Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/conftest.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_array_ops.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_categorical.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_datetime64.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_interval.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_numeric.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_object.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_period.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_timedelta64.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/common.py +155 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/conftest.py +139 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_array_ops.py +39 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_categorical.py +25 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_datetime64.py +2469 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_interval.py +306 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_numeric.py +1567 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_object.py +420 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_period.py +1675 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_timedelta64.py +2173 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_odf.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_odswriter.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_openpyxl.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_readers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_style.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_writers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_xlrd.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_xlsxwriter.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_odf.py +77 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_odswriter.py +106 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_openpyxl.py +432 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_readers.py +1751 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_style.py +298 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_writers.py +1511 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_xlrd.py +76 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_xlsxwriter.py +86 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_console.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_eng_formatting.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_markdown.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/test_bar.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/test_exceptions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/test_format.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/test_highlight.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/test_html.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/common.cpython-310.pyc
ADDED
Binary file (3.83 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (3.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_array_ops.cpython-310.pyc
ADDED
Binary file (1.18 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_categorical.cpython-310.pyc
ADDED
Binary file (1.19 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_datetime64.cpython-310.pyc
ADDED
Binary file (59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_interval.cpython-310.pyc
ADDED
Binary file (8.78 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_numeric.cpython-310.pyc
ADDED
Binary file (44.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_object.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_period.cpython-310.pyc
ADDED
Binary file (46.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/__pycache__/test_timedelta64.cpython-310.pyc
ADDED
Binary file (54.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/common.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Assertion helpers for arithmetic tests.
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas import (
|
8 |
+
DataFrame,
|
9 |
+
Index,
|
10 |
+
Series,
|
11 |
+
array,
|
12 |
+
)
|
13 |
+
import pandas._testing as tm
|
14 |
+
from pandas.core.arrays import (
|
15 |
+
BooleanArray,
|
16 |
+
NumpyExtensionArray,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
def assert_cannot_add(left, right, msg="cannot add"):
|
21 |
+
"""
|
22 |
+
Helper to assert that left and right cannot be added.
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
----------
|
26 |
+
left : object
|
27 |
+
right : object
|
28 |
+
msg : str, default "cannot add"
|
29 |
+
"""
|
30 |
+
with pytest.raises(TypeError, match=msg):
|
31 |
+
left + right
|
32 |
+
with pytest.raises(TypeError, match=msg):
|
33 |
+
right + left
|
34 |
+
|
35 |
+
|
36 |
+
def assert_invalid_addsub_type(left, right, msg=None):
|
37 |
+
"""
|
38 |
+
Helper to assert that left and right can be neither added nor subtracted.
|
39 |
+
|
40 |
+
Parameters
|
41 |
+
----------
|
42 |
+
left : object
|
43 |
+
right : object
|
44 |
+
msg : str or None, default None
|
45 |
+
"""
|
46 |
+
with pytest.raises(TypeError, match=msg):
|
47 |
+
left + right
|
48 |
+
with pytest.raises(TypeError, match=msg):
|
49 |
+
right + left
|
50 |
+
with pytest.raises(TypeError, match=msg):
|
51 |
+
left - right
|
52 |
+
with pytest.raises(TypeError, match=msg):
|
53 |
+
right - left
|
54 |
+
|
55 |
+
|
56 |
+
def get_upcast_box(left, right, is_cmp: bool = False):
|
57 |
+
"""
|
58 |
+
Get the box to use for 'expected' in an arithmetic or comparison operation.
|
59 |
+
|
60 |
+
Parameters
|
61 |
+
left : Any
|
62 |
+
right : Any
|
63 |
+
is_cmp : bool, default False
|
64 |
+
Whether the operation is a comparison method.
|
65 |
+
"""
|
66 |
+
|
67 |
+
if isinstance(left, DataFrame) or isinstance(right, DataFrame):
|
68 |
+
return DataFrame
|
69 |
+
if isinstance(left, Series) or isinstance(right, Series):
|
70 |
+
if is_cmp and isinstance(left, Index):
|
71 |
+
# Index does not defer for comparisons
|
72 |
+
return np.array
|
73 |
+
return Series
|
74 |
+
if isinstance(left, Index) or isinstance(right, Index):
|
75 |
+
if is_cmp:
|
76 |
+
return np.array
|
77 |
+
return Index
|
78 |
+
return tm.to_array
|
79 |
+
|
80 |
+
|
81 |
+
def assert_invalid_comparison(left, right, box):
|
82 |
+
"""
|
83 |
+
Assert that comparison operations with mismatched types behave correctly.
