applied-ai-018 commited on
Commit
fc07321
·
verified ·
1 Parent(s): 6f37534

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_bvp.py +1155 -0
  2. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_lsoda.cpython-310-x86_64-linux-gnu.so +0 -0
  3. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_test_odeint_banded.cpython-310-x86_64-linux-gnu.so +0 -0
  4. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_vode.cpython-310-x86_64-linux-gnu.so +0 -0
  5. llmeval-env/lib/python3.10/site-packages/scipy/integrate/dop.py +18 -0
  6. llmeval-env/lib/python3.10/site-packages/scipy/integrate/lsoda.py +15 -0
  7. llmeval-env/lib/python3.10/site-packages/scipy/integrate/odepack.py +17 -0
  8. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/__init__.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_binned_statistic.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_binomtest.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_bws_test.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_censored_data.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_common.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_constants.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_covariance.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_discrete_distns.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_distn_infrastructure.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_distr_params.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_entropy.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_generate_pyx.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_hypotests.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_kde.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_ksstats.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mannwhitneyu.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_morestats.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_basic.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_extras.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_multicomp.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_multivariate.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_odds_ratio.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_page_trend_test.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_qmc.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_qmvnt.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_relative_risk.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_resampling.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_result_classes.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_rvs_sampling.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_sampling.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_sensitivity_analysis.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_stats_mstats_common.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_stats_py.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_survival.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_tukeylambda_stats.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_variation.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_warnings_errors.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_wilcoxon.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/biasedurn.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/distributions.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/kde.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/morestats.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_bvp.py ADDED
@@ -0,0 +1,1155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Boundary value problem solver."""
2
+ from warnings import warn
3
+
4
+ import numpy as np
5
+ from numpy.linalg import pinv
6
+
7
+ from scipy.sparse import coo_matrix, csc_matrix
8
+ from scipy.sparse.linalg import splu
9
+ from scipy.optimize import OptimizeResult
10
+
11
+
12
+ EPS = np.finfo(float).eps
13
+
14
+
15
+ def estimate_fun_jac(fun, x, y, p, f0=None):
16
+ """Estimate derivatives of an ODE system rhs with forward differences.
17
+
18
+ Returns
19
+ -------
20
+ df_dy : ndarray, shape (n, n, m)
21
+ Derivatives with respect to y. An element (i, j, q) corresponds to
22
+ d f_i(x_q, y_q) / d (y_q)_j.
23
+ df_dp : ndarray with shape (n, k, m) or None
24
+ Derivatives with respect to p. An element (i, j, q) corresponds to
25
+ d f_i(x_q, y_q, p) / d p_j. If `p` is empty, None is returned.
26
+ """
27
+ n, m = y.shape
28
+ if f0 is None:
29
+ f0 = fun(x, y, p)
30
+
31
+ dtype = y.dtype
32
+
33
+ df_dy = np.empty((n, n, m), dtype=dtype)
34
+ h = EPS**0.5 * (1 + np.abs(y))
35
+ for i in range(n):
36
+ y_new = y.copy()
37
+ y_new[i] += h[i]
38
+ hi = y_new[i] - y[i]
39
+ f_new = fun(x, y_new, p)
40
+ df_dy[:, i, :] = (f_new - f0) / hi
41
+
42
+ k = p.shape[0]
43
+ if k == 0:
44
+ df_dp = None
45
+ else:
46
+ df_dp = np.empty((n, k, m), dtype=dtype)
47
+ h = EPS**0.5 * (1 + np.abs(p))
48
+ for i in range(k):
49
+ p_new = p.copy()
50
+ p_new[i] += h[i]
51
+ hi = p_new[i] - p[i]
52
+ f_new = fun(x, y, p_new)
53
+ df_dp[:, i, :] = (f_new - f0) / hi
54
+
55
+ return df_dy, df_dp
56
+
57
+
58
+ def estimate_bc_jac(bc, ya, yb, p, bc0=None):
59
+ """Estimate derivatives of boundary conditions with forward differences.
60
+
61
+ Returns
62
+ -------
63
+ dbc_dya : ndarray, shape (n + k, n)
64
+ Derivatives with respect to ya. An element (i, j) corresponds to
65
+ d bc_i / d ya_j.
66
+ dbc_dyb : ndarray, shape (n + k, n)
67
+ Derivatives with respect to yb. An element (i, j) corresponds to
68
+ d bc_i / d ya_j.
69
+ dbc_dp : ndarray with shape (n + k, k) or None
70
+ Derivatives with respect to p. An element (i, j) corresponds to
71
+ d bc_i / d p_j. If `p` is empty, None is returned.
72
+ """
73
+ n = ya.shape[0]
74
+ k = p.shape[0]
75
+
76
+ if bc0 is None:
77
+ bc0 = bc(ya, yb, p)
78
+
79
+ dtype = ya.dtype
80
+
81
+ dbc_dya = np.empty((n, n + k), dtype=dtype)
82
+ h = EPS**0.5 * (1 + np.abs(ya))
83
+ for i in range(n):
84
+ ya_new = ya.copy()
85
+ ya_new[i] += h[i]
86
+ hi = ya_new[i] - ya[i]
87
+ bc_new = bc(ya_new, yb, p)
88
+ dbc_dya[i] = (bc_new - bc0) / hi
89
+ dbc_dya = dbc_dya.T
90
+
91
+ h = EPS**0.5 * (1 + np.abs(yb))
92
+ dbc_dyb = np.empty((n, n + k), dtype=dtype)
93
+ for i in range(n):
94
+ yb_new = yb.copy()
95
+ yb_new[i] += h[i]
96
+ hi = yb_new[i] - yb[i]
97
+ bc_new = bc(ya, yb_new, p)
98
+ dbc_dyb[i] = (bc_new - bc0) / hi
99
+ dbc_dyb = dbc_dyb.T
100
+
101
+ if k == 0:
102
+ dbc_dp = None
103
+ else:
104
+ h = EPS**0.5 * (1 + np.abs(p))
105
+ dbc_dp = np.empty((k, n + k), dtype=dtype)
106
+ for i in range(k):
107
+ p_new = p.copy()
108
+ p_new[i] += h[i]
109
+ hi = p_new[i] - p[i]
110
+ bc_new = bc(ya, yb, p_new)
111
+ dbc_dp[i] = (bc_new - bc0) / hi
112
+ dbc_dp = dbc_dp.T
113
+
114
+ return dbc_dya, dbc_dyb, dbc_dp
115
+
116
+
117
+ def compute_jac_indices(n, m, k):
118
+ """Compute indices for the collocation system Jacobian construction.
119
+
120
+ See `construct_global_jac` for the explanation.
