinism
|
54 |
+
self.prev = _determinism
|
55 |
+
_determinism = True
|
56 |
+
|
57 |
+
def __enter__(self) -> None:
|
58 |
+
pass
|
59 |
+
|
60 |
+
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
|
61 |
+
global _determinism
|
62 |
+
_determinism = self.prev
|
63 |
+
|
64 |
+
|
65 |
+
class non_deterministic:
|
66 |
+
cls: Optional[Type[IterDataPipe]] = None
|
67 |
+
# TODO: Lambda for picking
|
68 |
+
deterministic_fn: Callable[[], bool]
|
69 |
+
|
70 |
+
def __init__(self, arg: Union[Type[IterDataPipe], Callable[[], bool]]) -> None:
|
71 |
+
# 1. Decorator doesn't have any argument
|
72 |
+
if isinstance(arg, Type): # type: ignore[arg-type]
|
73 |
+
if not issubclass(arg, IterDataPipe): # type: ignore[arg-type]
|
74 |
+
raise TypeError("Only `IterDataPipe` can be decorated with `non_deterministic`"
|
75 |
+
f", but {arg.__name__} is found")
|
76 |
+
self.cls = arg # type: ignore[assignment]
|
77 |
+
# 2. Decorator has an argument of a function
|
78 |
+
# This class should behave differently given different inputs. Use this
|
79 |
+
# function to verify the determinism for each instance.
|
80 |
+
# When the function returns True, the instance is non-deterministic. Otherwise,
|
81 |
+
# the instance is a deterministic DataPipe.
|
82 |
+
elif isinstance(arg, Callable): # type:ignore[arg-type]
|
83 |
+
self.deterministic_fn = arg # type: ignore[assignment, misc]
|
84 |
+
else:
|
85 |
+
raise TypeError(f"{arg} can not be decorated by non_deterministic")
|
86 |
+
|
87 |
+
def __call__(self, *args, **kwargs):
|
88 |
+
global _determinism
|
89 |
+
# Decorate IterDataPipe
|
90 |
+
if self.cls is not None:
|
91 |
+
if _determinism:
|
92 |
+
raise TypeError("{} is non-deterministic, but you set 'guaranteed_datapipes_determinism'. "
|
93 |
+
"You can turn off determinism for this DataPipe if that is acceptable "
|
94 |
+
"for your application".format(self.cls.__name__))
|
95 |
+
return self.cls(*args, **kwargs) # type: ignore[call-arg]
|
96 |
+
|
97 |
+
# Decorate with a functional argument
|
98 |
+
if not (isinstance(args[0], Type) and # type: ignore[arg-type]
|
99 |
+
issubclass(args[0], IterDataPipe)):
|
100 |
+
raise TypeError(f"Only `IterDataPipe` can be decorated, but {args[0].__name__} is found")
|
101 |
+
self.cls = args[0]
|
102 |
+
return self.deterministic_wrapper_fn
|
103 |
+
|
104 |
+
def deterministic_wrapper_fn(self, *args, **kwargs) -> IterDataPipe:
|
105 |
+
res = self.deterministic_fn(*args, **kwargs) # type: ignore[call-arg, misc]
|
106 |
+
if not isinstance(res, bool):
|
107 |
+
raise TypeError("deterministic_fn of `non_deterministic` decorator is required "
|
108 |
+
f"to return a boolean value, but {type(res)} is found")
|
109 |
+
global _determinism
|
110 |
+
if _determinism and res:
|
111 |
+
raise TypeError(f"{self.cls.__name__} is non-deterministic with the inputs, but you set " # type: ignore[union-attr]
|
112 |
+
"'guaranteed_datapipes_determinism'. You can turn off determinism "
|
113 |
+
"for this DataPipe if that is acceptable for your application"
|
114 |
+
)
|
115 |
+
return self.cls(*args, **kwargs) # type: ignore[call-arg, misc]
|
116 |
+
|
117 |
+
|
118 |
+
######################################################
|
119 |
+
# Type validation
|
120 |
+
######################################################
|
121 |
+
# Validate each argument of DataPipe with hint as a subtype of the hint.
|
122 |
+
def argument_validation(f):
|
123 |
+
signature = inspect.signature(f)
|
124 |
+
hints = get_type_hints(f)
|
125 |
+
|
126 |
+
@wraps(f)
|
127 |
+
def wrapper(*args, **kwargs):
|
128 |
+
bound = signature.bind(*args, **kwargs)
|
129 |
+
for argument_name, value in bound.arguments.items():
|
130 |
+
if argument_name in hints and isinstance(hints[argument_name], _DataPipeMeta):
|
131 |
+
hint = hints[argument_name]
|
132 |
+
if not isinstance(value, IterDataPipe):
|
133 |
+
raise TypeError(f"Expected argument '{argument_name}' as a IterDataPipe, but found {type(value)}")
|
134 |
+
if not value.type.issubtype(hint.type):
|
135 |
+
raise TypeError(f"Expected type of argument '{argument_name}' as a subtype of "
|
136 |
+
f"hint {hint.type}, but found {value.type}"
|
137 |
+
)
|
138 |
+
|
139 |
+
return f(*args, **kwargs)
|
140 |
+
|
141 |
+
return wrapper
|
142 |
+
|
143 |
+
|
144 |
+
# Default value is True
|
145 |
+
_runtime_validation_enabled: bool = True
|
146 |
+
|
147 |
+
|
148 |
+
class runtime_validation_disabled:
|
149 |
+
prev: bool
|
150 |
+
|
151 |
+
def __init__(self) -> None:
|
152 |
+
global _runtime_validation_enabled
|
153 |
+
self.prev = _runtime_validation_enabled
|
154 |
+
_runtime_validation_enabled = False
|
155 |
+
|
156 |
+
def __enter__(self) -> None:
|
157 |
+
pass
|
158 |
+
|
159 |
+
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
|
160 |
+
global _runtime_validation_enabled
|
161 |
+
_runtime_validation_enabled = self.prev
|
162 |
+
|
163 |
+
|
164 |
+
# Runtime checking
|
165 |
+
# Validate output data is subtype of return hint
|
166 |
+
def runtime_validation(f):
|
167 |
+
# TODO:
|
168 |
+
# Can be extended to validate '__getitem__' and nonblocking
|
169 |
+
if f.__name__ != '__iter__':
|
170 |
+
raise TypeError(f"Can not decorate function {f.__name__} with 'runtime_validation'")
|
171 |
+
|
172 |
+
@wraps(f)
|
173 |
+
def wrapper(self):
|
174 |
+
global _runtime_validation_enabled
|
175 |
+
if not _runtime_validation_enabled:
|
176 |
+
yield from f(self)
|
177 |
+
else:
|
178 |
+
it = f(self)
|
179 |
+
for d in it:
|
180 |
+
if not self.type.issubtype_of_instance(d):
|
181 |
+
raise RuntimeError(f"Expected an instance as subtype of {self.type}, but found {d}({type(d)})")
|
182 |
+
yield d
|
183 |
+
|
184 |
+
return wrapper
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/_hook_iterator.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import functools
|
3 |
+
from enum import Enum
|
4 |
+
|
5 |
+
import torch.autograd
|
6 |
+
|
7 |
+
|
8 |
+
class _SnapshotState(Enum):
|
9 |
+
r"""
|
10 |
+
These are the snapshotting-related states that IterDataPipes can be in.
|
11 |
+
|
12 |
+
`NotStarted` - allows you to restore a snapshot and create an iterator with reset
|
13 |
+
`Restored` - cannot restore again, allows you to create an iterator without resetting the DataPipe
|
14 |
+
`Iterating` - can restore, will reset if you create a new iterator
|
15 |
+
"""
|
16 |
+
|
17 |
+
NotStarted = 0
|
18 |
+
Restored = 1
|
19 |
+
Iterating = 2
|
20 |
+
|
21 |
+
|
22 |
+
def _simplify_obj_name(obj) -> str:
|
23 |
+
"""Simplify the display strings of objects for the purpose of rendering within DataPipe error messages."""
|
24 |
+
if inspect.isfunction(obj):
|
25 |
+
return obj.__name__
|
26 |
+
else:
|
27 |
+
return repr(obj)
|
28 |
+
|
29 |
+
|
30 |
+
def _strip_datapipe_from_name(name: str) -> str:
|
31 |
+
return name.replace("IterDataPipe", "").replace("MapDataPipe", "")
|
32 |
+
|
33 |
+
|
34 |
+
def _generate_input_args_string(obj):
|
35 |
+
"""Generate a string for the input arguments of an object."""
|
36 |
+
signature = inspect.signature(obj.__class__)
|
37 |
+
input_param_names = set()
|
38 |
+
for param_name in signature.parameters.keys():
|
39 |
+
input_param_names.add(param_name)
|
40 |
+
result = []
|
41 |
+
for name, value in inspect.getmembers(obj):
|
42 |
+
if name in input_param_names:
|
43 |
+
result.append((name, _simplify_obj_name(value)))
|
44 |
+
return ', '.join([f'{name}={value}' for name, value in result])
|
45 |
+
|
46 |
+
|
47 |
+
def _generate_iterdatapipe_msg(datapipe, simplify_dp_name: bool = False):
|
48 |
+
output_string = f"{datapipe.__class__.__name__}({_generate_input_args_string(datapipe)})"
|
49 |
+
if simplify_dp_name:
|
50 |
+
output_string = _strip_datapipe_from_name(output_string)
|
51 |
+
return output_string
|
52 |
+
|
53 |
+
|
54 |
+
def _gen_invalid_iterdatapipe_msg(datapipe):
|
55 |
+
return ("This iterator has been invalidated because another iterator has been created "
|
56 |
+
f"from the same IterDataPipe: {_generate_iterdatapipe_msg(datapipe)}\n"
|
57 |
+
"This may be caused multiple references to the same IterDataPipe. We recommend "
|
58 |
+
"using `.fork()` if that is necessary.")
|
59 |
+
|
60 |
+
|
61 |
+
_feedback_msg = ("\nFor feedback regarding this single iterator per IterDataPipe constraint, feel free "
|
62 |
+
"to comment on this issue: https://github.com/pytorch/data/issues/45.")
|
63 |
+
|
64 |
+
|
65 |
+
def _check_iterator_valid(datapipe, iterator_id, next_method_exists=False) -> None:
|
66 |
+
r"""
|
67 |
+
Given an instance of a DataPipe and an iterator ID, check if the IDs match, and if not, raises an exception.
|
68 |
+
|
69 |
+
In the case of ChildDataPipe, the ID gets compared to the one stored in `main_datapipe` as well.
|
70 |
+
"""
|
71 |
+
if next_method_exists:
|
72 |
+
# This is the case where `IterDataPipe` has both `__iter__` and `__next__`.
|
73 |
+
# The `_valid_iterator_id` should either be never set (`None`), or set by at most one
|
74 |
+
# iterator (`0`). Otherwise, it means there are multiple iterators.
|
75 |
+
if datapipe._valid_iterator_id is not None and datapipe._valid_iterator_id != 0:
|
76 |
+
extra_msg = "\nNote that this exception is raised inside your IterDataPipe's a `__next__` method"
|
77 |
+
raise RuntimeError(_gen_invalid_iterdatapipe_msg(datapipe) + extra_msg + _feedback_msg)
|
78 |
+
elif hasattr(datapipe, "_is_child_datapipe") and datapipe._is_child_datapipe is True:
|
79 |
+
if hasattr(datapipe, "_check_valid_iterator_id"):
|
80 |
+
if not datapipe._check_valid_iterator_id(iterator_id):
|
81 |
+
raise RuntimeError("This iterator has been invalidated, because a new iterator has been created "
|
82 |
+
f"from one of the ChildDataPipes of "
|
83 |
+
f"{_generate_iterdatapipe_msg(datapipe.main_datapipe)}." + _feedback_msg)
|
84 |
+
else:
|
85 |
+
raise RuntimeError("ChildDataPipe must have method `_check_valid_iterator_id`.")
|
86 |
+
elif datapipe._valid_iterator_id != iterator_id:
|
87 |
+
raise RuntimeError(_gen_invalid_iterdatapipe_msg(datapipe) + _feedback_msg)
|
88 |
+
|
89 |
+
|
90 |
+
def _set_datapipe_valid_iterator_id(datapipe):
|
91 |
+
"""Given a DataPipe, updates its valid iterator ID and reset the DataPipe."""
|
92 |
+
if hasattr(datapipe, "_is_child_datapipe") and datapipe._is_child_datapipe is True:
|
93 |
+
if hasattr(datapipe, "_set_main_datapipe_valid_iterator_id"):
|
94 |
+
datapipe._set_main_datapipe_valid_iterator_id() # reset() is called within this method when appropriate
|
95 |
+
else:
|
96 |
+
raise RuntimeError("ChildDataPipe must have method `_set_main_datapipe_valid_iterator_id`.")
|
97 |
+
else:
|
98 |
+
if datapipe._valid_iterator_id is None:
|
99 |
+
datapipe._valid_iterator_id = 0
|
100 |
+
else:
|
101 |
+
datapipe._valid_iterator_id += 1
|
102 |
+
datapipe.reset()
|
103 |
+
return datapipe._valid_iterator_id
|
104 |
+
|
105 |
+
|
106 |
+
def hook_iterator(namespace):
|
107 |
+
r"""
|
108 |
+
Define a hook that is applied to all `__iter__` of metaclass `_DataPipeMeta`.
|
109 |
+
|
110 |
+
This is done for the purpose of profiling and checking if an iterator is still valid.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def profiler_record_fn_context(datapipe):
|
114 |
+
if not hasattr(datapipe, "_profile_name"):
|
115 |
+
datapipe._profile_name = _generate_iterdatapipe_msg(datapipe, simplify_dp_name=True)
|
116 |
+
return torch.autograd.profiler.record_function(datapipe._profile_name)
|
117 |
+
|
118 |
+
class IteratorDecorator:
|
119 |
+
r"""
|
120 |
+
Wrap the iterator and modifying its `__next__` method.
|
121 |
+
|
122 |
+
This decorator is applied to DataPipes of which `__iter__` method is NOT a generator function.
|
123 |
+
Those `__iter__` method commonly returns `self` but not necessarily.
|
124 |
+
"""
|
125 |
+
|
126 |
+
def __init__(self, iterator, datapipe, iterator_id, has_next_method):
|
127 |
+
self.iterator = iterator
|
128 |
+
self.datapipe = datapipe
|
129 |
+
self.iterator_id = iterator_id
|
130 |
+
self._profiler_enabled = torch.autograd._profiler_enabled()
|
131 |
+
# Check if `__iter__` returns `self` and `DataPipe` has `__next__`
|
132 |
+
self.self_and_has_next_method = self.iterator is self.datapipe and has_next_method
|
133 |
+
|
134 |
+
def __iter__(self):
|
135 |
+
return self
|
136 |
+
|
137 |
+
def _get_next(self):
|
138 |
+
"""Return next with logic related to iterator validity, profiler, and incrementation of samples yielded."""
|
139 |
+
_check_iterator_valid(self.datapipe, self.iterator_id)
|
140 |
+
result = next(self.iterator)
|
141 |
+
if not self.self_and_has_next_method:
|
142 |
+
self.datapipe._number_of_samples_yielded += 1
|
143 |
+
return result
|
144 |
+
|
145 |
+
def __next__(self):
|
146 |
+
# TODO: Add try-except to in-place reduce traceback from the Exception
|
147 |
+
# See: https://github.com/pytorch/data/issues/284
|
148 |
+
if self._profiler_enabled:
|
149 |
+
with profiler_record_fn_context(self.datapipe):
|
150 |
+
return self._get_next()
|
151 |
+
else: # Decided against using `contextlib.nullcontext` for performance reasons
|
152 |
+
return self._get_next()
|
153 |
+
|
154 |
+
def __getattr__(self, name):
|
155 |
+
return getattr(self.iterator, name)
|
156 |
+
|
157 |
+
func = namespace['__iter__']
|
158 |
+
|
159 |
+
# ``__iter__`` of IterDataPipe is a generator function
|
160 |
+
if inspect.isgeneratorfunction(func):
|
161 |
+
@functools.wraps(func)
|
162 |
+
def wrap_generator(*args, **kwargs):
|
163 |
+
gen = func(*args, **kwargs)
|
164 |
+
datapipe = args[0]
|
165 |
+
if datapipe._fast_forward_iterator:
|
166 |
+
it = datapipe._fast_forward_iterator
|
167 |
+
datapipe._fast_forward_iterator = None
|
168 |
+
datapipe._snapshot_state = _SnapshotState.Iterating
|
169 |
+
while True:
|
170 |
+
try:
|
171 |
+
yield next(it)
|
172 |
+
except StopIteration:
|
173 |
+
return
|
174 |
+
iterator_id = _set_datapipe_valid_iterator_id(datapipe) # This ID is tied to each created iterator
|
175 |
+
_profiler_enabled = torch.autograd._profiler_enabled()
|
176 |
+
try:
|
177 |
+
if _profiler_enabled:
|
178 |
+
with profiler_record_fn_context(datapipe):
|
179 |
+
response = gen.send(None)
|
180 |
+
else:
|
181 |
+
response = gen.send(None)
|
182 |
+
|
183 |
+
while True:
|
184 |
+
datapipe._number_of_samples_yielded += 1
|
185 |
+
request = yield response
|
186 |
+
# Pass through here every time `__next__` is called
|
187 |
+
if _profiler_enabled:
|
188 |
+
with profiler_record_fn_context(datapipe):
|
189 |
+
_check_iterator_valid(datapipe, iterator_id)
|
190 |
+
response = gen.send(request)
|
191 |
+
else: # Decided against using `contextlib.nullcontext` for performance reasons
|
192 |
+
_check_iterator_valid(datapipe, iterator_id)
|
193 |
+
response = gen.send(request)
|
194 |
+
except StopIteration as e:
|
195 |
+
return
|
196 |
+
except Exception as e:
|
197 |
+
# TODO: Simplify the traceback message to skip over `response = gen.send(None)`
|
198 |
+
# Part of https://github.com/pytorch/data/issues/284
|
199 |
+
datapipe = args[0]
|
200 |
+
msg = "thrown by __iter__ of"
|
201 |
+
single_iterator_msg = "single iterator per IterDataPipe constraint"
|
202 |
+
if hasattr(e.args, '__len__'):
|
203 |
+
full_msg = f"{msg} {datapipe.__class__.__name__}({_generate_input_args_string(datapipe)})"
|
204 |
+
if len(e.args) == 0 or not isinstance(e.args[0], str): # If an exception message doesn't exist
|
205 |
+
e.args = (f'\nThis exception is {full_msg}',)
|
206 |
+
elif msg not in e.args[0] and single_iterator_msg not in e.args[0]:
|
207 |
+
e.args = (e.args[0] + f'\nThis exception is {full_msg}',) + e.args[1:]
|
208 |
+
raise
|
209 |
+
|
210 |
+
namespace['__iter__'] = wrap_generator
|
211 |
+
else: # ``__iter__`` of IterDataPipe is NOT a generator function
|
212 |
+
# IterDataPipe is an iterator with both ``__iter__`` and ``__next__``
|
213 |
+
# And ``__iter__`` may or may not return `self`
|
214 |
+
if '__next__' in namespace: # If `__next__` exists, put a wrapper around it
|
215 |
+
next_func = namespace['__next__']
|
216 |
+
|
217 |
+
@functools.wraps(next_func)
|
218 |
+
def wrap_next(*args, **kwargs):
|
219 |
+
datapipe = args[0]
|
220 |
+
if torch.autograd._profiler_enabled():
|
221 |
+
with profiler_record_fn_context(datapipe):
|
222 |
+
result = next_func(*args, **kwargs)
|
223 |
+
else:
|
224 |
+
result = next_func(*args, **kwargs)
|
225 |
+
datapipe._number_of_samples_yielded += 1
|
226 |
+
return result
|
227 |
+
|
228 |
+
namespace['__next__'] = wrap_next
|
229 |
+
|
230 |
+
# Note that if the `__next__` and `__iter__` do something completely unrelated. It may cause issue but
|
231 |
+
# the user will be violating the iterator protocol. Potential issue:
|
232 |
+
# 1. Valid iterator ID may not update or checked properly
|
233 |
+
# 2. The number of samples yielded will be miscounted
|
234 |
+
|
235 |
+
# Regardless if `__next__` exists or not, `__iter__` needs a wrapper to track the number of valid iterators
|
236 |
+
@functools.wraps(func)
|
237 |
+
def wrap_iter(*args, **kwargs):
|
238 |
+
iter_ret = func(*args, **kwargs)
|
239 |
+
datapipe = args[0]
|
240 |
+
datapipe._snapshot_state = _SnapshotState.Iterating
|
241 |
+
if datapipe._fast_forward_iterator:
|
242 |
+
iter_ret = datapipe._fast_forward_iterator
|
243 |
+
datapipe._fast_forward_iterator = None
|
244 |
+
return iter_ret
|
245 |
+
iterator_id = _set_datapipe_valid_iterator_id(datapipe) # This ID is tied to each created iterator
|
246 |
+
return IteratorDecorator(iter_ret, datapipe, iterator_id, '__next__' in namespace)
|
247 |
+
|
248 |
+
namespace['__iter__'] = wrap_iter
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/_typing.py
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Taking reference from official Python typing
|
2 |
+
# https://github.com/python/cpython/blob/master/Lib/typing.py
|
3 |
+
|
4 |
+
import collections
|
5 |
+
import functools
|
6 |
+
import numbers
|
7 |
+
import sys
|
8 |
+
|
9 |
+
from torch.utils.data.datapipes._hook_iterator import hook_iterator, _SnapshotState
|
10 |
+
from typing import (Any, Dict, Iterator, Generic, List, Set, Tuple, TypeVar, Union,
|
11 |
+
get_type_hints)
|
12 |
+
from typing import _eval_type, _tp_cache, _type_check, _type_repr # type: ignore[attr-defined]
|
13 |
+
from typing import ForwardRef
|
14 |
+
|
15 |
+
# TODO: Use TypeAlias when Python 3.6 is deprecated
|
16 |
+
# Please check [Note: TypeMeta and TypeAlias]
|
17 |
+
# In case of metaclass conflict due to ABCMeta or _ProtocolMeta
|
18 |
+
# For Python 3.9, only Protocol in typing uses metaclass
|
19 |
+
from abc import ABCMeta
|
20 |
+
from typing import _GenericAlias # type: ignore[attr-defined, no-redef]
|
21 |
+
|
22 |
+
class GenericMeta(ABCMeta): # type: ignore[no-redef]
|
23 |
+
pass
|
24 |
+
|
25 |
+
|
26 |
+
class Integer(numbers.Integral):
|
27 |
+
pass
|
28 |
+
|
29 |
+
|
30 |
+
class Boolean(numbers.Integral):
|
31 |
+
pass
|
32 |
+
|
33 |
+
|
34 |
+
# Python 'type' object is not subscriptable
|
35 |
+
# Tuple[int, List, dict] -> valid
|
36 |
+
# tuple[int, list, dict] -> invalid
|
37 |
+
# Map Python 'type' to abstract base class
|
38 |
+
TYPE2ABC = {
|
39 |
+
bool: Boolean,
|
40 |
+
int: Integer,
|
41 |
+
float: numbers.Real,
|
42 |
+
complex: numbers.Complex,
|
43 |
+
dict: Dict,
|
44 |
+
list: List,
|
45 |
+
set: Set,
|
46 |
+
tuple: Tuple,
|
47 |
+
None: type(None),
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
def issubtype(left, right, recursive=True):
|
52 |
+
r"""
|
53 |
+
Check if the left-side type is a subtype of the right-side type.
|
54 |
+
|
55 |
+
If any of type is a composite type like `Union` and `TypeVar` with
|
56 |
+
bounds, it would be expanded into a list of types and check all
|
57 |
+
of left-side types are subtypes of either one from right-side types.
|
58 |
+
"""
|
59 |
+
left = TYPE2ABC.get(left, left)
|
60 |
+
right = TYPE2ABC.get(right, right)
|
61 |
+
|
62 |
+
if right is Any or left == right:
|
63 |
+
return True
|
64 |
+
|
65 |
+
if isinstance(right, _GenericAlias):
|
66 |
+
if getattr(right, '__origin__', None) is Generic:
|
67 |
+
return True
|
68 |
+
|
69 |
+
if right == type(None):
|
70 |
+
return False
|
71 |
+
|
72 |
+
# Right-side type
|
73 |
+
constraints = _decompose_type(right)
|
74 |
+
|
75 |
+
if len(constraints) == 0 or Any in constraints:
|
76 |
+
return True
|
77 |
+
|
78 |
+
if left is Any:
|
79 |
+
return False
|
80 |
+
|
81 |
+
# Left-side type
|
82 |
+
variants = _decompose_type(left)
|
83 |
+
|
84 |
+
# all() will return True for empty variants
|
85 |
+
if len(variants) == 0:
|
86 |
+
return False
|
87 |
+
|
88 |
+
return all(_issubtype_with_constraints(variant, constraints, recursive) for variant in variants)
|
89 |
+
|
90 |
+
|
91 |
+
def _decompose_type(t, to_list=True):
|
92 |
+
if isinstance(t, TypeVar):
|
93 |
+
if t.__bound__ is not None:
|
94 |
+
ts = [t.__bound__]
|
95 |
+
else:
|
96 |
+
# For T_co, __constraints__ is ()
|
97 |
+
ts = list(t.__constraints__)
|
98 |
+
elif hasattr(t, '__origin__') and t.__origin__ == Union:
|
99 |
+
ts = t.__args__
|
100 |
+
else:
|
101 |
+
if not to_list:
|
102 |
+
return None
|
103 |
+
ts = [t]
|
104 |
+
# Ignored: Generator has incompatible item type "object"; expected "Type[Any]"
|
105 |
+
ts = [TYPE2ABC.get(_t, _t) for _t in ts] # type: ignore[misc]
|
106 |
+
return ts
|
107 |
+
|
108 |
+
|
109 |
+
def _issubtype_with_constraints(variant, constraints, recursive=True):
|
110 |
+
r"""
|
111 |
+
Check if the variant is a subtype of either one from constraints.
|
112 |
+
|
113 |
+
For composite types like `Union` and `TypeVar` with bounds, they
|
114 |
+
would be expanded for testing.
|
115 |
+
"""
|
116 |
+
if variant in constraints:
|
117 |
+
return True
|
118 |
+
|
119 |
+
# [Note: Subtype for Union and TypeVar]
|
120 |
+
# Python typing is able to flatten Union[Union[...]] or Union[TypeVar].
|
121 |
+
# But it couldn't flatten the following scenarios:
|
122 |
+
# - Union[int, TypeVar[Union[...]]]
|
123 |
+
# - TypeVar[TypeVar[...]]
|
124 |
+
# So, variant and each constraint may be a TypeVar or a Union.
|
125 |
+
# In these cases, all of inner types from the variant are required to be
|
126 |
+
# extraced and verified as a subtype of any constraint. And, all of
|
127 |
+
# inner types from any constraint being a TypeVar or a Union are
|
128 |
+
# also required to be extracted and verified if the variant belongs to
|
129 |
+
# any of them.
|
130 |
+
|
131 |
+
# Variant
|
132 |
+
vs = _decompose_type(variant, to_list=False)
|
133 |
+
|
134 |
+
# Variant is TypeVar or Union
|
135 |
+
if vs is not None:
|
136 |
+
return all(_issubtype_with_constraints(v, constraints, recursive) for v in vs)
|
137 |
+
|
138 |
+
# Variant is not TypeVar or Union
|
139 |
+
if hasattr(variant, '__origin__') and variant.__origin__ is not None:
|
140 |
+
v_origin = variant.__origin__
|
141 |
+
# In Python-3.9 typing library untyped generics do not have args
|
142 |
+
v_args = getattr(variant, "__args__", None)
|
143 |
+
else:
|
144 |
+
v_origin = variant
|
145 |
+
v_args = None
|
146 |
+
|
147 |
+
# Constraints
|
148 |
+
for constraint in constraints:
|
149 |
+
cs = _decompose_type(constraint, to_list=False)
|
150 |
+
|
151 |
+
# Constraint is TypeVar or Union
|
152 |
+
if cs is not None:
|
153 |
+
if _issubtype_with_constraints(variant, cs, recursive):
|
154 |
+
return True
|
155 |
+
# Constraint is not TypeVar or Union
|
156 |
+
else:
|
157 |
+
# __origin__ can be None for plain list, tuple, ... in Python 3.6
|
158 |
+
if hasattr(constraint, '__origin__') and constraint.__origin__ is not None:
|
159 |
+
c_origin = constraint.__origin__
|
160 |
+
if v_origin == c_origin:
|
161 |
+
if not recursive:
|
162 |
+
return True
|
163 |
+
# In Python-3.9 typing library untyped generics do not have args
|
164 |
+
c_args = getattr(constraint, "__args__", None)
|
165 |
+
if c_args is None or len(c_args) == 0:
|
166 |
+
return True
|
167 |
+
if v_args is not None and len(v_args) == len(c_args) and \
|
168 |
+
all(issubtype(v_arg, c_arg) for v_arg, c_arg in zip(v_args, c_args)):
|
169 |
+
return True
|
170 |
+
# Tuple[int] -> Tuple
|
171 |
+
else:
|
172 |
+
if v_origin == constraint:
|
173 |
+
return True
|
174 |
+
|
175 |
+
return False
|
176 |
+
|
177 |
+
|
178 |
+
def issubinstance(data, data_type):
|
179 |
+
if not issubtype(type(data), data_type, recursive=False):
|
180 |
+
return False
|
181 |
+
|
182 |
+
# In Python-3.9 typing library __args__ attribute is not defined for untyped generics
|
183 |
+
dt_args = getattr(data_type, "__args__", None)
|
184 |
+
if isinstance(data, tuple):
|
185 |
+
if dt_args is None or len(dt_args) == 0:
|
186 |
+
return True
|
187 |
+
if len(dt_args) != len(data):
|
188 |
+
return False
|
189 |
+
return all(issubinstance(d, t) for d, t in zip(data, dt_args))
|
190 |
+
elif isinstance(data, (list, set)):
|
191 |
+
if dt_args is None or len(dt_args) == 0:
|
192 |
+
return True
|
193 |
+
t = dt_args[0]
|
194 |
+
return all(issubinstance(d, t) for d in data)
|
195 |
+
elif isinstance(data, dict):
|
196 |
+
if dt_args is None or len(dt_args) == 0:
|
197 |
+
return True
|
198 |
+
kt, vt = dt_args
|
199 |
+
return all(issubinstance(k, kt) and issubinstance(v, vt) for k, v in data.items())
|
200 |
+
|
201 |
+
return True
|
202 |
+
|
203 |
+
|
204 |
+
# [Note: TypeMeta and TypeAlias]
|
205 |
+
# In order to keep compatibility for Python 3.6, use Meta for the typing.
|
206 |
+
# TODO: When PyTorch drops the support for Python 3.6, it can be converted
|
207 |
+
# into the Alias system and using `__class_getitem__` for DataPipe. The
|
208 |
+
# typing system will gain benefit of performance and resolving metaclass
|
209 |
+
# conflicts as elaborated in https://www.python.org/dev/peps/pep-0560/
|
210 |
+
|
211 |
+
|
212 |
+
class _DataPipeType:
|
213 |
+
r"""Save type annotation in `param`."""
|
214 |
+
|
215 |
+
def __init__(self, param):
|
216 |
+
self.param = param
|
217 |
+
|
218 |
+
def __repr__(self):
|
219 |
+
return _type_repr(self.param)
|
220 |
+
|
221 |
+
def __eq__(self, other):
|
222 |
+
if isinstance(other, _DataPipeType):
|
223 |
+
return self.param == other.param
|
224 |
+
return NotImplemented
|
225 |
+
|
226 |
+
def __hash__(self):
|
227 |
+
return hash(self.param)
|
228 |
+
|
229 |
+
def issubtype(self, other):
|
230 |
+
if isinstance(other.param, _GenericAlias):
|
231 |
+
if getattr(other.param, '__origin__', None) is Generic:
|
232 |
+
return True
|
233 |
+
if isinstance(other, _DataPipeType):
|
234 |
+
return issubtype(self.param, other.param)
|
235 |
+
if isinstance(other, type):
|
236 |
+
return issubtype(self.param, other)
|
237 |
+
raise TypeError(f"Expected '_DataPipeType' or 'type', but found {type(other)}")
|
238 |
+
|
239 |
+
def issubtype_of_instance(self, other):
|
240 |
+
return issubinstance(other, self.param)
|
241 |
+
|
242 |
+
|
243 |
+
# Default type for DataPipe without annotation
|
244 |
+
T_co = TypeVar('T_co', covariant=True)
|
245 |
+
_DEFAULT_TYPE = _DataPipeType(Generic[T_co])
|
246 |
+
|
247 |
+
|
248 |
+
class _DataPipeMeta(GenericMeta):
|
249 |
+
r"""
|
250 |
+
Metaclass for `DataPipe`.
|
251 |
+
|
252 |
+
Add `type` attribute and `__init_subclass__` based on the type, and validate the return hint of `__iter__`.
|
253 |
+
|
254 |
+
Note that there is subclass `_IterDataPipeMeta` specifically for `IterDataPipe`.
