diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..86d857b1e9a26d958b5ab44a0539bae1f182473d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__init__.py
@@ -0,0 +1,142 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_blenderbot": [
+ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "BlenderbotConfig",
+ "BlenderbotOnnxConfig",
+ ],
+ "tokenization_blenderbot": ["BlenderbotTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_blenderbot_fast"] = ["BlenderbotTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_blenderbot"] = [
+ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "BlenderbotForCausalLM",
+ "BlenderbotForConditionalGeneration",
+ "BlenderbotModel",
+ "BlenderbotPreTrainedModel",
+ ]
+
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_blenderbot"] = [
+ "TFBlenderbotForConditionalGeneration",
+ "TFBlenderbotModel",
+ "TFBlenderbotPreTrainedModel",
+ ]
+
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_blenderbot"] = [
+ "FlaxBlenderbotForConditionalGeneration",
+ "FlaxBlenderbotModel",
+ "FlaxBlenderbotPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_blenderbot import (
+ BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ BlenderbotConfig,
+ BlenderbotOnnxConfig,
+ )
+ from .tokenization_blenderbot import BlenderbotTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_blenderbot import (
+ BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ BlenderbotForCausalLM,
+ BlenderbotForConditionalGeneration,
+ BlenderbotModel,
+ BlenderbotPreTrainedModel,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_blenderbot import (
+ TFBlenderbotForConditionalGeneration,
+ TFBlenderbotModel,
+ TFBlenderbotPreTrainedModel,
+ )
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_blenderbot import (
+ FlaxBlenderbotForConditionalGeneration,
+ FlaxBlenderbotModel,
+ FlaxBlenderbotPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f938cbe60b01b5301f9e854e8f5ea766d099ca2e
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/configuration_blenderbot.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/configuration_blenderbot.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a38fb0d303243221a2ceb93a9c4f589e3906879f
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/configuration_blenderbot.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ff61bebe0ef85a77cf1641e727274f4da7e13cb9
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_blenderbot.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_blenderbot.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d4617ef6c9cb674c08e31859464e378e076a26de
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_blenderbot.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_flax_blenderbot.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_flax_blenderbot.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a21070a35fae201663ab185e4e2de93654d9a83a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_flax_blenderbot.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_tf_blenderbot.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_tf_blenderbot.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0713708f233fe8d70c97eae4782442b35410ffee
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_tf_blenderbot.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/tokenization_blenderbot.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/tokenization_blenderbot.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..657259f683eb7e0f4f508a735ee70a49c7343550
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/tokenization_blenderbot.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/tokenization_blenderbot_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/tokenization_blenderbot_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..95005507854e04f4e43946202d440bdf5ce85012
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/tokenization_blenderbot_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/configuration_blenderbot.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/configuration_blenderbot.py
new file mode 100644
index 0000000000000000000000000000000000000000..00608710592998db8d4bde42a73f621e30431f90
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/configuration_blenderbot.py
@@ -0,0 +1,395 @@
+# coding=utf-8
+# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Blenderbot model configuration"""
+
+from collections import OrderedDict
+from typing import Any, Mapping, Optional
+
+from ... import PreTrainedTokenizer
+from ...configuration_utils import PretrainedConfig
+from ...file_utils import TensorType, is_torch_available
+from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
+from ...onnx.utils import compute_effective_axis_dimension
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class BlenderbotConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`BlenderbotModel`]. It is used to instantiate an
+ Blenderbot model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the Blenderbot
+ [facebook/blenderbot-3B](https://huggingface.co/facebook/blenderbot-3B) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50265):
+ Vocabulary size of the Blenderbot model. Defines the number of different tokens that can be represented by
+ the `inputs_ids` passed when calling [`BlenderbotModel`] or [`TFBlenderbotModel`].
+ d_model (`int`, *optional*, defaults to 1024):
+ Dimensionality of the layers and the pooler layer.
+ encoder_layers (`int`, *optional*, defaults to 12):
+ Number of encoder layers.
+ decoder_layers (`int`, *optional*, defaults to 12):
+ Number of decoder layers.
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ activation_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for activations inside the fully connected layer.
+ max_position_embeddings (`int`, *optional*, defaults to 128):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ init_std (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ scale_embedding (`bool`, *optional*, defaults to `False`):
+ Scale embeddings by diving by sqrt(d_model).
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models)
+ forced_eos_token_id (`int`, *optional*, defaults to 2):
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
+ `eos_token_id`.
+
+ Example:
+
+ ```python
+ >>> from transformers import BlenderbotConfig, BlenderbotModel
+
+ >>> # Initializing a Blenderbot facebook/blenderbot-3B style configuration
+ >>> configuration = BlenderbotConfig()
+
+ >>> # Initializing a model (with random weights) from the facebook/blenderbot-3B style configuration
+ >>> model = BlenderbotModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "blenderbot"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
+
+ def __init__(
+ self,
+ vocab_size=8008,
+ max_position_embeddings=128,
+ encoder_layers=2,
+ encoder_ffn_dim=10240,
+ encoder_attention_heads=32,
+ decoder_layers=24,
+ decoder_ffn_dim=10240,
+ decoder_attention_heads=32,
+ encoder_layerdrop=0.0,
+ decoder_layerdrop=0.0,
+ use_cache=True,
+ is_encoder_decoder=True,
+ activation_function="gelu",
+ d_model=2560,
+ dropout=0.1,
+ attention_dropout=0.0,
+ activation_dropout=0.0,
+ init_std=0.02,
+ decoder_start_token_id=1,
+ scale_embedding=False,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ encoder_no_repeat_ngram_size=3,
+ forced_eos_token_id=2,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.d_model = d_model
+ self.encoder_ffn_dim = encoder_ffn_dim
+ self.encoder_layers = encoder_layers
+ self.encoder_attention_heads = encoder_attention_heads
+ self.decoder_ffn_dim = decoder_ffn_dim
+ self.decoder_layers = decoder_layers
+ self.decoder_attention_heads = decoder_attention_heads
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.activation_function = activation_function
+ self.init_std = init_std
+ self.encoder_layerdrop = encoder_layerdrop
+ self.decoder_layerdrop = decoder_layerdrop
+ self.use_cache = use_cache
+ self.num_hidden_layers = encoder_layers
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ is_encoder_decoder=is_encoder_decoder,
+ decoder_start_token_id=decoder_start_token_id,
+ encoder_no_repeat_ngram_size=encoder_no_repeat_ngram_size,
+ forced_eos_token_id=forced_eos_token_id,
+ **kwargs,
+ )
+
+
+class BlenderbotOnnxConfig(OnnxSeq2SeqConfigWithPast):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task in ["default", "seq2seq-lm"]:
+ common_inputs = OrderedDict(
+ [
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
+ ]
+ )
+ if self.use_past:
+ common_inputs["decoder_input_ids"] = {0: "batch"}
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
+ else:
+ common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
+ if self.use_past:
+ self.fill_with_past_key_values_(common_inputs, direction="inputs")
+ elif self.task == "causal-lm":
+ common_inputs = OrderedDict(
+ [
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
+ ]
+ )
+ if self.use_past:
+ _, num_decoder_layers = self.num_layers
+ for i in range(num_decoder_layers):
+ common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
+ common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
+ else:
+ common_inputs = OrderedDict(
+ [
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
+ ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
+ ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
+ ]
+ )
+
+ return common_inputs
+
+ @property
+ # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task in ["default", "seq2seq-lm"]:
+ common_outputs = super().outputs
+ else:
+ common_outputs = super(OnnxConfigWithPast, self).outputs
+ if self.use_past:
+ num_encoder_layers, _ = self.num_layers
+ for i in range(num_encoder_layers):
+ common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
+ common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
+ return common_outputs
+
+ def _generate_dummy_inputs_for_default_and_seq2seq_lm(
+ self,
+ tokenizer: PreTrainedTokenizer,
+ batch_size: int = -1,
+ seq_length: int = -1,
+ is_pair: bool = False,
+ framework: Optional[TensorType] = None,
+ ) -> Mapping[str, Any]:
+ encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
+ tokenizer, batch_size, seq_length, is_pair, framework
+ )
+ # Generate decoder inputs
+ decoder_seq_length = seq_length if not self.use_past else 1
+ decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
+ tokenizer, batch_size, decoder_seq_length, is_pair, framework
+ )
+ decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
+ common_inputs = dict(**encoder_inputs, **decoder_inputs)
+
+ if self.use_past:
+ if not is_torch_available():
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
+ else:
+ import torch
+ batch, encoder_seq_length = common_inputs["input_ids"].shape
+ decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
+ num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
+ encoder_shape = (
+ batch,
+ num_encoder_attention_heads,
+ encoder_seq_length,
+ self._config.hidden_size // num_encoder_attention_heads,
+ )
+ decoder_past_length = decoder_seq_length
+ decoder_shape = (
+ batch,
+ num_decoder_attention_heads,
+ decoder_past_length,
+ self._config.hidden_size // num_decoder_attention_heads,
+ )
+ common_inputs["decoder_attention_mask"] = torch.cat(
+ [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
+ )
+ common_inputs["past_key_values"] = []
+ _, num_decoder_layers = self.num_layers
+
+ for _ in range(num_decoder_layers):
+ common_inputs["past_key_values"].append(
+ (
+ torch.zeros(decoder_shape),
+ torch.zeros(decoder_shape),
+ torch.zeros(encoder_shape),
+ torch.zeros(encoder_shape),
+ )
+ )
+ return common_inputs
+
+ def _generate_dummy_inputs_for_causal_lm(
+ self,
+ tokenizer: PreTrainedTokenizer,
+ batch_size: int = -1,
+ seq_length: int = -1,
+ is_pair: bool = False,
+ framework: Optional[TensorType] = None,
+ ) -> Mapping[str, Any]:
+ common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
+ tokenizer, batch_size, seq_length, is_pair, framework
+ )
+
+ if self.use_past:
+ if not is_torch_available():
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
+ else:
+ import torch
+ batch, seqlen = common_inputs["input_ids"].shape
+ past_key_values_length = seqlen
+ _, num_decoder_layers = self.num_layers
+ num_encoder_attention_heads, _ = self.num_attention_heads
+ past_shape = (
+ batch,
+ num_encoder_attention_heads,
+ past_key_values_length,
+ self._config.hidden_size // num_encoder_attention_heads,
+ )
+ mask_dtype = common_inputs["attention_mask"].dtype
+ common_inputs["attention_mask"] = torch.cat(
+ [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
+ )
+ common_inputs["past_key_values"] = [
+ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_decoder_layers)
+ ]
+ return common_inputs
+
+ # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
+ def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
+ self,
+ tokenizer: PreTrainedTokenizer,
+ batch_size: int = -1,
+ seq_length: int = -1,
+ is_pair: bool = False,
+ framework: Optional[TensorType] = None,
+ ) -> Mapping[str, Any]:
+ # Copied from OnnxConfig.generate_dummy_inputs
+ # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
+ # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
+ batch_size = compute_effective_axis_dimension(
+ batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
+ )
+
+ # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
+ token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
+ seq_length = compute_effective_axis_dimension(
+ seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
+ )
+
+ # Generate dummy inputs according to compute batch and sequence
+ dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
+ common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
+ return common_inputs
+
+ # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.generate_dummy_inputs
+ def generate_dummy_inputs(
+ self,
+ tokenizer: PreTrainedTokenizer,
+ batch_size: int = -1,
+ seq_length: int = -1,
+ is_pair: bool = False,
+ framework: Optional[TensorType] = None,
+ ) -> Mapping[str, Any]:
+ if self.task in ["default", "seq2seq-lm"]:
+ common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
+ )
+
+ elif self.task == "causal-lm":
+ common_inputs = self._generate_dummy_inputs_for_causal_lm(
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
+ )
+ else:
+ common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
+ )
+
+ return common_inputs
+
+ # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._flatten_past_key_values_
+ def _flatten_past_key_values_(self, flattened_output, name, idx, t):
+ if self.task in ["default", "seq2seq-lm"]:
+ flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
+ else:
+ flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
+ flattened_output, name, idx, t
+ )
+
+ def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str):
+ if direction not in ["inputs", "outputs"]:
+ raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
+
+ name = "past_key_values" if direction == "inputs" else "present"
+ _, num_decoder_layers = self.num_layers
+
+ encoder_sequence = "past_encoder_sequence"
+ decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence"
+
+ for i in range(num_decoder_layers):
+ inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence}
+ inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence}
+ inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence}
+ inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence}
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..c5919b94d42fb3555010cc9a454b2d31ecaa52ed
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py
@@ -0,0 +1,114 @@
+# coding=utf-8
+# Copyright 2020 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Blenderbot checkpoint."""
+
+import argparse
+
+import torch
+
+from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+PATTERNS = [
+ ["attention", "attn"],
+ ["encoder_attention", "encoder_attn"],
+ ["q_lin", "q_proj"],
+ ["k_lin", "k_proj"],
+ ["v_lin", "v_proj"],
+ ["out_lin", "out_proj"],
+ ["norm_embeddings", "layernorm_embedding"],
+ ["position_embeddings", "embed_positions"],
+ ["embeddings", "embed_tokens"],
+ ["ffn.lin", "fc"],
+]
+
+
+def rename_state_dict_key(k):
+ if k == "embeddings.weight":
+ return "shared.weight"
+
+ for parlai_name, hf_name in PATTERNS:
+ k = k.replace(parlai_name, hf_name)
+
+ if k.startswith("encoder"):
+ k = k.replace(".attn", ".self_attn")
+ k = k.replace("norm1", "self_attn_layer_norm")
+ k = k.replace("norm2", "final_layer_norm")
+ elif k.startswith("decoder"):
+ k = k.replace("norm1", "self_attn_layer_norm")
+ k = k.replace("norm2", "encoder_attn_layer_norm")
+ k = k.replace("norm3", "final_layer_norm")
+ return k
+
+
+def rename_layernorm_keys(sd):
+ keys = [
+ "model.encoder.layernorm_embedding.weight",
+ "model.encoder.layernorm_embedding.bias",
+ "model.decoder.layernorm_embedding.weight",
+ "model.decoder.layernorm_embedding.bias",
+ ]
+ for k in keys:
+ v = sd.pop(k)
+ new_k = k.replace("layernorm_embedding", "layer_norm")
+ assert new_k not in sd
+ sd[new_k] = v
+
+
+IGNORE_KEYS = ["START"]
+
+
+@torch.no_grad()
+def convert_parlai_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_json_path):
+ """
+ Copy/paste/tweak model's weights to our BERT structure.
+ """
+ model = torch.load(checkpoint_path, map_location="cpu")
+ sd = model["model"]
+ cfg = BlenderbotConfig.from_json_file(config_json_path)
+ m = BlenderbotForConditionalGeneration(cfg)
+ valid_keys = m.model.state_dict().keys()
+ failures = []
+ mapping = {}
+ for k, v in sd.items():
+ if k in IGNORE_KEYS:
+ continue
+
+ new_k = rename_state_dict_key(k)
+ if new_k not in valid_keys:
+ failures.append([k, new_k])
+ else:
+ mapping[new_k] = v
+ if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
+ rename_layernorm_keys(sd)
+ m.model.load_state_dict(mapping, strict=True)
+ m.half()
+ m.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
+ parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
+ parser.add_argument(
+ "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
+ )
+ args = parser.parse_args()
+ convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_blenderbot.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_blenderbot.py
new file mode 100644
index 0000000000000000000000000000000000000000..5fa17abcdd294e0d5a5ac27c095165bfbd5d0937
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_blenderbot.py
@@ -0,0 +1,1597 @@
+# coding=utf-8
+# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Blenderbot model."""
+
+
+import copy
+import math
+import os
+import warnings
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ CausalLMOutputWithCrossAttentions,
+ Seq2SeqLMOutput,
+ Seq2SeqModelOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ add_end_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from ..blenderbot_small import BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel
+from .configuration_blenderbot import BlenderbotConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "BlenderbotConfig"
+_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
+
+
+from ..deprecated._archive_maps import BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
+def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
+ """
+ Shift input ids one token to the right.
+ """
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
+ shifted_input_ids[:, 0] = decoder_start_token_id
+
+ if pad_token_id is None:
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
+
+ return shifted_input_ids
+
+
+class BlenderbotLearnedPositionalEmbedding(nn.Embedding):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def __init__(self, num_embeddings: int, embedding_dim: int):
+ super().__init__(num_embeddings, embedding_dim)
+
+ def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
+ bsz, seq_len = input_ids_shape[:2]
+ positions = torch.arange(
+ past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
+ )
+ return super().forward(positions)
+
+
+# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Blenderbot
+class BlenderbotAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ is_causal: bool = False,
+ config: Optional[BlenderbotConfig] = None,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ self.config = config
+
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+ self.is_causal = is_causal
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, tgt_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ if (
+ is_cross_attention
+ and past_key_value is not None
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
+ ):
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.reshape(*proj_shape)
+ value_states = value_states.reshape(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if layer_head_mask is not None:
+ if layer_head_mask.size() != (self.num_heads,):
+ raise ValueError(
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
+ f" {layer_head_mask.size()}"
+ )
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to be reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+ # partitioned across GPUs when using tensor-parallelism.
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped, past_key_value
+
+
+BLENDERBOT_ATTENTION_CLASSES = {"eager": BlenderbotAttention}
+
+
+# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Blenderbot, MBART->BLENDERBOT
+class BlenderbotEncoderLayer(nn.Module):
+ def __init__(self, config: BlenderbotConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation](
+ embed_dim=self.embed_dim,
+ num_heads=config.encoder_attention_heads,
+ dropout=config.attention_dropout,
+ config=config,
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: torch.Tensor,
+ layer_head_mask: torch.Tensor,
+ output_attentions: bool = False,
+ ) -> torch.Tensor:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, attn_weights, _ = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ if hidden_states.dtype == torch.float16 and (
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
+ ):
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Blenderbot, MBART->BLENDERBOT
+class BlenderbotDecoderLayer(nn.Module):
+ def __init__(self, config: BlenderbotConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation](
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ is_causal=True,
+ config=config,
+ )
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.encoder_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation](
+ self.embed_dim,
+ config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ config=config,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = True,
+ ) -> torch.Tensor:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ encoder_hidden_states (`torch.FloatTensor`):
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
+ size `(decoder_attention_heads,)`.
+ past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ # add cross-attn to positions 3,4 of present_key_value tuple
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ return outputs
+
+
+class BlenderbotPreTrainedModel(PreTrainedModel):
+ config_class = BlenderbotConfig
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ std = self.config.init_std
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+ @property
+ def dummy_inputs(self):
+ pad_token = self.config.pad_token_id
+ input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
+ dummy_inputs = {
+ "attention_mask": input_ids.ne(pad_token),
+ "input_ids": input_ids,
+ "decoder_input_ids": input_ids,
+ }
+ return dummy_inputs
+
+
+BLENDERBOT_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`BlenderbotConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BLENDERBOT_GENERATION_EXAMPLE = r"""
+ Conversation example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, BlenderbotForConditionalGeneration
+
+ >>> mname = "facebook/blenderbot-400M-distill"
+ >>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
+ >>> tokenizer = AutoTokenizer.from_pretrained(mname)
+ >>> UTTERANCE = "My friends are cool but they eat too many carbs."
+ >>> print("Human: ", UTTERANCE)
+ Human: My friends are cool but they eat too many carbs.
+
+ >>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
+ >>> reply_ids = model.generate(**inputs)
+ >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
+ Bot: That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?
+
+ >>> REPLY = "I'm not sure"
+ >>> print("Human: ", REPLY)
+ Human: I'm not sure
+
+ >>> NEXT_UTTERANCE = (
+ ... "My friends are cool but they eat too many carbs. That's unfortunate. "
+ ... "Are they trying to lose weight or are they just trying to be healthier? "
+ ... " I'm not sure."
+ ... )
+ >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
+ >>> next_reply_ids = model.generate(**inputs)
+ >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
+ Bot: I see. Well, it's good that they're trying to change their eating habits.
+ ```
+"""
+
+BLENDERBOT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ Blenderbot uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+ decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
+ 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
+ input (see `past_key_values`). This is useful if you want more control over how to convert
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
+
+ If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
+ of `inputs_embeds`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class BlenderbotEncoder(BlenderbotPreTrainedModel):
+ """
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+ [`BlenderbotEncoderLayer`].
+
+ Args:
+ config: BlenderbotConfig
+ embed_tokens (nn.Embedding): output embedding
+ """
+
+ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
+ super().__init__(config)
+
+ self.dropout = config.dropout
+ self.layerdrop = config.encoder_layerdrop
+
+ embed_dim = config.d_model
+ self.padding_idx = config.pad_token_id
+ self.max_source_positions = config.max_position_embeddings
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
+
+ if embed_tokens is not None:
+ self.embed_tokens = embed_tokens
+ else:
+ self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
+
+ self.embed_positions = BlenderbotLearnedPositionalEmbedding(
+ config.max_position_embeddings,
+ embed_dim,
+ )
+ self.layers = nn.ModuleList([BlenderbotEncoderLayer(config) for _ in range(config.encoder_layers)])
+ self.layer_norm = nn.LayerNorm(config.d_model)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ head_mask=None,
+ inputs_embeds=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ embed_pos = self.embed_positions(input_shape)
+
+ hidden_states = inputs_embeds + embed_pos
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ # expand attention_mask
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ # check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ if head_mask.size()[0] != len(self.layers):
+ raise ValueError(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ to_drop = False
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop: # skip the layer
+ to_drop = True
+
+ if to_drop:
+ layer_outputs = (None, None)
+ else:
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ (head_mask[idx] if head_mask is not None else None),
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ # add final layer norm
+ hidden_states = self.layer_norm(hidden_states)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+class BlenderbotDecoder(BlenderbotPreTrainedModel):
+ """
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotDecoderLayer`]
+
+ Args:
+ config: BlenderbotConfig
+ embed_tokens (nn.Embedding): output embedding
+ """
+
+ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
+ super().__init__(config)
+ self.dropout = config.dropout
+ self.layerdrop = config.decoder_layerdrop
+ self.padding_idx = config.pad_token_id
+ self.max_target_positions = config.max_position_embeddings
+ self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
+
+ if embed_tokens is not None:
+ self.embed_tokens = embed_tokens
+ else:
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
+
+ self.embed_positions = BlenderbotLearnedPositionalEmbedding(
+ config.max_position_embeddings,
+ config.d_model,
+ )
+ self.layers = nn.ModuleList([BlenderbotDecoderLayer(config) for _ in range(config.decoder_layers)])
+ self.layer_norm = nn.LayerNorm(config.d_model)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ def forward(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ head_mask=None,
+ cross_attn_head_mask=None,
+ past_key_values=None,
+ inputs_embeds=None,
+ use_cache=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
+ selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0,
+ 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
+ cross-attention on hidden heads. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
+ )
+
+ # expand encoder attention mask
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _prepare_4d_attention_mask(
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
+ )
+
+ # embed positions
+ positions = self.embed_positions(input_shape, past_key_values_length)
+
+ hidden_states = inputs_embeds + positions
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+ next_decoder_cache = () if use_cache else None
+
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
+ if attn_mask is not None:
+ if attn_mask.size()[0] != len(self.layers):
+ raise ValueError(
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop:
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ head_mask[idx] if head_mask is not None else None,
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
+ None,
+ output_attentions,
+ use_cache,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ cross_attn_layer_head_mask=(
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
+ ),
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ # add final layer norm
+ hidden_states = self.layer_norm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare Blenderbot Model outputting raw hidden-states without any specific head on top.",
+ BLENDERBOT_START_DOCSTRING,
+)
+class BlenderbotModel(BlenderbotPreTrainedModel):
+ _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
+
+ def __init__(self, config: BlenderbotConfig):
+ super().__init__(config)
+
+ padding_idx, vocab_size = config.pad_token_id, config.vocab_size
+ self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
+
+ self.encoder = BlenderbotEncoder(config, self.shared)
+ self.decoder = BlenderbotDecoder(config, self.shared)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
+ if pretrained_model_name_or_path == "facebook/blenderbot-90M":
+ warnings.warn(
+ "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
+ " checkpoint `facebook/small_blenderbot-90M` with"
+ " `BlenderbotSmallModel.from_pretrained('facebook/small_blenderbot-90M')` instead.",
+ FutureWarning,
+ )
+ return BlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)
+
+ return super(BlenderbotModel, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
+
+ def get_input_embeddings(self):
+ return self.shared
+
+ def set_input_embeddings(self, value):
+ self.shared = value
+ self.encoder.embed_tokens = self.shared
+ self.decoder.embed_tokens = self.shared
+
+ def get_encoder(self):
+ return self.encoder
+
+ def get_decoder(self):
+ return self.decoder
+
+ @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, BlenderbotModel
+
+ >>> model = BlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
+
+ >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
+ >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
+ >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_input_ids)
+
+ >>> last_hidden_states = outputs.last_hidden_state
+ >>> list(last_hidden_states.shape)
+ [1, 6, 1280]
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return Seq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING
+)
+class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel):
+ base_model_prefix = "model"
+ _keys_to_ignore_on_load_missing = ["final_logits_bias"]
+ _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]
+
+ def __init__(self, config: BlenderbotConfig):
+ super().__init__(config)
+ self.model = BlenderbotModel(config)
+ self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
+ self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
+ if pretrained_model_name_or_path == "facebook/blenderbot-90M":
+ warnings.warn(
+ "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
+ " checkpoint `facebook/small_blenderbot-90M` with"
+ " `BlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')` instead.",
+ FutureWarning,
+ )
+ return BlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)
+
+ return super(BlenderbotForConditionalGeneration, cls).from_pretrained(
+ pretrained_model_name_or_path, *model_args, **kwargs
+ )
+
+ def get_encoder(self):
+ return self.model.get_encoder()
+
+ def get_decoder(self):
+ return self.model.get_decoder()
+
+ def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
+ new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
+ self._resize_final_logits_bias(new_embeddings.weight.shape[0])
+ return new_embeddings
+
+ def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
+ old_num_tokens = self.final_logits_bias.shape[-1]
+ if new_num_tokens <= old_num_tokens:
+ new_bias = self.final_logits_bias[:, :new_num_tokens]
+ else:
+ extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
+ new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
+ self.register_buffer("final_logits_bias", new_bias)
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+ @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if labels is not None:
+ if use_cache:
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ encoder_outputs=encoder_outputs,
+ decoder_attention_mask=decoder_attention_mask,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=outputs.past_key_values,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if decoder_input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = decoder_input_ids.shape[1] - 1
+
+ decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
+ }
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # cached cross_attention states don't have to be reordered -> they are always the same
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ + layer_past[2:],
+ )
+ return reordered_past
+
+
+# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Blenderbot
+class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel):
+ """
+ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
+ used in combination with the [`EncoderDecoderModel`] framework.
+ """
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.decoder = BlenderbotDecoder(config)
+
+ def forward(self, *args, **kwargs):
+ return self.decoder(*args, **kwargs)
+
+
+# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot, facebook/bart-base->facebook/blenderbot-400M-distill
+class BlenderbotForCausalLM(BlenderbotPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config):
+ config = copy.deepcopy(config)
+ config.is_decoder = True
+ config.is_encoder_decoder = False
+ super().__init__(config)
+ self.model = BlenderbotDecoderWrapper(config)
+
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.decoder.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model.decoder = decoder
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ if the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
+ in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
+ tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, BlenderbotForCausalLM
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
+ >>> model = BlenderbotForCausalLM.from_pretrained("facebook/blenderbot-400M-distill", add_cross_attention=False)
+ >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> logits = outputs.logits
+ >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
+ >>> list(logits.shape) == expected_shape
+ True
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model.decoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ head_mask=head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ logits = self.lm_head(outputs[0])
+
+ loss = None
+ if labels is not None:
+ labels = labels.to(logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
+ ):
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_ids.shape)
+
+ if past_key_values:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+ # first step, decoder_cached_states are empty
+ return {
+ "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
+ "attention_mask": attention_mask,
+ "past_key_values": past_key_values,
+ "use_cache": use_cache,
+ }
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_flax_blenderbot.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_flax_blenderbot.py
new file mode 100644
index 0000000000000000000000000000000000000000..61239335be3b639eb65520aa51f97986938633c9
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_flax_blenderbot.py
@@ -0,0 +1,1505 @@
+# coding=utf-8
+# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Flax Blenderbot model."""
+
+import math
+import random
+from functools import partial
+from typing import Callable, Optional, Tuple
+
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen import combine_masks, make_causal_mask
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+from jax.random import PRNGKey
+
+from ...modeling_flax_outputs import (
+ FlaxBaseModelOutput,
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
+ FlaxCausalLMOutputWithCrossAttentions,
+ FlaxSeq2SeqLMOutput,
+ FlaxSeq2SeqModelOutput,
+)
+from ...modeling_flax_utils import (
+ ACT2FN,
+ FlaxPreTrainedModel,
+ append_call_sample_docstring,
+ append_replace_return_docstrings,
+ overwrite_call_docstring,
+)
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
+from .configuration_blenderbot import BlenderbotConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "BlenderbotConfig"
+_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
+
+
+BLENDERBOT_START_DOCSTRING = r"""
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a Flax Linen
+ [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
+ regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`BlenderbotConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BLENDERBOT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ For translation and summarization training, `decoder_input_ids` should be provided. If no
+ `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
+ for denoising pre-training following the paper.
+ decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+
+ If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+BLENDERBOT_ENCODE_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+BLENDERBOT_DECODE_INPUTS_DOCSTRING = r"""
+ Args:
+ decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ For translation and summarization training, `decoder_input_ids` should be provided. If no
+ `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
+ for denoising pre-training following the paper.
+ encoder_outputs (`tuple(tuple(jnp.ndarray)`):
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+
+ If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
+ Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
+ auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
+def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
+ """
+ Shift input ids one token to the right.
+ """
+ shifted_input_ids = jnp.zeros_like(input_ids)
+ shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
+ shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
+
+ shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
+ return shifted_input_ids
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Blenderbot
+class FlaxBlenderbotAttention(nn.Module):
+ config: BlenderbotConfig
+ embed_dim: int
+ num_heads: int
+ dropout: float = 0.0
+ causal: bool = False
+ bias: bool = True
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self) -> None:
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {self.num_heads})."
+ )
+
+ dense = partial(
+ nn.Dense,
+ self.embed_dim,
+ use_bias=self.bias,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+
+ self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
+ self.out_proj = dense()
+
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
+
+ if self.causal:
+ self.causal_mask = make_causal_mask(
+ jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
+ )
+
+ def _split_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
+
+ def _merge_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
+
+ @nn.compact
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
+ """
+ This function takes projected key, value states from a single input token and concatenates the states to cached
+ states from previous steps. This function is slighly adapted from the official Flax repository:
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
+ """
+ # detect if we're initializing by absence of existing cache data.
+ is_initialized = self.has_variable("cache", "cached_key")
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
+
+ if is_initialized:
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
+ # update key, value caches with our new 1d spatial slices
+ cur_index = cache_index.value
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
+ cached_key.value = key
+ cached_value.value = value
+ num_updated_cache_vectors = query.shape[1]
+ cache_index.value = cache_index.value + num_updated_cache_vectors
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
+ pad_mask = jnp.broadcast_to(
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
+ )
+ attention_mask = combine_masks(pad_mask, attention_mask)
+ return key, value, attention_mask
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ key_value_states: Optional[jnp.ndarray] = None,
+ attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ batch_size = hidden_states.shape[0]
+
+ # get query proj
+ query_states = self.q_proj(hidden_states)
+ # get key, value proj
+ if is_cross_attention:
+ # cross_attentions
+ key_states = self.k_proj(key_value_states)
+ value_states = self.v_proj(key_value_states)
+ else:
+ # self_attention
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = self._split_heads(query_states)
+ key_states = self._split_heads(key_states)
+ value_states = self._split_heads(value_states)
+
+ # handle cache prepare causal attention mask
+ if self.causal:
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
+ if self.has_variable("cache", "cached_key"):
+ mask_shift = self.variables["cache"]["cache_index"]
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
+ causal_mask = lax.dynamic_slice(
+ self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
+ )
+ else:
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
+
+ # combine masks if needed
+ if attention_mask is not None and self.causal:
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
+ attention_mask = combine_masks(attention_mask, causal_mask)
+ elif self.causal:
+ attention_mask = causal_mask
+ elif attention_mask is not None:
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+
+ # During fast autoregressive decoding, we feed one position at a time,
+ # and cache the keys and values step by step.
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
+ key_states, value_states, query_states, attention_mask
+ )
+
+ # Convert the boolean attention mask to an attention bias.
+ if attention_mask is not None:
+ # attention mask in the form of attention bias
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
+ )
+ else:
+ attention_bias = None
+
+ dropout_rng = None
+ if not deterministic and self.dropout > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.dropout,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = self._merge_heads(attn_output)
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights
+
+
+# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Blenderbot
+class FlaxBlenderbotEncoderLayer(nn.Module):
+ config: BlenderbotConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self) -> None:
+ self.embed_dim = self.config.d_model
+ self.self_attn = FlaxBlenderbotAttention(
+ config=self.config,
+ embed_dim=self.embed_dim,
+ num_heads=self.config.encoder_attention_heads,
+ dropout=self.config.attention_dropout,
+ dtype=self.dtype,
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+ self.activation_fn = ACT2FN[self.config.activation_function]
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
+ self.fc1 = nn.Dense(
+ self.config.encoder_ffn_dim,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.fc2 = nn.Dense(
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
+ )
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ attention_mask: jnp.ndarray,
+ output_attentions: bool = True,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Blenderbot
+class FlaxBlenderbotEncoderLayerCollection(nn.Module):
+ config: BlenderbotConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxBlenderbotEncoderLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.encoder_layers)
+ ]
+ self.layerdrop = self.config.encoder_layerdrop
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+
+ for encoder_layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = random.uniform(0, 1)
+ if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
+ layer_outputs = (None, None)
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ output_attentions,
+ deterministic,
+ )
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = (hidden_states, all_hidden_states, all_attentions)
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Blenderbot
+class FlaxBlenderbotDecoderLayer(nn.Module):
+ config: BlenderbotConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self) -> None:
+ self.embed_dim = self.config.d_model
+ self.self_attn = FlaxBlenderbotAttention(
+ config=self.config,
+ embed_dim=self.embed_dim,
+ num_heads=self.config.decoder_attention_heads,
+ dropout=self.config.attention_dropout,
+ causal=True,
+ dtype=self.dtype,
+ )
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+ self.activation_fn = ACT2FN[self.config.activation_function]
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
+
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ self.encoder_attn = FlaxBlenderbotAttention(
+ config=self.config,
+ embed_dim=self.embed_dim,
+ num_heads=self.config.decoder_attention_heads,
+ dropout=self.config.attention_dropout,
+ dtype=self.dtype,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ self.fc1 = nn.Dense(
+ self.config.decoder_ffn_dim,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.fc2 = nn.Dense(
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
+ )
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ attention_mask: jnp.ndarray,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ output_attentions: bool = True,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights = self.self_attn(
+ hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
+ )
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+
+ # Cross-Attention Block
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+ hidden_states, cross_attn_weights = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ )
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ return outputs
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Blenderbot
+class FlaxBlenderbotDecoderLayerCollection(nn.Module):
+ config: BlenderbotConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxBlenderbotDecoderLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.decoder_layers)
+ ]
+ self.layerdrop = self.config.decoder_layerdrop
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ deterministic: bool = True,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+
+ for decoder_layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = random.uniform(0, 1)
+ if not deterministic and (dropout_probability < self.layerdrop):
+ layer_outputs = (None, None, None)
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ deterministic=deterministic,
+ )
+
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class FlaxBlenderbotEncoder(nn.Module):
+ config: BlenderbotConfig
+ embed_tokens: nn.Embed
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+
+ embed_dim = self.config.d_model
+ self.padding_idx = self.config.pad_token_id
+ self.max_source_positions = self.config.max_position_embeddings
+ self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
+
+ self.embed_positions = nn.Embed(
+ self.config.max_position_embeddings,
+ embed_dim,
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.layers = FlaxBlenderbotEncoderLayerCollection(self.config, self.dtype)
+ self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ input_shape = input_ids.shape
+ input_ids = input_ids.reshape(-1, input_shape[-1])
+
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ embed_pos = self.embed_positions(position_ids)
+
+ hidden_states = inputs_embeds + embed_pos
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+
+ outputs = self.layers(
+ hidden_states,
+ attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ last_hidden_states = outputs[0]
+ last_hidden_states = self.layer_norm(last_hidden_states)
+
+ # update the last element in `hidden_states` after applying `layernorm` above
+ hidden_states = None
+ if output_hidden_states:
+ hidden_states = outputs[1]
+ hidden_states = hidden_states[:-1] + (last_hidden_states,)
+
+ if not return_dict:
+ outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=last_hidden_states,
+ hidden_states=hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class FlaxBlenderbotDecoder(nn.Module):
+ config: BlenderbotConfig
+ embed_tokens: nn.Embed
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+
+ embed_dim = self.config.d_model
+ self.padding_idx = self.config.pad_token_id
+ self.max_target_positions = self.config.max_position_embeddings
+ self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
+
+ self.embed_positions = nn.Embed(
+ self.config.max_position_embeddings,
+ embed_dim,
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+
+ self.layers = FlaxBlenderbotDecoderLayerCollection(self.config, self.dtype)
+ self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ input_shape = input_ids.shape
+ input_ids = input_ids.reshape(-1, input_shape[-1])
+
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ # embed positions
+ positions = self.embed_positions(position_ids)
+
+ hidden_states = inputs_embeds + positions
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+
+ outputs = self.layers(
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ deterministic=deterministic,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_states = outputs[0]
+ last_hidden_states = self.layer_norm(last_hidden_states)
+
+ # update the last element in `hidden_states` after applying `layernorm` above
+ hidden_states = None
+ if output_hidden_states:
+ hidden_states = outputs[1]
+ hidden_states = hidden_states[:-1] + (last_hidden_states,)
+
+ if not return_dict:
+ outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=last_hidden_states,
+ hidden_states=hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->Blenderbot
+class FlaxBlenderbotModule(nn.Module):
+ config: BlenderbotConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.shared = nn.Embed(
+ self.config.vocab_size,
+ self.config.d_model,
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
+ dtype=self.dtype,
+ )
+
+ self.encoder = FlaxBlenderbotEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
+ self.decoder = FlaxBlenderbotDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
+
+ def _get_encoder_module(self):
+ return self.encoder
+
+ def _get_decoder_module(self):
+ return self.decoder
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ decoder_input_ids,
+ decoder_attention_mask,
+ position_ids,
+ decoder_position_ids,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ )
+
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ position_ids=decoder_position_ids,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return FlaxSeq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+
+class FlaxBlenderbotPreTrainedModel(FlaxPreTrainedModel):
+ config_class = BlenderbotConfig
+ base_model_prefix: str = "model"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: BlenderbotConfig,
+ input_shape: Tuple[int] = (1, 1),
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ # make sure initialization pass will work for FlaxBlenderbotForSequenceClassificationModule
+ input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
+ attention_mask = jnp.ones_like(input_ids)
+ decoder_input_ids = input_ids
+ decoder_attention_mask = jnp.ones_like(input_ids)
+
+ batch_size, sequence_length = input_ids.shape
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+ decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(
+ rngs,
+ input_ids,
+ attention_mask,
+ decoder_input_ids,
+ decoder_attention_mask,
+ position_ids,
+ decoder_position_ids,
+ )["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ def init_cache(self, batch_size, max_length, encoder_outputs):
+ r"""
+ Args:
+ batch_size (`int`):
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
+ max_length (`int`):
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
+ cache.
+ encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
+ `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
+ `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
+ is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
+ cross-attention of the decoder.
+ """
+ # init input variables to retrieve cache
+ decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
+ )
+
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
+ decoder_module = module._get_decoder_module()
+ return decoder_module(
+ decoder_input_ids,
+ decoder_attention_mask,
+ decoder_position_ids,
+ **kwargs,
+ )
+
+ init_variables = self.module.init(
+ jax.random.PRNGKey(0),
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ decoder_position_ids=decoder_position_ids,
+ encoder_hidden_states=encoder_outputs[0],
+ init_cache=True,
+ method=_decoder_forward, # we only need to call the decoder to init the cache
+ )
+ return unfreeze(init_variables["cache"])
+
+ @add_start_docstrings(BLENDERBOT_ENCODE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotConfig)
+ def encode(
+ self,
+ input_ids: jnp.ndarray,
+ attention_mask: Optional[jnp.ndarray] = None,
+ position_ids: Optional[jnp.ndarray] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ train: bool = False,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
+
+ >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
+
+ >>> text = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
+ >>> encoder_outputs = model.encode(**inputs)
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+ if position_ids is None:
+ batch_size, sequence_length = input_ids.shape
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
+ encode_module = module._get_encoder_module()
+ return encode_module(input_ids, attention_mask, position_ids, **kwargs)
+
+ return self.module.apply(
+ {"params": params or self.params},
+ input_ids=jnp.array(input_ids, dtype="i4"),
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=not train,
+ rngs=rngs,
+ method=_encoder_forward,
+ )
+
+ @add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(
+ output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotConfig
+ )
+ def decode(
+ self,
+ decoder_input_ids,
+ encoder_outputs,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_position_ids: Optional[jnp.ndarray] = None,
+ past_key_values: dict = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ train: bool = False,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import jax.numpy as jnp
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
+
+ >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
+
+ >>> text = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
+ >>> encoder_outputs = model.encode(**inputs)
+
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
+
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
+ >>> last_decoder_hidden_states = outputs.last_hidden_state
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ encoder_hidden_states = encoder_outputs[0]
+ if encoder_attention_mask is None:
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ batch_size, sequence_length = decoder_input_ids.shape
+ if decoder_attention_mask is None:
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ if decoder_position_ids is None:
+ if past_key_values is not None:
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
+
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
+ )
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ inputs = {"params": params or self.params}
+
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
+ # it can be changed by FlaxBlenderbotAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
+ decoder_module = module._get_decoder_module()
+ return decoder_module(
+ decoder_input_ids,
+ decoder_attention_mask,
+ decoder_position_ids,
+ **kwargs,
+ )
+
+ outputs = self.module.apply(
+ inputs,
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=not train,
+ rngs=rngs,
+ mutable=mutable,
+ method=_decoder_forward,
+ )
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs, past = outputs
+ outputs["past_key_values"] = unfreeze(past["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs, past = outputs
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
+
+ return outputs
+
+ @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
+ def __call__(
+ self,
+ input_ids: jnp.ndarray,
+ attention_mask: Optional[jnp.ndarray] = None,
+ decoder_input_ids: Optional[jnp.ndarray] = None,
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
+ position_ids: Optional[jnp.ndarray] = None,
+ decoder_position_ids: Optional[jnp.ndarray] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ train: bool = False,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ # prepare encoder inputs
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+ if position_ids is None:
+ batch_size, sequence_length = input_ids.shape
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+
+ # prepare decoder inputs
+ if decoder_input_ids is None:
+ decoder_input_ids = shift_tokens_right(
+ input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
+ )
+ if decoder_attention_mask is None:
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
+ if decoder_position_ids is None:
+ batch_size, sequence_length = decoder_input_ids.shape
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
+ )
+
+ # Handle any PRNG if needed
+ rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
+
+ return self.module.apply(
+ {"params": params or self.params},
+ input_ids=jnp.array(input_ids, dtype="i4"),
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=not train,
+ rngs=rngs,
+ )
+
+
+@add_start_docstrings(
+ "The bare MBart Model transformer outputting raw hidden-states without any specific head on top.",
+ BLENDERBOT_START_DOCSTRING,
+)
+class FlaxBlenderbotModel(FlaxBlenderbotPreTrainedModel):
+ config: BlenderbotConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ module_class = FlaxBlenderbotModule
+
+
+append_call_sample_docstring(FlaxBlenderbotModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->Blenderbot
+class FlaxBlenderbotForConditionalGenerationModule(nn.Module):
+ config: BlenderbotConfig
+ dtype: jnp.dtype = jnp.float32
+ bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
+
+ def setup(self):
+ self.model = FlaxBlenderbotModule(config=self.config, dtype=self.dtype)
+ self.lm_head = nn.Dense(
+ self.model.shared.num_embeddings,
+ use_bias=False,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
+
+ def _get_encoder_module(self):
+ return self.model.encoder
+
+ def _get_decoder_module(self):
+ return self.model.decoder
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ decoder_input_ids,
+ decoder_attention_mask,
+ position_ids,
+ decoder_position_ids,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ position_ids=position_ids,
+ decoder_position_ids=decoder_position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ )
+
+ hidden_states = outputs[0]
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.model.variables["params"]["shared"]["embedding"]
+ lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ lm_logits = self.lm_head(hidden_states)
+
+ lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return output
+
+ return FlaxSeq2SeqLMOutput(
+ logits=lm_logits,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING
+)
+class FlaxBlenderbotForConditionalGeneration(FlaxBlenderbotPreTrainedModel):
+ module_class = FlaxBlenderbotForConditionalGenerationModule
+ dtype: jnp.dtype = jnp.float32
+
+ @add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotConfig)
+ def decode(
+ self,
+ decoder_input_ids,
+ encoder_outputs,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_position_ids: Optional[jnp.ndarray] = None,
+ past_key_values: dict = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ train: bool = False,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import jax.numpy as jnp
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
+
+ >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
+
+ >>> text = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
+ >>> encoder_outputs = model.encode(**inputs)
+
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
+
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
+ >>> logits = outputs.logits
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ encoder_hidden_states = encoder_outputs[0]
+ if encoder_attention_mask is None:
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ batch_size, sequence_length = decoder_input_ids.shape
+ if decoder_attention_mask is None:
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ if decoder_position_ids is None:
+ if past_key_values is not None:
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
+
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
+ )
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ inputs = {"params": params or self.params}
+
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
+ # it can be changed by FlaxBlenderbotAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
+ decoder_module = module._get_decoder_module()
+ outputs = decoder_module(
+ decoder_input_ids,
+ decoder_attention_mask,
+ decoder_position_ids,
+ **kwargs,
+ )
+ hidden_states = outputs[0]
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = module.model.variables["params"]["shared"]["embedding"]
+ lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ lm_logits = module.lm_head(hidden_states)
+
+ lm_logits += module.final_logits_bias
+ return lm_logits, outputs
+
+ outputs = self.module.apply(
+ inputs,
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=not train,
+ rngs=rngs,
+ mutable=mutable,
+ method=_decoder_forward,
+ )
+
+ if past_key_values is None:
+ lm_logits, decoder_outputs = outputs
+ else:
+ (lm_logits, decoder_outputs), past = outputs
+
+ if return_dict:
+ outputs = FlaxCausalLMOutputWithCrossAttentions(
+ logits=lm_logits,
+ hidden_states=decoder_outputs.hidden_states,
+ attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ )
+ else:
+ outputs = (lm_logits,) + decoder_outputs[1:]
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs["past_key_values"] = unfreeze(past["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
+
+ return outputs
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ max_length,
+ attention_mask: Optional[jax.Array] = None,
+ decoder_attention_mask: Optional[jax.Array] = None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # initializing the cache
+ batch_size, seq_length = decoder_input_ids.shape
+
+ past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
+ # But since the decoder uses a causal mask, those positions are masked anyways.
+ # Thus we can create a single static attention_mask here, which is more efficient for compilation
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
+ if decoder_attention_mask is not None:
+ position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
+ else:
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
+
+ return {
+ "past_key_values": past_key_values,
+ "encoder_outputs": encoder_outputs,
+ "encoder_attention_mask": attention_mask,
+ "decoder_attention_mask": extended_attention_mask,
+ "decoder_position_ids": position_ids,
+ }
+
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
+ model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
+ return model_kwargs
+
+
+FLAX_BLENDERBOT_CONDITIONAL_GENERATION_DOCSTRING = r"""
+ Returns:
+
+ Conversation example::
+
+ ```py
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
+
+ >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
+
+ >>> UTTERANCE = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer([UTTERANCE], max_length=1024, return_tensors="np")
+
+ >>> # Generate Reply
+ >>> reply_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5, early_stopping=True).sequences
+ >>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in reply_ids])
+ ```
+"""
+
+overwrite_call_docstring(
+ FlaxBlenderbotForConditionalGeneration,
+ BLENDERBOT_INPUTS_DOCSTRING + FLAX_BLENDERBOT_CONDITIONAL_GENERATION_DOCSTRING,
+)
+append_replace_return_docstrings(
+ FlaxBlenderbotForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
+)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_tf_blenderbot.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_tf_blenderbot.py
new file mode 100644
index 0000000000000000000000000000000000000000..ccb07d20ecf97d6d5f205669f38534c5953a946f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_tf_blenderbot.py
@@ -0,0 +1,1556 @@
+# coding=utf-8
+# Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 Blenderbot model."""
+
+
+from __future__ import annotations
+
+import os
+import random
+import warnings
+from typing import List, Optional, Tuple, Union
+
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutput,
+ TFBaseModelOutputWithPastAndCrossAttentions,
+ TFSeq2SeqLMOutput,
+ TFSeq2SeqModelOutput,
+)
+
+# Public API
+from ...modeling_tf_utils import (
+ TFCausalLanguageModelingLoss,
+ TFPreTrainedModel,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ add_code_sample_docstrings,
+ add_end_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_blenderbot import BlenderbotConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
+_CONFIG_FOR_DOC = "BlenderbotConfig"
+
+
+LARGE_NEGATIVE = -1e8
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
+def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
+ pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
+ decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
+ start_tokens = tf.fill(
+ (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
+ )
+ shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids = tf.where(
+ shifted_input_ids == -100,
+ tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
+ shifted_input_ids,
+ )
+
+ # "Verify that `labels` has only positive values and -100"
+ assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
+
+ # Make sure the assertion op is called by wrapping the result in an identity no-op
+ with tf.control_dependencies([assert_gte0]):
+ shifted_input_ids = tf.identity(shifted_input_ids)
+
+ return shifted_input_ids
+
+
+# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
+def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
+ """
+ Make causal mask used for bi-directional self-attention.
+ """
+ bsz = input_ids_shape[0]
+ tgt_len = input_ids_shape[1]
+ mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
+ mask_cond = tf.range(shape_list(mask)[-1])
+
+ mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
+
+ if past_key_values_length > 0:
+ mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
+
+ return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
+
+
+# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
+def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
+ """
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
+ """
+ src_len = shape_list(mask)[1]
+ tgt_len = tgt_len if tgt_len is not None else src_len
+ one_cst = tf.constant(1.0)
+ mask = tf.cast(mask, dtype=one_cst.dtype)
+ expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
+
+ return (one_cst - expanded_mask) * LARGE_NEGATIVE
+
+
+class TFBlenderbotLearnedPositionalEmbedding(keras.layers.Embedding):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
+ super().__init__(num_embeddings, embedding_dim, **kwargs)
+
+ def call(
+ self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
+ ):
+ """Input is expected to be of size [bsz x seqlen]."""
+ if position_ids is None:
+ seq_len = input_shape[1]
+ position_ids = tf.range(seq_len, delta=1, name="range")
+ position_ids += past_key_values_length
+
+ return super().call(tf.cast(position_ids, dtype=tf.int32))
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Blenderbot
+class TFBlenderbotAttention(keras.layers.Layer):
+ """Multi-headed attention from "Attention Is All You Need"""
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.embed_dim = embed_dim
+
+ self.num_heads = num_heads
+ self.dropout = keras.layers.Dropout(dropout)
+ self.head_dim = embed_dim // num_heads
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+
+ self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
+ self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
+ self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
+ self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
+
+ def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
+ return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ key_value_states: tf.Tensor | None = None,
+ past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
+ attention_mask: tf.Tensor | None = None,
+ layer_head_mask: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Tuple[tf.Tensor, tf.Tensor | None]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ bsz, tgt_len, embed_dim = shape_list(hidden_states)
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = tf.concat([past_key_value[0], key_states], axis=2)
+ value_states = tf.concat([past_key_value[1], value_states], axis=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
+ key_states = tf.reshape(key_states, proj_shape)
+ value_states = tf.reshape(value_states, proj_shape)
+
+ src_len = shape_list(key_states)[1]
+ attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
+
+ tf.debugging.assert_equal(
+ shape_list(attn_weights),
+ [bsz * self.num_heads, tgt_len, src_len],
+ message=(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {shape_list(attn_weights)}"
+ ),
+ )
+
+ if attention_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(attention_mask),
+ [bsz, 1, tgt_len, src_len],
+ message=(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
+ f" {shape_list(attention_mask)}"
+ ),
+ )
+
+ attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
+ attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
+
+ attn_weights = stable_softmax(attn_weights, axis=-1)
+
+ if layer_head_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(layer_head_mask),
+ [self.num_heads],
+ message=(
+ f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
+ f" {shape_list(layer_head_mask)}"
+ ),
+ )
+
+ attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
+ attn_weights, (bsz, self.num_heads, tgt_len, src_len)
+ )
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
+
+ attn_probs = self.dropout(attn_weights, training=training)
+ attn_output = tf.matmul(attn_probs, value_states)
+
+ tf.debugging.assert_equal(
+ shape_list(attn_output),
+ [bsz * self.num_heads, tgt_len, self.head_dim],
+ message=(
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {shape_list(attn_output)}"
+ ),
+ )
+
+ attn_output = tf.transpose(
+ tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
+ )
+ attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
+
+ attn_output = self.out_proj(attn_output)
+ attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
+
+ return attn_output, attn_weights, past_key_value
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "k_proj", None) is not None:
+ with tf.name_scope(self.k_proj.name):
+ self.k_proj.build([None, None, self.embed_dim])
+ if getattr(self, "q_proj", None) is not None:
+ with tf.name_scope(self.q_proj.name):
+ self.q_proj.build([None, None, self.embed_dim])
+ if getattr(self, "v_proj", None) is not None:
+ with tf.name_scope(self.v_proj.name):
+ self.v_proj.build([None, None, self.embed_dim])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.embed_dim])
+
+
+# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartEncoderLayer with MBart->Blenderbot
+class TFBlenderbotEncoderLayer(keras.layers.Layer):
+ def __init__(self, config: BlenderbotConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.embed_dim = config.d_model
+ self.self_attn = TFBlenderbotAttention(
+ self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
+ )
+ self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
+ self.dropout = keras.layers.Dropout(config.dropout)
+ self.activation_fn = get_tf_activation(config.activation_function)
+ self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
+ self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
+ self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
+ self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
+ self.config = config
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ layer_head_mask: tf.Tensor,
+ training: Optional[bool] = False,
+ ):
+ """
+ Args:
+ hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
+ attention_mask (`tf.Tensor`): attention mask of size
+ *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
+ layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
+ *(encoder_attention_heads,)*
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, self_attn_weights, _ = self.self_attn(
+ hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
+ )
+
+ tf.debugging.assert_equal(
+ shape_list(hidden_states),
+ shape_list(residual),
+ message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
+ )
+
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout(hidden_states, training=training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ return hidden_states, self_attn_weights
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attn", None) is not None:
+ with tf.name_scope(self.self_attn.name):
+ self.self_attn.build(None)
+ if getattr(self, "self_attn_layer_norm", None) is not None:
+ with tf.name_scope(self.self_attn_layer_norm.name):
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
+ if getattr(self, "fc1", None) is not None:
+ with tf.name_scope(self.fc1.name):
+ self.fc1.build([None, None, self.embed_dim])
+ if getattr(self, "fc2", None) is not None:
+ with tf.name_scope(self.fc2.name):
+ self.fc2.build([None, None, self.config.encoder_ffn_dim])
+ if getattr(self, "final_layer_norm", None) is not None:
+ with tf.name_scope(self.final_layer_norm.name):
+ self.final_layer_norm.build([None, None, self.embed_dim])
+
+
+# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer with MBart->Blenderbot
+class TFBlenderbotDecoderLayer(keras.layers.Layer):
+ def __init__(self, config: BlenderbotConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.embed_dim = config.d_model
+ self.self_attn = TFBlenderbotAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ name="self_attn",
+ is_decoder=True,
+ )
+ self.dropout = keras.layers.Dropout(config.dropout)
+ self.activation_fn = get_tf_activation(config.activation_function)
+ self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
+
+ self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
+ self.encoder_attn = TFBlenderbotAttention(
+ self.embed_dim,
+ config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ name="encoder_attn",
+ is_decoder=True,
+ )
+ self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
+ self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
+ self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
+ self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
+ self.config = config
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor | None = None,
+ encoder_hidden_states: tf.Tensor | None = None,
+ encoder_attention_mask: tf.Tensor | None = None,
+ layer_head_mask: tf.Tensor | None = None,
+ cross_attn_layer_head_mask: tf.Tensor | None = None,
+ past_key_value: Tuple[tf.Tensor] | None = None,
+ training: Optional[bool] = False,
+ ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
+ """
+ Args:
+ hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
+ attention_mask (`tf.Tensor`): attention mask of size
+ *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
+ encoder_hidden_states (`tf.Tensor`):
+ cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
+ encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
+ *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
+ layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
+ *(decoder_attention_heads,)*
+ cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
+ *(decoder_attention_heads,)*
+ past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ )
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ )
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ # add cross-attn to positions 3,4 of present_key_value tuple
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout(hidden_states, training=training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+
+ return (
+ hidden_states,
+ self_attn_weights,
+ cross_attn_weights,
+ present_key_value,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attn", None) is not None:
+ with tf.name_scope(self.self_attn.name):
+ self.self_attn.build(None)
+ if getattr(self, "self_attn_layer_norm", None) is not None:
+ with tf.name_scope(self.self_attn_layer_norm.name):
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
+ if getattr(self, "encoder_attn", None) is not None:
+ with tf.name_scope(self.encoder_attn.name):
+ self.encoder_attn.build(None)
+ if getattr(self, "encoder_attn_layer_norm", None) is not None:
+ with tf.name_scope(self.encoder_attn_layer_norm.name):
+ self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
+ if getattr(self, "fc1", None) is not None:
+ with tf.name_scope(self.fc1.name):
+ self.fc1.build([None, None, self.embed_dim])
+ if getattr(self, "fc2", None) is not None:
+ with tf.name_scope(self.fc2.name):
+ self.fc2.build([None, None, self.config.decoder_ffn_dim])
+ if getattr(self, "final_layer_norm", None) is not None:
+ with tf.name_scope(self.final_layer_norm.name):
+ self.final_layer_norm.build([None, None, self.embed_dim])
+
+
+class TFBlenderbotPreTrainedModel(TFPreTrainedModel):
+ config_class = BlenderbotConfig
+ base_model_prefix = "model"
+
+
+BLENDERBOT_START_DOCSTRING = r"""
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Args:
+ config ([`BlenderbotConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BLENDERBOT_GENERATION_EXAMPLE = r"""
+ Conversation example::
+
+ ```py
+ >>> from transformers import AutoTokenizer, TFBlenderbotForConditionalGeneration
+
+ >>> mname = "facebook/blenderbot-400M-distill"
+ >>> model = TFBlenderbotForConditionalGeneration.from_pretrained(mname)
+ >>> tokenizer = AutoTokenizer.from_pretrained(mname)
+ >>> UTTERANCE = "My friends are cool but they eat too many carbs."
+ >>> print("Human: ", UTTERANCE)
+
+ >>> inputs = tokenizer([UTTERANCE], return_tensors="tf")
+ >>> reply_ids = model.generate(**inputs)
+ >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
+
+ >>> REPLY = "I'm not sure"
+ >>> print("Human: ", REPLY)
+ >>> NEXT_UTTERANCE = (
+ ... "My friends are cool but they eat too many carbs. That's unfortunate. "
+ ... "Are they trying to lose weight or are they just trying to be healthier? "
+ ... " I'm not sure."
+ ... )
+ >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf")
+ >>> next_reply_ids = model.generate(**inputs)
+ >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
+ ```
+"""
+
+BLENDERBOT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ Blenderbot uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+ decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
+ decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tf.FloatTensor`, *optional*):
+ hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`). Set to `False` during training, `True` during generation
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@keras_serializable
+class TFBlenderbotEncoder(keras.layers.Layer):
+ config_class = BlenderbotConfig
+ """
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+ [`TFBlenderbotEncoderLayer`].
+
+ Args:
+ config: BlenderbotConfig
+ """
+
+ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.dropout = keras.layers.Dropout(config.dropout)
+ self.layerdrop = config.encoder_layerdrop
+ self.padding_idx = config.pad_token_id
+ self.max_source_positions = config.max_position_embeddings
+ self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
+
+ self.embed_tokens = embed_tokens
+ self.embed_positions = TFBlenderbotLearnedPositionalEmbedding(
+ config.max_position_embeddings,
+ config.d_model,
+ name="embed_positions",
+ )
+ self.layers = [TFBlenderbotEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
+
+ def get_embed_tokens(self):
+ return self.embed_tokens
+
+ def set_embed_tokens(self, embed_tokens):
+ self.embed_tokens = embed_tokens
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids=None,
+ inputs_embeds=None,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ training=False,
+ ):
+ """
+ Args:
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
+ in the config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail. This argument can be used only in eager mode, in graph mode the value in the config
+ will be used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
+ in eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+ """
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if inputs_embeds is None:
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ embed_pos = self.embed_positions(input_shape)
+ hidden_states = inputs_embeds + embed_pos
+ hidden_states = self.dropout(hidden_states, training=training)
+
+ # check attention mask and invert
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _expand_mask(attention_mask)
+ else:
+ attention_mask = None
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ # check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(head_mask)[0],
+ len(self.layers),
+ message=(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
+ f" {shape_list(head_mask)[0]}."
+ ),
+ )
+
+ # encoder layers
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = random.uniform(0, 1)
+ if training and (dropout_probability < self.layerdrop): # skip the layer
+ continue
+
+ hidden_states, attn = encoder_layer(
+ hidden_states,
+ attention_mask,
+ head_mask[idx] if head_mask is not None else None,
+ )
+
+ if output_attentions:
+ all_attentions += (attn,)
+
+ hidden_states = self.layer_norm(hidden_states)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return TFBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embed_positions", None) is not None:
+ with tf.name_scope(self.embed_positions.name):
+ self.embed_positions.build(None)
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.d_model])
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFBlenderbotDecoder(keras.layers.Layer):
+ config_class = BlenderbotConfig
+ """
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotDecoderLayer`]
+
+ Args:
+ config: BlenderbotConfig
+ embed_tokens: output embedding
+ """
+
+ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.padding_idx = config.pad_token_id
+ self.embed_tokens = embed_tokens
+ self.layerdrop = config.decoder_layerdrop
+ self.embed_positions = TFBlenderbotLearnedPositionalEmbedding(
+ config.max_position_embeddings,
+ config.d_model,
+ name="embed_positions",
+ )
+ self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
+ self.layers = [TFBlenderbotDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
+
+ self.dropout = keras.layers.Dropout(config.dropout)
+
+ def get_embed_tokens(self):
+ return self.embed_tokens
+
+ def set_embed_tokens(self, embed_tokens):
+ self.embed_tokens = embed_tokens
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids=None,
+ inputs_embeds=None,
+ attention_mask=None,
+ position_ids=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ head_mask=None,
+ cross_attn_head_mask=None,
+ past_key_values=None,
+ use_cache=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ training=False,
+ ):
+ r"""
+ Args:
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
+ selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
+ decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
+ in the config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail. This argument can be used only in eager mode, in graph mode the value in the config
+ will be used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
+ in eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+ """
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
+
+ # embed positions
+ if position_ids is None:
+ positions = self.embed_positions(input_shape, past_key_values_length)
+ else:
+ positions = self.embed_positions(input_shape, position_ids=position_ids)
+
+ if inputs_embeds is None:
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ hidden_states = inputs_embeds
+
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ if input_shape[-1] > 1:
+ combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
+ else:
+ combined_attention_mask = _expand_mask(
+ tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
+ )
+
+ if attention_mask is not None:
+ combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
+
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
+
+ hidden_states = hidden_states + positions
+ hidden_states = self.dropout(hidden_states, training=training)
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
+ present_key_values = () if use_cache else None
+
+ # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
+ for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
+ if attn_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(attn_mask)[0],
+ len(self.layers),
+ message=(
+ f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
+ f" {shape_list(attn_mask)[0]}."
+ ),
+ )
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ dropout_probability = random.uniform(0, 1)
+
+ if training and (dropout_probability < self.layerdrop):
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
+ hidden_states,
+ attention_mask=combined_attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ layer_head_mask=head_mask[idx] if head_mask is not None else None,
+ cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
+ past_key_value=past_key_value,
+ )
+
+ if use_cache:
+ present_key_values += (present_key_value,)
+
+ if output_attentions:
+ all_self_attns += (layer_self_attn,)
+
+ if encoder_hidden_states is not None:
+ all_cross_attns += (layer_cross_attn,)
+
+ hidden_states = self.layer_norm(hidden_states)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if not return_dict:
+ return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
+ else:
+ return TFBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=present_key_values,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attns,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embed_positions", None) is not None:
+ with tf.name_scope(self.embed_positions.name):
+ self.embed_positions.build(None)
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.d_model])
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFBlenderbotMainLayer(keras.layers.Layer):
+ config_class = BlenderbotConfig
+
+ def __init__(self, config: BlenderbotConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.shared = keras.layers.Embedding(
+ input_dim=config.vocab_size,
+ output_dim=config.d_model,
+ embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
+ name="model.shared",
+ )
+ # Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
+ self.shared.load_weight_prefix = "model.shared"
+
+ self.encoder = TFBlenderbotEncoder(config, self.shared, name="encoder")
+ self.decoder = TFBlenderbotDecoder(config, self.shared, name="decoder")
+
+ def get_input_embeddings(self):
+ return self.shared
+
+ def set_input_embeddings(self, new_embeddings):
+ self.shared = new_embeddings
+ self.encoder.embed_tokens = self.shared
+ self.decoder.embed_tokens = self.shared
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ decoder_input_ids=None,
+ decoder_attention_mask=None,
+ decoder_position_ids=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
+ past_key_values=None,
+ inputs_embeds=None,
+ decoder_inputs_embeds=None,
+ use_cache=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ training=False,
+ **kwargs,
+ ):
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
+ encoder_outputs = TFBaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+ # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
+ elif not return_dict and not isinstance(encoder_outputs, tuple):
+ encoder_outputs = encoder_outputs.to_tuple()
+
+ decoder_outputs = self.decoder(
+ decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ position_ids=decoder_position_ids,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return TFSeq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ # The shared/tied weights expect to be in the model base namespace
+ # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
+ # the current one.
+ with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
+ self.shared.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "decoder", None) is not None:
+ with tf.name_scope(self.decoder.name):
+ self.decoder.build(None)
+
+
+@add_start_docstrings(
+ "The bare BLENDERBOT Model outputting raw hidden-states without any specific head on top.",
+ BLENDERBOT_START_DOCSTRING,
+)
+class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
+ def __init__(self, config: BlenderbotConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.model = TFBlenderbotMainLayer(config, name="model")
+
+ def get_encoder(self):
+ return self.model.encoder
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
+ if pretrained_model_name_or_path == "facebook/blenderbot-90M":
+ from ..blenderbot_small import TFBlenderbotSmallModel
+
+ warnings.warn(
+ "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
+ " checkpoint `facebook/small_blenderbot-90M` with"
+ " `TFBlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')`"
+ " instead.",
+ FutureWarning,
+ )
+ return TFBlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)
+
+ return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFSeq2SeqModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: tf.Tensor | None = None,
+ attention_mask: tf.Tensor | None = None,
+ decoder_input_ids: tf.Tensor | None = None,
+ decoder_attention_mask: tf.Tensor | None = None,
+ decoder_position_ids: tf.Tensor | None = None,
+ head_mask: tf.Tensor | None = None,
+ decoder_head_mask: tf.Tensor | None = None,
+ cross_attn_head_mask: tf.Tensor | None = None,
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
+ past_key_values: List[tf.Tensor] | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ decoder_inputs_embeds: tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ **kwargs,
+ ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ decoder_position_ids=decoder_position_ids,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ encoder_outputs=encoder_outputs,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
+ def serving_output(self, output):
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
+ dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
+ cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
+ enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
+
+ return TFSeq2SeqModelOutput(
+ last_hidden_state=output.last_hidden_state,
+ past_key_values=pkv,
+ decoder_hidden_states=dec_hs,
+ decoder_attentions=dec_attns,
+ cross_attentions=cross_attns,
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
+ encoder_hidden_states=enc_hs,
+ encoder_attentions=enc_attns,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "model", None) is not None:
+ with tf.name_scope(self.model.name):
+ self.model.build(None)
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
+class BiasLayer(keras.layers.Layer):
+ """
+ Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
+ so all weights have to be registered in a layer.
+ """
+
+ def __init__(self, shape, initializer, trainable, name, **kwargs):
+ super().__init__(name=name, **kwargs)
+ # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
+ # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
+ # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
+ self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
+
+ def call(self, x):
+ return x + self.bias
+
+
+@add_start_docstrings(
+ "The BLENDERBOT Model with a language modeling head. Can be used for summarization.",
+ BLENDERBOT_START_DOCSTRING,
+)
+class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausalLanguageModelingLoss):
+ _keys_to_ignore_on_load_unexpected = [
+ r"model.encoder.embed_tokens.weight",
+ r"model.decoder.embed_tokens.weight",
+ ]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.model = TFBlenderbotMainLayer(config, name="model")
+ self.use_cache = config.use_cache
+ # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
+ self.bias_layer = BiasLayer(
+ name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
+ )
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ def get_encoder(self):
+ return self.model.encoder
+
+ def get_output_embeddings(self):
+ return self.get_input_embeddings()
+
+ def set_output_embeddings(self, value):
+ self.set_input_embeddings(value)
+
+ def get_bias(self):
+ return {"final_logits_bias": self.bias_layer.bias}
+
+ def set_bias(self, value):
+ # Replaces the existing layers containing bias for correct (de)serialization.
+ vocab_size = value["final_logits_bias"].shape[-1]
+ self.bias_layer = BiasLayer(
+ name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
+ )
+ self.bias_layer.bias.assign(value["final_logits_bias"])
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
+ if pretrained_model_name_or_path == "facebook/blenderbot-90M":
+ from ..blenderbot_small import TFBlenderbotSmallForConditionalGeneration
+
+ warnings.warn(
+ "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
+ " checkpoint `facebook/small_blenderbot-90M` with"
+ " `TFBlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')`"
+ " instead.",
+ FutureWarning,
+ )
+ return TFBlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)
+
+ return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+ @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
+ def call(
+ self,
+ input_ids: tf.Tensor | None = None,
+ attention_mask: tf.Tensor | None = None,
+ decoder_input_ids: tf.Tensor | None = None,
+ decoder_attention_mask: tf.Tensor | None = None,
+ decoder_position_ids: tf.Tensor | None = None,
+ head_mask: tf.Tensor | None = None,
+ decoder_head_mask: tf.Tensor | None = None,
+ cross_attn_head_mask: tf.Tensor | None = None,
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
+ past_key_values: List[tf.Tensor] | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ decoder_inputs_embeds: tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
+ r"""
+ labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ """
+ if labels is not None:
+ labels = tf.where(
+ labels == self.config.pad_token_id,
+ tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
+ labels,
+ )
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ encoder_outputs=encoder_outputs,
+ decoder_attention_mask=decoder_attention_mask,
+ decoder_position_ids=decoder_position_ids,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
+ lm_logits = self.bias_layer(lm_logits)
+ masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+ return TFSeq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=outputs.past_key_values, # index 1 of d outputs
+ decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
+ decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
+ cross_attentions=outputs.cross_attentions, # index 4 of d outputs
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
+ encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
+ encoder_attentions=outputs.encoder_attentions, # 2 of e out
+ )
+
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
+ def serving_output(self, output):
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
+ dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
+ cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
+ enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
+
+ return TFSeq2SeqLMOutput(
+ logits=output.logits,
+ past_key_values=pkv,
+ decoder_hidden_states=dec_hs,
+ decoder_attentions=dec_attns,
+ cross_attentions=cross_attns,
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
+ encoder_hidden_states=enc_hs,
+ encoder_attentions=enc_attns,
+ )
+
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ decoder_attention_mask=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ decoder_input_ids = decoder_input_ids[:, -1:]
+
+ if decoder_attention_mask is not None: # xla
+ decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
+ elif past_key_values is not None: # no xla + past_key_values
+ decoder_position_ids = past_key_values[0][0].shape[2]
+ else: # no xla + no past_key_values
+ decoder_position_ids = tf.range(decoder_input_ids.shape[1])
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "decoder_attention_mask": decoder_attention_mask,
+ "decoder_position_ids": decoder_position_ids,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
+ }
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "model", None) is not None:
+ with tf.name_scope(self.model.name):
+ self.model.build(None)
+ if getattr(self, "bias_layer", None) is not None:
+ with tf.name_scope(self.bias_layer.name):
+ self.bias_layer.build(None)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/tokenization_blenderbot.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/tokenization_blenderbot.py
new file mode 100644
index 0000000000000000000000000000000000000000..b812f84b7d2d458c63df970ed6a8f215bbd5ce54
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/tokenization_blenderbot.py
@@ -0,0 +1,427 @@
+# coding=utf-8
+# Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization class for Blenderbot."""
+
+import json
+import os
+from functools import lru_cache
+from typing import List, Optional, Tuple
+
+import regex as re
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+VOCAB_FILES_NAMES = {
+ "vocab_file": "vocab.json",
+ "merges_file": "merges.txt",
+ "tokenizer_config_file": "tokenizer_config.json",
+}
+
+
+@lru_cache()
+# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
+ characters the bpe code barfs on.
+
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
+ tables between utf-8 bytes and unicode strings.
+ """
+ bs = (
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
+ )
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8 + n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+
+# Copied from transformers.models.roberta.tokenization_roberta.get_pairs
+def get_pairs(word):
+ """
+ Return set of symbol pairs in a word.
+
+ Word is represented as tuple of symbols (symbols being variable-length strings).
+ """
+ pairs = set()
+ prev_char = word[0]
+ for char in word[1:]:
+ pairs.add((prev_char, char))
+ prev_char = char
+ return pairs
+
+
+class BlenderbotTokenizer(PreTrainedTokenizer):
+ """
+ Constructs a Blenderbot tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
+
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
+
+ ```python
+ >>> from transformers import BlenderbotTokenizer
+
+ >>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
+ >>> tokenizer.add_prefix_space = False
+ >>> tokenizer("Hello world")["input_ids"]
+ [47, 921, 86, 1085, 2]
+
+ >>> tokenizer(" Hello world")["input_ids"]
+ [6950, 1085, 2]
+ ```
+
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
+
+
+
+ When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
+
+
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (Blenderbot tokenizer detect beginning of words by the preceding space).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.__init__ with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def __init__(
+ self,
+ vocab_file,
+ merges_file,
+ errors="replace",
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ add_prefix_space=False,
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
+ sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
+ cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
+
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = (
+ AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
+ if isinstance(mask_token, str)
+ else mask_token
+ )
+
+ # these special tokens are not part of the vocab.json, let's add them in the correct order
+
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
+ self.encoder = json.load(vocab_handle)
+ self.decoder = {v: k for k, v in self.encoder.items()}
+ self.errors = errors # how to handle errors in decoding
+ self.byte_encoder = bytes_to_unicode()
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
+ with open(merges_file, encoding="utf-8") as merges_handle:
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
+ self.cache = {}
+ self.add_prefix_space = add_prefix_space
+
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
+
+ super().__init__(
+ errors=errors,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ add_prefix_space=add_prefix_space,
+ **kwargs,
+ )
+
+ @property
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def vocab_size(self):
+ return len(self.encoder)
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_vocab with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def get_vocab(self):
+ vocab = dict(self.encoder).copy()
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.bpe with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def bpe(self, token):
+ if token in self.cache:
+ return self.cache[token]
+ word = tuple(token)
+ pairs = get_pairs(word)
+
+ if not pairs:
+ return token
+
+ while True:
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
+ if bigram not in self.bpe_ranks:
+ break
+ first, second = bigram
+ new_word = []
+ i = 0
+ while i < len(word):
+ try:
+ j = word.index(first, i)
+ except ValueError:
+ new_word.extend(word[i:])
+ break
+ else:
+ new_word.extend(word[i:j])
+ i = j
+
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
+ new_word.append(first + second)
+ i += 2
+ else:
+ new_word.append(word[i])
+ i += 1
+ new_word = tuple(new_word)
+ word = new_word
+ if len(word) == 1:
+ break
+ else:
+ pairs = get_pairs(word)
+ word = " ".join(word)
+ self.cache[token] = word
+ return word
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._tokenize with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def _tokenize(self, text):
+ """Tokenize a string."""