|
84 |
+
|
85 |
+
Parameters
|
86 |
+
----------
|
87 |
+
left : np.ndarray, ExtensionArray, Index, or Series
|
88 |
+
right : object
|
89 |
+
box : {pd.DataFrame, pd.Series, pd.Index, pd.array, tm.to_array}
|
90 |
+
"""
|
91 |
+
# Not for tznaive-tzaware comparison
|
92 |
+
|
93 |
+
# Note: not quite the same as how we do this for tm.box_expected
|
94 |
+
xbox = box if box not in [Index, array] else np.array
|
95 |
+
|
96 |
+
def xbox2(x):
|
97 |
+
# Eventually we'd like this to be tighter, but for now we'll
|
98 |
+
# just exclude NumpyExtensionArray[bool]
|
99 |
+
if isinstance(x, NumpyExtensionArray):
|
100 |
+
return x._ndarray
|
101 |
+
if isinstance(x, BooleanArray):
|
102 |
+
# NB: we are assuming no pd.NAs for now
|
103 |
+
return x.astype(bool)
|
104 |
+
return x
|
105 |
+
|
106 |
+
# rev_box: box to use for reversed comparisons
|
107 |
+
rev_box = xbox
|
108 |
+
if isinstance(right, Index) and isinstance(left, Series):
|
109 |
+
rev_box = np.array
|
110 |
+
|
111 |
+
result = xbox2(left == right)
|
112 |
+
expected = xbox(np.zeros(result.shape, dtype=np.bool_))
|
113 |
+
|
114 |
+
tm.assert_equal(result, expected)
|
115 |
+
|
116 |
+
result = xbox2(right == left)
|
117 |
+
tm.assert_equal(result, rev_box(expected))
|
118 |
+
|
119 |
+
result = xbox2(left != right)
|
120 |
+
tm.assert_equal(result, ~expected)
|
121 |
+
|
122 |
+
result = xbox2(right != left)
|
123 |
+
tm.assert_equal(result, rev_box(~expected))
|
124 |
+
|
125 |
+
msg = "|".join(
|
126 |
+
[
|
127 |
+
"Invalid comparison between",
|
128 |
+
"Cannot compare type",
|
129 |
+
"not supported between",
|
130 |
+
"invalid type promotion",
|
131 |
+
(
|
132 |
+
# GH#36706 npdev 1.20.0 2020-09-28
|
133 |
+
r"The DTypes <class 'numpy.dtype\[datetime64\]'> and "
|
134 |
+
r"<class 'numpy.dtype\[int64\]'> do not have a common DType. "
|
135 |
+
"For example they cannot be stored in a single array unless the "
|
136 |
+
"dtype is `object`."
|
137 |
+
),
|
138 |
+
]
|
139 |
+
)
|
140 |
+
with pytest.raises(TypeError, match=msg):
|
141 |
+
left < right
|
142 |
+
with pytest.raises(TypeError, match=msg):
|
143 |
+
left <= right
|
144 |
+
with pytest.raises(TypeError, match=msg):
|
145 |
+
left > right
|
146 |
+
with pytest.raises(TypeError, match=msg):
|
147 |
+
left >= right
|
148 |
+
with pytest.raises(TypeError, match=msg):
|
149 |
+
right < left
|
150 |
+
with pytest.raises(TypeError, match=msg):
|
151 |
+
right <= left
|
152 |
+
with pytest.raises(TypeError, match=msg):
|
153 |
+
right > left
|
154 |
+
with pytest.raises(TypeError, match=msg):
|
155 |
+
right >= left
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/conftest.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import Index
|
6 |
+
|
7 |
+
|
8 |
+
@pytest.fixture(params=[1, np.array(1, dtype=np.int64)])
|
9 |
+
def one(request):
|
10 |
+
"""
|
11 |
+
Several variants of integer value 1. The zero-dim integer array
|
12 |
+
behaves like an integer.