|
255 |
+
"""
|
256 |
+
|
257 |
+
type: _DataPipeType
|
258 |
+
|
259 |
+
def __new__(cls, name, bases, namespace, **kwargs):
|
260 |
+
return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload]
|
261 |
+
|
262 |
+
# TODO: the statements below are not reachable by design as there is a bug and typing is low priority for now.
|
263 |
+
cls.__origin__ = None
|
264 |
+
if 'type' in namespace:
|
265 |
+
return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload]
|
266 |
+
|
267 |
+
namespace['__type_class__'] = False
|
268 |
+
# For plain derived class without annotation
|
269 |
+
for base in bases:
|
270 |
+
if isinstance(base, _DataPipeMeta):
|
271 |
+
return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload]
|
272 |
+
|
273 |
+
namespace.update({'type': _DEFAULT_TYPE,
|
274 |
+
'__init_subclass__': _dp_init_subclass})
|
275 |
+
return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload]
|
276 |
+
|
277 |
+
def __init__(self, name, bases, namespace, **kwargs):
|
278 |
+
super().__init__(name, bases, namespace, **kwargs) # type: ignore[call-overload]
|
279 |
+
|
280 |
+
# TODO: Fix isinstance bug
|
281 |
+
@_tp_cache
|
282 |
+
def _getitem_(self, params):
|
283 |
+
if params is None:
|
284 |
+
raise TypeError(f'{self.__name__}[t]: t can not be None')
|
285 |
+
if isinstance(params, str):
|
286 |
+
params = ForwardRef(params)
|
287 |
+
if not isinstance(params, tuple):
|
288 |
+
params = (params, )
|
289 |
+
|
290 |
+
msg = f"{self.__name__}[t]: t must be a type"
|
291 |
+
params = tuple(_type_check(p, msg) for p in params)
|
292 |
+
|
293 |
+
if isinstance(self.type.param, _GenericAlias):
|
294 |
+
orig = getattr(self.type.param, '__origin__', None)
|
295 |
+
if isinstance(orig, type) and orig is not Generic:
|
296 |
+
p = self.type.param[params] # type: ignore[index]
|
297 |
+
t = _DataPipeType(p)
|
298 |
+
l = len(str(self.type)) + 2
|
299 |
+
name = self.__name__[:-l]
|
300 |
+
name = name + '[' + str(t) + ']'
|
301 |
+
bases = (self,) + self.__bases__
|
302 |
+
return self.__class__(name, bases,
|
303 |
+
{'__init_subclass__': _dp_init_subclass,
|
304 |
+
'type': t,
|
305 |
+
'__type_class__': True})
|
306 |
+
|
307 |
+
if len(params) > 1:
|
308 |
+
raise TypeError(f'Too many parameters for {self} actual {len(params)}, expected 1')
|
309 |
+
|
310 |
+
t = _DataPipeType(params[0])
|
311 |
+
|
312 |
+
if not t.issubtype(self.type):
|
313 |
+
raise TypeError(f'Can not subclass a DataPipe[{t}] from DataPipe[{self.type}]')
|
314 |
+
|
315 |
+
# Types are equal, fast path for inheritance
|
316 |
+
if self.type == t:
|
317 |
+
return self
|
318 |
+
|
319 |
+
name = self.__name__ + '[' + str(t) + ']'
|
320 |
+
bases = (self,) + self.__bases__
|
321 |
+
|
322 |
+
return self.__class__(name, bases,
|
323 |
+
{'__init_subclass__': _dp_init_subclass,
|
324 |
+
'__type_class__': True,
|
325 |
+
'type': t})
|
326 |
+
|
327 |
+
# TODO: Fix isinstance bug
|
328 |
+
def _eq_(self, other):
|
329 |
+
if not isinstance(other, _DataPipeMeta):
|
330 |
+
return NotImplemented
|
331 |
+
if self.__origin__ is None or other.__origin__ is None: # type: ignore[has-type]
|
332 |
+
return self is other
|
333 |
+
return (self.__origin__ == other.__origin__ # type: ignore[has-type]
|
334 |
+
and self.type == other.type)
|
335 |
+
|
336 |
+
# TODO: Fix isinstance bug
|
337 |
+
def _hash_(self):
|
338 |
+
return hash((self.__name__, self.type))
|
339 |
+
|
340 |
+
|
341 |
+
class _IterDataPipeMeta(_DataPipeMeta):
|
342 |
+
r"""
|
343 |
+
Metaclass for `IterDataPipe` and inherits from `_DataPipeMeta`.
|
344 |
+
|
345 |
+
Add various functions for behaviors specific to `IterDataPipe`.
|
346 |
+
"""
|
347 |
+
|
348 |
+
def __new__(cls, name, bases, namespace, **kwargs):
|
349 |
+
|
350 |
+
if 'reset' in namespace:
|
351 |
+
reset_func = namespace['reset']
|
352 |
+
|
353 |
+
@functools.wraps(reset_func)
|
354 |
+
def conditional_reset(*args, **kwargs):
|
355 |
+
r"""
|
356 |
+
Only execute DataPipe's `reset()` method if `_SnapshotState` is `Iterating` or `NotStarted`.
|
357 |
+
|
358 |
+
This allows recently restored DataPipe to preserve its restored state during the initial `__iter__` call.
|
359 |
+
"""
|
360 |
+
datapipe = args[0]
|
361 |
+
if datapipe._snapshot_state in (_SnapshotState.Iterating, _SnapshotState.NotStarted):
|
362 |
+
# Reset `NotStarted` is necessary because the `source_datapipe` of a DataPipe might have
|
363 |
+
# already begun iterating.
|
364 |
+
datapipe._number_of_samples_yielded = 0
|
365 |
+
datapipe._fast_forward_iterator = None
|
366 |
+
reset_func(*args, **kwargs)
|
367 |
+
datapipe._snapshot_state = _SnapshotState.Iterating
|
368 |
+
|
369 |
+
namespace['reset'] = conditional_reset
|
370 |
+
|
371 |
+
if '__iter__' in namespace:
|
372 |
+
hook_iterator(namespace)
|
373 |
+
return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload]
|
374 |
+
|
375 |
+
|
376 |
+
def _dp_init_subclass(sub_cls, *args, **kwargs):
|
377 |
+
# Add function for datapipe instance to reinforce the type
|
378 |
+
sub_cls.reinforce_type = reinforce_type
|
379 |
+
|
380 |
+
# TODO:
|
381 |
+
# - add global switch for type checking at compile-time
|
382 |
+
|
383 |
+
# Ignore internal type class
|
384 |
+
if getattr(sub_cls, '__type_class__', False):
|
385 |
+
return
|
386 |
+
|
387 |
+
# Check if the string type is valid
|
388 |
+
if isinstance(sub_cls.type.param, ForwardRef):
|
389 |
+
base_globals = sys.modules[sub_cls.__module__].__dict__
|
390 |
+
try:
|
391 |
+
param = _eval_type(sub_cls.type.param, base_globals, locals())
|
392 |
+
sub_cls.type.param = param
|
393 |
+
except TypeError as e:
|
394 |
+
raise TypeError(f"{sub_cls.type.param.__forward_arg__} is not supported by Python typing") from e
|
395 |
+
|
396 |
+
if '__iter__' in sub_cls.__dict__:
|
397 |
+
iter_fn = sub_cls.__dict__['__iter__']
|
398 |
+
hints = get_type_hints(iter_fn)
|
399 |
+
if 'return' in hints:
|
400 |
+
return_hint = hints['return']
|
401 |
+
# Plain Return Hint for Python 3.6
|
402 |
+
if return_hint == Iterator:
|
403 |
+
return
|
404 |
+
if not (hasattr(return_hint, '__origin__') and
|
405 |
+
(return_hint.__origin__ == Iterator or
|
406 |
+
return_hint.__origin__ == collections.abc.Iterator)):
|
407 |
+
raise TypeError("Expected 'Iterator' as the return annotation for `__iter__` of {}"
|
408 |
+
", but found {}".format(sub_cls.__name__, _type_repr(hints['return'])))
|
409 |
+
data_type = return_hint.__args__[0]
|
410 |
+
if not issubtype(data_type, sub_cls.type.param):
|
411 |
+
raise TypeError("Expected return type of '__iter__' as a subtype of {}, but found {}"
|
412 |
+
" for {}".format(sub_cls.type, _type_repr(data_type), sub_cls.__name__))
|
413 |
+
|
414 |
+
|
415 |
+
def reinforce_type(self, expected_type):
|
416 |
+
r"""
|
417 |
+
Reinforce the type for DataPipe instance.
|
418 |
+
|
419 |
+
And the 'expected_type' is required to be a subtype of the original type
|
420 |
+
hint to restrict the type requirement of DataPipe instance.
|
421 |
+
"""
|
422 |
+
if isinstance(expected_type, tuple):
|
423 |
+
expected_type = Tuple[expected_type]
|
424 |
+
_type_check(expected_type, msg="'expected_type' must be a type")
|
425 |
+
|
426 |
+
if not issubtype(expected_type, self.type.param):
|
427 |
+
raise TypeError(f"Expected 'expected_type' as subtype of {self.type}, but found {_type_repr(expected_type)}")
|
428 |
+
|
429 |
+
self.type = _DataPipeType(expected_type)
|
430 |
+
return self
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data.datapipes.dataframe.dataframes import (
|
2 |
+
CaptureDataFrame, DFIterDataPipe,
|
3 |
+
)
|
4 |
+
from torch.utils.data.datapipes.dataframe.datapipes import (
|
5 |
+
DataFramesAsTuplesPipe,
|
6 |
+
)
|
7 |
+
|
8 |
+
__all__ = ['CaptureDataFrame', 'DFIterDataPipe', 'DataFramesAsTuplesPipe']
|
9 |
+
|
10 |
+
# Please keep this list sorted
|
11 |
+
assert __all__ == sorted(__all__)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (477 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/__pycache__/datapipes.cpython-310.pyc
ADDED
Binary file (4.56 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/__pycache__/structures.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/dataframes.py
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional
|
2 |
+
|
3 |
+
from torch.utils.data.datapipes._decorator import functional_datapipe
|
4 |
+
from torch.utils.data.datapipes.datapipe import DFIterDataPipe, IterDataPipe
|
5 |
+
|
6 |
+
from torch.utils.data.datapipes.dataframe.structures import DataChunkDF
|
7 |
+
|
8 |
+
# TODO(VitalyFedyunin): Add error when two different traces get combined
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
"Capture",
|
12 |
+
"CaptureA",
|
13 |
+
"CaptureAdd",
|
14 |
+
"CaptureCall",
|
15 |
+
"CaptureControl",
|
16 |
+
"CaptureDataFrame",
|
17 |
+
"CaptureDataFrameWithDataPipeOps",
|
18 |
+
"CaptureF",
|
19 |
+
"CaptureGetAttr",
|
20 |
+
"CaptureGetItem",
|
21 |
+
"CaptureInitial",
|
22 |
+
"CaptureLikeMock",
|
23 |
+
"CaptureMul",
|
24 |
+
"CaptureSetItem",
|
25 |
+
"CaptureSub",
|
26 |
+
"CaptureVariable",
|
27 |
+
"CaptureVariableAssign",
|
28 |
+
"DataFrameTracer",
|
29 |
+
"DataFrameTracedOps",
|
30 |
+
"disable_capture",
|
31 |
+
"get_val",
|
32 |
+
]
|
33 |
+
|
34 |
+
|
35 |
+
def disable_capture():
|
36 |
+
CaptureControl.disabled = True
|
37 |
+
|
38 |
+
|
39 |
+
class CaptureControl:
|
40 |
+
disabled = False
|
41 |
+
|
42 |
+
|
43 |
+
class DataFrameTracedOps(DFIterDataPipe):
|
44 |
+
def __init__(self, source_datapipe, output_var):
|
45 |
+
self.source_datapipe = source_datapipe
|
46 |
+
self.output_var = output_var
|
47 |
+
|
48 |
+
def __iter__(self):
|
49 |
+
for item in self.source_datapipe:
|
50 |
+
yield self.output_var.apply_ops(item)
|
51 |
+
|
52 |
+
|
53 |
+
# TODO(VitalyFedyunin): Extract this list from the DFIterDataPipe registred functions
|
54 |
+
DATAPIPES_OPS = ['_dataframes_as_tuples', 'groupby', '_dataframes_filter', 'map', 'to_datapipe',
|
55 |
+
'shuffle', 'concat', 'batch', '_dataframes_per_row', '_dataframes_concat', '_dataframes_shuffle']
|
56 |
+
|
57 |
+
UNIMPLEMENTED_ATTR = ['__deepcopy__', '__setstate__', 'is_shardable', 'apply_sharding']
|
58 |
+
|
59 |
+
|
60 |
+
class Capture:
|
61 |
+
# TODO: All operations are shared across entire InitialCapture, need to figure out what if we join two captures
|
62 |
+
|
63 |
+
def __init__(self, schema_df=None):
|
64 |
+
self.ctx = {'operations': [], 'variables': [], 'schema_df': schema_df}
|
65 |
+
|
66 |
+
def __str__(self):
|
67 |
+
return self._ops_str()
|
68 |
+
|
69 |
+
def _ops_str(self):
|
70 |
+
res = ""
|
71 |
+
for op in self.ctx['operations']:
|
72 |
+
if len(res) > 0:
|
73 |
+
res += "\n"
|
74 |
+
res += str(op)
|
75 |
+
return res
|
76 |
+
|
77 |
+
def __getstate__(self):
|
78 |
+
# TODO(VitalyFedyunin): Currently can't pickle (why?)
|
79 |
+
self.ctx['schema_df'] = None
|
80 |
+
for var in self.ctx['variables']:
|
81 |
+
var.calculated_value = None
|
82 |
+
state = {}
|
83 |
+
for item in self.__dict__:
|
84 |
+
state[item] = getattr(self, item)
|
85 |
+
return state
|
86 |
+
|
87 |
+
def __setstate__(self, state):
|
88 |
+
for k, v in state.items():
|
89 |
+
setattr(self, k, v)
|
90 |
+
|
91 |
+
def __getattr__(self, attrname):
|
92 |
+
if attrname == 'kwarg' or attrname == 'kwargs':
|
93 |
+
raise Exception('no kwargs!')
|
94 |
+
if attrname in ['__deepcopy__']:
|
95 |
+
raise AttributeError()
|
96 |
+
result = CaptureGetAttr(self, attrname, ctx=self.ctx)
|
97 |
+
return result
|
98 |
+
|
99 |
+
def __getitem__(self, key):
|
100 |
+
return CaptureGetItem(self, key, ctx=self.ctx)
|
101 |
+
|
102 |
+
def __setitem__(self, key, value):
|
103 |
+
self.ctx['operations'].append(
|
104 |
+
CaptureSetItem(self, key, value, ctx=self.ctx))
|
105 |
+
|
106 |
+
def __add__(self, add_val):
|
107 |
+
res = CaptureAdd(self, add_val, ctx=self.ctx)
|
108 |
+
var = CaptureVariable(res, ctx=self.ctx)
|
109 |
+
self.ctx['operations'].append(
|
110 |
+
CaptureVariableAssign(variable=var, value=res, ctx=self.ctx))
|
111 |
+
return var
|
112 |
+
|
113 |
+
def __sub__(self, add_val):
|
114 |
+
res = CaptureSub(self, add_val, ctx=self.ctx)
|
115 |
+
var = CaptureVariable(res, ctx=self.ctx)
|
116 |
+
self.ctx['operations'].append(
|
117 |
+
CaptureVariableAssign(variable=var, value=res, ctx=self.ctx))
|
118 |
+
return var
|
119 |
+
|
120 |
+
def __mul__(self, add_val):
|
121 |
+
res = CaptureMul(self, add_val, ctx=self.ctx)
|
122 |
+
var = CaptureVariable(res, ctx=self.ctx)
|
123 |
+
t = CaptureVariableAssign(variable=var, value=res, ctx=self.ctx)
|
124 |
+
self.ctx['operations'].append(t)
|
125 |
+
return var
|
126 |
+
|
127 |
+
def _is_context_empty(self):
|
128 |
+
return len(self.ctx['operations']) == 0 and len(self.ctx['variables']) == 0
|
129 |
+
|
130 |
+
def apply_ops_2(self, dataframe):
|
131 |
+
# TODO(VitalyFedyunin): Make this calculation thread safe (as currently it updates pointer)
|
132 |
+
self.ctx['variables'][0].calculated_value = dataframe
|
133 |
+
for op in self.ctx['operations']:
|
134 |
+
op.execute()
|
135 |
+
|
136 |
+
@property
|
137 |
+
def columns(self):
|
138 |
+
self.apply_ops_2(self.ctx['schema_df'])
|
139 |
+
value = self.execute()
|
140 |
+
return value.columns
|
141 |
+
|
142 |
+
# TODO(VitalyFedyunin): Add tests
|
143 |
+
# TODO(VitalyFedyunin): Need to join context if one of them are empty because we used capture
|
144 |
+
|
145 |
+
def __call__(self, *args, **kwargs):
|
146 |
+
# TODO: Check if args or kwargs have more than one different context
|
147 |
+
if self._is_context_empty():
|
148 |
+
# TODO: Allow CaptureA to take context from mock
|
149 |
+
for arg in args:
|
150 |
+
if isinstance(arg, Capture) and not arg._is_context_empty():
|
151 |
+
self.ctx = arg.ctx
|
152 |
+
break
|
153 |
+
if self._is_context_empty():
|
154 |
+
for k, v in kwargs.items():
|
155 |
+
if isinstance(k, Capture) and not k._is_context_empty():
|
156 |
+
self.ctx = k.ctx
|
157 |
+
break
|
158 |
+
if isinstance(v, Capture) and not v._is_context_empty():
|
159 |
+
self.ctx = v.ctx
|
160 |
+
break
|
161 |
+
|
162 |
+
res = CaptureCall(self, ctx=self.ctx, args=args, kwargs=kwargs)
|
163 |
+
var = CaptureVariable(None, ctx=self.ctx)
|
164 |
+
t = CaptureVariableAssign(ctx=self.ctx, variable=var, value=res)
|
165 |
+
self.ctx['operations'].append(t)
|
166 |
+
return var
|
167 |
+
|
168 |
+
|
169 |
+
class CaptureF(Capture):
|
170 |
+
def __init__(self, ctx=None, **kwargs):
|
171 |
+
if ctx is None:
|
172 |
+
self.ctx = {'operations': [], 'variables': []}
|
173 |
+
else:
|
174 |
+
self.ctx = ctx
|
175 |
+
self.kwargs = kwargs
|
176 |
+
|
177 |
+
|
178 |
+
class CaptureA(CaptureF):
|
179 |
+
def __str__(self):
|
180 |
+
return f"{self.kwargs['name']}"
|
181 |
+
|
182 |
+
def execute(self):
|
183 |
+
value = self.kwargs['real_attribute']
|
184 |
+
return value
|
185 |
+
|
186 |
+
|
187 |
+
class CaptureLikeMock:
|
188 |
+
def __init__(self, name):
|
189 |
+
import unittest.mock as mock
|
190 |
+
# TODO(VitalyFedyunin): Do not use provate function here, copy own implementation instead.
|
191 |
+
get_target, attribute = mock._get_target(name) # type: ignore[attr-defined]
|
192 |
+
self.get_target = get_target
|
193 |
+
self.attribute = attribute
|
194 |
+
self.name = name
|
195 |
+
|
196 |
+
def __enter__(self):
|
197 |
+
self.save = getattr(self.get_target(), self.attribute)
|
198 |
+
capt = CaptureA(name=self.name, real_attribute=self.save)
|
199 |
+
setattr(self.get_target(), self.attribute, capt)
|
200 |
+
|
201 |
+
def __exit__(self, *exc_info):
|
202 |
+
setattr(self.get_target(), self.attribute, self.save)
|
203 |
+
|
204 |
+
|
205 |
+
class CaptureCall(Capture):
|
206 |
+
|
207 |
+
def __init__(self, callable, ctx=None, **kwargs):
|
208 |
+
if ctx is None:
|
209 |
+
self.ctx = {'operations': [], 'variables': []}
|
210 |
+
else:
|
211 |
+
self.ctx = ctx
|
212 |
+
self.kwargs = kwargs
|
213 |
+
self.callable = callable
|
214 |
+
|
215 |
+
def __str__(self):
|
216 |
+
return "{callable}({args},{kwargs})".format(callable=self.callable, **self.kwargs)
|
217 |
+
|
218 |
+
def execute(self):
|
219 |
+
|
220 |
+
# TODO: VitalyFedyunin execute kwargs and maybe nested structures
|
221 |
+
executed_args = []
|
222 |
+
for arg in self.kwargs['args']:
|
223 |
+
if isinstance(arg, Capture):
|
224 |
+
executed_args.append(arg.execute())
|
225 |
+
else:
|
226 |
+
executed_args.append(arg)
|
227 |
+
left = get_val(self.callable)
|
228 |
+
return left(*executed_args, **self.kwargs['kwargs'])
|
229 |
+
|
230 |
+
|
231 |
+
class CaptureVariableAssign(CaptureF):
|
232 |
+
def __str__(self):
|
233 |
+
variable = self.kwargs['variable']
|
234 |
+
value = self.kwargs['value']
|
235 |
+
return f"{variable} = {value}"
|
236 |
+
|
237 |
+
def execute(self):
|
238 |
+
self.kwargs['variable'].calculated_value = self.kwargs['value'].execute()
|
239 |
+
|
240 |
+
|
241 |
+
class CaptureVariable(Capture):
|
242 |
+
# TODO(VitalyFedyunin): This should be atomic and thread safe
|
243 |
+
names_idx = 0
|
244 |
+
|
245 |
+
def __init__(self, value, ctx):
|
246 |
+
if CaptureControl.disabled:
|
247 |
+
raise Exception('Attempting to create capture variable with capture off')
|
248 |
+
self.ctx = ctx
|
249 |
+
self.value = value
|
250 |
+
self.name = f'var_{CaptureVariable.names_idx}'
|
251 |
+
CaptureVariable.names_idx += 1
|
252 |
+
self.ctx['variables'].append(self)
|
253 |
+
|
254 |
+
def __str__(self):
|
255 |
+
return self.name
|
256 |
+
|
257 |
+
def execute(self):
|
258 |
+
return self.calculated_value
|
259 |
+
|
260 |
+
def apply_ops(self, dataframe):
|
261 |
+
# TODO(VitalyFedyunin): Make this calculation thread safe (as currently it updates pointer)
|
262 |
+
self.ctx['variables'][0].calculated_value = dataframe
|
263 |
+
for op in self.ctx['operations']:
|
264 |
+
op.execute()
|
265 |
+
return self.calculated_value
|
266 |
+
|
267 |
+
|
268 |
+
class CaptureGetItem(Capture):
|
269 |
+
def __init__(self, left, key, ctx):
|
270 |
+
self.ctx = ctx
|
271 |
+
self.left = left
|
272 |
+
self.key = key
|
273 |
+
|
274 |
+
def __str__(self):
|
275 |
+
return f"{self.left}[{get_val(self.key)}]"
|
276 |
+
|
277 |
+
def execute(self):
|
278 |
+
left = self.left.execute()
|
279 |
+
return left[self.key]
|
280 |
+
|
281 |
+
|
282 |
+
class CaptureSetItem(Capture):
|
283 |
+
def __init__(self, left, key, value, ctx):
|
284 |
+
self.ctx = ctx
|
285 |
+
self.left = left
|
286 |
+
self.key = key
|
287 |
+
self.value = value
|
288 |
+
|
289 |
+
def __str__(self):
|
290 |
+
return f"{self.left}[{get_val(self.key)}] = {self.value}"
|
291 |
+
|
292 |
+
def execute(self):
|
293 |
+
left = self.left.execute()
|
294 |
+
value = self.value.execute()
|
295 |
+
left[self.key] = value
|
296 |
+
|
297 |
+
|
298 |
+
class CaptureAdd(Capture):
|
299 |
+
def __init__(self, left, right, ctx):
|
300 |
+
self.ctx = ctx
|
301 |
+
self.left = left
|
302 |
+
self.right = right
|
303 |
+
|
304 |
+
def __str__(self):
|
305 |
+
return f"{self.left} + {self.right}"
|
306 |
+
|
307 |
+
def execute(self):
|
308 |
+
return get_val(self.left) + get_val(self.right)
|
309 |
+
|
310 |
+
|
311 |
+
class CaptureMul(Capture):
|
312 |
+
def __init__(self, left, right, ctx):
|
313 |
+
self.ctx = ctx
|
314 |
+
self.left = left
|
315 |
+
self.right = right
|
316 |
+
|
317 |
+
def __str__(self):
|
318 |
+
return f"{self.left} * {self.right}"
|
319 |
+
|
320 |
+
def execute(self):
|
321 |
+
return get_val(self.left) * get_val(self.right)
|
322 |
+
|
323 |
+
|
324 |
+
class CaptureSub(Capture):
|
325 |
+
def __init__(self, left, right, ctx):
|
326 |
+
self.ctx = ctx
|
327 |
+
self.left = left
|
328 |
+
self.right = right
|
329 |
+
|
330 |
+
def __str__(self):
|
331 |
+
return f"{self.left} - {self.right}"
|
332 |
+
|
333 |
+
def execute(self):
|
334 |
+
return get_val(self.left) - get_val(self.right)
|
335 |
+
|
336 |
+
|
337 |
+
class CaptureGetAttr(Capture):
|
338 |
+
def __init__(self, src, name, ctx):
|
339 |
+
self.ctx = ctx
|
340 |
+
self.src = src
|
341 |
+
self.name = name
|
342 |
+
|
343 |
+
def __str__(self):
|
344 |
+
return f"{self.src}.{self.name}"
|
345 |
+
|
346 |
+
def execute(self):
|
347 |
+
val = get_val(self.src)
|
348 |
+
return getattr(val, self.name)
|
349 |
+
|
350 |
+
|
351 |
+
def get_val(capture):
|
352 |
+
if isinstance(capture, Capture):
|
353 |
+
return capture.execute()
|
354 |
+
elif isinstance(capture, str):
|
355 |
+
return f'"{capture}"'
|
356 |
+
else:
|
357 |
+
return capture
|
358 |
+
|
359 |
+
|
360 |
+
class CaptureInitial(CaptureVariable):
|
361 |
+
def __init__(self, schema_df=None):
|
362 |
+
new_ctx: Dict[str, List[Any]] = {'operations': [], 'variables': [], 'schema_df': schema_df}
|
363 |
+
super().__init__(None, new_ctx)
|
364 |
+
self.name = f'input_{self.name}'
|
365 |
+
|
366 |
+
|
367 |
+
class CaptureDataFrame(CaptureInitial):
|
368 |
+
pass
|
369 |
+
|
370 |
+
|
371 |
+
class CaptureDataFrameWithDataPipeOps(CaptureDataFrame):
|
372 |
+
def as_datapipe(self):
|
373 |
+
return DataFrameTracedOps(
|
374 |
+
self.ctx['variables'][0].source_datapipe, self)
|
375 |
+
|
376 |
+
def raw_iterator(self):
|
377 |
+
return self.as_datapipe().__iter__()
|
378 |
+
|
379 |
+
def __iter__(self):
|
380 |
+
return iter(self._dataframes_as_tuples())
|
381 |
+
|
382 |
+
def batch(self, batch_size=10, drop_last: bool = False, wrapper_class=DataChunkDF):
|
383 |
+
dp = self._dataframes_per_row()._dataframes_concat(batch_size)
|
384 |
+
dp = dp.as_datapipe().batch(1, drop_last=drop_last, wrapper_class=wrapper_class)
|
385 |
+
dp._dp_contains_dataframe = True
|
386 |
+
return dp
|
387 |
+
|
388 |
+
def groupby(self,
|
389 |
+
group_key_fn,
|
390 |
+
*,
|
391 |
+
buffer_size=10000,
|
392 |
+
group_size=None,
|
393 |
+
guaranteed_group_size=None,
|
394 |
+
drop_remaining=False):
|
395 |
+
dp = self._dataframes_per_row()
|
396 |
+
dp = dp.as_datapipe().groupby(group_key_fn, buffer_size=buffer_size, group_size=group_size,
|
397 |
+
guaranteed_group_size=guaranteed_group_size, drop_remaining=drop_remaining)
|
398 |
+
return dp
|
399 |
+
|
400 |
+
def shuffle(self, *args, **kwargs):
|
401 |
+
return self._dataframes_shuffle(*args, **kwargs)
|
402 |
+
|
403 |
+
def filter(self, *args, **kwargs):
|
404 |
+
return self._dataframes_filter(*args, **kwargs)
|
405 |
+
|
406 |
+
def collate(self, *args, **kwargs):
|
407 |
+
raise Exception("Can't collate unbatched DataFrames stream")
|
408 |
+
|
409 |
+
def __getattr__(self, attrname): # ?
|
410 |
+
if attrname in UNIMPLEMENTED_ATTR:
|
411 |
+
raise AttributeError('Attempting to get ', attrname)
|
412 |
+
if attrname in DATAPIPES_OPS:
|
413 |
+
return (self.as_datapipe()).__getattr__(attrname)
|
414 |
+
return super().__getattr__(attrname)
|
415 |
+
|
416 |
+
|
417 |
+
@functional_datapipe('trace_as_dataframe')
|
418 |
+
class DataFrameTracer(CaptureDataFrameWithDataPipeOps, IterDataPipe): # type: ignore[misc]
|
419 |
+
source_datapipe: Optional[Any] = None
|
420 |
+
|
421 |
+
# TODO(VitalyFedyunin): Must implement all special functions of datapipes
|
422 |
+
|
423 |
+
def set_shuffle_settings(self, *args, **kwargs):
|
424 |
+
pass
|
425 |
+
|
426 |
+
def is_shardable(self):
|
427 |
+
return False
|
428 |
+
|
429 |
+
def __init__(self, source_datapipe, schema_df=None):
|
430 |
+
self.source_datapipe = source_datapipe
|
431 |
+
if schema_df is None:
|
432 |
+
schema_df = next(iter(self.source_datapipe))
|
433 |
+
super().__init__(schema_df=schema_df)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/datapipes.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
from torch.utils.data.datapipes._decorator import functional_datapipe
|
4 |
+
from torch.utils.data.datapipes.datapipe import DFIterDataPipe, IterDataPipe
|
5 |
+
|
6 |
+
from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"ConcatDataFramesPipe",
|
10 |
+
"DataFramesAsTuplesPipe",
|
11 |
+
"ExampleAggregateAsDataFrames",
|
12 |
+
"FilterDataFramesPipe",
|
13 |
+
"PerRowDataFramesPipe",
|
14 |
+
"ShuffleDataFramesPipe",
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
@functional_datapipe('_dataframes_as_tuples')
|
19 |
+
class DataFramesAsTuplesPipe(IterDataPipe):
|
20 |
+
def __init__(self, source_datapipe):
|
21 |
+
self.source_datapipe = source_datapipe
|
22 |
+
|
23 |
+
def __iter__(self):
|
24 |
+
for df in self.source_datapipe:
|
25 |
+
# for record in df.to_records(index=False):
|
26 |
+
yield from df_wrapper.iterate(df)
|
27 |
+
|
28 |
+
|
29 |
+
@functional_datapipe('_dataframes_per_row', enable_df_api_tracing=True)
|
30 |
+
class PerRowDataFramesPipe(DFIterDataPipe):
|
31 |
+
def __init__(self, source_datapipe):
|
32 |
+
self.source_datapipe = source_datapipe
|
33 |
+
|
34 |
+
def __iter__(self):
|
35 |
+
for df in self.source_datapipe:
|
36 |
+
# TODO(VitalyFedyunin): Replacing with TorchArrow only API, as we are dropping pandas as followup
|
37 |
+
for i in range(len(df)):
|
38 |
+
yield df[i:i + 1]
|
39 |
+
|
40 |
+
|
41 |
+
@functional_datapipe('_dataframes_concat', enable_df_api_tracing=True)
|
42 |
+
class ConcatDataFramesPipe(DFIterDataPipe):
|
43 |
+
def __init__(self, source_datapipe, batch=3):
|
44 |
+
self.source_datapipe = source_datapipe
|
45 |
+
self.n_batch = batch
|
46 |
+
|
47 |
+
def __iter__(self):
|
48 |
+
buffer = []
|
49 |
+
for df in self.source_datapipe:
|
50 |
+
buffer.append(df)
|
51 |
+
if len(buffer) == self.n_batch:
|
52 |
+
yield df_wrapper.concat(buffer)
|
53 |
+
buffer = []
|
54 |
+
if len(buffer):
|
55 |
+
yield df_wrapper.concat(buffer)
|
56 |
+
|
57 |
+
|
58 |
+
@functional_datapipe('_dataframes_shuffle', enable_df_api_tracing=True)
|
59 |
+
class ShuffleDataFramesPipe(DFIterDataPipe):
|
60 |
+
def __init__(self, source_datapipe):
|
61 |
+
self.source_datapipe = source_datapipe
|
62 |
+
|
63 |
+
def __iter__(self):
|
64 |
+
size = None
|
65 |
+
all_buffer = []
|
66 |
+
for df in self.source_datapipe:
|
67 |
+
if size is None:
|
68 |
+
size = df_wrapper.get_len(df)
|
69 |
+
for i in range(df_wrapper.get_len(df)):
|
70 |
+
all_buffer.append(df_wrapper.get_item(df, i))
|
71 |
+
random.shuffle(all_buffer)
|
72 |
+
buffer = []
|
73 |
+
for df in all_buffer:
|
74 |
+
buffer.append(df)
|
75 |
+
if len(buffer) == size:
|
76 |
+
yield df_wrapper.concat(buffer)
|
77 |
+
buffer = []
|
78 |
+
if len(buffer):
|
79 |
+
yield df_wrapper.concat(buffer)
|
80 |
+
|
81 |
+
|
82 |
+
@functional_datapipe('_dataframes_filter', enable_df_api_tracing=True)
|
83 |
+
class FilterDataFramesPipe(DFIterDataPipe):
|
84 |
+
def __init__(self, source_datapipe, filter_fn):
|
85 |
+
self.source_datapipe = source_datapipe
|
86 |
+
self.filter_fn = filter_fn
|
87 |
+
|
88 |
+
def __iter__(self):
|
89 |
+
size = None
|
90 |
+
all_buffer = []
|
91 |
+
filter_res = []
|
92 |
+
for df in self.source_datapipe:
|
93 |
+
if size is None:
|
94 |
+
size = len(df.index)
|
95 |
+
for i in range(len(df.index)):
|
96 |
+
all_buffer.append(df[i:i + 1])
|
97 |
+
filter_res.append(self.filter_fn(df.iloc[i]))
|
98 |
+
|
99 |
+
buffer = []
|
100 |
+
for df, res in zip(all_buffer, filter_res):
|
101 |
+
if res:
|
102 |
+
buffer.append(df)
|
103 |
+
if len(buffer) == size:
|
104 |
+
yield df_wrapper.concat(buffer)
|
105 |
+
buffer = []
|
106 |
+
if len(buffer):
|
107 |
+
yield df_wrapper.concat(buffer)
|
108 |
+
|
109 |
+
|
110 |
+
@functional_datapipe('_to_dataframes_pipe', enable_df_api_tracing=True)
|
111 |
+
class ExampleAggregateAsDataFrames(DFIterDataPipe):
|
112 |
+
def __init__(self, source_datapipe, dataframe_size=10, columns=None):
|
113 |
+
self.source_datapipe = source_datapipe
|
114 |
+
self.columns = columns
|
115 |
+
self.dataframe_size = dataframe_size
|
116 |
+
|
117 |
+
def _as_list(self, item):
|
118 |
+
try:
|
119 |
+
return list(item)
|
120 |
+
except Exception: # TODO(VitalyFedyunin): Replace with better iterable exception
|
121 |
+
return [item]
|
122 |
+
|
123 |
+
def __iter__(self):
|
124 |
+
aggregate = []
|
125 |
+
for item in self.source_datapipe:
|
126 |
+
aggregate.append(self._as_list(item))
|
127 |
+
if len(aggregate) == self.dataframe_size:
|
128 |
+
yield df_wrapper.create_dataframe(aggregate, columns=self.columns)
|
129 |
+
aggregate = []
|
130 |
+
if len(aggregate) > 0:
|
131 |
+
yield df_wrapper.create_dataframe(aggregate, columns=self.columns)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/dataframe/structures.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data.datapipes.datapipe import DataChunk
|
2 |
+
from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper
|
3 |
+
|
4 |
+
__all__ = ["DataChunkDF", ]
|
5 |
+
|
6 |
+
|
7 |
+
class DataChunkDF(DataChunk):
|
8 |
+
"""DataChunkDF iterating over individual items inside of DataFrame containers, to access DataFrames user `raw_iterator`."""