+ bpe_tokens = []
+ for token in re.findall(self.pat, text):
+ token = "".join(
+ self.byte_encoder[b] for b in token.encode("utf-8")
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
+ return bpe_tokens
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_token_to_id with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_id_to_token with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.decoder.get(index)
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.convert_tokens_to_string with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ text = "".join(tokens)
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
+ return text
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.save_vocabulary with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ merge_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
+ )
+
+ with open(vocab_file, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
+
+ index = 0
+ with open(merge_file, "w", encoding="utf-8") as writer:
+ writer.write("#version: 0.2\n")
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
+ " Please check that the tokenizer is not corrupted!"
+ )
+ index = token_index
+ writer.write(" ".join(bpe_tokens) + "\n")
+ index += 1
+
+ return vocab_file, merge_file
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_special_tokens_mask with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.create_token_type_ids_from_sequences with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. Blenderbot does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.prepare_for_tokenization with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
+ add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
+ if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
+ text = " " + text
+ return (text, kwargs)
+
+ def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None):
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A Blenderbot sequence has the following format:
+ - single sequence: ` X `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added
+ token_ids_1 (`List[int]`, *optional*):
+ Will be ignored
+ Returns:
+ `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ return token_ids_0 + [self.eos_token_id]
+
+ @property
+ def default_chat_template(self):
+ """
+ A very simple chat template that just adds whitespace between messages.
+ """
+ logger.warning_once(
+ "\nNo chat template is defined for this tokenizer - using the default template "
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
+ )
+ return (
+ "{% for message in messages %}"
+ "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}"
+ "{{ message['content'] }}"
+ "{% if not loop.last %}{{ ' ' }}{% endif %}"
+ "{% endfor %}"
+ "{{ eos_token }}"
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/tokenization_blenderbot_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/tokenization_blenderbot_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..879173282da1e236c6e207012f0f4babe7f79c5b
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/tokenization_blenderbot_fast.py
@@ -0,0 +1,309 @@
+# coding=utf-8
+# Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Fast Tokenization class for Blenderbot."""
+import json
+from typing import List, Optional, Tuple
+
+from tokenizers import pre_tokenizers, processors
+
+from ...tokenization_utils_base import AddedToken, BatchEncoding
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+from .tokenization_blenderbot import BlenderbotTokenizer
+
+
+logger = logging.get_logger(__name__)
+
+
+VOCAB_FILES_NAMES = {
+ "vocab_file": "vocab.json",
+ "merges_file": "merges.txt",
+ "tokenizer_config_file": "tokenizer_config.json",
+}
+
+
+class BlenderbotTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" Blenderbot tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2
+ tokenizer, using byte-level Byte-Pair-Encoding.
+
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
+
+ ```python
+ >>> from transformers import BlenderbotTokenizerFast
+
+ >>> tokenizer = BlenderbotTokenizerFast.from_pretrained("facebook/blenderbot-3B")
+ >>> tokenizer("Hello world")["input_ids"]
+ [6950, 1085, 2]
+
+ >>> tokenizer(" Hello world")["input_ids"]
+ [6950, 1085, 2]
+ ```
+
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
+
+
+
+ When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
+
+
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (Blenderbot tokenizer detect beginning of words by the preceding space).
+ trim_offsets (`bool`, *optional*, defaults to `True`):
+ Whether the post processing step should trim offsets to avoid including whitespaces.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+ slow_tokenizer_class = BlenderbotTokenizer
+
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.__init__ with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def __init__(
+ self,
+ vocab_file=None,
+ merges_file=None,
+ tokenizer_file=None,
+ errors="replace",
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ add_prefix_space=False,
+ trim_offsets=True,
+ **kwargs,
+ ):
+ mask_token = (
+ AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
+ if isinstance(mask_token, str)
+ else mask_token
+ )
+ super().__init__(
+ vocab_file,
+ merges_file,
+ tokenizer_file=tokenizer_file,
+ errors=errors,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ add_prefix_space=add_prefix_space,
+ trim_offsets=trim_offsets,
+ **kwargs,
+ )
+
+ pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
+ if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
+ pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
+ pre_tok_state["add_prefix_space"] = add_prefix_space
+ self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
+
+ self.add_prefix_space = add_prefix_space
+
+ tokenizer_component = "post_processor"
+ tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
+ if tokenizer_component_instance:
+ state = json.loads(tokenizer_component_instance.__getstate__())
+
+ # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
+ if "sep" in state:
+ state["sep"] = tuple(state["sep"])
+ if "cls" in state:
+ state["cls"] = tuple(state["cls"])
+
+ changes_to_apply = False
+
+ if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
+ state["add_prefix_space"] = add_prefix_space
+ changes_to_apply = True
+
+ if state.get("trim_offsets", trim_offsets) != trim_offsets:
+ state["trim_offsets"] = trim_offsets
+ changes_to_apply = True
+
+ if changes_to_apply:
+ component_class = getattr(processors, state.pop("type"))
+ new_value = component_class(**state)
+ setattr(self.backend_tokenizer, tokenizer_component, new_value)
+
+ @property
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def mask_token(self) -> str:
+ """
+ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
+ having been set.
+
+ Blenderbot tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
+ comprise the space before the **.
+ """
+ if self._mask_token is None:
+ if self.verbose:
+ logger.error("Using mask_token, but it is not set yet.")
+ return None
+ return str(self._mask_token)
+
+ @mask_token.setter
+ def mask_token(self, value):
+ """
+ Overriding the default behavior of the mask token to have it eat the space before it.
+
+ This is needed to preserve backward compatibility with all the previously used models based on Roberta.
+ """
+ # Mask token behave like a normal word, i.e. include the space before it
+ # So we set lstrip to True
+ value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
+ self._mask_token = value
+
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast._batch_encode_plus with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
+ is_split_into_words = kwargs.get("is_split_into_words", False)
+ assert self.add_prefix_space or not is_split_into_words, (
+ f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
+ "to use it with pretokenized inputs."
+ )
+
+ return super()._batch_encode_plus(*args, **kwargs)
+
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast._encode_plus with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
+ is_split_into_words = kwargs.get("is_split_into_words", False)
+
+ assert self.add_prefix_space or not is_split_into_words, (
+ f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
+ "to use it with pretokenized inputs."
+ )
+
+ return super()._encode_plus(*args, **kwargs)
+
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.save_vocabulary with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
+
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.create_token_type_ids_from_sequences with Roberta->Blenderbot, RoBERTa->Blenderbot
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. Blenderbot does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None):
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A Blenderbot sequence has the following format:
+ - single sequence: ` X `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added
+ token_ids_1 (`List[int]`, *optional*):
+ Will be ignored
+ Returns:
+ `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ return token_ids_0 + [self.eos_token_id]
+
+ @property
+ # Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template
+ def default_chat_template(self):
+ """
+ A very simple chat template that just adds whitespace between messages.
+ """
+ logger.warning_once(
+ "\nNo chat template is defined for this tokenizer - using the default template "
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
+ )
+ return (
+ "{% for message in messages %}"
+ "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}"
+ "{{ message['content'] }}"
+ "{% if not loop.last %}{{ ' ' }}{% endif %}"
+ "{% endfor %}"
+ "{{ eos_token }}"
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..fb88e24171c369babcd650f77dd61f0a0e9c3497
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__init__.py
@@ -0,0 +1,83 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_clvp": [
+ "CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "ClvpConfig",
+ "ClvpDecoderConfig",
+ "ClvpEncoderConfig",
+ ],
+ "feature_extraction_clvp": ["ClvpFeatureExtractor"],
+ "processing_clvp": ["ClvpProcessor"],
+ "tokenization_clvp": ["ClvpTokenizer"],
+}
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_clvp"] = [
+ "CLVP_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "ClvpModelForConditionalGeneration",
+ "ClvpForCausalLM",
+ "ClvpModel",
+ "ClvpPreTrainedModel",
+ "ClvpEncoder",
+ "ClvpDecoder",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_clvp import (
+ CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ ClvpConfig,
+ ClvpDecoderConfig,
+ ClvpEncoderConfig,
+ )
+ from .feature_extraction_clvp import ClvpFeatureExtractor
+ from .processing_clvp import ClvpProcessor
+ from .tokenization_clvp import ClvpTokenizer
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_clvp import (
+ CLVP_PRETRAINED_MODEL_ARCHIVE_LIST,
+ ClvpDecoder,
+ ClvpEncoder,
+ ClvpForCausalLM,
+ ClvpModel,
+ ClvpModelForConditionalGeneration,
+ ClvpPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..223886515b46a64c83e93386990b0afd62337e65
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/configuration_clvp.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/configuration_clvp.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c10c939bcfb52299055622d716266b3a75789378
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/configuration_clvp.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/convert_clvp_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/convert_clvp_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e8ee834d398ae3d7ba0d0bd6ab7e9d681d8d398b
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/convert_clvp_to_hf.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/feature_extraction_clvp.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/feature_extraction_clvp.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8b2aa59b0ee125ff931de74237c40d9cf636730a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/feature_extraction_clvp.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/modeling_clvp.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/modeling_clvp.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..eec99d9ee676b3e7e9655cd5788fac31f60a2784
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/modeling_clvp.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/number_normalizer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/number_normalizer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..842234b97ea08efd55482b4b76ac1fa7ad120a95
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/number_normalizer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/processing_clvp.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/processing_clvp.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..47d3efb639e022efd5297da04f72bcf210754400
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/processing_clvp.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..00906e7d7f86b684be42a603a1e770f881bd6f25
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.py
@@ -0,0 +1,456 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" CLVP model configuration"""
+
+
+import os
+from typing import TYPE_CHECKING, Union
+
+
+if TYPE_CHECKING:
+ pass
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class ClvpEncoderConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ClvpEncoder`]. It is used to instantiate a CLVP
+ text or CLVP speech encoder according to the specified arguments. Instantiating a configuration with the defaults
+ will yield a similar configuration to that of the encoder of the CLVP
+ [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 256):
+ Vocabulary size of the CLVP Encoder model.
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ intermediate_size (`int`, *optional*, defaults to 1536):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ projection_dim (`int`, *optional*, defaults to 768):
+ Dimensionality of the projection vector.
+ num_hidden_layers (`int`, *optional*, defaults to 20):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the layer normalization layers.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the feed-forward layers in [`ClvpEncoderMLP`].
+ use_rotary_embedding (`bool`, *optional*, defaults to `True`):
+ Whether to use rotary_embedding or not.
+ use_attention_bias (`bool`, *optional*, defaults to `False`):
+ Whether to use bias in Query, Key and Value layers during self attention.
+ summary_type (`str`, *optional*, defaults to `"mean"`):
+ What strategy to use to get pooler_output from the last_hidden_state. `"last"`, `"first"`, `"mean"` and
+ `"cls_index"` are supported.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
+ testing).
+ bos_token_id (`int`, *optional*, defaults to 255):
+ Beginning of sequence token id.
+ eos_token_id (`int`, *optional*, defaults to 0):
+ End of sequence token id.
+
+ Example:
+
+ ```python
+ >>> from transformers import ClvpEncoderConfig, ClvpEncoder
+
+ >>> # Initializing a ClvpEncoderConfig with susnato/clvp_dev style configuration
+ >>> encoder_configuration = ClvpEncoderConfig()
+
+ >>> # Initializing a ClvpEncoder (with random weights) from the susnato/clvp_dev style configuration
+ >>> model = ClvpEncoder(encoder_configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "clvp_encoder"
+
+ def __init__(
+ self,
+ vocab_size=256,
+ hidden_size=768,
+ intermediate_size=1536,
+ projection_dim=768,
+ num_hidden_layers=20,
+ num_attention_heads=12,
+ hidden_act="gelu",
+ layer_norm_eps=1e-5,
+ attention_dropout=0.1,
+ dropout=0.1,
+ use_rotary_embedding=True,
+ use_attention_bias=False,
+ summary_type="mean",
+ initializer_factor=1.0,
+ bos_token_id=255,
+ eos_token_id=0,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.projection_dim = projection_dim
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.layer_norm_eps = layer_norm_eps
+ self.hidden_act = hidden_act
+ self.initializer_factor = initializer_factor
+ self.attention_dropout = attention_dropout
+ self.dropout = dropout
+ self.use_rotary_embedding = use_rotary_embedding
+ self.use_attention_bias = use_attention_bias
+ self.summary_type = summary_type
+ self.bos_token_id = bos_token_id
+ self.eos_token_id = eos_token_id
+
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ @classmethod
+ def from_pretrained(
+ cls, pretrained_model_name_or_path: Union[str, os.PathLike], config_type: str = "text_config", **kwargs
+ ) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # make sure to have the config_type be either "text_config" or "speech_config"
+ # this is to make sure that we can load only text or speech configs from the nested ClvpConfig.
+ if config_type not in ["text_config", "speech_config"]:
+ raise ValueError(
+ f"We can only load either 'text_config' or 'speech_config' but you are trying to load" f"{config_type}"
+ )
+
+ # get the text config dict if we are loading from ClvpConfig
+ if config_dict.get("model_type") == "clvp":
+ config_dict = config_dict[config_type]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class ClvpDecoderConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ClvpDecoder`]. It is used to instantiate a CLVP
+ Decoder Model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the Decoder part of the CLVP
+ [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ The architecture is similar to GPT2.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 8194):
+ Vocabulary size of the model.
+ max_position_embeddings (`int`, *optional*, defaults to 608):
+ The maximum sequence length of mel tokens that this model might ever be used with. Similar to `n_positions`
+ in `GPT2Config`.
+ max_text_tokens (`int`, *optional*, defaults to 404):
+ The maximum sequence length of text tokens that this model might ever be used with. Similar to
+ `n_positions` in `GPT2Config`.
+ hidden_size (`int`, *optional*, defaults to 1024):
+ Dimensionality of the embeddings and hidden states.
+ num_hidden_layers (`int`, *optional*, defaults to 30):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ n_inner (`int`, *optional*):
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times `hidden_size`.
+ num_mel_attn_blocks (`int`, *optional*, defaults to 6):
+ Denotes the number of self attention layers in [`ClvpConditioningEncoder`].
+ activation_function (`str`, *optional*, defaults to `"gelu_new"`):
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ embd_pdrop (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the embeddings.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention.
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
+ The epsilon to use in the layer normalization layers.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ summary_type (`string`, *optional*, defaults to `"cls_index"`):
+ Argument used when doing sequence summary.
+
+ Has to be one of the following options:
+
+ - `"last"`: Take the last token hidden state (like XLNet).
+ - `"first"`: Take the first token hidden state (like BERT).
+ - `"mean"`: Take the mean of all tokens hidden states.
+ - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
+ - `"attn"`: Not implemented now, use multi-head attention.
+ summary_use_proj (`bool`, *optional*, defaults to `True`):
+ Whether or not to add a projection after the vector extraction.
+ summary_activation (`str`, *optional*):
+ Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
+ summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
+ Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
+ summary_first_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio to be used after the projection and activation.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ bos_token_id (`int`, *optional*, defaults to 8192):
+ Beginning of sequence token id, used at the start of the generation.
+ eos_token_id (`int`, *optional*, defaults to 8193):
+ End of sequence token id, used in the method
+ [`ClvpModelForConditionalGeneration.fix_speech_decoder_output()`] to correct decoder outputs.
+ feature_size (`int`, *optional*, defaults to 80):
+ The feature dimension of the extracted mel features. This value is used in [`ClvpConditioningEncoder`].
+ use_attention_bias (`bool`, *optional*, defaults to `True`):
+ Whether to use bias in Query, Key and Value layers during self attention.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
+ testing).
+ decoder_fixing_codes (`list`, *optional*, defaults to `[83, 45, 45, 248]`):
+ These values are used in the method `fix_speech_decoder_output` to fix decoder generated outputs.
+
+ Example:
+
+ ```python
+ >>> from transformers import ClvpDecoderConfig, ClvpDecoder
+
+ >>> # Initializing a ClvpDecoderConfig with susnato/clvp_dev style configuration
+ >>> decoder_configuration = ClvpDecoderConfig()
+
+ >>> # Initializing a ClvpDecoder (with random weights) from the susnato/clvp_dev style configuration
+ >>> model = ClvpDecoder(decoder_configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "clvp_decoder"
+
+ def __init__(
+ self,
+ vocab_size=8194,
+ max_position_embeddings=608,
+ max_text_tokens=404,
+ hidden_size=1024,
+ num_hidden_layers=30,
+ num_attention_heads=16,
+ n_inner=None,
+ num_mel_attn_blocks=6,
+ activation_function="gelu_new",
+ resid_pdrop=0.1,
+ embd_pdrop=0.1,
+ attention_dropout=0.1,
+ layer_norm_epsilon=1e-5,
+ initializer_range=0.02,
+ summary_type="cls_index",
+ summary_use_proj=True,
+ summary_activation=None,
+ summary_proj_to_labels=True,
+ summary_first_dropout=0.1,
+ use_cache=True,
+ bos_token_id=8192,
+ eos_token_id=8193,
+ feature_size=80,
+ use_attention_bias=True,
+ initializer_factor=1.0,
+ decoder_fixing_codes=[83, 45, 45, 248],
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.max_text_tokens = max_text_tokens
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.n_inner = n_inner
+ self.num_mel_attn_blocks = num_mel_attn_blocks
+ self.activation_function = activation_function
+ self.resid_pdrop = resid_pdrop
+ self.embd_pdrop = embd_pdrop
+ self.attention_dropout = attention_dropout
+ self.layer_norm_epsilon = layer_norm_epsilon
+ self.initializer_range = initializer_range
+ self.summary_type = summary_type
+ self.summary_use_proj = summary_use_proj
+ self.summary_activation = summary_activation
+ self.summary_first_dropout = summary_first_dropout
+ self.summary_proj_to_labels = summary_proj_to_labels
+ self.use_cache = use_cache
+ self.feature_size = feature_size
+ self.use_attention_bias = use_attention_bias
+ self.initializer_factor = initializer_factor
+ self.decoder_fixing_codes = decoder_fixing_codes
+
+ self.bos_token_id = bos_token_id
+ self.eos_token_id = eos_token_id
+
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the speech config dict if we are loading from ClvpConfig
+ if config_dict.get("model_type") == "clvp":
+ config_dict = config_dict["decoder_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class ClvpConfig(PretrainedConfig):
+ r"""
+ [`ClvpConfig`] is the configuration class to store the configuration of a [`ClvpModelForConditionalGeneration`]. It
+ is used to instantiate a CLVP model according to the specified arguments, defining the text model, speech model and
+ decoder model configs. Instantiating a configuration with the defaults will yield a similar configuration to that
+ of the CLVP [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ text_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize the CLVP text encoder.
+ speech_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize CLVP speech encoder.
+ decoder_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`ClvpDecoderConfig`].
+ projection_dim (`int`, *optional*, defaults to 768):
+ Dimentionality of text and speech projection layers.
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
+ The inital value of the *logit_scale* paramter. Default is used as per the original CLVP implementation.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
+ testing).
+ kwargs (*optional*):
+ Dictionary of keyword arguments.
+
+ Example:
+
+ ```python
+ >>> from transformers import ClvpConfig, ClvpModelForConditionalGeneration
+
+ >>> # Initializing a ClvpConfig with susnato/clvp_dev style configuration
+ >>> configuration = ClvpConfig()
+
+ >>> # Initializing a ClvpModelForConditionalGeneration (with random weights) from the susnato/clvp_dev style configuration
+ >>> model = ClvpModelForConditionalGeneration(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+
+ >>> # We can also initialize a CLVPConfig from a CLVPTextConfig, CLVPSpeechConfig and a CLVPAutoRegressiveConfig
+ >>> from transformers import ClvpEncoderConfig, ClvpDecoderConfig
+
+ >>> # Initializing a CLVP text, CLVP speech and CLVP decoder configuration
+ >>> config_text = ClvpEncoderConfig()
+ >>> config_speech = ClvpEncoderConfig()
+ >>> decoder_config = ClvpDecoderConfig()
+
+ >>> config = ClvpConfig.from_sub_model_configs(config_text, config_speech, decoder_config)
+ ```"""
+
+ model_type = "clvp"
+ is_composition = True
+
+ def __init__(
+ self,
+ text_config=None,
+ speech_config=None,
+ decoder_config=None,
+ projection_dim=768,
+ logit_scale_init_value=2.6592,
+ initializer_factor=1.0,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ if text_config is None:
+ text_config = {}
+ logger.info("`text_config` is `None`. Initializing the `ClvpEncoderConfig` with default values.")
+
+ if speech_config is None:
+ speech_config = {}
+ logger.info("`speech_config` is `None`. initializing the `ClvpEncoderConfig` with default values.")
+
+ if decoder_config is None:
+ decoder_config = {}
+ logger.info("`decoder_config` is `None`. initializing the `ClvpDecoderConfig` with default values.")
+
+ self.text_config = ClvpEncoderConfig(**text_config)
+ self.speech_config = ClvpEncoderConfig(**speech_config)
+ self.decoder_config = ClvpDecoderConfig(**decoder_config)
+
+ self.projection_dim = projection_dim
+ self.logit_scale_init_value = logit_scale_init_value
+ self.initializer_factor = initializer_factor
+
+ @classmethod
+ def from_sub_model_configs(
+ cls,
+ text_config: ClvpEncoderConfig,
+ speech_config: ClvpEncoderConfig,
+ decoder_config: ClvpDecoderConfig,
+ **kwargs,
+ ):
+ r"""
+ Instantiate a [`ClvpConfig`] (or a derived class) from CLVP text model configuration, CLVP speech model
+ configuration and CLVP decoder model configuration.
+
+ Args:
+ text_config (`ClvpEncoderConfig`):
+ Text model configuration of type [`ClvpEncoderConfig`].
+ speech_config (`ClvpEncoderConfig`):
+ Speech model configuration of type [`ClvpEncoderConfig`].
+ decoder_config (`ClvpDecoderConfig`):
+ Decoder model configuration of type [`ClvpDecoderConfig`].
+
+ Returns:
+ [`ClvpConfig`]: An instance of a configuration object
+ """
+
+ return cls(
+ text_config=text_config.to_dict(),
+ speech_config=speech_config.to_dict(),
+ decoder_config=decoder_config.to_dict(),
+ **kwargs,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/convert_clvp_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/convert_clvp_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ae6fd4254978f28095ae312c98b1ef6f21fa315
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/convert_clvp_to_hf.py
@@ -0,0 +1,234 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Weights conversion script for CLVP
+"""
+
+import argparse
+import os
+
+import torch
+from huggingface_hub import hf_hub_download
+
+from transformers import ClvpConfig, ClvpModelForConditionalGeneration
+
+
+_MODELS = {
+ "clvp": "https://huggingface.co/jbetker/tortoise-tts-v2/blob/main/.models/clvp2.pth",
+ "decoder": "https://huggingface.co/jbetker/tortoise-tts-v2/blob/main/.models/autoregressive.pth",
+}
+
+dim = 1024
+sub_dim = dim // 16
+
+CLVP_ENCODERS_MAPPING = {
+ "text_transformer.transformer.attn_layers": "text_encoder_model",
+ "speech_transformer.transformer.attn_layers": "speech_encoder_model",
+ "text_transformer.transformer.norm": "text_encoder_model.final_layer_norm",
+ "speech_transformer.transformer.norm": "speech_encoder_model.final_layer_norm",
+ "to_text_latent": "text_encoder_model.projection",
+ "to_speech_latent": "speech_encoder_model.projection",
+ "text_emb": "text_encoder_model.token_embedding",
+ "speech_emb": "speech_encoder_model.token_embedding",
+ "1.wrap.net.0": "mlp.fc1",
+ "1.wrap.net.3": "mlp.fc2",
+ "1.wrap": "self_attn",
+ "to_out": "out_proj",
+ "to_q": "q_proj",
+ "to_k": "k_proj",
+ "to_v": "v_proj",
+ "temperature": "logit_scale",
+}
+
+CLVP_DECODER_MAPPING = {
+ "conditioning_encoder.init": "conditioning_encoder.mel_conv",
+ "conditioning_encoder.attn": "conditioning_encoder.mel_attn_blocks",
+ "mel_attn_blocks": "group_norms",
+ ".norm.weight": ".weight",
+ ".norm.bias": ".bias",
+ "text_embedding": "conditioning_encoder.text_token_embedding",
+ "text_pos_embedding.emb": "conditioning_encoder.text_position_embedding",
+ "final_norm": "speech_decoder_model.final_norm",
+ "mel_head": "speech_decoder_model.lm_head",
+ "gpt.ln_f": "speech_decoder_model.model.decoder.layer_norm",
+ "mel_embedding": "speech_decoder_model.model.decoder.input_embeds_layer",
+ "mel_pos_embedding.emb": "speech_decoder_model.model.decoder.position_embeds_layer",
+ "gpt.h": "speech_decoder_model.model.decoder.layers",
+ "ln_1": "input_layernorm",
+ "ln_2": "post_attention_layernorm",
+}
+
+
+def update_index(present_index):
+ if present_index % 2 == 0:
+ return int(present_index / 2)
+ else:
+ return int((present_index - 1) / 2)
+
+
+def convert_encoder_weights(original_weights):
+ converted_weights = {}
+ original_weights_keys = sorted(original_weights.keys())
+ for original_key in original_weights_keys:
+ updated_key = original_key
+ # for input_rmsnorm.weight and post_attention_rmsnorm.weight
+ if "0.0.g" in updated_key:
+ present_index = updated_key.split(".")[4]
+ if int(present_index) % 2 == 0:
+ updated_key = updated_key.replace("0.0.g", "input_rmsnorm.weight")
+ else:
+ updated_key = updated_key.replace("0.0.g", "post_attention_rmsnorm.weight")
+
+ if "transformer.attn_layers.layers" in updated_key:
+ present_index = updated_key.split(".")[4]
+ updated_index = update_index(int(present_index))
+ updated_key = updated_key.replace(
+ f"transformer.attn_layers.layers.{present_index}", f"transformer.attn_layers.layers.{updated_index}"
+ )
+
+ for k, v in CLVP_ENCODERS_MAPPING.items():
+ if k in updated_key:
+ updated_key = updated_key.replace(k, v)
+
+ converted_weights[updated_key] = original_weights.pop(original_key)
+
+ return converted_weights
+
+
+def convert_decoder_weights(original_weights):
+ converted_weights = {}
+ original_weights_keys = sorted(original_weights.keys())
+ for original_key in original_weights_keys:
+ updated_key = original_key
+ if len(updated_key.split(".")) > 3:
+ index, attr = updated_key.split(".")[2], updated_key.split(".")[-1]
+
+ # for decoder attention
+ if "attn.c_attn" in updated_key:
+ if attr == "weight":
+ slice1, slice2, slice3 = original_weights[updated_key].squeeze(-1).T.split(split_size=dim, dim=0)
+ else:
+ slice1, slice2, slice3 = original_weights[updated_key].split(split_size=dim, dim=0)
+ converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.q_proj.{attr}"] = slice1
+ converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.k_proj.{attr}"] = slice2
+ converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.v_proj.{attr}"] = slice3
+ continue
+
+ if "attn.c_proj" in updated_key:
+ converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.out_proj.{attr}"] = (
+ original_weights[updated_key].squeeze(-1).T
+ )
+ continue
+
+ if "attn.bias" in updated_key or "attn.masked_bias" in updated_key or "text_head" in updated_key:
+ original_weights.pop(updated_key)
+ continue
+
+ # conditional encoder attention
+ if "qkv" in updated_key:
+ if attr == "weight":
+ slice1, slice2, slice3 = original_weights[updated_key].squeeze(-1).split(split_size=dim, dim=0)
+ else:
+ slice1, slice2, slice3 = original_weights[updated_key].split(split_size=dim, dim=0)
+
+ indices = torch.arange(dim)
+ index1, index2, index3 = (
+ indices.unfold(0, sub_dim, sub_dim * 3).flatten(),
+ indices[sub_dim:].unfold(0, sub_dim, sub_dim * 3).flatten(),
+ indices[2 * sub_dim :].unfold(0, sub_dim, sub_dim * 3).flatten(),
+ )
+
+ converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.q_proj.{attr}"] = torch.concatenate(
+ [slice1[index1], slice2[index3], slice3[index2]],
+ axis=0,
+ )
+ converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.k_proj.{attr}"] = torch.concatenate(
+ [slice1[index2], slice2[index1], slice3[index3]],
+ axis=0,
+ )
+ converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.v_proj.{attr}"] = torch.concatenate(
+ [slice1[index3], slice2[index2], slice3[index1]],
+ axis=0,
+ )
+ continue
+
+ if "proj_out" in updated_key:
+ converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.out_proj.{attr}"] = original_weights[
+ updated_key
+ ].squeeze(-1)
+ continue
+
+ for k, v in CLVP_DECODER_MAPPING.items():
+ if k in updated_key:
+ updated_key = updated_key.replace(k, v)
+
+ converted_weights[updated_key] = original_weights.pop(original_key)
+
+ return converted_weights
+
+
+def _download(url: str, root: str):
+ repo_id = f"{url.split('/')[3]}/{url.split('/')[4]}"
+ filename = f"{url.split('/')[-2]}/{url.split('/')[-1]}"
+ hf_hub_download(
+ repo_id=repo_id,
+ filename=filename,
+ force_filename=root,
+ local_dir_use_symlinks=False,
+ )
+
+
+def convert_clvp_weights(checkpoint_path, pytorch_dump_folder_path):
+ converted_checkpoint = {}
+
+ for each_model_name, each_model_url in _MODELS.items():
+ each_model_path = os.path.join(checkpoint_path, each_model_url.split("/")[-1])
+ if not os.path.exists(each_model_path):
+ print(f"\n{each_model_name} was not found! Downloading it to {each_model_path}")
+ _download(url=each_model_url, root=each_model_path)
+
+ if each_model_name == "clvp":
+ clvp_checkpoint = torch.load(each_model_path, map_location="cpu")
+ else:
+ decoder_checkpoint = torch.load(each_model_path, map_location="cpu")
+
+ # Converting the weights
+ converted_checkpoint.update(**convert_encoder_weights(clvp_checkpoint))
+ converted_checkpoint.update(**convert_decoder_weights(decoder_checkpoint))
+
+ config = ClvpConfig.from_pretrained("susnato/clvp_dev")
+ model = ClvpModelForConditionalGeneration(config)
+
+ model.load_state_dict(converted_checkpoint, strict=True)
+ model.save_pretrained(pytorch_dump_folder_path)
+ print(f"Model saved at {pytorch_dump_folder_path}!")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # # Required parameters
+ parser.add_argument(
+ "--checkpoint_path", type=str, help="Path to the folder of downloaded checkpoints. (Please enter full path)"
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path",
+ default=None,
+ type=str,
+ help="Path to the output PyTorch model. (Please enter full path)",
+ )
+ args = parser.parse_args()
+
+ convert_clvp_weights(args.checkpoint_path, args.pytorch_dump_folder_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/feature_extraction_clvp.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/feature_extraction_clvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..69741a03f575b8b5900be4b83e9a59e33536789e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/feature_extraction_clvp.py
@@ -0,0 +1,238 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Feature extractor class for CLVP
+"""
+
+from typing import List, Optional, Union
+
+import numpy as np
+
+from ...audio_utils import mel_filter_bank, spectrogram, window_function
+from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
+from ...feature_extraction_utils import BatchFeature
+from ...utils import TensorType, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class ClvpFeatureExtractor(SequenceFeatureExtractor):
+ r"""
+ Constructs a CLVP feature extractor.
+
+ This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
+ most of the main methods. Users should refer to this superclass for more information regarding those methods.
+
+ This class extracts log-mel-spectrogram features from raw speech using a custom numpy implementation of the `Short
+ Time Fourier Transform` which should match pytorch's `torch.stft` equivalent.
+
+ Args:
+ feature_size (`int`, *optional*, defaults to 80):
+ The feature dimension of the extracted features.
+ sampling_rate (`int`, *optional*, defaults to 22050):
+ The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
+ default_audio_length (`int`, *optional*, defaults to 6):
+ The default length of raw audio in seconds. If `max_length` is not set during `__call__` then it will
+ automatically be set to default_audio_length * `self.sampling_rate`.
+ hop_length (`int`, *optional*, defaults to 256):
+ Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
+ chunk_length (`int`, *optional*, defaults to 30):
+ The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio
+ sequences.
+ n_fft (`int`, *optional*, defaults to 1024):
+ Size of the Fourier transform.
+ padding_value (`float`, *optional*, defaults to 0.0):
+ Padding value used to pad the audio. Should correspond to silences.
+ mel_norms (`list` of length `feature_size`, *optional*):
+ If `mel_norms` is provided then it will be used to normalize the log-mel spectrograms along each
+ mel-filter.
+ return_attention_mask (`bool`, *optional*, defaults to `False`):
+ Whether to return the attention mask. If left to the default, it will return the attention mask.
+
+ [What are attention masks?](../glossary#attention-mask)
+ """
+
+ model_input_names = ["input_features", "attention_mask"]
+
+ def __init__(
+ self,
+ feature_size=80,
+ sampling_rate=22050,
+ default_audio_length=6,
+ hop_length=256,
+ chunk_length=30,
+ n_fft=1024,
+ padding_value=0.0,
+ mel_norms=None,
+ return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
+ **kwargs,
+ ):
+ super().__init__(
+ feature_size=feature_size,
+ sampling_rate=sampling_rate,
+ padding_value=padding_value,
+ return_attention_mask=return_attention_mask,
+ **kwargs,
+ )
+ self.n_fft = n_fft
+ self.hop_length = hop_length
+ self.chunk_length = chunk_length
+ self.n_samples = chunk_length * sampling_rate
+ self.nb_max_frames = self.n_samples // hop_length
+ self.sampling_rate = sampling_rate
+ self.default_audio_length = default_audio_length
+ self.mel_norms = mel_norms
+ self.mel_filters = mel_filter_bank(
+ num_frequency_bins=1 + (n_fft // 2),
+ num_mel_filters=feature_size,
+ min_frequency=0.0,
+ max_frequency=8000.0,
+ sampling_rate=sampling_rate,
+ norm="slaney",
+ mel_scale="htk",
+ )
+
+ def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
+ """
+ This method first computes the log-mel spectrogram of the provided audio then applies normalization along the
+ each mel-filterbank, if `mel_norms` is provided.
+ """
+ log_spec = spectrogram(
+ waveform,
+ window_function(self.n_fft, "hann"),
+ frame_length=self.n_fft,
+ hop_length=self.hop_length,
+ power=2.0,
+ mel_filters=self.mel_filters,
+ log_mel=None,
+ )
+
+ log_spec = np.log(np.clip(log_spec, a_min=1e-5, a_max=None))
+
+ if self.mel_norms is not None:
+ log_spec = log_spec / np.array(self.mel_norms)[:, None]
+
+ return log_spec
+
+ def __call__(
+ self,
+ raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
+ sampling_rate: Optional[int] = None,
+ truncation: bool = True,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_attention_mask: Optional[bool] = True,
+ padding: Optional[str] = "max_length",
+ max_length: Optional[int] = None,
+ **kwargs,
+ ) -> BatchFeature:
+ """
+ `ClvpFeatureExtractor` is used to extract various voice specific properties such as the pitch and tone of the
+ voice, speaking speed, and even speaking defects like a lisp or stuttering from a sample voice or `raw_speech`.
+
+ First the voice is padded or truncated in a way such that it becomes a waveform of `self.default_audio_length`
+ seconds long and then the log-mel spectrogram is extracted from it.
+
+ Args:
+ raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
+ The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
+ values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
+ stereo, i.e. single float per timestep.
+ sampling_rate (`int`, *optional*):
+ The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
+ `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
+ pipeline.
+ truncation (`bool`, *optional*, default to `True`):
+ Activates truncation to cut input sequences longer than *max_length* to *max_length*.
+ pad_to_multiple_of (`int`, *optional*):
+ If set will pad the sequence to a multiple of the provided value.
+
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
+ return_attention_mask (`bool`, *optional*, defaults to `True`):
+ Whether to return the attention mask. If left to the default, it will return the attention mask.
+
+ [What are attention masks?](../glossary#attention-mask)
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+ padding_value (`float`, defaults to 0.0):
+ The value that is used to fill the padding values / vectors.
+ max_length (`int`, *optional*):
+ The maximum input length of the inputs.
+ """
+
+ if sampling_rate is not None:
+ if sampling_rate != self.sampling_rate:
+ raise ValueError(
+ f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
+ f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
+ f" was sampled with {self.sampling_rate} and not {sampling_rate}."
+ )
+ else:
+ logger.warning(
+ "It is strongly recommended to pass the `sampling_rate` argument to this function. "
+ "Failing to do so can result in silent errors that might be hard to debug."
+ )
+
+ is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
+ if is_batched_numpy and len(raw_speech.shape) > 2:
+ raise ValueError(f"Only mono-channel audio is supported for input to {self}")
+ is_batched = is_batched_numpy or (
+ isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
+ )
+
+ if is_batched:
+ raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
+ elif not is_batched and not isinstance(raw_speech, np.ndarray):
+ raw_speech = np.asarray(raw_speech, dtype=np.float32)
+ elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
+ raw_speech = raw_speech.astype(np.float32)
+
+ # always return batch
+ if not is_batched:
+ raw_speech = [np.asarray([raw_speech]).T]
+
+ batched_speech = BatchFeature({"input_features": raw_speech})
+
+ max_length = self.default_audio_length * self.sampling_rate if max_length is None else max_length
+
+ padded_inputs = self.pad(
+ batched_speech,
+ padding=padding,
+ max_length=max_length,
+ truncation=truncation,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ # make sure list is in array format
+ input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
+
+ input_features = [
+ self._np_extract_fbank_features(waveform).astype(np.float32) for waveform in input_features[0]
+ ]
+
+ if isinstance(input_features[0], List):
+ padded_inputs["input_features"] = [np.asarray(feature) for feature in input_features]
+ else:
+ padded_inputs["input_features"] = input_features
+
+ return padded_inputs.convert_to_tensors(return_tensors)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/modeling_clvp.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/modeling_clvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..654989dcbd603967254d08cdad5678e622c976e1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/modeling_clvp.py
@@ -0,0 +1,2022 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+""" PyTorch CLVP model."""
+
+
+import copy
+import math
+from dataclasses import dataclass
+from typing import Dict, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...generation import GenerationConfig
+from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPooling,
+ CausalLMOutputWithCrossAttentions,
+)
+from ...modeling_utils import PreTrainedModel, SequenceSummary
+from ...pytorch_utils import Conv1D
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_clvp import (
+ ClvpConfig,
+ ClvpDecoderConfig,
+ ClvpEncoderConfig,
+)
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "susnato/clvp_dev"
+
+
+from ..deprecated._archive_maps import CLVP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# Copied from transformers.models.clip.modeling_clip.contrastive_loss
+def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
+
+
+# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clvp, image_loss->speech_loss
+def clvp_loss(similarity: torch.Tensor) -> torch.Tensor:
+ caption_loss = contrastive_loss(similarity)
+ speech_loss = contrastive_loss(similarity.t())
+ return (caption_loss + speech_loss) / 2.0
+
+
+# Copied from transformers.models.llama.modeling_llama.rotate_half
+def rotate_half(x):
+ """Rotates half the hidden dims of the input."""
