Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/scipy/integrate/_bvp.py +1155 -0
- llmeval-env/lib/python3.10/site-packages/scipy/integrate/_lsoda.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/integrate/_test_odeint_banded.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/integrate/_vode.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/integrate/dop.py +18 -0
- llmeval-env/lib/python3.10/site-packages/scipy/integrate/lsoda.py +15 -0
- llmeval-env/lib/python3.10/site-packages/scipy/integrate/odepack.py +17 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_binned_statistic.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_binomtest.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_bws_test.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_censored_data.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_common.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_constants.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_covariance.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_discrete_distns.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_distn_infrastructure.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_distr_params.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_entropy.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_generate_pyx.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_hypotests.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_kde.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_ksstats.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mannwhitneyu.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_morestats.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_basic.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_extras.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_multicomp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_multivariate.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_odds_ratio.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_page_trend_test.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_qmc.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_qmvnt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_relative_risk.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_resampling.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_result_classes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_rvs_sampling.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_sampling.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_sensitivity_analysis.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_stats_mstats_common.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_stats_py.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_survival.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_tukeylambda_stats.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_variation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_warnings_errors.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_wilcoxon.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/biasedurn.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/distributions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/kde.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/morestats.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_bvp.py
ADDED
@@ -0,0 +1,1155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Boundary value problem solver."""
|
2 |
+
from warnings import warn
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from numpy.linalg import pinv
|
6 |
+
|
7 |
+
from scipy.sparse import coo_matrix, csc_matrix
|
8 |
+
from scipy.sparse.linalg import splu
|
9 |
+
from scipy.optimize import OptimizeResult
|
10 |
+
|
11 |
+
|
12 |
+
EPS = np.finfo(float).eps
|
13 |
+
|
14 |
+
|
15 |
+
def estimate_fun_jac(fun, x, y, p, f0=None):
|
16 |
+
"""Estimate derivatives of an ODE system rhs with forward differences.
|
17 |
+
|
18 |
+
Returns
|
19 |
+
-------
|
20 |
+
df_dy : ndarray, shape (n, n, m)
|
21 |
+
Derivatives with respect to y. An element (i, j, q) corresponds to
|
22 |
+
d f_i(x_q, y_q) / d (y_q)_j.
|
23 |
+
df_dp : ndarray with shape (n, k, m) or None
|
24 |
+
Derivatives with respect to p. An element (i, j, q) corresponds to
|
25 |
+
d f_i(x_q, y_q, p) / d p_j. If `p` is empty, None is returned.
|
26 |
+
"""
|
27 |
+
n, m = y.shape
|
28 |
+
if f0 is None:
|
29 |
+
f0 = fun(x, y, p)
|
30 |
+
|
31 |
+
dtype = y.dtype
|
32 |
+
|
33 |
+
df_dy = np.empty((n, n, m), dtype=dtype)
|
34 |
+
h = EPS**0.5 * (1 + np.abs(y))
|
35 |
+
for i in range(n):
|
36 |
+
y_new = y.copy()
|
37 |
+
y_new[i] += h[i]
|
38 |
+
hi = y_new[i] - y[i]
|
39 |
+
f_new = fun(x, y_new, p)
|
40 |
+
df_dy[:, i, :] = (f_new - f0) / hi
|
41 |
+
|
42 |
+
k = p.shape[0]
|
43 |
+
if k == 0:
|
44 |
+
df_dp = None
|
45 |
+
else:
|
46 |
+
df_dp = np.empty((n, k, m), dtype=dtype)
|
47 |
+
h = EPS**0.5 * (1 + np.abs(p))
|
48 |
+
for i in range(k):
|
49 |
+
p_new = p.copy()
|
50 |
+
p_new[i] += h[i]
|
51 |
+
hi = p_new[i] - p[i]
|
52 |
+
f_new = fun(x, y, p_new)
|
53 |
+
df_dp[:, i, :] = (f_new - f0) / hi
|
54 |
+
|
55 |
+
return df_dy, df_dp
|
56 |
+
|
57 |
+
|
58 |
+
def estimate_bc_jac(bc, ya, yb, p, bc0=None):
|
59 |
+
"""Estimate derivatives of boundary conditions with forward differences.
|
60 |
+
|
61 |
+
Returns
|
62 |
+
-------
|
63 |
+
dbc_dya : ndarray, shape (n + k, n)
|
64 |
+
Derivatives with respect to ya. An element (i, j) corresponds to
|
65 |
+
d bc_i / d ya_j.
|
66 |
+
dbc_dyb : ndarray, shape (n + k, n)
|
67 |
+
Derivatives with respect to yb. An element (i, j) corresponds to
|
68 |
+
d bc_i / d ya_j.
|
69 |
+
dbc_dp : ndarray with shape (n + k, k) or None
|
70 |
+
Derivatives with respect to p. An element (i, j) corresponds to
|
71 |
+
d bc_i / d p_j. If `p` is empty, None is returned.
|
72 |
+
"""
|
73 |
+
n = ya.shape[0]
|
74 |
+
k = p.shape[0]
|
75 |
+
|
76 |
+
if bc0 is None:
|
77 |
+
bc0 = bc(ya, yb, p)
|
78 |
+
|
79 |
+
dtype = ya.dtype
|
80 |
+
|
81 |
+
dbc_dya = np.empty((n, n + k), dtype=dtype)
|
82 |
+
h = EPS**0.5 * (1 + np.abs(ya))
|
83 |
+
for i in range(n):
|
84 |
+
ya_new = ya.copy()
|
85 |
+
ya_new[i] += h[i]
|
86 |
+
hi = ya_new[i] - ya[i]
|
87 |
+
bc_new = bc(ya_new, yb, p)
|
88 |
+
dbc_dya[i] = (bc_new - bc0) / hi
|
89 |
+
dbc_dya = dbc_dya.T
|
90 |
+
|
91 |
+
h = EPS**0.5 * (1 + np.abs(yb))
|
92 |
+
dbc_dyb = np.empty((n, n + k), dtype=dtype)
|
93 |
+
for i in range(n):
|
94 |
+
yb_new = yb.copy()
|
95 |
+
yb_new[i] += h[i]
|
96 |
+
hi = yb_new[i] - yb[i]
|
97 |
+
bc_new = bc(ya, yb_new, p)
|
98 |
+
dbc_dyb[i] = (bc_new - bc0) / hi
|
99 |
+
dbc_dyb = dbc_dyb.T
|
100 |
+
|
101 |
+
if k == 0:
|
102 |
+
dbc_dp = None
|
103 |
+
else:
|
104 |
+
h = EPS**0.5 * (1 + np.abs(p))
|
105 |
+
dbc_dp = np.empty((k, n + k), dtype=dtype)
|
106 |
+
for i in range(k):
|
107 |
+
p_new = p.copy()
|
108 |
+
p_new[i] += h[i]
|
109 |
+
hi = p_new[i] - p[i]
|
110 |
+
bc_new = bc(ya, yb, p_new)
|
111 |
+
dbc_dp[i] = (bc_new - bc0) / hi
|
112 |
+
dbc_dp = dbc_dp.T
|
113 |
+
|
114 |
+
return dbc_dya, dbc_dyb, dbc_dp
|
115 |
+
|
116 |
+
|
117 |
+
def compute_jac_indices(n, m, k):
|
118 |
+
"""Compute indices for the collocation system Jacobian construction.
|
119 |
+
|
120 |
+
See `construct_global_jac` for the explanation.
|
121 |
+
"""
|
122 |
+
i_col = np.repeat(np.arange((m - 1) * n), n)
|
123 |
+
j_col = (np.tile(np.arange(n), n * (m - 1)) +
|
124 |
+
np.repeat(np.arange(m - 1) * n, n**2))
|
125 |
+
|
126 |
+
i_bc = np.repeat(np.arange((m - 1) * n, m * n + k), n)
|
127 |
+
j_bc = np.tile(np.arange(n), n + k)
|
128 |
+
|
129 |
+
i_p_col = np.repeat(np.arange((m - 1) * n), k)
|
130 |
+
j_p_col = np.tile(np.arange(m * n, m * n + k), (m - 1) * n)
|
131 |
+
|
132 |
+
i_p_bc = np.repeat(np.arange((m - 1) * n, m * n + k), k)
|
133 |
+
j_p_bc = np.tile(np.arange(m * n, m * n + k), n + k)
|
134 |
+
|
135 |
+
i = np.hstack((i_col, i_col, i_bc, i_bc, i_p_col, i_p_bc))
|
136 |
+
j = np.hstack((j_col, j_col + n,
|
137 |
+
j_bc, j_bc + (m - 1) * n,
|
138 |
+
j_p_col, j_p_bc))
|
139 |
+
|
140 |
+
return i, j
|
141 |
+
|
142 |
+
|
143 |
+
def stacked_matmul(a, b):
|
144 |
+
"""Stacked matrix multiply: out[i,:,:] = np.dot(a[i,:,:], b[i,:,:]).