121
+ """
122
+ i_col = np.repeat(np.arange((m - 1) * n), n)
123
+ j_col = (np.tile(np.arange(n), n * (m - 1)) +
124
+ np.repeat(np.arange(m - 1) * n, n**2))
125
+
126
+ i_bc = np.repeat(np.arange((m - 1) * n, m * n + k), n)
127
+ j_bc = np.tile(np.arange(n), n + k)
128
+
129
+ i_p_col = np.repeat(np.arange((m - 1) * n), k)
130
+ j_p_col = np.tile(np.arange(m * n, m * n + k), (m - 1) * n)
131
+
132
+ i_p_bc = np.repeat(np.arange((m - 1) * n, m * n + k), k)
133
+ j_p_bc = np.tile(np.arange(m * n, m * n + k), n + k)
134
+
135
+ i = np.hstack((i_col, i_col, i_bc, i_bc, i_p_col, i_p_bc))
136
+ j = np.hstack((j_col, j_col + n,
137
+ j_bc, j_bc + (m - 1) * n,
138
+ j_p_col, j_p_bc))
139
+
140
+ return i, j
141
+
142
+
143
+ def stacked_matmul(a, b):
144
+ """Stacked matrix multiply: out[i,:,:] = np.dot(a[i,:,:], b[i,:,:]).
145
+
146
+ Empirical optimization. Use outer Python loop and BLAS for large
147
+ matrices, otherwise use a single einsum call.
148
+ """
149
+ if a.shape[1] > 50:
150
+ out = np.empty((a.shape[0], a.shape[1], b.shape[2]))
151
+ for i in range(a.shape[0]):
152
+ out[i] = np.dot(a[i], b[i])
153
+ return out
154
+ else:
155
+ return np.einsum('...ij,...jk->...ik', a, b)
156
+
157
+
158
+ def construct_global_jac(n, m, k, i_jac, j_jac, h, df_dy, df_dy_middle, df_dp,
159
+ df_dp_middle, dbc_dya, dbc_dyb, dbc_dp):
160
+ """Construct the Jacobian of the collocation system.
161
+
162
+ There are n * m + k functions: m - 1 collocations residuals, each
163
+ containing n components, followed by n + k boundary condition residuals.
164
+
165
+ There are n * m + k variables: m vectors of y, each containing n
166
+ components, followed by k values of vector p.
167
+
168
+ For example, let m = 4, n = 2 and k = 1, then the Jacobian will have
169
+ the following sparsity structure:
170
+
171
+ 1 1 2 2 0 0 0 0 5
172
+ 1 1 2 2 0 0 0 0 5
173
+ 0 0 1 1 2 2 0 0 5
174
+ 0 0 1 1 2 2 0 0 5
175
+ 0 0 0 0 1 1 2 2 5
176
+ 0 0 0 0 1 1 2 2 5
177
+
178
+ 3 3 0 0 0 0 4 4 6
179
+ 3 3 0 0 0 0 4 4 6
180
+ 3 3 0 0 0 0 4 4 6
181
+
182
+ Zeros denote identically zero values, other values denote different kinds
183
+ of blocks in the matrix (see below). The blank row indicates the separation
184
+ of collocation residuals from boundary conditions. And the blank column
185
+ indicates the separation of y values from p values.
186
+
187
+ Refer to [1]_ (p. 306) for the formula of n x n blocks for derivatives
188
+ of collocation residuals with respect to y.
189
+
190
+ Parameters
191
+ ----------
192
+ n : int
193
+ Number of equations in the ODE system.
194
+ m : int
195
+ Number of nodes in the mesh.
196
+ k : int
197
+ Number of the unknown parameters.
198
+ i_jac, j_jac : ndarray
199
+ Row and column indices returned by `compute_jac_indices`. They
200
+ represent different blocks in the Jacobian matrix in the following
201
+ order (see the scheme above):
202
+
203
+ * 1: m - 1 diagonal n x n blocks for the collocation residuals.
204
+ * 2: m - 1 off-diagonal n x n blocks for the collocation residuals.
205
+ * 3 : (n + k) x n block for the dependency of the boundary
206
+ conditions on ya.
207
+ * 4: (n + k) x n block for the dependency of the boundary
208
+ conditions on yb.
209
+ * 5: (m - 1) * n x k block for the dependency of the collocation
210
+ residuals on p.
211
+ * 6: (n + k) x k block for the dependency of the boundary
212
+ conditions on p.
213
+
214
+ df_dy : ndarray, shape (n, n, m)
215
+ Jacobian of f with respect to y computed at the mesh nodes.
216
+ df_dy_middle : ndarray, shape (n, n, m - 1)
217
+ Jacobian of f with respect to y computed at the middle between the
218
+ mesh nodes.
219
+ df_dp : ndarray with shape (n, k, m) or None
220
+ Jacobian of f with respect to p computed at the mesh nodes.
221
+ df_dp_middle : ndarray with shape (n, k, m - 1) or None
222
+ Jacobian of f with respect to p computed at the middle between the
223
+ mesh nodes.
224
+ dbc_dya, dbc_dyb : ndarray, shape (n, n)
225
+ Jacobian of bc with respect to ya and yb.
226
+ dbc_dp : ndarray with shape (n, k) or None
227
+ Jacobian of bc with respect to p.
228
+
229
+ Returns
230
+ -------
231
+ J : csc_matrix, shape (n * m + k, n * m + k)
232
+ Jacobian of the collocation system in a sparse form.
233
+
234
+ References
235
+ ----------
236
+ .. [1] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
237
+ Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
238
+ Number 3, pp. 299-316, 2001.
239
+ """
240
+ df_dy = np.transpose(df_dy, (2, 0, 1))
241
+ df_dy_middle = np.transpose(df_dy_middle, (2, 0, 1))
242
+
243
+ h = h[:, np.newaxis, np.newaxis]
244
+
245
+ dtype = df_dy.dtype
246
+
247
+ # Computing diagonal n x n blocks.
248
+ dPhi_dy_0 = np.empty((m - 1, n, n), dtype=dtype)
249
+ dPhi_dy_0[:] = -np.identity(n)
250
+ dPhi_dy_0 -= h / 6 * (df_dy[:-1] + 2 * df_dy_middle)
251
+ T = stacked_matmul(df_dy_middle, df_dy[:-1])
252
+ dPhi_dy_0 -= h**2 / 12 * T
253
+
254
+ # Computing off-diagonal n x n blocks.
255
+ dPhi_dy_1 = np.empty((m - 1, n, n), dtype=dtype)
256
+ dPhi_dy_1[:] = np.identity(n)
257
+ dPhi_dy_1 -= h / 6 * (df_dy[1:] + 2 * df_dy_middle)
258
+ T = stacked_matmul(df_dy_middle, df_dy[1:])
259
+ dPhi_dy_1 += h**2 / 12 * T
260
+
261
+ values = np.hstack((dPhi_dy_0.ravel(), dPhi_dy_1.ravel(), dbc_dya.ravel(),
262
+ dbc_dyb.ravel()))
263
+
264
+ if k > 0:
265
+ df_dp = np.transpose(df_dp, (2, 0, 1))
266
+ df_dp_middle = np.transpose(df_dp_middle, (2, 0, 1))
267
+ T = stacked_matmul(df_dy_middle, df_dp[:-1] - df_dp[1:])
268
+ df_dp_middle += 0.125 * h * T
269
+ dPhi_dp = -h/6 * (df_dp[:-1] + df_dp[1:] + 4 * df_dp_middle)
270
+ values = np.hstack((values, dPhi_dp.ravel(), dbc_dp.ravel()))
271
+
272
+ J = coo_matrix((values, (i_jac, j_jac)))
273
+ return csc_matrix(J)
274
+
275
+
276
+ def collocation_fun(fun, y, p, x, h):
277
+ """Evaluate collocation residuals.