+ x1 = x[..., : x.shape[-1] // 2]
+ x2 = x[..., x.shape[-1] // 2 :]
+ return torch.cat((-x2, x1), dim=-1)
+
+
+def apply_rotary_pos_emb(q, k, v, cos, sin, position_ids, unsqueeze_dim=1):
+ """Applies Rotary Position Embedding to the query and key tensors.
+
+ Args:
+ q (`torch.Tensor`): The query tensor.
+ k (`torch.Tensor`): The key tensor.
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
+ position_ids (`torch.Tensor`):
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
+ used to pass offsetted position ids when working with a KV-cache.
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
+ Returns:
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
+ """
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
+ q_embed = (q * cos) + (rotate_half(q) * sin)
+ k_embed = (k * cos) + (rotate_half(k) * sin)
+ v_embed = (v * cos) + (rotate_half(v) * sin)
+ return q_embed, k_embed, v_embed
+
+
+def _pad_extra_bos_eos_tokens(
+ input_ids,
+ attention_mask=None,
+ pad_token_id=0,
+ bos_token_id=255,
+ eos_token_id=0,
+ add_bos_token=True,
+ add_eos_token=True,
+):
+ """
+ This method adds extra bos and eos tokens to input_ids and accordingly modifies the attention_mask which is used in
+ `ClvpConditioningEncoder` and the generation loop of the `ClvpModelForConditionalGeneration`.
+ """
+
+ # add the bos token at the beginning
+ if add_bos_token:
+ input_ids = torch.nn.functional.pad(input_ids, (1, 0), value=bos_token_id)
+ attention_mask = (
+ torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask
+ )
+
+ modified_input_ids = input_ids
+ if add_eos_token:
+ modified_input_ids = torch.zeros(
+ (input_ids.shape[0], input_ids.shape[1] + 1), dtype=input_ids.dtype, device=input_ids.device
+ )
+ for i, each_input_id in enumerate(input_ids):
+ # locate where the valid tokens end and then add the eos token
+ if torch.isin(each_input_id, pad_token_id).sum():
+ pos = torch.where(each_input_id == pad_token_id)[0].min()
+ modified_input_ids[i] = torch.concatenate(
+ [each_input_id[:pos], torch.tensor([eos_token_id], device=input_ids.device), each_input_id[pos:]]
+ )
+ else:
+ # if there are no pad tokens present, then add eos to the end
+ modified_input_ids[i] = torch.nn.functional.pad(each_input_id, (0, 1), value=eos_token_id)
+ attention_mask = (
+ torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask
+ )
+
+ return modified_input_ids, attention_mask
+
+
+@dataclass
+class ClvpEncoderOutput(ModelOutput):
+ """
+ Base class for CLVP encoder's outputs that contains a pooling of the last hidden states as well as a projection
+ output (a linear layer on top of the pooled output).
+
+ Args:
+ embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when model is initialized with `with_projection=True`):
+ The embeddings obtained by applying the projection layer to the pooler_output.
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ The hidden state of the last layer of the model.
+ pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
+ Pooled output of the `last_hidden_state`.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
+ the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ embeds: Optional[torch.FloatTensor] = None
+ last_hidden_state: torch.FloatTensor = None
+ pooler_output: Optional[torch.FloatTensor] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class ClvpOutput(ModelOutput):
+ """
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
+ Contrastive loss for speech-text similarity.
+ speech_ids (`torch.LongTensor`, *optional*):
+ speech_ids (or speech candidates) generated by the `ClvpForCausalLM` model.
+ logits_per_speech (`torch.FloatTensor` of shape `(speech_batch_size, text_batch_size)`):
+ The scaled dot product scores between `speech_embeds` and `text_embeds`. This represents the speech-text
+ similarity scores.
+ logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, speech_batch_size)`):
+ The scaled dot product scores between `text_embeds` and `speech_embeds`. This represents the text-speech
+ similarity scores.
+ text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
+ The text embeddings obtained by applying the projection layer to the pooled output of the text encoder
+ model.
+ speech_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
+ The speech embeddings obtained by applying the projection layer to the pooled output of the speech encoder
+ model.
+ text_model_output (`BaseModelOutputWithPooling`):
+ The pooled output of the `last_hidden_state` of the text encoder Model.
+ speech_model_output (`BaseModelOutputWithPooling`):
+ The pooled output of the `last_hidden_state` of the speech encoder Model.
+ decoder_hidden_states (`torch.FloatTensor`, *optional*):
+ The hidden states of the decoder model.
+ text_encoder_hidden_states (`torch.FloatTensor`, *optional*):
+ The hidden states of the text encoder model.
+ speech_encoder_hidden_states (`torch.FloatTensor`, *optional*):
+ The hidden states of the speech encoder model.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ speech_ids: Optional[torch.LongTensor] = None
+ logits_per_speech: torch.FloatTensor = None
+ logits_per_text: torch.FloatTensor = None
+ text_embeds: torch.FloatTensor = None
+ speech_embeds: torch.FloatTensor = None
+ text_model_output: BaseModelOutputWithPooling = None
+ speech_model_output: BaseModelOutputWithPooling = None
+ decoder_hidden_states: torch.FloatTensor = None
+ text_encoder_hidden_states: torch.FloatTensor = None
+ speech_encoder_hidden_states: torch.FloatTensor = None
+
+
+# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Clvp
+class ClvpRMSNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ ClvpRMSNorm is equivalent to T5LayerNorm
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ input_dtype = hidden_states.dtype
+ hidden_states = hidden_states.to(torch.float32)
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+ return self.weight * hidden_states.to(input_dtype)
+
+
+class ClvpRotaryPositionalEmbedding(nn.Module):
+ """
+ Rotary Position Embedding Class for CLVP. It was proposed in the paper 'ROFORMER: ENHANCED TRANSFORMER WITH ROTARY
+ POSITION EMBEDDING', Please see https://arxiv.org/pdf/2104.09864v1.pdf .
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ dim = max(config.projection_dim // (config.num_attention_heads * 2), 32)
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
+
+ self.register_buffer("inv_freq", inv_freq)
+ self.cached_sequence_length = None
+ self.cached_rotary_positional_embedding = None
+
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
+ sequence_length = hidden_states.shape[1]
+
+ if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
+ return self.cached_rotary_positional_embedding
+
+ self.cached_sequence_length = sequence_length
+ time_stamps = torch.arange(sequence_length, device=hidden_states.device).type_as(self.inv_freq)
+ freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
+ embeddings = torch.cat((freqs, freqs), dim=-1)
+
+ self.cached_rotary_positional_embedding = embeddings.unsqueeze(0)
+ return self.cached_rotary_positional_embedding
+
+
+class ClvpSelfAttention(nn.Module):
+ """
+ Multi-headed attention to combine Absolute and Rotary Positional Embeddings into a single Attention module.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {self.num_heads})."
+ )
+ self.scale = self.head_dim**-0.5
+ self.dropout = config.attention_dropout
+
+ if hasattr(config, "max_position_embeddings"):
+ max_positions = config.max_position_embeddings
+ bias = torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool))
+ bias = bias.view(1, 1, max_positions, max_positions)
+ self.register_buffer("bias", bias, persistent=False)
+
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
+
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention._shape
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ rotary_pos_emb: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ use_cache: Optional[bool] = False,
+ head_mask: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
+ # Raise error when position_ids is None but rotary_pos_emb is provided, because we need that when applying
+ # rotary_pos_emb to query and key states.
+ if rotary_pos_emb is not None and position_ids is None:
+ raise ValueError("`position_ids` must be provided when `rotary_pos_emb` is not None.")
+
+ bsz, _, embed_dim = hidden_states.size()
+
+ # get query proj
+ query_states = self._shape(self.q_proj(hidden_states), -1, bsz) * self.scale
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if past_key_value is not None:
+ past_key, past_value = past_key_value
+ key_states = torch.cat((past_key, key_states), dim=-2)
+ value_states = torch.cat((past_value, value_states), dim=-2)
+
+ if use_cache is True:
+ present = (key_states, value_states)
+ else:
+ present = None
+
+ if rotary_pos_emb is not None:
+ rotary_emb_dim = rotary_pos_emb.shape[-1]
+
+ # Partial rotary embedding
+ query_rot, query_pass = (
+ query_states[..., :rotary_emb_dim],
+ query_states[..., rotary_emb_dim:],
+ )
+ key_rot, key_pass = (
+ key_states[..., :rotary_emb_dim],
+ key_states[..., rotary_emb_dim:],
+ )
+ value_rot, value_pass = (
+ value_states[..., :rotary_emb_dim],
+ value_states[..., rotary_emb_dim:],
+ )
+
+ cos, sin = rotary_pos_emb.cos().squeeze(0), rotary_pos_emb.sin().squeeze(0)
+ query_rot, key_rot, value_rot = apply_rotary_pos_emb(query_rot, key_rot, value_rot, cos, sin, position_ids)
+
+ # [batch_size, num_heads, seq_length, head_dim]
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
+ value_states = torch.cat((value_rot, value_pass), dim=-1)
+
+ tgt_len = query_states.shape[2]
+ src_len = key_states.shape[2]
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights + attention_mask
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attn_weights = attn_weights * head_mask
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+ attn_output = torch.matmul(attn_probs, value_states)
+
+ if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, present, attn_weights
+
+
+class ClvpGatedLinearUnit(nn.Module):
+ """
+ `ClvpGatedLinearUnit` uses the second half of the `hidden_states` to act as a gate for the first half of the
+ `hidden_states` which controls the flow of data from the first of the tensor.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.activation_fn = ACT2FN[config.hidden_act]
+ self.proj = nn.Linear(config.hidden_size, config.intermediate_size * 2)
+
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
+ hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
+ return hidden_states * self.activation_fn(gate)
+
+
+class ClvpEncoderMLP(nn.Module):
+ """
+ This MLP is used in CLVP speech or text encoder models.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ self.fc1 = ClvpGatedLinearUnit(config)
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.dropout_layer = nn.Dropout(config.dropout)
+
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.dropout_layer(hidden_states)
+ hidden_states = self.fc2(hidden_states)
+ return hidden_states
+
+
+class ClvpEncoderLayer(nn.Module):
+ def __init__(self, config: ClvpConfig):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.self_attn = ClvpSelfAttention(config)
+ self.mlp = ClvpEncoderMLP(config)
+
+ self.input_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
+ self.post_attention_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ rotary_pos_emb: torch.FloatTensor,
+ attention_mask: torch.LongTensor,
+ position_ids: torch.LongTensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, embed_dim)`):
+ input to the layer.
+ rotary_pos_emb (`torch.FloatTensor`):
+ rotary position embeddings generated by `ClvpRotaryPositionalEmbedding` module.
+ attention_mask (`torch.FloatTensor` of shape `(batch, 1, tgt_len, src_len)`):
+ attention mask where padding elements are indicated by very large negative values.
+ position_ids (`torch.LongTensor`):
+ Denotes position ids of the input tokens.
+ output_attentions (`bool`, *optional*, defaults to `False`):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+
+ hidden_states = self.input_rmsnorm(hidden_states)
+
+ attention_outputs = self.self_attn(
+ hidden_states=hidden_states,
+ rotary_pos_emb=rotary_pos_emb,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = attention_outputs[0]
+
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.post_attention_rmsnorm(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attention_outputs[-1],)
+
+ return outputs
+
+
+# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->ClvpDecoderMLP
+class ClvpDecoderMLP(nn.Module):
+ def __init__(self, intermediate_size, config):
+ super().__init__()
+ embed_dim = config.hidden_size
+ self.c_fc = Conv1D(intermediate_size, embed_dim)
+ self.c_proj = Conv1D(embed_dim, intermediate_size)
+ self.act = ACT2FN[config.activation_function]
+ self.dropout = nn.Dropout(config.resid_pdrop)
+
+ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
+ hidden_states = self.c_fc(hidden_states)
+ hidden_states = self.act(hidden_states)
+ hidden_states = self.c_proj(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ return hidden_states
+
+
+class ClvpDecoderLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ hidden_size = config.hidden_size
+ inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
+
+ self.input_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
+ self.attn = ClvpSelfAttention(config)
+ self.post_attention_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
+
+ self.mlp = ClvpDecoderMLP(inner_dim, config)
+
+ def forward(
+ self,
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = False,
+ output_attentions: Optional[bool] = False,
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
+ residual = hidden_states
+ hidden_states = self.input_layernorm(hidden_states)
+ attn_outputs = self.attn(
+ hidden_states,
+ past_key_value=past_key_value,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+ attn_output = attn_outputs[0]
+ outputs = attn_outputs[1:]
+ # residual connection
+ hidden_states = attn_output + residual
+
+ residual = hidden_states
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ feed_forward_hidden_states = self.mlp(hidden_states)
+ # residual connection
+ hidden_states = residual + feed_forward_hidden_states
+
+ if use_cache:
+ outputs = (hidden_states,) + outputs
+ else:
+ outputs = (hidden_states,) + outputs[1:]
+
+ return outputs
+
+
+class ClvpConditioningEncoder(nn.Module):
+ """
+ This class processes the log-mel spectrograms(extracted by the Feature Extractor) and text tokens(produced by the
+ tokenizer) as inputs for the decoder model.
+
+ First each log-mel spectrogram is processed into a single vector which captures valuable characteristics from each
+ of them, then the text tokens are converted into token embeddings and position embeddings are added afterwards.
+ Both of these vectors are concatenated and then passed to the decoder model.
+
+ The text tokens helps to incorporate the "text information" and the log-mel spectrogram is used to specify the
+ "voice characteristics" into the generated mel tokens.
+ """
+
+ def __init__(self, config: ClvpConfig):
+ super().__init__()
+
+ self.text_config = config.text_config
+ self.decoder_config = config.decoder_config
+
+ self.text_token_embedding = nn.Embedding(self.text_config.vocab_size, self.decoder_config.hidden_size)
+ self.text_position_embedding = nn.Embedding(
+ self.decoder_config.max_text_tokens, self.decoder_config.hidden_size
+ )
+
+ self.mel_conv = nn.Conv1d(self.decoder_config.feature_size, self.decoder_config.hidden_size, kernel_size=1)
+
+ # define group norms to be used before each attention layer
+ num_groups = self.compute_groupnorm_groups(self.decoder_config.hidden_size)
+ self.group_norms = nn.ModuleList(
+ [
+ nn.GroupNorm(num_groups, self.decoder_config.hidden_size, eps=1e-5, affine=True)
+ for _ in range(self.decoder_config.num_mel_attn_blocks)
+ ]
+ )
+
+ # define the attention layers
+ self.mel_attn_blocks = nn.ModuleList(
+ [ClvpSelfAttention(self.decoder_config) for _ in range(self.decoder_config.num_mel_attn_blocks)]
+ )
+
+ self.gradient_checkpointing = False
+
+ def compute_groupnorm_groups(self, channels: int, groups: int = 32):
+ """
+ Calculates the value of `num_groups` for nn.GroupNorm. This logic is taken from the official tortoise
+ repository. link :
+ https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/models/arch_util.py#L26
+ """
+ if channels <= 16:
+ groups = 8
+ elif channels <= 64:
+ groups = 16
+ while channels % groups != 0:
+ groups = int(groups / 2)
+
+ if groups <= 2:
+ raise ValueError(
+ f"Number of groups for the GroupNorm must be greater than 2, but it is {groups}."
+ f"Please consider using a different `hidden_size`"
+ )
+
+ return groups
+
+ def forward(
+ self,
+ input_features: torch.FloatTensor,
+ input_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ ):
+ # process text
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ batch_size, seq_length = input_ids.size()
+ elif inputs_embeds is not None:
+ batch_size, seq_length = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ # construct attention mask if not given
+ if attention_mask is None:
+ attention_mask = torch.ones([batch_size, seq_length], dtype=torch.long, device=input_ids.device)
+
+ # We add bos and eos input_ids in the modeling file instead of the tokenizer file to keep the logic simple
+ # This logic is specific to ClvpConditioningEncoder and not used by other modules.
+ input_ids, attention_mask = _pad_extra_bos_eos_tokens(
+ input_ids,
+ attention_mask,
+ bos_token_id=self.text_config.bos_token_id,
+ eos_token_id=self.text_config.eos_token_id,
+ )
+
+ inputs_embeds = self.text_token_embedding(input_ids)
+ position_ids = attention_mask.cumsum(-1) - 1
+ position_embeds = self.text_position_embedding(position_ids)
+ text_embeds = inputs_embeds + position_embeds
+
+ if self.gradient_checkpointing and self.training:
+ # process each log-mel spectrogram into a single vector
+ mel_spec = torch.utils.checkpoint.checkpoint(self.mel_conv, input_features)
+
+ for i, mel_attn_block in enumerate(self.mel_attn_blocks):
+ residual_mel_spec = mel_spec.transpose(1, 2)
+
+ mel_spec = torch.utils.checkpoint.checkpoint(self.group_norms[i], mel_spec).transpose(1, 2)
+ mel_spec = torch.utils.checkpoint.checkpoint(mel_attn_block, mel_spec)[0] + residual_mel_spec
+ mel_spec = mel_spec.transpose(1, 2)
+
+ else:
+ # process each log-mel spectrogram into a single vector
+ mel_spec = self.mel_conv(input_features)
+
+ for i, mel_attn_block in enumerate(self.mel_attn_blocks):
+ residual_mel_spec = mel_spec.transpose(1, 2)
+
+ mel_spec = self.group_norms[i](mel_spec).transpose(1, 2)
+ mel_spec = mel_attn_block(mel_spec)[0] + residual_mel_spec
+ mel_spec = mel_spec.transpose(1, 2)
+
+ mel_spec = mel_spec[:, :, 0]
+ mel_spec = mel_spec.unsqueeze(1)
+
+ # repeat if there is either (1 text vs N audios) or (N texts vs 1 audio)
+ if text_embeds.shape[0] == 1 and mel_spec.shape[0] != 1:
+ text_embeds = text_embeds.repeat(mel_spec.shape[0], 1, 1)
+ elif text_embeds.shape[0] != 1 and mel_spec.shape[0] == 1:
+ mel_spec = mel_spec.repeat(text_embeds.shape[0], 1, 1)
+ # If there is N texts and M audios we will raise error since the number of text and audio must be same.
+ elif text_embeds.shape[0] != mel_spec.shape[0]:
+ raise ValueError(
+ f"The number of texts and number of audios must be same. "
+ f"Found {text_embeds.shape[0]} texts vs {mel_spec.shape[0]} audios"
+ )
+
+ return torch.concat([mel_spec, text_embeds], dim=1)
+
+
+class ClvpPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ClvpConfig
+ base_model_prefix = "clvp"
+ supports_gradient_checkpointing = True
+ _skip_keys_device_placement = "past_key_values"
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ factor = self.config.initializer_factor
+ if isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=factor * 0.02)
+ elif isinstance(module, (nn.Linear, Conv1D, nn.Conv1d)):
+ module.weight.data.normal_(mean=0.0, std=factor * 0.02)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, ClvpEncoderMLP):
+ factor = self.config.initializer_factor
+ in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
+ nn.init.normal_(module.fc1.proj.weight if getattr(module.fc1, "proj") else module.fc1.weight, std=fc_std)
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
+ elif isinstance(module, ClvpEncoder):
+ config = self.config.text_config if hasattr(self.config, "text_config") else self.config
+ factor = config.initializer_factor
+ module.projection.weight.data.normal_(mean=0.0, std=factor * (config.hidden_size**-0.5))
+ elif isinstance(module, ClvpConditioningEncoder):
+ module.mel_conv.weight.data.normal_(mean=0.0, std=factor)
+ module.mel_conv.bias.data.zero_()
+ elif isinstance(module, ClvpForCausalLM):
+ for name, p in module.named_parameters():
+ if name == "c_proj.weight":
+ p.data.normal_(
+ mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers))
+ )
+ if isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+CLVP_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`ClvpConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+CLVP_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`):
+ Indicates log mel-spectrogram representations for audio returned by [`ClvpFeatureExtractor`].
+ conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
+ inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`.
+ text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
+ inputs_embeds for the text encoder model passed in place of `input_ids`.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ return_loss (`bool`, *optional*):
+ Whether or not to return the contrastive loss.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+CLVP_DECODER_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
+ `len(past_key_values) + len(input_ids)`
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
+ `past_key_values`).
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class ClvpEncoder(ClvpPreTrainedModel):
+ """
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
+ [`ClvpEncoderLayer`].
+
+ Args:
+ config: ClvpConfig
+ """
+
+ def __init__(self, config: ClvpConfig):
+ super().__init__(config)
+
+ self.config = config
+ self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
+ self.rotary_pos_emb = ClvpRotaryPositionalEmbedding(config) if config.use_rotary_embedding else None
+ self.layers = nn.ModuleList([ClvpEncoderLayer(config) for _ in range(config.num_hidden_layers)])
+
+ self.sequence_summary = SequenceSummary(config)
+ self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ self.projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
+
+ self.gradient_checkpointing = False
+
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.token_embedding
+
+ def set_input_embeddings(self, value):
+ self.token_embedding = value
+
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ input embeddings for the model. This bypasses the model's internal embedding lookup matrix.
+ attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor`, *optional*):
+ Denotes the position ids of `input_ids`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ inputs_embeds = self.token_embedding(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ # expand attention_mask and create position_ids if needed
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
+
+ if position_ids is None:
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+ position_ids = torch.arange(input_shape[1], dtype=torch.long, device=device)
+ position_ids = position_ids.unsqueeze(0)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ rotary_pos_emb = self.rotary_pos_emb(inputs_embeds) if self.rotary_pos_emb is not None else None
+
+ hidden_states = inputs_embeds
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = torch.utils.checkpoint.checkpoint(
+ encoder_layer.__call__,
+ hidden_states,
+ rotary_pos_emb,
+ attention_mask,
+ position_ids,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ rotary_pos_emb,
+ attention_mask,
+ position_ids,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ last_hidden_state = hidden_states
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
+
+ # take the mean over axis 1 and get pooled output
+ pooled_output = self.sequence_summary(last_hidden_state)
+
+ # apply the projection layer
+ embeds = self.projection(pooled_output)
+
+ if not return_dict:
+ return tuple(
+ v for v in [embeds, last_hidden_state, pooled_output, encoder_states, all_attentions] if v is not None
+ )
+
+ return ClvpEncoderOutput(
+ embeds=embeds,
+ last_hidden_state=last_hidden_state,
+ pooler_output=pooled_output,
+ hidden_states=encoder_states,
+ attentions=all_attentions,
+ )
+
+
+class ClvpDecoder(ClvpPreTrainedModel):
+ """
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ClvpDecoderLayer`]
+ """
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.config = config
+
+ self.input_embeds_layer = nn.Embedding(self.config.vocab_size, self.config.hidden_size)
+ self.position_embeds_layer = nn.Embedding(self.config.max_position_embeddings, self.config.hidden_size)
+
+ self.drop = nn.Dropout(self.config.embd_pdrop)
+ self.layers = nn.ModuleList([ClvpDecoderLayer(self.config) for _ in range(self.config.num_hidden_layers)])
+ self.layer_norm = nn.LayerNorm(self.config.hidden_size, eps=self.config.layer_norm_epsilon)
+
+ self.gradient_checkpointing = False
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.input_embeds_layer
+
+ def set_input_embeddings(self, new_embeddings):
+ self.input_embeds_layer = new_embeddings
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
+ """
+ for layer, heads in heads_to_prune.items():
+ self.layers[layer].attn.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ input_ids.shape[0]
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ inputs_embeds.shape[0]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if token_type_ids is not None:
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
+
+ if past_key_values is None:
+ past_key_values_length = 0
+ past_key_values = tuple([None] * len(self.layers))
+ else:
+ past_key_values_length = past_key_values[0][0].size(-2)
+ if position_ids is None:
+ position_ids = torch.arange(
+ past_key_values_length, input_shape[-1] + past_key_values_length, dtype=torch.long, device=device
+ )
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
+
+ if inputs_embeds is None:
+ inputs_embeds = self.input_embeds_layer(input_ids)
+ position_embeds = self.position_embeds_layer(position_ids)
+ inputs_embeds = inputs_embeds + position_embeds
+
+ attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
+ )
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x num_attention_heads x N x N
+ # head_mask has shape num_hidden_layers x batch x num_attention_heads x N x N
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ hidden_states = inputs_embeds
+
+ if token_type_ids is not None:
+ token_type_embeds = self.input_embeds_layer(token_type_ids)
+ hidden_states = hidden_states + token_type_embeds
+
+ hidden_states = self.drop(hidden_states)
+
+ output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ presents = () if use_cache else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+ all_hidden_states = () if output_hidden_states else None
+ for i, (block, past_key_value) in enumerate(zip(self.layers, past_key_values)):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ outputs = torch.utils.checkpoint.checkpoint(
+ block.__call__,
+ hidden_states,
+ None,
+ attention_mask,
+ position_ids,
+ head_mask[i],
+ )
+ else:
+ outputs = block(
+ hidden_states,
+ past_key_value=past_key_value,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask[i],
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = outputs[0]
+ if use_cache is True:
+ presents = presents + (outputs[1],)
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
+
+ hidden_states = self.layer_norm(hidden_states)
+
+ hidden_states = hidden_states.view(output_shape)
+
+ # Add last hidden state
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
+ if v is not None
+ )
+
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=presents,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare Clvp decoder model outputting raw hidden-states without any specific head on top.",
+ CLVP_START_DOCSTRING,
+)
+class ClvpModel(ClvpPreTrainedModel):
+ def __init__(self, config: ClvpDecoderConfig):
+ super().__init__(config)
+ self.config = config
+ self.decoder = ClvpDecoder(self.config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.decoder.input_embeds_layer
+
+ def set_input_embeddings(self, value):
+ self.decoder.input_embeds_layer = value
+
+ def get_decoder(self):
+ return self.decoder
+
+ @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.decoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return decoder_outputs
+
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ past_key_values=decoder_outputs.past_key_values,
+ hidden_states=decoder_outputs.hidden_states,
+ attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The CLVP decoder model with a language modelling head on top.",
+ CLVP_START_DOCSTRING,
+)
+class ClvpForCausalLM(ClvpPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.config = config
+ self.model = ClvpModel(self.config)
+
+ self.final_norm = nn.LayerNorm(self.config.hidden_size)
+ self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=True)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.decoder.input_embeds_layer
+
+ def set_input_embeddings(self, new_embeddings):
+ self.model.decoder.input_embeds_layer = new_embeddings
+
+ def _prepare_model_inputs(
+ self,
+ inputs: Optional[torch.Tensor] = None,
+ bos_token_id: Optional[int] = None,
+ model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
+ ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
+ """
+ This function extracts the model-specific `inputs` for generation.
+ """
+ input_name = self.main_input_name
+
+ model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None}
+
+ inputs_kwarg = model_kwargs.pop(input_name, None)
+ if inputs_kwarg is not None and inputs is not None:
+ raise ValueError(
+ f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed."
+ f"Make sure to either pass {inputs} or {input_name}=..."
+ )
+ elif inputs_kwarg is not None:
+ inputs = inputs_kwarg
+
+ if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
+ model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
+ inputs, bos_token_id, model_kwargs=model_kwargs
+ )
+ inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
+
+ # Check if conditioning_embeds are provided or not, if yes then concatenate the bos_token_id at the end of the conditioning_embeds.
+ # Then we must subtract the positional_ids because during the forward pass it will be added anyways, so we must cancel them out here.
+ conditioning_embeds = model_kwargs.get("conditioning_embeds", None)
+
+ if conditioning_embeds is not None:
+ mel_start_token_embedding = self.model.decoder.input_embeds_layer(
+ torch.full(
+ (conditioning_embeds.shape[0], 1),
+ fill_value=self.config.bos_token_id,
+ device=conditioning_embeds.device,
+ )
+ )
+ mel_start_token_embedding += self.model.decoder.position_embeds_layer(
+ torch.full((conditioning_embeds.shape[0], 1), fill_value=0, device=conditioning_embeds.device)
+ )
+ conditioning_embeds = torch.concat([conditioning_embeds, mel_start_token_embedding], dim=1)
+
+ # subtract the positional_ids here
+ if hasattr(model_kwargs, "attention_mask"):
+ position_ids = model_kwargs["attention_mask"].long().cumsum(-1) - 1
+ else:
+ position_ids = torch.range(
+ 0, conditioning_embeds.shape[1] - 1, dtype=torch.long, device=conditioning_embeds.device
+ )
+ position_ids = position_ids.unsqueeze(0).repeat(conditioning_embeds.shape[0], 1)
+
+ model_kwargs["inputs_embeds"] = conditioning_embeds - self.model.decoder.position_embeds_layer(
+ position_ids
+ )
+ model_kwargs["input_ids"] = (
+ torch.ones((model_kwargs["inputs_embeds"].shape[0], 1), dtype=torch.long, device=self.device)
+ * self.config.bos_token_id
+ )
+
+ return model_kwargs["inputs_embeds"], "inputs_embeds", model_kwargs
+
+ inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
+ return inputs, input_name, model_kwargs
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, inputs_embeds=None, conditioning_embeds=None, **kwargs
+ ):
+ input_ids_length = input_ids.shape[-1]
+ token_type_ids = kwargs.get("token_type_ids", None)
+ # only last token for inputs_ids if past is defined in kwargs
+ if past_key_values:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+ if token_type_ids is not None:
+ token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
+
+ attention_mask = kwargs.get("attention_mask", None)
+ position_ids = kwargs.get("position_ids", None)
+
+ if attention_mask is not None and position_ids is None:
+ # create position_ids on the fly for batch generation
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+ if past_key_values:
+ position_ids = position_ids[:, -1].unsqueeze(-1)
+ else:
+ position_ids = None
+
+ if conditioning_embeds is not None and past_key_values is not None:
+ position_ids = torch.tensor([input_ids_length], dtype=torch.long, device=input_ids.device)
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and past_key_values is None:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "position_ids": position_ids,
+ "token_type_ids": token_type_ids,
+ }
+ )
+ return model_inputs
+
+ @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
+ """
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.model(
+ input_ids=input_ids,
+ past_key_values=past_key_values,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+
+ lm_logits = self.final_norm(hidden_states)
+ lm_logits = self.lm_head(lm_logits)
+
+ loss = None
+ if labels is not None:
+ labels = labels.to(lm_logits.device)
+ # Shift so that tokens < n predict n
+ shift_logits = lm_logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=loss,
+ logits=lm_logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ @staticmethod
+ # Copied from transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel._reorder_cache
+ def _reorder_cache(
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
+ ) -> Tuple[Tuple[torch.Tensor]]:
+ """
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
+ beam_idx at every generation step.
+ """
+ return tuple(
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
+ for layer_past in past_key_values
+ )
+
+
+@add_start_docstrings(
+ "The composite CLVP model with a text encoder, speech encoder and speech decoder model."
+ "The speech decoder model generates the speech_ids from the text and the text encoder and speech encoder works"
+ "together to filter out the best speech_ids.",
+ CLVP_START_DOCSTRING,
+)
+class ClvpModelForConditionalGeneration(ClvpPreTrainedModel):
+ config_class = ClvpConfig
+
+ def __init__(self, config: ClvpConfig):
+ super().__init__(config)
+
+ if not isinstance(config.text_config, ClvpEncoderConfig):
+ raise ValueError(
+ "config.text_config is expected to be of type `ClvpEncoderConfig` but is of type"
+ f" {type(config.text_config)}."
+ )
+
+ if not isinstance(config.speech_config, ClvpEncoderConfig):
+ raise ValueError(
+ "config.speech_config is expected to be of type `ClvpEncoderConfig` but is of type"
+ f" {type(config.speech_config)}."
+ )
+
+ if not isinstance(config.decoder_config, ClvpDecoderConfig):
+ raise ValueError(
+ "config.decoder_config is expected to be of type `ClvpDecoderConfig` but is of type"
+ f" {type(config.decoder_config)}."
+ )
+
+ self.conditioning_encoder = ClvpConditioningEncoder(config)
+
+ self.speech_decoder_model = ClvpForCausalLM(config.decoder_config)
+
+ self.text_encoder_model = ClvpEncoder(config.text_config)
+ self.speech_encoder_model = ClvpEncoder(config.speech_config)
+
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # taken from the original repo,
+ # link : https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/api.py#L117
+ def fix_speech_decoder_output(self, speech_ids: torch.LongTensor) -> torch.LongTensor:
+ """
+ This method modifies the output of the decoder model, such as replacing the `eos_token_id` and changing the
+ last few tokens of each sequence.
+
+ Args:
+ speech_ids (`torch.LongTensor`):
+ This refers to the output of the decoder model.
+ """
+ decoder_fixing_codes = self.config.decoder_config.decoder_fixing_codes
+ speech_ids = speech_ids[:, 1:]
+
+ stop_token_indices = torch.where(speech_ids == self.speech_decoder_model.config.eos_token_id, 1, 0)
+ speech_ids = torch.masked_fill(speech_ids, mask=stop_token_indices.bool(), value=decoder_fixing_codes[0])
+
+ for i, each_seq_stop_token_index in enumerate(stop_token_indices):
+ # This means that no stop tokens were found so the sentence was still being generated, in that case we don't need
+ # to apply any padding so just skip to the next sequence of tokens.
+ if each_seq_stop_token_index.sum() == 0:
+ continue
+
+ stm = each_seq_stop_token_index.argmax()
+ speech_ids[i, stm:] = decoder_fixing_codes[0]
+ if stm - 3 < speech_ids.shape[1]:
+ speech_ids[i, -3:] = torch.tensor(
+ [decoder_fixing_codes[1:]], device=speech_ids.device, dtype=torch.long
+ )
+
+ return speech_ids
+
+ def get_text_features(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ ) -> torch.FloatTensor:
+ r"""
+ This method can be used to extract text_embeds from a text. The text embeddings obtained by applying the
+ projection layer to the pooled output of the CLVP text encoder model.
+
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ [What are input IDs?](../glossary#input-ids)
+ text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
+ inputs_embeds for the text encoder model passed in place of `input_ids`.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Returns:
+ `torch.FloatTensor` of shape `(batch_size, output_dim)`:
+ The text embeddings obtained by applying the projection layer to the pooled output of the CLVP Text
+ Model.
+
+ Examples:
+
+ ```python
+ >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration
+
+ >>> # Define the Text
+ >>> text = "This is an example text."
+
+ >>> # Define processor and model
+ >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
+ >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")
+
+ >>> # Generate processor output and text embeds
+ >>> processor_output = processor(text=text, return_tensors="pt")
+ >>> text_embeds = model.get_text_features(input_ids=processor_output["input_ids"])
+ ```
+ """
+
+ outputs = self.text_encoder_model(
+ input_ids=input_ids,
+ inputs_embeds=text_encoder_inputs_embeds,
+ attention_mask=attention_mask,
+ )
+
+ return outputs[0]
+
+ def get_speech_features(
+ self,
+ speech_ids: Optional[torch.LongTensor] = None,
+ input_ids: Optional[torch.LongTensor] = None,
+ input_features: Optional[torch.FloatTensor] = None,
+ conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ generation_config: Optional[GenerationConfig] = None,
+ **kwargs,
+ ) -> torch.FloatTensor:
+ r"""
+ This method can be used to extract speech_embeds. The speech embeddings are obtained by applying the speech
+ model on speech_ids. If speech_ids is not present but both input_ids and input_features are given then the
+ decoder model will be used to first generate the speech_ids and then applying the speech model.
+
+ Args:
+ speech_ids (`torch.LongTensor` of shape `(batch_size, num_speech_ids)`, *optional*):
+ Speech Tokens. Padding will be ignored by default should you provide it. If speech_ids are provided
+ then input_ids and input_features will be automatically ignored.
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Input text Tokens. Processed from the [`ClvpTokenizer`]. If speech_ids is not provided, then input_ids
+ and input_features will be used.
+ input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*):
+ Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`]. If
+ speech_ids is not provided, then input_ids and input_features will be used.
+ conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
+ inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`.
+ attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding speech token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ generation_config (`GenerationConfig`, *optional*):
+ generation config to control the generation of speech_ids if they are not provided.
+
+ Returns:
+ `torch.FloatTensor` of shape `(batch_size, output_dim)`:
+ The speech embeddings obtained by applying the projection layer to the pooled output of the CLVP Speech
+ Model.
+
+ Examples:
+
+ ```python
+ >>> import datasets
+ >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration
+
+ >>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library)
+ >>> text = "This is an example text."
+ >>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
+ >>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
+ >>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values()
+
+ >>> # Define processor and model
+ >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
+ >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")
+
+ >>> # Generate processor output and model output
+ >>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt")
+ >>> speech_embeds = model.get_speech_features(
+ ... input_ids=processor_output["input_ids"], input_features=processor_output["input_features"]
+ ... )
+ ```
+ """
+
+ if speech_ids is None:
+ if (input_ids is None and conditioning_encoder_inputs_embeds is None) or input_features is None:
+ raise ValueError(
+ "Either speech_ids or input_ids/conditioning_encoder_inputs_embeds and input_features must be provided."
+ )
+
+ if generation_config is None:
+ generation_config = self.generation_config
+ generation_config.update(**kwargs)
+
+ conditioning_embeds = self.conditioning_encoder(
+ input_features=input_features,
+ input_ids=input_ids,
+ inputs_embeds=conditioning_encoder_inputs_embeds,
+ attention_mask=attention_mask,
+ )
+
+ speech_ids = self.speech_decoder_model.generate(
+ conditioning_embeds=conditioning_embeds,
+ generation_config=generation_config,
+ )
+
+ speech_ids = self.fix_speech_decoder_output(speech_ids[0])
+
+ outputs = self.speech_encoder_model(
+ input_ids=speech_ids,
+ attention_mask=attention_mask,
+ )
+
+ return outputs[0]
+
+ @add_start_docstrings_to_model_forward(CLVP_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=ClvpOutput, config_class=ClvpConfig)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ input_features: torch.FloatTensor = None,
+ conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ return_loss: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, ClvpOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import datasets
+ >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration
+
+ >>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library)
+ >>> text = "This is an example text."