|
145 |
+
|
146 |
+
Empirical optimization. Use outer Python loop and BLAS for large
|
147 |
+
matrices, otherwise use a single einsum call.
|
148 |
+
"""
|
149 |
+
if a.shape[1] > 50:
|
150 |
+
out = np.empty((a.shape[0], a.shape[1], b.shape[2]))
|
151 |
+
for i in range(a.shape[0]):
|
152 |
+
out[i] = np.dot(a[i], b[i])
|
153 |
+
return out
|
154 |
+
else:
|
155 |
+
return np.einsum('...ij,...jk->...ik', a, b)
|
156 |
+
|
157 |
+
|
158 |
+
def construct_global_jac(n, m, k, i_jac, j_jac, h, df_dy, df_dy_middle, df_dp,
|
159 |
+
df_dp_middle, dbc_dya, dbc_dyb, dbc_dp):
|
160 |
+
"""Construct the Jacobian of the collocation system.
|
161 |
+
|
162 |
+
There are n * m + k functions: m - 1 collocations residuals, each
|
163 |
+
containing n components, followed by n + k boundary condition residuals.
|
164 |
+
|
165 |
+
There are n * m + k variables: m vectors of y, each containing n
|
166 |
+
components, followed by k values of vector p.
|
167 |
+
|
168 |
+
For example, let m = 4, n = 2 and k = 1, then the Jacobian will have
|
169 |
+
the following sparsity structure:
|
170 |
+
|
171 |
+
1 1 2 2 0 0 0 0 5
|
172 |
+
1 1 2 2 0 0 0 0 5
|
173 |
+
0 0 1 1 2 2 0 0 5
|
174 |
+
0 0 1 1 2 2 0 0 5
|
175 |
+
0 0 0 0 1 1 2 2 5
|
176 |
+
0 0 0 0 1 1 2 2 5
|
177 |
+
|
178 |
+
3 3 0 0 0 0 4 4 6
|
179 |
+
3 3 0 0 0 0 4 4 6
|
180 |
+
3 3 0 0 0 0 4 4 6
|
181 |
+
|
182 |
+
Zeros denote identically zero values, other values denote different kinds
|
183 |
+
of blocks in the matrix (see below). The blank row indicates the separation
|
184 |
+
of collocation residuals from boundary conditions. And the blank column
|
185 |
+
indicates the separation of y values from p values.
|
186 |
+
|
187 |
+
Refer to [1]_ (p. 306) for the formula of n x n blocks for derivatives
|
188 |
+
of collocation residuals with respect to y.
|
189 |
+
|
190 |
+
Parameters
|
191 |
+
----------
|
192 |
+
n : int
|
193 |
+
Number of equations in the ODE system.
|
194 |
+
m : int
|
195 |
+
Number of nodes in the mesh.
|
196 |
+
k : int
|
197 |
+
Number of the unknown parameters.
|
198 |
+
i_jac, j_jac : ndarray
|
199 |
+
Row and column indices returned by `compute_jac_indices`. They
|
200 |
+
represent different blocks in the Jacobian matrix in the following
|
201 |
+
order (see the scheme above):
|
202 |
+
|
203 |
+
* 1: m - 1 diagonal n x n blocks for the collocation residuals.
|
204 |
+
* 2: m - 1 off-diagonal n x n blocks for the collocation residuals.
|
205 |
+
* 3 : (n + k) x n block for the dependency of the boundary
|
206 |
+
conditions on ya.
|
207 |
+
* 4: (n + k) x n block for the dependency of the boundary
|
208 |
+
conditions on yb.
|
209 |
+
* 5: (m - 1) * n x k block for the dependency of the collocation
|
210 |
+
residuals on p.
|
211 |
+
* 6: (n + k) x k block for the dependency of the boundary
|
212 |
+
conditions on p.
|
213 |
+
|
214 |
+
df_dy : ndarray, shape (n, n, m)
|
215 |
+
Jacobian of f with respect to y computed at the mesh nodes.
|
216 |
+
df_dy_middle : ndarray, shape (n, n, m - 1)
|
217 |
+
Jacobian of f with respect to y computed at the middle between the
|
218 |
+
mesh nodes.
|
219 |
+
df_dp : ndarray with shape (n, k, m) or None
|
220 |
+
Jacobian of f with respect to p computed at the mesh nodes.
|
221 |
+
df_dp_middle : ndarray with shape (n, k, m - 1) or None
|
222 |
+
Jacobian of f with respect to p computed at the middle between the
|
223 |
+
mesh nodes.
|
224 |
+
dbc_dya, dbc_dyb : ndarray, shape (n, n)
|
225 |
+
Jacobian of bc with respect to ya and yb.
|
226 |
+
dbc_dp : ndarray with shape (n, k) or None
|
227 |
+
Jacobian of bc with respect to p.
|
228 |
+
|
229 |
+
Returns
|
230 |
+
-------
|
231 |
+
J : csc_matrix, shape (n * m + k, n * m + k)
|
232 |
+
Jacobian of the collocation system in a sparse form.
|
233 |
+
|
234 |
+
References
|
235 |
+
----------
|
236 |
+
.. [1] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
|
237 |
+
Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
|
238 |
+
Number 3, pp. 299-316, 2001.
|
239 |
+
"""
|
240 |
+
df_dy = np.transpose(df_dy, (2, 0, 1))
|
241 |
+
df_dy_middle = np.transpose(df_dy_middle, (2, 0, 1))
|
242 |
+
|
243 |
+
h = h[:, np.newaxis, np.newaxis]
|
244 |
+
|
245 |
+
dtype = df_dy.dtype
|
246 |
+
|
247 |
+
# Computing diagonal n x n blocks.
|
248 |
+
dPhi_dy_0 = np.empty((m - 1, n, n), dtype=dtype)
|
249 |
+
dPhi_dy_0[:] = -np.identity(n)
|
250 |
+
dPhi_dy_0 -= h / 6 * (df_dy[:-1] + 2 * df_dy_middle)
|
251 |
+
T = stacked_matmul(df_dy_middle, df_dy[:-1])
|
252 |
+
dPhi_dy_0 -= h**2 / 12 * T
|
253 |
+
|
254 |
+
# Computing off-diagonal n x n blocks.
|
255 |
+
dPhi_dy_1 = np.empty((m - 1, n, n), dtype=dtype)
|
256 |
+
dPhi_dy_1[:] = np.identity(n)
|
257 |
+
dPhi_dy_1 -= h / 6 * (df_dy[1:] + 2 * df_dy_middle)
|
258 |
+
T = stacked_matmul(df_dy_middle, df_dy[1:])
|
259 |
+
dPhi_dy_1 += h**2 / 12 * T
|
260 |
+
|
261 |
+
values = np.hstack((dPhi_dy_0.ravel(), dPhi_dy_1.ravel(), dbc_dya.ravel(),
|
262 |
+
dbc_dyb.ravel()))
|
263 |
+
|
264 |
+
if k > 0:
|
265 |
+
df_dp = np.transpose(df_dp, (2, 0, 1))
|
266 |
+
df_dp_middle = np.transpose(df_dp_middle, (2, 0, 1))
|
267 |
+
T = stacked_matmul(df_dy_middle, df_dp[:-1] - df_dp[1:])
|
268 |
+
df_dp_middle += 0.125 * h * T
|
269 |
+
dPhi_dp = -h/6 * (df_dp[:-1] + df_dp[1:] + 4 * df_dp_middle)
|
270 |
+
values = np.hstack((values, dPhi_dp.ravel(), dbc_dp.ravel()))
|
271 |
+
|
272 |
+
J = coo_matrix((values, (i_jac, j_jac)))
|
273 |
+
return csc_matrix(J)
|
274 |
+
|
275 |
+
|
276 |
+
def collocation_fun(fun, y, p, x, h):
|
277 |
+
"""Evaluate collocation residuals.
|
278 |
+
|
279 |
+
This function lies in the core of the method. The solution is sought
|
280 |
+
as a cubic C1 continuous spline with derivatives matching the ODE rhs
|
281 |
+
at given nodes `x`. Collocation conditions are formed from the equality
|
282 |
+
of the spline derivatives and rhs of the ODE system in the middle points
|
283 |
+
between nodes.
|
284 |
+
|
285 |
+
Such method is classified to Lobbato IIIA family in ODE literature.
|
286 |
+
Refer to [1]_ for the formula and some discussion.