278
+
279
+ This function lies in the core of the method. The solution is sought
280
+ as a cubic C1 continuous spline with derivatives matching the ODE rhs
281
+ at given nodes `x`. Collocation conditions are formed from the equality
282
+ of the spline derivatives and rhs of the ODE system in the middle points
283
+ between nodes.
284
+
285
+ Such method is classified to Lobbato IIIA family in ODE literature.
286
+ Refer to [1]_ for the formula and some discussion.
287
+
288
+ Returns
289
+ -------
290
+ col_res : ndarray, shape (n, m - 1)
291
+ Collocation residuals at the middle points of the mesh intervals.
292
+ y_middle : ndarray, shape (n, m - 1)
293
+ Values of the cubic spline evaluated at the middle points of the mesh
294
+ intervals.
295
+ f : ndarray, shape (n, m)
296
+ RHS of the ODE system evaluated at the mesh nodes.
297
+ f_middle : ndarray, shape (n, m - 1)
298
+ RHS of the ODE system evaluated at the middle points of the mesh
299
+ intervals (and using `y_middle`).
300
+
301
+ References
302
+ ----------
303
+ .. [1] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
304
+ Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
305
+ Number 3, pp. 299-316, 2001.
306
+ """
307
+ f = fun(x, y, p)
308
+ y_middle = (0.5 * (y[:, 1:] + y[:, :-1]) -
309
+ 0.125 * h * (f[:, 1:] - f[:, :-1]))
310
+ f_middle = fun(x[:-1] + 0.5 * h, y_middle, p)
311
+ col_res = y[:, 1:] - y[:, :-1] - h / 6 * (f[:, :-1] + f[:, 1:] +
312
+ 4 * f_middle)
313
+
314
+ return col_res, y_middle, f, f_middle
315
+
316
+
317
+ def prepare_sys(n, m, k, fun, bc, fun_jac, bc_jac, x, h):
318
+ """Create the function and the Jacobian for the collocation system."""
319
+ x_middle = x[:-1] + 0.5 * h
320
+ i_jac, j_jac = compute_jac_indices(n, m, k)
321
+
322
+ def col_fun(y, p):
323
+ return collocation_fun(fun, y, p, x, h)
324
+
325
+ def sys_jac(y, p, y_middle, f, f_middle, bc0):
326
+ if fun_jac is None:
327
+ df_dy, df_dp = estimate_fun_jac(fun, x, y, p, f)
328
+ df_dy_middle, df_dp_middle = estimate_fun_jac(
329
+ fun, x_middle, y_middle, p, f_middle)
330
+ else:
331
+ df_dy, df_dp = fun_jac(x, y, p)
332
+ df_dy_middle, df_dp_middle = fun_jac(x_middle, y_middle, p)
333
+
334
+ if bc_jac is None:
335
+ dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac(bc, y[:, 0], y[:, -1],
336
+ p, bc0)
337
+ else:
338
+ dbc_dya, dbc_dyb, dbc_dp = bc_jac(y[:, 0], y[:, -1], p)
339
+
340
+ return construct_global_jac(n, m, k, i_jac, j_jac, h, df_dy,
341
+ df_dy_middle, df_dp, df_dp_middle, dbc_dya,
342
+ dbc_dyb, dbc_dp)
343
+
344
+ return col_fun, sys_jac
345
+
346
+
347
+ def solve_newton(n, m, h, col_fun, bc, jac, y, p, B, bvp_tol, bc_tol):
348
+ """Solve the nonlinear collocation system by a Newton method.
349
+
350
+ This is a simple Newton method with a backtracking line search. As
351
+ advised in [1]_, an affine-invariant criterion function F = ||J^-1 r||^2
352
+ is used, where J is the Jacobian matrix at the current iteration and r is
353
+ the vector or collocation residuals (values of the system lhs).
354
+
355
+ The method alters between full Newton iterations and the fixed-Jacobian
356
+ iterations based
357
+
358
+ There are other tricks proposed in [1]_, but they are not used as they
359
+ don't seem to improve anything significantly, and even break the
360
+ convergence on some test problems I tried.
361
+
362
+ All important parameters of the algorithm are defined inside the function.
363
+
364
+ Parameters
365
+ ----------
366
+ n : int
367
+ Number of equations in the ODE system.
368
+ m : int
369
+ Number of nodes in the mesh.
370
+ h : ndarray, shape (m-1,)
371
+ Mesh intervals.
372
+ col_fun : callable
373
+ Function computing collocation residuals.
374
+ bc : callable
375
+ Function computing boundary condition residuals.
376
+ jac : callable
377
+ Function computing the Jacobian of the whole system (including
378
+ collocation and boundary condition residuals). It is supposed to
379
+ return csc_matrix.
380
+ y : ndarray, shape (n, m)
381
+ Initial guess for the function values at the mesh nodes.
382
+ p : ndarray, shape (k,)
383
+ Initial guess for the unknown parameters.
384
+ B : ndarray with shape (n, n) or None
385
+ Matrix to force the S y(a) = 0 condition for a problems with the
386
+ singular term. If None, the singular term is assumed to be absent.
387
+ bvp_tol : float
388
+ Tolerance to which we want to solve a BVP.
389
+ bc_tol : float
390
+ Tolerance to which we want to satisfy the boundary conditions.
391
+
392
+ Returns
393
+ -------
394
+ y : ndarray, shape (n, m)
395
+ Final iterate for the function values at the mesh nodes.
396
+ p : ndarray, shape (k,)
397
+ Final iterate for the unknown parameters.
398
+ singular : bool
399
+ True, if the LU decomposition failed because Jacobian turned out
400
+ to be singular.
401
+
402
+ References
403
+ ----------
404
+ .. [1] U. Ascher, R. Mattheij and R. Russell "Numerical Solution of
405
+ Boundary Value Problems for Ordinary Differential Equations"
406
+ """
407
+ # We know that the solution residuals at the middle points of the mesh
408
+ # are connected with collocation residuals r_middle = 1.5 * col_res / h.
409
+ # As our BVP solver tries to decrease relative residuals below a certain
410
+ # tolerance, it seems reasonable to terminated Newton iterations by
411
+ # comparison of r_middle / (1 + np.abs(f_middle)) with a certain threshold,
412
+ # which we choose to be 1.5 orders lower than the BVP tolerance. We rewrite
413
+ # the condition as col_res < tol_r * (1 + np.abs(f_middle)), then tol_r
414
+ # should be computed as follows:
415
+ tol_r = 2/3 * h * 5e-2 * bvp_tol
416
+
417
+ # Maximum allowed number of Jacobian evaluation and factorization, in
418
+ # other words, the maximum number of full Newton iterations. A small value
419
+ # is recommended in the literature.
420
+ max_njev = 4
421
+
422
+ # Maximum number of iterations, considering that some of them can be
423
+ # performed with the fixed Jacobian. In theory, such iterations are cheap,
424
+ # but it's not that simple in Python.
425
+ max_iter = 8
426
+
427
+ # Minimum relative improvement of the criterion function to accept the
428
+ # step (Armijo constant).
429
+ sigma = 0.2
430
+
431
+ # Step size decrease factor for backtracking.
432
+ tau = 0.5
433
+
434
+ # Maximum number of backtracking steps, the minimum step is then
435
+ # tau ** n_trial.