|
9 |
+
|
10 |
+
def __iter__(self):
|
11 |
+
for df in self.items:
|
12 |
+
yield from df_wrapper.iterate(df)
|
13 |
+
|
14 |
+
def __len__(self):
|
15 |
+
total_len = 0
|
16 |
+
for df in self.items:
|
17 |
+
total_len += df_wrapper.get_len(df)
|
18 |
+
return total_len
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/datapipe.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import pickle
|
3 |
+
from typing import Dict, Callable, Optional, TypeVar, Generic, Iterator
|
4 |
+
|
5 |
+
from torch.utils.data.datapipes._typing import _DataPipeMeta, _IterDataPipeMeta
|
6 |
+
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
|
7 |
+
from torch.utils.data.datapipes.utils.common import (
|
8 |
+
_deprecation_warning,
|
9 |
+
_iter_deprecated_functional_names,
|
10 |
+
_map_deprecated_functional_names,
|
11 |
+
)
|
12 |
+
from torch.utils.data.dataset import Dataset, IterableDataset
|
13 |
+
from torch.utils._import_utils import import_dill
|
14 |
+
|
15 |
+
dill = import_dill()
|
16 |
+
HAS_DILL = dill is not None
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
"DataChunk",
|
20 |
+
"DFIterDataPipe",
|
21 |
+
"IterDataPipe",
|
22 |
+
"MapDataPipe",
|
23 |
+
]
|
24 |
+
|
25 |
+
T = TypeVar('T')
|
26 |
+
T_co = TypeVar('T_co', covariant=True)
|
27 |
+
|
28 |
+
UNTRACABLE_DATAFRAME_PIPES = ['batch', # As it returns DataChunks
|
29 |
+
'groupby', # As it returns DataChunks
|
30 |
+
'_dataframes_as_tuples', # As it unpacks DF
|
31 |
+
'trace_as_dataframe', # As it used to mark DF for tracing
|
32 |
+
]
|
33 |
+
|
34 |
+
|
35 |
+
class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta):
|
36 |
+
r"""
|
37 |
+
Iterable-style DataPipe.
|
38 |
+
|
39 |
+
All DataPipes that represent an iterable of data samples should subclass this.
|
40 |
+
This style of DataPipes is particularly useful when data come from a stream, or
|
41 |
+
when the number of samples is too large to fit them all in memory. ``IterDataPipe`` is lazily initialized and its
|
42 |
+
elements are computed only when ``next()`` is called on the iterator of an ``IterDataPipe``.
|
43 |
+
|
44 |
+
All subclasses should overwrite :meth:`__iter__`, which would return an
|
45 |
+
iterator of samples in this DataPipe. Calling ``__iter__`` of an ``IterDataPipe`` automatically invokes its
|
46 |
+
method ``reset()``, which by default performs no operation. When writing a custom ``IterDataPipe``, users should
|
47 |
+
override ``reset()`` if necessary. The common usages include resetting buffers, pointers,
|
48 |
+
and various state variables within the custom ``IterDataPipe``.
|
49 |
+
|
50 |
+
Note:
|
51 |
+
Only `one` iterator can be valid for each ``IterDataPipe`` at a time,
|
52 |
+
and the creation a second iterator will invalidate the first one. This constraint is necessary because
|
53 |
+
some ``IterDataPipe`` have internal buffers, whose states can become invalid if there are multiple iterators.
|
54 |
+
The code example below presents details on how this constraint looks in practice.
|
55 |
+
If you have any feedback related to this constraint, please see `GitHub IterDataPipe Single Iterator Issue`_.
|
56 |
+
|
57 |
+
These DataPipes can be invoked in two ways, using the class constructor or applying their
|
58 |
+
functional form onto an existing ``IterDataPipe`` (recommended, available to most but not all DataPipes).
|
59 |
+
You can chain multiple `IterDataPipe` together to form a pipeline that will perform multiple
|
60 |
+
operations in succession.
|
61 |
+
|
62 |
+
.. _GitHub IterDataPipe Single Iterator Issue:
|
63 |
+
https://github.com/pytorch/data/issues/45
|
64 |
+
|
65 |
+
Note:
|
66 |
+
When a subclass is used with :class:`~torch.utils.data.DataLoader`, each
|
67 |
+
item in the DataPipe will be yielded from the :class:`~torch.utils.data.DataLoader`
|
68 |
+
iterator. When :attr:`num_workers > 0`, each worker process will have a
|
69 |
+
different copy of the DataPipe object, so it is often desired to configure
|
70 |
+
each copy independently to avoid having duplicate data returned from the
|
71 |
+
workers. :func:`~torch.utils.data.get_worker_info`, when called in a worker
|
72 |
+
process, returns information about the worker. It can be used in either the
|
73 |
+
dataset's :meth:`__iter__` method or the :class:`~torch.utils.data.DataLoader` 's
|
74 |
+
:attr:`worker_init_fn` option to modify each copy's behavior.
|
75 |
+
|
76 |
+
Examples:
|
77 |
+
General Usage:
|
78 |
+
>>> # xdoctest: +SKIP
|
79 |
+
>>> from torchdata.datapipes.iter import IterableWrapper, Mapper
|
80 |
+
>>> dp = IterableWrapper(range(10))
|
81 |
+
>>> map_dp_1 = Mapper(dp, lambda x: x + 1) # Using class constructor
|
82 |
+
>>> map_dp_2 = dp.map(lambda x: x + 1) # Using functional form (recommended)
|
83 |
+
>>> list(map_dp_1)
|
84 |
+
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
85 |
+
>>> list(map_dp_2)
|
86 |
+
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
87 |
+
>>> filter_dp = map_dp_1.filter(lambda x: x % 2 == 0)
|
88 |
+
>>> list(filter_dp)
|
89 |
+
[2, 4, 6, 8, 10]
|
90 |
+
Single Iterator Constraint Example:
|
91 |
+
>>> from torchdata.datapipes.iter import IterableWrapper, Mapper
|
92 |
+
>>> source_dp = IterableWrapper(range(10))
|
93 |
+
>>> it1 = iter(source_dp)
|
94 |
+
>>> list(it1)
|
95 |
+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
96 |
+
>>> it1 = iter(source_dp)
|
97 |
+
>>> it2 = iter(source_dp) # The creation of a new iterator invalidates `it1`
|
98 |
+
>>> next(it2)
|
99 |
+
0
|
100 |
+
>>> next(it1) # Further usage of `it1` will raise a `RunTimeError`
|
101 |
+
"""
|
102 |
+
|
103 |
+
functions: Dict[str, Callable] = {}
|
104 |
+
reduce_ex_hook: Optional[Callable] = None
|
105 |
+
getstate_hook: Optional[Callable] = None
|
106 |
+
str_hook: Optional[Callable] = None
|
107 |
+
repr_hook: Optional[Callable] = None
|
108 |
+
_valid_iterator_id: Optional[int] = None
|
109 |
+
_number_of_samples_yielded: int = 0
|
110 |
+
_snapshot_state: _SnapshotState = _SnapshotState.NotStarted
|
111 |
+
_fast_forward_iterator: Optional[Iterator] = None
|
112 |
+
|
113 |
+
def __iter__(self) -> Iterator[T_co]:
|
114 |
+
return self
|
115 |
+
|
116 |
+
def __getattr__(self, attribute_name):
|
117 |
+
if attribute_name in IterDataPipe.functions:
|
118 |
+
if attribute_name in _iter_deprecated_functional_names:
|
119 |
+
kwargs = _iter_deprecated_functional_names[attribute_name]
|
120 |
+
_deprecation_warning(**kwargs)
|
121 |
+
f = IterDataPipe.functions[attribute_name]
|
122 |
+
function = functools.partial(f, self)
|
123 |
+
functools.update_wrapper(wrapper=function, wrapped=f, assigned=("__doc__",))
|
124 |
+
return function
|
125 |
+
else:
|
126 |
+
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute_name}")
|
127 |
+
|
128 |
+
@classmethod
|
129 |
+
def register_function(cls, function_name, function):
|
130 |
+
cls.functions[function_name] = function
|
131 |
+
|
132 |
+
@classmethod
|
133 |
+
def register_datapipe_as_function(cls, function_name, cls_to_register, enable_df_api_tracing=False):
|
134 |
+
if function_name in cls.functions:
|
135 |
+
raise Exception(f"Unable to add DataPipe function name {function_name} as it is already taken")
|
136 |
+
|
137 |
+
def class_function(cls, enable_df_api_tracing, source_dp, *args, **kwargs):
|
138 |
+
result_pipe = cls(source_dp, *args, **kwargs)
|
139 |
+
if isinstance(result_pipe, IterDataPipe):
|
140 |
+
if enable_df_api_tracing or isinstance(source_dp, DFIterDataPipe):
|
141 |
+
if function_name not in UNTRACABLE_DATAFRAME_PIPES:
|
142 |
+
result_pipe = result_pipe.trace_as_dataframe()
|
143 |
+
|
144 |
+
return result_pipe
|
145 |
+
|
146 |
+
function = functools.partial(
|
147 |
+
class_function, cls_to_register, enable_df_api_tracing
|
148 |
+
)
|
149 |
+
functools.update_wrapper(
|
150 |
+
wrapper=function, wrapped=cls_to_register, assigned=("__doc__",)
|
151 |
+
)
|
152 |
+
cls.functions[function_name] = function
|
153 |
+
|
154 |
+
def __getstate__(self):
|
155 |
+
"""
|
156 |
+
Serialize `lambda` functions when `dill` is available.
|
157 |
+
|
158 |
+
If this doesn't cover your custom DataPipe's use case, consider writing custom methods for
|
159 |
+
`__getstate__` and `__setstate__`, or use `pickle.dumps` for serialization.
|
160 |
+
"""
|
161 |
+
state = self.__dict__
|
162 |
+
if IterDataPipe.getstate_hook is not None:
|
163 |
+
return IterDataPipe.getstate_hook(state)
|
164 |
+
return state
|
165 |
+
|
166 |
+
def __reduce_ex__(self, *args, **kwargs):
|
167 |
+
if IterDataPipe.reduce_ex_hook is not None:
|
168 |
+
try:
|
169 |
+
return IterDataPipe.reduce_ex_hook(self)
|
170 |
+
except NotImplementedError:
|
171 |
+
pass
|
172 |
+
return super().__reduce_ex__(*args, **kwargs)
|
173 |
+
|
174 |
+
@classmethod
|
175 |
+
def set_getstate_hook(cls, hook_fn):
|
176 |
+
if IterDataPipe.getstate_hook is not None and hook_fn is not None:
|
177 |
+
raise Exception("Attempt to override existing getstate_hook")
|
178 |
+
IterDataPipe.getstate_hook = hook_fn
|
179 |
+
|
180 |
+
@classmethod
|
181 |
+
def set_reduce_ex_hook(cls, hook_fn):
|
182 |
+
if IterDataPipe.reduce_ex_hook is not None and hook_fn is not None:
|
183 |
+
raise Exception("Attempt to override existing reduce_ex_hook")
|
184 |
+
IterDataPipe.reduce_ex_hook = hook_fn
|
185 |
+
|
186 |
+
def __repr__(self):
|
187 |
+
if self.repr_hook is not None:
|
188 |
+
return self.repr_hook(self)
|
189 |
+
# Instead of showing <torch. ... .MapperIterDataPipe object at 0x.....>, return the class name
|
190 |
+
return str(self.__class__.__qualname__)
|
191 |
+
|
192 |
+
def __str__(self):
|
193 |
+
if self.str_hook is not None:
|
194 |
+
return self.str_hook(self)
|
195 |
+
# Instead of showing <torch. ... .MapperIterDataPipe object at 0x.....>, return the class name
|
196 |
+
return str(self.__class__.__qualname__)
|
197 |
+
|
198 |
+
def __dir__(self):
|
199 |
+
# for auto-completion in a REPL (e.g. Jupyter notebook)
|
200 |
+
return list(super().__dir__()) + list(self.functions.keys())
|
201 |
+
|
202 |
+
def reset(self) -> None:
|
203 |
+
r"""
|
204 |
+
Reset the `IterDataPipe` to the initial state.
|
205 |
+
|
206 |
+
By default, no-op. For subclasses of `IterDataPipe`, depending on their functionalities,
|
207 |
+
they may want to override this method with implementations that
|
208 |
+
may clear the buffers and reset pointers of the DataPipe.
|
209 |
+
The `reset` method is always called when `__iter__` is called as part of `hook_iterator`.
|
210 |
+
"""
|
211 |
+
pass
|
212 |
+
|
213 |
+
|
214 |
+
class DFIterDataPipe(IterDataPipe):
|
215 |
+
def _is_dfpipe(self):
|
216 |
+
return True
|
217 |
+
|
218 |
+
|
219 |
+
class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta):
|
220 |
+
r"""
|
221 |
+
Map-style DataPipe.
|
222 |
+
|
223 |
+
All datasets that represent a map from keys to data samples should subclass this.
|
224 |
+
Subclasses should overwrite :meth:`__getitem__`, supporting fetching a
|
225 |
+
data sample for a given, unique key. Subclasses can also optionally overwrite
|
226 |
+
:meth:`__len__`, which is expected to return the size of the dataset by many
|
227 |
+
:class:`~torch.utils.data.Sampler` implementations and the default options
|
228 |
+
of :class:`~torch.utils.data.DataLoader`.
|
229 |
+
|
230 |
+
These DataPipes can be invoked in two ways, using the class constructor or applying their
|
231 |
+
functional form onto an existing `MapDataPipe` (recommend, available to most but not all DataPipes).
|
232 |
+
|
233 |
+
Note:
|
234 |
+
:class:`~torch.utils.data.DataLoader` by default constructs an index
|
235 |
+
sampler that yields integral indices. To make it work with a map-style
|
236 |
+
DataPipe with non-integral indices/keys, a custom sampler must be provided.
|
237 |
+
|
238 |
+
Example:
|
239 |
+
>>> # xdoctest: +SKIP
|
240 |
+
>>> from torchdata.datapipes.map import SequenceWrapper, Mapper
|
241 |
+
>>> dp = SequenceWrapper(range(10))
|
242 |
+
>>> map_dp_1 = dp.map(lambda x: x + 1) # Using functional form (recommended)
|
243 |
+
>>> list(map_dp_1)
|
244 |
+
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
245 |
+
>>> map_dp_2 = Mapper(dp, lambda x: x + 1) # Using class constructor
|
246 |
+
>>> list(map_dp_2)
|
247 |
+
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
248 |
+
>>> batch_dp = map_dp_1.batch(batch_size=2)
|
249 |
+
>>> list(batch_dp)
|
250 |
+
[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
|
251 |
+
"""
|
252 |
+
|
253 |
+
functions: Dict[str, Callable] = {}
|
254 |
+
reduce_ex_hook: Optional[Callable] = None
|
255 |
+
getstate_hook: Optional[Callable] = None
|
256 |
+
str_hook: Optional[Callable] = None
|
257 |
+
repr_hook: Optional[Callable] = None
|
258 |
+
|
259 |
+
def __getattr__(self, attribute_name):
|
260 |
+
if attribute_name in MapDataPipe.functions:
|
261 |
+
if attribute_name in _map_deprecated_functional_names:
|
262 |
+
kwargs = _map_deprecated_functional_names[attribute_name]
|
263 |
+
_deprecation_warning(**kwargs)
|
264 |
+
f = MapDataPipe.functions[attribute_name]
|
265 |
+
function = functools.partial(f, self)
|
266 |
+
functools.update_wrapper(wrapper=function, wrapped=f, assigned=("__doc__",))
|
267 |
+
return function
|
268 |
+
else:
|
269 |
+
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute_name}")
|
270 |
+
|
271 |
+
@classmethod
|
272 |
+
def register_function(cls, function_name, function):
|
273 |
+
cls.functions[function_name] = function
|
274 |
+
|
275 |
+
@classmethod
|
276 |
+
def register_datapipe_as_function(cls, function_name, cls_to_register):
|
277 |
+
if function_name in cls.functions:
|
278 |
+
raise Exception(f"Unable to add DataPipe function name {function_name} as it is already taken")
|
279 |
+
|
280 |
+
def class_function(cls, source_dp, *args, **kwargs):
|
281 |
+
result_pipe = cls(source_dp, *args, **kwargs)
|
282 |
+
return result_pipe
|
283 |
+
|
284 |
+
function = functools.partial(class_function, cls_to_register)
|
285 |
+
functools.update_wrapper(
|
286 |
+
wrapper=function, wrapped=cls_to_register, assigned=("__doc__",)
|
287 |
+
)
|
288 |
+
cls.functions[function_name] = function
|
289 |
+
|
290 |
+
def __getstate__(self):
|
291 |
+
"""
|
292 |
+
Serialize `lambda` functions when `dill` is available.
|
293 |
+
|
294 |
+
If this doesn't cover your custom DataPipe's use case, consider writing custom methods for
|
295 |
+
`__getstate__` and `__setstate__`, or use `pickle.dumps` for serialization.
|
296 |
+
"""
|
297 |
+
state = self.__dict__
|
298 |
+
if MapDataPipe.getstate_hook is not None:
|
299 |
+
return MapDataPipe.getstate_hook(state)
|
300 |
+
return state
|
301 |
+
|
302 |
+
def __reduce_ex__(self, *args, **kwargs):
|
303 |
+
if MapDataPipe.reduce_ex_hook is not None:
|
304 |
+
try:
|
305 |
+
return MapDataPipe.reduce_ex_hook(self)
|
306 |
+
except NotImplementedError:
|
307 |
+
pass
|
308 |
+
return super().__reduce_ex__(*args, **kwargs)
|
309 |
+
|
310 |
+
@classmethod
|
311 |
+
def set_getstate_hook(cls, hook_fn):
|
312 |
+
if MapDataPipe.getstate_hook is not None and hook_fn is not None:
|
313 |
+
raise Exception("Attempt to override existing getstate_hook")
|
314 |
+
MapDataPipe.getstate_hook = hook_fn
|
315 |
+
|
316 |
+
@classmethod
|
317 |
+
def set_reduce_ex_hook(cls, hook_fn):
|
318 |
+
if MapDataPipe.reduce_ex_hook is not None and hook_fn is not None:
|
319 |
+
raise Exception("Attempt to override existing reduce_ex_hook")
|
320 |
+
MapDataPipe.reduce_ex_hook = hook_fn
|
321 |
+
|
322 |
+
def __repr__(self):
|
323 |
+
if self.repr_hook is not None:
|
324 |
+
return self.repr_hook(self)
|
325 |
+
# Instead of showing <torch. ... .MapperMapDataPipe object at 0x.....>, return the class name
|
326 |
+
return str(self.__class__.__qualname__)
|
327 |
+
|
328 |
+
def __str__(self):
|
329 |
+
if self.str_hook is not None:
|
330 |
+
return self.str_hook(self)
|
331 |
+
# Instead of showing <torch. ... .MapperMapDataPipe object at 0x.....>, return the class name
|
332 |
+
return str(self.__class__.__qualname__)
|
333 |
+
|
334 |
+
def __dir__(self):
|
335 |
+
# for auto-completion in a REPL (e.g. Jupyter notebook)
|
336 |
+
return list(super().__dir__()) + list(self.functions.keys())
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
class _DataPipeSerializationWrapper:
|
341 |
+
def __init__(self, datapipe):
|
342 |
+
self._datapipe = datapipe
|
343 |
+
|
344 |
+
def __getstate__(self):
|
345 |
+
use_dill = False
|
346 |
+
try:
|
347 |
+
value = pickle.dumps(self._datapipe)
|
348 |
+
except Exception:
|
349 |
+
if HAS_DILL:
|
350 |
+
value = dill.dumps(self._datapipe)
|
351 |
+
use_dill = True
|
352 |
+
else:
|
353 |
+
raise
|
354 |
+
return (value, use_dill)
|
355 |
+
|
356 |
+
def __setstate__(self, state):
|
357 |
+
value, use_dill = state
|
358 |
+
if use_dill:
|
359 |
+
self._datapipe = dill.loads(value)
|
360 |
+
else:
|
361 |
+
self._datapipe = pickle.loads(value)
|
362 |
+
|
363 |
+
def __len__(self):
|
364 |
+
try:
|
365 |
+
return len(self._datapipe)
|
366 |
+
except Exception as e:
|
367 |
+
raise TypeError(
|
368 |
+
f"{type(self).__name__} instance doesn't have valid length"
|
369 |
+
) from e
|
370 |
+
|
371 |
+
|
372 |
+
class _IterDataPipeSerializationWrapper(_DataPipeSerializationWrapper, IterDataPipe):
|
373 |
+
def __init__(self, datapipe: IterDataPipe[T_co]):
|
374 |
+
super().__init__(datapipe)
|
375 |
+
self._datapipe_iter: Optional[Iterator[T_co]] = None
|
376 |
+
|
377 |
+
def __iter__(self) -> "_IterDataPipeSerializationWrapper":
|
378 |
+
self._datapipe_iter = iter(self._datapipe)
|
379 |
+
return self
|
380 |
+
|
381 |
+
def __next__(self) -> T_co: # type: ignore[type-var]
|
382 |
+
assert self._datapipe_iter is not None
|
383 |
+
return next(self._datapipe_iter)
|
384 |
+
|
385 |
+
|
386 |
+
class _MapDataPipeSerializationWrapper(_DataPipeSerializationWrapper, MapDataPipe):
|
387 |
+
def __getitem__(self, idx):
|
388 |
+
return self._datapipe[idx]
|
389 |
+
|
390 |
+
|
391 |
+
class DataChunk(list, Generic[T]):
|
392 |
+
def __init__(self, items):
|
393 |
+
super().__init__(items)
|
394 |
+
self.items = items
|
395 |
+
|
396 |
+
def as_str(self, indent=''):
|
397 |
+
res = indent + "[" + ", ".join(str(i) for i in iter(self)) + "]"
|
398 |
+
return res
|
399 |
+
|
400 |
+
def __iter__(self) -> Iterator[T]:
|
401 |
+
yield from super().__iter__()
|
402 |
+
|
403 |
+
def raw_iterator(self) -> T: # type: ignore[misc]
|
404 |
+
yield from self.items
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/datapipe.pyi
ADDED
@@ -0,0 +1,689 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This base template ("datapipe.pyi.in") is generated from mypy stubgen with minimal editing for code injection
|
2 |
+
# The output file will be "datapipe.pyi". This is executed as part of torch/CMakeLists.txt
|
3 |
+
# Note that, for mypy, .pyi file takes precedent over .py file, such that we must define the interface for other
|
4 |
+
# classes/objects here, even though we are not injecting extra code into them at the moment.
|
5 |
+
|
6 |
+
from typing import Any, Callable, Dict, Generic, Iterator, List, Literal, Optional, TypeVar, Union
|
7 |
+
|
8 |
+
from torch.utils.data import Dataset, default_collate, IterableDataset
|
9 |
+
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
|
10 |
+
from torch.utils.data.datapipes._typing import _DataPipeMeta, _IterDataPipeMeta
|
11 |
+
|
12 |
+
T_co = TypeVar("T_co", covariant=True)
|
13 |
+
T = TypeVar("T")
|
14 |
+
UNTRACABLE_DATAFRAME_PIPES: Any
|
15 |
+
|
16 |
+
class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta):
|
17 |
+
functions: Dict[str, Callable] = ...
|
18 |
+
reduce_ex_hook: Optional[Callable] = ...
|
19 |
+
getstate_hook: Optional[Callable] = ...
|
20 |
+
str_hook: Optional[Callable] = ...
|
21 |
+
repr_hook: Optional[Callable] = ...
|
22 |
+
def __getattr__(self, attribute_name: Any): ...
|
23 |
+
@classmethod
|
24 |
+
def register_function(cls, function_name: Any, function: Any) -> None: ...
|
25 |
+
@classmethod
|
26 |
+
def register_datapipe_as_function(
|
27 |
+
cls,
|
28 |
+
function_name: Any,
|
29 |
+
cls_to_register: Any,
|
30 |
+
): ...
|
31 |
+
def __getstate__(self): ...
|
32 |
+
def __reduce_ex__(self, *args: Any, **kwargs: Any): ...
|
33 |
+
@classmethod
|
34 |
+
def set_getstate_hook(cls, hook_fn: Any) -> None: ...
|
35 |
+
@classmethod
|
36 |
+
def set_reduce_ex_hook(cls, hook_fn: Any) -> None: ...
|
37 |
+
# Functional form of 'BatcherMapDataPipe'
|
38 |
+
def batch(self, batch_size: int, drop_last: bool = False, wrapper_class=DataChunk) -> MapDataPipe:
|
39 |
+
r"""
|
40 |
+
Create mini-batches of data (functional name: ``batch``).
|
41 |
+
|
42 |
+
An outer dimension will be added as ``batch_size`` if ``drop_last`` is set to ``True``,
|
43 |
+
or ``length % batch_size`` for the last batch if ``drop_last`` is set to ``False``.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
datapipe: Iterable DataPipe being batched
|
47 |
+
batch_size: The size of each batch
|
48 |
+
drop_last: Option to drop the last batch if it's not full
|
49 |
+
|
50 |
+
Example:
|
51 |
+
>>> # xdoctest: +SKIP
|
52 |
+
>>> from torchdata.datapipes.map import SequenceWrapper
|
53 |
+
>>> dp = SequenceWrapper(range(10))
|
54 |
+
>>> batch_dp = dp.batch(batch_size=2)
|
55 |
+
>>> list(batch_dp)
|
56 |
+
[[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]
|
57 |
+
"""
|
58 |
+
|
59 |
+
# Functional form of 'ConcaterMapDataPipe'
|
60 |
+
def concat(self, *datapipes: MapDataPipe) -> MapDataPipe:
|
61 |
+
r"""
|
62 |
+
Concatenate multiple Map DataPipes (functional name: ``concat``).
|
63 |
+
|
64 |
+
The new index of is the cumulative sum of source DataPipes.
|
65 |
+
For example, if there are 2 source DataPipes both with length 5,
|
66 |
+
index 0 to 4 of the resulting `ConcatMapDataPipe` would refer to
|
67 |
+
elements of the first DataPipe, and 5 to 9 would refer to elements
|
68 |
+
of the second DataPipe.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
datapipes: Map DataPipes being concatenated
|
72 |
+
|
73 |
+
Example:
|
74 |
+
>>> # xdoctest: +SKIP
|
75 |
+
>>> from torchdata.datapipes.map import SequenceWrapper
|
76 |
+
>>> dp1 = SequenceWrapper(range(3))
|
77 |
+
>>> dp2 = SequenceWrapper(range(3))
|
78 |
+
>>> concat_dp = dp1.concat(dp2)
|
79 |
+
>>> list(concat_dp)
|
80 |
+
[0, 1, 2, 0, 1, 2]
|
81 |
+
"""
|
82 |
+
|
83 |
+
# Functional form of 'MapperMapDataPipe'
|
84 |
+
def map(self, fn: Callable= ...) -> MapDataPipe:
|
85 |
+
r"""
|
86 |
+
Apply the input function over each item from the source DataPipe (functional name: ``map``).
|
87 |
+
|
88 |
+
The function can be any regular Python function or partial object. Lambda
|
89 |
+
function is not recommended as it is not supported by pickle.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
datapipe: Source MapDataPipe
|
93 |
+
fn: Function being applied to each item
|
94 |
+
|
95 |
+
Example:
|
96 |
+
>>> # xdoctest: +SKIP
|
97 |
+
>>> from torchdata.datapipes.map import SequenceWrapper, Mapper
|
98 |
+
>>> def add_one(x):
|
99 |
+
... return x + 1
|
100 |
+
>>> dp = SequenceWrapper(range(10))
|
101 |
+
>>> map_dp_1 = dp.map(add_one)
|
102 |
+
>>> list(map_dp_1)
|
103 |
+
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
104 |
+
>>> map_dp_2 = Mapper(dp, lambda x: x + 1)
|
105 |
+
>>> list(map_dp_2)
|
106 |
+
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
107 |
+
"""
|
108 |
+
|
109 |
+
# Functional form of 'ShufflerIterDataPipe'
|
110 |
+
def shuffle(self, *, indices: Optional[List] = None) -> IterDataPipe:
|
111 |
+
r"""
|
112 |
+
Shuffle the input MapDataPipe via its indices (functional name: ``shuffle``).
|
113 |
+
|
114 |
+
When it is used with :class:`~torch.utils.data.DataLoader`, the methods to
|
115 |
+
set up random seed are different based on :attr:`num_workers`.
|
116 |
+
|
117 |
+
For single-process mode (:attr:`num_workers == 0`), the random seed is set before
|
118 |
+
the :class:`~torch.utils.data.DataLoader` in the main process. For multi-process
|
119 |
+
mode (:attr:`num_worker > 0`), ``worker_init_fn`` is used to set up a random seed
|
120 |
+
for each worker process.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
datapipe: MapDataPipe being shuffled
|
124 |
+
indices: a list of indices of the MapDataPipe. If not provided, we assume it uses 0-based indexing
|
125 |
+
|
126 |
+
Example:
|
127 |
+
>>> # xdoctest: +SKIP
|
128 |
+
>>> from torchdata.datapipes.map import SequenceWrapper
|
129 |
+
>>> dp = SequenceWrapper(range(10))
|
130 |
+
>>> shuffle_dp = dp.shuffle().set_seed(0)
|
131 |
+
>>> list(shuffle_dp)
|
132 |
+
[7, 8, 1, 5, 3, 4, 2, 0, 9, 6]
|
133 |
+
>>> list(shuffle_dp)
|
134 |
+
[6, 1, 9, 5, 2, 4, 7, 3, 8, 0]
|
135 |
+
>>> # Reset seed for Shuffler
|
136 |
+
>>> shuffle_dp = shuffle_dp.set_seed(0)
|
137 |
+
>>> list(shuffle_dp)
|
138 |
+
[7, 8, 1, 5, 3, 4, 2, 0, 9, 6]
|
139 |
+
|
140 |
+
Note:
|
141 |
+
Even thought this ``shuffle`` operation takes a ``MapDataPipe`` as the input, it would return an
|
142 |
+
``IterDataPipe`` rather than a ``MapDataPipe``, because ``MapDataPipe`` should be non-sensitive to
|
143 |
+
the order of data order for the sake of random reads, but ``IterDataPipe`` depends on the order
|
144 |
+
of data during data-processing.
|
145 |
+
"""
|
146 |
+
|
147 |
+
# Functional form of 'ZipperMapDataPipe'
|
148 |
+
def zip(self, *datapipes: MapDataPipe[T_co]) -> MapDataPipe:
|
149 |
+
r"""
|
150 |
+
Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip``).
|
151 |
+
|
152 |
+
This MataPipe is out of bound as soon as the shortest input DataPipe is exhausted.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
*datapipes: Map DataPipes being aggregated
|
156 |
+
|
157 |
+
Example:
|
158 |
+
>>> # xdoctest: +SKIP
|
159 |
+
>>> from torchdata.datapipes.map import SequenceWrapper
|
160 |
+
>>> dp1 = SequenceWrapper(range(3))
|
161 |
+
>>> dp2 = SequenceWrapper(range(10, 13))
|
162 |
+
>>> zip_dp = dp1.zip(dp2)
|
163 |
+
>>> list(zip_dp)
|
164 |
+
[(0, 10), (1, 11), (2, 12)]
|
165 |
+
"""
|
166 |
+
|
167 |
+
|
168 |
+
class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta):
|
169 |
+
functions: Dict[str, Callable] = ...