|
287 |
+
|
288 |
+
Returns
|
289 |
+
-------
|
290 |
+
col_res : ndarray, shape (n, m - 1)
|
291 |
+
Collocation residuals at the middle points of the mesh intervals.
|
292 |
+
y_middle : ndarray, shape (n, m - 1)
|
293 |
+
Values of the cubic spline evaluated at the middle points of the mesh
|
294 |
+
intervals.
|
295 |
+
f : ndarray, shape (n, m)
|
296 |
+
RHS of the ODE system evaluated at the mesh nodes.
|
297 |
+
f_middle : ndarray, shape (n, m - 1)
|
298 |
+
RHS of the ODE system evaluated at the middle points of the mesh
|
299 |
+
intervals (and using `y_middle`).
|
300 |
+
|
301 |
+
References
|
302 |
+
----------
|
303 |
+
.. [1] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
|
304 |
+
Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
|
305 |
+
Number 3, pp. 299-316, 2001.
|
306 |
+
"""
|
307 |
+
f = fun(x, y, p)
|
308 |
+
y_middle = (0.5 * (y[:, 1:] + y[:, :-1]) -
|
309 |
+
0.125 * h * (f[:, 1:] - f[:, :-1]))
|
310 |
+
f_middle = fun(x[:-1] + 0.5 * h, y_middle, p)
|
311 |
+
col_res = y[:, 1:] - y[:, :-1] - h / 6 * (f[:, :-1] + f[:, 1:] +
|
312 |
+
4 * f_middle)
|
313 |
+
|
314 |
+
return col_res, y_middle, f, f_middle
|
315 |
+
|
316 |
+
|
317 |
+
def prepare_sys(n, m, k, fun, bc, fun_jac, bc_jac, x, h):
|
318 |
+
"""Create the function and the Jacobian for the collocation system."""
|
319 |
+
x_middle = x[:-1] + 0.5 * h
|
320 |
+
i_jac, j_jac = compute_jac_indices(n, m, k)
|
321 |
+
|
322 |
+
def col_fun(y, p):
|
323 |
+
return collocation_fun(fun, y, p, x, h)
|
324 |
+
|
325 |
+
def sys_jac(y, p, y_middle, f, f_middle, bc0):
|
326 |
+
if fun_jac is None:
|
327 |
+
df_dy, df_dp = estimate_fun_jac(fun, x, y, p, f)
|
328 |
+
df_dy_middle, df_dp_middle = estimate_fun_jac(
|
329 |
+
fun, x_middle, y_middle, p, f_middle)
|
330 |
+
else:
|
331 |
+
df_dy, df_dp = fun_jac(x, y, p)
|
332 |
+
df_dy_middle, df_dp_middle = fun_jac(x_middle, y_middle, p)
|
333 |
+
|
334 |
+
if bc_jac is None:
|
335 |
+
dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac(bc, y[:, 0], y[:, -1],
|
336 |
+
p, bc0)
|
337 |
+
else:
|
338 |
+
dbc_dya, dbc_dyb, dbc_dp = bc_jac(y[:, 0], y[:, -1], p)
|
339 |
+
|
340 |
+
return construct_global_jac(n, m, k, i_jac, j_jac, h, df_dy,
|
341 |
+
df_dy_middle, df_dp, df_dp_middle, dbc_dya,
|
342 |
+
dbc_dyb, dbc_dp)
|
343 |
+
|
344 |
+
return col_fun, sys_jac
|
345 |
+
|
346 |
+
|
347 |
+
def solve_newton(n, m, h, col_fun, bc, jac, y, p, B, bvp_tol, bc_tol):
|
348 |
+
"""Solve the nonlinear collocation system by a Newton method.
|
349 |
+
|
350 |
+
This is a simple Newton method with a backtracking line search. As
|
351 |
+
advised in [1]_, an affine-invariant criterion function F = ||J^-1 r||^2
|
352 |
+
is used, where J is the Jacobian matrix at the current iteration and r is
|
353 |
+
the vector or collocation residuals (values of the system lhs).
|
354 |
+
|
355 |
+
The method alters between full Newton iterations and the fixed-Jacobian
|
356 |
+
iterations based
|
357 |
+
|
358 |
+
There are other tricks proposed in [1]_, but they are not used as they
|
359 |
+
don't seem to improve anything significantly, and even break the
|
360 |
+
convergence on some test problems I tried.
|
361 |
+
|
362 |
+
All important parameters of the algorithm are defined inside the function.
|
363 |
+
|
364 |
+
Parameters
|
365 |
+
----------
|
366 |
+
n : int
|
367 |
+
Number of equations in the ODE system.
|
368 |
+
m : int
|
369 |
+
Number of nodes in the mesh.
|
370 |
+
h : ndarray, shape (m-1,)
|
371 |
+
Mesh intervals.
|
372 |
+
col_fun : callable
|
373 |
+
Function computing collocation residuals.
|
374 |
+
bc : callable
|
375 |
+
Function computing boundary condition residuals.
|
376 |
+
jac : callable
|
377 |
+
Function computing the Jacobian of the whole system (including
|
378 |
+
collocation and boundary condition residuals). It is supposed to
|
379 |
+
return csc_matrix.
|
380 |
+
y : ndarray, shape (n, m)
|
381 |
+
Initial guess for the function values at the mesh nodes.
|
382 |
+
p : ndarray, shape (k,)
|
383 |
+
Initial guess for the unknown parameters.
|
384 |
+
B : ndarray with shape (n, n) or None
|
385 |
+
Matrix to force the S y(a) = 0 condition for a problems with the
|
386 |
+
singular term. If None, the singular term is assumed to be absent.
|
387 |
+
bvp_tol : float
|
388 |
+
Tolerance to which we want to solve a BVP.
|
389 |
+
bc_tol : float
|
390 |
+
Tolerance to which we want to satisfy the boundary conditions.
|
391 |
+
|
392 |
+
Returns
|
393 |
+
-------
|
394 |
+
y : ndarray, shape (n, m)
|
395 |
+
Final iterate for the function values at the mesh nodes.
|
396 |
+
p : ndarray, shape (k,)
|
397 |
+
Final iterate for the unknown parameters.
|
398 |
+
singular : bool
|
399 |
+
True, if the LU decomposition failed because Jacobian turned out
|
400 |
+
to be singular.
|
401 |
+
|
402 |
+
References
|
403 |
+
----------
|
404 |
+
.. [1] U. Ascher, R. Mattheij and R. Russell "Numerical Solution of
|
405 |
+
Boundary Value Problems for Ordinary Differential Equations"
|
406 |
+
"""