436
+ n_trial = 4
437
+
438
+ col_res, y_middle, f, f_middle = col_fun(y, p)
439
+ bc_res = bc(y[:, 0], y[:, -1], p)
440
+ res = np.hstack((col_res.ravel(order='F'), bc_res))
441
+
442
+ njev = 0
443
+ singular = False
444
+ recompute_jac = True
445
+ for iteration in range(max_iter):
446
+ if recompute_jac:
447
+ J = jac(y, p, y_middle, f, f_middle, bc_res)
448
+ njev += 1
449
+ try:
450
+ LU = splu(J)
451
+ except RuntimeError:
452
+ singular = True
453
+ break
454
+
455
+ step = LU.solve(res)
456
+ cost = np.dot(step, step)
457
+
458
+ y_step = step[:m * n].reshape((n, m), order='F')
459
+ p_step = step[m * n:]
460
+
461
+ alpha = 1
462
+ for trial in range(n_trial + 1):
463
+ y_new = y - alpha * y_step
464
+ if B is not None:
465
+ y_new[:, 0] = np.dot(B, y_new[:, 0])
466
+ p_new = p - alpha * p_step
467
+
468
+ col_res, y_middle, f, f_middle = col_fun(y_new, p_new)
469
+ bc_res = bc(y_new[:, 0], y_new[:, -1], p_new)
470
+ res = np.hstack((col_res.ravel(order='F'), bc_res))
471
+
472
+ step_new = LU.solve(res)
473
+ cost_new = np.dot(step_new, step_new)
474
+ if cost_new < (1 - 2 * alpha * sigma) * cost:
475
+ break
476
+
477
+ if trial < n_trial:
478
+ alpha *= tau
479
+
480
+ y = y_new
481
+ p = p_new
482
+
483
+ if njev == max_njev:
484
+ break
485
+
486
+ if (np.all(np.abs(col_res) < tol_r * (1 + np.abs(f_middle))) and
487
+ np.all(np.abs(bc_res) < bc_tol)):
488
+ break
489
+
490
+ # If the full step was taken, then we are going to continue with
491
+ # the same Jacobian. This is the approach of BVP_SOLVER.
492
+ if alpha == 1:
493
+ step = step_new
494
+ cost = cost_new
495
+ recompute_jac = False
496
+ else:
497
+ recompute_jac = True
498
+
499
+ return y, p, singular
500
+
501
+
502
+ def print_iteration_header():
503
+ print("{:^15}{:^15}{:^15}{:^15}{:^15}".format(
504
+ "Iteration", "Max residual", "Max BC residual", "Total nodes",
505
+ "Nodes added"))
506
+
507
+
508
+ def print_iteration_progress(iteration, residual, bc_residual, total_nodes,
509
+ nodes_added):
510
+ print("{:^15}{:^15.2e}{:^15.2e}{:^15}{:^15}".format(
511
+ iteration, residual, bc_residual, total_nodes, nodes_added))
512
+
513
+
514
+ class BVPResult(OptimizeResult):
515
+ pass
516
+
517
+
518
+ TERMINATION_MESSAGES = {
519
+ 0: "The algorithm converged to the desired accuracy.",
520
+ 1: "The maximum number of mesh nodes is exceeded.",
521
+ 2: "A singular Jacobian encountered when solving the collocation system.",
522
+ 3: "The solver was unable to satisfy boundary conditions tolerance on iteration 10."
523
+ }
524
+
525
+
526
+ def estimate_rms_residuals(fun, sol, x, h, p, r_middle, f_middle):
527
+ """Estimate rms values of collocation residuals using Lobatto quadrature.
528
+
529
+ The residuals are defined as the difference between the derivatives of
530
+ our solution and rhs of the ODE system. We use relative residuals, i.e.,
531
+ normalized by 1 + np.abs(f). RMS values are computed as sqrt from the
532
+ normalized integrals of the squared relative residuals over each interval.
533
+ Integrals are estimated using 5-point Lobatto quadrature [1]_, we use the
534
+ fact that residuals at the mesh nodes are identically zero.
535
+
536
+ In [2] they don't normalize integrals by interval lengths, which gives
537
+ a higher rate of convergence of the residuals by the factor of h**0.5.
538
+ I chose to do such normalization for an ease of interpretation of return
539
+ values as RMS estimates.
540
+
541
+ Returns
542
+ -------
543
+ rms_res : ndarray, shape (m - 1,)
544
+ Estimated rms values of the relative residuals over each interval.
545
+
546
+ References
547
+ ----------
548
+ .. [1] http://mathworld.wolfram.com/LobattoQuadrature.html
549
+ .. [2] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
550
+ Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
551
+ Number 3, pp. 299-316, 2001.
552
+ """
553
+ x_middle = x[:-1] + 0.5 * h
554
+ s = 0.5 * h * (3/7)**0.5
555
+ x1 = x_middle + s
556
+ x2 = x_middle - s
557
+ y1 = sol(x1)
558
+ y2 = sol(x2)
559
+ y1_prime = sol(x1, 1)
560
+ y2_prime = sol(x2, 1)
561
+ f1 = fun(x1, y1, p)
562
+ f2 = fun(x2, y2, p)
563
+ r1 = y1_prime - f1
564
+ r2 = y2_prime - f2
565
+
566
+ r_middle /= 1 + np.abs(f_middle)
567
+ r1 /= 1 + np.abs(f1)
568
+ r2 /= 1 + np.abs(f2)
569
+
570
+ r1 = np.sum(np.real(r1 * np.conj(r1)), axis=0)
571
+ r2 = np.sum(np.real(r2 * np.conj(r2)), axis=0)
572
+ r_middle = np.sum(np.real(r_middle * np.conj(r_middle)), axis=0)
573
+
574
+ return (0.5 * (32 / 45 * r_middle + 49 / 90 * (r1 + r2))) ** 0.5
575
+
576
+
577
+ def create_spline(y, yp, x, h):
578
+ """Create a cubic spline given values and derivatives.
579
+
580
+ Formulas for the coefficients are taken from interpolate.CubicSpline.
581
+
582
+ Returns
583
+ -------
584
+ sol : PPoly
585
+ Constructed spline as a PPoly instance.
586
+ """
587
+ from scipy.interpolate import PPoly
588
+
589
+ n, m = y.shape
590
+ c = np.empty((4, n, m - 1), dtype=y.dtype)
591
+ slope = (y[:, 1:] - y[:, :-1]) / h
592
+ t = (yp[:, :-1] + yp[:, 1:] - 2 * slope) / h
593
+ c[0] = t / h
594
+ c[1] = (slope - yp[:, :-1]) / h - t
595
+ c[2] = yp[:, :-1]
596
+ c[3] = y[:, :-1]
597
+ c = np.moveaxis(c, 1, 0)
598
+
599
+ return PPoly(c, x, extrapolate=True, axis=1)
600
+
601
+
602
+ def modify_mesh(x, insert_1, insert_2):
603
+ """Insert nodes into a mesh.
604
+
605
+ Nodes removal logic is not established, its impact on the solver is
606
+ presumably negligible. So, only insertion is done in this function.
607
+
608
+ Parameters
609
+ ----------
610
+ x : ndarray, shape (m,)
611
+ Mesh nodes.
612
+ insert_1 : ndarray
613
+ Intervals to each insert 1 new node in the middle.