+
+ >>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
+ >>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
+ >>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values()
+
+ >>> # Define processor and model
+ >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
+ >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")
+
+ >>> # processor outputs and model outputs
+ >>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt")
+ >>> outputs = model(
+ ... input_ids=processor_output["input_ids"],
+ ... input_features=processor_output["input_features"],
+ ... return_dict=True,
+ ... )
+ ```
+ """
+
+ # Use CLVP model's config for some fields (if specified) instead of those of speech & text components.
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ conditioning_embeds = self.conditioning_encoder(
+ input_features=input_features,
+ input_ids=input_ids,
+ inputs_embeds=conditioning_encoder_inputs_embeds,
+ attention_mask=attention_mask,
+ )
+
+ decoder_outputs = self.speech_decoder_model(
+ inputs_embeds=conditioning_embeds,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ speech_ids = decoder_outputs[0]
+
+ # since we will get the embeds of shape `(batch_size, seq_len, embedding_dim)` during the forward pass
+ # we must convert it to tokens, to make it compaitable with speech_transformer
+ if speech_ids.ndim == 3:
+ speech_ids = speech_ids.argmax(2)
+ speech_ids = self.fix_speech_decoder_output(speech_ids)
+
+ speech_outputs = self.speech_encoder_model(
+ input_ids=speech_ids,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ text_outputs = self.text_encoder_model(
+ input_ids=input_ids,
+ inputs_embeds=text_encoder_inputs_embeds,
+ attention_mask=attention_mask,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ speech_embeds = speech_outputs[0]
+ text_embeds = text_outputs[0]
+
+ # normalized features
+ speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True)
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
+
+ # cosine similarity as logits
+ logit_scale = self.logit_scale.exp()
+ logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale
+ logits_per_speech = logits_per_text.t()
+
+ loss = None
+ if return_loss:
+ loss = clvp_loss(logits_per_text)
+
+ if not return_dict:
+ output = (
+ logits_per_speech,
+ logits_per_text,
+ text_embeds,
+ speech_embeds,
+ text_outputs[2],
+ speech_outputs[2],
+ )
+ if output_hidden_states:
+ output += (
+ decoder_outputs[-1],
+ text_outputs[-1],
+ speech_outputs[-1],
+ )
+
+ return ((loss,) + output) if loss is not None else output
+
+ return ClvpOutput(
+ loss=loss,
+ logits_per_speech=logits_per_speech,
+ logits_per_text=logits_per_text,
+ text_embeds=text_embeds,
+ speech_embeds=speech_embeds,
+ text_model_output=text_outputs[2],
+ speech_model_output=speech_outputs[2],
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ text_encoder_hidden_states=text_outputs.hidden_states,
+ speech_encoder_hidden_states=speech_outputs.hidden_states,
+ )
+
+ @torch.no_grad()
+ def generate(
+ self,
+ input_ids: torch.LongTensor = None,
+ input_features: torch.FloatTensor = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ generation_config: Optional[GenerationConfig] = None,
+ pad_to_max_mel_tokens: Optional[int] = None,
+ output_hidden_states: Optional[bool] = None,
+ **kwargs,
+ ):
+ """
+ Generate method for `ClvpModelForConditionalGeneration`, this method calls the `generate` method of
+ `ClvpForCausalLM` and then uses those generated `speech_ids` to process `text_embeds` and `speech_embeds` using
+ `ClvpEncoder`.
+
+ Args:
+ input_ids (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Input text Tokens. Processed from the [`ClvpTokenizer`].
+ input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*):
+ Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`].
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ generation_config (`~generation.GenerationConfig`, *optional*):
+ The generation configuration to be used as base parametrization for the generation call. `**kwargs`
+ passed to generate matching the attributes of `generation_config` will override them. If
+ `generation_config` is not provided, the default will be used, which had the following loading
+ priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
+ configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
+ default values, whose documentation should be checked to parameterize generation.
+ pad_to_max_mel_tokens (`int`, *optional*):
+ Pads generated speech_ids to the specified value. This is to implement the same logic from the official
+ repo, link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430
+ and to make sure the logits are same.
+ This does not affect generation quality so please don't consider using it since it is less efficient.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of decoder model, text encoder and speech encoder models.
+
+ Returns:
+ `ClvpOutput` or tuple: A `ClvpOutput` (if `return_dict_in_generate=True` or when
+ `config.return_dict_in_generate=True`) or a tuple.
+ """
+
+ # If the input sequences are larger than (self.config.decoder_config.max_text_tokens - 3) then raise error,
+ # because we need to add 3 tokens ( 1 bos tokens and 2 eos tokens) to the input_ids in ClvpConditioningEncoder to
+ # properly sample
+ sequence_length = input_ids.shape[-1]
+ if sequence_length > (self.config.decoder_config.max_text_tokens - 3):
+ raise ValueError(
+ f"Maximum sequence length reached! Found input_ids of length {sequence_length}."
+ f"Please make sure that the maximum length of input_ids is {self.config.decoder_config.max_text_tokens - 3}"
+ )
+
+ if generation_config is None:
+ generation_config = self.generation_config
+
+ generation_config = copy.deepcopy(generation_config)
+ model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
+ generation_config.validate()
+ self._validate_model_kwargs(model_kwargs.copy())
+
+ # pad input_ids as specified in the original repo
+ # link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L380
+ input_ids, attention_mask = _pad_extra_bos_eos_tokens(
+ input_ids,
+ attention_mask,
+ add_bos_token=False,
+ bos_token_id=self.config.text_config.bos_token_id,
+ eos_token_id=self.config.text_config.eos_token_id,
+ )
+
+ conditioning_embeds = self.conditioning_encoder(
+ input_features=input_features,
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ )
+
+ decoder_outputs = self.speech_decoder_model.generate(
+ conditioning_embeds=conditioning_embeds,
+ generation_config=generation_config,
+ output_hidden_states=output_hidden_states,
+ return_dict=generation_config.return_dict_in_generate,
+ )
+ if isinstance(decoder_outputs, ModelOutput):
+ speech_ids = decoder_outputs.sequences
+
+ # pad to pad_to_max_mel_tokens if given, to replicate the original repo logic
+ # link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430
+ if pad_to_max_mel_tokens is not None:
+ padding_needed = pad_to_max_mel_tokens - speech_ids.shape[-1]
+ speech_ids = torch.nn.functional.pad(
+ speech_ids, (0, padding_needed), value=self.generation_config.eos_token_id
+ )
+
+ speech_ids = self.fix_speech_decoder_output(speech_ids)
+
+ speech_outputs = self.speech_encoder_model(
+ input_ids=speech_ids,
+ output_hidden_states=output_hidden_states,
+ return_dict=generation_config.return_dict_in_generate,
+ )
+ text_outputs = self.text_encoder_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ output_hidden_states=output_hidden_states,
+ return_dict=generation_config.return_dict_in_generate,
+ )
+
+ speech_embeds = speech_outputs[0]
+ text_embeds = text_outputs[0]
+
+ # normalized features
+ speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True)
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
+
+ # cosine similarity as logits
+ logit_scale = self.logit_scale.exp()
+ logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale
+ logits_per_speech = logits_per_text.t()
+
+ if not generation_config.return_dict_in_generate:
+ output = (
+ speech_ids,
+ logits_per_speech,
+ logits_per_text,
+ text_embeds,
+ speech_embeds,
+ text_outputs[2],
+ speech_outputs[2],
+ )
+ if output_hidden_states:
+ output += (
+ decoder_outputs[-1],
+ text_outputs[-1],
+ speech_outputs[-1],
+ )
+
+ return output
+
+ return ClvpOutput(
+ speech_ids=speech_ids,
+ logits_per_speech=logits_per_speech,
+ logits_per_text=logits_per_text,
+ text_embeds=text_embeds,
+ speech_embeds=speech_embeds,
+ text_model_output=text_outputs[2],
+ speech_model_output=speech_outputs[2],
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ text_encoder_hidden_states=text_outputs.hidden_states,
+ speech_encoder_hidden_states=speech_outputs.hidden_states,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/number_normalizer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/number_normalizer.py
new file mode 100644
index 0000000000000000000000000000000000000000..86aa087e8139b0b2fe2e598c2d9ee55a0ddf0389
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/number_normalizer.py
@@ -0,0 +1,238 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""English Normalizer class for CLVP."""
+
+
+import re
+
+
+class EnglishNormalizer:
+ def __init__(self):
+ # List of (regular expression, replacement) pairs for abbreviations:
+ self._abbreviations = [
+ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
+ for x in [
+ ("mrs", "misess"),
+ ("mr", "mister"),
+ ("dr", "doctor"),
+ ("st", "saint"),
+ ("co", "company"),
+ ("jr", "junior"),
+ ("maj", "major"),
+ ("gen", "general"),
+ ("drs", "doctors"),
+ ("rev", "reverend"),
+ ("lt", "lieutenant"),
+ ("hon", "honorable"),
+ ("sgt", "sergeant"),
+ ("capt", "captain"),
+ ("esq", "esquire"),
+ ("ltd", "limited"),
+ ("col", "colonel"),
+ ("ft", "fort"),
+ ]
+ ]
+
+ self.ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
+ self.teens = [
+ "ten",
+ "eleven",
+ "twelve",
+ "thirteen",
+ "fourteen",
+ "fifteen",
+ "sixteen",
+ "seventeen",
+ "eighteen",
+ "nineteen",
+ ]
+ self.tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
+
+ def number_to_words(self, num: int) -> str:
+ """
+ Converts numbers(`int`) to words(`str`).
+
+ Please note that it only supports upto - "'nine hundred ninety-nine quadrillion, nine hundred ninety-nine
+ trillion, nine hundred ninety-nine billion, nine hundred ninety-nine million, nine hundred ninety-nine
+ thousand, nine hundred ninety-nine'" or `number_to_words(999_999_999_999_999_999)`.
+ """
+ if num == 0:
+ return "zero"
+ elif num < 0:
+ return "minus " + self.number_to_words(abs(num))
+ elif num < 10:
+ return self.ones[num]
+ elif num < 20:
+ return self.teens[num - 10]
+ elif num < 100:
+ return self.tens[num // 10] + ("-" + self.number_to_words(num % 10) if num % 10 != 0 else "")
+ elif num < 1000:
+ return (
+ self.ones[num // 100] + " hundred" + (" " + self.number_to_words(num % 100) if num % 100 != 0 else "")
+ )
+ elif num < 1_000_000:
+ return (
+ self.number_to_words(num // 1000)
+ + " thousand"
+ + (", " + self.number_to_words(num % 1000) if num % 1000 != 0 else "")
+ )
+ elif num < 1_000_000_000:
+ return (
+ self.number_to_words(num // 1_000_000)
+ + " million"
+ + (", " + self.number_to_words(num % 1_000_000) if num % 1_000_000 != 0 else "")
+ )
+ elif num < 1_000_000_000_000:
+ return (
+ self.number_to_words(num // 1_000_000_000)
+ + " billion"
+ + (", " + self.number_to_words(num % 1_000_000_000) if num % 1_000_000_000 != 0 else "")
+ )
+ elif num < 1_000_000_000_000_000:
+ return (
+ self.number_to_words(num // 1_000_000_000_000)
+ + " trillion"
+ + (", " + self.number_to_words(num % 1_000_000_000_000) if num % 1_000_000_000_000 != 0 else "")
+ )
+ elif num < 1_000_000_000_000_000_000:
+ return (
+ self.number_to_words(num // 1_000_000_000_000_000)
+ + " quadrillion"
+ + (
+ ", " + self.number_to_words(num % 1_000_000_000_000_000)
+ if num % 1_000_000_000_000_000 != 0
+ else ""
+ )
+ )
+ else:
+ return "number out of range"
+
+ def convert_to_ascii(self, text: str) -> str:
+ """
+ Converts unicode to ascii
+ """
+ return text.encode("ascii", "ignore").decode("utf-8")
+
+ def _expand_dollars(self, m: str) -> str:
+ """
+ This method is used to expand numerical dollar values into spoken words.
+ """
+ match = m.group(1)
+ parts = match.split(".")
+ if len(parts) > 2:
+ return match + " dollars" # Unexpected format
+
+ dollars = int(parts[0]) if parts[0] else 0
+ cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
+ if dollars and cents:
+ dollar_unit = "dollar" if dollars == 1 else "dollars"
+ cent_unit = "cent" if cents == 1 else "cents"
+ return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
+ elif dollars:
+ dollar_unit = "dollar" if dollars == 1 else "dollars"
+ return "%s %s" % (dollars, dollar_unit)
+ elif cents:
+ cent_unit = "cent" if cents == 1 else "cents"
+ return "%s %s" % (cents, cent_unit)
+ else:
+ return "zero dollars"
+
+ def _remove_commas(self, m: str) -> str:
+ """
+ This method is used to remove commas from sentences.
+ """
+ return m.group(1).replace(",", "")
+
+ def _expand_decimal_point(self, m: str) -> str:
+ """
+ This method is used to expand '.' into spoken word ' point '.
+ """
+ return m.group(1).replace(".", " point ")
+
+ def _expand_ordinal(self, num: str) -> str:
+ """
+ This method is used to expand ordinals such as '1st', '2nd' into spoken words.
+ """
+ ordinal_suffixes = {1: "st", 2: "nd", 3: "rd"}
+
+ num = int(num.group(0)[:-2])
+ if 10 <= num % 100 and num % 100 <= 20:
+ suffix = "th"
+ else:
+ suffix = ordinal_suffixes.get(num % 10, "th")
+ return self.number_to_words(num) + suffix
+
+ def _expand_number(self, m: str) -> str:
+ """
+ This method acts as a preprocessing step for numbers between 1000 and 3000 (same as the original repository,
+ link :
+ https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/utils/tokenizer.py#L86)
+ """
+ num = int(m.group(0))
+
+ if num > 1000 and num < 3000:
+ if num == 2000:
+ return "two thousand"
+ elif num > 2000 and num < 2010:
+ return "two thousand " + self.number_to_words(num % 100)
+ elif num % 100 == 0:
+ return self.number_to_words(num // 100) + " hundred"
+ else:
+ return self.number_to_words(num)
+ else:
+ return self.number_to_words(num)
+
+ def normalize_numbers(self, text: str) -> str:
+ """
+ This method is used to normalize numbers within a text such as converting the numbers to words, removing
+ commas, etc.
+ """
+ text = re.sub(re.compile(r"([0-9][0-9\,]+[0-9])"), self._remove_commas, text)
+ text = re.sub(re.compile(r"£([0-9\,]*[0-9]+)"), r"\1 pounds", text)
+ text = re.sub(re.compile(r"\$([0-9\.\,]*[0-9]+)"), self._expand_dollars, text)
+ text = re.sub(re.compile(r"([0-9]+\.[0-9]+)"), self._expand_decimal_point, text)
+ text = re.sub(re.compile(r"[0-9]+(st|nd|rd|th)"), self._expand_ordinal, text)
+ text = re.sub(re.compile(r"[0-9]+"), self._expand_number, text)
+ return text
+
+ def expand_abbreviations(self, text: str) -> str:
+ """
+ Expands the abbreviate words.
+ """
+ for regex, replacement in self._abbreviations:
+ text = re.sub(regex, replacement, text)
+ return text
+
+ def collapse_whitespace(self, text: str) -> str:
+ """
+ Removes multiple whitespaces
+ """
+ return re.sub(re.compile(r"\s+"), " ", text)
+
+ def __call__(self, text):
+ """
+ Converts text to ascii, numbers / number-like quantities to their spelt-out counterparts and expands
+ abbreviations
+ """
+
+ text = self.convert_to_ascii(text)
+ text = text.lower()
+ text = self.normalize_numbers(text)
+ text = self.expand_abbreviations(text)
+ text = self.collapse_whitespace(text)
+ text = text.replace('"', "")
+
+ return text
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/processing_clvp.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/processing_clvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..0723986db9757d9ade5719333ad862b09e33685e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/processing_clvp.py
@@ -0,0 +1,91 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Processor class for CLVP
+"""
+
+
+from ...processing_utils import ProcessorMixin
+
+
+class ClvpProcessor(ProcessorMixin):
+ r"""
+ Constructs a CLVP processor which wraps a CLVP Feature Extractor and a CLVP Tokenizer into a single processor.
+
+ [`ClvpProcessor`] offers all the functionalities of [`ClvpFeatureExtractor`] and [`ClvpTokenizer`]. See the
+ [`~ClvpProcessor.__call__`], [`~ClvpProcessor.decode`] and [`~ClvpProcessor.batch_decode`] for more information.
+
+ Args:
+ feature_extractor (`ClvpFeatureExtractor`):
+ An instance of [`ClvpFeatureExtractor`]. The feature extractor is a required input.
+ tokenizer (`ClvpTokenizer`):
+ An instance of [`ClvpTokenizer`]. The tokenizer is a required input.
+ """
+
+ feature_extractor_class = "ClvpFeatureExtractor"
+ tokenizer_class = "ClvpTokenizer"
+ model_input_names = [
+ "input_ids",
+ "input_features",
+ "attention_mask",
+ ]
+
+ def __init__(self, feature_extractor, tokenizer):
+ super().__init__(feature_extractor, tokenizer)
+
+ def __call__(self, *args, **kwargs):
+ """
+ Forwards the `audio` and `sampling_rate` arguments to [`~ClvpFeatureExtractor.__call__`] and the `text`
+ argument to [`~ClvpTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
+ information.
+ """
+
+ raw_speech = kwargs.pop("raw_speech", None)
+ sampling_rate = kwargs.pop("sampling_rate", None)
+ text = kwargs.pop("text", None)
+
+ if raw_speech is None and text is None:
+ raise ValueError("You need to specify either an `raw_speech` or `text` input to process.")
+
+ if raw_speech is not None:
+ inputs = self.feature_extractor(raw_speech, sampling_rate=sampling_rate, **kwargs)
+ if text is not None:
+ encodings = self.tokenizer(text, **kwargs)
+
+ if text is None:
+ return inputs
+ elif raw_speech is None:
+ return encodings
+ else:
+ inputs["input_ids"] = encodings["input_ids"]
+ inputs["attention_mask"] = encodings["attention_mask"]
+ return inputs
+
+ # Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.batch_decode with Whisper->Clvp
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ # Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.decode with Whisper->Clvp
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
+ the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/tokenization_clvp.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/tokenization_clvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..d77564f718a53bc6a3149945fafb56bbaddcb529
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/tokenization_clvp.py
@@ -0,0 +1,364 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization class for CLVP."""
+
+import json
+import os
+from functools import lru_cache
+from typing import List, Optional, Tuple
+
+import regex as re
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+from .number_normalizer import EnglishNormalizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {
+ "vocab_file": "vocab.json",
+ "merges_file": "merges.txt",
+}
+
+
+@lru_cache()
+# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
+ characters the bpe code barfs on.
+
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
+ tables between utf-8 bytes and unicode strings.
+ """
+ bs = (
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
+ )
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8 + n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+
+# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
+def get_pairs(word):
+ """
+ Return set of symbol pairs in a word.
+
+ Word is represented as tuple of symbols (symbols being variable-length strings).
+ """
+ pairs = set()
+ prev_char = word[0]
+ for char in word[1:]:
+ pairs.add((prev_char, char))
+ prev_char = char
+ return pairs
+
+
+class ClvpTokenizer(PreTrainedTokenizer):
+ """
+ Construct a CLVP tokenizer. Based on byte-level Byte-Pair-Encoding.
+
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
+
+ ```python
+ >>> from transformers import ClvpTokenizer
+
+ >>> tokenizer = ClvpTokenizer.from_pretrained("susnato/clvp_dev")
+ >>> tokenizer("Hello world")["input_ids"]
+ [62, 84, 28, 2, 179, 79]
+
+ >>> tokenizer(" Hello world")["input_ids"]
+ [2, 62, 84, 28, 2, 179, 79]
+ ```
+
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
+
+
+
+ When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
+
+
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
+ The beginning of sequence token.
+ eos_token (`str`, *optional*, defaults to `"[STOP]"`):
+ The end of sequence token.
+ pad_token (`str`, *optional*, defaults to `"[STOP]"`):
+ The pad token of the sequence.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (CLVP tokenizer detect beginning of words by the preceding space).
+ add_bos_token (`bool`, *optional*, defaults to `False`):
+ Whether to add `bos_token` in front of the sequence when add_special_tokens=True.
+ add_eos_token (`bool`, *optional*, defaults to `False`):
+ Whether to add `eos_token` in end of the sequence when add_special_tokens=True.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = [
+ "input_ids",
+ "attention_mask",
+ ]
+
+ def __init__(
+ self,
+ vocab_file,
+ merges_file,
+ errors="replace",
+ unk_token="[UNK]",
+ bos_token="<|endoftext|>",
+ eos_token="[STOP]",
+ pad_token="[STOP]",
+ add_prefix_space=False,
+ add_bos_token=False,
+ add_eos_token=False,
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
+ unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
+
+ self.add_bos_token = add_bos_token
+ self.add_eos_token = add_eos_token
+ self._normalizer = None
+
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
+ self.encoder = json.load(vocab_handle)
+ self.decoder = {v: k for k, v in self.encoder.items()}
+ self.errors = errors # how to handle errors in decoding
+ self.byte_encoder = bytes_to_unicode()
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
+ with open(merges_file, encoding="utf-8") as merges_handle:
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
+ self.cache = {}
+ self.add_prefix_space = add_prefix_space
+
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
+
+ super().__init__(
+ errors=errors,
+ unk_token=unk_token,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ pad_token=pad_token,
+ add_prefix_space=add_prefix_space,
+ add_bos_token=add_bos_token,
+ add_eos_token=add_eos_token,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ return len(self.encoder)
+
+ @property
+ def normalizer(self):
+ if self._normalizer is None:
+ self._normalizer = EnglishNormalizer()
+ return self._normalizer
+
+ def get_vocab(self):
+ return dict(self.encoder, **self.added_tokens_encoder)
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
+ def bpe(self, token):
+ if token in self.cache:
+ return self.cache[token]
+ word = tuple(token)
+ pairs = get_pairs(word)
+
+ if not pairs:
+ return token
+
+ while True:
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
+ if bigram not in self.bpe_ranks:
+ break
+ first, second = bigram
+ new_word = []
+ i = 0
+ while i < len(word):
+ try:
+ j = word.index(first, i)
+ except ValueError:
+ new_word.extend(word[i:])
+ break
+ else:
+ new_word.extend(word[i:j])
+ i = j
+
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
+ new_word.append(first + second)
+ i += 2
+ else:
+ new_word.append(word[i])
+ i += 1
+ new_word = tuple(new_word)
+ word = new_word
+ if len(word) == 1:
+ break
+ else:
+ pairs = get_pairs(word)
+ word = " ".join(word)
+ self.cache[token] = word
+ return word
+
+ # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
+
+ output = bos_token_id + token_ids_0 + eos_token_id
+
+ if token_ids_1 is not None:
+ output = output + bos_token_id + token_ids_1 + eos_token_id
+
+ return output
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_special_tokens_mask
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if not self.add_bos_token:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0))
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
+
+ def _tokenize(self, text):
+ """Tokenize a string."""
+ bpe_tokens = []
+ text = self.normalizer(text)
+ for token in re.findall(self.pat, text):
+ token = "".join(
+ self.byte_encoder[b] for b in token.encode("utf-8")
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
+
+ # if the token is "Ġ" we replace it with "[SPACE]" (if "[SPACE]" is present in the vocab), otherwise we keep the "Ġ".
+ bpe_tokens.extend(
+ "[SPACE]" if bpe_token == "\u0120" and "[SPACE]" in self.encoder.keys() else bpe_token
+ for bpe_token in self.bpe(token).split(" ")
+ )
+
+ return bpe_tokens
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.decoder.get(index)
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ text = "".join(tokens)
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
+ return text
+
+ def clean_up_tokenization(self, text):
+ text = "".join(text)
+ vocab_tokens = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
+
+ text = text.replace("[SPACE]", " ") if "[SPACE]" in vocab_tokens else text
+ text = text.replace("[STOP]", " ") if "[STOP]" in vocab_tokens else text
+
+ text = text.replace(self.unk_token, "").replace(" ", " ").replace(" ", " ")
+ return text
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ merge_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
+ )
+
+ with open(vocab_file, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
+
+ index = 0
+ with open(merge_file, "w", encoding="utf-8") as writer:
+ writer.write("#version: 0.2\n")
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
+ " Please check that the tokenizer is not corrupted!"
+ )
+ index = token_index
+ writer.write(" ".join(bpe_tokens) + "\n")
+ index += 1
+
+ return vocab_file, merge_file
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..01d02a9e65fda02e543b116dc4bf7ccba6097c6e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__init__.py
@@ -0,0 +1,61 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_dinov2": ["DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Dinov2Config", "Dinov2OnnxConfig"]
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_dinov2"] = [
+ "DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "Dinov2ForImageClassification",
+ "Dinov2Model",
+ "Dinov2PreTrainedModel",
+ "Dinov2Backbone",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_dinov2 import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP, Dinov2Config, Dinov2OnnxConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_dinov2 import (
+ DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST,
+ Dinov2Backbone,
+ Dinov2ForImageClassification,
+ Dinov2Model,
+ Dinov2PreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/convert_dinov2_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/convert_dinov2_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..dd5871e6c440661a7050bab7696db39e865b714d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/convert_dinov2_to_hf.py
@@ -0,0 +1,287 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert DINOv2 checkpoints from the original repository.
+
+URL: https://github.com/facebookresearch/dinov2/tree/main
+"""
+
+
+import argparse
+import json
+from pathlib import Path
+
+import requests
+import torch
+import torch.nn as nn
+from huggingface_hub import hf_hub_download
+from PIL import Image
+from torchvision import transforms
+
+from transformers import BitImageProcessor, Dinov2Config, Dinov2ForImageClassification, Dinov2Model
+from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+def get_dinov2_config(model_name, image_classifier=False):
+ config = Dinov2Config(image_size=518, patch_size=14)
+
+ # size of the architecture
+ if "vits" in model_name:
+ config.hidden_size = 384
+ config.num_attention_heads = 6
+ elif "vitb" in model_name:
+ pass
+ elif "vitl" in model_name:
+ config.hidden_size = 1024
+ config.num_hidden_layers = 24
+ config.num_attention_heads = 16
+ elif "vitg" in model_name:
+ config.use_swiglu_ffn = True
+ config.hidden_size = 1536
+ config.num_hidden_layers = 40
+ config.num_attention_heads = 24
+ else:
+ raise ValueError("Model not supported")
+
+ if image_classifier:
+ repo_id = "huggingface/label-files"
+ filename = "imagenet-1k-id2label.json"
+ config.num_labels = 1000
+ config.id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
+ config.id2label = {int(k): v for k, v in config.id2label.items()}
+
+ return config
+
+
+def create_rename_keys(config):
+ rename_keys = []
+ # fmt: off
+
+ # patch embedding layer
+ rename_keys.append(("cls_token", "embeddings.cls_token"))
+ rename_keys.append(("mask_token", "embeddings.mask_token"))
+ rename_keys.append(("pos_embed", "embeddings.position_embeddings"))
+ rename_keys.append(("patch_embed.proj.weight", "embeddings.patch_embeddings.projection.weight"))
+ rename_keys.append(("patch_embed.proj.bias", "embeddings.patch_embeddings.projection.bias"))
+
+ for i in range(config.num_hidden_layers):
+ # layernorms
+ rename_keys.append((f"blocks.{i}.norm1.weight", f"encoder.layer.{i}.norm1.weight"))
+ rename_keys.append((f"blocks.{i}.norm1.bias", f"encoder.layer.{i}.norm1.bias"))
+ rename_keys.append((f"blocks.{i}.norm2.weight", f"encoder.layer.{i}.norm2.weight"))
+ rename_keys.append((f"blocks.{i}.norm2.bias", f"encoder.layer.{i}.norm2.bias"))
+ # MLP
+ if config.use_swiglu_ffn:
+ rename_keys.append((f"blocks.{i}.mlp.w12.weight", f"encoder.layer.{i}.mlp.w12.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.w12.bias", f"encoder.layer.{i}.mlp.w12.bias"))
+ rename_keys.append((f"blocks.{i}.mlp.w3.weight", f"encoder.layer.{i}.mlp.w3.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.w3.bias", f"encoder.layer.{i}.mlp.w3.bias"))
+ else:
+ rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"encoder.layer.{i}.mlp.fc1.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"encoder.layer.{i}.mlp.fc1.bias"))
+ rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"encoder.layer.{i}.mlp.fc2.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"encoder.layer.{i}.mlp.fc2.bias"))
+ # layerscale
+ rename_keys.append((f"blocks.{i}.ls1.gamma", f"encoder.layer.{i}.layer_scale1.lambda1"))
+ rename_keys.append((f"blocks.{i}.ls2.gamma", f"encoder.layer.{i}.layer_scale2.lambda1"))
+ # attention projection layer
+ rename_keys.append((f"blocks.{i}.attn.proj.weight", f"encoder.layer.{i}.attention.output.dense.weight"))
+ rename_keys.append((f"blocks.{i}.attn.proj.bias", f"encoder.layer.{i}.attention.output.dense.bias"))
+
+ # final layernorm
+ rename_keys.append(("norm.weight", "layernorm.weight"))
+ rename_keys.append(("norm.bias", "layernorm.bias"))
+
+ # fmt: on
+ return rename_keys
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+# we split up the matrix of each encoder layer into queries, keys and values
+def read_in_q_k_v(state_dict, config):
+ for i in range(config.num_hidden_layers):
+ # read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
+ in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
+ in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
+ # next, add query, keys and values (in that order) to the state dict
+ state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :]
+ state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
+ state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
+ config.hidden_size : config.hidden_size * 2, :
+ ]
+ state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
+ config.hidden_size : config.hidden_size * 2
+ ]
+ state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :]
+ state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
+
+
+# We will verify our results on an image of cute cats
+def prepare_img():
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ image = Image.open(requests.get(url, stream=True).raw)
+ return image
+
+
+@torch.no_grad()
+def convert_dinov2_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
+ """
+ Copy/paste/tweak model's weights to our DINOv2 structure.
+ """
+
+ # define default Dinov2 configuration
+ image_classifier = "1layer" in model_name
+ config = get_dinov2_config(model_name, image_classifier=image_classifier)
+
+ # load original model from torch hub
+ original_model = torch.hub.load("facebookresearch/dinov2", model_name.replace("_1layer", ""))
+ original_model.eval()
+
+ # load state_dict of original model, remove and rename some keys
+ state_dict = original_model.state_dict()
+ rename_keys = create_rename_keys(config)
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+ read_in_q_k_v(state_dict, config)
+
+ for key, val in state_dict.copy().items():
+ val = state_dict.pop(key)
+ if "w12" in key:
+ key = key.replace("w12", "weights_in")
+ if "w3" in key:
+ key = key.replace("w3", "weights_out")
+ state_dict[key] = val
+
+ # load HuggingFace model
+ if image_classifier:
+ model = Dinov2ForImageClassification(config).eval()
+ model.dinov2.load_state_dict(state_dict)
+ model_name_to_classifier_dict_url = {
+ "dinov2_vits14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_linear_head.pth",
+ "dinov2_vitb14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_linear_head.pth",
+ "dinov2_vitl14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_linear_head.pth",
+ "dinov2_vitg14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_linear_head.pth",
+ }
+ url = model_name_to_classifier_dict_url[model_name]
+ classifier_state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu")
+ model.classifier.weight = nn.Parameter(classifier_state_dict["weight"])
+ model.classifier.bias = nn.Parameter(classifier_state_dict["bias"])
+ else:
+ model = Dinov2Model(config).eval()
+ model.load_state_dict(state_dict)
+
+ # load image
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
+
+ # preprocess image
+ transformations = transforms.Compose(
+ [
+ transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
+ transforms.CenterCrop(224),
+ transforms.ToTensor(),
+ transforms.Normalize(
+ mean=IMAGENET_DEFAULT_MEAN, # these are RGB mean+std values
+ std=IMAGENET_DEFAULT_STD, # across a large photo dataset.
+ ),
+ ]
+ )
+
+ original_pixel_values = transformations(image).unsqueeze(0) # insert batch dimension
+
+ processor = BitImageProcessor(
+ size={"shortest_edge": 256},
+ resample=PILImageResampling.BICUBIC,
+ image_mean=IMAGENET_DEFAULT_MEAN,
+ image_std=IMAGENET_DEFAULT_STD,
+ )
+ pixel_values = processor(image, return_tensors="pt").pixel_values
+
+ assert torch.allclose(original_pixel_values, pixel_values)
+
+ with torch.no_grad():
+ outputs = model(pixel_values, output_hidden_states=True)
+ original_outputs = original_model(pixel_values)
+
+ # assert values
+ if image_classifier:
+ print("Predicted class:")
+ class_idx = outputs.logits.argmax(-1).item()
+ print(model.config.id2label[class_idx])
+ else:
+ assert outputs.last_hidden_state[:, 0].shape == original_outputs.shape
+ assert torch.allclose(outputs.last_hidden_state[:, 0], original_outputs, atol=1e-3)
+ print("Looks ok!")
+
+ if pytorch_dump_folder_path is not None:
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
+ processor.save_pretrained(pytorch_dump_folder_path)
+
+ if push_to_hub:
+ model_name_to_hf_name = {
+ "dinov2_vits14": "dinov2-small",
+ "dinov2_vitb14": "dinov2-base",
+ "dinov2_vitl14": "dinov2-large",
+ "dinov2_vitg14": "dinov2-giant",
+ "dinov2_vits14_1layer": "dinov2-small-imagenet1k-1-layer",
+ "dinov2_vitb14_1layer": "dinov2-base-imagenet1k-1-layer",
+ "dinov2_vitl14_1layer": "dinov2-large-imagenet1k-1-layer",
+ "dinov2_vitg14_1layer": "dinov2-giant-imagenet1k-1-layer",
+ }
+
+ name = model_name_to_hf_name[model_name]
+ model.push_to_hub(f"facebook/{name}")
+ processor.push_to_hub(f"facebook/{name}")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--model_name",
+ default="dinov2_vitb14",
+ type=str,
+ choices=[
+ "dinov2_vits14",
+ "dinov2_vitb14",
+ "dinov2_vitl14",
+ "dinov2_vitg14",
+ "dinov2_vits14_1layer",
+ "dinov2_vitb14_1layer",
+ "dinov2_vitl14_1layer",
+ "dinov2_vitg14_1layer",
+ ],
+ help="Name of the model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
+ )
+ parser.add_argument(
+ "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
+ )
+
+ args = parser.parse_args()
+ convert_dinov2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d1dc1cc8ebb89db8520a0eb8e23bf0eadb5f6197
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__pycache__/convert_dit_unilm_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__pycache__/convert_dit_unilm_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b303c51e6f6a8c94919ebfecc3eaba6fe5c84e4b
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__pycache__/convert_dit_unilm_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/convert_dit_unilm_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/convert_dit_unilm_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..c754b9bbf3eac7b6c5d50aa546383334c5adbf54
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/dit/convert_dit_unilm_to_pytorch.py
@@ -0,0 +1,231 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert DiT checkpoints from the unilm repository."""
+
+
+import argparse
+import json
+from pathlib import Path
+
+import requests
+import torch
+from huggingface_hub import hf_hub_download
+from PIL import Image
+
+from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
+from transformers.image_utils import PILImageResampling
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+# here we list all keys to be renamed (original name on the left, our name on the right)
+def create_rename_keys(config, has_lm_head=False, is_semantic=False):
+ prefix = "backbone." if is_semantic else ""
+
+ rename_keys = []
+ for i in range(config.num_hidden_layers):
+ # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
+ rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight"))
+ rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias"))
+ rename_keys.append(
+ (f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight")
+ )
+ rename_keys.append(
+ (f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias")
+ )
+ rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight"))
+ rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias"))
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight"))
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias"))
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight"))
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias"))
+
+ # projection layer + position embeddings
+ rename_keys.extend(
+ [
+ (f"{prefix}cls_token", "beit.embeddings.cls_token"),
+ (f"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"),
+ (f"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"),
+ (f"{prefix}pos_embed", "beit.embeddings.position_embeddings"),
+ ]
+ )
+
+ if has_lm_head:
+ # mask token + layernorm
+ rename_keys.extend(
+ [
+ ("mask_token", "beit.embeddings.mask_token"),
+ ("norm.weight", "layernorm.weight"),
+ ("norm.bias", "layernorm.bias"),
+ ]
+ )
+ else:
+ # layernorm + classification head
+ rename_keys.extend(
+ [
+ ("fc_norm.weight", "beit.pooler.layernorm.weight"),
+ ("fc_norm.bias", "beit.pooler.layernorm.bias"),
+ ("head.weight", "classifier.weight"),
+ ("head.bias", "classifier.bias"),
+ ]
+ )
+
+ return rename_keys
+
+
+# we split up the matrix of each encoder layer into queries, keys and values
+def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False):
+ for i in range(config.num_hidden_layers):
+ prefix = "backbone." if is_semantic else ""
+ # queries, keys and values
+ in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight")
+ q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias")
+ v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias")
+
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
+ : config.hidden_size, :
+ ]
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.query.bias"] = q_bias
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
+ config.hidden_size : config.hidden_size * 2, :
+ ]
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
+ -config.hidden_size :, :
+ ]
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.value.bias"] = v_bias
+
+ # gamma_1 and gamma_2
+ # we call them lambda because otherwise they are renamed when using .from_pretrained
+ gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1")
+ gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2")
+
+ state_dict[f"beit.encoder.layer.{i}.lambda_1"] = gamma_1
+ state_dict[f"beit.encoder.layer.{i}.lambda_2"] = gamma_2
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+# We will verify our results on an image of cute cats
+def prepare_img():
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ im = Image.open(requests.get(url, stream=True).raw)
+ return im
+
+
+@torch.no_grad()
+def convert_dit_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub=False):
+ """
+ Copy/paste/tweak model's weights to our BEiT structure.