|
13 |
+
|
14 |
+
This fixture can be used to check that datetimelike indexes handle
|
15 |
+
addition and subtraction of integers and zero-dimensional arrays
|
16 |
+
of integers.
|
17 |
+
|
18 |
+
Examples
|
19 |
+
--------
|
20 |
+
dti = pd.date_range('2016-01-01', periods=2, freq='h')
|
21 |
+
dti
|
22 |
+
DatetimeIndex(['2016-01-01 00:00:00', '2016-01-01 01:00:00'],
|
23 |
+
dtype='datetime64[ns]', freq='h')
|
24 |
+
dti + one
|
25 |
+
DatetimeIndex(['2016-01-01 01:00:00', '2016-01-01 02:00:00'],
|
26 |
+
dtype='datetime64[ns]', freq='h')
|
27 |
+
"""
|
28 |
+
return request.param
|
29 |
+
|
30 |
+
|
31 |
+
zeros = [
|
32 |
+
box_cls([0] * 5, dtype=dtype)
|
33 |
+
for box_cls in [Index, np.array, pd.array]
|
34 |
+
for dtype in [np.int64, np.uint64, np.float64]
|
35 |
+
]
|
36 |
+
zeros.extend([box_cls([-0.0] * 5, dtype=np.float64) for box_cls in [Index, np.array]])
|
37 |
+
zeros.extend([np.array(0, dtype=dtype) for dtype in [np.int64, np.uint64, np.float64]])
|
38 |
+
zeros.extend([np.array(-0.0, dtype=np.float64)])
|
39 |
+
zeros.extend([0, 0.0, -0.0])
|
40 |
+
|
41 |
+
|
42 |
+
@pytest.fixture(params=zeros)
|
43 |
+
def zero(request):
|
44 |
+
"""
|
45 |
+
Several types of scalar zeros and length 5 vectors of zeros.
|
46 |
+
|
47 |
+
This fixture can be used to check that numeric-dtype indexes handle
|
48 |
+
division by any zero numeric-dtype.
|
49 |
+
|
50 |
+
Uses vector of length 5 for broadcasting with `numeric_idx` fixture,
|
51 |
+
which creates numeric-dtype vectors also of length 5.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
--------
|
55 |
+
arr = RangeIndex(5)
|
56 |
+
arr / zeros
|
57 |
+
Index([nan, inf, inf, inf, inf], dtype='float64')
|
58 |
+
"""
|
59 |
+
return request.param
|
60 |
+
|
61 |
+
|
62 |
+
# ------------------------------------------------------------------
|
63 |
+
# Scalar Fixtures
|
64 |
+
|
65 |
+
|
66 |
+
@pytest.fixture(
|
67 |
+
params=[
|
68 |
+
pd.Timedelta("10m7s").to_pytimedelta(),
|
69 |
+
pd.Timedelta("10m7s"),
|
70 |
+
pd.Timedelta("10m7s").to_timedelta64(),
|
71 |
+
],
|
72 |
+
ids=lambda x: type(x).__name__,
|
73 |
+
)
|
74 |
+
def scalar_td(request):
|
75 |
+
"""
|
76 |
+
Several variants of Timedelta scalars representing 10 minutes and 7 seconds.