614
+ insert_2 : ndarray
615
+ Intervals to each insert 2 new nodes, such that divide an interval
616
+ into 3 equal parts.
617
+
618
+ Returns
619
+ -------
620
+ x_new : ndarray
621
+ New mesh nodes.
622
+
623
+ Notes
624
+ -----
625
+ `insert_1` and `insert_2` should not have common values.
626
+ """
627
+ # Because np.insert implementation apparently varies with a version of
628
+ # NumPy, we use a simple and reliable approach with sorting.
629
+ return np.sort(np.hstack((
630
+ x,
631
+ 0.5 * (x[insert_1] + x[insert_1 + 1]),
632
+ (2 * x[insert_2] + x[insert_2 + 1]) / 3,
633
+ (x[insert_2] + 2 * x[insert_2 + 1]) / 3
634
+ )))
635
+
636
+
637
+ def wrap_functions(fun, bc, fun_jac, bc_jac, k, a, S, D, dtype):
638
+ """Wrap functions for unified usage in the solver."""
639
+ if fun_jac is None:
640
+ fun_jac_wrapped = None
641
+
642
+ if bc_jac is None:
643
+ bc_jac_wrapped = None
644
+
645
+ if k == 0:
646
+ def fun_p(x, y, _):
647
+ return np.asarray(fun(x, y), dtype)
648
+
649
+ def bc_wrapped(ya, yb, _):
650
+ return np.asarray(bc(ya, yb), dtype)
651
+
652
+ if fun_jac is not None:
653
+ def fun_jac_p(x, y, _):
654
+ return np.asarray(fun_jac(x, y), dtype), None
655
+
656
+ if bc_jac is not None:
657
+ def bc_jac_wrapped(ya, yb, _):
658
+ dbc_dya, dbc_dyb = bc_jac(ya, yb)
659
+ return (np.asarray(dbc_dya, dtype),
660
+ np.asarray(dbc_dyb, dtype), None)
661
+ else:
662
+ def fun_p(x, y, p):
663
+ return np.asarray(fun(x, y, p), dtype)
664
+
665
+ def bc_wrapped(x, y, p):
666
+ return np.asarray(bc(x, y, p), dtype)
667
+
668
+ if fun_jac is not None:
669
+ def fun_jac_p(x, y, p):
670
+ df_dy, df_dp = fun_jac(x, y, p)
671
+ return np.asarray(df_dy, dtype), np.asarray(df_dp, dtype)
672
+
673
+ if bc_jac is not None:
674
+ def bc_jac_wrapped(ya, yb, p):
675
+ dbc_dya, dbc_dyb, dbc_dp = bc_jac(ya, yb, p)
676
+ return (np.asarray(dbc_dya, dtype), np.asarray(dbc_dyb, dtype),
677
+ np.asarray(dbc_dp, dtype))
678
+
679
+ if S is None:
680
+ fun_wrapped = fun_p
681
+ else:
682
+ def fun_wrapped(x, y, p):
683
+ f = fun_p(x, y, p)
684
+ if x[0] == a:
685
+ f[:, 0] = np.dot(D, f[:, 0])
686
+ f[:, 1:] += np.dot(S, y[:, 1:]) / (x[1:] - a)
687
+ else:
688
+ f += np.dot(S, y) / (x - a)
689
+ return f
690
+
691
+ if fun_jac is not None:
692
+ if S is None:
693
+ fun_jac_wrapped = fun_jac_p
694
+ else:
695
+ Sr = S[:, :, np.newaxis]
696
+
697
+ def fun_jac_wrapped(x, y, p):
698
+ df_dy, df_dp = fun_jac_p(x, y, p)
699
+ if x[0] == a:
700
+ df_dy[:, :, 0] = np.dot(D, df_dy[:, :, 0])
701
+ df_dy[:, :, 1:] += Sr / (x[1:] - a)
702
+ else:
703
+ df_dy += Sr / (x - a)
704
+
705
+ return df_dy, df_dp
706
+
707
+ return fun_wrapped, bc_wrapped, fun_jac_wrapped, bc_jac_wrapped
708
+
709
+
710
+ def solve_bvp(fun, bc, x, y, p=None, S=None, fun_jac=None, bc_jac=None,
711
+ tol=1e-3, max_nodes=1000, verbose=0, bc_tol=None):
712
+ """Solve a boundary value problem for a system of ODEs.
713
+
714
+ This function numerically solves a first order system of ODEs subject to
715
+ two-point boundary conditions::
716
+
717
+ dy / dx = f(x, y, p) + S * y / (x - a), a <= x <= b
718
+ bc(y(a), y(b), p) = 0
719
+
720
+ Here x is a 1-D independent variable, y(x) is an N-D
721
+ vector-valued function and p is a k-D vector of unknown
722
+ parameters which is to be found along with y(x). For the problem to be
723
+ determined, there must be n + k boundary conditions, i.e., bc must be an
724
+ (n + k)-D function.
725
+
726
+ The last singular term on the right-hand side of the system is optional.
727
+ It is defined by an n-by-n matrix S, such that the solution must satisfy
728
+ S y(a) = 0. This condition will be forced during iterations, so it must not
729
+ contradict boundary conditions. See [2]_ for the explanation how this term
730
+ is handled when solving BVPs numerically.
731
+
732
+ Problems in a complex domain can be solved as well. In this case, y and p
733
+ are considered to be complex, and f and bc are assumed to be complex-valued
734
+ functions, but x stays real. Note that f and bc must be complex
735
+ differentiable (satisfy Cauchy-Riemann equations [4]_), otherwise you
736
+ should rewrite your problem for real and imaginary parts separately. To
737
+ solve a problem in a complex domain, pass an initial guess for y with a
738
+ complex data type (see below).
739
+
740
+ Parameters
741
+ ----------
742
+ fun : callable
743
+ Right-hand side of the system. The calling signature is ``fun(x, y)``,
744
+ or ``fun(x, y, p)`` if parameters are present. All arguments are
745
+ ndarray: ``x`` with shape (m,), ``y`` with shape (n, m), meaning that
746
+ ``y[:, i]`` corresponds to ``x[i]``, and ``p`` with shape (k,). The
747
+ return value must be an array with shape (n, m) and with the same
748
+ layout as ``y``.
749
+ bc : callable
750
+ Function evaluating residuals of the boundary conditions. The calling
751
+ signature is ``bc(ya, yb)``, or ``bc(ya, yb, p)`` if parameters are
752
+ present. All arguments are ndarray: ``ya`` and ``yb`` with shape (n,),
753
+ and ``p`` with shape (k,). The return value must be an array with
754
+ shape (n + k,).
755
+ x : array_like, shape (m,)
756
+ Initial mesh. Must be a strictly increasing sequence of real numbers
757
+ with ``x[0]=a`` and ``x[-1]=b``.
758
+ y : array_like, shape (n, m)
759
+ Initial guess for the function values at the mesh nodes, ith column
760
+ corresponds to ``x[i]``. For problems in a complex domain pass `y`
761
+ with a complex data type (even if the initial guess is purely real).
762
+ p : array_like with shape (k,) or None, optional
763
+ Initial guess for the unknown parameters. If None (default), it is
764
+ assumed that the problem doesn't depend on any parameters.
765
+ S : array_like with shape (n, n) or None
766
+ Matrix defining the singular term. If None (default), the problem is
767
+ solved without the singular term.