|
170 |
+
reduce_ex_hook: Optional[Callable] = ...
|
171 |
+
getstate_hook: Optional[Callable] = ...
|
172 |
+
str_hook: Optional[Callable] = ...
|
173 |
+
repr_hook: Optional[Callable] = ...
|
174 |
+
_number_of_samples_yielded: int = ...
|
175 |
+
_snapshot_state: _SnapshotState = _SnapshotState.Iterating
|
176 |
+
_fast_forward_iterator: Optional[Iterator] = ...
|
177 |
+
def __getattr__(self, attribute_name: Any): ...
|
178 |
+
@classmethod
|
179 |
+
def register_function(cls, function_name: Any, function: Any) -> None: ...
|
180 |
+
@classmethod
|
181 |
+
def register_datapipe_as_function(
|
182 |
+
cls,
|
183 |
+
function_name: Any,
|
184 |
+
cls_to_register: Any,
|
185 |
+
enable_df_api_tracing: bool = ...,
|
186 |
+
): ...
|
187 |
+
def __getstate__(self): ...
|
188 |
+
def __reduce_ex__(self, *args: Any, **kwargs: Any): ...
|
189 |
+
@classmethod
|
190 |
+
def set_getstate_hook(cls, hook_fn: Any) -> None: ...
|
191 |
+
@classmethod
|
192 |
+
def set_reduce_ex_hook(cls, hook_fn: Any) -> None: ...
|
193 |
+
# Functional form of 'BatcherIterDataPipe'
|
194 |
+
def batch(self, batch_size: int, drop_last: bool = False, wrapper_class=DataChunk) -> IterDataPipe:
|
195 |
+
r"""
|
196 |
+
Creates mini-batches of data (functional name: ``batch``).
|
197 |
+
|
198 |
+
An outer dimension will be added as ``batch_size`` if ``drop_last`` is set to ``True``, or ``length % batch_size`` for the
|
199 |
+
last batch if ``drop_last`` is set to ``False``.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
datapipe: Iterable DataPipe being batched
|
203 |
+
batch_size: The size of each batch
|
204 |
+
drop_last: Option to drop the last batch if it's not full
|
205 |
+
wrapper_class: wrapper to apply onto each batch (type ``List``) before yielding,
|
206 |
+
defaults to ``DataChunk``
|
207 |
+
|
208 |
+
Example:
|
209 |
+
>>> # xdoctest: +SKIP
|
210 |
+
>>> from torchdata.datapipes.iter import IterableWrapper
|
211 |
+
>>> dp = IterableWrapper(range(10))
|
212 |
+
>>> dp = dp.batch(batch_size=3, drop_last=True)
|
213 |
+
>>> list(dp)
|
214 |
+
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
|
215 |
+
"""
|
216 |
+
|
217 |
+
# Functional form of 'CollatorIterDataPipe'
|
218 |
+
def collate(self, conversion: Optional[Union[Callable[..., Any],Dict[Union[str, Any], Union[Callable, Any]],]] = default_collate, collate_fn: Optional[Callable] = None) -> IterDataPipe:
|
219 |
+
r"""
|
220 |
+
Collates samples from DataPipe to Tensor(s) by a custom collate function (functional name: ``collate``).
|
221 |
+
|
222 |
+
By default, it uses :func:`torch.utils.data.default_collate`.
|
223 |
+
|
224 |
+
.. note::
|
225 |
+
While writing a custom collate function, you can import :func:`torch.utils.data.default_collate` for the
|
226 |
+
default behavior and `functools.partial` to specify any additional arguments.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
datapipe: Iterable DataPipe being collated
|
230 |
+
collate_fn: Customized collate function to collect and combine data or a batch of data.
|
231 |
+
Default function collates to Tensor(s) based on data type.
|
232 |
+
|
233 |
+
Example:
|
234 |
+
>>> # xdoctest: +SKIP
|
235 |
+
>>> # Convert integer data to float Tensor
|
236 |
+
>>> class MyIterDataPipe(torch.utils.data.IterDataPipe):
|
237 |
+
... def __init__(self, start, end):
|
238 |
+
... super(MyIterDataPipe).__init__()
|
239 |
+
... assert end > start, "this example code only works with end >= start"
|
240 |
+
... self.start = start
|
241 |
+
... self.end = end
|
242 |
+
...
|
243 |
+
... def __iter__(self):
|
244 |
+
... return iter(range(self.start, self.end))
|
245 |
+
...
|
246 |
+
... def __len__(self):
|
247 |
+
... return self.end - self.start
|
248 |
+
...
|
249 |
+
>>> ds = MyIterDataPipe(start=3, end=7)
|
250 |
+
>>> print(list(ds))
|
251 |
+
[3, 4, 5, 6]
|
252 |
+
>>> def collate_fn(batch):
|
253 |
+
... return torch.tensor(batch, dtype=torch.float)
|
254 |
+
...
|
255 |
+
>>> collated_ds = CollateIterDataPipe(ds, collate_fn=collate_fn)
|
256 |
+
>>> print(list(collated_ds))
|
257 |
+
[tensor(3.), tensor(4.), tensor(5.), tensor(6.)]
|
258 |
+
"""
|
259 |
+
|
260 |
+
# Functional form of 'ConcaterIterDataPipe'
|
261 |
+
def concat(self, *datapipes: IterDataPipe) -> IterDataPipe:
|
262 |
+
r"""
|
263 |
+
Concatenates multiple Iterable DataPipes (functional name: ``concat``).
|
264 |
+
|
265 |
+
The resulting DataPipe will yield all the elements from the first input DataPipe, before yielding from the subsequent ones.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
datapipes: Iterable DataPipes being concatenated
|
269 |
+
|
270 |
+
Example:
|
271 |
+
>>> # xdoctest: +REQUIRES(module:torchdata)
|
272 |
+
>>> import random
|
273 |
+
>>> from torchdata.datapipes.iter import IterableWrapper
|
274 |
+
>>> dp1 = IterableWrapper(range(3))
|
275 |
+
>>> dp2 = IterableWrapper(range(5))
|
276 |
+
>>> list(dp1.concat(dp2))
|
277 |
+
[0, 1, 2, 0, 1, 2, 3, 4]
|
278 |
+
"""
|
279 |
+
|
280 |
+
# Functional form of 'DemultiplexerIterDataPipe'
|
281 |
+
def demux(self, num_instances: int, classifier_fn: Callable[[T_co], Optional[int]], drop_none: bool = False, buffer_size: int = 1000) -> List[IterDataPipe]:
|
282 |
+
r"""
|
283 |
+
Splits the input DataPipe into multiple child DataPipes, using the given classification function (functional name: ``demux``).
|
284 |
+
|
285 |
+
A list of the child DataPipes is returned from this operation.
|
286 |
+
|
287 |
+
Args:
|
288 |
+
datapipe: Iterable DataPipe being filtered
|
289 |
+
num_instances: number of instances of the DataPipe to create
|
290 |
+
classifier_fn: a function that maps values to an integer within the range ``[0, num_instances - 1]`` or ``None``
|
291 |
+
drop_none: defaults to ``False``, if ``True``, the function will skip over elements classified as ``None``
|
292 |
+
buffer_size: this defines the maximum number of inputs that the buffer can hold across all child
|
293 |
+
DataPipes while waiting for their values to be yielded.
|
294 |
+
Defaults to ``1000``. Use ``-1`` for the unlimited buffer.
|
295 |
+
|
296 |
+
Examples:
|
297 |
+
>>> # xdoctest: +REQUIRES(module:torchdata)
|
298 |
+
>>> from torchdata.datapipes.iter import IterableWrapper
|
299 |
+
>>> def odd_or_even(n):
|
300 |
+
... return n % 2
|
301 |
+
>>> source_dp = IterableWrapper(range(5))
|
302 |
+
>>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even)
|
303 |
+
>>> list(dp1)
|
304 |
+
[0, 2, 4]
|
305 |
+
>>> list(dp2)
|
306 |
+
[1, 3]
|
307 |
+
>>> # It can also filter out any element that gets `None` from the `classifier_fn`
|
308 |
+
>>> def odd_or_even_no_zero(n):
|
309 |
+
... return n % 2 if n != 0 else None
|
310 |
+
>>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even_no_zero, drop_none=True)
|
311 |
+
>>> list(dp1)
|
312 |
+
[2, 4]
|
313 |
+
>>> list(dp2)
|
314 |
+
[1, 3]
|
315 |
+
"""
|
316 |
+
|
317 |
+
# Functional form of 'FilterIterDataPipe'
|
318 |
+
def filter(self, filter_fn: Callable, input_col=None) -> IterDataPipe:
|
319 |
+
r"""
|
320 |
+
Filters out elements from the source datapipe according to input ``filter_fn`` (functional name: ``filter``).
|
321 |
+
|
322 |
+
Args:
|
323 |
+
datapipe: Iterable DataPipe being filtered
|
324 |
+
filter_fn: Customized function mapping an element to a boolean.
|
325 |
+
input_col: Index or indices of data which ``filter_fn`` is applied, such as:
|
326 |
+
|
327 |
+
- ``None`` as default to apply ``filter_fn`` to the data directly.
|
328 |
+
- Integer(s) is used for list/tuple.
|
329 |
+
- Key(s) is used for dict.
|
330 |
+
|
331 |
+
Example:
|
332 |
+
>>> # xdoctest: +SKIP
|
333 |
+
>>> from torchdata.datapipes.iter import IterableWrapper
|
334 |
+
>>> def is_even(n):
|
335 |
+
... return n % 2 == 0
|
336 |
+
>>> dp = IterableWrapper(range(5))
|
337 |
+
>>> filter_dp = dp.filter(filter_fn=is_even)
|
338 |
+
>>> list(filter_dp)
|
339 |
+
[0, 2, 4]
|
340 |
+
"""
|
341 |
+
|
342 |
+
# Functional form of 'ForkerIterDataPipe'
|
343 |
+
def fork(self, num_instances: int, buffer_size: int = 1000, copy: Optional[Literal["shallow", "deep"]] = None) -> List[IterDataPipe]:
|
344 |
+
r"""
|
345 |
+
Creates multiple instances of the same Iterable DataPipe (functional name: ``fork``).
|
346 |
+
|
347 |
+
Args:
|
348 |
+
datapipe: Iterable DataPipe being copied
|
349 |
+
num_instances: number of instances of the datapipe to create
|
350 |
+
buffer_size: this restricts how far ahead the leading child DataPipe
|
351 |
+
can read relative to the slowest child DataPipe.
|
352 |
+
Defaults to ``1000``. Use ``-1`` for the unlimited buffer.
|
353 |
+
copy: copy strategy to use for items yielded by each branch. Supported
|
354 |
+
options are ``None`` for no copying, ``"shallow"`` for shallow object
|
355 |
+
copies, and ``"deep"`` for deep object copies. Defaults to ``None``.
|
356 |
+
|
357 |
+
Note:
|
358 |
+
All branches of the forked pipeline return the identical object unless
|
359 |
+
the copy parameter is supplied. If the object is mutable or contains
|
360 |
+
mutable objects, changing them in one branch will affect all others.
|
361 |
+
|
362 |
+
Example:
|
363 |
+
>>> # xdoctest: +REQUIRES(module:torchdata)
|
364 |
+
>>> from torchdata.datapipes.iter import IterableWrapper
|
365 |
+
>>> source_dp = IterableWrapper(range(5))
|
366 |
+
>>> dp1, dp2 = source_dp.fork(num_instances=2)
|
367 |
+
>>> list(dp1)
|
368 |
+
[0, 1, 2, 3, 4]
|
369 |
+
>>> list(dp2)
|
370 |
+
[0, 1, 2, 3, 4]
|
371 |
+
"""
|
372 |
+
|
373 |
+
# Functional form of 'GrouperIterDataPipe'
|
374 |
+
def groupby(self, group_key_fn: Callable[[T_co], Any], *, keep_key: bool = False, buffer_size: int = 10000, group_size: Optional[int] = None, guaranteed_group_size: Optional[int] = None, drop_remaining: bool = False) -> IterDataPipe:
|
375 |
+
r"""
|
376 |
+
Groups data from IterDataPipe by keys from ``group_key_fn``, yielding a ``DataChunk`` with batch size up to ``group_size``.
|
377 |
+
|
378 |
+
(functional name: ``groupby``).
|
379 |
+
|
380 |
+
The samples are read sequentially from the source ``datapipe``, and a batch of samples belonging to the same group
|
381 |
+
will be yielded as soon as the size of the batch reaches ``group_size``. When the buffer is full,
|
382 |
+
the DataPipe will yield the largest batch with the same key, provided that its size is larger
|
383 |
+
than ``guaranteed_group_size``. If its size is smaller, it will be dropped if ``drop_remaining=True``.
|
384 |
+
|
385 |
+
After iterating through the entirety of source ``datapipe``, everything not dropped due to the buffer capacity
|
386 |
+
will be yielded from the buffer, even if the group sizes are smaller than ``guaranteed_group_size``.
|
387 |
+
|
388 |
+
Args:
|
389 |
+
datapipe: Iterable datapipe to be grouped
|
390 |
+
group_key_fn: Function used to generate group key from the data of the source datapipe
|
391 |
+
keep_key: Option to yield the matching key along with the items in a tuple,
|
392 |
+
resulting in `(key, [items])` otherwise returning [items]
|
393 |
+
buffer_size: The size of buffer for ungrouped data
|
394 |
+
group_size: The max size of each group, a batch is yielded as soon as it reaches this size
|
395 |
+
guaranteed_group_size: The guaranteed minimum group size to be yielded in case the buffer is full
|
396 |
+
drop_remaining: Specifies if the group smaller than ``guaranteed_group_size`` will be dropped from buffer
|
397 |
+
when the buffer is full
|
398 |
+
|
399 |
+
Example:
|
400 |
+
>>> import os
|
401 |
+
>>> # xdoctest: +SKIP
|
402 |
+
>>> from torchdata.datapipes.iter import IterableWrapper
|
403 |
+
>>> def group_fn(file):
|
404 |
+
... return os.path.basename(file).split(".")[0]
|
405 |
+
>>> source_dp = IterableWrapper(["a.png", "b.png", "a.json", "b.json", "a.jpg", "c.json"])
|
406 |
+
>>> dp0 = source_dp.groupby(group_key_fn=group_fn)
|
407 |
+
>>> list(dp0)
|
408 |
+
[['a.png', 'a.json', 'a.jpg'], ['b.png', 'b.json'], ['c.json']]
|
409 |
+
>>> # A group is yielded as soon as its size equals to `group_size`
|
410 |
+
>>> dp1 = source_dp.groupby(group_key_fn=group_fn, group_size=2)
|
411 |
+
>>> list(dp1)
|
412 |
+
[['a.png', 'a.json'], ['b.png', 'b.json'], ['a.jpg'], ['c.json']]
|
413 |
+
>>> # Scenario where `buffer` is full, and group 'a' needs to be yielded since its size > `guaranteed_group_size`
|
414 |
+
>>> dp2 = source_dp.groupby(group_key_fn=group_fn, buffer_size=3, group_size=3, guaranteed_group_size=2)
|
415 |
+
>>> list(dp2)
|
416 |
+
[['a.png', 'a.json'], ['b.png', 'b.json'], ['a.jpg'], ['c.json']]
|
417 |
+
"""
|
418 |
+
|
419 |
+
# Functional form of 'FileListerIterDataPipe'
|
420 |
+
def list_files(self, masks: Union[str, List[str]] = '', *, recursive: bool = False, abspath: bool = False, non_deterministic: bool = False, length: int = -1) -> IterDataPipe:
|
421 |
+
r"""
|
422 |
+
Given path(s) to the root directory, yields file pathname(s) (path + filename) of files within the root directory.
|
423 |
+
|
424 |
+
Multiple root directories can be provided (functional name: ``list_files``).
|
425 |
+
|
426 |
+
Args:
|
427 |
+
root: Root directory or a sequence of root directories
|
428 |
+
masks: Unix style filter string or string list for filtering file name(s)
|
429 |
+
recursive: Whether to return pathname from nested directories or not
|
430 |
+
abspath: Whether to return relative pathname or absolute pathname
|
431 |
+
non_deterministic: Whether to return pathname in sorted order or not.
|
432 |
+
If ``False``, the results yielded from each root directory will be sorted
|
433 |
+
length: Nominal length of the datapipe
|
434 |
+
|
435 |
+
Example:
|
436 |
+
>>> # xdoctest: +SKIP
|
437 |
+
>>> from torchdata.datapipes.iter import FileLister
|
438 |
+
>>> dp = FileLister(root=".", recursive=True)
|
439 |
+
>>> list(dp)
|
440 |
+
['example.py', './data/data.tar']
|
441 |
+
"""
|
442 |
+
|
443 |
+
# Functional form of 'MapperIterDataPipe'
|
444 |
+
def map(self, fn: Callable, input_col=None, output_col=None) -> IterDataPipe:
|
445 |
+
r"""
|
446 |
+
Applies a function over each item from the source DataPipe (functional name: ``map``).
|
447 |
+
|
448 |
+
The function can be any regular Python function or partial object. Lambda
|
449 |
+
function is not recommended as it is not supported by pickle.
|
450 |
+
|
451 |
+
Args:
|
452 |
+
datapipe: Source Iterable DataPipe
|
453 |
+
fn: Function being applied over each item
|
454 |
+
input_col: Index or indices of data which ``fn`` is applied, such as:
|
455 |
+
|
456 |
+
- ``None`` as default to apply ``fn`` to the data directly.
|
457 |
+
- Integer(s) is used for list/tuple.
|
458 |
+
- Key(s) is used for dict.
|
459 |
+
|
460 |
+
output_col: Index of data where result of ``fn`` is placed. ``output_col`` can be specified
|
461 |
+
only when ``input_col`` is not ``None``
|
462 |
+
|
463 |
+
- ``None`` as default to replace the index that ``input_col`` specified; For ``input_col`` with
|
464 |
+
multiple indices, the left-most one is used, and other indices will be removed.
|
465 |
+
- Integer is used for list/tuple. ``-1`` represents to append result at the end.
|
466 |
+
- Key is used for dict. New key is acceptable.
|
467 |
+
|
468 |
+
Example:
|
469 |
+
>>> # xdoctest: +SKIP
|
470 |
+
>>> from torchdata.datapipes.iter import IterableWrapper, Mapper
|
471 |
+
>>> def add_one(x):
|
472 |
+
... return x + 1
|
473 |
+
>>> dp = IterableWrapper(range(10))
|
474 |
+
>>> map_dp_1 = dp.map(add_one) # Invocation via functional form is preferred
|
475 |
+
>>> list(map_dp_1)
|
476 |
+
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
477 |
+
>>> # We discourage the usage of `lambda` functions as they are not serializable with `pickle`
|
478 |
+
>>> # Use `functools.partial` or explicitly define the function instead
|
479 |
+
>>> map_dp_2 = Mapper(dp, lambda x: x + 1)
|
480 |
+
>>> list(map_dp_2)
|
481 |
+
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
482 |
+
"""
|
483 |
+
|
484 |
+
# Functional form of 'MultiplexerIterDataPipe'
|
485 |
+
def mux(self, *datapipes) -> IterDataPipe:
|
486 |
+
r"""
|
487 |
+
Yields one element at a time from each of the input Iterable DataPipes (functional name: ``mux``).
|
488 |
+
|
489 |
+
As in, one element from the 1st input DataPipe, then one element from the 2nd DataPipe in the next iteration,
|
490 |
+
and so on. It ends when the shortest input DataPipe is exhausted.
|
491 |
+
|
492 |
+
Args:
|
493 |
+
datapipes: Iterable DataPipes that will take turn to yield their elements, until the shortest DataPipe is exhausted
|
494 |
+
|
495 |
+
Example:
|
496 |
+
>>> # xdoctest: +REQUIRES(module:torchdata)
|
497 |
+
>>> from torchdata.datapipes.iter import IterableWrapper
|
498 |
+
>>> dp1, dp2, dp3 = IterableWrapper(range(3)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25))
|
499 |
+
>>> list(dp1.mux(dp2, dp3))
|
500 |
+
[0, 10, 20, 1, 11, 21, 2, 12, 22]
|
501 |
+
"""
|
502 |
+
|
503 |
+
# Functional form of 'FileOpenerIterDataPipe'
|
504 |
+
def open_files(self, mode: str = 'r', encoding: Optional[str] = None, length: int = -1) -> IterDataPipe:
|
505 |
+
r"""
|
506 |
+
Given pathnames, opens files and yield pathname and file stream in a tuple (functional name: ``open_files``).
|
507 |
+
|
508 |
+
Args:
|
509 |
+
datapipe: Iterable datapipe that provides pathnames
|
510 |
+
mode: An optional string that specifies the mode in which
|
511 |
+
the file is opened by ``open()``. It defaults to ``r``, other options are
|
512 |
+
``b`` for reading in binary mode and ``t`` for text mode.
|
513 |
+
encoding: An optional string that specifies the encoding of the
|
514 |
+
underlying file. It defaults to ``None`` to match the default encoding of ``open``.
|
515 |
+
length: Nominal length of the datapipe
|
516 |
+
|
517 |
+
Note:
|
518 |
+
The opened file handles will be closed by Python's GC periodically. Users can choose
|
519 |
+
to close them explicitly.
|
520 |
+
|
521 |
+
Example:
|
522 |
+
>>> # xdoctest: +SKIP
|
523 |
+
>>> from torchdata.datapipes.iter import FileLister, FileOpener, StreamReader
|
524 |
+
>>> dp = FileLister(root=".").filter(lambda fname: fname.endswith('.txt'))
|
525 |
+
>>> dp = FileOpener(dp)
|
526 |
+
>>> dp = StreamReader(dp)
|
527 |
+
>>> list(dp)
|
528 |
+
[('./abc.txt', 'abc')]
|
529 |
+
"""
|
530 |
+
|
531 |
+
# Functional form of 'StreamReaderIterDataPipe'
|
532 |
+
def read_from_stream(self, chunk=None) -> IterDataPipe:
|
533 |
+
r"""
|
534 |
+
Given IO streams and their label names, yield bytes with label name as tuple.
|
535 |
+
|
536 |
+
(functional name: ``read_from_stream``).
|
537 |
+
|
538 |
+
Args:
|
539 |
+
datapipe: Iterable DataPipe provides label/URL and byte stream
|
540 |
+
chunk: Number of bytes to be read from stream per iteration.
|
541 |
+
If ``None``, all bytes will be read until the EOF.
|
542 |
+
|
543 |
+
Example:
|
544 |
+
>>> # xdoctest: +SKIP
|
545 |
+
>>> from torchdata.datapipes.iter import IterableWrapper, StreamReader
|
546 |
+
>>> from io import StringIO
|
547 |
+
>>> dp = IterableWrapper([("alphabet", StringIO("abcde"))])
|
548 |
+
>>> list(StreamReader(dp, chunk=1))
|
549 |
+
[('alphabet', 'a'), ('alphabet', 'b'), ('alphabet', 'c'), ('alphabet', 'd'), ('alphabet', 'e')]
|
550 |
+
"""
|
551 |
+
|
552 |
+
# Functional form of 'RoutedDecoderIterDataPipe'
|
553 |
+
def routed_decode(self, *handlers: Callable, key_fn: Callable= ...) -> IterDataPipe:
|
554 |
+
r"""
|
555 |
+
Decodes binary streams from input DataPipe, yields pathname and decoded data in a tuple.
|
556 |
+
|
557 |
+
(functional name: ``routed_decode``)
|
558 |
+
|
559 |
+
Args:
|
560 |
+
datapipe: Iterable datapipe that provides pathname and binary stream in tuples
|
561 |
+
handlers: Optional user defined decoder handlers. If ``None``, basic and image decoder
|
562 |
+
handlers will be set as default. If multiple handles are provided, the priority
|
563 |
+
order follows the order of handlers (the first handler has the top priority)
|
564 |
+
key_fn: Function for decoder to extract key from pathname to dispatch handlers.
|
565 |
+
Default is set to extract file extension from pathname
|
566 |
+
|
567 |
+
Note:
|
568 |
+
When ``key_fn`` is specified returning anything other than extension, the default
|
569 |
+
handler will not work and users need to specify custom handler. Custom handler
|
570 |
+
could use regex to determine the eligibility to handle data.
|
571 |
+
"""
|
572 |
+
|
573 |
+
# Functional form of 'ShardingFilterIterDataPipe'
|
574 |
+
def sharding_filter(self, sharding_group_filter=None) -> IterDataPipe:
|
575 |
+
r"""
|
576 |
+
Wrapper that allows DataPipe to be sharded (functional name: ``sharding_filter``).
|
577 |
+
|
578 |
+
After ``apply_sharding`` is called, each instance of the DataPipe (on different workers) will have every `n`-th element of the
|
579 |
+
original DataPipe, where `n` equals to the number of instances.
|
580 |
+
|
581 |
+
Args:
|
582 |
+
source_datapipe: Iterable DataPipe that will be sharded
|
583 |
+
"""
|
584 |
+
|
585 |
+
# Functional form of 'ShufflerIterDataPipe'
|
586 |
+
def shuffle(self, *, buffer_size: int = 10000, unbatch_level: int = 0) -> IterDataPipe:
|
587 |
+
r"""
|
588 |
+
Shuffle the input DataPipe with a buffer (functional name: ``shuffle``).
|
589 |
+
|
590 |
+
The buffer with ``buffer_size`` is filled with elements from the datapipe first. Then,
|
591 |
+
each item will be yielded from the buffer by reservoir sampling via iterator.
|
592 |
+
|
593 |
+
``buffer_size`` is required to be larger than ``0``. For ``buffer_size == 1``, the
|
594 |
+
datapipe is not shuffled. In order to fully shuffle all elements from datapipe,
|
595 |
+
``buffer_size`` is required to be greater than or equal to the size of datapipe.
|
596 |
+
|
597 |
+
When it is used with :class:`torch.utils.data.DataLoader`, the methods to
|
598 |
+
set up random seed are different based on :attr:`num_workers`.
|
599 |
+
|
600 |
+
For single-process mode (:attr:`num_workers == 0`), the random seed is set before
|
601 |
+
the :class:`~torch.utils.data.DataLoader` in the main process. For multi-process
|
602 |
+
mode (:attr:`num_worker > 0`), `worker_init_fn` is used to set up a random seed
|
603 |
+
for each worker process.
|
604 |
+
|
605 |
+
Args:
|
606 |
+
datapipe: The IterDataPipe being shuffled
|
607 |
+
buffer_size: The buffer size for shuffling (default to ``10000``)
|
608 |
+
unbatch_level: Specifies if it is necessary to unbatch source data before
|
609 |
+
applying the shuffle
|
610 |
+
|
611 |
+
Example:
|
612 |
+
>>> # xdoctest: +SKIP
|
613 |
+
>>> from torchdata.datapipes.iter import IterableWrapper
|
614 |
+
>>> dp = IterableWrapper(range(10))
|
615 |
+
>>> shuffle_dp = dp.shuffle()
|
616 |
+
>>> list(shuffle_dp)
|
617 |
+
[0, 4, 1, 6, 3, 2, 9, 5, 7, 8]
|
618 |
+
"""
|
619 |
+
|
620 |
+
# Functional form of 'UnBatcherIterDataPipe'
|
621 |
+
def unbatch(self, unbatch_level: int = 1) -> IterDataPipe:
|
622 |
+
r"""
|
623 |
+
Undos batching of data (functional name: ``unbatch``).
|
624 |
+
|
625 |
+
In other words, it flattens the data up to the specified level within a batched DataPipe.
|
626 |
+
|
627 |
+
Args:
|
628 |
+
datapipe: Iterable DataPipe being un-batched
|
629 |
+
unbatch_level: Defaults to ``1`` (only flattening the top level). If set to ``2``,
|
630 |
+
it will flatten the top two levels, and ``-1`` will flatten the entire DataPipe.
|
631 |
+
|
632 |
+
Example:
|
633 |
+
>>> # xdoctest: +SKIP
|
634 |
+
>>> from torchdata.datapipes.iter import IterableWrapper
|
635 |
+
>>> source_dp = IterableWrapper([[[0, 1], [2]], [[3, 4], [5]], [[6]]])
|
636 |
+
>>> dp1 = source_dp.unbatch()
|
637 |
+
>>> list(dp1)
|
638 |
+
[[0, 1], [2], [3, 4], [5], [6]]
|
639 |
+
>>> dp2 = source_dp.unbatch(unbatch_level=2)
|
640 |
+
>>> list(dp2)
|
641 |
+
[0, 1, 2, 3, 4, 5, 6]
|
642 |
+
"""
|
643 |
+
|
644 |
+
# Functional form of 'ZipperIterDataPipe'
|
645 |
+
def zip(self, *datapipes: IterDataPipe) -> IterDataPipe:
|
646 |
+
r"""
|
647 |
+
Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip``).
|
648 |
+
|
649 |
+
The output is stopped as soon as the shortest input DataPipe is exhausted.
|
650 |
+
|
651 |
+
Args:
|
652 |
+
*datapipes: Iterable DataPipes being aggregated
|
653 |
+
|
654 |
+
Example:
|
655 |
+
>>> # xdoctest: +REQUIRES(module:torchdata)
|
656 |
+
>>> from torchdata.datapipes.iter import IterableWrapper
|
657 |
+
>>> dp1, dp2, dp3 = IterableWrapper(range(5)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25))
|
658 |
+
>>> list(dp1.zip(dp2, dp3))
|
659 |
+
[(0, 10, 20), (1, 11, 21), (2, 12, 22), (3, 13, 23), (4, 14, 24)]
|
660 |
+
"""
|
661 |
+
|
662 |
+
|
663 |
+
class DFIterDataPipe(IterDataPipe):
|
664 |
+
def _is_dfpipe(self): ...
|
665 |
+
def __iter__(self): ...
|
666 |
+
|
667 |
+
class _DataPipeSerializationWrapper:
|
668 |
+
def __init__(self, datapipe): ...
|
669 |
+
def __getstate__(self): ...
|
670 |
+
def __setstate__(self, state): ...
|
671 |
+
def __len__(self): ...
|
672 |
+
|
673 |
+
class _IterDataPipeSerializationWrapper(_DataPipeSerializationWrapper, IterDataPipe):
|
674 |
+
def __iter__(self): ...
|
675 |
+
|
676 |
+
class _MapDataPipeSerializationWrapper(_DataPipeSerializationWrapper, MapDataPipe):
|
677 |
+
def __getitem__(self, idx): ...
|
678 |
+
|
679 |
+
class DataChunk(list, Generic[T]):
|
680 |
+
def __init__(self, items):
|
681 |
+
super().__init__(items)
|
682 |
+
self.items = items
|
683 |
+
def as_str(self, indent: str = "") -> str:
|
684 |
+
res = indent + "[" + ", ".join(str(i) for i in iter(self)) + "]"
|
685 |
+
return res
|
686 |
+
def __iter__(self) -> Iterator[T]:
|
687 |
+
yield from super().__iter__()
|
688 |
+
def raw_iterator(self) -> T: # type: ignore[misc]
|
689 |
+
yield from self.items
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/datapipes/gen_pyi.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pathlib
|
3 |
+
from collections import defaultdict
|
4 |
+
from typing import Any, Dict, List, Set, Tuple, Union
|
5 |
+
|
6 |
+
|
7 |
+
def materialize_lines(lines: List[str], indentation: int) -> str:
|
8 |
+
output = ""
|
9 |
+
new_line_with_indent = "\n" + " " * indentation
|
10 |
+
for i, line in enumerate(lines):
|
11 |
+
if i != 0:
|
12 |
+
output += new_line_with_indent
|
13 |
+
output += line.replace('\n', new_line_with_indent)
|
14 |
+
return output
|
15 |
+
|
16 |
+
|
17 |
+
def gen_from_template(dir: str, template_name: str, output_name: str, replacements: List[Tuple[str, Any, int]]):
|
18 |
+
|
19 |
+
template_path = os.path.join(dir, template_name)
|
20 |
+
output_path = os.path.join(dir, output_name)
|
21 |
+
|
22 |
+
with open(template_path) as f:
|
23 |
+
content = f.read()
|
24 |
+
for placeholder, lines, indentation in replacements:
|
25 |
+
with open(output_path, "w") as f:
|
26 |
+
content = content.replace(placeholder, materialize_lines(lines, indentation))
|
27 |
+
f.write(content)
|
28 |
+
|
29 |
+
|
30 |
+
def find_file_paths(dir_paths: List[str], files_to_exclude: Set[str]) -> Set[str]:
|
31 |
+
"""
|
32 |
+
When given a path to a directory, returns the paths to the relevant files within it.
|
33 |
+
|
34 |
+
This function does NOT recursive traverse to subdirectories.
|
35 |
+
"""
|
36 |
+
paths: Set[str] = set()
|
37 |
+
for dir_path in dir_paths:
|
38 |
+
all_files = os.listdir(dir_path)
|
39 |
+
python_files = {fname for fname in all_files if ".py" == fname[-3:]}
|
40 |
+
filter_files = {fname for fname in python_files if fname not in files_to_exclude}
|
41 |
+
paths.update({os.path.join(dir_path, fname) for fname in filter_files})
|
42 |
+
return paths
|
43 |
+
|
44 |
+
|
45 |
+
def extract_method_name(line: str) -> str:
|
46 |
+
"""Extract method name from decorator in the form of "@functional_datapipe({method_name})"."""