|
407 |
+
# We know that the solution residuals at the middle points of the mesh
|
408 |
+
# are connected with collocation residuals r_middle = 1.5 * col_res / h.
|
409 |
+
# As our BVP solver tries to decrease relative residuals below a certain
|
410 |
+
# tolerance, it seems reasonable to terminated Newton iterations by
|
411 |
+
# comparison of r_middle / (1 + np.abs(f_middle)) with a certain threshold,
|
412 |
+
# which we choose to be 1.5 orders lower than the BVP tolerance. We rewrite
|
413 |
+
# the condition as col_res < tol_r * (1 + np.abs(f_middle)), then tol_r
|
414 |
+
# should be computed as follows:
|
415 |
+
tol_r = 2/3 * h * 5e-2 * bvp_tol
|
416 |
+
|
417 |
+
# Maximum allowed number of Jacobian evaluation and factorization, in
|
418 |
+
# other words, the maximum number of full Newton iterations. A small value
|
419 |
+
# is recommended in the literature.
|
420 |
+
max_njev = 4
|
421 |
+
|
422 |
+
# Maximum number of iterations, considering that some of them can be
|
423 |
+
# performed with the fixed Jacobian. In theory, such iterations are cheap,
|
424 |
+
# but it's not that simple in Python.
|
425 |
+
max_iter = 8
|
426 |
+
|
427 |
+
# Minimum relative improvement of the criterion function to accept the
|
428 |
+
# step (Armijo constant).
|
429 |
+
sigma = 0.2
|
430 |
+
|
431 |
+
# Step size decrease factor for backtracking.
|
432 |
+
tau = 0.5
|
433 |
+
|
434 |
+
# Maximum number of backtracking steps, the minimum step is then
|
435 |
+
# tau ** n_trial.
|
436 |
+
n_trial = 4
|
437 |
+
|
438 |
+
col_res, y_middle, f, f_middle = col_fun(y, p)
|
439 |
+
bc_res = bc(y[:, 0], y[:, -1], p)
|
440 |
+
res = np.hstack((col_res.ravel(order='F'), bc_res))
|
441 |
+
|
442 |
+
njev = 0
|
443 |
+
singular = False
|
444 |
+
recompute_jac = True
|
445 |
+
for iteration in range(max_iter):
|
446 |
+
if recompute_jac:
|
447 |
+
J = jac(y, p, y_middle, f, f_middle, bc_res)
|
448 |
+
njev += 1
|
449 |
+
try:
|
450 |
+
LU = splu(J)
|
451 |
+
except RuntimeError:
|
452 |
+
singular = True
|
453 |
+
break
|
454 |
+
|
455 |
+
step = LU.solve(res)
|
456 |
+
cost = np.dot(step, step)
|
457 |
+
|
458 |
+
y_step = step[:m * n].reshape((n, m), order='F')
|
459 |
+
p_step = step[m * n:]
|
460 |
+
|
461 |
+
alpha = 1
|
462 |
+
for trial in range(n_trial + 1):
|
463 |
+
y_new = y - alpha * y_step
|
464 |
+
if B is not None:
|
465 |
+
y_new[:, 0] = np.dot(B, y_new[:, 0])
|
466 |
+
p_new = p - alpha * p_step
|
467 |
+
|
468 |
+
col_res, y_middle, f, f_middle = col_fun(y_new, p_new)
|
469 |
+
bc_res = bc(y_new[:, 0], y_new[:, -1], p_new)
|
470 |
+
res = np.hstack((col_res.ravel(order='F'), bc_res))
|
471 |
+
|
472 |
+
step_new = LU.solve(res)
|
473 |
+
cost_new = np.dot(step_new, step_new)
|
474 |
+
if cost_new < (1 - 2 * alpha * sigma) * cost:
|
475 |
+
break
|
476 |
+
|
477 |
+
if trial < n_trial:
|
478 |
+
alpha *= tau
|
479 |
+
|
480 |
+
y = y_new
|
481 |
+
p = p_new
|
482 |
+
|
483 |
+
if njev == max_njev:
|
484 |
+
break
|
485 |
+
|
486 |
+
if (np.all(np.abs(col_res) < tol_r * (1 + np.abs(f_middle))) and
|
487 |
+
np.all(np.abs(bc_res) < bc_tol)):
|
488 |
+
break
|
489 |
+
|
490 |
+
# If the full step was taken, then we are going to continue with
|
491 |
+
# the same Jacobian. This is the approach of BVP_SOLVER.
|
492 |
+
if alpha == 1:
|
493 |
+
step = step_new
|
494 |
+
cost = cost_new
|
495 |
+
recompute_jac = False
|
496 |
+
else:
|
497 |
+
recompute_jac = True
|
498 |
+
|
499 |
+
return y, p, singular
|
500 |
+
|
501 |
+
|
502 |
+
def print_iteration_header():
|
503 |
+
print("{:^15}{:^15}{:^15}{:^15}{:^15}".format(
|
504 |
+
"Iteration", "Max residual", "Max BC residual", "Total nodes",
|
505 |
+
"Nodes added"))
|
506 |
+
|
507 |
+
|
508 |
+
def print_iteration_progress(iteration, residual, bc_residual, total_nodes,
|
509 |
+
nodes_added):
|
510 |
+
print("{:^15}{:^15.2e}{:^15.2e}{:^15}{:^15}".format(
|
511 |
+
iteration, residual, bc_residual, total_nodes, nodes_added))
|
512 |
+
|
513 |
+
|
514 |
+
class BVPResult(OptimizeResult):
|
515 |
+
pass
|
516 |
+
|
517 |
+
|
518 |
+
TERMINATION_MESSAGES = {
|
519 |
+
0: "The algorithm converged to the desired accuracy.",
|
520 |
+
1: "The maximum number of mesh nodes is exceeded.",
|
521 |
+
2: "A singular Jacobian encountered when solving the collocation system.",
|
522 |
+
3: "The solver was unable to satisfy boundary conditions tolerance on iteration 10."
|
523 |
+
}
|
524 |
+
|
525 |
+
|
526 |
+
def estimate_rms_residuals(fun, sol, x, h, p, r_middle, f_middle):
|
527 |
+
"""Estimate rms values of collocation residuals using Lobatto quadrature.
|
528 |
+
|
529 |
+
The residuals are defined as the difference between the derivatives of
|
530 |
+
our solution and rhs of the ODE system. We use relative residuals, i.e.,
|
531 |
+
normalized by 1 + np.abs(f). RMS values are computed as sqrt from the
|
532 |
+
normalized integrals of the squared relative residuals over each interval.
|
533 |
+
Integrals are estimated using 5-point Lobatto quadrature [1]_, we use the
|
534 |
+
fact that residuals at the mesh nodes are identically zero.
|
535 |
+
|
536 |
+
In [2] they don't normalize integrals by interval lengths, which gives
|
537 |
+
a higher rate of convergence of the residuals by the factor of h**0.5.
|
538 |
+
I chose to do such normalization for an ease of interpretation of return
|
539 |
+
values as RMS estimates.
|
540 |
+
|
541 |
+
Returns
|
542 |
+
-------
|
543 |
+
rms_res : ndarray, shape (m - 1,)
|
544 |
+
Estimated rms values of the relative residuals over each interval.
|
545 |
+
|
546 |
+
References
|
547 |
+
----------
|
548 |
+
.. [1] http://mathworld.wolfram.com/LobattoQuadrature.html
|
549 |
+
.. [2] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
|
550 |
+
Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
|
551 |
+
Number 3, pp. 299-316, 2001.
|
552 |
+
"""
|
553 |
+
x_middle = x[:-1] + 0.5 * h
|
554 |
+
s = 0.5 * h * (3/7)**0.5
|
555 |
+
x1 = x_middle + s
|
556 |
+
x2 = x_middle - s
|
557 |
+
y1 = sol(x1)
|
558 |
+
y2 = sol(x2)
|
559 |
+
y1_prime = sol(x1, 1)
|
560 |
+
y2_prime = sol(x2, 1)
|
561 |
+
f1 = fun(x1, y1, p)
|
562 |
+
f2 = fun(x2, y2, p)
|
563 |
+
r1 = y1_prime - f1
|
564 |
+
r2 = y2_prime - f2
|
565 |
+
|
566 |
+
r_middle /= 1 + np.abs(f_middle)
|
567 |
+
r1 /= 1 + np.abs(f1)
|
568 |
+
r2 /= 1 + np.abs(f2)
|
569 |
+
|
570 |
+
r1 = np.sum(np.real(r1 * np.conj(r1)), axis=0)
|
571 |
+
r2 = np.sum(np.real(r2 * np.conj(r2)), axis=0)
|
572 |
+
r_middle = np.sum(np.real(r_middle * np.conj(r_middle)), axis=0)
|
573 |
+
|
574 |
+
return (0.5 * (32 / 45 * r_middle + 49 / 90 * (r1 + r2))) ** 0.5
|
575 |
+
|
576 |
+
|
577 |
+
def create_spline(y, yp, x, h):
|
578 |
+
"""Create a cubic spline given values and derivatives.
|
579 |
+
|
580 |
+
Formulas for the coefficients are taken from interpolate.CubicSpline.
|
581 |
+
|
582 |
+
Returns
|
583 |
+
-------
|
584 |
+
sol : PPoly
|
585 |
+
Constructed spline as a PPoly instance.
|
586 |
+
"""
|
587 |
+
from scipy.interpolate import PPoly
|
588 |
+
|
589 |
+
n, m = y.shape
|
590 |
+
c = np.empty((4, n, m - 1), dtype=y.dtype)
|
591 |
+
slope = (y[:, 1:] - y[:, :-1]) / h
|
592 |
+
t = (yp[:, :-1] + yp[:, 1:] - 2 * slope) / h
|
593 |
+
c[0] = t / h
|
594 |
+
c[1] = (slope - yp[:, :-1]) / h - t
|
595 |
+
c[2] = yp[:, :-1]
|
596 |
+
c[3] = y[:, :-1]
|
597 |
+
c = np.moveaxis(c, 1, 0)
|
598 |
+
|
599 |
+
return PPoly(c, x, extrapolate=True, axis=1)
|
600 |
+
|
601 |
+
|
602 |
+
def modify_mesh(x, insert_1, insert_2):
|
603 |
+
"""Insert nodes into a mesh.
|
604 |
+
|
605 |
+
Nodes removal logic is not established, its impact on the solver is
|
606 |
+
presumably negligible. So, only insertion is done in this function.
|
607 |
+
|
608 |
+
Parameters
|
609 |
+
----------
|
610 |
+
x : ndarray, shape (m,)
|
611 |
+
Mesh nodes.