768
+ fun_jac : callable or None, optional
769
+ Function computing derivatives of f with respect to y and p. The
770
+ calling signature is ``fun_jac(x, y)``, or ``fun_jac(x, y, p)`` if
771
+ parameters are present. The return must contain 1 or 2 elements in the
772
+ following order:
773
+
774
+ * df_dy : array_like with shape (n, n, m), where an element
775
+ (i, j, q) equals to d f_i(x_q, y_q, p) / d (y_q)_j.
776
+ * df_dp : array_like with shape (n, k, m), where an element
777
+ (i, j, q) equals to d f_i(x_q, y_q, p) / d p_j.
778
+
779
+ Here q numbers nodes at which x and y are defined, whereas i and j
780
+ number vector components. If the problem is solved without unknown
781
+ parameters, df_dp should not be returned.
782
+
783
+ If `fun_jac` is None (default), the derivatives will be estimated
784
+ by the forward finite differences.
785
+ bc_jac : callable or None, optional
786
+ Function computing derivatives of bc with respect to ya, yb, and p.
787
+ The calling signature is ``bc_jac(ya, yb)``, or ``bc_jac(ya, yb, p)``
788
+ if parameters are present. The return must contain 2 or 3 elements in
789
+ the following order:
790
+
791
+ * dbc_dya : array_like with shape (n, n), where an element (i, j)
792
+ equals to d bc_i(ya, yb, p) / d ya_j.
793
+ * dbc_dyb : array_like with shape (n, n), where an element (i, j)
794
+ equals to d bc_i(ya, yb, p) / d yb_j.
795
+ * dbc_dp : array_like with shape (n, k), where an element (i, j)
796
+ equals to d bc_i(ya, yb, p) / d p_j.
797
+
798
+ If the problem is solved without unknown parameters, dbc_dp should not
799
+ be returned.
800
+
801
+ If `bc_jac` is None (default), the derivatives will be estimated by
802
+ the forward finite differences.
803
+ tol : float, optional
804
+ Desired tolerance of the solution. If we define ``r = y' - f(x, y)``,
805
+ where y is the found solution, then the solver tries to achieve on each
806
+ mesh interval ``norm(r / (1 + abs(f)) < tol``, where ``norm`` is
807
+ estimated in a root mean squared sense (using a numerical quadrature
808
+ formula). Default is 1e-3.
809
+ max_nodes : int, optional
810
+ Maximum allowed number of the mesh nodes. If exceeded, the algorithm
811
+ terminates. Default is 1000.
812
+ verbose : {0, 1, 2}, optional
813
+ Level of algorithm's verbosity:
814
+
815
+ * 0 (default) : work silently.
816
+ * 1 : display a termination report.
817
+ * 2 : display progress during iterations.
818
+ bc_tol : float, optional
819
+ Desired absolute tolerance for the boundary condition residuals: `bc`
820
+ value should satisfy ``abs(bc) < bc_tol`` component-wise.
821
+ Equals to `tol` by default. Up to 10 iterations are allowed to achieve this
822
+ tolerance.
823
+
824
+ Returns
825
+ -------
826
+ Bunch object with the following fields defined:
827
+ sol : PPoly
828
+ Found solution for y as `scipy.interpolate.PPoly` instance, a C1
829
+ continuous cubic spline.
830
+ p : ndarray or None, shape (k,)
831
+ Found parameters. None, if the parameters were not present in the
832
+ problem.
833
+ x : ndarray, shape (m,)
834
+ Nodes of the final mesh.
835
+ y : ndarray, shape (n, m)
836
+ Solution values at the mesh nodes.
837
+ yp : ndarray, shape (n, m)
838
+ Solution derivatives at the mesh nodes.
839
+ rms_residuals : ndarray, shape (m - 1,)
840
+ RMS values of the relative residuals over each mesh interval (see the
841
+ description of `tol` parameter).
842
+ niter : int
843
+ Number of completed iterations.
844
+ status : int
845
+ Reason for algorithm termination:
846
+
847
+ * 0: The algorithm converged to the desired accuracy.
848
+ * 1: The maximum number of mesh nodes is exceeded.
849
+ * 2: A singular Jacobian encountered when solving the collocation
850
+ system.
851
+
852
+ message : string
853
+ Verbal description of the termination reason.
854
+ success : bool
855
+ True if the algorithm converged to the desired accuracy (``status=0``).
856
+
857
+ Notes
858
+ -----
859
+ This function implements a 4th order collocation algorithm with the
860
+ control of residuals similar to [1]_. A collocation system is solved
861
+ by a damped Newton method with an affine-invariant criterion function as
862
+ described in [3]_.
863
+
864
+ Note that in [1]_ integral residuals are defined without normalization
865
+ by interval lengths. So, their definition is different by a multiplier of
866
+ h**0.5 (h is an interval length) from the definition used here.
867
+
868
+ .. versionadded:: 0.18.0
869
+
870
+ References
871
+ ----------
872
+ .. [1] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
873
+ Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
874
+ Number 3, pp. 299-316, 2001.
875
+ .. [2] L.F. Shampine, P. H. Muir and H. Xu, "A User-Friendly Fortran BVP
876
+ Solver".
877
+ .. [3] U. Ascher, R. Mattheij and R. Russell "Numerical Solution of
878
+ Boundary Value Problems for Ordinary Differential Equations".
879
+ .. [4] `Cauchy-Riemann equations
880
+ <https://en.wikipedia.org/wiki/Cauchy-Riemann_equations>`_ on
881
+ Wikipedia.
882
+
883
+ Examples
884
+ --------
885
+ In the first example, we solve Bratu's problem::
886
+
887
+ y'' + k * exp(y) = 0
888
+ y(0) = y(1) = 0
889
+
890
+ for k = 1.
891
+
892
+ We rewrite the equation as a first-order system and implement its
893
+ right-hand side evaluation::
894
+
895
+ y1' = y2
896
+ y2' = -exp(y1)
897
+
898
+ >>> import numpy as np
899
+ >>> def fun(x, y):
900
+ ... return np.vstack((y[1], -np.exp(y[0])))
901
+
902
+ Implement evaluation of the boundary condition residuals:
903
+
904
+ >>> def bc(ya, yb):
905
+ ... return np.array([ya[0], yb[0]])
906
+
907
+ Define the initial mesh with 5 nodes:
908
+
909
+ >>> x = np.linspace(0, 1, 5)
910
+
911
+ This problem is known to have two solutions. To obtain both of them, we
912
+ use two different initial guesses for y. We denote them by subscripts
913
+ a and b.
914
+
915
+ >>> y_a = np.zeros((2, x.size))
916
+ >>> y_b = np.zeros((2, x.size))
917
+ >>> y_b[0] = 3
918
+
919
+ Now we are ready to run the solver.
920
+
921
+ >>> from scipy.integrate import solve_bvp
922
+ >>> res_a = solve_bvp(fun, bc, x, y_a)
923
+ >>> res_b = solve_bvp(fun, bc, x, y_b)
924
+
925
+ Let's plot the two found solutions. We take an advantage of having the
926
+ solution in a spline form to produce a smooth plot.