|
77 |
+
"""
|
78 |
+
return request.param
|
79 |
+
|
80 |
+
|
81 |
+
@pytest.fixture(
|
82 |
+
params=[
|
83 |
+
pd.offsets.Day(3),
|
84 |
+
pd.offsets.Hour(72),
|
85 |
+
pd.Timedelta(days=3).to_pytimedelta(),
|
86 |
+
pd.Timedelta("72:00:00"),
|
87 |
+
np.timedelta64(3, "D"),
|
88 |
+
np.timedelta64(72, "h"),
|
89 |
+
],
|
90 |
+
ids=lambda x: type(x).__name__,
|
91 |
+
)
|
92 |
+
def three_days(request):
|
93 |
+
"""
|
94 |
+
Several timedelta-like and DateOffset objects that each represent
|
95 |
+
a 3-day timedelta
|
96 |
+
"""
|
97 |
+
return request.param
|
98 |
+
|
99 |
+
|
100 |
+
@pytest.fixture(
|
101 |
+
params=[
|
102 |
+
pd.offsets.Hour(2),
|
103 |
+
pd.offsets.Minute(120),
|
104 |
+
pd.Timedelta(hours=2).to_pytimedelta(),
|
105 |
+
pd.Timedelta(seconds=2 * 3600),
|
106 |
+
np.timedelta64(2, "h"),
|
107 |
+
np.timedelta64(120, "m"),
|
108 |
+
],
|
109 |
+
ids=lambda x: type(x).__name__,
|
110 |
+
)
|
111 |
+
def two_hours(request):
|
112 |
+
"""
|
113 |
+
Several timedelta-like and DateOffset objects that each represent
|
114 |
+
a 2-hour timedelta
|
115 |
+
"""
|
116 |
+
return request.param
|
117 |
+
|
118 |
+
|
119 |
+
_common_mismatch = [
|
120 |
+
pd.offsets.YearBegin(2),
|
121 |
+
pd.offsets.MonthBegin(1),
|
122 |
+
pd.offsets.Minute(),
|
123 |
+
]
|
124 |
+
|
125 |
+
|
126 |
+
@pytest.fixture(
|
127 |
+
params=[
|
128 |
+
np.timedelta64(4, "h"),
|
129 |
+
pd.Timedelta(hours=23).to_pytimedelta(),
|
130 |
+
pd.Timedelta("23:00:00"),
|
131 |
+
]
|
132 |
+
+ _common_mismatch
|
133 |
+
)
|
134 |
+
def not_daily(request):
|
135 |
+
"""
|
136 |
+
Several timedelta-like and DateOffset instances that are _not_
|
137 |
+
compatible with Daily frequencies.
|
138 |
+
"""
|
139 |
+
return request.param
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_array_ops.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas._testing as tm
|
7 |
+
from pandas.core.ops.array_ops import (
|
8 |
+
comparison_op,
|
9 |
+
na_logical_op,
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
def test_na_logical_op_2d():
|
14 |
+
left = np.arange(8).reshape(4, 2)
|
15 |
+
right = left.astype(object)
|
16 |
+
right[0, 0] = np.nan
|
17 |
+
|
18 |
+
# Check that we fall back to the vec_binop branch
|
19 |
+
with pytest.raises(TypeError, match="unsupported operand type"):
|
20 |
+
operator.or_(left, right)
|
21 |
+
|
22 |
+
result = na_logical_op(left, right, operator.or_)
|
23 |
+
expected = right
|
24 |
+
tm.assert_numpy_array_equal(result, expected)
|
25 |
+
|
26 |
+
|
27 |
+
def test_object_comparison_2d():
|
28 |
+
left = np.arange(9).reshape(3, 3).astype(object)
|
29 |
+
right = left.T
|
30 |
+
|
31 |
+
result = comparison_op(left, right, operator.eq)
|
32 |
+
expected = np.eye(3).astype(bool)
|
33 |
+
tm.assert_numpy_array_equal(result, expected)
|
34 |
+
|
35 |
+
# Ensure that cython doesn't raise on non-writeable arg, which
|
36 |
+
# we can get from np.broadcast_to
|
37 |
+
right.flags.writeable = False
|
38 |
+
result = comparison_op(left, right, operator.ne)
|
39 |
+
tm.assert_numpy_array_equal(result, ~expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_categorical.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
Categorical,
|
5 |
+
Series,
|
6 |
+
)
|
7 |
+
import pandas._testing as tm
|
8 |
+
|
9 |
+
|
10 |
+
class TestCategoricalComparisons:
|
11 |
+
def test_categorical_nan_equality(self):
|
12 |
+
cat = Series(Categorical(["a", "b", "c", np.nan]))
|
13 |
+
expected = Series([True, True, True, False])
|
14 |
+
result = cat == cat
|
15 |
+
tm.assert_series_equal(result, expected)
|
16 |
+
|
17 |
+
def test_categorical_tuple_equality(self):
|
18 |
+
# GH 18050
|
19 |
+
ser = Series([(0, 0), (0, 1), (0, 0), (1, 0), (1, 1)])
|
20 |
+
expected = Series([True, False, True, False, False])
|
21 |
+
result = ser == (0, 0)
|
22 |
+
tm.assert_series_equal(result, expected)
|
23 |
+
|
24 |
+
result = ser.astype("category") == (0, 0)
|
25 |
+
tm.assert_series_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_datetime64.py
ADDED
@@ -0,0 +1,2469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Arithmetic tests for DataFrame/Series/Index/Array classes that should