|
612 |
+
insert_1 : ndarray
|
613 |
+
Intervals to each insert 1 new node in the middle.
|
614 |
+
insert_2 : ndarray
|
615 |
+
Intervals to each insert 2 new nodes, such that divide an interval
|
616 |
+
into 3 equal parts.
|
617 |
+
|
618 |
+
Returns
|
619 |
+
-------
|
620 |
+
x_new : ndarray
|
621 |
+
New mesh nodes.
|
622 |
+
|
623 |
+
Notes
|
624 |
+
-----
|
625 |
+
`insert_1` and `insert_2` should not have common values.
|
626 |
+
"""
|
627 |
+
# Because np.insert implementation apparently varies with a version of
|
628 |
+
# NumPy, we use a simple and reliable approach with sorting.
|
629 |
+
return np.sort(np.hstack((
|
630 |
+
x,
|
631 |
+
0.5 * (x[insert_1] + x[insert_1 + 1]),
|
632 |
+
(2 * x[insert_2] + x[insert_2 + 1]) / 3,
|
633 |
+
(x[insert_2] + 2 * x[insert_2 + 1]) / 3
|
634 |
+
)))
|
635 |
+
|
636 |
+
|
637 |
+
def wrap_functions(fun, bc, fun_jac, bc_jac, k, a, S, D, dtype):
|
638 |
+
"""Wrap functions for unified usage in the solver."""
|
639 |
+
if fun_jac is None:
|
640 |
+
fun_jac_wrapped = None
|
641 |
+
|
642 |
+
if bc_jac is None:
|
643 |
+
bc_jac_wrapped = None
|
644 |
+
|
645 |
+
if k == 0:
|
646 |
+
def fun_p(x, y, _):
|
647 |
+
return np.asarray(fun(x, y), dtype)
|
648 |
+
|
649 |
+
def bc_wrapped(ya, yb, _):
|
650 |
+
return np.asarray(bc(ya, yb), dtype)
|
651 |
+
|
652 |
+
if fun_jac is not None:
|
653 |
+
def fun_jac_p(x, y, _):
|
654 |
+
return np.asarray(fun_jac(x, y), dtype), None
|
655 |
+
|
656 |
+
if bc_jac is not None:
|
657 |
+
def bc_jac_wrapped(ya, yb, _):
|
658 |
+
dbc_dya, dbc_dyb = bc_jac(ya, yb)
|
659 |
+
return (np.asarray(dbc_dya, dtype),
|
660 |
+
np.asarray(dbc_dyb, dtype), None)
|
661 |
+
else:
|
662 |
+
def fun_p(x, y, p):
|
663 |
+
return np.asarray(fun(x, y, p), dtype)
|
664 |
+
|
665 |
+
def bc_wrapped(x, y, p):
|
666 |
+
return np.asarray(bc(x, y, p), dtype)
|
667 |
+
|
668 |
+
if fun_jac is not None:
|
669 |
+
def fun_jac_p(x, y, p):
|
670 |
+
df_dy, df_dp = fun_jac(x, y, p)
|
671 |
+
return np.asarray(df_dy, dtype), np.asarray(df_dp, dtype)
|
672 |
+
|
673 |
+
if bc_jac is not None:
|
674 |
+
def bc_jac_wrapped(ya, yb, p):
|
675 |
+
dbc_dya, dbc_dyb, dbc_dp = bc_jac(ya, yb, p)
|
676 |
+
return (np.asarray(dbc_dya, dtype), np.asarray(dbc_dyb, dtype),
|
677 |
+
np.asarray(dbc_dp, dtype))
|
678 |
+
|
679 |
+
if S is None:
|
680 |
+
fun_wrapped = fun_p
|
681 |
+
else:
|
682 |
+
def fun_wrapped(x, y, p):
|
683 |
+
f = fun_p(x, y, p)
|
684 |
+
if x[0] == a:
|
685 |
+
f[:, 0] = np.dot(D, f[:, 0])
|
686 |
+
f[:, 1:] += np.dot(S, y[:, 1:]) / (x[1:] - a)
|
687 |
+
else:
|
688 |
+
f += np.dot(S, y) / (x - a)
|
689 |
+
return f
|
690 |
+
|
691 |
+
if fun_jac is not None:
|
692 |
+
if S is None:
|
693 |
+
fun_jac_wrapped = fun_jac_p
|
694 |
+
else:
|
695 |
+
Sr = S[:, :, np.newaxis]
|
696 |
+
|
697 |
+
def fun_jac_wrapped(x, y, p):
|
698 |
+
df_dy, df_dp = fun_jac_p(x, y, p)
|
699 |
+
if x[0] == a:
|
700 |
+
df_dy[:, :, 0] = np.dot(D, df_dy[:, :, 0])
|
701 |
+
df_dy[:, :, 1:] += Sr / (x[1:] - a)
|
702 |
+
else:
|
703 |
+
df_dy += Sr / (x - a)
|
704 |
+
|
705 |
+
return df_dy, df_dp
|
706 |
+
|
707 |
+
return fun_wrapped, bc_wrapped, fun_jac_wrapped, bc_jac_wrapped
|
708 |
+
|
709 |
+
|
710 |
+
def solve_bvp(fun, bc, x, y, p=None, S=None, fun_jac=None, bc_jac=None,
|
711 |
+
tol=1e-3, max_nodes=1000, verbose=0, bc_tol=None):
|
712 |
+
"""Solve a boundary value problem for a system of ODEs.
|
713 |
+
|
714 |
+
This function numerically solves a first order system of ODEs subject to
|
715 |
+
two-point boundary conditions::
|
716 |
+
|
717 |
+
dy / dx = f(x, y, p) + S * y / (x - a), a <= x <= b
|
718 |
+
bc(y(a), y(b), p) = 0
|
719 |
+
|
720 |
+
Here x is a 1-D independent variable, y(x) is an N-D
|
721 |
+
vector-valued function and p is a k-D vector of unknown
|
722 |
+
parameters which is to be found along with y(x). For the problem to be
|
723 |
+
determined, there must be n + k boundary conditions, i.e., bc must be an
|
724 |
+
(n + k)-D function.
|
725 |
+
|
726 |
+
The last singular term on the right-hand side of the system is optional.
|
727 |
+
It is defined by an n-by-n matrix S, such that the solution must satisfy
|
728 |
+
S y(a) = 0. This condition will be forced during iterations, so it must not
|
729 |
+
contradict boundary conditions. See [2]_ for the explanation how this term
|
730 |
+
is handled when solving BVPs numerically.
|
731 |
+
|
732 |
+
Problems in a complex domain can be solved as well. In this case, y and p
|
733 |
+
are considered to be complex, and f and bc are assumed to be complex-valued
|
734 |
+
functions, but x stays real. Note that f and bc must be complex
|
735 |
+
differentiable (satisfy Cauchy-Riemann equations [4]_), otherwise you
|
736 |
+
should rewrite your problem for real and imaginary parts separately. To
|
737 |
+
solve a problem in a complex domain, pass an initial guess for y with a
|
738 |
+
complex data type (see below).
|
739 |
+
|
740 |
+
Parameters
|
741 |
+
----------
|
742 |
+
fun : callable
|
743 |
+
Right-hand side of the system. The calling signature is ``fun(x, y)``,
|
744 |
+
or ``fun(x, y, p)`` if parameters are present. All arguments are
|
745 |
+
ndarray: ``x`` with shape (m,), ``y`` with shape (n, m), meaning that
|
746 |
+
``y[:, i]`` corresponds to ``x[i]``, and ``p`` with shape (k,). The
|
747 |
+
return value must be an array with shape (n, m) and with the same
|
748 |
+
layout as ``y``.
|
749 |
+
bc : callable
|
750 |
+
Function evaluating residuals of the boundary conditions. The calling
|
751 |
+
signature is ``bc(ya, yb)``, or ``bc(ya, yb, p)`` if parameters are
|
752 |
+
present. All arguments are ndarray: ``ya`` and ``yb`` with shape (n,),
|
753 |
+
and ``p`` with shape (k,). The return value must be an array with
|
754 |
+
shape (n + k,).
|
755 |
+
x : array_like, shape (m,)
|
756 |
+
Initial mesh. Must be a strictly increasing sequence of real numbers
|
757 |
+
with ``x[0]=a`` and ``x[-1]=b``.
|
758 |
+
y : array_like, shape (n, m)
|
759 |
+
Initial guess for the function values at the mesh nodes, ith column
|
760 |
+
corresponds to ``x[i]``. For problems in a complex domain pass `y`
|
761 |
+
with a complex data type (even if the initial guess is purely real).
|
762 |
+
p : array_like with shape (k,) or None, optional
|
763 |
+
Initial guess for the unknown parameters. If None (default), it is
|
764 |
+
assumed that the problem doesn't depend on any parameters.