927
+
928
+ >>> x_plot = np.linspace(0, 1, 100)
929
+ >>> y_plot_a = res_a.sol(x_plot)[0]
930
+ >>> y_plot_b = res_b.sol(x_plot)[0]
931
+ >>> import matplotlib.pyplot as plt
932
+ >>> plt.plot(x_plot, y_plot_a, label='y_a')
933
+ >>> plt.plot(x_plot, y_plot_b, label='y_b')
934
+ >>> plt.legend()
935
+ >>> plt.xlabel("x")
936
+ >>> plt.ylabel("y")
937
+ >>> plt.show()
938
+
939
+ We see that the two solutions have similar shape, but differ in scale
940
+ significantly.
941
+
942
+ In the second example, we solve a simple Sturm-Liouville problem::
943
+
944
+ y'' + k**2 * y = 0
945
+ y(0) = y(1) = 0
946
+
947
+ It is known that a non-trivial solution y = A * sin(k * x) is possible for
948
+ k = pi * n, where n is an integer. To establish the normalization constant
949
+ A = 1 we add a boundary condition::
950
+
951
+ y'(0) = k
952
+
953
+ Again, we rewrite our equation as a first-order system and implement its
954
+ right-hand side evaluation::
955
+
956
+ y1' = y2
957
+ y2' = -k**2 * y1
958
+
959
+ >>> def fun(x, y, p):
960
+ ... k = p[0]
961
+ ... return np.vstack((y[1], -k**2 * y[0]))
962
+
963
+ Note that parameters p are passed as a vector (with one element in our
964
+ case).
965
+
966
+ Implement the boundary conditions:
967
+
968
+ >>> def bc(ya, yb, p):
969
+ ... k = p[0]
970
+ ... return np.array([ya[0], yb[0], ya[1] - k])
971
+
972
+ Set up the initial mesh and guess for y. We aim to find the solution for
973
+ k = 2 * pi, to achieve that we set values of y to approximately follow
974
+ sin(2 * pi * x):
975
+
976
+ >>> x = np.linspace(0, 1, 5)
977
+ >>> y = np.zeros((2, x.size))
978
+ >>> y[0, 1] = 1
979
+ >>> y[0, 3] = -1
980
+
981
+ Run the solver with 6 as an initial guess for k.
982
+
983
+ >>> sol = solve_bvp(fun, bc, x, y, p=[6])
984
+
985
+ We see that the found k is approximately correct:
986
+
987
+ >>> sol.p[0]
988
+ 6.28329460046
989
+
990
+ And, finally, plot the solution to see the anticipated sinusoid:
991
+
992
+ >>> x_plot = np.linspace(0, 1, 100)
993
+ >>> y_plot = sol.sol(x_plot)[0]
994
+ >>> plt.plot(x_plot, y_plot)
995
+ >>> plt.xlabel("x")
996
+ >>> plt.ylabel("y")
997
+ >>> plt.show()
998
+ """
999
+ x = np.asarray(x, dtype=float)
1000
+ if x.ndim != 1:
1001
+ raise ValueError("`x` must be 1 dimensional.")
1002
+ h = np.diff(x)
1003
+ if np.any(h <= 0):
1004
+ raise ValueError("`x` must be strictly increasing.")
1005
+ a = x[0]
1006
+
1007
+ y = np.asarray(y)
1008
+ if np.issubdtype(y.dtype, np.complexfloating):
1009
+ dtype = complex
1010
+ else:
1011
+ dtype = float
1012
+ y = y.astype(dtype, copy=False)
1013
+
1014
+ if y.ndim != 2:
1015
+ raise ValueError("`y` must be 2 dimensional.")
1016
+ if y.shape[1] != x.shape[0]:
1017
+ raise ValueError(f"`y` is expected to have {x.shape[0]} columns, but actually "
1018
+ f"has {y.shape[1]}.")
1019
+
1020
+ if p is None:
1021
+ p = np.array([])
1022
+ else:
1023
+ p = np.asarray(p, dtype=dtype)
1024
+ if p.ndim != 1:
1025
+ raise ValueError("`p` must be 1 dimensional.")
1026
+
1027
+ if tol < 100 * EPS:
1028
+ warn(f"`tol` is too low, setting to {100 * EPS:.2e}", stacklevel=2)
1029
+ tol = 100 * EPS
1030
+
1031
+ if verbose not in [0, 1, 2]:
1032
+ raise ValueError("`verbose` must be in [0, 1, 2].")
1033
+
1034
+ n = y.shape[0]
1035
+ k = p.shape[0]
1036
+
1037
+ if S is not None:
1038
+ S = np.asarray(S, dtype=dtype)
1039
+ if S.shape != (n, n):
1040
+ raise ValueError(f"`S` is expected to have shape {(n, n)}, "
1041
+ f"but actually has {S.shape}")
1042
+
1043
+ # Compute I - S^+ S to impose necessary boundary conditions.
1044
+ B = np.identity(n) - np.dot(pinv(S), S)
1045
+
1046
+ y[:, 0] = np.dot(B, y[:, 0])
1047
+
1048
+ # Compute (I - S)^+ to correct derivatives at x=a.
1049
+ D = pinv(np.identity(n) - S)
1050
+ else:
1051
+ B = None
1052
+ D = None
1053
+
1054
+ if bc_tol is None:
1055
+ bc_tol = tol
1056
+
1057
+ # Maximum number of iterations
1058
+ max_iteration = 10
1059
+
1060
+ fun_wrapped, bc_wrapped, fun_jac_wrapped, bc_jac_wrapped = wrap_functions(
1061
+ fun, bc, fun_jac, bc_jac, k, a, S, D, dtype)
1062
+
1063
+ f = fun_wrapped(x, y, p)
1064
+ if f.shape != y.shape:
1065
+ raise ValueError(f"`fun` return is expected to have shape {y.shape}, "
1066
+ f"but actually has {f.shape}.")
1067
+
1068
+ bc_res = bc_wrapped(y[:, 0], y[:, -1], p)
1069
+ if bc_res.shape != (n + k,):
1070
+ raise ValueError(f"`bc` return is expected to have shape {(n + k,)}, "
1071
+ f"but actually has {bc_res.shape}.")
1072
+
1073
+ status = 0
1074
+ iteration = 0
1075
+ if verbose == 2:
1076
+ print_iteration_header()
1077
+
1078
+ while True:
1079
+ m = x.shape[0]
1080
+
1081
+ col_fun, jac_sys = prepare_sys(n, m, k, fun_wrapped, bc_wrapped,
1082
+ fun_jac_wrapped, bc_jac_wrapped, x, h)
1083
+ y, p, singular = solve_newton(n, m, h, col_fun, bc_wrapped, jac_sys,
1084
+ y, p, B, tol, bc_tol)
1085
+ iteration += 1
1086
+
1087
+ col_res, y_middle, f, f_middle = collocation_fun(fun_wrapped, y,
1088
+ p, x, h)
1089
+ bc_res = bc_wrapped(y[:, 0], y[:, -1], p)
1090
+ max_bc_res = np.max(abs(bc_res))
1091
+
1092
+ # This relation is not trivial, but can be verified.