|
47 |
+
if "(\"" in line:
|
48 |
+
start_token, end_token = "(\"", "\")"
|
49 |
+
elif "(\'" in line:
|
50 |
+
start_token, end_token = "(\'", "\')"
|
51 |
+
else:
|
52 |
+
raise RuntimeError(f"Unable to find appropriate method name within line:\n{line}")
|
53 |
+
start, end = line.find(start_token) + len(start_token), line.find(end_token)
|
54 |
+
return line[start:end]
|
55 |
+
|
56 |
+
|
57 |
+
def extract_class_name(line: str) -> str:
|
58 |
+
"""Extract class name from class definition in the form of "class {CLASS_NAME}({Type}):"."""
|
59 |
+
start_token = "class "
|
60 |
+
end_token = "("
|
61 |
+
start, end = line.find(start_token) + len(start_token), line.find(end_token)
|
62 |
+
return line[start:end]
|
63 |
+
|
64 |
+
|
65 |
+
def parse_datapipe_file(file_path: str) -> Tuple[Dict[str, str], Dict[str, str], Set[str], Dict[str, List[str]]]:
|
66 |
+
"""Given a path to file, parses the file and returns a dictionary of method names to function signatures."""
|
67 |
+
method_to_signature, method_to_class_name, special_output_type = {}, {}, set()
|
68 |
+
doc_string_dict = defaultdict(list)
|
69 |
+
with open(file_path) as f:
|
70 |
+
open_paren_count = 0
|
71 |
+
method_name, class_name, signature = "", "", ""
|
72 |
+
skip = False
|
73 |
+
for line in f:
|
74 |
+
if line.count("\"\"\"") % 2 == 1:
|
75 |
+
skip = not skip
|
76 |
+
if skip or "\"\"\"" in line: # Saving docstrings
|
77 |
+
doc_string_dict[method_name].append(line)
|
78 |
+
continue
|
79 |
+
if "@functional_datapipe" in line:
|
80 |
+
method_name = extract_method_name(line)
|
81 |
+
doc_string_dict[method_name] = []
|
82 |
+
continue
|
83 |
+
if method_name and "class " in line:
|
84 |
+
class_name = extract_class_name(line)
|
85 |
+
continue
|
86 |
+
if method_name and ("def __init__(" in line or "def __new__(" in line):
|
87 |
+
if "def __new__(" in line:
|
88 |
+
special_output_type.add(method_name)
|
89 |
+
open_paren_count += 1
|
90 |
+
start = line.find("(") + len("(")
|
91 |
+
line = line[start:]
|
92 |
+
if open_paren_count > 0:
|
93 |
+
open_paren_count += line.count('(')
|
94 |
+
open_paren_count -= line.count(')')
|
95 |
+
if open_paren_count == 0:
|
96 |
+
end = line.rfind(')')
|
97 |
+
signature += line[:end]
|
98 |
+
method_to_signature[method_name] = process_signature(signature)
|
99 |
+
method_to_class_name[method_name] = class_name
|
100 |
+
method_name, class_name, signature = "", "", ""
|
101 |
+
elif open_paren_count < 0:
|
102 |
+
raise RuntimeError("open parenthesis count < 0. This shouldn't be possible.")
|
103 |
+
else:
|
104 |
+
signature += line.strip('\n').strip(' ')
|
105 |
+
return method_to_signature, method_to_class_name, special_output_type, doc_string_dict
|
106 |
+
|
107 |
+
|
108 |
+
def parse_datapipe_files(file_paths: Set[str]) -> Tuple[Dict[str, str], Dict[str, str], Set[str], Dict[str, List[str]]]:
|
109 |
+
methods_and_signatures, methods_and_class_names, methods_with_special_output_types = {}, {}, set()
|
110 |
+
methods_and_doc_strings = {}
|
111 |
+
for path in file_paths:
|
112 |
+
(
|
113 |
+
method_to_signature,
|
114 |
+
method_to_class_name,
|
115 |
+
methods_needing_special_output_types,
|
116 |
+
doc_string_dict,
|
117 |
+
) = parse_datapipe_file(path)
|
118 |
+
methods_and_signatures.update(method_to_signature)
|
119 |
+
methods_and_class_names.update(method_to_class_name)
|
120 |
+
methods_with_special_output_types.update(methods_needing_special_output_types)
|
121 |
+
methods_and_doc_strings.update(doc_string_dict)
|
122 |
+
return methods_and_signatures, methods_and_class_names, methods_with_special_output_types, methods_and_doc_strings
|
123 |
+
|
124 |
+
|
125 |
+
def split_outside_bracket(line: str, delimiter: str = ",") -> List[str]:
|
126 |
+
"""Given a line of text, split it on comma unless the comma is within a bracket '[]'."""
|
127 |
+
bracket_count = 0
|
128 |
+
curr_token = ""
|
129 |
+
res = []
|
130 |
+
for char in line:
|
131 |
+
if char == "[":
|
132 |
+
bracket_count += 1
|
133 |
+
elif char == "]":
|
134 |
+
bracket_count -= 1
|
135 |
+
elif char == delimiter and bracket_count == 0:
|
136 |
+
res.append(curr_token)
|
137 |
+
curr_token = ""
|
138 |
+
continue
|
139 |
+
curr_token += char
|
140 |
+
res.append(curr_token)
|
141 |
+
return res
|
142 |
+
|
143 |
+
|
144 |
+
def process_signature(line: str) -> str:
|
145 |
+
"""
|
146 |
+
Clean up a given raw function signature.
|
147 |
+
|
148 |
+
This includes removing the self-referential datapipe argument, default
|
149 |
+
arguments of input functions, newlines, and spaces.
|
150 |
+
"""
|
151 |
+
tokens: List[str] = split_outside_bracket(line)
|
152 |
+
for i, token in enumerate(tokens):
|
153 |
+
tokens[i] = token.strip(' ')
|
154 |
+
if token == "cls":
|
155 |
+
tokens[i] = "self"
|
156 |
+
elif i > 0 and ("self" == tokens[i - 1]) and (tokens[i][0] != "*"):
|
157 |
+
# Remove the datapipe after 'self' or 'cls' unless it has '*'
|
158 |
+
tokens[i] = ""
|
159 |
+
elif "Callable =" in token: # Remove default argument if it is a function
|
160 |
+
head, default_arg = token.rsplit("=", 2)
|
161 |
+
tokens[i] = head.strip(' ') + "= ..."
|
162 |
+
tokens = [t for t in tokens if t != ""]
|
163 |
+
line = ', '.join(tokens)
|
164 |
+
return line
|
165 |
+
|
166 |
+
|
167 |
+
def get_method_definitions(file_path: Union[str, List[str]],
|
168 |
+
files_to_exclude: Set[str],
|
169 |
+
deprecated_files: Set[str],
|
170 |
+
default_output_type: str,
|
171 |
+
method_to_special_output_type: Dict[str, str],
|
172 |
+
root: str = "") -> List[str]:
|
173 |
+
"""
|
174 |
+
#.pyi generation for functional DataPipes Process.
|
175 |
+
|
176 |
+
# 1. Find files that we want to process (exclude the ones who don't)
|
177 |
+
# 2. Parse method name and signature
|
178 |
+
# 3. Remove first argument after self (unless it is "*datapipes"), default args, and spaces
|
179 |
+
"""
|
180 |
+
if root == "":
|
181 |
+
root = str(pathlib.Path(__file__).parent.resolve())
|
182 |
+
file_path = [file_path] if isinstance(file_path, str) else file_path
|
183 |
+
file_path = [os.path.join(root, path) for path in file_path]
|
184 |
+
file_paths = find_file_paths(file_path,
|
185 |
+
files_to_exclude=files_to_exclude.union(deprecated_files))
|
186 |
+
methods_and_signatures, methods_and_class_names, methods_w_special_output_types, methods_and_doc_strings = \
|
187 |
+
parse_datapipe_files(file_paths)
|
188 |
+
|
189 |
+
for fn_name in method_to_special_output_type:
|
190 |
+
if fn_name not in methods_w_special_output_types:
|
191 |
+
methods_w_special_output_types.add(fn_name)
|
192 |
+
|
193 |
+
method_definitions = []
|
194 |
+
for method_name, arguments in methods_and_signatures.items():
|
195 |
+
class_name = methods_and_class_names[method_name]
|
196 |
+
if method_name in methods_w_special_output_types:
|
197 |
+
output_type = method_to_special_output_type[method_name]
|
198 |
+
else:
|
199 |
+
output_type = default_output_type
|
200 |
+
doc_string = "".join(methods_and_doc_strings[method_name])
|
201 |
+
if doc_string == "":
|
202 |
+
doc_string = " ...\n"
|
203 |
+
method_definitions.append(f"# Functional form of '{class_name}'\n"
|
204 |
+
f"def {method_name}({arguments}) -> {output_type}:\n"
|
205 |
+
f"{doc_string}")
|
206 |
+
method_definitions.sort(key=lambda s: s.split('\n')[1]) # sorting based on method_name
|
207 |
+
|
208 |
+
return method_definitions
|
209 |
+
|
210 |
+
|
211 |
+
# Defined outside of main() so they can be imported by TorchData
|
212 |
+
iterDP_file_path: str = "iter"
|
213 |
+
iterDP_files_to_exclude: Set[str] = {"__init__.py", "utils.py"}
|
214 |
+
iterDP_deprecated_files: Set[str] = set()
|
215 |
+
iterDP_method_to_special_output_type: Dict[str, str] = {"demux": "List[IterDataPipe]", "fork": "List[IterDataPipe]"}
|
216 |
+
|
217 |
+
mapDP_file_path: str = "map"
|
218 |
+
mapDP_files_to_exclude: Set[str] = {"__init__.py", "utils.py"}
|
219 |
+
mapDP_deprecated_files: Set[str] = set()
|
220 |
+
mapDP_method_to_special_output_type: Dict[str, str] = {"shuffle": "IterDataPipe"}
|
221 |
+
|
222 |
+
|
223 |
+
def main() -> None:
|
224 |
+
"""
|
225 |
+
# Inject file into template datapipe.pyi.in.
|
226 |
+
|
227 |
+
TODO: The current implementation of this script only generates interfaces for built-in methods. To generate
|
228 |
+
interface for user-defined DataPipes, consider changing `IterDataPipe.register_datapipe_as_function`.
|
229 |
+
"""
|
230 |
+
iter_method_definitions = get_method_definitions(iterDP_file_path, iterDP_files_to_exclude, iterDP_deprecated_files,
|
231 |
+
"IterDataPipe", iterDP_method_to_special_output_type)
|
232 |
+
|
233 |
+
map_method_definitions = get_method_definitions(mapDP_file_path, mapDP_files_to_exclude, mapDP_deprecated_files,
|
234 |
+
"MapDataPipe", mapDP_method_to_special_output_type)
|
235 |
+
|
236 |
+
path = pathlib.Path(__file__).parent.resolve()
|
237 |
+
replacements = [('${IterDataPipeMethods}', iter_method_definitions, 4),
|
238 |
+
('${MapDataPipeMethods}', map_method_definitions, 4)]
|
239 |
+
gen_from_template(dir=str(path),
|
240 |
+
template_name="datapipe.pyi.in",
|
241 |
+
output_name="datapipe.pyi",
|
242 |
+
replacements=replacements)
|
243 |
+
|
244 |
+
|
245 |
+
if __name__ == '__main__':
|
246 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/dataset.py
ADDED
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import bisect
|
2 |
+
import itertools
|
3 |
+
import math
|
4 |
+
import warnings
|
5 |
+
from typing import (
|
6 |
+
cast,
|
7 |
+
Dict,
|
8 |
+
Generic,
|
9 |
+
Iterable,
|
10 |
+
List,
|
11 |
+
Optional,
|
12 |
+
Sequence,
|
13 |
+
Tuple,
|
14 |
+
TypeVar,
|
15 |
+
Union,
|
16 |
+
)
|
17 |
+
|
18 |
+
# No 'default_generator' in torch/__init__.pyi
|
19 |
+
from torch import default_generator, randperm
|
20 |
+
|
21 |
+
from ... import Generator, Tensor
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
"Dataset",
|
25 |
+
"IterableDataset",
|
26 |
+
"TensorDataset",
|
27 |
+
"StackDataset",
|
28 |
+
"ConcatDataset",
|
29 |
+
"ChainDataset",
|
30 |
+
"Subset",
|
31 |
+
"random_split",
|
32 |
+
]
|
33 |
+
|
34 |
+
T_co = TypeVar("T_co", covariant=True)
|
35 |
+
T = TypeVar("T")
|
36 |
+
T_dict = Dict[str, T_co]
|
37 |
+
T_tuple = Tuple[T_co, ...]
|
38 |
+
T_stack = TypeVar("T_stack", T_tuple, T_dict)
|
39 |
+
|
40 |
+
|
41 |
+
class Dataset(Generic[T_co]):
|
42 |
+
r"""An abstract class representing a :class:`Dataset`.
|
43 |
+
|
44 |
+
All datasets that represent a map from keys to data samples should subclass
|
45 |
+
it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a
|
46 |
+
data sample for a given key. Subclasses could also optionally overwrite
|
47 |
+
:meth:`__len__`, which is expected to return the size of the dataset by many
|
48 |
+
:class:`~torch.utils.data.Sampler` implementations and the default options
|
49 |
+
of :class:`~torch.utils.data.DataLoader`. Subclasses could also
|
50 |
+
optionally implement :meth:`__getitems__`, for speedup batched samples
|
51 |
+
loading. This method accepts list of indices of samples of batch and returns
|
52 |
+
list of samples.
|
53 |
+
|
54 |
+
.. note::
|
55 |
+
:class:`~torch.utils.data.DataLoader` by default constructs an index
|
56 |
+
sampler that yields integral indices. To make it work with a map-style
|
57 |
+
dataset with non-integral indices/keys, a custom sampler must be provided.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __getitem__(self, index) -> T_co:
|
61 |
+
raise NotImplementedError("Subclasses of Dataset should implement __getitem__.")
|
62 |
+
|
63 |
+
# def __getitems__(self, indices: List) -> List[T_co]:
|
64 |
+
# Not implemented to prevent false-positives in fetcher check in
|
65 |
+
# torch.utils.data._utils.fetch._MapDatasetFetcher
|
66 |
+
|
67 |
+
def __add__(self, other: "Dataset[T_co]") -> "ConcatDataset[T_co]":
|
68 |
+
return ConcatDataset([self, other])
|
69 |
+
|
70 |
+
# No `def __len__(self)` default?
|
71 |
+
# See NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
|
72 |
+
# in pytorch/torch/utils/data/sampler.py
|
73 |
+
|
74 |
+
|
75 |
+
class IterableDataset(Dataset[T_co], Iterable[T_co]):
|
76 |
+
r"""An iterable Dataset.
|
77 |
+
|
78 |
+
All datasets that represent an iterable of data samples should subclass it.
|
79 |
+
Such form of datasets is particularly useful when data come from a stream.
|
80 |
+
|
81 |
+
All subclasses should overwrite :meth:`__iter__`, which would return an
|
82 |
+
iterator of samples in this dataset.
|
83 |
+
|
84 |
+
When a subclass is used with :class:`~torch.utils.data.DataLoader`, each
|
85 |
+
item in the dataset will be yielded from the :class:`~torch.utils.data.DataLoader`
|
86 |
+
iterator. When :attr:`num_workers > 0`, each worker process will have a
|
87 |
+
different copy of the dataset object, so it is often desired to configure
|
88 |
+
each copy independently to avoid having duplicate data returned from the
|
89 |
+
workers. :func:`~torch.utils.data.get_worker_info`, when called in a worker
|
90 |
+
process, returns information about the worker. It can be used in either the
|
91 |
+
dataset's :meth:`__iter__` method or the :class:`~torch.utils.data.DataLoader` 's
|
92 |
+
:attr:`worker_init_fn` option to modify each copy's behavior.
|
93 |
+
|
94 |
+
Example 1: splitting workload across all workers in :meth:`__iter__`::
|
95 |
+
|
96 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_DATALOADER)
|
97 |
+
>>> # xdoctest: +SKIP("Fails on MacOS12")
|
98 |
+
>>> class MyIterableDataset(torch.utils.data.IterableDataset):
|
99 |
+
... def __init__(self, start, end):
|
100 |
+
... super(MyIterableDataset).__init__()
|
101 |
+
... assert end > start, "this example code only works with end >= start"
|
102 |
+
... self.start = start
|
103 |
+
... self.end = end
|
104 |
+
...
|
105 |
+
... def __iter__(self):
|
106 |
+
... worker_info = torch.utils.data.get_worker_info()
|
107 |
+
... if worker_info is None: # single-process data loading, return the full iterator
|
108 |
+
... iter_start = self.start
|
109 |
+
... iter_end = self.end
|
110 |
+
... else: # in a worker process
|
111 |
+
... # split workload
|
112 |
+
... per_worker = int(math.ceil((self.end - self.start) / float(worker_info.num_workers)))
|
113 |
+
... worker_id = worker_info.id
|
114 |
+
... iter_start = self.start + worker_id * per_worker
|
115 |
+
... iter_end = min(iter_start + per_worker, self.end)
|
116 |
+
... return iter(range(iter_start, iter_end))
|
117 |
+
...
|
118 |
+
>>> # should give same set of data as range(3, 7), i.e., [3, 4, 5, 6].
|
119 |
+
>>> ds = MyIterableDataset(start=3, end=7)
|
120 |
+
|
121 |
+
>>> # Single-process loading
|
122 |
+
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=0)))
|
123 |
+
[tensor([3]), tensor([4]), tensor([5]), tensor([6])]
|
124 |
+
|
125 |
+
>>> # xdoctest: +REQUIRES(POSIX)
|
126 |
+
>>> # Mult-process loading with two worker processes
|
127 |
+
>>> # Worker 0 fetched [3, 4]. Worker 1 fetched [5, 6].
|
128 |
+
>>> # xdoctest: +IGNORE_WANT("non deterministic")
|
129 |
+
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=2)))
|
130 |
+
[tensor([3]), tensor([5]), tensor([4]), tensor([6])]
|
131 |
+
|
132 |
+
>>> # With even more workers
|
133 |
+
>>> # xdoctest: +IGNORE_WANT("non deterministic")
|
134 |
+
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=12)))
|
135 |
+
[tensor([3]), tensor([5]), tensor([4]), tensor([6])]
|
136 |
+
|
137 |
+
Example 2: splitting workload across all workers using :attr:`worker_init_fn`::
|
138 |
+
|
139 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_DATALOADER)
|
140 |
+
>>> class MyIterableDataset(torch.utils.data.IterableDataset):
|
141 |
+
... def __init__(self, start, end):
|
142 |
+
... super(MyIterableDataset).__init__()
|
143 |
+
... assert end > start, "this example code only works with end >= start"
|
144 |
+
... self.start = start
|
145 |
+
... self.end = end
|
146 |
+
...
|
147 |
+
... def __iter__(self):
|
148 |
+
... return iter(range(self.start, self.end))
|
149 |
+
...
|
150 |
+
>>> # should give same set of data as range(3, 7), i.e., [3, 4, 5, 6].
|
151 |
+
>>> ds = MyIterableDataset(start=3, end=7)
|
152 |
+
|
153 |
+
>>> # Single-process loading
|
154 |
+
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=0)))
|
155 |
+
[3, 4, 5, 6]
|
156 |
+
>>>
|
157 |
+
>>> # Directly doing multi-process loading yields duplicate data
|
158 |
+
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=2)))
|
159 |
+
[3, 3, 4, 4, 5, 5, 6, 6]
|
160 |
+
|
161 |
+
>>> # Define a `worker_init_fn` that configures each dataset copy differently
|
162 |
+
>>> def worker_init_fn(worker_id):
|
163 |
+
... worker_info = torch.utils.data.get_worker_info()
|
164 |
+
... dataset = worker_info.dataset # the dataset copy in this worker process
|
165 |
+
... overall_start = dataset.start
|
166 |
+
... overall_end = dataset.end
|
167 |
+
... # configure the dataset to only process the split workload
|
168 |
+
... per_worker = int(math.ceil((overall_end - overall_start) / float(worker_info.num_workers)))
|
169 |
+
... worker_id = worker_info.id
|
170 |
+
... dataset.start = overall_start + worker_id * per_worker
|
171 |
+
... dataset.end = min(dataset.start + per_worker, overall_end)
|
172 |
+
...
|
173 |
+
|
174 |
+
>>> # Mult-process loading with the custom `worker_init_fn`
|
175 |
+
>>> # Worker 0 fetched [3, 4]. Worker 1 fetched [5, 6].
|
176 |
+
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=2, worker_init_fn=worker_init_fn)))
|
177 |
+
[3, 5, 4, 6]
|
178 |
+
|
179 |
+
>>> # With even more workers
|
180 |
+
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=12, worker_init_fn=worker_init_fn)))
|
181 |
+
[3, 4, 5, 6]
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __add__(self, other: Dataset[T_co]):
|
185 |
+
return ChainDataset([self, other])
|
186 |
+
|
187 |
+
# No `def __len__(self)` default? Subclasses raise `TypeError` when needed.
|
188 |
+
# See NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
|
189 |
+
|
190 |
+
|
191 |
+
class TensorDataset(Dataset[Tuple[Tensor, ...]]):
|
192 |
+
r"""Dataset wrapping tensors.
|
193 |
+
|
194 |
+
Each sample will be retrieved by indexing tensors along the first dimension.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
*tensors (Tensor): tensors that have the same size of the first dimension.
|
198 |
+
"""
|
199 |
+
|
200 |
+
tensors: Tuple[Tensor, ...]
|
201 |
+
|
202 |
+
def __init__(self, *tensors: Tensor) -> None:
|
203 |
+
assert all(
|
204 |
+
tensors[0].size(0) == tensor.size(0) for tensor in tensors
|
205 |
+
), "Size mismatch between tensors"
|
206 |
+
self.tensors = tensors
|
207 |
+
|
208 |
+
def __getitem__(self, index):
|
209 |
+
return tuple(tensor[index] for tensor in self.tensors)
|
210 |
+
|
211 |
+
def __len__(self):
|
212 |
+
return self.tensors[0].size(0)
|
213 |
+
|
214 |
+
|
215 |
+
class StackDataset(Dataset[T_stack]):
|
216 |
+
r"""Dataset as a stacking of multiple datasets.
|
217 |
+
|
218 |
+
This class is useful to assemble different parts of complex input data, given as datasets.
|
219 |
+
|
220 |
+
Example:
|
221 |
+
>>> # xdoctest: +SKIP
|
222 |
+
>>> images = ImageDataset()
|
223 |
+
>>> texts = TextDataset()
|
224 |
+
>>> tuple_stack = StackDataset(images, texts)
|
225 |
+
>>> tuple_stack[0] == (images[0], texts[0])
|
226 |
+
>>> dict_stack = StackDataset(image=images, text=texts)
|
227 |
+
>>> dict_stack[0] == {'image': images[0], 'text': texts[0]}
|
228 |
+
|
229 |
+
Args:
|
230 |
+
*args (Dataset): Datasets for stacking returned as tuple.
|
231 |
+
**kwargs (Dataset): Datasets for stacking returned as dict.
|
232 |
+
"""
|
233 |
+
|
234 |
+
datasets: Union[tuple, dict]
|
235 |
+
|
236 |
+
def __init__(self, *args: Dataset[T_co], **kwargs: Dataset[T_co]) -> None:
|
237 |
+
if args:
|
238 |
+
if kwargs:
|
239 |
+
raise ValueError(
|
240 |
+
"Supported either ``tuple``- (via ``args``) or"
|
241 |
+
"``dict``- (via ``kwargs``) like input/output, but both types are given."
|
242 |
+
)
|
243 |
+
self._length = len(args[0]) # type: ignore[arg-type]
|
244 |
+
if any(self._length != len(dataset) for dataset in args): # type: ignore[arg-type]
|
245 |
+
raise ValueError("Size mismatch between datasets")
|
246 |
+
self.datasets = args
|
247 |
+
elif kwargs:
|
248 |
+
tmp = list(kwargs.values())
|
249 |
+
self._length = len(tmp[0]) # type: ignore[arg-type]
|
250 |
+
if any(self._length != len(dataset) for dataset in tmp): # type: ignore[arg-type]
|
251 |
+
raise ValueError("Size mismatch between datasets")
|
252 |
+
self.datasets = kwargs
|
253 |
+
else:
|
254 |
+
raise ValueError("At least one dataset should be passed")
|
255 |
+
|
256 |
+
def __getitem__(self, index):
|
257 |
+
if isinstance(self.datasets, dict):
|
258 |
+
return {k: dataset[index] for k, dataset in self.datasets.items()}
|
259 |
+
return tuple(dataset[index] for dataset in self.datasets)
|
260 |
+
|
261 |
+
def __getitems__(self, indices: list):
|
262 |
+
# add batched sampling support when parent datasets supports it.
|
263 |
+
if isinstance(self.datasets, dict):
|
264 |
+
dict_batch: List[T_dict] = [{} for _ in indices]
|
265 |
+
for k, dataset in self.datasets.items():
|
266 |
+
if callable(getattr(dataset, "__getitems__", None)):
|
267 |
+
items = dataset.__getitems__(indices) # type: ignore[attr-defined]
|
268 |
+
if len(items) != len(indices):
|
269 |
+
raise ValueError(
|
270 |
+
"Nested dataset's output size mismatch."
|
271 |
+
f" Expected {len(indices)}, got {len(items)}"
|
272 |
+
)
|
273 |
+
for data, d_sample in zip(items, dict_batch):
|
274 |
+
d_sample[k] = data
|
275 |
+
else:
|
276 |
+
for idx, d_sample in zip(indices, dict_batch):
|
277 |
+
d_sample[k] = dataset[idx]
|
278 |
+
return dict_batch
|
279 |
+
|
280 |
+
# tuple data
|
281 |
+
list_batch: List[list] = [[] for _ in indices]
|
282 |
+
for dataset in self.datasets:
|
283 |
+
if callable(getattr(dataset, "__getitems__", None)):
|
284 |
+
items = dataset.__getitems__(indices) # type: ignore[attr-defined]
|
285 |
+
if len(items) != len(indices):
|
286 |
+
raise ValueError(
|
287 |
+
"Nested dataset's output size mismatch."
|
288 |
+
f" Expected {len(indices)}, got {len(items)}"
|
289 |
+
)
|
290 |
+
for data, t_sample in zip(items, list_batch):
|
291 |
+
t_sample.append(data)
|
292 |
+
else:
|
293 |
+
for idx, t_sample in zip(indices, list_batch):
|
294 |
+
t_sample.append(dataset[idx])
|
295 |
+
tuple_batch: List[T_tuple] = [tuple(sample) for sample in list_batch]
|
296 |
+
return tuple_batch
|
297 |
+
|
298 |
+
def __len__(self):
|
299 |
+
return self._length
|
300 |
+
|
301 |
+
|
302 |
+
class ConcatDataset(Dataset[T_co]):
|
303 |
+
r"""Dataset as a concatenation of multiple datasets.
|
304 |
+
|
305 |
+
This class is useful to assemble different existing datasets.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
datasets (sequence): List of datasets to be concatenated
|
309 |
+
"""
|
310 |
+
|
311 |
+
datasets: List[Dataset[T_co]]
|
312 |
+
cumulative_sizes: List[int]
|
313 |
+
|
314 |
+
@staticmethod
|
315 |
+
def cumsum(sequence):
|
316 |
+
r, s = [], 0
|
317 |
+
for e in sequence:
|
318 |
+
l = len(e)
|
319 |
+
r.append(l + s)
|
320 |
+
s += l
|
321 |
+
return r
|
322 |
+
|
323 |
+
def __init__(self, datasets: Iterable[Dataset]) -> None:
|
324 |
+
super().__init__()
|
325 |
+
self.datasets = list(datasets)
|
326 |
+
assert len(self.datasets) > 0, "datasets should not be an empty iterable" # type: ignore[arg-type]
|
327 |
+
for d in self.datasets:
|
328 |
+
assert not isinstance(
|
329 |
+
d, IterableDataset
|
330 |
+
), "ConcatDataset does not support IterableDataset"
|
331 |
+
self.cumulative_sizes = self.cumsum(self.datasets)
|
332 |
+
|
333 |
+
def __len__(self):
|
334 |
+
return self.cumulative_sizes[-1]
|
335 |
+
|
336 |
+
def __getitem__(self, idx):
|
337 |
+
if idx < 0:
|
338 |
+
if -idx > len(self):
|
339 |
+
raise ValueError(
|
340 |
+
"absolute value of index should not exceed dataset length"
|
341 |
+
)
|
342 |
+
idx = len(self) + idx
|
343 |
+
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
|
344 |
+
if dataset_idx == 0:
|
345 |
+
sample_idx = idx
|
346 |
+
else:
|
347 |
+
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
|
348 |
+
return self.datasets[dataset_idx][sample_idx]
|
349 |
+
|
350 |
+
@property
|
351 |
+
def cummulative_sizes(self):
|
352 |
+
warnings.warn(
|
353 |
+
"cummulative_sizes attribute is renamed to " "cumulative_sizes",
|
354 |
+
DeprecationWarning,
|
355 |
+
stacklevel=2,
|
356 |
+
)
|
357 |
+
return self.cumulative_sizes
|
358 |
+
|
359 |
+
|
360 |
+
class ChainDataset(IterableDataset):
|
361 |
+
r"""Dataset for chaining multiple :class:`IterableDataset` s.
|
362 |
+
|
363 |
+
This class is useful to assemble different existing dataset streams. The
|
364 |
+
chaining operation is done on-the-fly, so concatenating large-scale
|
365 |
+
datasets with this class will be efficient.
|
366 |
+
|
367 |
+
Args:
|
368 |
+
datasets (iterable of IterableDataset): datasets to be chained together
|
369 |
+
"""
|
370 |
+
|
371 |
+
def __init__(self, datasets: Iterable[Dataset]) -> None:
|
372 |
+
super().__init__()
|
373 |
+
self.datasets = datasets
|
374 |
+
|
375 |
+
def __iter__(self):
|
376 |
+
for d in self.datasets:
|
377 |
+
assert isinstance(
|
378 |
+
d, IterableDataset
|
379 |
+
), "ChainDataset only supports IterableDataset"
|
380 |
+
yield from d
|
381 |
+
|
382 |
+
def __len__(self):
|
383 |
+
total = 0
|
384 |
+
for d in self.datasets:
|
385 |
+
assert isinstance(
|
386 |
+
d, IterableDataset
|
387 |
+
), "ChainDataset only supports IterableDataset"
|
388 |
+
total += len(d) # type: ignore[arg-type]
|
389 |
+
return total
|
390 |
+
|
391 |
+
|
392 |
+
class Subset(Dataset[T_co]):
|
393 |
+
r"""
|
394 |
+
Subset of a dataset at specified indices.
|
395 |
+
|
396 |
+
Args:
|
397 |
+
dataset (Dataset): The whole Dataset
|
398 |
+
indices (sequence): Indices in the whole set selected for subset
|
399 |
+
"""
|
400 |
+
|
401 |
+
dataset: Dataset[T_co]
|
402 |
+
indices: Sequence[int]
|
403 |
+
|
404 |
+
def __init__(self, dataset: Dataset[T_co], indices: Sequence[int]) -> None:
|
405 |
+
self.dataset = dataset
|
406 |
+
self.indices = indices
|
407 |
+
|
408 |
+
def __getitem__(self, idx):
|
409 |
+
if isinstance(idx, list):
|
410 |
+
return self.dataset[[self.indices[i] for i in idx]]
|
411 |
+
return self.dataset[self.indices[idx]]
|
412 |
+
|
413 |
+
def __getitems__(self, indices: List[int]) -> List[T_co]:
|
414 |
+
# add batched sampling support when parent dataset supports it.
|
415 |
+
# see torch.utils.data._utils.fetch._MapDatasetFetcher
|
416 |
+
if callable(getattr(self.dataset, "__getitems__", None)):
|
417 |
+
return self.dataset.__getitems__([self.indices[idx] for idx in indices]) # type: ignore[attr-defined]
|
418 |
+
else:
|
419 |
+
return [self.dataset[self.indices[idx]] for idx in indices]
|
420 |
+
|
421 |
+
def __len__(self):
|
422 |
+
return len(self.indices)
|
423 |
+
|
424 |
+
|
425 |
+
def random_split(
|
426 |
+
dataset: Dataset[T],
|
427 |
+
lengths: Sequence[Union[int, float]],
|
428 |
+
generator: Optional[Generator] = default_generator,
|
429 |
+
) -> List[Subset[T]]:
|
430 |
+
r"""
|
431 |
+
Randomly split a dataset into non-overlapping new datasets of given lengths.
|
432 |
+
|
433 |
+
If a list of fractions that sum up to 1 is given,
|
434 |
+
the lengths will be computed automatically as
|
435 |
+
floor(frac * len(dataset)) for each fraction provided.
|
436 |
+
|
437 |
+
After computing the lengths, if there are any remainders, 1 count will be
|
438 |
+
distributed in round-robin fashion to the lengths
|
439 |
+
until there are no remainders left.
|
440 |
+
|
441 |
+
Optionally fix the generator for reproducible results, e.g.:
|
442 |
+
|
443 |
+
Example:
|
444 |
+
>>> # xdoctest: +SKIP
|
445 |
+
>>> generator1 = torch.Generator().manual_seed(42)
|
446 |
+
>>> generator2 = torch.Generator().manual_seed(42)
|
447 |
+
>>> random_split(range(10), [3, 7], generator=generator1)
|
448 |
+
>>> random_split(range(30), [0.3, 0.3, 0.4], generator=generator2)
|
449 |
+
|
450 |
+
Args:
|
451 |
+
dataset (Dataset): Dataset to be split
|
452 |
+
lengths (sequence): lengths or fractions of splits to be produced
|
453 |
+
generator (Generator): Generator used for the random permutation.