|
765 |
+
S : array_like with shape (n, n) or None
|
766 |
+
Matrix defining the singular term. If None (default), the problem is
|
767 |
+
solved without the singular term.
|
768 |
+
fun_jac : callable or None, optional
|
769 |
+
Function computing derivatives of f with respect to y and p. The
|
770 |
+
calling signature is ``fun_jac(x, y)``, or ``fun_jac(x, y, p)`` if
|
771 |
+
parameters are present. The return must contain 1 or 2 elements in the
|
772 |
+
following order:
|
773 |
+
|
774 |
+
* df_dy : array_like with shape (n, n, m), where an element
|
775 |
+
(i, j, q) equals to d f_i(x_q, y_q, p) / d (y_q)_j.
|
776 |
+
* df_dp : array_like with shape (n, k, m), where an element
|
777 |
+
(i, j, q) equals to d f_i(x_q, y_q, p) / d p_j.
|
778 |
+
|
779 |
+
Here q numbers nodes at which x and y are defined, whereas i and j
|
780 |
+
number vector components. If the problem is solved without unknown
|
781 |
+
parameters, df_dp should not be returned.
|
782 |
+
|
783 |
+
If `fun_jac` is None (default), the derivatives will be estimated
|
784 |
+
by the forward finite differences.
|
785 |
+
bc_jac : callable or None, optional
|
786 |
+
Function computing derivatives of bc with respect to ya, yb, and p.
|
787 |
+
The calling signature is ``bc_jac(ya, yb)``, or ``bc_jac(ya, yb, p)``
|
788 |
+
if parameters are present. The return must contain 2 or 3 elements in
|
789 |
+
the following order:
|
790 |
+
|
791 |
+
* dbc_dya : array_like with shape (n, n), where an element (i, j)
|
792 |
+
equals to d bc_i(ya, yb, p) / d ya_j.
|
793 |
+
* dbc_dyb : array_like with shape (n, n), where an element (i, j)
|
794 |
+
equals to d bc_i(ya, yb, p) / d yb_j.
|
795 |
+
* dbc_dp : array_like with shape (n, k), where an element (i, j)
|
796 |
+
equals to d bc_i(ya, yb, p) / d p_j.
|
797 |
+
|
798 |
+
If the problem is solved without unknown parameters, dbc_dp should not
|
799 |
+
be returned.
|
800 |
+
|
801 |
+
If `bc_jac` is None (default), the derivatives will be estimated by
|
802 |
+
the forward finite differences.
|
803 |
+
tol : float, optional
|
804 |
+
Desired tolerance of the solution. If we define ``r = y' - f(x, y)``,
|
805 |
+
where y is the found solution, then the solver tries to achieve on each
|
806 |
+
mesh interval ``norm(r / (1 + abs(f)) < tol``, where ``norm`` is
|
807 |
+
estimated in a root mean squared sense (using a numerical quadrature
|
808 |
+
formula). Default is 1e-3.
|
809 |
+
max_nodes : int, optional
|
810 |
+
Maximum allowed number of the mesh nodes. If exceeded, the algorithm
|
811 |
+
terminates. Default is 1000.
|
812 |
+
verbose : {0, 1, 2}, optional
|
813 |
+
Level of algorithm's verbosity:
|
814 |
+
|
815 |
+
* 0 (default) : work silently.
|
816 |
+
* 1 : display a termination report.
|
817 |
+
* 2 : display progress during iterations.
|
818 |
+
bc_tol : float, optional
|
819 |
+
Desired absolute tolerance for the boundary condition residuals: `bc`
|
820 |
+
value should satisfy ``abs(bc) < bc_tol`` component-wise.
|
821 |
+
Equals to `tol` by default. Up to 10 iterations are allowed to achieve this
|
822 |
+
tolerance.
|
823 |
+
|
824 |
+
Returns
|
825 |
+
-------
|
826 |
+
Bunch object with the following fields defined:
|
827 |
+
sol : PPoly
|
828 |
+
Found solution for y as `scipy.interpolate.PPoly` instance, a C1
|
829 |
+
continuous cubic spline.
|
830 |
+
p : ndarray or None, shape (k,)
|
831 |
+
Found parameters. None, if the parameters were not present in the
|
832 |
+
problem.
|
833 |
+
x : ndarray, shape (m,)
|
834 |
+
Nodes of the final mesh.
|
835 |
+
y : ndarray, shape (n, m)
|
836 |
+
Solution values at the mesh nodes.
|
837 |
+
yp : ndarray, shape (n, m)
|
838 |
+
Solution derivatives at the mesh nodes.
|
839 |
+
rms_residuals : ndarray, shape (m - 1,)
|
840 |
+
RMS values of the relative residuals over each mesh interval (see the
|
841 |
+
description of `tol` parameter).
|
842 |
+
niter : int
|
843 |
+
Number of completed iterations.
|
844 |
+
status : int
|
845 |
+
Reason for algorithm termination:
|
846 |
+
|
847 |
+
* 0: The algorithm converged to the desired accuracy.
|
848 |
+
* 1: The maximum number of mesh nodes is exceeded.
|
849 |
+
* 2: A singular Jacobian encountered when solving the collocation
|
850 |
+
system.
|
851 |
+
|
852 |
+
message : string
|
853 |
+
Verbal description of the termination reason.
|
854 |
+
success : bool
|
855 |
+
True if the algorithm converged to the desired accuracy (``status=0``).
|
856 |
+
|
857 |
+
Notes
|
858 |
+
-----
|
859 |
+
This function implements a 4th order collocation algorithm with the
|
860 |
+
control of residuals similar to [1]_. A collocation system is solved
|
861 |
+
by a damped Newton method with an affine-invariant criterion function as
|
862 |
+
described in [3]_.
|
863 |
+
|
864 |
+
Note that in [1]_ integral residuals are defined without normalization
|
865 |
+
by interval lengths. So, their definition is different by a multiplier of
|
866 |
+
h**0.5 (h is an interval length) from the definition used here.
|
867 |
+
|
868 |
+
.. versionadded:: 0.18.0
|
869 |
+
|
870 |
+
References
|
871 |
+
----------
|
872 |
+
.. [1] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
|
873 |
+
Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
|
874 |
+
Number 3, pp. 299-316, 2001.
|
875 |
+
.. [2] L.F. Shampine, P. H. Muir and H. Xu, "A User-Friendly Fortran BVP
|
876 |
+
Solver".
|
877 |
+
.. [3] U. Ascher, R. Mattheij and R. Russell "Numerical Solution of
|
878 |
+
Boundary Value Problems for Ordinary Differential Equations".
|
879 |
+
.. [4] `Cauchy-Riemann equations
|
880 |
+
<https://en.wikipedia.org/wiki/Cauchy-Riemann_equations>`_ on
|
881 |
+
Wikipedia.
|
882 |
+
|
883 |
+
Examples
|
884 |
+
--------
|
885 |
+
In the first example, we solve Bratu's problem::
|
886 |
+
|
887 |
+
y'' + k * exp(y) = 0
|
888 |
+
y(0) = y(1) = 0
|
889 |
+
|
890 |
+
for k = 1.
|
891 |
+
|
892 |
+
We rewrite the equation as a first-order system and implement its
|
893 |
+
right-hand side evaluation::
|
894 |
+
|
895 |
+
y1' = y2
|
896 |
+
y2' = -exp(y1)
|
897 |
+
|
898 |
+
>>> import numpy as np
|
899 |
+
>>> def fun(x, y):
|
900 |
+
... return np.vstack((y[1], -np.exp(y[0])))
|
901 |
+
|
902 |
+
Implement evaluation of the boundary condition residuals:
|
903 |
+
|
904 |
+
>>> def bc(ya, yb):
|
905 |
+
... return np.array([ya[0], yb[0]])
|
906 |
+
|
907 |
+
Define the initial mesh with 5 nodes:
|
908 |
+
|
909 |
+
>>> x = np.linspace(0, 1, 5)
|
910 |
+
|
911 |
+
This problem is known to have two solutions. To obtain both of them, we
|
912 |
+
use two different initial guesses for y. We denote them by subscripts
|
913 |
+
a and b.
|
914 |
+
|
915 |
+
>>> y_a = np.zeros((2, x.size))
|
916 |
+
>>> y_b = np.zeros((2, x.size))
|
917 |
+
>>> y_b[0] = 3
|
918 |
+
|
919 |
+
Now we are ready to run the solver.