+ """
+
+ # define default BEiT configuration
+ has_lm_head = False if "rvlcdip" in checkpoint_url else True
+ config = BeitConfig(use_absolute_position_embeddings=True, use_mask_token=has_lm_head)
+
+ # size of the architecture
+ if "large" in checkpoint_url or "dit-l" in checkpoint_url:
+ config.hidden_size = 1024
+ config.intermediate_size = 4096
+ config.num_hidden_layers = 24
+ config.num_attention_heads = 16
+
+ # labels
+ if "rvlcdip" in checkpoint_url:
+ config.num_labels = 16
+ repo_id = "huggingface/label-files"
+ filename = "rvlcdip-id2label.json"
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
+ id2label = {int(k): v for k, v in id2label.items()}
+ config.id2label = id2label
+ config.label2id = {v: k for k, v in id2label.items()}
+
+ # load state_dict of original model, remove and rename some keys
+ state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]
+
+ rename_keys = create_rename_keys(config, has_lm_head=has_lm_head)
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+ read_in_q_k_v(state_dict, config, has_lm_head=has_lm_head)
+
+ # load HuggingFace model
+ model = BeitForMaskedImageModeling(config) if has_lm_head else BeitForImageClassification(config)
+ model.eval()
+ model.load_state_dict(state_dict)
+
+ # Check outputs on an image
+ image_processor = BeitImageProcessor(
+ size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=False
+ )
+ image = prepare_img()
+
+ encoding = image_processor(images=image, return_tensors="pt")
+ pixel_values = encoding["pixel_values"]
+
+ outputs = model(pixel_values)
+ logits = outputs.logits
+
+ # verify logits
+ expected_shape = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192]
+ assert logits.shape == torch.Size(expected_shape), "Shape of logits not as expected"
+
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ print(f"Saving model to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+
+ if push_to_hub:
+ if has_lm_head:
+ model_name = "dit-base" if "base" in checkpoint_url else "dit-large"
+ else:
+ model_name = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip"
+ image_processor.push_to_hub(
+ repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
+ organization="nielsr",
+ commit_message="Add image processor",
+ use_temp_dir=True,
+ )
+ model.push_to_hub(
+ repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
+ organization="nielsr",
+ commit_message="Add model",
+ use_temp_dir=True,
+ )
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "--checkpoint_url",
+ default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
+ type=str,
+ help="URL to the original PyTorch checkpoint (.pth file).",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
+ )
+ parser.add_argument(
+ "--push_to_hub",
+ action="store_true",
+ )
+ args = parser.parse_args()
+ convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..070e0cc033fbf6c364d2405bbf6367312e79a18d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__init__.py
@@ -0,0 +1,68 @@
+# coding=utf-8
+# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_falcon"] = [
+ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "FalconForCausalLM",
+ "FalconModel",
+ "FalconPreTrainedModel",
+ "FalconForSequenceClassification",
+ "FalconForTokenClassification",
+ "FalconForQuestionAnswering",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_falcon import (
+ FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
+ FalconForCausalLM,
+ FalconForQuestionAnswering,
+ FalconForSequenceClassification,
+ FalconForTokenClassification,
+ FalconModel,
+ FalconPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a84ce149a722d8fc83c7a81aef824827ec565cdc
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/configuration_falcon.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/configuration_falcon.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..de214e14a7b23d71a01249ead16cc4f71fb73e40
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/configuration_falcon.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/convert_custom_code_checkpoint.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/convert_custom_code_checkpoint.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1e4d24806f2f92fea6743465e7bd9979ba020003
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/convert_custom_code_checkpoint.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/modeling_falcon.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/modeling_falcon.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..88b0be62afa710e0b0ae6c49288bb51a84b56ae8
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/modeling_falcon.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/configuration_falcon.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/configuration_falcon.py
new file mode 100644
index 0000000000000000000000000000000000000000..61d202b0960829e6ea953d72d581b5858553e2bf
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/configuration_falcon.py
@@ -0,0 +1,201 @@
+# coding=utf-8
+# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Falcon configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class FalconConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the
+ [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 65024):
+ Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`FalconModel`]
+ hidden_size (`int`, *optional*, defaults to 4544):
+ Dimension of the hidden representations.
+ num_hidden_layers (`int`, *optional*, defaults to 32):
+ Number of hidden layers in the Transformer decoder.
+ num_attention_heads (`int`, *optional*, defaults to 71):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the layer normalization layers.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether the model should return the last key/values attentions (not used by all models). Only relevant if
+ `config.is_decoder=True`.
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for MLP layers.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for attention layers.
+ num_kv_heads (`int`, *optional*):
+ Number of key-value heads to use per attention layer. If unset, defaults to the same value as
+ `num_attention_heads`.
+ alibi (`bool`, *optional*, defaults to `False`):
+ Whether to use ALiBi positional biases during self-attention.
+ new_decoder_architecture (`bool`, *optional*, defaults to `False`):
+ Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
+ arguments are ignored, as the new decoder always uses parallel attention.
+ multi_query (`bool`, *optional*, defaults to `True`):
+ Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
+ parallel_attn (`bool`, *optional*, defaults to `True`):
+ Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
+ instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
+ bias (`bool`, *optional*, defaults to `False`):
+ Whether to use bias on Linear layers.
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
+ The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained
+ Falcon models with RoPE support up to 2048 tokens.
+ rope_theta (`float`, *optional*, defaults to 10000.0):
+ The base period of the RoPE embeddings.
+ rope_scaling (`Dict`, *optional*):
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
+ these scaling strategies behave:
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
+ experimental feature, subject to breaking API changes in future versions.
+ bos_token_id (`int`, *optional*, defaults to 11):
+ The id of the "beginning-of-sequence" token.
+ eos_token_id (`int`, *optional*, defaults to 11):
+ The id of the "end-of-sequence" token.
+ ffn_hidden_size (`int`, *optional*):
+ The hidden size of the feedforward layer in the Transformer decoder.
+ defaults to 4x hidden dim
+ activation (`str`, *optional*, defaults to `"gelu"`):
+ The activation function used in the feedforward layer.
+
+ Example:
+
+ ```python
+ >>> from transformers import FalconModel, FalconConfig
+
+ >>> # Initializing a small (2-layer) Falcon configuration
+ >>> configuration = FalconConfig(num_hidden_layers=2)
+
+ >>> # Initializing a model from the small configuration
+ >>> model = FalconModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "falcon"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size=65024,
+ hidden_size=4544,
+ num_hidden_layers=32,
+ num_attention_heads=71,
+ layer_norm_epsilon=1e-5,
+ initializer_range=0.02,
+ use_cache=True,
+ hidden_dropout=0.0,
+ attention_dropout=0.0,
+ num_kv_heads=None,
+ alibi=False,
+ new_decoder_architecture=False,
+ multi_query=True,
+ parallel_attn=True,
+ bias=False,
+ max_position_embeddings=2048,
+ rope_theta=10000.0,
+ rope_scaling=None,
+ bos_token_id=11,
+ eos_token_id=11,
+ ffn_hidden_size=None,
+ activation="gelu",
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ # Backward compatibility with n_embed kwarg
+ n_embed = kwargs.pop("n_embed", None)
+ self.hidden_size = hidden_size if n_embed is None else n_embed
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.layer_norm_epsilon = layer_norm_epsilon
+ self.initializer_range = initializer_range
+ self.use_cache = use_cache
+ self.hidden_dropout = hidden_dropout
+ self.attention_dropout = attention_dropout
+ self.bos_token_id = bos_token_id
+ self.eos_token_id = eos_token_id
+ self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
+ self.alibi = alibi
+ self.new_decoder_architecture = new_decoder_architecture
+ self.multi_query = multi_query # Ignored when new_decoder_architecture is True
+ self.parallel_attn = parallel_attn
+ self.bias = bias
+ self.max_position_embeddings = max_position_embeddings
+ self.rope_theta = rope_theta
+ self.rope_scaling = rope_scaling
+ self.activation = activation
+ if ffn_hidden_size is None:
+ self.ffn_hidden_size = hidden_size * 4
+ else:
+ self.ffn_hidden_size = ffn_hidden_size
+ self._rope_scaling_validation()
+
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ @property
+ def head_dim(self):
+ return self.hidden_size // self.num_attention_heads
+
+ @property
+ def rotary(self):
+ return not self.alibi
+
+ def _rope_scaling_validation(self):
+ """
+ Validate the `rope_scaling` configuration.
+ """
+ if self.rope_scaling is None:
+ return
+
+ if self.alibi:
+ raise ValueError("`rope_scaling` is not supported when `alibi` is `True`.")
+
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
+ raise ValueError(
+ "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
+ )
+ rope_scaling_type = self.rope_scaling.get("type", None)
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
+ raise ValueError(
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
+ )
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/convert_custom_code_checkpoint.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/convert_custom_code_checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..0da817c3ffa73907c0215be12377f08fb5729a85
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/convert_custom_code_checkpoint.py
@@ -0,0 +1,74 @@
+import json
+from argparse import ArgumentParser
+from pathlib import Path
+
+
+"""
+This script converts Falcon custom code checkpoints to modern Falcon checkpoints that use code in the Transformers
+library. After conversion, performance (especially for generation) should improve and the checkpoint can be loaded
+without needing trust_remote_code=True.
+"""
+
+if __name__ == "__main__":
+ parser = ArgumentParser()
+ parser.add_argument(
+ "--checkpoint_dir",
+ type=Path,
+ required=True,
+ help="Directory containing a custom code checkpoint to convert to a modern Falcon checkpoint.",
+ )
+ args = parser.parse_args()
+
+ if not args.checkpoint_dir.is_dir():
+ raise ValueError("--checkpoint_dir argument should be a directory!")
+
+ if (
+ not (args.checkpoint_dir / "configuration_RW.py").is_file()
+ or not (args.checkpoint_dir / "modelling_RW.py").is_file()
+ ):
+ raise ValueError(
+ "The model directory should contain configuration_RW.py and modelling_RW.py files! Are you sure this is a custom code checkpoint?"
+ )
+ (args.checkpoint_dir / "configuration_RW.py").unlink()
+ (args.checkpoint_dir / "modelling_RW.py").unlink()
+
+ config = args.checkpoint_dir / "config.json"
+ text = config.read_text()
+ text = text.replace("RWForCausalLM", "FalconForCausalLM")
+ text = text.replace("RefinedWebModel", "falcon")
+ text = text.replace("RefinedWeb", "falcon")
+ json_config = json.loads(text)
+ del json_config["auto_map"]
+
+ if "n_head" in json_config:
+ json_config["num_attention_heads"] = json_config.pop("n_head")
+ if "n_layer" in json_config:
+ json_config["num_hidden_layers"] = json_config.pop("n_layer")
+ if "n_head_kv" in json_config:
+ json_config["num_kv_heads"] = json_config.pop("n_head_kv")
+ json_config["new_decoder_architecture"] = True
+ else:
+ json_config["new_decoder_architecture"] = False
+ bos_token_id = json_config.get("bos_token_id", 1)
+ eos_token_id = json_config.get("eos_token_id", 2)
+ config.unlink()
+ config.write_text(json.dumps(json_config, indent=2, sort_keys=True))
+
+ tokenizer_config = args.checkpoint_dir / "tokenizer_config.json"
+ if tokenizer_config.is_file():
+ text = tokenizer_config.read_text()
+ json_config = json.loads(text)
+ if json_config["tokenizer_class"] == "PreTrainedTokenizerFast":
+ json_config["model_input_names"] = ["input_ids", "attention_mask"]
+ tokenizer_config.unlink()
+ tokenizer_config.write_text(json.dumps(json_config, indent=2, sort_keys=True))
+
+ generation_config_path = args.checkpoint_dir / "generation_config.json"
+ generation_dict = {
+ "_from_model_config": True,
+ "bos_token_id": bos_token_id,
+ "eos_token_id": eos_token_id,
+ "transformers_version": "4.33.0.dev0",
+ }
+ generation_config_path.write_text(json.dumps(generation_dict, indent=2, sort_keys=True))
+ print("Done! Please double-check that the new checkpoint works as expected.")
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..50c493e352bc75f0a72cbda074c4b060cea1b087
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__init__.py
@@ -0,0 +1,60 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {
+ "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_lilt"] = [
+ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "LiltForQuestionAnswering",
+ "LiltForSequenceClassification",
+ "LiltForTokenClassification",
+ "LiltModel",
+ "LiltPreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_lilt import (
+ LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ LiltForQuestionAnswering,
+ LiltForSequenceClassification,
+ LiltForTokenClassification,
+ LiltModel,
+ LiltPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..743210c41b9e68b3a51d5d907f64755e2481b6d0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fe686bc278624ae58abe5199d7637a5071a16b06
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fdc1c29249e1ee4ac469600888c0740807a8c2b1
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/configuration_lilt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/configuration_lilt.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1cfa98c6c3c13048843447f2fe461b7c87cde0b
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/configuration_lilt.py
@@ -0,0 +1,131 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" LiLT configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class LiltConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`LiltModel`]. It is used to instantiate a LiLT
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the LiLT
+ [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) architecture.
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the LiLT model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`LiltModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer. Should be a multiple of 24.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`LiltModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ classifier_dropout (`float`, *optional*):
+ The dropout ratio for the classification head.
+ channel_shrink_ratio (`int`, *optional*, defaults to 4):
+ The shrink ratio compared to the `hidden_size` for the channel dimension of the layout embeddings.
+ max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
+ The maximum value that the 2D position embedding might ever be used with. Typically set this to something
+ large just in case (e.g., 1024).
+
+ Examples:
+
+ ```python
+ >>> from transformers import LiltConfig, LiltModel
+
+ >>> # Initializing a LiLT SCUT-DLVCLab/lilt-roberta-en-base style configuration
+ >>> configuration = LiltConfig()
+ >>> # Randomly initializing a model from the SCUT-DLVCLab/lilt-roberta-en-base style configuration
+ >>> model = LiltModel(configuration)
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "lilt"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=0,
+ position_embedding_type="absolute",
+ classifier_dropout=None,
+ channel_shrink_ratio=4,
+ max_2d_position_embeddings=1024,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.classifier_dropout = classifier_dropout
+ self.channel_shrink_ratio = channel_shrink_ratio
+ self.max_2d_position_embeddings = max_2d_position_embeddings
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/modeling_lilt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/modeling_lilt.py
new file mode 100644
index 0000000000000000000000000000000000000000..adf8edcdc2ab715af10c5343e43a6335a4229681
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/modeling_lilt.py
@@ -0,0 +1,1186 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch LiLT model."""
+
+import math
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPooling,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
+from .configuration_lilt import LiltConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "LiltConfig"
+
+
+from ..deprecated._archive_maps import LILT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class LiltTextEmbeddings(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+
+ # End copy
+ self.padding_idx = config.pad_token_id
+ self.position_embeddings = nn.Embedding(
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
+ )
+
+ def forward(
+ self,
+ input_ids=None,
+ token_type_ids=None,
+ position_ids=None,
+ inputs_embeds=None,
+ ):
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to(
+ input_ids.device
+ )
+ else:
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
+
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings, position_ids
+
+ def create_position_ids_from_input_ids(self, input_ids, padding_idx):
+ """
+ Args:
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
+ symbols are ignored. This is modified from fairseq's `utils.make_positions`.
+ x: torch.Tensor x:
+ Returns: torch.Tensor
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = input_ids.ne(padding_idx).int()
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask
+ return incremental_indices.long() + padding_idx
+
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
+ """
+ Args:
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.:
+ inputs_embeds: torch.Tensor
+ Returns: torch.Tensor
+ """
+ input_shape = inputs_embeds.size()[:-1]
+ sequence_length = input_shape[1]
+
+ position_ids = torch.arange(
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
+ )
+ return position_ids.unsqueeze(0).expand(input_shape)
+
+
+class LiltLayoutEmbeddings(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ # we divide the hidden_size by 6 here as there are 6 different layout embeddings,
+ # namely left_position, upper_position, right_position, lower_position, height, width
+ self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
+ self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
+ self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
+ self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
+
+ self.padding_idx = config.pad_token_id
+ self.box_position_embeddings = nn.Embedding(
+ config.max_position_embeddings,
+ config.hidden_size // config.channel_shrink_ratio,
+ padding_idx=self.padding_idx,
+ )
+ self.box_linear_embeddings = nn.Linear(
+ in_features=config.hidden_size, out_features=config.hidden_size // config.channel_shrink_ratio
+ )
+ self.LayerNorm = nn.LayerNorm(config.hidden_size // config.channel_shrink_ratio, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, bbox=None, position_ids=None):
+ try:
+ left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
+ upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
+ right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
+ lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
+ except IndexError as e:
+ raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e
+
+ h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
+ w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
+
+ spatial_position_embeddings = torch.cat(
+ [
+ left_position_embeddings,
+ upper_position_embeddings,
+ right_position_embeddings,
+ lower_position_embeddings,
+ h_position_embeddings,
+ w_position_embeddings,
+ ],
+ dim=-1,
+ )
+ spatial_position_embeddings = self.box_linear_embeddings(spatial_position_embeddings)
+ box_position_embeddings = self.box_position_embeddings(position_ids)
+
+ spatial_position_embeddings = spatial_position_embeddings + box_position_embeddings
+
+ spatial_position_embeddings = self.LayerNorm(spatial_position_embeddings)
+ spatial_position_embeddings = self.dropout(spatial_position_embeddings)
+
+ return spatial_position_embeddings
+
+
+class LiltSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.layout_query = nn.Linear(
+ config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio
+ )
+ self.layout_key = nn.Linear(
+ config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio
+ )
+ self.layout_value = nn.Linear(
+ config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio
+ )
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.channel_shrink_ratio = config.channel_shrink_ratio
+
+ def transpose_for_scores(self, x, r=1):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size // r)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states,
+ layout_inputs,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ ):
+ layout_value_layer = self.transpose_for_scores(self.layout_value(layout_inputs), r=self.channel_shrink_ratio)
+ layout_key_layer = self.transpose_for_scores(self.layout_key(layout_inputs), r=self.channel_shrink_ratio)
+ layout_query_layer = self.transpose_for_scores(self.layout_query(layout_inputs), r=self.channel_shrink_ratio)
+
+ mixed_query_layer = self.query(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+ layout_attention_scores = torch.matmul(layout_query_layer, layout_key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ seq_length = hidden_states.size()[1]
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ tmp_attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ tmp_layout_attention_scores = layout_attention_scores / math.sqrt(
+ self.attention_head_size // self.channel_shrink_ratio
+ )
+ attention_scores = tmp_attention_scores + tmp_layout_attention_scores
+ layout_attention_scores = tmp_layout_attention_scores + tmp_attention_scores
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
+ layout_attention_scores = layout_attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ layout_attention_probs = nn.Softmax(dim=-1)(layout_attention_scores)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ layout_attention_probs = self.dropout(layout_attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ layout_attention_probs = layout_attention_probs * head_mask
+
+ layout_context_layer = torch.matmul(layout_attention_probs, layout_value_layer)
+
+ layout_context_layer = layout_context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = layout_context_layer.size()[:-2] + (self.all_head_size // self.channel_shrink_ratio,)
+ layout_context_layer = layout_context_layer.view(*new_context_layer_shape)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (
+ ((context_layer, layout_context_layer), attention_probs)
+ if output_attentions
+ else ((context_layer, layout_context_layer),)
+ )
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
+class LiltSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class LiltAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = LiltSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = LiltSelfOutput(config)
+ self.pruned_heads = set()
+
+ ori_hidden_size = config.hidden_size
+ config.hidden_size = config.hidden_size // config.channel_shrink_ratio
+ self.layout_output = LiltSelfOutput(config)
+ config.hidden_size = ori_hidden_size
+
+ # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ layout_inputs: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ layout_inputs,
+ attention_mask,
+ head_mask,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0][0], hidden_states)
+ layout_attention_output = self.layout_output(self_outputs[0][1], layout_inputs)
+ outputs = ((attention_output, layout_attention_output),) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate
+class LiltIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput
+class LiltOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class LiltLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = LiltAttention(config)
+ self.intermediate = LiltIntermediate(config)
+ self.output = LiltOutput(config)
+
+ ori_hidden_size = config.hidden_size
+ ori_intermediate_size = config.intermediate_size
+ config.hidden_size = config.hidden_size // config.channel_shrink_ratio
+ config.intermediate_size = config.intermediate_size // config.channel_shrink_ratio
+ self.layout_intermediate = LiltIntermediate(config)
+ self.layout_output = LiltOutput(config)
+ config.hidden_size = ori_hidden_size
+ config.intermediate_size = ori_intermediate_size
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ layout_inputs: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_attention_outputs = self.attention(
+ hidden_states,
+ layout_inputs,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0][0]
+ layout_attention_output = self_attention_outputs[0][1]
+
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ layout_layer_output = apply_chunking_to_forward(
+ self.layout_feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, layout_attention_output
+ )
+ outputs = ((layer_output, layout_layer_output),) + outputs
+
+ return outputs
+
+ # Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+ def layout_feed_forward_chunk(self, attention_output):
+ intermediate_output = self.layout_intermediate(attention_output)
+ layer_output = self.layout_output(intermediate_output, attention_output)
+ return layer_output
+
+
+class LiltEncoder(nn.Module):
+ # Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Lilt
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([LiltLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ layout_inputs: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ layout_inputs,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ layout_inputs,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0][0]
+ layout_inputs = layer_outputs[0][1]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ all_hidden_states,
+ all_self_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler
+class LiltPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class LiltPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = LiltConfig
+ base_model_prefix = "lilt"
+ supports_gradient_checkpointing = True
+ _no_split_modules = []
+
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+LILT_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`LiltConfig`]): Model configuration class with all the parameters of the
+ model. Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+LILT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*):
+ Bounding boxes of each input sequence tokens. Selected in the range `[0,
+ config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
+ format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
+ y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization.
+
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare LiLT Model transformer outputting raw hidden-states without any specific head on top.",
+ LILT_START_DOCSTRING,
+)
+class LiltModel(LiltPreTrainedModel):
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = LiltTextEmbeddings(config)
+ self.layout_embeddings = LiltLayoutEmbeddings(config)
+ self.encoder = LiltEncoder(config)
+
+ self.pooler = LiltPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ bbox: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
+ r"""
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, AutoModel
+ >>> from datasets import load_dataset
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
+ >>> model = AutoModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
+
+ >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
+ >>> example = dataset[0]
+ >>> words = example["tokens"]
+ >>> boxes = example["bboxes"]
+
+ >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
+
+ >>> outputs = model(**encoding)
+ >>> last_hidden_states = outputs.last_hidden_state
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if bbox is None:
+ bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device)
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length)), device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output, position_ids = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ )
+
+ layout_embedding_output = self.layout_embeddings(bbox=bbox, position_ids=position_ids)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ layout_embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ LiLT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
+ output) e.g. for GLUE tasks.
+ """,
+ LILT_START_DOCSTRING,
+)
+class LiltForSequenceClassification(LiltPreTrainedModel):
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Lilt, roberta->lilt
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.lilt = LiltModel(config, add_pooling_layer=False)
+ self.classifier = LiltClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ bbox: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
+ >>> from datasets import load_dataset
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
+ >>> model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
+
+ >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
+ >>> example = dataset[0]
+ >>> words = example["tokens"]
+ >>> boxes = example["bboxes"]
+
+ >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
+
+ >>> outputs = model(**encoding)
+ >>> predicted_class_idx = outputs.logits.argmax(-1).item()
+ >>> predicted_class = model.config.id2label[predicted_class_idx]
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.lilt(
+ input_ids,
+ bbox=bbox,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Lilt Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ LILT_START_DOCSTRING,
+)
+class LiltForTokenClassification(LiltPreTrainedModel):
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Lilt, roberta->lilt
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.lilt = LiltModel(config, add_pooling_layer=False)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ bbox: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, AutoModelForTokenClassification
+ >>> from datasets import load_dataset
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
+ >>> model = AutoModelForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
+
+ >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
+ >>> example = dataset[0]
+ >>> words = example["tokens"]
+ >>> boxes = example["bboxes"]
+
+ >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
+
+ >>> outputs = model(**encoding)
+ >>> predicted_class_indices = outputs.logits.argmax(-1)
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.lilt(
+ input_ids,
+ bbox=bbox,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Lilt
+class LiltClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ def forward(self, features, **kwargs):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = torch.tanh(x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+@add_start_docstrings(
+ """
+ Lilt Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ LILT_START_DOCSTRING,
+)
+class LiltForQuestionAnswering(LiltPreTrainedModel):
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Lilt, roberta->lilt
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.lilt = LiltModel(config, add_pooling_layer=False)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ bbox: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, AutoModelForQuestionAnswering
+ >>> from datasets import load_dataset
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
+ >>> model = AutoModelForQuestionAnswering.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
+
+ >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
+ >>> example = dataset[0]
+ >>> words = example["tokens"]
+ >>> boxes = example["bboxes"]
+
+ >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
+
+ >>> outputs = model(**encoding)
+
+ >>> answer_start_index = outputs.start_logits.argmax()
+ >>> answer_end_index = outputs.end_logits.argmax()
+
+ >>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1]
+ >>> predicted_answer = tokenizer.decode(predict_answer_tokens)
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.lilt(
+ input_ids,
+ bbox=bbox,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/m2m_100/__pycache__/configuration_m2m_100.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/m2m_100/__pycache__/configuration_m2m_100.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9819d901ff3c2ad9d46ef5f3aa4cbb11a6174d16
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/m2m_100/__pycache__/configuration_m2m_100.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/m2m_100/__pycache__/modeling_m2m_100.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/m2m_100/__pycache__/modeling_m2m_100.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2005f2f02077fbe7b84c4e51bd32f085e5bd4363
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/m2m_100/__pycache__/modeling_m2m_100.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/m2m_100/__pycache__/tokenization_m2m_100.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/m2m_100/__pycache__/tokenization_m2m_100.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..00190a3b100a975ac75383735f5214cb44376fa8
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/m2m_100/__pycache__/tokenization_m2m_100.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c09fdeefdef4d37d5b26e7d68db1054adcfa6213
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/configuration_nllb_moe.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/configuration_nllb_moe.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3e270617be254916f35560d4476bf52355d1d510
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/configuration_nllb_moe.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1454e4fe9768c38237e270b676347801b241e5bf
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/modeling_nllb_moe.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/modeling_nllb_moe.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5e175a91d79a10b59119c697bc0c579c0ec6f409
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/modeling_nllb_moe.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4825eda165050afc19e190a56f5da6ac847e6e78
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__init__.py
@@ -0,0 +1,64 @@
+# coding=utf-8
+# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
+# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
+# All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_torch_available,
+ is_vision_available,
+)
+
+
+_import_structure = {
+ "configuration_pvt_v2": ["PvtV2Config"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_pvt_v2"] = [
+ "PvtV2ForImageClassification",
+ "PvtV2Model",
+ "PvtV2PreTrainedModel",
+ "PvtV2Backbone",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_pvt_v2 import PvtV2Config
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_pvt_v2 import (
+ PvtV2Backbone,
+ PvtV2ForImageClassification,
+ PvtV2Model,
+ PvtV2PreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..75c2d16e945404bb97744c797ed42194ceb69b40
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/configuration_pvt_v2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/configuration_pvt_v2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..aaa2c9cab6fde1805db81e970287ece85d98ce2a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/configuration_pvt_v2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/convert_pvt_v2_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/convert_pvt_v2_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a563ff83d5140b735ef06cfa5aab511b458f359f
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/convert_pvt_v2_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/modeling_pvt_v2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/modeling_pvt_v2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..69e60c5136dc4cfb72006c93591591db99916536
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/__pycache__/modeling_pvt_v2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/configuration_pvt_v2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/configuration_pvt_v2.py
new file mode 100644
index 0000000000000000000000000000000000000000..f6d7de299ba37dc108e2007c193ae76bd2567285
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/configuration_pvt_v2.py
@@ -0,0 +1,153 @@
+# coding=utf-8
+# Copyright 2024 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
+# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
+# All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Pvt V2 model configuration"""
+
+from typing import Callable, List, Tuple, Union
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
+
+
+logger = logging.get_logger(__name__)
+
+
+class PvtV2Config(BackboneConfigMixin, PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`PvtV2Model`]. It is used to instantiate a Pvt V2
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the Pvt V2 B0
+ [OpenGVLab/pvt_v2_b0](https://huggingface.co/OpenGVLab/pvt_v2_b0) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ image_size (`Union[int, Tuple[int, int]]`, *optional*, defaults to 224):
+ The input image size. Pass int value for square image, or tuple of (height, width).
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ num_encoder_blocks (`[int]`, *optional*, defaults to 4):
+ The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
+ depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
+ The number of layers in each encoder block.
+ sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
+ Spatial reduction ratios in each encoder block.
+ hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`):
+ Dimension of each of the encoder blocks.
+ patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
+ Patch size for overlapping patch embedding before each encoder block.
+ strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
+ Stride for overlapping patch embedding before each encoder block.
+ num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
+ Number of attention heads for each attention layer in each block of the Transformer encoder.
+ mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`):
+ Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
+ encoder blocks.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
+ The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the layer normalization layers.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether or not a learnable bias should be added to the queries, keys and values.
+ linear_attention (`bool`, *optional*, defaults to `False`):
+ Use linear attention complexity. If set to True, `sr_ratio` is ignored and average pooling is used for
+ dimensionality reduction in the attention layers rather than strided convolution.
+ out_features (`List[str]`, *optional*):
+ If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
+ (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
+ corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
+ out_indices (`List[int]`, *optional*):
+ If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
+ many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
+ If unset and `out_features` is unset, will default to the last stage.
+ Example:
+
+ ```python
+ >>> from transformers import PvtV2Model, PvtV2Config
+
+ >>> # Initializing a pvt_v2_b0 style configuration
+ >>> configuration = PvtV2Config()
+
+ >>> # Initializing a model from the OpenGVLab/pvt_v2_b0 style configuration
+ >>> model = PvtV2Model(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "pvt_v2"
+
+ def __init__(
+ self,
+ image_size: Union[int, Tuple[int, int]] = 224,
+ num_channels: int = 3,
+ num_encoder_blocks: int = 4,
+ depths: List[int] = [2, 2, 2, 2],
+ sr_ratios: List[int] = [8, 4, 2, 1],
+ hidden_sizes: List[int] = [32, 64, 160, 256],
+ patch_sizes: List[int] = [7, 3, 3, 3],
+ strides: List[int] = [4, 2, 2, 2],
+ num_attention_heads: List[int] = [1, 2, 5, 8],
+ mlp_ratios: List[int] = [8, 8, 4, 4],
+ hidden_act: Union[str, Callable] = "gelu",
+ hidden_dropout_prob: float = 0.0,
+ attention_probs_dropout_prob: float = 0.0,
+ initializer_range: float = 0.02,
+ drop_path_rate: float = 0.0,
+ layer_norm_eps: float = 1e-6,
+ qkv_bias: bool = True,
+ linear_attention: bool = False,
+ out_features=None,
+ out_indices=None,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ image_size = (image_size, image_size) if isinstance(image_size, int) else image_size
+
+ self.image_size = image_size
+ self.num_channels = num_channels
+ self.num_encoder_blocks = num_encoder_blocks
+ self.depths = depths
+ self.sr_ratios = sr_ratios
+ self.hidden_sizes = hidden_sizes
+ self.patch_sizes = patch_sizes
+ self.strides = strides
+ self.mlp_ratios = mlp_ratios
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.drop_path_rate = drop_path_rate
+ self.layer_norm_eps = layer_norm_eps
+ self.qkv_bias = qkv_bias
+ self.linear_attention = linear_attention
+ self.stage_names = [f"stage{idx}" for idx in range(1, len(depths) + 1)]
+ self._out_features, self._out_indices = get_aligned_output_features_output_indices(
+ out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/convert_pvt_v2_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/convert_pvt_v2_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..e397cb244c0e0d1b460cd3b801d4c9a519f60d5a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/convert_pvt_v2_to_pytorch.py
@@ -0,0 +1,295 @@
+# coding=utf-8
+# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
+# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
+# All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert PvtV2 checkpoints from the original library."""
+
+import argparse
+from pathlib import Path
+
+import requests
+import torch
+from PIL import Image
+
+from transformers import PvtImageProcessor, PvtV2Config, PvtV2ForImageClassification
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+# here we list all keys to be renamed (original name on the left, our name on the right)
+def create_rename_keys(config):
+ rename_keys = []
+ for i in range(config.num_encoder_blocks):
+ # Remane embedings' paramters
+ rename_keys.append(
+ (f"patch_embed{i + 1}.proj.weight", f"pvt_v2.encoder.layers.{i}.patch_embedding.proj.weight")
+ )
+ rename_keys.append((f"patch_embed{i + 1}.proj.bias", f"pvt_v2.encoder.layers.{i}.patch_embedding.proj.bias"))
+ rename_keys.append(
+ (f"patch_embed{i + 1}.norm.weight", f"pvt_v2.encoder.layers.{i}.patch_embedding.layer_norm.weight")
+ )
+ rename_keys.append(
+ (f"patch_embed{i + 1}.norm.bias", f"pvt_v2.encoder.layers.{i}.patch_embedding.layer_norm.bias")
+ )
+ rename_keys.append((f"norm{i + 1}.weight", f"pvt_v2.encoder.layers.{i}.layer_norm.weight"))
+ rename_keys.append((f"norm{i + 1}.bias", f"pvt_v2.encoder.layers.{i}.layer_norm.bias"))
+
+ for j in range(config.depths[i]):
+ # Rename blocks' parameters
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.q.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.query.weight")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.q.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.query.bias")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.kv.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.kv.weight")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.kv.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.kv.bias")
+ )
+
+ if config.linear_attention or config.sr_ratios[i] > 1:
+ rename_keys.append(
+ (
+ f"block{i + 1}.{j}.attn.norm.weight",
+ f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.layer_norm.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"block{i + 1}.{j}.attn.norm.bias",
+ f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.layer_norm.bias",
+ )
+ )
+ rename_keys.append(
+ (
+ f"block{i + 1}.{j}.attn.sr.weight",
+ f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.spatial_reduction.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"block{i + 1}.{j}.attn.sr.bias",
+ f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.spatial_reduction.bias",
+ )
+ )
+
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.proj.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.proj.weight")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.attn.proj.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.proj.bias")
+ )
+
+ rename_keys.append(
+ (f"block{i + 1}.{j}.norm1.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.layer_norm_1.weight")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.norm1.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.layer_norm_1.bias")
+ )
+
+ rename_keys.append(
+ (f"block{i + 1}.{j}.norm2.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.layer_norm_2.weight")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.norm2.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.layer_norm_2.bias")
+ )
+
+ rename_keys.append(
+ (f"block{i + 1}.{j}.mlp.fc1.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dense1.weight")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.mlp.fc1.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dense1.bias")
+ )
+ rename_keys.append(
+ (
+ f"block{i + 1}.{j}.mlp.dwconv.dwconv.weight",
+ f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dwconv.dwconv.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"block{i + 1}.{j}.mlp.dwconv.dwconv.bias",
+ f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dwconv.dwconv.bias",
+ )
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.mlp.fc2.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dense2.weight")
+ )
+ rename_keys.append(
+ (f"block{i + 1}.{j}.mlp.fc2.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dense2.bias")
+ )
+
+ rename_keys.extend(
+ [
+ ("head.weight", "classifier.weight"),
+ ("head.bias", "classifier.bias"),
+ ]
+ )
+
+ return rename_keys
+
+
+# we split up the matrix of each encoder layer into queries, keys and values
+def read_in_k_v(state_dict, config):
+ # for each of the encoder blocks:
+ for i in range(config.num_encoder_blocks):
+ for j in range(config.depths[i]):
+ # read in weights + bias of keys and values (which is a single matrix in the original implementation)
+ kv_weight = state_dict.pop(f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.kv.weight")
+ kv_bias = state_dict.pop(f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.kv.bias")
+ # next, add keys and values (in that order) to the state dict
+ state_dict[f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.key.weight"] = kv_weight[
+ : config.hidden_sizes[i], :
+ ]
+ state_dict[f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.key.bias"] = kv_bias[: config.hidden_sizes[i]]
+
+ state_dict[f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.value.weight"] = kv_weight[
+ config.hidden_sizes[i] :, :
+ ]
+ state_dict[f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.value.bias"] = kv_bias[
+ config.hidden_sizes[i] :
+ ]
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+# We will verify our results on an image of cute cats
+def prepare_img():
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ im = Image.open(requests.get(url, stream=True).raw)
+ return im
+
+
+@torch.no_grad()
+def convert_pvt_v2_checkpoint(pvt_v2_size, pvt_v2_checkpoint, pytorch_dump_folder_path, verify_imagenet_weights=False):
+ """
+ Copy/paste/tweak model's weights to our PVT structure.
+ """
+
+ # define default PvtV2 configuration
+ if pvt_v2_size == "b0":
+ config_path = "OpenGVLab/pvt_v2_b0"
+ elif pvt_v2_size == "b1":
+ config_path = "OpenGVLab/pvt_v2_b1"
+ elif pvt_v2_size == "b2":
+ config_path = "OpenGVLab/pvt_v2_b2"
+ elif pvt_v2_size == "b2-linear":
+ config_path = "OpenGVLab/pvt_v2_b2_linear"
+ elif pvt_v2_size == "b3":
+ config_path = "OpenGVLab/pvt_v2_b3"
+ elif pvt_v2_size == "b4":
+ config_path = "OpenGVLab/pvt_v2_b4"
+ elif pvt_v2_size == "b5":
+ config_path = "OpenGVLab/pvt_v2_b5"
+ else:
+ raise ValueError(
+ f"Available model sizes: 'b0', 'b1', 'b2', 'b2-linear', 'b3', 'b4', 'b5', but "
+ f"'{pvt_v2_size}' was given"
+ )
+ config = PvtV2Config.from_pretrained(config_path)
+ # load original model from https://github.com/whai362/PVT
+ state_dict = torch.load(pvt_v2_checkpoint, map_location="cpu")
+
+ rename_keys = create_rename_keys(config)
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+ read_in_k_v(state_dict, config)
+
+ # load HuggingFace model
+ model = PvtV2ForImageClassification(config).eval()
+ model.load_state_dict(state_dict)
+ image_processor = PvtImageProcessor(size=config.image_size)
+
+ if verify_imagenet_weights:
+ # Check outputs on an image, prepared by PvtImageProcessor
+ print("Verifying conversion of pretrained ImageNet weights...")