|
454 |
+
"""
|
455 |
+
if math.isclose(sum(lengths), 1) and sum(lengths) <= 1:
|
456 |
+
subset_lengths: List[int] = []
|
457 |
+
for i, frac in enumerate(lengths):
|
458 |
+
if frac < 0 or frac > 1:
|
459 |
+
raise ValueError(f"Fraction at index {i} is not between 0 and 1")
|
460 |
+
n_items_in_split = int(
|
461 |
+
math.floor(len(dataset) * frac) # type: ignore[arg-type]
|
462 |
+
)
|
463 |
+
subset_lengths.append(n_items_in_split)
|
464 |
+
remainder = len(dataset) - sum(subset_lengths) # type: ignore[arg-type]
|
465 |
+
# add 1 to all the lengths in round-robin fashion until the remainder is 0
|
466 |
+
for i in range(remainder):
|
467 |
+
idx_to_add_at = i % len(subset_lengths)
|
468 |
+
subset_lengths[idx_to_add_at] += 1
|
469 |
+
lengths = subset_lengths
|
470 |
+
for i, length in enumerate(lengths):
|
471 |
+
if length == 0:
|
472 |
+
warnings.warn(
|
473 |
+
f"Length of split at index {i} is 0. "
|
474 |
+
f"This might result in an empty dataset."
|
475 |
+
)
|
476 |
+
|
477 |
+
# Cannot verify that dataset is Sized
|
478 |
+
if sum(lengths) != len(dataset): # type: ignore[arg-type]
|
479 |
+
raise ValueError(
|
480 |
+
"Sum of input lengths does not equal the length of the input dataset!"
|
481 |
+
)
|
482 |
+
|
483 |
+
indices = randperm(sum(lengths), generator=generator).tolist() # type: ignore[arg-type, call-overload]
|
484 |
+
lengths = cast(Sequence[int], lengths)
|
485 |
+
return [
|
486 |
+
Subset(dataset, indices[offset - length : offset])
|
487 |
+
for offset, length in zip(itertools.accumulate(lengths), lengths)
|
488 |
+
]
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/distributed.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import TypeVar, Optional, Iterator
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from . import Sampler, Dataset
|
6 |
+
import torch.distributed as dist
|
7 |
+
|
8 |
+
__all__ = ["DistributedSampler", ]
|
9 |
+
|
10 |
+
T_co = TypeVar('T_co', covariant=True)
|
11 |
+
|
12 |
+
|
13 |
+
class DistributedSampler(Sampler[T_co]):
|
14 |
+
r"""Sampler that restricts data loading to a subset of the dataset.
|
15 |
+
|
16 |
+
It is especially useful in conjunction with
|
17 |
+
:class:`torch.nn.parallel.DistributedDataParallel`. In such a case, each
|
18 |
+
process can pass a :class:`~torch.utils.data.DistributedSampler` instance as a
|
19 |
+
:class:`~torch.utils.data.DataLoader` sampler, and load a subset of the
|
20 |
+
original dataset that is exclusive to it.
|
21 |
+
|
22 |
+
.. note::
|
23 |
+
Dataset is assumed to be of constant size and that any instance of it always
|
24 |
+
returns the same elements in the same order.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
dataset: Dataset used for sampling.
|
28 |
+
num_replicas (int, optional): Number of processes participating in
|
29 |
+
distributed training. By default, :attr:`world_size` is retrieved from the
|
30 |
+
current distributed group.
|
31 |
+
rank (int, optional): Rank of the current process within :attr:`num_replicas`.
|
32 |
+
By default, :attr:`rank` is retrieved from the current distributed
|
33 |
+
group.
|
34 |
+
shuffle (bool, optional): If ``True`` (default), sampler will shuffle the
|
35 |
+
indices.
|
36 |
+
seed (int, optional): random seed used to shuffle the sampler if
|
37 |
+
:attr:`shuffle=True`. This number should be identical across all
|
38 |
+
processes in the distributed group. Default: ``0``.
|
39 |
+
drop_last (bool, optional): if ``True``, then the sampler will drop the
|
40 |
+
tail of the data to make it evenly divisible across the number of
|
41 |
+
replicas. If ``False``, the sampler will add extra indices to make
|
42 |
+
the data evenly divisible across the replicas. Default: ``False``.
|
43 |
+
|
44 |
+
.. warning::
|
45 |
+
In distributed mode, calling the :meth:`set_epoch` method at
|
46 |
+
the beginning of each epoch **before** creating the :class:`DataLoader` iterator
|
47 |
+
is necessary to make shuffling work properly across multiple epochs. Otherwise,
|
48 |
+
the same ordering will be always used.
|
49 |
+
|
50 |
+
Example::
|
51 |
+
|
52 |
+
>>> # xdoctest: +SKIP
|
53 |
+
>>> sampler = DistributedSampler(dataset) if is_distributed else None
|
54 |
+
>>> loader = DataLoader(dataset, shuffle=(sampler is None),
|
55 |
+
... sampler=sampler)
|
56 |
+
>>> for epoch in range(start_epoch, n_epochs):
|
57 |
+
... if is_distributed:
|
58 |
+
... sampler.set_epoch(epoch)
|
59 |
+
... train(loader)
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(self, dataset: Dataset, num_replicas: Optional[int] = None,
|
63 |
+
rank: Optional[int] = None, shuffle: bool = True,
|
64 |
+
seed: int = 0, drop_last: bool = False) -> None:
|
65 |
+
if num_replicas is None:
|
66 |
+
if not dist.is_available():
|
67 |
+
raise RuntimeError("Requires distributed package to be available")
|
68 |
+
num_replicas = dist.get_world_size()
|
69 |
+
if rank is None:
|
70 |
+
if not dist.is_available():
|
71 |
+
raise RuntimeError("Requires distributed package to be available")
|
72 |
+
rank = dist.get_rank()
|
73 |
+
if rank >= num_replicas or rank < 0:
|
74 |
+
raise ValueError(
|
75 |
+
f"Invalid rank {rank}, rank should be in the interval [0, {num_replicas - 1}]")
|
76 |
+
self.dataset = dataset
|
77 |
+
self.num_replicas = num_replicas
|
78 |
+
self.rank = rank
|
79 |
+
self.epoch = 0
|
80 |
+
self.drop_last = drop_last
|
81 |
+
# If the dataset length is evenly divisible by # of replicas, then there
|
82 |
+
# is no need to drop any data, since the dataset will be split equally.
|
83 |
+
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
|
84 |
+
# Split to nearest available length that is evenly divisible.
|
85 |
+
# This is to ensure each rank receives the same amount of data when
|
86 |
+
# using this Sampler.
|
87 |
+
self.num_samples = math.ceil(
|
88 |
+
(len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type]
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
|
92 |
+
self.total_size = self.num_samples * self.num_replicas
|
93 |
+
self.shuffle = shuffle
|
94 |
+
self.seed = seed
|
95 |
+
|
96 |
+
def __iter__(self) -> Iterator[T_co]:
|
97 |
+
if self.shuffle:
|
98 |
+
# deterministically shuffle based on epoch and seed
|
99 |
+
g = torch.Generator()
|
100 |
+
g.manual_seed(self.seed + self.epoch)
|
101 |
+
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
|
102 |
+
else:
|
103 |
+
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
|
104 |
+
|
105 |
+
if not self.drop_last:
|
106 |
+
# add extra samples to make it evenly divisible
|
107 |
+
padding_size = self.total_size - len(indices)
|
108 |
+
if padding_size <= len(indices):
|
109 |
+
indices += indices[:padding_size]
|
110 |
+
else:
|
111 |
+
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
|
112 |
+
else:
|
113 |
+
# remove tail of data to make it evenly divisible.
|
114 |
+
indices = indices[:self.total_size]
|
115 |
+
assert len(indices) == self.total_size
|
116 |
+
|
117 |
+
# subsample
|
118 |
+
indices = indices[self.rank:self.total_size:self.num_replicas]
|
119 |
+
assert len(indices) == self.num_samples
|
120 |
+
|
121 |
+
return iter(indices)
|
122 |
+
|
123 |
+
def __len__(self) -> int:
|
124 |
+
return self.num_samples
|
125 |
+
|
126 |
+
def set_epoch(self, epoch: int) -> None:
|
127 |
+
r"""
|
128 |
+
Set the epoch for this sampler.
|
129 |
+
|
130 |
+
When :attr:`shuffle=True`, this ensures all replicas
|
131 |
+
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
132 |
+
sampler will yield the same ordering.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
epoch (int): Epoch number.
|
136 |
+
"""
|
137 |
+
self.epoch = epoch
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/graph.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import pickle
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
from collections.abc import Collection
|
6 |
+
from typing import Dict, List, Optional, Set, Tuple, Type, Union
|
7 |
+
|
8 |
+
from torch.utils.data import IterDataPipe, MapDataPipe
|
9 |
+
from torch.utils._import_utils import dill_available
|
10 |
+
|
11 |
+
|
12 |
+
__all__ = ["traverse", "traverse_dps"]
|
13 |
+
|
14 |
+
DataPipe = Union[IterDataPipe, MapDataPipe]
|
15 |
+
DataPipeGraph = Dict[int, Tuple[DataPipe, "DataPipeGraph"]] # type: ignore[misc]
|
16 |
+
|
17 |
+
|
18 |
+
def _stub_unpickler():
|
19 |
+
return "STUB"
|
20 |
+
|
21 |
+
|
22 |
+
# TODO(VitalyFedyunin): Make sure it works without dill module installed
|
23 |
+
def _list_connected_datapipes(scan_obj: DataPipe, only_datapipe: bool, cache: Set[int]) -> List[DataPipe]:
|
24 |
+
f = io.BytesIO()
|
25 |
+
p = pickle.Pickler(f) # Not going to work for lambdas, but dill infinite loops on typing and can't be used as is
|
26 |
+
if dill_available():
|
27 |
+
from dill import Pickler as dill_Pickler
|
28 |
+
d = dill_Pickler(f)
|
29 |
+
else:
|
30 |
+
d = None
|
31 |
+
|
32 |
+
captured_connections = []
|
33 |
+
|
34 |
+
def getstate_hook(ori_state):
|
35 |
+
state = None
|
36 |
+
if isinstance(ori_state, dict):
|
37 |
+
state = {} # type: ignore[assignment]
|
38 |
+
for k, v in ori_state.items():
|
39 |
+
if isinstance(v, (IterDataPipe, MapDataPipe, Collection)):
|
40 |
+
state[k] = v # type: ignore[attr-defined]
|
41 |
+
elif isinstance(ori_state, (tuple, list)):
|
42 |
+
state = [] # type: ignore[assignment]
|
43 |
+
for v in ori_state:
|
44 |
+
if isinstance(v, (IterDataPipe, MapDataPipe, Collection)):
|
45 |
+
state.append(v) # type: ignore[attr-defined]
|
46 |
+
elif isinstance(ori_state, (IterDataPipe, MapDataPipe, Collection)):
|
47 |
+
state = ori_state # type: ignore[assignment]
|
48 |
+
return state
|
49 |
+
|
50 |
+
def reduce_hook(obj):
|
51 |
+
if obj == scan_obj or id(obj) in cache:
|
52 |
+
raise NotImplementedError
|
53 |
+
else:
|
54 |
+
captured_connections.append(obj)
|
55 |
+
# Adding id to remove duplicate DataPipe serialized at the same level
|
56 |
+
cache.add(id(obj))
|
57 |
+
return _stub_unpickler, ()
|
58 |
+
|
59 |
+
datapipe_classes: Tuple[Type[DataPipe]] = (IterDataPipe, MapDataPipe) # type: ignore[assignment]
|
60 |
+
|
61 |
+
try:
|
62 |
+
for cls in datapipe_classes:
|
63 |
+
cls.set_reduce_ex_hook(reduce_hook)
|
64 |
+
if only_datapipe:
|
65 |
+
cls.set_getstate_hook(getstate_hook)
|
66 |
+
try:
|
67 |
+
p.dump(scan_obj)
|
68 |
+
except (pickle.PickleError, AttributeError, TypeError):
|
69 |
+
if dill_available():
|
70 |
+
d.dump(scan_obj)
|
71 |
+
else:
|
72 |
+
raise
|
73 |
+
finally:
|
74 |
+
for cls in datapipe_classes:
|
75 |
+
cls.set_reduce_ex_hook(None)
|
76 |
+
if only_datapipe:
|
77 |
+
cls.set_getstate_hook(None)
|
78 |
+
if dill_available():
|
79 |
+
from dill import extend as dill_extend
|
80 |
+
dill_extend(False) # Undo change to dispatch table
|
81 |
+
return captured_connections
|
82 |
+
|
83 |
+
|
84 |
+
def traverse_dps(datapipe: DataPipe) -> DataPipeGraph:
|
85 |
+
r"""
|
86 |
+
Traverse the DataPipes and their attributes to extract the DataPipe graph.
|
87 |
+
|
88 |
+
This only looks into the attribute from each DataPipe that is either a
|
89 |
+
DataPipe and a Python collection object such as ``list``, ``tuple``,
|
90 |
+
``set`` and ``dict``.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
datapipe: the end DataPipe of the graph
|
94 |
+
Returns:
|
95 |
+
A graph represented as a nested dictionary, where keys are ids of DataPipe instances
|
96 |
+
and values are tuples of DataPipe instance and the sub-graph
|
97 |
+
"""
|
98 |
+
cache: Set[int] = set()
|
99 |
+
return _traverse_helper(datapipe, only_datapipe=True, cache=cache)
|
100 |
+
|
101 |
+
|
102 |
+
def traverse(datapipe: DataPipe, only_datapipe: Optional[bool] = None) -> DataPipeGraph:
|
103 |
+
r"""
|
104 |
+
Traverse the DataPipes and their attributes to extract the DataPipe graph.
|
105 |
+
|
106 |
+
[Deprecated]
|
107 |
+
When ``only_dataPipe`` is specified as ``True``, it would only look into the
|
108 |
+
attribute from each DataPipe that is either a DataPipe and a Python collection object
|
109 |
+
such as ``list``, ``tuple``, ``set`` and ``dict``.
|
110 |
+
|
111 |
+
Note:
|
112 |
+
This function is deprecated. Please use `traverse_dps` instead.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
datapipe: the end DataPipe of the graph
|
116 |
+
only_datapipe: If ``False`` (default), all attributes of each DataPipe are traversed.
|
117 |
+
This argument is deprecating and will be removed after the next release.
|
118 |
+
Returns:
|
119 |
+
A graph represented as a nested dictionary, where keys are ids of DataPipe instances
|
120 |
+
and values are tuples of DataPipe instance and the sub-graph
|
121 |
+
"""
|
122 |
+
msg = "`traverse` function and will be removed after 1.13. " \
|
123 |
+
"Please use `traverse_dps` instead."
|
124 |
+
if not only_datapipe:
|
125 |
+
msg += " And, the behavior will be changed to the equivalent of `only_datapipe=True`."
|
126 |
+
warnings.warn(msg, FutureWarning)
|
127 |
+
if only_datapipe is None:
|
128 |
+
only_datapipe = False
|
129 |
+
cache: Set[int] = set()
|
130 |
+
return _traverse_helper(datapipe, only_datapipe, cache)
|
131 |
+
|
132 |
+
|
133 |
+
# Add cache here to prevent infinite recursion on DataPipe
|
134 |
+
def _traverse_helper(datapipe: DataPipe, only_datapipe: bool, cache: Set[int]) -> DataPipeGraph:
|
135 |
+
if not isinstance(datapipe, (IterDataPipe, MapDataPipe)):
|
136 |
+
raise RuntimeError(f"Expected `IterDataPipe` or `MapDataPipe`, but {type(datapipe)} is found")
|
137 |
+
|
138 |
+
dp_id = id(datapipe)
|
139 |
+
if dp_id in cache:
|
140 |
+
return {}
|
141 |
+
cache.add(dp_id)
|
142 |
+
# Using cache.copy() here is to prevent the same DataPipe pollutes the cache on different paths
|
143 |
+
items = _list_connected_datapipes(datapipe, only_datapipe, cache.copy())
|
144 |
+
d: DataPipeGraph = {dp_id: (datapipe, {})}
|
145 |
+
for item in items:
|
146 |
+
# Using cache.copy() here is to prevent recursion on a single path rather than global graph
|
147 |
+
# Single DataPipe can present multiple times in different paths in graph
|
148 |
+
d[dp_id][1].update(_traverse_helper(item, only_datapipe, cache.copy()))
|
149 |
+
return d
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/graph_settings.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
from typing import Any, List, Optional, Set
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from torch.utils.data.datapipes.iter.sharding import (
|
9 |
+
_ShardingIterDataPipe,
|
10 |
+
SHARDING_PRIORITIES,
|
11 |
+
)
|
12 |
+
from torch.utils.data.graph import DataPipe, DataPipeGraph, traverse_dps
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"apply_random_seed",
|
16 |
+
"apply_sharding",
|
17 |
+
"apply_shuffle_seed",
|
18 |
+
"apply_shuffle_settings",
|
19 |
+
"get_all_graph_pipes",
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
def get_all_graph_pipes(graph: DataPipeGraph) -> List[DataPipe]:
|
24 |
+
return _get_all_graph_pipes_helper(graph, set())
|
25 |
+
|
26 |
+
|
27 |
+
def _get_all_graph_pipes_helper(graph: DataPipeGraph, id_cache: Set[int]) -> List[DataPipe]:
|
28 |
+
results: List[DataPipe] = []
|
29 |
+
for dp_id, (datapipe, sub_graph) in graph.items():
|
30 |
+
if dp_id in id_cache:
|
31 |
+
continue
|
32 |
+
id_cache.add(dp_id)
|
33 |
+
results.append(datapipe)
|
34 |
+
results.extend(_get_all_graph_pipes_helper(sub_graph, id_cache))
|
35 |
+
return results
|
36 |
+
|
37 |
+
|
38 |
+
def _is_sharding_datapipe(datapipe: DataPipe) -> bool:
|
39 |
+
if isinstance(datapipe, _ShardingIterDataPipe):
|
40 |
+
return True
|
41 |
+
if hasattr(datapipe, "apply_sharding") and inspect.ismethod(datapipe.apply_sharding):
|
42 |
+
return True
|
43 |
+
return False
|
44 |
+
|
45 |
+
|
46 |
+
def apply_sharding(datapipe: DataPipe,
|
47 |
+
num_of_instances: int,
|
48 |
+
instance_id: int,
|
49 |
+
sharding_group=SHARDING_PRIORITIES.DEFAULT) -> DataPipe:
|
50 |
+
r"""
|
51 |
+
Apply dynamic sharding over the ``sharding_filter`` DataPipe that has a method ``apply_sharding``.
|
52 |
+
|
53 |
+
RuntimeError will be raised when multiple ``sharding_filter`` are presented in the same branch.
|
54 |
+
"""
|
55 |
+
graph = traverse_dps(datapipe)
|
56 |
+
|
57 |
+
def _helper(graph, prev_applied=None):
|
58 |
+
for (dp, sub_graph) in graph.values():
|
59 |
+
applied = None
|
60 |
+
if _is_sharding_datapipe(dp):
|
61 |
+
if prev_applied is not None:
|
62 |
+
raise RuntimeError("Sharding twice on a single pipeline is likely unintended and will cause data loss. "
|
63 |
+
f"Sharding already applied to {prev_applied} while trying to apply to {dp}")
|
64 |
+
# For BC, only provide sharding_group if accepted
|
65 |
+
sig = inspect.signature(dp.apply_sharding)
|
66 |
+
if len(sig.parameters) < 3:
|
67 |
+
dp.apply_sharding(num_of_instances, instance_id)
|
68 |
+
else:
|
69 |
+
dp.apply_sharding(num_of_instances, instance_id, sharding_group=sharding_group)
|
70 |
+
applied = dp
|
71 |
+
if applied is None:
|
72 |
+
applied = prev_applied
|
73 |
+
_helper(sub_graph, applied)
|
74 |
+
|
75 |
+
_helper(graph)
|
76 |
+
|
77 |
+
return datapipe
|
78 |
+
|
79 |
+
|
80 |
+
def _is_shuffle_datapipe(datapipe: DataPipe) -> bool:
|
81 |
+
if not hasattr(datapipe, "set_shuffle") or not hasattr(datapipe, "set_seed"):
|
82 |
+
return False
|
83 |
+
if not inspect.ismethod(datapipe.set_shuffle) or not inspect.ismethod(datapipe.set_seed):
|
84 |
+
return False
|
85 |
+
return True
|
86 |
+
|
87 |
+
|
88 |
+
def apply_shuffle_settings(datapipe: DataPipe, shuffle: Optional[bool] = None) -> DataPipe:
|
89 |
+
r"""
|
90 |
+
Traverse the graph of ``DataPipes`` to find and set shuffle attribute.
|
91 |
+
|
92 |
+
Apply the method to each `DataPipe` that has APIs of ``set_shuffle``
|
93 |
+
and ``set_seed``.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
datapipe: DataPipe that needs to set shuffle attribute
|
97 |
+
shuffle: Shuffle option (default: ``None`` and no-op to the graph)
|
98 |
+
"""
|
99 |
+
if shuffle is None:
|
100 |
+
return datapipe
|
101 |
+
|
102 |
+
graph = traverse_dps(datapipe)
|
103 |
+
all_pipes = get_all_graph_pipes(graph)
|
104 |
+
shufflers = [pipe for pipe in all_pipes if _is_shuffle_datapipe(pipe)]
|
105 |
+
if not shufflers and shuffle:
|
106 |
+
warnings.warn(
|
107 |
+
"`shuffle=True` was set, but the datapipe does not contain a `Shuffler`. Adding one at the end. "
|
108 |
+
"Be aware that the default buffer size might not be sufficient for your task."
|
109 |
+
)
|
110 |
+
datapipe = datapipe.shuffle()
|
111 |
+
shufflers = [datapipe, ] # type: ignore[list-item]
|
112 |
+
|
113 |
+
for shuffler in shufflers:
|
114 |
+
shuffler.set_shuffle(shuffle)
|
115 |
+
|
116 |
+
return datapipe
|
117 |
+
|
118 |
+
|
119 |
+
def apply_shuffle_seed(datapipe: DataPipe, rng: Any) -> DataPipe:
|
120 |
+
warnings.warn(
|
121 |
+
"`apply_shuffle_seed` is deprecated since 1.12 and will be removed in the future releases."
|
122 |
+
"\nPlease use `apply_random_seed` instead."
|
123 |
+
)
|
124 |
+
return apply_random_seed(datapipe, rng)
|
125 |
+
|
126 |
+
|
127 |
+
def _is_random_datapipe(datapipe: DataPipe) -> bool:
|
128 |
+
if hasattr(datapipe, "set_seed") and inspect.ismethod(datapipe.set_seed):
|
129 |
+
return True
|
130 |
+
return False
|
131 |
+
|
132 |
+
|
133 |
+
def apply_random_seed(datapipe: DataPipe, rng: torch.Generator) -> DataPipe:
|
134 |
+
r"""
|
135 |
+
Traverse the graph of ``DataPipes`` to find random ``DataPipe`` with an API of ``set_seed``.
|
136 |
+
|
137 |
+
Then set the random seed based on the provided RNG to those ``DataPipe``.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
datapipe: DataPipe that needs to set randomness
|
141 |
+
rng: Random number generator to generate random seeds
|
142 |
+
"""
|
143 |
+
graph = traverse_dps(datapipe)
|
144 |
+
all_pipes = get_all_graph_pipes(graph)
|
145 |
+
# Using a set to track id of DataPipe to prevent setting randomness per DataPipe more than once.
|
146 |
+
# And, `id` is used in case of unhashable DataPipe
|
147 |
+
cache = set()
|
148 |
+
random_datapipes = []
|
149 |
+
for pipe in all_pipes:
|
150 |
+
if id(pipe) in cache:
|
151 |
+
continue
|
152 |
+
if _is_random_datapipe(pipe):
|
153 |
+
random_datapipes.append(pipe)
|
154 |
+
cache.add(id(pipe))
|
155 |
+
|
156 |
+
for pipe in random_datapipes:
|
157 |
+
random_seed = int(torch.empty((), dtype=torch.int64).random_(generator=rng).item())
|
158 |
+
pipe.set_seed(random_seed)
|
159 |
+
|
160 |
+
return datapipe
|
llmeval-env/lib/python3.10/site-packages/torch/utils/data/sampler.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import Tensor
|
3 |
+
|
4 |
+
from typing import Iterator, Iterable, Optional, Sequence, List, TypeVar, Generic, Sized, Union
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
"BatchSampler",
|
8 |
+
"RandomSampler",
|
9 |
+
"Sampler",
|
10 |
+
"SequentialSampler",
|
11 |
+
"SubsetRandomSampler",
|
12 |
+
"WeightedRandomSampler",
|
13 |
+
]
|
14 |
+
|
15 |
+
T_co = TypeVar('T_co', covariant=True)
|
16 |
+
|
17 |
+
|
18 |
+
class Sampler(Generic[T_co]):
|
19 |
+
r"""Base class for all Samplers.
|
20 |
+
|
21 |
+
Every Sampler subclass has to provide an :meth:`__iter__` method, providing a
|
22 |
+
way to iterate over indices or lists of indices (batches) of dataset elements, and a :meth:`__len__` method
|
23 |
+
that returns the length of the returned iterators.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
data_source (Dataset): This argument is not used and will be removed in 2.2.0.
|
27 |
+
You may still have custom implementation that utilizes it.
|
28 |
+
|
29 |
+
Example:
|
30 |
+
>>> # xdoctest: +SKIP
|
31 |
+
>>> class AccedingSequenceLengthSampler(Sampler[int]):
|
32 |
+
>>> def __init__(self, data: List[str]) -> None:
|
33 |
+
>>> self.data = data
|
34 |
+
>>>
|
35 |
+
>>> def __len__(self) -> int:
|
36 |
+
>>> return len(self.data)
|
37 |
+
>>>
|
38 |
+
>>> def __iter__(self) -> Iterator[int]:
|
39 |
+
>>> sizes = torch.tensor([len(x) for x in self.data])
|
40 |
+
>>> yield from torch.argsort(sizes).tolist()
|
41 |
+
>>>
|
42 |
+
>>> class AccedingSequenceLengthBatchSampler(Sampler[List[int]]):
|
43 |
+
>>> def __init__(self, data: List[str], batch_size: int) -> None:
|
44 |
+
>>> self.data = data
|
45 |
+
>>> self.batch_size = batch_size
|
46 |
+
>>>
|
47 |
+
>>> def __len__(self) -> int:
|
48 |
+
>>> return (len(self.data) + self.batch_size - 1) // self.batch_size
|
49 |
+
>>>
|
50 |
+
>>> def __iter__(self) -> Iterator[List[int]]:
|
51 |
+
>>> sizes = torch.tensor([len(x) for x in self.data])
|
52 |
+
>>> for batch in torch.chunk(torch.argsort(sizes), len(self)):
|
53 |
+
>>> yield batch.tolist()
|
54 |
+
|
55 |
+
.. note:: The :meth:`__len__` method isn't strictly required by
|
56 |
+
:class:`~torch.utils.data.DataLoader`, but is expected in any
|
57 |
+
calculation involving the length of a :class:`~torch.utils.data.DataLoader`.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __init__(self, data_source: Optional[Sized] = None) -> None:
|
61 |
+
if data_source is not None:
|
62 |
+
import warnings
|
63 |
+
|
64 |
+
warnings.warn("`data_source` argument is not used and will be removed in 2.2.0."
|
65 |
+
"You may still have custom implementation that utilizes it.")
|
66 |
+
|
67 |
+
def __iter__(self) -> Iterator[T_co]:
|
68 |
+
raise NotImplementedError
|
69 |
+
|
70 |
+
# NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
|
71 |
+
#
|
72 |
+
# Many times we have an abstract class representing a collection/iterable of
|
73 |
+
# data, e.g., `torch.utils.data.Sampler`, with its subclasses optionally
|
74 |
+
# implementing a `__len__` method. In such cases, we must make sure to not
|
75 |
+
# provide a default implementation, because both straightforward default
|
76 |
+
# implementations have their issues:
|
77 |
+
#
|
78 |
+
# + `return NotImplemented`:
|
79 |
+
# Calling `len(subclass_instance)` raises:
|
80 |
+
# TypeError: 'NotImplementedType' object cannot be interpreted as an integer
|
81 |
+
#
|
82 |
+
# + `raise NotImplementedError()`:
|
83 |
+
# This prevents triggering some fallback behavior. E.g., the built-in
|
84 |
+
# `list(X)` tries to call `len(X)` first, and executes a different code
|
85 |
+
# path if the method is not found or `NotImplemented` is returned, while
|
86 |
+
# raising a `NotImplementedError` will propagate and make the call fail
|
87 |
+
# where it could have used `__iter__` to complete the call.
|
88 |
+
#
|
89 |
+
# Thus, the only two sensible things to do are
|
90 |
+
#
|
91 |
+
# + **not** provide a default `__len__`.
|
92 |
+
#
|
93 |
+
# + raise a `TypeError` instead, which is what Python uses when users call
|
94 |
+
# a method that is not defined on an object.
|
95 |
+
# (@ssnl verifies that this works on at least Python 3.7.)
|
96 |
+
|
97 |
+
|
98 |
+
class SequentialSampler(Sampler[int]):
|
99 |
+
r"""Samples elements sequentially, always in the same order.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
data_source (Dataset): dataset to sample from
|
103 |
+
"""
|
104 |
+
|
105 |
+
data_source: Sized
|
106 |
+
|
107 |
+
def __init__(self, data_source: Sized) -> None:
|
108 |
+
self.data_source = data_source
|
109 |
+
|
110 |
+
def __iter__(self) -> Iterator[int]:
|
111 |
+
return iter(range(len(self.data_source)))
|
112 |
+
|
113 |
+
def __len__(self) -> int:
|
114 |
+
return len(self.data_source)
|
115 |
+
|
116 |
+
|
117 |
+
class RandomSampler(Sampler[int]):
|
118 |
+
r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset.
|
119 |
+
|
120 |
+
If with replacement, then user can specify :attr:`num_samples` to draw.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
data_source (Dataset): dataset to sample from
|
124 |
+
replacement (bool): samples are drawn on-demand with replacement if ``True``, default=``False``
|
125 |
+
num_samples (int): number of samples to draw, default=`len(dataset)`.
|
126 |
+
generator (Generator): Generator used in sampling.
|
127 |
+
"""
|
128 |
+
|
129 |
+
data_source: Sized
|
130 |
+
replacement: bool
|
131 |
+
|
132 |
+
def __init__(self, data_source: Sized, replacement: bool = False,
|
133 |
+
num_samples: Optional[int] = None, generator=None) -> None:
|
134 |
+
self.data_source = data_source
|
135 |
+
self.replacement = replacement
|
136 |
+
self._num_samples = num_samples
|
137 |
+
self.generator = generator
|
138 |
+
|
139 |
+
if not isinstance(self.replacement, bool):
|
140 |
+
raise TypeError(f"replacement should be a boolean value, but got replacement={self.replacement}")
|
141 |
+
|
142 |
+
if not isinstance(self.num_samples, int) or self.num_samples <= 0:
|
143 |
+
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={self.num_samples}")
|
144 |
+
|
145 |
+
@property
|
146 |
+
def num_samples(self) -> int:
|
147 |
+
# dataset size might change at runtime
|
148 |
+
if self._num_samples is None:
|
149 |
+
return len(self.data_source)
|
150 |
+
return self._num_samples
|
151 |
+
|
152 |
+
def __iter__(self) -> Iterator[int]:
|
153 |
+
n = len(self.data_source)
|
154 |
+
if self.generator is None:
|
155 |
+
seed = int(torch.empty((), dtype=torch.int64).random_().item())
|
156 |
+
generator = torch.Generator()
|
157 |
+
generator.manual_seed(seed)
|
158 |
+
else:
|
159 |
+
generator = self.generator
|
160 |
+
|
161 |
+
if self.replacement:
|
162 |
+
for _ in range(self.num_samples // 32):
|
163 |
+
yield from torch.randint(high=n, size=(32,), dtype=torch.int64, generator=generator).tolist()
|
164 |
+
yield from torch.randint(high=n, size=(self.num_samples % 32,), dtype=torch.int64, generator=generator).tolist()
|
165 |
+
else:
|
166 |
+
for _ in range(self.num_samples // n):
|
167 |
+
yield from torch.randperm(n, generator=generator).tolist()
|
168 |
+
yield from torch.randperm(n, generator=generator).tolist()[:self.num_samples % n]
|
169 |
+
|
170 |
+
def __len__(self) -> int:
|
171 |
+
return self.num_samples
|
172 |
+
|
173 |
+
|
174 |
+
class SubsetRandomSampler(Sampler[int]):
|
175 |
+
r"""Samples elements randomly from a given list of indices, without replacement.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
indices (sequence): a sequence of indices
|
179 |
+
generator (Generator): Generator used in sampling.
|
180 |
+
"""
|
181 |
+
|
182 |
+
indices: Sequence[int]
|
183 |
+
|
184 |
+
def __init__(self, indices: Sequence[int], generator=None) -> None:
|
185 |
+
self.indices = indices
|
186 |
+
self.generator = generator
|
187 |
+
|
188 |
+
def __iter__(self) -> Iterator[int]:
|
189 |
+
for i in torch.randperm(len(self.indices), generator=self.generator):
|
190 |
+
yield self.indices[i]
|
191 |
+
|
192 |
+
def __len__(self) -> int:
|
193 |
+
return len(self.indices)
|
194 |
+
|
195 |
+
|
196 |
+
class WeightedRandomSampler(Sampler[int]):
|
197 |
+
r"""Samples elements from ``[0,..,len(weights)-1]`` with given probabilities (weights).