|
920 |
+
|
921 |
+
>>> from scipy.integrate import solve_bvp
|
922 |
+
>>> res_a = solve_bvp(fun, bc, x, y_a)
|
923 |
+
>>> res_b = solve_bvp(fun, bc, x, y_b)
|
924 |
+
|
925 |
+
Let's plot the two found solutions. We take an advantage of having the
|
926 |
+
solution in a spline form to produce a smooth plot.
|
927 |
+
|
928 |
+
>>> x_plot = np.linspace(0, 1, 100)
|
929 |
+
>>> y_plot_a = res_a.sol(x_plot)[0]
|
930 |
+
>>> y_plot_b = res_b.sol(x_plot)[0]
|
931 |
+
>>> import matplotlib.pyplot as plt
|
932 |
+
>>> plt.plot(x_plot, y_plot_a, label='y_a')
|
933 |
+
>>> plt.plot(x_plot, y_plot_b, label='y_b')
|
934 |
+
>>> plt.legend()
|
935 |
+
>>> plt.xlabel("x")
|
936 |
+
>>> plt.ylabel("y")
|
937 |
+
>>> plt.show()
|
938 |
+
|
939 |
+
We see that the two solutions have similar shape, but differ in scale
|
940 |
+
significantly.
|
941 |
+
|
942 |
+
In the second example, we solve a simple Sturm-Liouville problem::
|
943 |
+
|
944 |
+
y'' + k**2 * y = 0
|
945 |
+
y(0) = y(1) = 0
|
946 |
+
|
947 |
+
It is known that a non-trivial solution y = A * sin(k * x) is possible for
|
948 |
+
k = pi * n, where n is an integer. To establish the normalization constant
|
949 |
+
A = 1 we add a boundary condition::
|
950 |
+
|
951 |
+
y'(0) = k
|
952 |
+
|
953 |
+
Again, we rewrite our equation as a first-order system and implement its
|
954 |
+
right-hand side evaluation::
|
955 |
+
|
956 |
+
y1' = y2
|
957 |
+
y2' = -k**2 * y1
|
958 |
+
|
959 |
+
>>> def fun(x, y, p):
|
960 |
+
... k = p[0]
|
961 |
+
... return np.vstack((y[1], -k**2 * y[0]))
|
962 |
+
|
963 |
+
Note that parameters p are passed as a vector (with one element in our
|
964 |
+
case).
|
965 |
+
|
966 |
+
Implement the boundary conditions:
|
967 |
+
|
968 |
+
>>> def bc(ya, yb, p):
|
969 |
+
... k = p[0]
|
970 |
+
... return np.array([ya[0], yb[0], ya[1] - k])
|
971 |
+
|
972 |
+
Set up the initial mesh and guess for y. We aim to find the solution for
|
973 |
+
k = 2 * pi, to achieve that we set values of y to approximately follow
|
974 |
+
sin(2 * pi * x):
|
975 |
+
|
976 |
+
>>> x = np.linspace(0, 1, 5)
|
977 |
+
>>> y = np.zeros((2, x.size))
|
978 |
+
>>> y[0, 1] = 1
|
979 |
+
>>> y[0, 3] = -1
|
980 |
+
|
981 |
+
Run the solver with 6 as an initial guess for k.
|
982 |
+
|
983 |
+
>>> sol = solve_bvp(fun, bc, x, y, p=[6])
|
984 |
+
|
985 |
+
We see that the found k is approximately correct:
|
986 |
+
|
987 |
+
>>> sol.p[0]
|
988 |
+
6.28329460046
|
989 |
+
|
990 |
+
And, finally, plot the solution to see the anticipated sinusoid:
|
991 |
+
|
992 |
+
>>> x_plot = np.linspace(0, 1, 100)
|
993 |
+
>>> y_plot = sol.sol(x_plot)[0]
|
994 |
+
>>> plt.plot(x_plot, y_plot)
|
995 |
+
>>> plt.xlabel("x")
|
996 |
+
>>> plt.ylabel("y")
|
997 |
+
>>> plt.show()
|
998 |
+
"""
|
999 |
+
x = np.asarray(x, dtype=float)
|
1000 |
+
if x.ndim != 1:
|
1001 |
+
raise ValueError("`x` must be 1 dimensional.")
|
1002 |
+
h = np.diff(x)
|
1003 |
+
if np.any(h <= 0):
|
1004 |
+
raise ValueError("`x` must be strictly increasing.")
|
1005 |
+
a = x[0]
|
1006 |
+
|
1007 |
+
y = np.asarray(y)
|
1008 |
+
if np.issubdtype(y.dtype, np.complexfloating):
|
1009 |
+
dtype = complex
|
1010 |
+
else:
|
1011 |
+
dtype = float
|
1012 |
+
y = y.astype(dtype, copy=False)
|
1013 |
+
|
1014 |
+
if y.ndim != 2:
|
1015 |
+
raise ValueError("`y` must be 2 dimensional.")
|
1016 |
+
if y.shape[1] != x.shape[0]:
|
1017 |
+
raise ValueError(f"`y` is expected to have {x.shape[0]} columns, but actually "
|
1018 |
+
f"has {y.shape[1]}.")
|
1019 |
+
|
1020 |
+
if p is None:
|
1021 |
+
p = np.array([])
|
1022 |
+
else:
|
1023 |
+
p = np.asarray(p, dtype=dtype)
|
1024 |
+
if p.ndim != 1:
|
1025 |
+
raise ValueError("`p` must be 1 dimensional.")
|
1026 |
+
|
1027 |
+
if tol < 100 * EPS:
|
1028 |
+
warn(f"`tol` is too low, setting to {100 * EPS:.2e}", stacklevel=2)
|
1029 |
+
tol = 100 * EPS
|
1030 |
+
|
1031 |
+
if verbose not in [0, 1, 2]:
|
1032 |
+
raise ValueError("`verbose` must be in [0, 1, 2].")
|
1033 |
+
|
1034 |
+
n = y.shape[0]
|
1035 |
+
k = p.shape[0]
|
1036 |
+
|
1037 |
+
if S is not None:
|
1038 |
+
S = np.asarray(S, dtype=dtype)
|
1039 |
+
if S.shape != (n, n):
|
1040 |
+
raise ValueError(f"`S` is expected to have shape {(n, n)}, "
|
1041 |
+
f"but actually has {S.shape}")
|
1042 |
+
|
1043 |
+
# Compute I - S^+ S to impose necessary boundary conditions.
|
1044 |
+
B = np.identity(n) - np.dot(pinv(S), S)
|
1045 |
+
|
1046 |
+
y[:, 0] = np.dot(B, y[:, 0])
|
1047 |
+
|
1048 |
+
# Compute (I - S)^+ to correct derivatives at x=a.
|
1049 |
+
D = pinv(np.identity(n) - S)
|
1050 |
+
else:
|
1051 |
+
B = None
|
1052 |
+
D = None
|
1053 |
+
|
1054 |
+
if bc_tol is None:
|
1055 |
+
bc_tol = tol
|
1056 |
+
|
1057 |
+
# Maximum number of iterations
|
1058 |
+
max_iteration = 10
|
1059 |
+
|
1060 |
+
fun_wrapped, bc_wrapped, fun_jac_wrapped, bc_jac_wrapped = wrap_functions(
|
1061 |
+
fun, bc, fun_jac, bc_jac, k, a, S, D, dtype)
|
1062 |
+
|
1063 |
+
f = fun_wrapped(x, y, p)
|
1064 |
+
if f.shape != y.shape:
|
1065 |
+
raise ValueError(f"`fun` return is expected to have shape {y.shape}, "
|
1066 |
+
f"but actually has {f.shape}.")
|
1067 |
+
|
1068 |
+
bc_res = bc_wrapped(y[:, 0], y[:, -1], p)
|
1069 |
+
if bc_res.shape != (n + k,):
|
1070 |
+
raise ValueError(f"`bc` return is expected to have shape {(n + k,)}, "
|
1071 |
+
f"but actually has {bc_res.shape}.")