+ encoding = image_processor(images=prepare_img(), return_tensors="pt")
+ pixel_values = encoding["pixel_values"]
+ outputs = model(pixel_values)
+ logits = outputs.logits.detach().cpu()
+
+ if pvt_v2_size == "b0":
+ expected_slice_logits = torch.tensor([-1.1939, -1.4547, -0.1076])
+ elif pvt_v2_size == "b1":
+ expected_slice_logits = torch.tensor([-0.4716, -0.7335, -0.4600])
+ elif pvt_v2_size == "b2":
+ expected_slice_logits = torch.tensor([0.0795, -0.3170, 0.2247])
+ elif pvt_v2_size == "b2-linear":
+ expected_slice_logits = torch.tensor([0.0968, 0.3937, -0.4252])
+ elif pvt_v2_size == "b3":
+ expected_slice_logits = torch.tensor([-0.4595, -0.2870, 0.0940])
+ elif pvt_v2_size == "b4":
+ expected_slice_logits = torch.tensor([-0.1769, -0.1747, -0.0143])
+ elif pvt_v2_size == "b5":
+ expected_slice_logits = torch.tensor([-0.2943, -0.1008, 0.6812])
+ else:
+ raise ValueError(
+ f"Available model sizes: 'b0', 'b1', 'b2', 'b2-linear', 'b3', 'b4', 'b5', but "
+ f"'{pvt_v2_size}' was given"
+ )
+
+ assert torch.allclose(
+ logits[0, :3], expected_slice_logits, atol=1e-4
+ ), "ImageNet weights not converted successfully."
+
+ print("ImageNet weights verified, conversion successful.")
+
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ print(f"Saving model pytorch_model.bin to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--pvt_v2_size",
+ default="b0",
+ type=str,
+ help="Size of the PVTv2 pretrained model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pvt_v2_checkpoint",
+ default="pvt_v2_b0.pth",
+ type=str,
+ help="Checkpoint of the PVTv2 pretrained model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
+ )
+ parser.add_argument(
+ "--verify-imagenet-weights",
+ action="store_true",
+ default=False,
+ help="Verifies the correct conversion of author-published pretrained ImageNet weights.",
+ )
+
+ args = parser.parse_args()
+ convert_pvt_v2_checkpoint(
+ pvt_v2_size=args.pvt_v2_size,
+ pvt_v2_checkpoint=args.pvt_v2_checkpoint,
+ pytorch_dump_folder_path=args.pytorch_dump_folder_path,
+ verify_imagenet_weights=args.verify_imagenet_weights,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/modeling_pvt_v2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/modeling_pvt_v2.py
new file mode 100644
index 0000000000000000000000000000000000000000..a2e1e7a674524f52be90e8d05b05db462d8aab3c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/pvt_v2/modeling_pvt_v2.py
@@ -0,0 +1,700 @@
+# coding=utf-8
+# Copyright 2024 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
+# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
+# All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch PVTv2 model."""
+
+import math
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BackboneOutput, BaseModelOutput, ImageClassifierOutput
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from ...utils.backbone_utils import BackboneMixin
+from .configuration_pvt_v2 import PvtV2Config
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "PvtV2Config"
+
+_CHECKPOINT_FOR_DOC = "OpenGVLab/pvt_v2_b0"
+_EXPECTED_OUTPUT_SHAPE = [1, 256, 7, 7]
+
+_IMAGE_CLASS_CHECKPOINT = "OpenGVLab/pvt_v2_b0"
+_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_281" # ImageNet ID for "tabby, tabby cat"
+
+
+# Copied from transformers.models.beit.modeling_beit.drop_path
+def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
+ """
+ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+
+ Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
+ however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
+ layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
+ argument.
+ """
+ if drop_prob == 0.0 or not training:
+ return input
+ keep_prob = 1 - drop_prob
+ shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
+ random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
+ random_tensor.floor_() # binarize
+ output = input.div(keep_prob) * random_tensor
+ return output
+
+
+# Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Pvt
+class PvtV2DropPath(nn.Module):
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
+
+ def __init__(self, drop_prob: Optional[float] = None) -> None:
+ super().__init__()
+ self.drop_prob = drop_prob
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ return drop_path(hidden_states, self.drop_prob, self.training)
+
+ def extra_repr(self) -> str:
+ return "p={}".format(self.drop_prob)
+
+
+class PvtV2OverlapPatchEmbeddings(nn.Module):
+ """Image to Patch Embedding"""
+
+ def __init__(self, config: PvtV2Config, layer_idx: int):
+ super().__init__()
+ patch_size = config.patch_sizes[layer_idx]
+ patch_size = (patch_size, patch_size) if isinstance(patch_size, int) else patch_size
+ stride = config.strides[layer_idx]
+ num_channels = config.num_channels if layer_idx == 0 else config.hidden_sizes[layer_idx - 1]
+ hidden_size = config.hidden_sizes[layer_idx]
+ self.patch_size = patch_size
+ self.proj = nn.Conv2d(
+ num_channels,
+ hidden_size,
+ kernel_size=patch_size,
+ stride=stride,
+ padding=(patch_size[0] // 2, patch_size[1] // 2),
+ )
+ self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, pixel_values):
+ embeddings = self.proj(pixel_values)
+ _, _, height, width = embeddings.shape
+ embeddings = embeddings.flatten(2).transpose(1, 2)
+ embeddings = self.layer_norm(embeddings)
+ return embeddings, height, width
+
+
+class PvtV2DepthWiseConv(nn.Module):
+ """
+ Depth-wise (DW) convolution to infuse positional information using zero-padding. Depth-wise convolutions
+ have an equal number of groups to the number of input channels, meaning one filter per input channel. This
+ reduces the overall parameters and compute costs since the key purpose of this layer is position encoding.
+ """
+
+ def __init__(self, config: PvtV2Config, dim: int = 768):
+ super().__init__()
+ self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
+
+ def forward(self, hidden_states, height, width):
+ batch_size, seq_len, num_channels = hidden_states.shape
+ hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width)
+ hidden_states = self.dwconv(hidden_states)
+ hidden_states = hidden_states.flatten(2).transpose(1, 2)
+
+ return hidden_states
+
+
+class PvtV2SelfAttention(nn.Module):
+ """Efficient self-attention mechanism."""
+
+ def __init__(self, config: PvtV2Config, hidden_size: int, num_attention_heads: int, spatial_reduction_ratio: int):
+ super().__init__()
+ self.linear_attention = config.linear_attention
+ self.pruned_heads = set()
+ self.hidden_size = hidden_size
+ self.num_attention_heads = num_attention_heads
+
+ if self.hidden_size % self.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({self.num_attention_heads})"
+ )
+
+ self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.attn_drop = nn.Dropout(config.attention_probs_dropout_prob)
+ self.proj = nn.Linear(self.hidden_size, self.hidden_size)
+ self.proj_drop = nn.Dropout(config.hidden_dropout_prob)
+
+ self.spatial_reduction_ratio = spatial_reduction_ratio
+ if self.linear_attention:
+ self.pool = nn.AdaptiveAvgPool2d(7)
+ self.spatial_reduction = nn.Conv2d(self.hidden_size, self.hidden_size, kernel_size=1, stride=1)
+ self.layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
+ self.act = nn.GELU()
+ elif spatial_reduction_ratio > 1:
+ self.spatial_reduction = nn.Conv2d(
+ self.hidden_size, self.hidden_size, kernel_size=spatial_reduction_ratio, stride=spatial_reduction_ratio
+ )
+ self.layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
+
+ def transpose_for_scores(self, hidden_states) -> torch.Tensor:
+ new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ hidden_states = hidden_states.view(new_shape)
+ return hidden_states.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ height: int,
+ width: int,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor]:
+ batch_size, seq_len, num_channels = hidden_states.shape
+ query_layer = self.transpose_for_scores(self.query(hidden_states))
+
+ if self.linear_attention:
+ hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
+ hidden_states = (
+ self.spatial_reduction(self.pool(hidden_states)).reshape(batch_size, num_channels, -1).permute(0, 2, 1)
+ )
+ hidden_states = self.act(self.layer_norm(hidden_states))
+ elif self.spatial_reduction_ratio > 1:
+ hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
+ hidden_states = (
+ self.spatial_reduction(hidden_states).reshape(batch_size, num_channels, -1).permute(0, 2, 1)
+ )
+ hidden_states = self.layer_norm(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.attn_drop(attention_probs)
+ context_layer = (attention_probs @ value_layer).transpose(1, 2).reshape(batch_size, seq_len, num_channels)
+ context_layer = self.proj(context_layer)
+ context_layer = self.proj_drop(context_layer)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.query = prune_linear_layer(self.query, index)
+ self.key = prune_linear_layer(self.key, index)
+ self.value = prune_linear_layer(self.value, index)
+ self.proj = prune_linear_layer(self.proj, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.num_attention_heads = self.num_attention_heads - len(heads)
+ self.all_head_size = self.attention_head_size * self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+
+class PvtV2ConvFeedForwardNetwork(nn.Module):
+ def __init__(
+ self,
+ config: PvtV2Config,
+ in_features: int,
+ hidden_features: Optional[int] = None,
+ out_features: Optional[int] = None,
+ ):
+ super().__init__()
+ out_features = out_features if out_features is not None else in_features
+ self.dense1 = nn.Linear(in_features, hidden_features)
+ self.dwconv = PvtV2DepthWiseConv(config, hidden_features)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.dense2 = nn.Linear(hidden_features, out_features)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.relu = nn.ReLU() if config.linear_attention else nn.Identity()
+
+ def forward(self, hidden_states: torch.Tensor, height, width) -> torch.Tensor:
+ hidden_states = self.dense1(hidden_states)
+ hidden_states = self.relu(hidden_states)
+ hidden_states = self.dwconv(hidden_states, height, width)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.dense2(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ return hidden_states
+
+
+class PvtV2BlockLayer(nn.Module):
+ def __init__(self, config: PvtV2Config, layer_idx: int, drop_path: float = 0.0):
+ super().__init__()
+ hidden_size: int = config.hidden_sizes[layer_idx]
+ num_attention_heads: int = config.num_attention_heads[layer_idx]
+ spatial_reduction_ratio: int = config.sr_ratios[layer_idx]
+ mlp_ratio: float = config.mlp_ratios[layer_idx]
+ self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
+ self.attention = PvtV2SelfAttention(
+ config=config,
+ hidden_size=hidden_size,
+ num_attention_heads=num_attention_heads,
+ spatial_reduction_ratio=spatial_reduction_ratio,
+ )
+ self.drop_path = PvtV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+ self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
+ mlp_hidden_size = int(hidden_size * mlp_ratio)
+ self.mlp = PvtV2ConvFeedForwardNetwork(config=config, in_features=hidden_size, hidden_features=mlp_hidden_size)
+
+ def forward(self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False):
+ self_attention_outputs = self.attention(
+ hidden_states=self.layer_norm_1(hidden_states),
+ height=height,
+ width=width,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:]
+
+ attention_output = self.drop_path(attention_output)
+ hidden_states = attention_output + hidden_states
+
+ mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)
+
+ mlp_output = self.drop_path(mlp_output)
+ layer_output = hidden_states + mlp_output
+
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+
+class PvtV2EncoderLayer(nn.Module):
+ def __init__(self, config: PvtV2Config, layer_idx: int):
+ super().__init__()
+ self.patch_embedding = PvtV2OverlapPatchEmbeddings(
+ config=config,
+ layer_idx=layer_idx,
+ )
+ # Transformer block
+ # stochastic depth decay rule
+ drop_path_decays = torch.linspace(0, config.drop_path_rate, sum(config.depths)).tolist()
+ block_layers = []
+ for block_idx in range(config.depths[layer_idx]):
+ block_layers.append(
+ PvtV2BlockLayer(
+ config=config,
+ layer_idx=layer_idx,
+ drop_path=drop_path_decays[sum(config.depths[:layer_idx]) + block_idx],
+ )
+ )
+ self.blocks = nn.ModuleList(block_layers)
+
+ # Layer norm
+ self.layer_norm = nn.LayerNorm(config.hidden_sizes[layer_idx], eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states, output_attentions):
+ all_self_attentions = () if output_attentions else None
+ # first, obtain patch embeddings
+ hidden_states, height, width = self.patch_embedding(hidden_states)
+ # second, send embeddings through blocks
+ for block in self.blocks:
+ layer_outputs = block(hidden_states, height, width, output_attentions)
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attentions += (layer_outputs[1],)
+ # third, apply layer norm
+ hidden_states = self.layer_norm(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (all_self_attentions,)
+
+ return outputs, height, width
+
+
+class PvtV2Encoder(nn.Module):
+ def __init__(self, config: PvtV2Config):
+ super().__init__()
+ self.config = config
+ self.gradient_checkpointing = False
+
+ # encoder layers
+ self.layers = nn.ModuleList([PvtV2EncoderLayer(config, i) for i in range(config.num_encoder_blocks)])
+
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple, BaseModelOutput]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ batch_size = pixel_values.shape[0]
+ hidden_states = pixel_values
+ for idx, layer in enumerate(self.layers):
+ if self.gradient_checkpointing and self.training:
+ layer_output = self._gradient_checkpointing_func(layer.__call__, hidden_states, output_attentions)
+ else:
+ layer_output = layer(hidden_states, output_attentions)
+ outputs, height, width = layer_output
+ hidden_states = outputs[0]
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (outputs[1],)
+ # reshape back to (batch_size, num_channels, height, width)
+ hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class PvtV2PreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = PvtV2Config
+ base_model_prefix = "pvt_v2"
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
+ # `trunc_normal_cpu` not implemented in `half` issues
+ module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, nn.Conv2d):
+ fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
+ fan_out //= module.groups
+ module.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
+ if module.bias is not None:
+ module.bias.data.zero_()
+
+
+PVT_V2_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`~PvtV2Config`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+PVT_V2_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
+ [`PvtImageProcessor.__call__`] for details.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Pvt-v2 encoder outputting raw hidden-states without any specific head on top.",
+ PVT_V2_START_DOCSTRING,
+)
+class PvtV2Model(PvtV2PreTrainedModel):
+ def __init__(self, config: PvtV2Config):
+ super().__init__(config)
+ self.config = config
+
+ # hierarchical Transformer encoder
+ self.encoder = PvtV2Encoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(PVT_V2_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="vision",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ encoder_outputs = self.encoder(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutput(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Pvt-v2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
+ of the [CLS] token) e.g. for ImageNet.
+ """,
+ PVT_V2_START_DOCSTRING,
+)
+class PvtV2ForImageClassification(PvtV2PreTrainedModel):
+ def __init__(self, config: PvtV2Config) -> None:
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.pvt_v2 = PvtV2Model(config)
+
+ # Classifier head
+ self.classifier = (
+ nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(PVT_V2_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
+ @add_code_sample_docstrings(
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
+ output_type=ImageClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
+ )
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor],
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, ImageClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.pvt_v2(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ # convert last hidden states to (batch_size, height*width, hidden_size)
+ batch_size = sequence_output.shape[0]
+ # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
+ sequence_output = sequence_output.permute(0, 2, 3, 1)
+ sequence_output = sequence_output.reshape(batch_size, -1, self.config.hidden_sizes[-1])
+
+ # global average pooling
+ sequence_output = sequence_output.mean(dim=1)
+
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ImageClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ PVTv2 backbone, to be used with frameworks like DETR and MaskFormer.
+ """,
+ PVT_V2_START_DOCSTRING,
+)
+class PvtV2Backbone(PvtV2Model, BackboneMixin):
+ def __init__(self, config: PvtV2Config):
+ super().__init__(config)
+ super()._init_backbone(config)
+ self.num_features = config.hidden_sizes
+
+ @add_start_docstrings_to_model_forward(PVT_V2_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> BackboneOutput:
+ """
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, AutoBackbone
+ >>> import torch
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> processor = AutoImageProcessor.from_pretrained("OpenGVLab/pvt_v2_b0")
+ >>> model = AutoBackbone.from_pretrained(
+ ... "OpenGVLab/pvt_v2_b0", out_features=["stage1", "stage2", "stage3", "stage4"]
+ ... )
+
+ >>> inputs = processor(image, return_tensors="pt")
+
+ >>> outputs = model(**inputs)
+ >>> feature_maps = outputs.feature_maps
+ >>> list(feature_maps[-1].shape)
+ [1, 256, 7, 7]
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+
+ outputs = self.encoder(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=True,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs.hidden_states
+
+ feature_maps = ()
+ for idx, stage in enumerate(self.stage_names):
+ if stage in self.out_features:
+ feature_maps += (hidden_states[idx],)
+
+ if not return_dict:
+ output = (feature_maps,)
+ if output_hidden_states:
+ output += (outputs.hidden_states,)
+ return output
+
+ return BackboneOutput(
+ feature_maps=feature_maps,
+ hidden_states=outputs.hidden_states if output_hidden_states else None,
+ attentions=None,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..774179f5f6f445565de0da790c12f9e759c7301a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__init__.py
@@ -0,0 +1,164 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"],
+ "tokenization_roberta": ["RobertaTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_roberta_fast"] = ["RobertaTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_roberta"] = [
+ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "RobertaForCausalLM",
+ "RobertaForMaskedLM",
+ "RobertaForMultipleChoice",
+ "RobertaForQuestionAnswering",
+ "RobertaForSequenceClassification",
+ "RobertaForTokenClassification",
+ "RobertaModel",
+ "RobertaPreTrainedModel",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_roberta"] = [
+ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFRobertaForCausalLM",
+ "TFRobertaForMaskedLM",
+ "TFRobertaForMultipleChoice",
+ "TFRobertaForQuestionAnswering",
+ "TFRobertaForSequenceClassification",
+ "TFRobertaForTokenClassification",
+ "TFRobertaMainLayer",
+ "TFRobertaModel",
+ "TFRobertaPreTrainedModel",
+ ]
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_roberta"] = [
+ "FlaxRobertaForCausalLM",
+ "FlaxRobertaForMaskedLM",
+ "FlaxRobertaForMultipleChoice",
+ "FlaxRobertaForQuestionAnswering",
+ "FlaxRobertaForSequenceClassification",
+ "FlaxRobertaForTokenClassification",
+ "FlaxRobertaModel",
+ "FlaxRobertaPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
+ from .tokenization_roberta import RobertaTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_roberta_fast import RobertaTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_roberta import (
+ ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
+ RobertaForCausalLM,
+ RobertaForMaskedLM,
+ RobertaForMultipleChoice,
+ RobertaForQuestionAnswering,
+ RobertaForSequenceClassification,
+ RobertaForTokenClassification,
+ RobertaModel,
+ RobertaPreTrainedModel,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_roberta import (
+ TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFRobertaForCausalLM,
+ TFRobertaForMaskedLM,
+ TFRobertaForMultipleChoice,
+ TFRobertaForQuestionAnswering,
+ TFRobertaForSequenceClassification,
+ TFRobertaForTokenClassification,
+ TFRobertaMainLayer,
+ TFRobertaModel,
+ TFRobertaPreTrainedModel,
+ )
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_roberta import (
+ FlaxRobertaForCausalLM,
+ FlaxRobertaForMaskedLM,
+ FlaxRobertaForMultipleChoice,
+ FlaxRobertaForQuestionAnswering,
+ FlaxRobertaForSequenceClassification,
+ FlaxRobertaForTokenClassification,
+ FlaxRobertaModel,
+ FlaxRobertaPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/configuration_roberta.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/configuration_roberta.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dbfcd9e5946bf82fce1d40661452ff9d96f10e60
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/configuration_roberta.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/tokenization_roberta_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/tokenization_roberta_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..172d3ea3fdd337061618d3b96b64dfca9ac00cbe
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/tokenization_roberta_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/configuration_roberta.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/configuration_roberta.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa549556d949fda5c9e4dfbb02be27a245a6e3b7
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/configuration_roberta.py
@@ -0,0 +1,154 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" RoBERTa configuration"""
+from collections import OrderedDict
+from typing import Mapping
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class RobertaConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`RobertaModel`] or a [`TFRobertaModel`]. It is
+ used to instantiate a RoBERTa model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa
+ [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50265):
+ Vocabulary size of the RoBERTa model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`RobertaModel`] or [`TFRobertaModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`RobertaModel`] or [`TFRobertaModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ is_decoder (`bool`, *optional*, defaults to `False`):
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ classifier_dropout (`float`, *optional*):
+ The dropout ratio for the classification head.
+
+ Examples:
+
+ ```python
+ >>> from transformers import RobertaConfig, RobertaModel
+
+ >>> # Initializing a RoBERTa configuration
+ >>> configuration = RobertaConfig()
+
+ >>> # Initializing a model (with random weights) from the configuration
+ >>> model = RobertaModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "roberta"
+
+ def __init__(
+ self,
+ vocab_size=50265,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ position_embedding_type="absolute",
+ use_cache=True,
+ classifier_dropout=None,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_cache = use_cache
+ self.classifier_dropout = classifier_dropout
+
+
+class RobertaOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task == "multiple-choice":
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
+ else:
+ dynamic_axis = {0: "batch", 1: "sequence"}
+ return OrderedDict(
+ [
+ ("input_ids", dynamic_axis),
+ ("attention_mask", dynamic_axis),
+ ]
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/convert_roberta_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/convert_roberta_original_pytorch_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..e4d95354ff93978754e76809914f0d48d8461787
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/convert_roberta_original_pytorch_checkpoint_to_pytorch.py
@@ -0,0 +1,178 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert RoBERTa checkpoint."""
+
+
+import argparse
+import pathlib
+
+import fairseq
+import torch
+from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
+from fairseq.modules import TransformerSentenceEncoderLayer
+from packaging import version
+
+from transformers import RobertaConfig, RobertaForMaskedLM, RobertaForSequenceClassification
+from transformers.models.bert.modeling_bert import (
+ BertIntermediate,
+ BertLayer,
+ BertOutput,
+ BertSelfAttention,
+ BertSelfOutput,
+)
+from transformers.utils import logging
+
+
+if version.parse(fairseq.__version__) < version.parse("0.9.0"):
+ raise Exception("requires fairseq >= 0.9.0")
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+SAMPLE_TEXT = "Hello world! cécé herlolip"
+
+
+def convert_roberta_checkpoint_to_pytorch(
+ roberta_checkpoint_path: str, pytorch_dump_folder_path: str, classification_head: bool
+):
+ """
+ Copy/paste/tweak roberta's weights to our BERT structure.
+ """
+ roberta = FairseqRobertaModel.from_pretrained(roberta_checkpoint_path)
+ roberta.eval() # disable dropout
+ roberta_sent_encoder = roberta.model.encoder.sentence_encoder
+ config = RobertaConfig(
+ vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings,
+ hidden_size=roberta.args.encoder_embed_dim,
+ num_hidden_layers=roberta.args.encoder_layers,
+ num_attention_heads=roberta.args.encoder_attention_heads,
+ intermediate_size=roberta.args.encoder_ffn_embed_dim,
+ max_position_embeddings=514,
+ type_vocab_size=1,
+ layer_norm_eps=1e-5, # PyTorch default used in fairseq
+ )
+ if classification_head:
+ config.num_labels = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0]
+ print("Our BERT config:", config)
+
+ model = RobertaForSequenceClassification(config) if classification_head else RobertaForMaskedLM(config)
+ model.eval()
+
+ # Now let's copy all the weights.
+ # Embeddings
+ model.roberta.embeddings.word_embeddings.weight = roberta_sent_encoder.embed_tokens.weight
+ model.roberta.embeddings.position_embeddings.weight = roberta_sent_encoder.embed_positions.weight
+ model.roberta.embeddings.token_type_embeddings.weight.data = torch.zeros_like(
+ model.roberta.embeddings.token_type_embeddings.weight
+ ) # just zero them out b/c RoBERTa doesn't use them.
+ model.roberta.embeddings.LayerNorm.weight = roberta_sent_encoder.emb_layer_norm.weight
+ model.roberta.embeddings.LayerNorm.bias = roberta_sent_encoder.emb_layer_norm.bias
+
+ for i in range(config.num_hidden_layers):
+ # Encoder: start of layer
+ layer: BertLayer = model.roberta.encoder.layer[i]
+ roberta_layer: TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
+
+ # self attention
+ self_attn: BertSelfAttention = layer.attention.self
+ assert (
+ roberta_layer.self_attn.k_proj.weight.data.shape
+ == roberta_layer.self_attn.q_proj.weight.data.shape
+ == roberta_layer.self_attn.v_proj.weight.data.shape
+ == torch.Size((config.hidden_size, config.hidden_size))
+ )
+
+ self_attn.query.weight.data = roberta_layer.self_attn.q_proj.weight
+ self_attn.query.bias.data = roberta_layer.self_attn.q_proj.bias
+ self_attn.key.weight.data = roberta_layer.self_attn.k_proj.weight
+ self_attn.key.bias.data = roberta_layer.self_attn.k_proj.bias
+ self_attn.value.weight.data = roberta_layer.self_attn.v_proj.weight
+ self_attn.value.bias.data = roberta_layer.self_attn.v_proj.bias
+
+ # self-attention output
+ self_output: BertSelfOutput = layer.attention.output
+ assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
+ self_output.dense.weight = roberta_layer.self_attn.out_proj.weight
+ self_output.dense.bias = roberta_layer.self_attn.out_proj.bias
+ self_output.LayerNorm.weight = roberta_layer.self_attn_layer_norm.weight
+ self_output.LayerNorm.bias = roberta_layer.self_attn_layer_norm.bias
+
+ # intermediate
+ intermediate: BertIntermediate = layer.intermediate
+ assert intermediate.dense.weight.shape == roberta_layer.fc1.weight.shape
+ intermediate.dense.weight = roberta_layer.fc1.weight
+ intermediate.dense.bias = roberta_layer.fc1.bias
+
+ # output
+ bert_output: BertOutput = layer.output
+ assert bert_output.dense.weight.shape == roberta_layer.fc2.weight.shape
+ bert_output.dense.weight = roberta_layer.fc2.weight
+ bert_output.dense.bias = roberta_layer.fc2.bias
+ bert_output.LayerNorm.weight = roberta_layer.final_layer_norm.weight
+ bert_output.LayerNorm.bias = roberta_layer.final_layer_norm.bias
+ # end of layer
+
+ if classification_head:
+ model.classifier.dense.weight = roberta.model.classification_heads["mnli"].dense.weight
+ model.classifier.dense.bias = roberta.model.classification_heads["mnli"].dense.bias
+ model.classifier.out_proj.weight = roberta.model.classification_heads["mnli"].out_proj.weight
+ model.classifier.out_proj.bias = roberta.model.classification_heads["mnli"].out_proj.bias
+ else:
+ # LM Head
+ model.lm_head.dense.weight = roberta.model.encoder.lm_head.dense.weight
+ model.lm_head.dense.bias = roberta.model.encoder.lm_head.dense.bias
+ model.lm_head.layer_norm.weight = roberta.model.encoder.lm_head.layer_norm.weight
+ model.lm_head.layer_norm.bias = roberta.model.encoder.lm_head.layer_norm.bias
+ model.lm_head.decoder.weight = roberta.model.encoder.lm_head.weight
+ model.lm_head.decoder.bias = roberta.model.encoder.lm_head.bias
+
+ # Let's check that we get the same results.
+ input_ids: torch.Tensor = roberta.encode(SAMPLE_TEXT).unsqueeze(0) # batch of size 1
+
+ our_output = model(input_ids)[0]
+ if classification_head:
+ their_output = roberta.model.classification_heads["mnli"](roberta.extract_features(input_ids))
+ else:
+ their_output = roberta.model(input_ids)[0]
+ print(our_output.shape, their_output.shape)
+ max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
+ print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7
+ success = torch.allclose(our_output, their_output, atol=1e-3)
+ print("Do both models output the same tensors?", "🔥" if success else "💩")
+ if not success:
+ raise Exception("Something went wRoNg")
+
+ pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
+ print(f"Saving model to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
+ )
+ parser.add_argument(
+ "--classification_head", action="store_true", help="Whether to convert a final classification head."
+ )
+ args = parser.parse_args()
+ convert_roberta_checkpoint_to_pytorch(
+ args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/modeling_flax_roberta.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/modeling_flax_roberta.py
new file mode 100644
index 0000000000000000000000000000000000000000..ecdd31386b21eb620c35a7299fea8cfd3319aecc
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/modeling_flax_roberta.py
@@ -0,0 +1,1488 @@
+# coding=utf-8
+# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import Callable, Optional, Tuple
+
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+import numpy as np
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen import combine_masks, make_causal_mask
+from flax.linen import partitioning as nn_partitioning
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+
+from ...modeling_flax_outputs import (
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
+ FlaxBaseModelOutputWithPooling,
+ FlaxBaseModelOutputWithPoolingAndCrossAttentions,
+ FlaxCausalLMOutputWithCrossAttentions,
+ FlaxMaskedLMOutput,
+ FlaxMultipleChoiceModelOutput,
+ FlaxQuestionAnsweringModelOutput,
+ FlaxSequenceClassifierOutput,
+ FlaxTokenClassifierOutput,
+)
+from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_roberta import RobertaConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "FacebookAI/roberta-base"
+_CONFIG_FOR_DOC = "RobertaConfig"
+
+remat = nn_partitioning.remat
+
+
+def create_position_ids_from_input_ids(input_ids, padding_idx):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ input_ids: jnp.ndarray
+ padding_idx: int
+
+ Returns: jnp.ndarray
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = (input_ids != padding_idx).astype("i4")
+
+ if mask.ndim > 2:
+ mask = mask.reshape((-1, mask.shape[-1]))
+ incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask
+ incremental_indices = incremental_indices.reshape(input_ids.shape)
+ else:
+ incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask
+
+ return incremental_indices.astype("i4") + padding_idx
+
+
+ROBERTA_START_DOCSTRING = r"""
+
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
+
+ This model is also a
+ [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
+ a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
+ behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`RobertaConfig`]): Model configuration class with all the parameters of the
+ model. Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ROBERTA_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`numpy.ndarray` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ head_mask (`numpy.ndarray` of shape `({0})`, `optional):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings with Bert->Roberta
+class FlaxRobertaEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.word_embeddings = nn.Embed(
+ self.config.vocab_size,
+ self.config.hidden_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.position_embeddings = nn.Embed(
+ self.config.max_position_embeddings,
+ self.config.hidden_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.token_type_embeddings = nn.Embed(
+ self.config.type_vocab_size,
+ self.config.hidden_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
+ # Embed
+ inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
+ position_embeds = self.position_embeddings(position_ids.astype("i4"))
+ token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
+
+ # Sum all embeddings
+ hidden_states = inputs_embeds + token_type_embeddings + position_embeds
+
+ # Layer Norm
+ hidden_states = self.LayerNorm(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->Roberta
+class FlaxRobertaSelfAttention(nn.Module):
+ config: RobertaConfig
+ causal: bool = False
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.head_dim = self.config.hidden_size // self.config.num_attention_heads
+ if self.config.hidden_size % self.config.num_attention_heads != 0:
+ raise ValueError(
+ "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
+ " : {self.config.num_attention_heads}"
+ )
+
+ self.query = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.key = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.value = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+
+ if self.causal:
+ self.causal_mask = make_causal_mask(
+ jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
+ )
+
+ def _split_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
+
+ def _merge_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
+
+ @nn.compact
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
+ """
+ This function takes projected key, value states from a single input token and concatenates the states to cached
+ states from previous steps. This function is slighly adapted from the official Flax repository:
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
+ """
+ # detect if we're initializing by absence of existing cache data.
+ is_initialized = self.has_variable("cache", "cached_key")
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
+
+ if is_initialized:
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
+ # update key, value caches with our new 1d spatial slices
+ cur_index = cache_index.value
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
+ cached_key.value = key
+ cached_value.value = value
+ num_updated_cache_vectors = query.shape[1]
+ cache_index.value = cache_index.value + num_updated_cache_vectors
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
+ pad_mask = jnp.broadcast_to(
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
+ )
+ attention_mask = combine_masks(pad_mask, attention_mask)
+ return key, value, attention_mask
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ key_value_states: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic=True,
+ output_attentions: bool = False,
+ ):
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ batch_size = hidden_states.shape[0]
+
+ # get query proj
+ query_states = self.query(hidden_states)
+ # get key, value proj
+ if is_cross_attention:
+ # cross_attentions
+ key_states = self.key(key_value_states)
+ value_states = self.value(key_value_states)
+ else:
+ # self_attention
+ key_states = self.key(hidden_states)
+ value_states = self.value(hidden_states)
+
+ query_states = self._split_heads(query_states)
+ key_states = self._split_heads(key_states)
+ value_states = self._split_heads(value_states)
+
+ # handle cache prepare causal attention mask
+ if self.causal:
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
+ if self.has_variable("cache", "cached_key"):
+ mask_shift = self.variables["cache"]["cache_index"]
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
+ causal_mask = lax.dynamic_slice(
+ self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
+ )
+ else:
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
+
+ # combine masks if needed
+ if attention_mask is not None and self.causal:
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
+ attention_mask = combine_masks(attention_mask, causal_mask)
+ elif self.causal:
+ attention_mask = causal_mask
+ elif attention_mask is not None:
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+
+ # During fast autoregressive decoding, we feed one position at a time,
+ # and cache the keys and values step by step.
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
+ key_states, value_states, query_states, attention_mask
+ )
+
+ # Convert the boolean attention mask to an attention bias.
+ if attention_mask is not None:
+ # attention mask in the form of attention bias
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
+ )
+ else:
+ attention_bias = None
+
+ dropout_rng = None
+ if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.config.attention_probs_dropout_prob,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ # Mask heads if we want to
+ if layer_head_mask is not None:
+ attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
+
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->Roberta
+class FlaxRobertaSelfOutput(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->Roberta
+class FlaxRobertaAttention(nn.Module):
+ config: RobertaConfig
+ causal: bool = False
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.self = FlaxRobertaSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
+ self.output = FlaxRobertaSelfOutput(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ key_value_states=None,
+ init_cache=False,
+ deterministic=True,
+ output_attentions: bool = False,
+ ):
+ # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
+ # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
+ # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
+ attn_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=layer_head_mask,
+ key_value_states=key_value_states,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attn_output = attn_outputs[0]
+ hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_outputs[1],)
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->Roberta
+class FlaxRobertaIntermediate(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.intermediate_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.activation = ACT2FN[self.config.hidden_act]
+
+ def __call__(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->Roberta
+class FlaxRobertaOutput(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ def __call__(self, hidden_states, attention_output, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.LayerNorm(hidden_states + attention_output)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->Roberta
+class FlaxRobertaLayer(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.attention = FlaxRobertaAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
+ self.intermediate = FlaxRobertaIntermediate(self.config, dtype=self.dtype)
+ self.output = FlaxRobertaOutput(self.config, dtype=self.dtype)
+ if self.config.add_cross_attention:
+ self.crossattention = FlaxRobertaAttention(self.config, causal=False, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ ):
+ # Self Attention
+ attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=layer_head_mask,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attention_output = attention_outputs[0]
+
+ # Cross-Attention Block
+ if encoder_hidden_states is not None:
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=layer_head_mask,
+ key_value_states=encoder_hidden_states,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+
+ hidden_states = self.intermediate(attention_output)
+ hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attention_outputs[1],)
+ if encoder_hidden_states is not None:
+ outputs += (cross_attention_outputs[1],)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->Roberta
+class FlaxRobertaLayerCollection(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ if self.gradient_checkpointing:
+ FlaxRobertaCheckpointLayer = remat(FlaxRobertaLayer, static_argnums=(5, 6, 7))
+ self.layers = [
+ FlaxRobertaCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.num_hidden_layers)
+ ]
+ else:
+ self.layers = [
+ FlaxRobertaLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.num_hidden_layers)
+ ]
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+
+ # Check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ if head_mask.shape[0] != (len(self.layers)):
+ raise ValueError(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
+ f" {head_mask.shape[0]}."
+ )
+
+ for i, layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ layer_outputs = layer(
+ hidden_states,
+ attention_mask,
+ head_mask[i] if head_mask is not None else None,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ init_cache,
+ deterministic,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->Roberta
+class FlaxRobertaEncoder(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.layer = FlaxRobertaLayerCollection(
+ self.config,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ return self.layer(
+ hidden_states,
+ attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPooler with Bert->Roberta
+class FlaxRobertaPooler(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+
+ def __call__(self, hidden_states):
+ cls_hidden_state = hidden_states[:, 0]
+ cls_hidden_state = self.dense(cls_hidden_state)
+ return nn.tanh(cls_hidden_state)
+
+
+class FlaxRobertaLMHead(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32
+ bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.decoder = nn.Dense(
+ self.config.vocab_size,
+ dtype=self.dtype,
+ use_bias=False,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
+
+ def __call__(self, hidden_states, shared_embedding=None):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = ACT2FN["gelu"](hidden_states)
+ hidden_states = self.layer_norm(hidden_states)
+
+ if shared_embedding is not None:
+ hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ hidden_states = self.decoder(hidden_states)
+
+ bias = jnp.asarray(self.bias, self.dtype)
+ hidden_states += bias
+ return hidden_states
+
+
+class FlaxRobertaClassificationHead(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ classifier_dropout = (
+ self.config.classifier_dropout
+ if self.config.classifier_dropout is not None
+ else self.config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(rate=classifier_dropout)
+ self.out_proj = nn.Dense(
+ self.config.num_labels,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+
+ def __call__(self, hidden_states, deterministic=True):
+ hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS])
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.dense(hidden_states)
+ hidden_states = nn.tanh(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.out_proj(hidden_states)
+ return hidden_states
+
+
+class FlaxRobertaPreTrainedModel(FlaxPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = RobertaConfig
+ base_model_prefix = "roberta"
+
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: RobertaConfig,
+ input_shape: Tuple = (1, 1),
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ gradient_checkpointing: bool = False,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
+ def enable_gradient_checkpointing(self):
+ self._module = self.module_class(
+ config=self.config,
+ dtype=self.dtype,
+ gradient_checkpointing=True,
+ )
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ token_type_ids = jnp.ones_like(input_ids)
+ position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id)
+ attention_mask = jnp.ones_like(input_ids)
+ head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ if self.config.add_cross_attention:
+ encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
+ encoder_attention_mask = attention_mask
+ module_init_outputs = self.module.init(
+ rngs,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ return_dict=False,
+ )
+ else:
+ module_init_outputs = self.module.init(
+ rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
+ )
+
+ random_params = module_init_outputs["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
+ def init_cache(self, batch_size, max_length):
+ r"""
+ Args:
+ batch_size (`int`):
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
+ max_length (`int`):
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
+ cache.