|
198 |
+
|
199 |
+
Args:
|
200 |
+
weights (sequence) : a sequence of weights, not necessary summing up to one
|
201 |
+
num_samples (int): number of samples to draw
|
202 |
+
replacement (bool): if ``True``, samples are drawn with replacement.
|
203 |
+
If not, they are drawn without replacement, which means that when a
|
204 |
+
sample index is drawn for a row, it cannot be drawn again for that row.
|
205 |
+
generator (Generator): Generator used in sampling.
|
206 |
+
|
207 |
+
Example:
|
208 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
209 |
+
>>> list(WeightedRandomSampler([0.1, 0.9, 0.4, 0.7, 3.0, 0.6], 5, replacement=True))
|
210 |
+
[4, 4, 1, 4, 5]
|
211 |
+
>>> list(WeightedRandomSampler([0.9, 0.4, 0.05, 0.2, 0.3, 0.1], 5, replacement=False))
|
212 |
+
[0, 1, 4, 3, 2]
|
213 |
+
"""
|
214 |
+
|
215 |
+
weights: Tensor
|
216 |
+
num_samples: int
|
217 |
+
replacement: bool
|
218 |
+
|
219 |
+
def __init__(self, weights: Sequence[float], num_samples: int,
|
220 |
+
replacement: bool = True, generator=None) -> None:
|
221 |
+
if not isinstance(num_samples, int) or isinstance(num_samples, bool) or \
|
222 |
+
num_samples <= 0:
|
223 |
+
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={num_samples}")
|
224 |
+
if not isinstance(replacement, bool):
|
225 |
+
raise ValueError(f"replacement should be a boolean value, but got replacement={replacement}")
|
226 |
+
|
227 |
+
weights_tensor = torch.as_tensor(weights, dtype=torch.double)
|
228 |
+
if len(weights_tensor.shape) != 1:
|
229 |
+
raise ValueError("weights should be a 1d sequence but given "
|
230 |
+
f"weights have shape {tuple(weights_tensor.shape)}")
|
231 |
+
|
232 |
+
self.weights = weights_tensor
|
233 |
+
self.num_samples = num_samples
|
234 |
+
self.replacement = replacement
|
235 |
+
self.generator = generator
|
236 |
+
|
237 |
+
def __iter__(self) -> Iterator[int]:
|
238 |
+
rand_tensor = torch.multinomial(self.weights, self.num_samples, self.replacement, generator=self.generator)
|
239 |
+
yield from iter(rand_tensor.tolist())
|
240 |
+
|
241 |
+
def __len__(self) -> int:
|
242 |
+
return self.num_samples
|
243 |
+
|
244 |
+
|
245 |
+
class BatchSampler(Sampler[List[int]]):
|
246 |
+
r"""Wraps another sampler to yield a mini-batch of indices.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
sampler (Sampler or Iterable): Base sampler. Can be any iterable object
|
250 |
+
batch_size (int): Size of mini-batch.
|
251 |
+
drop_last (bool): If ``True``, the sampler will drop the last batch if
|
252 |
+
its size would be less than ``batch_size``
|
253 |
+
|
254 |
+
Example:
|
255 |
+
>>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
|
256 |
+
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
|
257 |
+
>>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))
|
258 |
+
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
|
259 |
+
"""
|
260 |
+
|
261 |
+
def __init__(self, sampler: Union[Sampler[int], Iterable[int]], batch_size: int, drop_last: bool) -> None:
|
262 |
+
# Since collections.abc.Iterable does not check for `__getitem__`, which
|
263 |
+
# is one way for an object to be an iterable, we don't do an `isinstance`
|
264 |
+
# check here.
|
265 |
+
if not isinstance(batch_size, int) or isinstance(batch_size, bool) or \
|
266 |
+
batch_size <= 0:
|
267 |
+
raise ValueError(f"batch_size should be a positive integer value, but got batch_size={batch_size}")
|
268 |
+
if not isinstance(drop_last, bool):
|
269 |
+
raise ValueError(f"drop_last should be a boolean value, but got drop_last={drop_last}")
|
270 |
+
self.sampler = sampler
|
271 |
+
self.batch_size = batch_size
|
272 |
+
self.drop_last = drop_last
|
273 |
+
|
274 |
+
def __iter__(self) -> Iterator[List[int]]:
|
275 |
+
# Implemented based on the benchmarking in https://github.com/pytorch/pytorch/pull/76951
|
276 |
+
if self.drop_last:
|
277 |
+
sampler_iter = iter(self.sampler)
|
278 |
+
while True:
|
279 |
+
try:
|
280 |
+
batch = [next(sampler_iter) for _ in range(self.batch_size)]
|
281 |
+
yield batch
|
282 |
+
except StopIteration:
|
283 |
+
break
|
284 |
+
else:
|
285 |
+
batch = [0] * self.batch_size
|
286 |
+
idx_in_batch = 0
|
287 |
+
for idx in self.sampler:
|
288 |
+
batch[idx_in_batch] = idx
|
289 |
+
idx_in_batch += 1
|
290 |
+
if idx_in_batch == self.batch_size:
|
291 |
+
yield batch
|
292 |
+
idx_in_batch = 0
|
293 |
+
batch = [0] * self.batch_size
|
294 |
+
if idx_in_batch > 0:
|
295 |
+
yield batch[:idx_in_batch]
|
296 |
+
|
297 |
+
def __len__(self) -> int:
|
298 |
+
# Can only be called if self.sampler has __len__ implemented
|
299 |
+
# We cannot enforce this condition, so we turn off typechecking for the
|
300 |
+
# implementation below.
|
301 |
+
# Somewhat related: see NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
|
302 |
+
if self.drop_last:
|
303 |
+
return len(self.sampler) // self.batch_size # type: ignore[arg-type]
|
304 |
+
else:
|
305 |
+
return (len(self.sampler) + self.batch_size - 1) // self.batch_size # type: ignore[arg-type]
|
llmeval-env/lib/python3.10/site-packages/torch/utils/dlpack.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import enum
|
5 |
+
|
6 |
+
from torch._C import _from_dlpack
|
7 |
+
from torch._C import _to_dlpack as to_dlpack
|
8 |
+
|
9 |
+
|
10 |
+
class DLDeviceType(enum.IntEnum):
|
11 |
+
# Enums as in DLPack specification (aten/src/ATen/dlpack.h)
|
12 |
+
kDLCPU = 1,
|
13 |
+
kDLGPU = 2,
|
14 |
+
kDLCPUPinned = 3,
|
15 |
+
kDLOpenCL = 4,
|
16 |
+
kDLVulkan = 7,
|
17 |
+
kDLMetal = 8,
|
18 |
+
kDLVPI = 9,
|
19 |
+
kDLROCM = 10,
|
20 |
+
kDLExtDev = 12,
|
21 |
+
kDLOneAPI = 14,
|
22 |
+
|
23 |
+
|
24 |
+
torch._C._add_docstr(to_dlpack, r"""to_dlpack(tensor) -> PyCapsule
|
25 |
+
|
26 |
+
Returns an opaque object (a "DLPack capsule") representing the tensor.
|
27 |
+
|
28 |
+
.. note::
|
29 |
+
``to_dlpack`` is a legacy DLPack interface. The capsule it returns
|
30 |
+
cannot be used for anything in Python other than use it as input to
|
31 |
+
``from_dlpack``. The more idiomatic use of DLPack is to call
|
32 |
+
``from_dlpack`` directly on the tensor object - this works when that
|
33 |
+
object has a ``__dlpack__`` method, which PyTorch and most other
|
34 |
+
libraries indeed have now.
|
35 |
+
|
36 |
+
.. warning::
|
37 |
+
Only call ``from_dlpack`` once per capsule produced with ``to_dlpack``.
|
38 |
+
Behavior when a capsule is consumed multiple times is undefined.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
tensor: a tensor to be exported
|
42 |
+
|
43 |
+
The DLPack capsule shares the tensor's memory.
|
44 |
+
""")
|
45 |
+
|
46 |
+
|
47 |
+
# TODO: add a typing.Protocol to be able to tell Mypy that only objects with
|
48 |
+
# __dlpack__ and __dlpack_device__ methods are accepted.
|
49 |
+
def from_dlpack(ext_tensor: Any) -> 'torch.Tensor':
|
50 |
+
"""from_dlpack(ext_tensor) -> Tensor
|
51 |
+
|
52 |
+
Converts a tensor from an external library into a ``torch.Tensor``.
|
53 |
+
|
54 |
+
The returned PyTorch tensor will share the memory with the input tensor
|
55 |
+
(which may have come from another library). Note that in-place operations
|
56 |
+
will therefore also affect the data of the input tensor. This may lead to
|
57 |
+
unexpected issues (e.g., other libraries may have read-only flags or
|
58 |
+
immutable data structures), so the user should only do this if they know
|
59 |
+
for sure that this is fine.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
ext_tensor (object with ``__dlpack__`` attribute, or a DLPack capsule):
|
63 |
+
The tensor or DLPack capsule to convert.
|
64 |
+
|
65 |
+
If ``ext_tensor`` is a tensor (or ndarray) object, it must support
|
66 |
+
the ``__dlpack__`` protocol (i.e., have a ``ext_tensor.__dlpack__``
|
67 |
+
method). Otherwise ``ext_tensor`` may be a DLPack capsule, which is
|
68 |
+
an opaque ``PyCapsule`` instance, typically produced by a
|
69 |
+
``to_dlpack`` function or method.
|
70 |
+
|
71 |
+
Examples::
|
72 |
+
|
73 |
+
>>> import torch.utils.dlpack
|
74 |
+
>>> t = torch.arange(4)
|
75 |
+
|
76 |
+
# Convert a tensor directly (supported in PyTorch >= 1.10)
|
77 |
+
>>> t2 = torch.from_dlpack(t)
|
78 |
+
>>> t2[:2] = -1 # show that memory is shared
|
79 |
+
>>> t2
|
80 |
+
tensor([-1, -1, 2, 3])
|
81 |
+
>>> t
|
82 |
+
tensor([-1, -1, 2, 3])
|
83 |
+
|
84 |
+
# The old-style DLPack usage, with an intermediate capsule object
|
85 |
+
>>> capsule = torch.utils.dlpack.to_dlpack(t)
|
86 |
+
>>> capsule
|
87 |
+
<capsule object "dltensor" at ...>
|
88 |
+
>>> t3 = torch.from_dlpack(capsule)
|
89 |
+
>>> t3
|
90 |
+
tensor([-1, -1, 2, 3])
|
91 |
+
>>> t3[0] = -9 # now we're sharing memory between 3 tensors
|
92 |
+
>>> t3
|
93 |
+
tensor([-9, -1, 2, 3])
|
94 |
+
>>> t2
|
95 |
+
tensor([-9, -1, 2, 3])
|
96 |
+
>>> t
|
97 |
+
tensor([-9, -1, 2, 3])
|
98 |
+
|
99 |
+
"""
|
100 |
+
if hasattr(ext_tensor, '__dlpack__'):
|
101 |
+
device = ext_tensor.__dlpack_device__()
|
102 |
+
# device is either CUDA or ROCm, we need to pass the current
|
103 |
+
# stream
|
104 |
+
if device[0] in (DLDeviceType.kDLGPU, DLDeviceType.kDLROCM):
|
105 |
+
stream = torch.cuda.current_stream(f'cuda:{device[1]}')
|
106 |
+
# cuda_stream is the pointer to the stream and it is a public
|
107 |
+
# attribute, but it is not documented
|
108 |
+
# The array API specify that the default legacy stream must be passed
|
109 |
+
# with a value of 1 for CUDA
|
110 |
+
# https://data-apis.org/array-api/latest/API_specification/array_object.html?dlpack-self-stream-none#dlpack-self-stream-none
|
111 |
+
is_cuda = device[0] == DLDeviceType.kDLGPU
|
112 |
+
# Since pytorch is not using PTDS by default, lets directly pass
|
113 |
+
# the legacy stream
|
114 |
+
stream_ptr = 1 if is_cuda and stream.cuda_stream == 0 else stream.cuda_stream
|
115 |
+
dlpack = ext_tensor.__dlpack__(stream=stream_ptr)
|
116 |
+
else:
|
117 |
+
dlpack = ext_tensor.__dlpack__()
|
118 |
+
else:
|
119 |
+
# Old versions just call the converter
|
120 |
+
dlpack = ext_tensor
|
121 |
+
return _from_dlpack(dlpack)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/file_baton.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
|
4 |
+
|
5 |
+
class FileBaton:
|
6 |
+
"""A primitive, file-based synchronization utility."""
|
7 |
+
|
8 |
+
def __init__(self, lock_file_path, wait_seconds=0.1):
|
9 |
+
"""
|
10 |
+
Create a new :class:`FileBaton`.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
lock_file_path: The path to the file used for locking.
|
14 |
+
wait_seconds: The seconds to periodically sleep (spin) when
|
15 |
+
calling ``wait()``.
|
16 |
+
"""
|
17 |
+
self.lock_file_path = lock_file_path
|
18 |
+
self.wait_seconds = wait_seconds
|
19 |
+
self.fd = None
|
20 |
+
|
21 |
+
def try_acquire(self):
|
22 |
+
"""
|
23 |
+
Try to atomically create a file under exclusive access.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
True if the file could be created, else False.
|
27 |
+
"""
|
28 |
+
try:
|
29 |
+
self.fd = os.open(self.lock_file_path, os.O_CREAT | os.O_EXCL)
|
30 |
+
return True
|
31 |
+
except FileExistsError:
|
32 |
+
return False
|
33 |
+
|
34 |
+
def wait(self):
|
35 |
+
"""
|
36 |
+
Periodically sleeps for a certain amount until the baton is released.
|
37 |
+
|
38 |
+
The amount of time slept depends on the ``wait_seconds`` parameter
|
39 |
+
passed to the constructor.
|
40 |
+
"""
|
41 |
+
while os.path.exists(self.lock_file_path):
|
42 |
+
time.sleep(self.wait_seconds)
|
43 |
+
|
44 |
+
def release(self):
|
45 |
+
"""Release the baton and removes its file."""
|
46 |
+
if self.fd is not None:
|
47 |
+
os.close(self.fd)
|
48 |
+
|
49 |
+
os.remove(self.lock_file_path)
|
llmeval-env/lib/python3.10/site-packages/torch/utils/flop_counter.py
ADDED
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
|
4 |
+
from typing import List, Any, Dict, Optional, Union, NamedTuple
|
5 |
+
from collections import defaultdict
|
6 |
+
from torch.utils._python_dispatch import TorchDispatchMode
|
7 |
+
from torch.utils.hooks import RemovableHandle
|
8 |
+
from torch._decomp import register_decomposition
|
9 |
+
from math import prod
|
10 |
+
from functools import wraps
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
__all__ = ["FlopCounterMode", "register_flop_formula"]
|
15 |
+
|
16 |
+
aten = torch.ops.aten
|
17 |
+
|
18 |
+
def get_shape(i):
|
19 |
+
if isinstance(i, torch.Tensor):
|
20 |
+
return i.shape
|
21 |
+
return i
|
22 |
+
|
23 |
+
flop_registry: Dict[Any, Any] = {}
|
24 |
+
|
25 |
+
def shape_wrapper(f):
|
26 |
+
@wraps(f)
|
27 |
+
def nf(*args, out=None, **kwargs):
|
28 |
+
args, kwargs, out_shape = tree_map(get_shape, (args, kwargs, out))
|
29 |
+
return f(*args, out_shape=out_shape, **kwargs)
|
30 |
+
return nf
|
31 |
+
|
32 |
+
def register_flop_formula(targets, get_raw=False):
|
33 |
+
def register_fun(flop_formula):
|
34 |
+
if not get_raw:
|
35 |
+
flop_formula = shape_wrapper(flop_formula)
|
36 |
+
register_decomposition(targets, registry=flop_registry, unsafe=True)(flop_formula)
|
37 |
+
return flop_formula
|
38 |
+
|
39 |
+
return register_fun
|
40 |
+
|
41 |
+
@register_flop_formula(aten.mm)
|
42 |
+
def mm_flop(a_shape, b_shape, *args, out_shape=None, **kwargs) -> int:
|
43 |
+
"""Count flops for matmul."""
|
44 |
+
# Inputs should be a list of length 2.
|
45 |
+
# Inputs contains the shapes of two matrices.
|
46 |
+
m, k = a_shape
|
47 |
+
k2, n = b_shape
|
48 |
+
assert k == k2
|
49 |
+
# NB(chilli): Should be 2 * k - 1 technically for FLOPs.
|
50 |
+
return m * n * 2 * k
|
51 |
+
|
52 |
+
@register_flop_formula(aten.addmm)
|
53 |
+
def addmm_flop(self_shape, a_shape, b_shape, out_shape=None, **kwargs) -> int:
|
54 |
+
"""Count flops for addmm."""
|
55 |
+
return mm_flop(a_shape, b_shape)
|
56 |
+
|
57 |
+
@register_flop_formula(aten.bmm)
|
58 |
+
def bmm_flop(a_shape, b_shape, out_shape=None, **kwargs) -> int:
|
59 |
+
"""Count flops for the bmm operation."""
|
60 |
+
# Inputs should be a list of length 2.
|
61 |
+
# Inputs contains the shapes of two tensor.
|
62 |
+
b, m, k = a_shape
|
63 |
+
b2, k2, n = b_shape
|
64 |
+
assert b == b2
|
65 |
+
assert k == k2
|
66 |
+
# NB(chilli): Should be 2 * k - 1 technically for FLOPs.
|
67 |
+
flop = b * m * n * 2 * k
|
68 |
+
return flop
|
69 |
+
|
70 |
+
@register_flop_formula(aten.baddbmm)
|
71 |
+
def baddbmm_flop(self_shape, a_shape, b_shape, out_shape=None, **kwargs) -> int:
|
72 |
+
"""Count flops for the baddbmm operation."""
|
73 |
+
# Inputs should be a list of length 3.
|
74 |
+
# Inputs contains the shapes of three tensors.
|
75 |
+
return bmm_flop(a_shape, b_shape)
|
76 |
+
|
77 |
+
|
78 |
+
def conv_flop_count(
|
79 |
+
x_shape: List[int],
|
80 |
+
w_shape: List[int],
|
81 |
+
out_shape: List[int],
|
82 |
+
transposed: bool = False,
|
83 |
+
) -> int:
|
84 |
+
"""Count flops for convolution.
|
85 |
+
|
86 |
+
Note only multiplication is
|
87 |
+
counted. Computation for bias are ignored.
|
88 |
+
Flops for a transposed convolution are calculated as
|
89 |
+
flops = (x_shape[2:] * prod(w_shape) * batch_size).
|
90 |
+
Args:
|
91 |
+
x_shape (list(int)): The input shape before convolution.
|
92 |
+
w_shape (list(int)): The filter shape.
|
93 |
+
out_shape (list(int)): The output shape after convolution.
|
94 |
+
transposed (bool): is the convolution transposed
|
95 |
+
Returns:
|
96 |
+
int: the number of flops
|
97 |
+
"""
|
98 |
+
|
99 |
+
batch_size = x_shape[0]
|
100 |
+
conv_shape = (x_shape if transposed else out_shape)[2:]
|
101 |
+
c_out, c_in, *filter_size = w_shape
|
102 |
+
|
103 |
+
"""
|
104 |
+
General idea here is that for a regular conv, for each point in the output
|
105 |
+
spatial dimension we convolve the filter with something (hence
|
106 |
+
`prod(conv_shape) * prod(filter_size)` ops). Then, this gets multiplied by
|
107 |
+
1. batch_size, 2. the cross product of input and weight channels.
|
108 |
+
|
109 |
+
For the transpose, it's not each point in the *output* spatial dimension but
|
110 |
+
each point in the *input* spatial dimension.
|
111 |
+
"""
|
112 |
+
# NB(chilli): I don't think this properly accounts for padding :think:
|
113 |
+
# NB(chilli): Should be 2 * c_in - 1 technically for FLOPs.
|
114 |
+
flop = prod(conv_shape) * prod(filter_size) * batch_size * c_out * c_in * 2
|
115 |
+
return flop
|
116 |
+
|
117 |
+
@register_flop_formula([aten.convolution, aten._convolution])
|
118 |
+
def conv_flop(x_shape, w_shape, _bias, _stride, _padding, _dilation, transposed, *args, out_shape=None, **kwargs) -> int:
|
119 |
+
"""Count flops for convolution."""
|
120 |
+
return conv_flop_count(x_shape, w_shape, out_shape, transposed=transposed)
|
121 |
+
|
122 |
+
|
123 |
+
@register_flop_formula(aten.convolution_backward)
|
124 |
+
def conv_backward_flop(
|
125 |
+
grad_out_shape,
|
126 |
+
x_shape,
|
127 |
+
w_shape,
|
128 |
+
_bias,
|
129 |
+
_stride,
|
130 |
+
_padding,
|
131 |
+
_dilation,
|
132 |
+
transposed,
|
133 |
+
_output_padding,
|
134 |
+
_groups,
|
135 |
+
output_mask,
|
136 |
+
out_shape) -> int:
|
137 |
+
|
138 |
+
def t(shape):
|
139 |
+
return [shape[1], shape[0]] + list(shape[2:])
|
140 |
+
flop_count = 0
|
141 |
+
|
142 |
+
"""
|
143 |
+
Let's say we have a regular 1D conv
|
144 |
+
{A, B, C} [inp]
|
145 |
+
{i, j} [weight]
|
146 |
+
=> (conv)
|
147 |
+
{Ai + Bj, Bi + Cj} [out]
|
148 |
+
|
149 |
+
And as a reminder, the transposed conv of the above is
|
150 |
+
=> {Ai, Aj + Bi, Bj + Ci, Cj} [transposed conv out]
|
151 |
+
|
152 |
+
For the backwards of conv, we now have
|
153 |
+
{D, E} [grad_out]
|
154 |
+
{A, B, C} [inp]
|
155 |
+
{i, j} [weight]
|
156 |
+
|
157 |
+
# grad_inp as conv_transpose(grad_out, weight)
|
158 |
+
Let's first compute grad_inp. To do so, we can simply look at all the
|
159 |
+
multiplications that each element of inp is involved in. For example, A is
|
160 |
+
only involved in the first element of the output (and thus only depends upon
|
161 |
+
D in grad_out), and C is only involved in the last element of the output
|
162 |
+
(and thus only depends upon E in grad_out)
|
163 |
+
|
164 |
+
{Di, Dj + Ei, Ej} [grad_inp]
|
165 |
+
|
166 |
+
Note that this corresponds to the below conv_transpose. This gives us the
|
167 |
+
output_mask[0] branch, which is grad_inp.
|
168 |
+
|
169 |
+
{D, E} [inp (grad_out)]
|
170 |
+
{i, j} [weight]
|
171 |
+
=> (conv_transpose)
|
172 |
+
{Di, Dj + Ei, Ej} [out (grad_inp)]
|
173 |
+
|
174 |
+
I leave the fact that grad_inp for a transposed conv is just conv(grad_out,
|
175 |
+
weight) as an exercise for the reader.
|
176 |
+
|
177 |
+
# grad_weight as conv(inp, grad_out)
|
178 |
+
To compute grad_weight, we again look at the terms in the output, which as
|
179 |
+
a reminder is:
|
180 |
+
=> {Ai + Bj, Bi + Cj} [out]
|
181 |
+
=> {D, E} [grad_out]
|
182 |
+
If we manually compute the gradient for the weights, we see it's
|
183 |
+
{AD + BE, BD + CE} [grad_weight]
|
184 |
+
|
185 |
+
This corresponds to the below conv
|
186 |
+
{A, B, C} [inp]
|
187 |
+
{D, E} [weight (grad_out)]
|
188 |
+
=> (conv)
|
189 |
+
{AD + BE, BD + CE} [out (grad_weight)]
|
190 |
+
|
191 |
+
# grad_weight of transposed conv as conv(grad_out, inp)
|
192 |
+
As a reminder, the terms of the output of a transposed conv are:
|
193 |
+
=> {Ai, Aj + Bi, Bj + Ci, Cj} [transposed conv out]
|
194 |
+
=> {D, E, F, G} [grad_out]
|
195 |
+
|
196 |
+
Manually computing the gradient for the weights, we see it's
|
197 |
+
{AD + BE + CF, AE + BF + CG} [grad_weight]
|
198 |
+
|
199 |
+
This corresponds to the below conv
|
200 |
+
{D, E, F, G} [inp (grad_out)]
|
201 |
+
{A, B, C} [weight (inp)]
|
202 |
+
=> (conv)
|
203 |
+
{AD + BE + CF, AE + BF + CG} [out (grad_weight)]
|
204 |
+
|
205 |
+
For the full backwards formula, there are also some details involving
|
206 |
+
transpose of the batch/channel dimensions and groups, but I skip those for
|
207 |
+
the sake of brevity (and they're pretty similar to matmul backwards)
|
208 |
+
|
209 |
+
Check [conv backwards decomposition as conv forwards]
|
210 |
+
"""
|
211 |
+
# grad_inp as conv_transpose(grad_out, weight)
|
212 |
+
if output_mask[0]:
|
213 |
+
grad_input_shape = get_shape(out_shape[0])
|
214 |
+
flop_count += conv_flop_count(grad_out_shape, w_shape, grad_input_shape, not transposed)
|
215 |
+
|
216 |
+
if output_mask[1]:
|
217 |
+
grad_weight_shape = get_shape(out_shape[1])
|
218 |
+
if transposed:
|
219 |
+
# grad_weight of transposed conv as conv(grad_out, inp)
|
220 |
+
flop_count += conv_flop_count(t(grad_out_shape), t(x_shape), t(grad_weight_shape), transposed=False)
|
221 |
+
else:
|
222 |
+
# grad_weight as conv(inp, grad_out)
|
223 |
+
flop_count += conv_flop_count(t(x_shape), t(grad_out_shape), t(grad_weight_shape), transposed=False)
|
224 |
+
|
225 |
+
return flop_count
|
226 |
+
|
227 |
+
def sdpa_flop_count(query_shape, key_shape, value_shape):
|
228 |
+
"""
|
229 |
+
Count flops for self-attention.
|
230 |
+
|
231 |
+
NB: We can assume that value_shape == key_shape
|
232 |
+
"""
|
233 |
+
b, h, s_q, d_q = query_shape
|
234 |
+
_b2, _h2, s_k, _d2 = key_shape
|
235 |
+
_b3, _h3, _s3, d_v = value_shape
|
236 |
+
assert b == _b2 == _b3 and h == _h2 == _h3 and d_q == _d2 and s_k == _s3 and d_q == _d2
|
237 |
+
total_flops = 0
|
238 |
+
# q: [b, h, s_q, d_q] @ k: [b, h, d_q, s_k] -> scores: [b, h, s_q, s_k]
|
239 |
+
total_flops += bmm_flop((b * h, s_q, d_q), (b * h, d_q, s_k))
|
240 |
+
# scores: [b, h, s_q, s_k] @ v: [b, h, s_k, d_v] -> out: [b, h, s_q, d_v]
|
241 |
+
total_flops += bmm_flop((b * h, s_q, s_k), (b * h, s_k, d_v))
|
242 |
+
return total_flops
|
243 |
+
|
244 |
+
|
245 |
+
@register_flop_formula([aten._scaled_dot_product_efficient_attention, aten._scaled_dot_product_flash_attention])
|
246 |
+
def sdpa_flop(query_shape, key_shape, value_shape, *args, out_shape=None, **kwargs) -> int:
|
247 |
+
"""Count flops for self-attention."""
|
248 |
+
# NB: We aren't accounting for causal attention here
|
249 |
+
return sdpa_flop_count(query_shape, key_shape, value_shape)
|
250 |
+
|
251 |
+
|
252 |
+
def sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape):
|
253 |
+
total_flops = 0
|
254 |
+
b, h, s_q, d_q = query_shape
|
255 |
+
_b2, _h2, s_k, _d2 = key_shape
|
256 |
+
_b3, _h3, _s3, d_v = value_shape
|
257 |
+
_b4, _h4, _s4, _d4 = grad_out_shape
|
258 |
+
assert b == _b2 == _b3 == _b4 and h == _h2 == _h3 == _h4 and d_q == _d2
|
259 |
+
assert d_v == _d4 and s_k == _s3 and s_q == _s4
|
260 |
+
total_flops = 0
|
261 |
+
# Step 1: We recompute the scores matrix.
|
262 |
+
# q: [b, h, s_q, d_q] @ k: [b, h, d_q, s_k] -> scores: [b, h, s_q, s_k]
|
263 |
+
total_flops += bmm_flop((b * h, s_q, d_q), (b * h, d_q, s_k))
|
264 |
+
|
265 |
+
# Step 2: We propagate the gradients through the score @ v operation.
|
266 |
+
# gradOut: [b, h, s_q, d_v] @ v: [b, h, d_v, s_k] -> gradScores: [b, h, s_q, s_k]
|
267 |
+
total_flops += bmm_flop((b * h, s_q, d_v), (b * h, d_v, s_k))
|
268 |
+
# scores: [b, h, s_k, s_q] @ gradOut: [b, h, s_q, d_v] -> gradV: [b, h, s_k, d_v]
|
269 |
+
total_flops += bmm_flop((b * h, s_k, s_q), (b * h, s_q, d_v))
|
270 |
+
|
271 |
+
# Step 3: We propagate th gradients through the k @ v operation
|
272 |
+
# gradScores: [b, h, s_q, s_k] @ k: [b, h, s_k, d_q] -> gradQ: [b, h, s_q, d_q]
|
273 |
+
total_flops += bmm_flop((b * h, s_q, s_k), (b * h, s_k, d_q))
|
274 |
+
# q: [b, h, d_q, s_q] @ gradScores: [b, h, s_q, s_k] -> gradK: [b, h, d_q, s_k]
|
275 |
+
total_flops += bmm_flop((b * h, d_q, s_q), (b * h, s_q, s_k))
|
276 |
+
return total_flops
|
277 |
+
|
278 |
+
|
279 |
+
@register_flop_formula([aten._scaled_dot_product_efficient_attention_backward, aten._scaled_dot_product_flash_attention_backward])
|
280 |
+
def sdpa_backward_flop(grad_out_shape, query_shape, key_shape, value_shape, *args, out_shape=None, **kwargs) -> int:
|
281 |
+
"""Count flops for self-attention backward."""
|
282 |
+
return sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape)
|
283 |
+
|
284 |
+
flop_registry = {
|
285 |
+
aten.mm: mm_flop,
|
286 |
+
aten.addmm: addmm_flop,
|
287 |
+
aten.bmm: bmm_flop,
|
288 |
+
aten.baddbmm: baddbmm_flop,
|
289 |
+
aten.convolution: conv_flop,
|
290 |
+
aten._convolution: conv_flop,
|
291 |
+
aten.convolution_backward: conv_backward_flop,
|
292 |
+
aten._scaled_dot_product_efficient_attention: sdpa_flop,
|
293 |
+
aten._scaled_dot_product_flash_attention: sdpa_flop,
|
294 |
+
aten._scaled_dot_product_efficient_attention_backward: sdpa_backward_flop,
|
295 |
+
aten._scaled_dot_product_flash_attention_backward: sdpa_backward_flop,
|
296 |
+
}
|
297 |
+
|
298 |
+
def normalize_tuple(x):
|
299 |
+
if not isinstance(x, tuple):
|
300 |
+
return (x,)
|
301 |
+
return x
|
302 |
+
|
303 |
+
|
304 |
+
# Define the suffixes for different orders of magnitude
|
305 |
+
suffixes = ["", "K", "M", "B", "T"]
|
306 |
+
# Thanks BingChat!
|
307 |
+
def get_suffix_str(number):
|
308 |
+
# Find the index of the appropriate suffix based on the number of digits
|
309 |
+
# with some additional overflow.
|
310 |
+
# i.e. 1.01B should be displayed as 1001M, not 1.001B
|
311 |
+
index = max(0, min(len(suffixes) - 1, (len(str(number)) - 2) // 3))
|
312 |
+
return suffixes[index]
|
313 |
+
|
314 |
+
def convert_num_with_suffix(number, suffix):
|
315 |
+
index = suffixes.index(suffix)
|
316 |
+
# Divide the number by 1000^index and format it to two decimal places
|
317 |
+
value = f"{number / 1000 ** index:.3f}"
|
318 |
+
# Return the value and the suffix as a string
|
319 |
+
return value + suffixes[index]
|
320 |
+
|
321 |
+
def convert_to_percent_str(num, denom):
|
322 |
+
if denom == 0:
|
323 |
+
return "0%"
|
324 |
+
return f"{num / denom:.2%}"
|
325 |
+
|
326 |
+
def _pytreeify_preserve_structure(f):
|
327 |
+
@wraps(f)
|
328 |
+
def nf(args):
|
329 |
+
flat_args, spec = tree_flatten(args)
|
330 |
+
out = f(*flat_args)
|
331 |
+
return tree_unflatten(out, spec)
|
332 |
+
|
333 |
+
return nf
|
334 |
+
|
335 |
+
|
336 |
+
class FlopCounterMode(TorchDispatchMode):
|
337 |
+
"""
|
338 |
+
``FlopCounterMode`` is a context manager that counts the number of flops within its context.
|
339 |
+
|
340 |
+
It does this using a ``TorchDispatchMode``.
|
341 |
+
|
342 |
+
It also supports hierarchical output by passing a module (or list of
|
343 |
+
modules) to FlopCounterMode on construction. If you do not need hierarchical
|
344 |
+
output, you do not need to use it with a module.
|
345 |
+
|
346 |
+
Example usage
|
347 |
+
|
348 |
+
.. code-block:: python
|
349 |
+
|
350 |
+
mod = ...