|
1072 |
+
|
1073 |
+
status = 0
|
1074 |
+
iteration = 0
|
1075 |
+
if verbose == 2:
|
1076 |
+
print_iteration_header()
|
1077 |
+
|
1078 |
+
while True:
|
1079 |
+
m = x.shape[0]
|
1080 |
+
|
1081 |
+
col_fun, jac_sys = prepare_sys(n, m, k, fun_wrapped, bc_wrapped,
|
1082 |
+
fun_jac_wrapped, bc_jac_wrapped, x, h)
|
1083 |
+
y, p, singular = solve_newton(n, m, h, col_fun, bc_wrapped, jac_sys,
|
1084 |
+
y, p, B, tol, bc_tol)
|
1085 |
+
iteration += 1
|
1086 |
+
|
1087 |
+
col_res, y_middle, f, f_middle = collocation_fun(fun_wrapped, y,
|
1088 |
+
p, x, h)
|
1089 |
+
bc_res = bc_wrapped(y[:, 0], y[:, -1], p)
|
1090 |
+
max_bc_res = np.max(abs(bc_res))
|
1091 |
+
|
1092 |
+
# This relation is not trivial, but can be verified.
|
1093 |
+
r_middle = 1.5 * col_res / h
|
1094 |
+
sol = create_spline(y, f, x, h)
|
1095 |
+
rms_res = estimate_rms_residuals(fun_wrapped, sol, x, h, p,
|
1096 |
+
r_middle, f_middle)
|
1097 |
+
max_rms_res = np.max(rms_res)
|
1098 |
+
|
1099 |
+
if singular:
|
1100 |
+
status = 2
|
1101 |
+
break
|
1102 |
+
|
1103 |
+
insert_1, = np.nonzero((rms_res > tol) & (rms_res < 100 * tol))
|
1104 |
+
insert_2, = np.nonzero(rms_res >= 100 * tol)
|
1105 |
+
nodes_added = insert_1.shape[0] + 2 * insert_2.shape[0]
|
1106 |
+
|
1107 |
+
if m + nodes_added > max_nodes:
|
1108 |
+
status = 1
|
1109 |
+
if verbose == 2:
|
1110 |
+
nodes_added = f"({nodes_added})"
|
1111 |
+
print_iteration_progress(iteration, max_rms_res, max_bc_res,
|
1112 |
+
m, nodes_added)
|
1113 |
+
break
|
1114 |
+
|
1115 |
+
if verbose == 2:
|
1116 |
+
print_iteration_progress(iteration, max_rms_res, max_bc_res, m,
|
1117 |
+
nodes_added)
|
1118 |
+
|
1119 |
+
if nodes_added > 0:
|
1120 |
+
x = modify_mesh(x, insert_1, insert_2)
|
1121 |
+
h = np.diff(x)
|
1122 |
+
y = sol(x)
|
1123 |
+
elif max_bc_res <= bc_tol:
|
1124 |
+
status = 0
|
1125 |
+
break
|
1126 |
+
elif iteration >= max_iteration:
|
1127 |
+
status = 3
|
1128 |
+
break
|
1129 |
+
|
1130 |
+
if verbose > 0:
|
1131 |
+
if status == 0:
|
1132 |
+
print(f"Solved in {iteration} iterations, number of nodes {x.shape[0]}. \n"
|
1133 |
+
f"Maximum relative residual: {max_rms_res:.2e} \n"
|
1134 |
+
f"Maximum boundary residual: {max_bc_res:.2e}")
|
1135 |
+
elif status == 1:
|
1136 |
+
print(f"Number of nodes is exceeded after iteration {iteration}. \n"
|
1137 |
+
f"Maximum relative residual: {max_rms_res:.2e} \n"
|
1138 |
+
f"Maximum boundary residual: {max_bc_res:.2e}")
|
1139 |
+
elif status == 2:
|
1140 |
+
print("Singular Jacobian encountered when solving the collocation "
|
1141 |
+
f"system on iteration {iteration}. \n"
|
1142 |
+
f"Maximum relative residual: {max_rms_res:.2e} \n"
|
1143 |
+
f"Maximum boundary residual: {max_bc_res:.2e}")
|
1144 |
+
elif status == 3:
|
1145 |
+
print("The solver was unable to satisfy boundary conditions "
|
1146 |
+
f"tolerance on iteration {iteration}. \n"
|
1147 |
+
f"Maximum relative residual: {max_rms_res:.2e} \n"
|
1148 |
+
f"Maximum boundary residual: {max_bc_res:.2e}")
|
1149 |
+
|
1150 |
+
if p.size == 0:
|
1151 |
+
p = None
|
1152 |
+
|
1153 |
+
return BVPResult(sol=sol, p=p, x=x, y=y, yp=f, rms_residuals=rms_res,
|
1154 |
+
niter=iteration, status=status,
|
1155 |
+
message=TERMINATION_MESSAGES[status], success=status == 0)
|
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_lsoda.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (113 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_test_odeint_banded.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (109 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_vode.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (166 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/integrate/dop.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
|
3 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
4 |
+
|
5 |
+
__all__ = [ # noqa: F822
|
6 |
+
'dopri5',
|
7 |
+
'dop853'
|
8 |
+
]
|
9 |
+
|
10 |
+
|
11 |
+
def __dir__():
|
12 |
+
return __all__
|
13 |
+
|
14 |
+
|
15 |
+
def __getattr__(name):
|
16 |
+
return _sub_module_deprecation(sub_package="integrate", module="dop",
|
17 |
+
private_modules=["_dop"], all=__all__,
|
18 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/integrate/lsoda.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
|
3 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
4 |
+
|
5 |
+
__all__ = ['lsoda'] # noqa: F822
|
6 |
+
|
7 |
+
|
8 |
+
def __dir__():
|
9 |
+
return __all__
|
10 |
+
|
11 |
+
|
12 |
+
def __getattr__(name):
|
13 |
+
return _sub_module_deprecation(sub_package="integrate", module="lsoda",
|
14 |
+
private_modules=["_lsoda"], all=__all__,
|
15 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/integrate/odepack.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.integrate` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = ['odeint', 'ODEintWarning'] # noqa: F822
|
8 |
+
|
9 |
+
|
10 |
+
def __dir__():
|
11 |
+
return __all__
|
12 |
+
|
13 |
+
|
14 |
+
def __getattr__(name):
|
15 |
+
return _sub_module_deprecation(sub_package="integrate", module="odepack",
|
16 |
+
private_modules=["_odepack_py"], all=__all__,
|
17 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (18.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_binned_statistic.cpython-310.pyc
ADDED
Binary file (28.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_binomtest.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_bws_test.cpython-310.pyc
ADDED
Binary file (6.72 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_censored_data.cpython-310.pyc
ADDED
Binary file (17.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_common.cpython-310.pyc
ADDED
Binary file (331 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_constants.cpython-310.pyc
ADDED
Binary file (536 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_covariance.cpython-310.pyc
ADDED
Binary file (23.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_discrete_distns.cpython-310.pyc
ADDED
Binary file (63.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_distn_infrastructure.cpython-310.pyc
ADDED
Binary file (123 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_distr_params.cpython-310.pyc
ADDED
Binary file (6.63 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_entropy.cpython-310.pyc
ADDED
Binary file (15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_generate_pyx.cpython-310.pyc
ADDED
Binary file (954 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_hypotests.cpython-310.pyc
ADDED
Binary file (69.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_kde.cpython-310.pyc
ADDED
Binary file (21.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_ksstats.cpython-310.pyc
ADDED
Binary file (12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mannwhitneyu.cpython-310.pyc
ADDED
Binary file (17.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_morestats.cpython-310.pyc
ADDED
Binary file (170 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_basic.cpython-310.pyc
ADDED
Binary file (108 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_extras.cpython-310.pyc
ADDED
Binary file (15.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_multicomp.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_multivariate.cpython-310.pyc
ADDED
Binary file (212 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_odds_ratio.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_page_trend_test.cpython-310.pyc
ADDED
Binary file (17.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_qmc.cpython-310.pyc
ADDED
Binary file (88.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_qmvnt.cpython-310.pyc
ADDED
Binary file (13.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_relative_risk.cpython-310.pyc
ADDED
Binary file (8.33 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_resampling.cpython-310.pyc
ADDED
Binary file (71.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_result_classes.cpython-310.pyc
ADDED
Binary file (1.04 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_rvs_sampling.cpython-310.pyc
ADDED
Binary file (2.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_sampling.cpython-310.pyc
ADDED
Binary file (43 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_sensitivity_analysis.cpython-310.pyc
ADDED
Binary file (23.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_stats_mstats_common.cpython-310.pyc
ADDED
Binary file (16.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_stats_py.cpython-310.pyc
ADDED
Binary file (373 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_survival.cpython-310.pyc
ADDED
Binary file (22.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_tukeylambda_stats.cpython-310.pyc
ADDED
Binary file (3.11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_variation.cpython-310.pyc
ADDED
Binary file (4.44 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_warnings_errors.cpython-310.pyc
ADDED
Binary file (1.73 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_wilcoxon.cpython-310.pyc
ADDED
Binary file (6.95 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/biasedurn.cpython-310.pyc
ADDED
Binary file (681 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/distributions.cpython-310.pyc
ADDED
Binary file (590 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/kde.cpython-310.pyc
ADDED
Binary file (756 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/morestats.cpython-310.pyc
ADDED
Binary file (1.3 kB). View file
|
|