1093
+ r_middle = 1.5 * col_res / h
1094
+ sol = create_spline(y, f, x, h)
1095
+ rms_res = estimate_rms_residuals(fun_wrapped, sol, x, h, p,
1096
+ r_middle, f_middle)
1097
+ max_rms_res = np.max(rms_res)
1098
+
1099
+ if singular:
1100
+ status = 2
1101
+ break
1102
+
1103
+ insert_1, = np.nonzero((rms_res > tol) & (rms_res < 100 * tol))
1104
+ insert_2, = np.nonzero(rms_res >= 100 * tol)
1105
+ nodes_added = insert_1.shape[0] + 2 * insert_2.shape[0]
1106
+
1107
+ if m + nodes_added > max_nodes:
1108
+ status = 1
1109
+ if verbose == 2:
1110
+ nodes_added = f"({nodes_added})"
1111
+ print_iteration_progress(iteration, max_rms_res, max_bc_res,
1112
+ m, nodes_added)
1113
+ break
1114
+
1115
+ if verbose == 2:
1116
+ print_iteration_progress(iteration, max_rms_res, max_bc_res, m,
1117
+ nodes_added)
1118
+
1119
+ if nodes_added > 0:
1120
+ x = modify_mesh(x, insert_1, insert_2)
1121
+ h = np.diff(x)
1122
+ y = sol(x)
1123
+ elif max_bc_res <= bc_tol:
1124
+ status = 0
1125
+ break
1126
+ elif iteration >= max_iteration:
1127
+ status = 3
1128
+ break
1129
+
1130
+ if verbose > 0:
1131
+ if status == 0:
1132
+ print(f"Solved in {iteration} iterations, number of nodes {x.shape[0]}. \n"
1133
+ f"Maximum relative residual: {max_rms_res:.2e} \n"
1134
+ f"Maximum boundary residual: {max_bc_res:.2e}")
1135
+ elif status == 1:
1136
+ print(f"Number of nodes is exceeded after iteration {iteration}. \n"
1137
+ f"Maximum relative residual: {max_rms_res:.2e} \n"
1138
+ f"Maximum boundary residual: {max_bc_res:.2e}")
1139
+ elif status == 2:
1140
+ print("Singular Jacobian encountered when solving the collocation "
1141
+ f"system on iteration {iteration}. \n"
1142
+ f"Maximum relative residual: {max_rms_res:.2e} \n"
1143
+ f"Maximum boundary residual: {max_bc_res:.2e}")
1144
+ elif status == 3:
1145
+ print("The solver was unable to satisfy boundary conditions "
1146
+ f"tolerance on iteration {iteration}. \n"
1147
+ f"Maximum relative residual: {max_rms_res:.2e} \n"
1148
+ f"Maximum boundary residual: {max_bc_res:.2e}")
1149
+
1150
+ if p.size == 0:
1151
+ p = None
1152
+
1153
+ return BVPResult(sol=sol, p=p, x=x, y=y, yp=f, rms_residuals=rms_res,
1154
+ niter=iteration, status=status,
1155
+ message=TERMINATION_MESSAGES[status], success=status == 0)
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_lsoda.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (113 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_test_odeint_banded.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (109 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_vode.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (166 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/dop.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+
3
+ from scipy._lib.deprecation import _sub_module_deprecation
4
+
5
+ __all__ = [ # noqa: F822
6
+ 'dopri5',
7
+ 'dop853'
8
+ ]
9
+
10
+
11
+ def __dir__():
12
+ return __all__
13
+
14
+
15
+ def __getattr__(name):
16
+ return _sub_module_deprecation(sub_package="integrate", module="dop",
17
+ private_modules=["_dop"], all=__all__,
18
+ attribute=name)
llmeval-env/lib/python3.10/site-packages/scipy/integrate/lsoda.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+
3
+ from scipy._lib.deprecation import _sub_module_deprecation
4
+
5
+ __all__ = ['lsoda'] # noqa: F822
6
+
7
+
8
+ def __dir__():
9
+ return __all__
10
+
11
+
12
+ def __getattr__(name):
13
+ return _sub_module_deprecation(sub_package="integrate", module="lsoda",
14
+ private_modules=["_lsoda"], all=__all__,
15
+ attribute=name)
llmeval-env/lib/python3.10/site-packages/scipy/integrate/odepack.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.integrate` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = ['odeint', 'ODEintWarning'] # noqa: F822
8
+
9
+
10
+ def __dir__():
11
+ return __all__
12
+
13
+
14
+ def __getattr__(name):
15
+ return _sub_module_deprecation(sub_package="integrate", module="odepack",
16
+ private_modules=["_odepack_py"], all=__all__,
17
+ attribute=name)
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (18.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_binned_statistic.cpython-310.pyc ADDED
Binary file (28.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_binomtest.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_bws_test.cpython-310.pyc ADDED
Binary file (6.72 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_censored_data.cpython-310.pyc ADDED
Binary file (17.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_common.cpython-310.pyc ADDED
Binary file (331 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_constants.cpython-310.pyc ADDED
Binary file (536 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_covariance.cpython-310.pyc ADDED
Binary file (23.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_discrete_distns.cpython-310.pyc ADDED
Binary file (63.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_distn_infrastructure.cpython-310.pyc ADDED
Binary file (123 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_distr_params.cpython-310.pyc ADDED
Binary file (6.63 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_entropy.cpython-310.pyc ADDED
Binary file (15 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_generate_pyx.cpython-310.pyc ADDED
Binary file (954 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_hypotests.cpython-310.pyc ADDED
Binary file (69.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_kde.cpython-310.pyc ADDED
Binary file (21.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_ksstats.cpython-310.pyc ADDED
Binary file (12 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mannwhitneyu.cpython-310.pyc ADDED
Binary file (17.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_morestats.cpython-310.pyc ADDED
Binary file (170 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_basic.cpython-310.pyc ADDED
Binary file (108 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_extras.cpython-310.pyc ADDED
Binary file (15.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_multicomp.cpython-310.pyc ADDED
Binary file (15.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_multivariate.cpython-310.pyc ADDED
Binary file (212 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_odds_ratio.cpython-310.pyc ADDED
Binary file (15.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_page_trend_test.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_qmc.cpython-310.pyc ADDED
Binary file (88.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_qmvnt.cpython-310.pyc ADDED
Binary file (13.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_relative_risk.cpython-310.pyc ADDED
Binary file (8.33 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_resampling.cpython-310.pyc ADDED
Binary file (71.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_result_classes.cpython-310.pyc ADDED
Binary file (1.04 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_rvs_sampling.cpython-310.pyc ADDED
Binary file (2.39 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_sampling.cpython-310.pyc ADDED
Binary file (43 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_sensitivity_analysis.cpython-310.pyc ADDED
Binary file (23.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_stats_mstats_common.cpython-310.pyc ADDED
Binary file (16.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_stats_py.cpython-310.pyc ADDED
Binary file (373 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_survival.cpython-310.pyc ADDED
Binary file (22.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_tukeylambda_stats.cpython-310.pyc ADDED
Binary file (3.11 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_variation.cpython-310.pyc ADDED
Binary file (4.44 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_warnings_errors.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_wilcoxon.cpython-310.pyc ADDED
Binary file (6.95 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/biasedurn.cpython-310.pyc ADDED
Binary file (681 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/distributions.cpython-310.pyc ADDED
Binary file (590 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/kde.cpython-310.pyc ADDED
Binary file (756 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/morestats.cpython-310.pyc ADDED
Binary file (1.3 kB). View file