|
351 |
+
flop_counter = FlopCounterMode(mod)
|
352 |
+
with flop_counter:
|
353 |
+
mod.sum().backward()
|
354 |
+
|
355 |
+
"""
|
356 |
+
|
357 |
+
def __init__(
|
358 |
+
self,
|
359 |
+
mods: Optional[Union[torch.nn.Module, List[torch.nn.Module]]] = None,
|
360 |
+
depth: int = 2,
|
361 |
+
display: bool = True,
|
362 |
+
custom_mapping: Optional[Dict[Any, Any]] = None):
|
363 |
+
self.flop_counts: Dict[str, Dict[Any, int]] = defaultdict(lambda: defaultdict(int))
|
364 |
+
self.depth = depth
|
365 |
+
self.parents = ["Global"]
|
366 |
+
self.in_backward = False
|
367 |
+
self.display = display
|
368 |
+
if custom_mapping is None:
|
369 |
+
custom_mapping = {}
|
370 |
+
if isinstance(mods, torch.nn.Module):
|
371 |
+
mods = [mods]
|
372 |
+
self.mods = mods
|
373 |
+
# Keys will include the modules in `mods` and their submodules
|
374 |
+
self._module_to_forward_hook_handles: Dict[nn.Module, _ForwardHookHandles] = {}
|
375 |
+
self.flop_registry = {
|
376 |
+
**flop_registry,
|
377 |
+
**{k: v if getattr(v, "_get_raw", False) else shape_wrapper(v) for k, v in custom_mapping.items()}
|
378 |
+
}
|
379 |
+
|
380 |
+
def _register_forward_hooks(self):
|
381 |
+
if self.mods is None:
|
382 |
+
return
|
383 |
+
for mod in self.mods:
|
384 |
+
prefix = type(mod).__name__
|
385 |
+
for name, module in dict(mod.named_modules()).items():
|
386 |
+
if name == "":
|
387 |
+
name = prefix
|
388 |
+
else:
|
389 |
+
name = ".".join([prefix, name])
|
390 |
+
|
391 |
+
forward_pre_hook_handle = module.register_forward_pre_hook(self._enter_module(name))
|
392 |
+
forward_hook_handle = module.register_forward_hook(self._exit_module(name))
|
393 |
+
self._module_to_forward_hook_handles[module] = _ForwardHookHandles(
|
394 |
+
forward_pre_hook_handle, forward_hook_handle
|
395 |
+
)
|
396 |
+
|
397 |
+
def _deregister_forward_hooks(self):
|
398 |
+
for forward_hook_handles in self._module_to_forward_hook_handles.values():
|
399 |
+
forward_hook_handles[0].remove()
|
400 |
+
forward_hook_handles[1].remove()
|
401 |
+
self._module_to_forward_hook_handles.clear()
|
402 |
+
|
403 |
+
def _enter_module(self, name):
|
404 |
+
def f(module, inputs):
|
405 |
+
out = _pytreeify_preserve_structure(self._create_pre_module(name))(inputs)
|
406 |
+
return out
|
407 |
+
|
408 |
+
return f
|
409 |
+
|
410 |
+
def _exit_module(self, name):
|
411 |
+
def f(module, inputs, outputs):
|
412 |
+
outputs = _pytreeify_preserve_structure(self._create_post_module(name))(outputs)
|
413 |
+
return outputs
|
414 |
+
return f
|
415 |
+
|
416 |
+
def _create_post_module(self, name):
|
417 |
+
class PushState(torch.autograd.Function):
|
418 |
+
@staticmethod
|
419 |
+
def forward(ctx, *args):
|
420 |
+
assert self.parents[-1] == name, f"{self.parents[-1]} is not {name}"
|
421 |
+
self.parents.pop()
|
422 |
+
args = tree_map(lambda x: x.clone() if isinstance(x, torch.Tensor) else x, args)
|
423 |
+
return args
|
424 |
+
|
425 |
+
@staticmethod
|
426 |
+
def backward(ctx, *grad_outs):
|
427 |
+
self.in_backward = True
|
428 |
+
self.parents.append(name)
|
429 |
+
return grad_outs
|
430 |
+
|
431 |
+
return PushState.apply
|
432 |
+
|
433 |
+
def _create_pre_module(self, name):
|
434 |
+
class PopState(torch.autograd.Function):
|
435 |
+
@staticmethod
|
436 |
+
def forward(ctx, *args):
|
437 |
+
if self.in_backward:
|
438 |
+
self.parents = ["Global"]
|
439 |
+
self.in_backward = True
|
440 |
+
self.parents.append(name)
|
441 |
+
args = tree_map(lambda x: x.clone() if isinstance(x, torch.Tensor) else x, args)
|
442 |
+
return args
|
443 |
+
|
444 |
+
@staticmethod
|
445 |
+
def backward(ctx, *grad_outs):
|
446 |
+
assert self.parents[-1] == name
|
447 |
+
self.parents.pop()
|
448 |
+
return grad_outs
|
449 |
+
|
450 |
+
return PopState.apply
|
451 |
+
|
452 |
+
def get_total_flops(self) -> int:
|
453 |
+
return sum(self.flop_counts['Global'].values())
|
454 |
+
|
455 |
+
def get_flop_counts(self) -> Dict[str, Dict[Any, int]]:
|
456 |
+
"""Return the flop counts as a dictionary of dictionaries.
|
457 |
+
|
458 |
+
The outer
|
459 |
+
dictionary is keyed by module name, and the inner dictionary is keyed by
|
460 |
+
operation name.
|
461 |
+
|
462 |
+
Returns:
|
463 |
+
Dict[str, Dict[Any, int]]: The flop counts as a dictionary.
|
464 |
+
"""
|
465 |
+
return {k: dict(v) for k, v in self.flop_counts.items()}
|
466 |
+
|
467 |
+
def get_table(self, depth=None):
|
468 |
+
if depth is None:
|
469 |
+
depth = self.depth
|
470 |
+
if depth is None:
|
471 |
+
depth = 999999
|
472 |
+
|
473 |
+
import tabulate
|
474 |
+
tabulate.PRESERVE_WHITESPACE = True
|
475 |
+
header = ["Module", "FLOP", "% Total"]
|
476 |
+
values = []
|
477 |
+
global_flops = self.get_total_flops()
|
478 |
+
global_suffix = get_suffix_str(global_flops)
|
479 |
+
is_global_subsumed = False
|
480 |
+
|
481 |
+
def process_mod(mod_name, depth):
|
482 |
+
nonlocal is_global_subsumed
|
483 |
+
|
484 |
+
total_flops = sum(self.flop_counts[mod_name].values())
|
485 |
+
|
486 |
+
is_global_subsumed |= total_flops >= global_flops
|
487 |
+
|
488 |
+
padding = " " * depth
|
489 |
+
values = []
|
490 |
+
values.append([
|
491 |
+
padding + mod_name,
|
492 |
+
convert_num_with_suffix(total_flops, global_suffix),
|
493 |
+
convert_to_percent_str(total_flops, global_flops)
|
494 |
+
])
|
495 |
+
for k, v in self.flop_counts[mod_name].items():
|
496 |
+
values.append([
|
497 |
+
padding + " - " + str(k),
|
498 |
+
convert_num_with_suffix(v, global_suffix),
|
499 |
+
convert_to_percent_str(v, global_flops)
|
500 |
+
])
|
501 |
+
return values
|
502 |
+
|
503 |
+
for mod in self.flop_counts.keys():
|
504 |
+
if mod == 'Global':
|
505 |
+
continue
|
506 |
+
mod_depth = mod.count(".") + 1
|
507 |
+
if mod_depth > depth:
|
508 |
+
continue
|
509 |
+
|
510 |
+
cur_values = process_mod(mod, mod_depth - 1)
|
511 |
+
values.extend(cur_values)
|
512 |
+
|
513 |
+
# We do a bit of messing around here to only output the "Global" value
|
514 |
+
# if there are any FLOPs in there that aren't already fully contained by
|
515 |
+
# a module.
|
516 |
+
if 'Global' in self.flop_counts and not is_global_subsumed:
|
517 |
+
for idx, value in enumerate(values):
|
518 |
+
values[idx][0] = " " + values[idx][0]
|
519 |
+
|
520 |
+
values = process_mod('Global', 0) + values
|
521 |
+
|
522 |
+
if len(values) == 0:
|
523 |
+
values = [["Global", "0", "0%"]]
|
524 |
+
|
525 |
+
return tabulate.tabulate(values, headers=header, colalign=("left", "right", "right"))
|
526 |
+
|
527 |
+
def __enter__(self):
|
528 |
+
self.flop_counts.clear()
|
529 |
+
self._register_forward_hooks()
|
530 |
+
super().__enter__()
|
531 |
+
return self
|
532 |
+
|
533 |
+
def __exit__(self, *args):
|
534 |
+
if self.display:
|
535 |
+
print(self.get_table(self.depth))
|
536 |
+
self._deregister_forward_hooks()
|
537 |
+
super().__exit__(*args)
|
538 |
+
|
539 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
540 |
+
kwargs = kwargs if kwargs else {}
|
541 |
+
out = func(*args, **kwargs)
|
542 |
+
func_packet = func._overloadpacket
|
543 |
+
if func_packet in self.flop_registry:
|
544 |
+
flop_count_func = self.flop_registry[func_packet]
|
545 |
+
flop_count = flop_count_func(*args, **kwargs, out=out) # type: ignore[operator]
|
546 |
+
if len(set(self.parents)) != len(self.parents):
|
547 |
+
print(
|
548 |
+
"The module hierarchy tracking seems to be messed up."
|
549 |
+
"Please file a bug or just run the flop counter without"
|
550 |
+
"tracking the module hierarchy (i.e. `with FlopCounterMode():`)"
|
551 |
+
)
|
552 |
+
for par in set(self.parents):
|
553 |
+
self.flop_counts[par][func_packet] += flop_count
|
554 |
+
|
555 |
+
return out
|
556 |
+
|
557 |
+
class _ForwardHookHandles(NamedTuple):
|
558 |
+
forward_pre_hook_handle: RemovableHandle
|
559 |
+
forward_hook_handle: RemovableHandle
|
llmeval-env/lib/python3.10/site-packages/torch/utils/hooks.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from collections import OrderedDict
|
3 |
+
import weakref
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Tuple
|
6 |
+
|
7 |
+
__all__ = ["RemovableHandle", "unserializable_hook", "warn_if_has_hooks", "BackwardHook"]
|
8 |
+
|
9 |
+
class RemovableHandle:
|
10 |
+
r"""
|
11 |
+
A handle which provides the capability to remove a hook.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
hooks_dict (dict): A dictionary of hooks, indexed by hook ``id``.
|
15 |
+
extra_dict (Union[dict, List[dict]]): An additional dictionary or list of
|
16 |
+
dictionaries whose keys will be deleted when the same keys are
|
17 |
+
removed from ``hooks_dict``.
|
18 |
+
"""
|
19 |
+
|
20 |
+
id: int
|
21 |
+
next_id: int = 0
|
22 |
+
|
23 |
+
def __init__(self, hooks_dict: Any, *, extra_dict: Any = None) -> None:
|
24 |
+
self.hooks_dict_ref = weakref.ref(hooks_dict)
|
25 |
+
self.id = RemovableHandle.next_id
|
26 |
+
RemovableHandle.next_id += 1
|
27 |
+
|
28 |
+
self.extra_dict_ref: Tuple = ()
|
29 |
+
if isinstance(extra_dict, dict):
|
30 |
+
self.extra_dict_ref = (weakref.ref(extra_dict),)
|
31 |
+
elif isinstance(extra_dict, list):
|
32 |
+
self.extra_dict_ref = tuple(weakref.ref(d) for d in extra_dict)
|
33 |
+
|
34 |
+
def remove(self) -> None:
|
35 |
+
hooks_dict = self.hooks_dict_ref()
|
36 |
+
if hooks_dict is not None and self.id in hooks_dict:
|
37 |
+
del hooks_dict[self.id]
|
38 |
+
|
39 |
+
for ref in self.extra_dict_ref:
|
40 |
+
extra_dict = ref()
|
41 |
+
if extra_dict is not None and self.id in extra_dict:
|
42 |
+
del extra_dict[self.id]
|
43 |
+
|
44 |
+
def __getstate__(self):
|
45 |
+
if self.extra_dict_ref is None:
|
46 |
+
return (self.hooks_dict_ref(), self.id)
|
47 |
+
else:
|
48 |
+
return (self.hooks_dict_ref(), self.id, tuple(ref() for ref in self.extra_dict_ref))
|
49 |
+
|
50 |
+
def __setstate__(self, state) -> None:
|
51 |
+
if state[0] is None:
|
52 |
+
# create a dead reference
|
53 |
+
self.hooks_dict_ref = weakref.ref(OrderedDict())
|
54 |
+
else:
|
55 |
+
self.hooks_dict_ref = weakref.ref(state[0])
|
56 |
+
self.id = state[1]
|
57 |
+
RemovableHandle.next_id = max(RemovableHandle.next_id, self.id + 1)
|
58 |
+
|
59 |
+
if len(state) < 3 or state[2] is None:
|
60 |
+
self.extra_dict_ref = ()
|
61 |
+
else:
|
62 |
+
self.extra_dict_ref = tuple(weakref.ref(d) for d in state[2])
|
63 |
+
|
64 |
+
def __enter__(self) -> "RemovableHandle":
|
65 |
+
return self
|
66 |
+
|
67 |
+
def __exit__(self, type: Any, value: Any, tb: Any) -> None:
|
68 |
+
self.remove()
|
69 |
+
|
70 |
+
|
71 |
+
def unserializable_hook(f):
|
72 |
+
"""
|
73 |
+
Mark a function as an unserializable hook with this decorator.
|
74 |
+
|
75 |
+
This suppresses warnings that would otherwise arise if you attempt
|
76 |
+
to serialize a tensor that has a hook.
|
77 |
+
"""
|
78 |
+
f.__torch_unserializable__ = True
|
79 |
+
return f
|
80 |
+
|
81 |
+
|
82 |
+
def warn_if_has_hooks(tensor):
|
83 |
+
if tensor._backward_hooks:
|
84 |
+
for k in tensor._backward_hooks:
|
85 |
+
hook = tensor._backward_hooks[k]
|
86 |
+
if not hasattr(k, "__torch_unserializable__"):
|
87 |
+
warnings.warn(f"backward hook {repr(hook)} on tensor will not be "
|
88 |
+
"serialized. If this is expected, you can "
|
89 |
+
"decorate the function with @torch.utils.hooks.unserializable_hook "
|
90 |
+
"to suppress this warning")
|
91 |
+
|
92 |
+
class BackwardHook:
|
93 |
+
"""
|
94 |
+
A wrapper class to implement nn.Module backward hooks.
|
95 |
+
|
96 |
+
It handles:
|
97 |
+
- Ignoring non-Tensor inputs and replacing them by None before calling the user hook
|
98 |
+
- Generating the proper Node to capture a set of Tensor's gradients
|
99 |
+
- Linking the gradients captures for the outputs with the gradients captured for the input
|
100 |
+
- Calling the user hook once both output and input gradients are available
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, module, user_hooks, user_pre_hooks):
|
104 |
+
self.user_hooks = user_hooks
|
105 |
+
self.user_pre_hooks = user_pre_hooks
|
106 |
+
self.module = module
|
107 |
+
|
108 |
+
self.grad_outputs = None
|
109 |
+
self.n_outputs = -1
|
110 |
+
self.output_tensors_index = None
|
111 |
+
self.n_inputs = -1
|
112 |
+
self.input_tensors_index = None
|
113 |
+
|
114 |
+
def _pack_with_none(self, indices, values, size):
|
115 |
+
res = [None] * size
|
116 |
+
for idx, val in zip(indices, values):
|
117 |
+
res[idx] = val
|
118 |
+
|
119 |
+
return tuple(res)
|
120 |
+
|
121 |
+
def _unpack_none(self, indices, values):
|
122 |
+
res = []
|
123 |
+
for idx in indices:
|
124 |
+
res.append(values[idx])
|
125 |
+
|
126 |
+
return tuple(res)
|
127 |
+
|
128 |
+
def _set_user_hook(self, grad_fn):
|
129 |
+
def hook(grad_input, _):
|
130 |
+
if self.grad_outputs is None:
|
131 |
+
# This happens because the gradient in your nn.Module flows to
|
132 |
+
# the Module's input without " passing through the Module's
|
133 |
+
# output, e.g. when you're doing double backward.
|
134 |
+
return
|
135 |
+
res = self._pack_with_none(self.input_tensors_index, grad_input, self.n_inputs)
|
136 |
+
|
137 |
+
for hook in self.user_hooks:
|
138 |
+
out = hook(self.module, res, self.grad_outputs)
|
139 |
+
|
140 |
+
if out is None:
|
141 |
+
continue
|
142 |
+
|
143 |
+
if len(out) != len(res):
|
144 |
+
raise RuntimeError("Backward hook returned an invalid number of grad_input, "
|
145 |
+
f"got {len(out)}, but expected {len(res)}")
|
146 |
+
|
147 |
+
res = out
|
148 |
+
|
149 |
+
self.grad_outputs = None
|
150 |
+
|
151 |
+
return self._unpack_none(self.input_tensors_index, res)
|
152 |
+
|
153 |
+
grad_fn.register_hook(hook)
|
154 |
+
|
155 |
+
def _apply_on_tensors(self, fn, args):
|
156 |
+
# Can be used to apply the given function to the tensors contained in the
|
157 |
+
# args. Will return updated args and the tensors indices
|
158 |
+
tensors_idx = []
|
159 |
+
tensors = []
|
160 |
+
|
161 |
+
requires_grad = False
|
162 |
+
for i, arg in enumerate(args):
|
163 |
+
if isinstance(arg, torch.Tensor):
|
164 |
+
tensors_idx.append(i)
|
165 |
+
tensors.append(arg)
|
166 |
+
requires_grad |= arg.requires_grad
|
167 |
+
|
168 |
+
if not (requires_grad and torch.is_grad_enabled()):
|
169 |
+
return args, None
|
170 |
+
|
171 |
+
new_tensors = torch.nn.modules._functions.BackwardHookFunction.apply(*tensors)
|
172 |
+
if len(new_tensors) == 0:
|
173 |
+
raise RuntimeError("Cannot set Module backward hook for a Module with no input Tensors.")
|
174 |
+
|
175 |
+
grad_fns = [t.grad_fn for t in new_tensors if t.grad_fn is not None and t.grad_fn.name() == "BackwardHookFunctionBackward"]
|
176 |
+
if len(grad_fns) == 0:
|
177 |
+
raise RuntimeError("Error while setting up backward hooks. Please open "
|
178 |
+
"an issue with a code sample to reproduce this.")
|
179 |
+
|
180 |
+
fn(grad_fns[0])
|
181 |
+
|
182 |
+
arg_list = list(args)
|
183 |
+
for idx, val in zip(tensors_idx, new_tensors):
|
184 |
+
arg_list[idx] = val
|
185 |
+
|
186 |
+
if type(args) is tuple:
|
187 |
+
out = tuple(arg_list)
|
188 |
+
else:
|
189 |
+
out = type(args)(*arg_list)
|
190 |
+
return out, tensors_idx
|
191 |
+
|
192 |
+
def setup_input_hook(self, args):
|
193 |
+
def fn(grad_fn):
|
194 |
+
self._set_user_hook(grad_fn)
|
195 |
+
|
196 |
+
res, input_idx = self._apply_on_tensors(fn, args)
|
197 |
+
self.n_inputs = len(args)
|
198 |
+
self.input_tensors_index = input_idx
|
199 |
+
return res
|
200 |
+
|
201 |
+
def setup_output_hook(self, args):
|
202 |
+
def fn(grad_fn):
|
203 |
+
def hook(_, grad_output):
|
204 |
+
self.grad_outputs = self._pack_with_none(self.output_tensors_index,
|
205 |
+
grad_output,
|
206 |
+
self.n_outputs)
|
207 |
+
|
208 |
+
if self.user_pre_hooks:
|
209 |
+
expected_len = len(self.grad_outputs)
|
210 |
+
for user_pre_hook in self.user_pre_hooks:
|
211 |
+
hook_grad_outputs = user_pre_hook(self.module, self.grad_outputs)
|
212 |
+
if hook_grad_outputs is None:
|
213 |
+
continue
|
214 |
+
|
215 |
+
actual_len = len(hook_grad_outputs)
|
216 |
+
if actual_len != expected_len:
|
217 |
+
raise RuntimeError("Backward pre hook returned an invalid number of grad_output, "
|
218 |
+
f"got {actual_len}, but expected {expected_len}")
|
219 |
+
self.grad_outputs = hook_grad_outputs
|
220 |
+
|
221 |
+
# We need to be able to clear self.grad_outputs but also return it
|
222 |
+
local_grad_outputs = self.grad_outputs
|
223 |
+
|
224 |
+
# Special case if no input required gradients, this hook should call the user
|
225 |
+
# hook directly
|
226 |
+
if self.input_tensors_index is None:
|
227 |
+
grad_inputs = self._pack_with_none([], [], self.n_inputs)
|
228 |
+
for user_hook in self.user_hooks:
|
229 |
+
res = user_hook(self.module, grad_inputs, self.grad_outputs)
|
230 |
+
if res is not None and not (isinstance(res, tuple) and all(el is None for el in res)):
|
231 |
+
raise RuntimeError("Backward hook for Modules where no input requires "
|
232 |
+
"gradient should always return None or None for all gradients.")
|
233 |
+
self.grad_outputs = None
|
234 |
+
|
235 |
+
if local_grad_outputs is not None:
|
236 |
+
assert self.output_tensors_index is not None # mypy
|
237 |
+
return tuple(local_grad_outputs[i] for i in self.output_tensors_index)
|
238 |
+
|
239 |
+
grad_fn.register_hook(hook)
|
240 |
+
|
241 |
+
is_tuple = True
|
242 |
+
if not isinstance(args, tuple):
|
243 |
+
args = (args,)
|
244 |
+
is_tuple = False
|
245 |
+
|
246 |
+
res, output_idx = self._apply_on_tensors(fn, args)
|
247 |
+
self.n_outputs = len(args)
|
248 |
+
self.output_tensors_index = output_idx
|
249 |
+
|
250 |
+
if not is_tuple:
|
251 |
+
res = res[0]
|
252 |
+
return res
|
llmeval-env/lib/python3.10/site-packages/torch/utils/mkldnn.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class MkldnnLinear(torch.jit.ScriptModule):
|
5 |
+
def __init__(self, dense_module, dtype):
|
6 |
+
super().__init__()
|
7 |
+
self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype))
|
8 |
+
if dense_module.bias is not None:
|
9 |
+
# Bias can be fp32 or bf16 for OneDNN bf16 path, but for good accuracy,
|
10 |
+
# we use fp32 dtype.
|
11 |
+
self.register_buffer('bias', dense_module.bias.to_mkldnn())
|
12 |
+
else:
|
13 |
+
# TODO: Remove this once ScriptModule supports registering None buffer
|
14 |
+
self.register_buffer(
|
15 |
+
'bias',
|
16 |
+
torch.zeros([dense_module.weight.size(0)], dtype=torch.float).to_mkldnn())
|
17 |
+
|
18 |
+
@torch.jit.script_method
|
19 |
+
def __getstate__(self):
|
20 |
+
return (self.weight.to_dense(), self.bias.to_dense(), self.training)
|
21 |
+
|
22 |
+
@torch.jit.script_method
|
23 |
+
def __setstate__(self, state):
|
24 |
+
self.weight = state[0].to_mkldnn()
|
25 |
+
self.bias = state[1].to_mkldnn()
|
26 |
+
self.training = state[2]
|
27 |
+
|
28 |
+
@torch.jit.script_method
|
29 |
+
def forward(self, x):
|
30 |
+
x_mkldnn = x if x.is_mkldnn else x.to_mkldnn()
|
31 |
+
y_mkldnn = torch._C._nn.mkldnn_linear(x_mkldnn, self.weight, self.bias)
|
32 |
+
y = y_mkldnn if x.is_mkldnn else y_mkldnn.to_dense()
|
33 |
+
return y
|
34 |
+
|
35 |
+
|
36 |
+
class _MkldnnConvNd(torch.jit.ScriptModule):
|
37 |
+
"""Common base of MkldnnConv1d and MkldnnConv2d."""
|
38 |
+
|
39 |
+
__constants__ = ['stride', 'padding', 'dilation', 'groups']
|
40 |
+
|
41 |
+
def __init__(self, dense_module):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
self.stride = dense_module.stride
|
45 |
+
self.padding = dense_module.padding
|
46 |
+
self.dilation = dense_module.dilation
|
47 |
+
self.groups = dense_module.groups
|
48 |
+
|
49 |
+
if dense_module.bias is not None:
|
50 |
+
self.register_buffer('bias', dense_module.bias.to_mkldnn())
|
51 |
+
else:
|
52 |
+
# Bias can be fp32 or bf16 for OneDNN bf16 path, but for good accuracy,
|
53 |
+
# we use fp32 dtype.
|
54 |
+
# TODO: Remove this once ScriptModule supports registering None buffer
|
55 |
+
self.register_buffer(
|
56 |
+
'bias',
|
57 |
+
torch.zeros([dense_module.weight.size(0)], dtype=torch.float).to_mkldnn())
|
58 |
+
|
59 |
+
@torch.jit.script_method
|
60 |
+
def __getstate__(self):
|
61 |
+
return (self.weight.to_dense(), self.bias.to_dense(), self.training)
|
62 |
+
|
63 |
+
@torch.jit.script_method
|
64 |
+
def forward(self, x):
|
65 |
+
return torch.mkldnn_convolution(
|
66 |
+
x,
|
67 |
+
self.weight,
|
68 |
+
self.bias,
|
69 |
+
self.padding,
|
70 |
+
self.stride,
|
71 |
+
self.dilation,
|
72 |
+
self.groups)
|
73 |
+
|
74 |
+
|
75 |
+
class MkldnnConv1d(_MkldnnConvNd):
|
76 |
+
def __init__(self, dense_module, dtype):
|
77 |
+
super().__init__(dense_module)
|
78 |
+
|
79 |
+
self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype))
|
80 |
+
|
81 |
+
@torch.jit.script_method
|
82 |
+
def __setstate__(self, state):
|
83 |
+
self.weight = state[0].to_mkldnn()
|
84 |
+
self.bias = state[1].to_mkldnn()
|
85 |
+
self.training = state[2]
|
86 |
+
|
87 |
+
|
88 |
+
class MkldnnConv2d(_MkldnnConvNd):
|
89 |
+
def __init__(self, dense_module, dtype):
|
90 |
+
super().__init__(dense_module)
|
91 |
+
|
92 |
+
self.register_buffer('weight', torch._C._nn.mkldnn_reorder_conv2d_weight(
|
93 |
+
dense_module.weight.to_mkldnn(dtype),
|
94 |
+
self.padding,
|
95 |
+
self.stride,
|
96 |
+
self.dilation,
|
97 |
+
self.groups))
|
98 |
+
|
99 |
+
@torch.jit.script_method
|
100 |
+
def __setstate__(self, state):
|
101 |
+
self.weight = torch._C._nn.mkldnn_reorder_conv2d_weight(
|
102 |
+
state[0].to_mkldnn(),
|
103 |
+
self.padding,
|
104 |
+
self.stride,
|
105 |
+
self.dilation,
|
106 |
+
self.groups)
|
107 |
+
self.bias = state[1].to_mkldnn()
|
108 |
+
self.training = state[2]
|
109 |
+
|
110 |
+
class MkldnnConv3d(_MkldnnConvNd):
|
111 |
+
def __init__(self, dense_module, dtype):
|
112 |
+
super().__init__(dense_module)
|
113 |
+
|
114 |
+
self.register_buffer('weight', torch._C._nn.mkldnn_reorder_conv3d_weight(
|
115 |
+
dense_module.weight.to_mkldnn(dtype),
|
116 |
+
self.padding,
|
117 |
+
self.stride,
|
118 |
+
self.dilation,
|
119 |
+
self.groups))
|
120 |
+
|
121 |
+
@torch.jit.script_method
|
122 |
+
def __setstate__(self, state):
|
123 |
+
self.weight = torch._C._nn.mkldnn_reorder_conv3d_weight(
|
124 |
+
state[0].to_mkldnn(),
|
125 |
+
self.padding,
|
126 |
+
self.stride,
|
127 |
+
self.dilation,
|
128 |
+
self.groups)
|
129 |
+
self.bias = state[1].to_mkldnn()
|
130 |
+
self.training = state[2]
|
131 |
+
|
132 |
+
|
133 |
+
class MkldnnBatchNorm(torch.jit.ScriptModule):
|
134 |
+
__constants__ = ['exponential_average_factor', 'eps']
|
135 |
+
|
136 |
+
def __init__(self, dense_module):
|
137 |
+
super().__init__()
|
138 |
+
|
139 |
+
assert not dense_module.training
|
140 |
+
assert dense_module.track_running_stats
|
141 |
+
assert dense_module.affine
|
142 |
+
|
143 |
+
if dense_module.momentum is None:
|
144 |
+
self.exponential_average_factor = 0.0
|
145 |
+
else:
|
146 |
+
self.exponential_average_factor = dense_module.momentum
|
147 |
+
self.eps = dense_module.eps
|
148 |
+
|
149 |
+
self.register_buffer('weight', dense_module.weight.to_mkldnn())
|
150 |
+
self.register_buffer('bias', dense_module.bias.to_mkldnn())
|
151 |
+
self.register_buffer('running_mean', dense_module.running_mean.to_mkldnn())
|
152 |
+
self.register_buffer('running_var', dense_module.running_var.to_mkldnn())
|
153 |
+
|
154 |
+
@torch.jit.script_method
|
155 |
+
def __getstate__(self):
|
156 |
+
weight = self.weight.to_dense()
|
157 |
+
bias = self.bias.to_dense()
|
158 |
+
running_mean = self.running_mean.to_dense()
|
159 |
+
running_var = self.running_var.to_dense()
|
160 |
+
return (weight, bias, running_mean, running_var, self.training)
|
161 |
+
|
162 |
+
@torch.jit.script_method
|
163 |
+
def __setstate__(self, state):
|
164 |
+
self.weight = state[0].to_mkldnn()
|
165 |
+
self.bias = state[1].to_mkldnn()
|
166 |
+
self.running_mean = state[2].to_mkldnn()
|
167 |
+
self.running_var = state[3].to_mkldnn()
|
168 |
+
self.training = state[4]
|
169 |
+
|
170 |
+
@torch.jit.script_method
|
171 |
+
def forward(self, x):
|
172 |
+
return torch.batch_norm(
|
173 |
+
x,
|
174 |
+
self.weight,
|
175 |
+
self.bias,
|
176 |
+
self.running_mean,
|
177 |
+
self.running_var,
|
178 |
+
False, # training
|
179 |
+
self.exponential_average_factor,
|
180 |
+
self.eps,
|
181 |
+
False, # cuda_enabled
|
182 |
+
)
|
183 |
+
|
184 |
+
class MkldnnPrelu(torch.jit.ScriptModule):
|
185 |
+
def __init__(self, dense_module, dtype):
|
186 |
+
super().__init__()
|
187 |
+
self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype))
|
188 |
+
|
189 |
+
@torch.jit.script_method
|
190 |
+
def __getstate__(self):
|
191 |
+
return (self.weight.to_dense(), self.training)
|
192 |
+
|
193 |
+
@torch.jit.script_method
|
194 |
+
def __setstate__(self, state):
|
195 |
+
self.weight = state[0].to_mkldnn()
|
196 |
+
self.training = state[1]
|
197 |
+
|
198 |
+
@torch.jit.script_method
|
199 |
+
def forward(self, x):
|
200 |
+
x_mkldnn = x if x.is_mkldnn else x.to_mkldnn()
|
201 |
+
y_mkldnn = torch.prelu(x_mkldnn, self.weight)
|
202 |
+
y = y_mkldnn if x.is_mkldnn else y_mkldnn.to_dense()
|
203 |
+
return y
|
204 |
+
|
205 |
+
def to_mkldnn(module, dtype=torch.float):
|
206 |
+
assert dtype in [torch.float, torch.bfloat16, torch.half], \
|
207 |
+
"MKLDNN only support float, bfloat16, and half path now"
|
208 |
+
|
209 |
+
def m_fn(m, d):
|
210 |
+
if isinstance(m, torch.nn.Linear):
|
211 |
+
return MkldnnLinear(m, d)
|
212 |
+
elif isinstance(m, torch.nn.Conv1d):
|
213 |
+
return MkldnnConv1d(m, d)
|
214 |
+
elif isinstance(m, torch.nn.Conv2d):
|
215 |
+
return MkldnnConv2d(m, d)
|
216 |
+
elif isinstance(m, torch.nn.Conv3d):
|
217 |
+
return MkldnnConv3d(m, d)
|
218 |
+
elif isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)):
|
219 |
+
# For batchnorm bf16 path, OneDNN requires weight and bias need fp32 dtype.
|
220 |
+
# so it doesn't need dtype argument.
|
221 |
+
return MkldnnBatchNorm(m)
|
222 |
+
elif isinstance(m, torch.nn.PReLU):
|
223 |
+
return MkldnnPrelu(m, d)
|
224 |
+
else:
|
225 |
+
return m
|
226 |
+
|
227 |
+
def m_fn_rec(m, d):
|
228 |
+
new_m = m_fn(m, d)
|
229 |
+
for name, sub_m in m.named_children():
|
230 |
+
setattr(new_m, name, m_fn_rec(sub_m, d))
|
231 |
+
return new_m
|
232 |
+
|
233 |
+
return m_fn_rec(module, dtype)
|