+ """
+ # init input variables to retrieve cache
+ input_ids = jnp.ones((batch_size, max_length), dtype="i4")
+ attention_mask = jnp.ones_like(input_ids, dtype="i4")
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ init_variables = self.module.init(
+ jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
+ )
+ return unfreeze(init_variables["cache"])
+
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ past_key_values: dict = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ # init input tensors if not passed
+ if token_type_ids is None:
+ token_type_ids = jnp.zeros_like(input_ids)
+
+ if position_ids is None:
+ position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id)
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+
+ if head_mask is None:
+ head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ inputs = {"params": params or self.params}
+
+ if self.config.add_cross_attention:
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
+ # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
+ # changed by FlaxRobertaAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ outputs = self.module.apply(
+ inputs,
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ token_type_ids=jnp.array(token_type_ids, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ head_mask=jnp.array(head_mask, dtype="i4"),
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ deterministic=not train,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ rngs=rngs,
+ mutable=mutable,
+ )
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs, past_key_values = outputs
+ outputs["past_key_values"] = unfreeze(past_key_values["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs, past_key_values = outputs
+ outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
+
+ else:
+ outputs = self.module.apply(
+ inputs,
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ token_type_ids=jnp.array(token_type_ids, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ head_mask=jnp.array(head_mask, dtype="i4"),
+ deterministic=not train,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ rngs=rngs,
+ )
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModule with Bert->Roberta
+class FlaxRobertaModule(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ add_pooling_layer: bool = True
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.embeddings = FlaxRobertaEmbeddings(self.config, dtype=self.dtype)
+ self.encoder = FlaxRobertaEncoder(
+ self.config,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.pooler = FlaxRobertaPooler(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids: Optional[jnp.ndarray] = None,
+ position_ids: Optional[jnp.ndarray] = None,
+ head_mask: Optional[jnp.ndarray] = None,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # make sure `token_type_ids` is correctly initialized when not passed
+ if token_type_ids is None:
+ token_type_ids = jnp.zeros_like(input_ids)
+
+ # make sure `position_ids` is correctly initialized when not passed
+ if position_ids is None:
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
+
+ hidden_states = self.embeddings(
+ input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
+ )
+ outputs = self.encoder(
+ hidden_states,
+ attention_mask,
+ head_mask=head_mask,
+ deterministic=deterministic,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+ pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
+
+ if not return_dict:
+ # if pooled is None, don't return it
+ if pooled is None:
+ return (hidden_states,) + outputs[1:]
+ return (hidden_states, pooled) + outputs[1:]
+
+ return FlaxBaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ pooler_output=pooled,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
+ ROBERTA_START_DOCSTRING,
+)
+class FlaxRobertaModel(FlaxRobertaPreTrainedModel):
+ module_class = FlaxRobertaModule
+
+
+append_call_sample_docstring(FlaxRobertaModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)
+
+
+class FlaxRobertaForMaskedLMModule(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.roberta = FlaxRobertaModule(
+ config=self.config,
+ add_pooling_layer=False,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.lm_head = FlaxRobertaLMHead(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.roberta(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
+ else:
+ shared_embedding = None
+
+ # Compute the prediction scores
+ logits = self.lm_head(hidden_states, shared_embedding=shared_embedding)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxMaskedLMOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING)
+class FlaxRobertaForMaskedLM(FlaxRobertaPreTrainedModel):
+ module_class = FlaxRobertaForMaskedLMModule
+
+
+append_call_sample_docstring(
+ FlaxRobertaForMaskedLM,
+ _CHECKPOINT_FOR_DOC,
+ FlaxBaseModelOutputWithPooling,
+ _CONFIG_FOR_DOC,
+ mask="",
+)
+
+
+class FlaxRobertaForSequenceClassificationModule(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.roberta = FlaxRobertaModule(
+ config=self.config,
+ dtype=self.dtype,
+ add_pooling_layer=False,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.classifier = FlaxRobertaClassificationHead(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.roberta(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output, deterministic=deterministic)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxSequenceClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Roberta Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class FlaxRobertaForSequenceClassification(FlaxRobertaPreTrainedModel):
+ module_class = FlaxRobertaForSequenceClassificationModule
+
+
+append_call_sample_docstring(
+ FlaxRobertaForSequenceClassification,
+ _CHECKPOINT_FOR_DOC,
+ FlaxSequenceClassifierOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->Roberta, with self.bert->self.roberta
+class FlaxRobertaForMultipleChoiceModule(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.roberta = FlaxRobertaModule(
+ config=self.config,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.classifier = nn.Dense(1, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ num_choices = input_ids.shape[1]
+ input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
+ attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
+ token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
+ position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
+
+ # Model
+ outputs = self.roberta(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+ pooled_output = self.dropout(pooled_output, deterministic=deterministic)
+ logits = self.classifier(pooled_output)
+
+ reshaped_logits = logits.reshape(-1, num_choices)
+
+ if not return_dict:
+ return (reshaped_logits,) + outputs[2:]
+
+ return FlaxMultipleChoiceModelOutput(
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class FlaxRobertaForMultipleChoice(FlaxRobertaPreTrainedModel):
+ module_class = FlaxRobertaForMultipleChoiceModule
+
+
+overwrite_call_docstring(
+ FlaxRobertaForMultipleChoice, ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+)
+append_call_sample_docstring(
+ FlaxRobertaForMultipleChoice,
+ _CHECKPOINT_FOR_DOC,
+ FlaxMultipleChoiceModelOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->Roberta, with self.bert->self.roberta
+class FlaxRobertaForTokenClassificationModule(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.roberta = FlaxRobertaModule(
+ config=self.config,
+ dtype=self.dtype,
+ add_pooling_layer=False,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ classifier_dropout = (
+ self.config.classifier_dropout
+ if self.config.classifier_dropout is not None
+ else self.config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(rate=classifier_dropout)
+ self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.roberta(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ logits = self.classifier(hidden_states)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxTokenClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class FlaxRobertaForTokenClassification(FlaxRobertaPreTrainedModel):
+ module_class = FlaxRobertaForTokenClassificationModule
+
+
+append_call_sample_docstring(
+ FlaxRobertaForTokenClassification,
+ _CHECKPOINT_FOR_DOC,
+ FlaxTokenClassifierOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForQuestionAnsweringModule with Bert->Roberta, with self.bert->self.roberta
+class FlaxRobertaForQuestionAnsweringModule(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.roberta = FlaxRobertaModule(
+ config=self.config,
+ dtype=self.dtype,
+ add_pooling_layer=False,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.roberta(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+
+ logits = self.qa_outputs(hidden_states)
+ start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1)
+ start_logits = start_logits.squeeze(-1)
+ end_logits = end_logits.squeeze(-1)
+
+ if not return_dict:
+ return (start_logits, end_logits) + outputs[1:]
+
+ return FlaxQuestionAnsweringModelOutput(
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class FlaxRobertaForQuestionAnswering(FlaxRobertaPreTrainedModel):
+ module_class = FlaxRobertaForQuestionAnsweringModule
+
+
+append_call_sample_docstring(
+ FlaxRobertaForQuestionAnswering,
+ _CHECKPOINT_FOR_DOC,
+ FlaxQuestionAnsweringModelOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxRobertaForCausalLMModule(nn.Module):
+ config: RobertaConfig
+ dtype: jnp.dtype = jnp.float32
+ gradient_checkpointing: bool = False
+
+ def setup(self):
+ self.roberta = FlaxRobertaModule(
+ config=self.config,
+ add_pooling_layer=False,
+ dtype=self.dtype,
+ gradient_checkpointing=self.gradient_checkpointing,
+ )
+ self.lm_head = FlaxRobertaLMHead(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ token_type_ids: Optional[jnp.ndarray] = None,
+ head_mask: Optional[jnp.ndarray] = None,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.roberta(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ position_ids,
+ head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
+ else:
+ shared_embedding = None
+
+ # Compute the prediction scores
+ logits = self.lm_head(hidden_states, shared_embedding=shared_embedding)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxCausalLMOutputWithCrossAttentions(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Roberta Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
+ autoregressive tasks.
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class FlaxRobertaForCausalLM(FlaxRobertaPreTrainedModel):
+ module_class = FlaxRobertaForCausalLMModule
+
+ def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
+ # initializing the cache
+ batch_size, seq_length = input_ids.shape
+
+ past_key_values = self.init_cache(batch_size, max_length)
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
+ # But since the decoder uses a causal mask, those positions are masked anyway.
+ # Thus, we can create a single static attention_mask here, which is more efficient for compilation
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
+ if attention_mask is not None:
+ position_ids = attention_mask.cumsum(axis=-1) - 1
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
+ else:
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
+
+ return {
+ "past_key_values": past_key_values,
+ "attention_mask": extended_attention_mask,
+ "position_ids": position_ids,
+ }
+
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
+ model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
+ return model_kwargs
+
+
+append_call_sample_docstring(
+ FlaxRobertaForCausalLM,
+ _CHECKPOINT_FOR_DOC,
+ FlaxCausalLMOutputWithCrossAttentions,
+ _CONFIG_FOR_DOC,
+)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/modeling_roberta.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/modeling_roberta.py
new file mode 100644
index 0000000000000000000000000000000000000000..e1f15722e43bdfd98735c31c24226d5c652f5c2b
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/modeling_roberta.py
@@ -0,0 +1,1555 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch RoBERTa model."""
+
+import math
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN, gelu
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+ CausalLMOutputWithCrossAttentions,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_roberta import RobertaConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "FacebookAI/roberta-base"
+_CONFIG_FOR_DOC = "RobertaConfig"
+
+
+from ..deprecated._archive_maps import ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class RobertaEmbeddings(nn.Module):
+ """
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
+ """
+
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ # End copy
+ self.padding_idx = config.pad_token_id
+ self.position_embeddings = nn.Embedding(
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
+ )
+
+ def forward(
+ self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
+ ):
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
+ else:
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
+
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
+ """
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
+
+ Args:
+ inputs_embeds: torch.Tensor
+
+ Returns: torch.Tensor
+ """
+ input_shape = inputs_embeds.size()[:-1]
+ sequence_length = input_shape[1]
+
+ position_ids = torch.arange(
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
+ )
+ return position_ids.unsqueeze(0).expand(input_shape)
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
+class RobertaSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
+class RobertaSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
+class RobertaAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = RobertaSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = RobertaSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate
+class RobertaIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput
+class RobertaOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
+class RobertaLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = RobertaAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = RobertaAttention(config, position_embedding_type="absolute")
+ self.intermediate = RobertaIntermediate(config)
+ self.output = RobertaOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
+class RobertaEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler
+class RobertaPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class RobertaPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = RobertaConfig
+ base_model_prefix = "roberta"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["RobertaEmbeddings", "RobertaSelfAttention"]
+
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+ROBERTA_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`RobertaConfig`]): Model configuration class with all the parameters of the
+ model. Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ROBERTA_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+ This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
+ >= 2. All the value in this tensor should be always < type_vocab_size.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
+ ROBERTA_START_DOCSTRING,
+)
+class RobertaModel(RobertaPreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in *Attention is
+ all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
+ Kaiser and Illia Polosukhin.
+
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+
+ .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
+
+ """
+
+ # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = RobertaEmbeddings(config)
+ self.encoder = RobertaEncoder(config)
+
+ self.pooler = RobertaPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ # Copied from transformers.models.bert.modeling_bert.BertModel.forward
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.""", ROBERTA_START_DOCSTRING
+)
+class RobertaForCausalLM(RobertaPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
+
+ self.roberta = RobertaModel(config, add_pooling_layer=False)
+ self.lm_head = RobertaLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
+ ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, RobertaForCausalLM, AutoConfig
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
+ >>> config = AutoConfig.from_pretrained("FacebookAI/roberta-base")
+ >>> config.is_decoder = True
+ >>> model = RobertaForCausalLM.from_pretrained("FacebookAI/roberta-base", config=config)
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ if labels is not None:
+ use_cache = False
+
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ lm_loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(prediction_scores.device)
+ # we are doing next-token prediction; shift prediction scores and input ids by one
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
+ labels = labels[:, 1:].contiguous()
+ loss_fct = CrossEntropyLoss()
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((lm_loss,) + output) if lm_loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=lm_loss,
+ logits=prediction_scores,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_shape)
+
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
+
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+
+@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING)
+class RobertaForMaskedLM(RobertaPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if config.is_decoder:
+ logger.warning(
+ "If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
+ "bi-directional self-attention."
+ )
+
+ self.roberta = RobertaModel(config, add_pooling_layer=False)
+ self.lm_head = RobertaLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ mask="",
+ expected_output="' Paris'",
+ expected_loss=0.1,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
+ Used to hide legacy arguments that have been deprecated.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(prediction_scores.device)
+ loss_fct = CrossEntropyLoss()
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class RobertaLMHead(nn.Module):
+ """Roberta Head for masked language modeling."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+ self.decoder.bias = self.bias
+
+ def forward(self, features, **kwargs):
+ x = self.dense(features)
+ x = gelu(x)
+ x = self.layer_norm(x)
+
+ # project back to size of vocabulary with bias
+ x = self.decoder(x)
+
+ return x
+
+ def _tie_weights(self):
+ # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
+ # For accelerate compatibility and to not break backward compatibility
+ if self.decoder.bias.device.type == "meta":
+ self.decoder.bias = self.bias
+ else:
+ self.bias = self.decoder.bias
+
+
+@add_start_docstrings(
+ """
+ RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class RobertaForSequenceClassification(RobertaPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.roberta = RobertaModel(config, add_pooling_layer=False)
+ self.classifier = RobertaClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="cardiffnlp/twitter-roberta-base-emotion",
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="'optimism'",
+ expected_loss=0.08,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class RobertaForMultipleChoice(RobertaPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.roberta = RobertaModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ flat_inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ outputs = self.roberta(
+ flat_input_ids,
+ position_ids=flat_position_ids,
+ token_type_ids=flat_token_type_ids,
+ attention_mask=flat_attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=flat_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ pooled_output = outputs[1]
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(reshaped_logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class RobertaForTokenClassification(RobertaPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.roberta = RobertaModel(config, add_pooling_layer=False)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="Jean-Baptiste/roberta-large-ner-english",
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
+ expected_loss=0.01,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class RobertaClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ def forward(self, features, **kwargs):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = torch.tanh(x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+@add_start_docstrings(
+ """
+ Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class RobertaForQuestionAnswering(RobertaPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.roberta = RobertaModel(config, add_pooling_layer=False)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="deepset/roberta-base-squad2",
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="' puppet'",
+ expected_loss=0.86,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ x: torch.Tensor x:
+
+ Returns: torch.Tensor
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = input_ids.ne(padding_idx).int()
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
+ return incremental_indices.long() + padding_idx
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/modeling_tf_roberta.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/modeling_tf_roberta.py
new file mode 100644
index 0000000000000000000000000000000000000000..f48bb796c17b4c369995e9ab134cfee2f2113782
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/modeling_tf_roberta.py
@@ -0,0 +1,1774 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 RoBERTa model."""
+
+
+from __future__ import annotations
+
+import math
+import warnings
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutputWithPastAndCrossAttentions,
+ TFBaseModelOutputWithPoolingAndCrossAttentions,
+ TFCausalLMOutputWithCrossAttentions,
+ TFMaskedLMOutput,
+ TFMultipleChoiceModelOutput,
+ TFQuestionAnsweringModelOutput,
+ TFSequenceClassifierOutput,
+ TFTokenClassifierOutput,
+)
+from ...modeling_tf_utils import (
+ TFCausalLanguageModelingLoss,
+ TFMaskedLanguageModelingLoss,
+ TFModelInputType,
+ TFMultipleChoiceLoss,
+ TFPreTrainedModel,
+ TFQuestionAnsweringLoss,
+ TFSequenceClassificationLoss,
+ TFTokenClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+)
+from .configuration_roberta import RobertaConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "FacebookAI/roberta-base"
+_CONFIG_FOR_DOC = "RobertaConfig"
+
+
+from ..deprecated._archive_maps import TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class TFRobertaEmbeddings(keras.layers.Layer):
+ """
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
+ """
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.padding_idx = 1
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.max_position_embeddings = config.max_position_embeddings
+ self.initializer_range = config.initializer_range
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+
+ def build(self, input_shape=None):
+ with tf.name_scope("word_embeddings"):
+ self.weight = self.add_weight(
+ name="weight",
+ shape=[self.config.vocab_size, self.hidden_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("token_type_embeddings"):
+ self.token_type_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.config.type_vocab_size, self.hidden_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("position_embeddings"):
+ self.position_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.max_position_embeddings, self.hidden_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+ def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
+ symbols are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ input_ids: tf.Tensor
+ Returns: tf.Tensor
+ """
+ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype)
+ incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask
+
+ return incremental_indices + self.padding_idx
+
+ def call(
+ self,
+ input_ids=None,
+ position_ids=None,
+ token_type_ids=None,
+ inputs_embeds=None,
+ past_key_values_length=0,
+ training=False,
+ ):
+ """
+ Applies embedding based on inputs tensor.
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ assert not (input_ids is None and inputs_embeds is None)
+
+ if input_ids is not None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = self.create_position_ids_from_input_ids(
+ input_ids=input_ids, past_key_values_length=past_key_values_length
+ )
+ else:
+ position_ids = tf.expand_dims(
+ tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0
+ )
+
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
+ final_embeddings = inputs_embeds + position_embeds + token_type_embeds
+ final_embeddings = self.LayerNorm(inputs=final_embeddings)
+ final_embeddings = self.dropout(inputs=final_embeddings, training=training)
+
+ return final_embeddings
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Roberta
+class TFRobertaPooler(keras.layers.Layer):
+ def __init__(self, config: RobertaConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(inputs=first_token_tensor)
+
+ return pooled_output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Roberta
+class TFRobertaSelfAttention(keras.layers.Layer):
+ def __init__(self, config: RobertaConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number "
+ f"of attention heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
+
+ self.query = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
+ )
+ self.key = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
+ )
+ self.value = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
+ )
+ self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
+
+ self.is_decoder = config.is_decoder
+ self.config = config
+
+ def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
+
+ # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
+ return tf.transpose(tensor, perm=[0, 2, 1, 3])
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor,
+ encoder_attention_mask: tf.Tensor,
+ past_key_value: Tuple[tf.Tensor],
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ batch_size = shape_list(hidden_states)[0]
+ mixed_query_layer = self.query(inputs=hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
+ value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
+ value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
+ key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
+ value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
+ value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ # (batch size, num_heads, seq_len_q, seq_len_k)
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
+ dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
+ attention_scores = tf.divide(attention_scores, dk)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in TFRobertaModel call() function)
+ attention_scores = tf.add(attention_scores, attention_mask)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = stable_softmax(logits=attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(inputs=attention_probs, training=training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = tf.multiply(attention_probs, head_mask)
+
+ attention_output = tf.matmul(attention_probs, value_layer)
+ attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
+
+ # (batch_size, seq_len_q, all_head_size)
+ attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query", None) is not None:
+ with tf.name_scope(self.query.name):
+ self.query.build([None, None, self.config.hidden_size])
+ if getattr(self, "key", None) is not None:
+ with tf.name_scope(self.key.name):
+ self.key.build([None, None, self.config.hidden_size])
+ if getattr(self, "value", None) is not None:
+ with tf.name_scope(self.value.name):
+ self.value.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Roberta
+class TFRobertaSelfOutput(keras.layers.Layer):
+ def __init__(self, config: RobertaConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Roberta
+class TFRobertaAttention(keras.layers.Layer):
+ def __init__(self, config: RobertaConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.self_attention = TFRobertaSelfAttention(config, name="self")
+ self.dense_output = TFRobertaSelfOutput(config, name="output")
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ def call(
+ self,
+ input_tensor: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor,
+ encoder_attention_mask: tf.Tensor,
+ past_key_value: Tuple[tf.Tensor],
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ self_outputs = self.self_attention(
+ hidden_states=input_tensor,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = self.dense_output(
+ hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
+ )
+ # add attentions (possibly with past_key_value) if we output them
+ outputs = (attention_output,) + self_outputs[1:]
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attention", None) is not None:
+ with tf.name_scope(self.self_attention.name):
+ self.self_attention.build(None)
+ if getattr(self, "dense_output", None) is not None:
+ with tf.name_scope(self.dense_output.name):
+ self.dense_output.build(None)
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Roberta
+class TFRobertaIntermediate(keras.layers.Layer):
+ def __init__(self, config: RobertaConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Roberta
+class TFRobertaOutput(keras.layers.Layer):
+ def __init__(self, config: RobertaConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Roberta
+class TFRobertaLayer(keras.layers.Layer):
+ def __init__(self, config: RobertaConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.attention = TFRobertaAttention(config, name="attention")
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = TFRobertaAttention(config, name="crossattention")
+ self.intermediate = TFRobertaIntermediate(config, name="intermediate")
+ self.bert_output = TFRobertaOutput(config, name="output")
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor | None,
+ encoder_attention_mask: tf.Tensor | None,
+ past_key_value: Tuple[tf.Tensor] | None,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ input_tensor=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=self_attn_past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ input_tensor=attention_output,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=cross_attn_past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ intermediate_output = self.intermediate(hidden_states=attention_output)
+ layer_output = self.bert_output(
+ hidden_states=intermediate_output, input_tensor=attention_output, training=training
+ )
+ outputs = (layer_output,) + outputs # add attentions if we output them
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "bert_output", None) is not None:
+ with tf.name_scope(self.bert_output.name):
+ self.bert_output.build(None)
+ if getattr(self, "crossattention", None) is not None:
+ with tf.name_scope(self.crossattention.name):
+ self.crossattention.build(None)
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Roberta
+class TFRobertaEncoder(keras.layers.Layer):
+ def __init__(self, config: RobertaConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.layer = [TFRobertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ encoder_hidden_states: tf.Tensor | None,
+ encoder_attention_mask: tf.Tensor | None,
+ past_key_values: Tuple[Tuple[tf.Tensor]] | None,
+ use_cache: Optional[bool],
+ output_attentions: bool,
+ output_hidden_states: bool,
+ return_dict: bool,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ layer_outputs = layer_module(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=head_mask[i],
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
+ )
+
+ return TFBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFRobertaMainLayer(keras.layers.Layer):
+ config_class = RobertaConfig
+
+ def __init__(self, config, add_pooling_layer=True, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.is_decoder = config.is_decoder
+
+ self.num_hidden_layers = config.num_hidden_layers
+ self.initializer_range = config.initializer_range
+ self.output_attentions = config.output_attentions
+ self.output_hidden_states = config.output_hidden_states
+ self.return_dict = config.use_return_dict
+ self.encoder = TFRobertaEncoder(config, name="encoder")
+ self.pooler = TFRobertaPooler(config, name="pooler") if add_pooling_layer else None
+ # The embeddings must be the last declaration in order to follow the weights order
+ self.embeddings = TFRobertaEmbeddings(config, name="embeddings")
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings
+ def get_input_embeddings(self) -> keras.layers.Layer:
+ return self.embeddings
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings
+ def set_input_embeddings(self, value: tf.Variable):
+ self.embeddings.weight = value
+ self.embeddings.vocab_size = shape_list(value)[0]
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ raise NotImplementedError
+
+ @unpack_inputs
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
+ if not self.config.is_decoder:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+
+ if past_key_values is None:
+ past_key_values_length = 0
+ past_key_values = [None] * len(self.encoder.layer)
+ else:
+ past_key_values_length = shape_list(past_key_values[0][0])[-2]
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ training=training,
+ )
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ attention_mask_shape = shape_list(attention_mask)
+
+ mask_seq_length = seq_length + past_key_values_length
+ # Copied from `modeling_tf_t5.py`
+ # Provided a padding mask of dimensions [batch_size, mask_seq_length]
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
+ if self.is_decoder:
+ seq_ids = tf.range(mask_seq_length)
+ causal_mask = tf.less_equal(
+ tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
+ seq_ids[None, :, None],
+ )
+ causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
+ extended_attention_mask = causal_mask * attention_mask[:, None, :]
+ attention_mask_shape = shape_list(extended_attention_mask)
+ extended_attention_mask = tf.reshape(
+ extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
+ )
+ if past_key_values[0] is not None:
+ # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
+ extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
+ else:
+ extended_attention_mask = tf.reshape(
+ attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
+ )
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
+ one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
+ ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
+ extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
+
+ # Copied from `modeling_tf_t5.py` with -1e9 -> -10000
+ if self.is_decoder and encoder_attention_mask is not None:
+ # If a 2D ou 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
+ num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
+ if num_dims_encoder_attention_mask == 3:
+ encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
+ if num_dims_encoder_attention_mask == 2:
+ encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
+
+ # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
+ # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
+ # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
+ # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
+
+ encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ if head_mask is not None:
+ raise NotImplementedError
+ else:
+ head_mask = [None] * self.config.num_hidden_layers
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (
+ sequence_output,
+ pooled_output,
+ ) + encoder_outputs[1:]
+
+ return TFBaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "pooler", None) is not None:
+ with tf.name_scope(self.pooler.name):
+ self.pooler.build(None)
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+
+
+class TFRobertaPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = RobertaConfig
+ base_model_prefix = "roberta"
+
+
+ROBERTA_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Parameters:
+ config ([`RobertaConfig`]): Model configuration class with all the parameters of the
+ model. Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ROBERTA_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@add_start_docstrings(
+ "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
+ ROBERTA_START_DOCSTRING,
+)
+class TFRobertaModel(TFRobertaPreTrainedModel):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.roberta = TFRobertaMainLayer(config, name="roberta")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`). Set to `False` during training, `True` during generation
+ """
+ outputs = self.roberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+
+
+class TFRobertaLMHead(keras.layers.Layer):
+ """Roberta Head for masked language modeling."""
+
+ def __init__(self, config, input_embeddings, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.dense = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
+ self.act = get_tf_activation("gelu")
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = input_embeddings
+
+ def build(self, input_shape=None):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.hidden_size])
+
+ def get_output_embeddings(self):
+ return self.decoder
+
+ def set_output_embeddings(self, value):
+ self.decoder.weight = value
+ self.decoder.vocab_size = shape_list(value)[0]
+
+ def get_bias(self):
+ return {"bias": self.bias}
+
+ def set_bias(self, value):
+ self.bias = value["bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.act(hidden_states)
+ hidden_states = self.layer_norm(hidden_states)
+
+ # project back to size of vocabulary with bias
+ seq_length = shape_list(tensor=hidden_states)[1]
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
+ hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
+
+ return hidden_states
+
+
+@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING)
+class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
+ self.lm_head = TFRobertaLMHead(config, self.roberta.embeddings, name="lm_head")
+
+ def get_lm_head(self):
+ return self.lm_head
+
+ def get_prefix_bias_name(self):
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
+ return self.name + "/" + self.lm_head.name
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ mask="",
+ expected_output="' Paris'",
+ expected_loss=0.1,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMaskedLMOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "lm_head", None) is not None:
+ with tf.name_scope(self.lm_head.name):
+ self.lm_head.build(None)
+
+
+class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
+
+ def __init__(self, config: RobertaConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `TFRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
+
+ self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
+ self.lm_head = TFRobertaLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head")
+
+ def get_lm_head(self):
+ return self.lm_head
+
+ def get_prefix_bias_name(self):
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
+ return self.name + "/" + self.lm_head.name
+
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = tf.ones(input_shape)
+
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ input_ids = input_ids[:, -1:]
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFCausalLMOutputWithCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
+ r"""
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`). Set to `False` during training, `True` during generation
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
+ config.vocab_size - 1]`.
+ """
+ outputs = self.roberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.lm_head(hidden_states=sequence_output, training=training)
+ loss = None
+
+ if labels is not None:
+ # shift labels to the left and cut last logit token
+ shifted_logits = logits[:, :-1]
+ labels = labels[:, 1:]
+ loss = self.hf_compute_loss(labels=labels, logits=shifted_logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFCausalLMOutputWithCrossAttentions(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "lm_head", None) is not None:
+ with tf.name_scope(self.lm_head.name):
+ self.lm_head.build(None)
+
+
+class TFRobertaClassificationHead(keras.layers.Layer):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = keras.layers.Dropout(classifier_dropout)
+ self.out_proj = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
+ )
+ self.config = config
+
+ def call(self, features, training=False):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x, training=training)
+ x = self.dense(x)
+ x = self.dropout(x, training=training)
+ x = self.out_proj(x)
+ return x
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceClassificationLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+
+ self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
+ self.classifier = TFRobertaClassificationHead(config, name="classifier")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="cardiffnlp/twitter-roberta-base-emotion",
+ output_type=TFSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="'optimism'",
+ expected_loss=0.08,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output, training=training)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build(None)
+
+
+@add_start_docstrings(
+ """
+ Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"lm_head"]
+ _keys_to_ignore_on_load_missing = [r"dropout"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.roberta = TFRobertaMainLayer(config, name="roberta")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.classifier = keras.layers.Dense(
+ 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
+ """
+
+ if input_ids is not None:
+ num_choices = shape_list(input_ids)[1]
+ seq_length = shape_list(input_ids)[2]
+ else:
+ num_choices = shape_list(inputs_embeds)[1]
+ seq_length = shape_list(inputs_embeds)[2]
+
+ flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
+ flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
+ flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
+ flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
+ outputs = self.roberta(
+ flat_input_ids,
+ flat_attention_mask,
+ flat_token_type_ids,
+ flat_position_ids,
+ head_mask,
+ inputs_embeds,
+ output_attentions,
+ output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ pooled_output = outputs[1]
+ pooled_output = self.dropout(pooled_output, training=training)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = tf.reshape(logits, (-1, num_choices))
+
+ loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassificationLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
+ _keys_to_ignore_on_load_missing = [r"dropout"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+
+ self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = keras.layers.Dropout(classifier_dropout)
+ self.classifier = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="ydshieh/roberta-large-ner-english",
+ output_type=TFTokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
+ expected_loss=0.01,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output, training=training)
+ logits = self.classifier(sequence_output)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFTokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ROBERTA_START_DOCSTRING,
+)
+class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnsweringLoss):
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+
+ self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
+ self.qa_outputs = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint="ydshieh/roberta-base-squad2",
+ output_type=TFQuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="' puppet'",
+ expected_loss=0.86,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ start_positions: np.ndarray | tf.Tensor | None = None,
+ end_positions: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ outputs = self.roberta(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = tf.split(logits, 2, axis=-1)
+ start_logits = tf.squeeze(start_logits, axis=-1)
+ end_logits = tf.squeeze(end_logits, axis=-1)
+
+ loss = None
+ if start_positions is not None and end_positions is not None:
+ labels = {"start_position": start_positions}
+ labels["end_position"] = end_positions
+ loss = self.hf_compute_loss(labels, (start_logits, end_logits))
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFQuestionAnsweringModelOutput(
+ loss=loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roberta", None) is not None:
+ with tf.name_scope(self.roberta.name):
+ self.roberta.build(None)
+ if getattr(self, "qa_outputs", None) is not None:
+ with tf.name_scope(self.qa_outputs.name):
+ self.qa_outputs.build([None, None, self.config.hidden_size])
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/tokenization_roberta.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/tokenization_roberta.py
new file mode 100644
index 0000000000000000000000000000000000000000..072c44ac4dd35900196e6f5d22534e82b54a44ee
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/tokenization_roberta.py
@@ -0,0 +1,399 @@
+# coding=utf-8
+# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for RoBERTa."""
+
+import json
+import os
+from functools import lru_cache
+from typing import List, Optional, Tuple
+
+import regex as re
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {
+ "vocab_file": "vocab.json",
+ "merges_file": "merges.txt",
+}
+
+
+@lru_cache()
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
+ characters the bpe code barfs on.
+
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
+ tables between utf-8 bytes and unicode strings.
+ """
+ bs = (
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
+ )
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8 + n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+
+def get_pairs(word):
+ """
+ Return set of symbol pairs in a word.
+
+ Word is represented as tuple of symbols (symbols being variable-length strings).
+ """
+ pairs = set()
+ prev_char = word[0]
+ for char in word[1:]:
+ pairs.add((prev_char, char))
+ prev_char = char
+ return pairs
+
+
+class RobertaTokenizer(PreTrainedTokenizer):
+ """
+ Constructs a RoBERTa tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
+
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
+
+ ```python
+ >>> from transformers import RobertaTokenizer
+
+ >>> tokenizer = RobertaTokenizer.from_pretrained("FacebookAI/roberta-base")
+ >>> tokenizer("Hello world")["input_ids"]
+ [0, 31414, 232, 2]
+
+ >>> tokenizer(" Hello world")["input_ids"]
+ [0, 20920, 232, 2]
+ ```
+
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
+
+
+
+ When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
+
+
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ merges_file,
+ errors="replace",
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ add_prefix_space=False,
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
+ sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
+ cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
+
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = (
+ AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
+ if isinstance(mask_token, str)
+ else mask_token
+ )
+
+ # these special tokens are not part of the vocab.json, let's add them in the correct order
+
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
+ self.encoder = json.load(vocab_handle)
+ self.decoder = {v: k for k, v in self.encoder.items()}
+ self.errors = errors # how to handle errors in decoding
+ self.byte_encoder = bytes_to_unicode()
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
+ with open(merges_file, encoding="utf-8") as merges_handle:
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
+ self.cache = {}
+ self.add_prefix_space = add_prefix_space
+
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
+
+ super().__init__(
+ errors=errors,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ add_prefix_space=add_prefix_space,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ return len(self.encoder)
+
+ def get_vocab(self):
+ vocab = dict(self.encoder).copy()
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def bpe(self, token):
+ if token in self.cache:
+ return self.cache[token]
+ word = tuple(token)
+ pairs = get_pairs(word)
+
+ if not pairs:
+ return token
+
+ while True:
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
+ if bigram not in self.bpe_ranks:
+ break
+ first, second = bigram
+ new_word = []
+ i = 0
+ while i < len(word):
+ try:
+ j = word.index(first, i)
+ except ValueError:
+ new_word.extend(word[i:])
+ break
+ else:
+ new_word.extend(word[i:j])
+ i = j
+
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
+ new_word.append(first + second)
+ i += 2
+ else:
+ new_word.append(word[i])
+ i += 1
+ new_word = tuple(new_word)
+ word = new_word
+ if len(word) == 1:
+ break
+ else:
+ pairs = get_pairs(word)
+ word = " ".join(word)
+ self.cache[token] = word
+ return word
+
+ def _tokenize(self, text):
+ """Tokenize a string."""
+ bpe_tokens = []
+ for token in re.findall(self.pat, text):
+ token = "".join(
+ self.byte_encoder[b] for b in token.encode("utf-8")
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
+ return bpe_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.decoder.get(index)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ text = "".join(tokens)
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
+ return text
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ merge_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
+ )
+
+ with open(vocab_file, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
+
+ index = 0
+ with open(merge_file, "w", encoding="utf-8") as writer:
+ writer.write("#version: 0.2\n")
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
+ " Please check that the tokenizer is not corrupted!"
+ )
+ index = token_index
+ writer.write(" ".join(bpe_tokens) + "\n")
+ index += 1
+
+ return vocab_file, merge_file
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A RoBERTa sequence has the following format:
+
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
+ add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
+ if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
+ text = " " + text
+ return (text, kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/tokenization_roberta_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/tokenization_roberta_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..702af8a33e1b94106854b7ff7055f5a872ed4e43
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/tokenization_roberta_fast.py
@@ -0,0 +1,268 @@
+# coding=utf-8
+# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Fast Tokenization classes for RoBERTa."""
+import json
+from typing import List, Optional, Tuple
+
+from tokenizers import pre_tokenizers, processors
+
+from ...tokenization_utils_base import AddedToken, BatchEncoding
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+from .tokenization_roberta import RobertaTokenizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
+
+
+class RobertaTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" RoBERTa tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2
+ tokenizer, using byte-level Byte-Pair-Encoding.
+
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
+
+ ```python
+ >>> from transformers import RobertaTokenizerFast
+
+ >>> tokenizer = RobertaTokenizerFast.from_pretrained("FacebookAI/roberta-base")
+ >>> tokenizer("Hello world")["input_ids"]
+ [0, 31414, 232, 2]
+
+ >>> tokenizer(" Hello world")["input_ids"]
+ [0, 20920, 232, 2]
+ ```
+
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
+
+
+
+ When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
+
+
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
+ trim_offsets (`bool`, *optional*, defaults to `True`):
+ Whether the post processing step should trim offsets to avoid including whitespaces.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+ slow_tokenizer_class = RobertaTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ merges_file=None,
+ tokenizer_file=None,
+ errors="replace",
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ add_prefix_space=False,
+ trim_offsets=True,
+ **kwargs,
+ ):
+ mask_token = (
+ AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
+ if isinstance(mask_token, str)
+ else mask_token
+ )
+ super().__init__(
+ vocab_file,
+ merges_file,
+ tokenizer_file=tokenizer_file,
+ errors=errors,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ add_prefix_space=add_prefix_space,
+ trim_offsets=trim_offsets,
+ **kwargs,
+ )
+
+ pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
+ if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
+ pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
+ pre_tok_state["add_prefix_space"] = add_prefix_space
+ self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
+
+ self.add_prefix_space = add_prefix_space
+
+ tokenizer_component = "post_processor"
+ tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
+ if tokenizer_component_instance:
+ state = json.loads(tokenizer_component_instance.__getstate__())
+
+ # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
+ if "sep" in state:
+ state["sep"] = tuple(state["sep"])
+ if "cls" in state:
+ state["cls"] = tuple(state["cls"])
+
+ changes_to_apply = False
+
+ if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
+ state["add_prefix_space"] = add_prefix_space
+ changes_to_apply = True
+
+ if state.get("trim_offsets", trim_offsets) != trim_offsets:
+ state["trim_offsets"] = trim_offsets
+ changes_to_apply = True
+
+ if changes_to_apply:
+ component_class = getattr(processors, state.pop("type"))
+ new_value = component_class(**state)
+ setattr(self.backend_tokenizer, tokenizer_component, new_value)
+
+ @property
+ def mask_token(self) -> str:
+ """
+ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
+ having been set.
+
+ Roberta tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
+ comprise the space before the **.
+ """
+ if self._mask_token is None:
+ if self.verbose:
+ logger.error("Using mask_token, but it is not set yet.")
+ return None
+ return str(self._mask_token)
+
+ @mask_token.setter
+ def mask_token(self, value):
+ """
+ Overriding the default behavior of the mask token to have it eat the space before it.
+
+ This is needed to preserve backward compatibility with all the previously used models based on Roberta.
+ """
+ # Mask token behave like a normal word, i.e. include the space before it
+ # So we set lstrip to True
+ value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
+ self._mask_token = value
+
+ def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
+ is_split_into_words = kwargs.get("is_split_into_words", False)
+ assert self.add_prefix_space or not is_split_into_words, (
+ f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
+ "to use it with pretokenized inputs."
+ )
+
+ return super()._batch_encode_plus(*args, **kwargs)
+
+ def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
+ is_split_into_words = kwargs.get("is_split_into_words", False)
+
+ assert self.add_prefix_space or not is_split_into_words, (
+ f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
+ "to use it with pretokenized inputs."
+ )
+
+ return super()._encode_plus(*args, **kwargs)
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
+ if token_ids_1 is None:
+ return output
+
+ return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]