|
2 |
+
# behave identically.
|
3 |
+
# Specifically for datetime64 and datetime64tz dtypes
|
4 |
+
from datetime import (
|
5 |
+
datetime,
|
6 |
+
time,
|
7 |
+
timedelta,
|
8 |
+
)
|
9 |
+
from itertools import (
|
10 |
+
product,
|
11 |
+
starmap,
|
12 |
+
)
|
13 |
+
import operator
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import pytest
|
17 |
+
import pytz
|
18 |
+
|
19 |
+
from pandas._libs.tslibs.conversion import localize_pydatetime
|
20 |
+
from pandas._libs.tslibs.offsets import shift_months
|
21 |
+
from pandas.errors import PerformanceWarning
|
22 |
+
|
23 |
+
import pandas as pd
|
24 |
+
from pandas import (
|
25 |
+
DateOffset,
|
26 |
+
DatetimeIndex,
|
27 |
+
NaT,
|
28 |
+
Period,
|
29 |
+
Series,
|
30 |
+
Timedelta,
|
31 |
+
TimedeltaIndex,
|
32 |
+
Timestamp,
|
33 |
+
date_range,
|
34 |
+
)
|
35 |
+
import pandas._testing as tm
|
36 |
+
from pandas.core import roperator
|
37 |
+
from pandas.tests.arithmetic.common import (
|
38 |
+
assert_cannot_add,
|
39 |
+
assert_invalid_addsub_type,
|
40 |
+
assert_invalid_comparison,
|
41 |
+
get_upcast_box,
|
42 |
+
)
|
43 |
+
|
44 |
+
# ------------------------------------------------------------------
|
45 |
+
# Comparisons
|
46 |
+
|
47 |
+
|
48 |
+
class TestDatetime64ArrayLikeComparisons:
|
49 |
+
# Comparison tests for datetime64 vectors fully parametrized over
|
50 |
+
# DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison
|
51 |
+
# tests will eventually end up here.
|
52 |
+
|
53 |
+
def test_compare_zerodim(self, tz_naive_fixture, box_with_array):
|
54 |
+
# Test comparison with zero-dimensional array is unboxed
|
55 |
+
tz = tz_naive_fixture
|
56 |
+
box = box_with_array
|
57 |
+
dti = date_range("20130101", periods=3, tz=tz)
|
58 |
+
|
59 |
+
other = np.array(dti.to_numpy()[0])
|
60 |
+
|
61 |
+
dtarr = tm.box_expected(dti, box)
|
62 |
+
xbox = get_upcast_box(dtarr, other, True)
|
63 |
+
result = dtarr <= other
|
64 |
+
expected = np.array([True, False, False])
|
65 |
+
expected = tm.box_expected(expected, xbox)
|
66 |
+
tm.assert_equal(result, expected)
|
67 |
+
|
68 |
+
@pytest.mark.parametrize(
|
69 |
+
"other",
|
70 |
+
[
|
71 |
+
"foo",
|
72 |
+
-1,
|
73 |
+
99,
|
74 |
+
4.0,
|
75 |
+
object(),
|
76 |
+
timedelta(days=2),
|
77 |
+
# GH#19800, GH#19301 datetime.date comparison raises to
|
78 |
+
# match DatetimeIndex/Timestamp. This also matches the behavior
|
79 |
+
# of stdlib datetime.datetime
|
80 |
+
datetime(2001, 1, 1).date(),
|
81 |
+
# GH#19301 None and NaN are *not* cast to NaT for comparisons
|
82 |
+
None,
|
83 |
+
np.nan,
|
84 |
+
],
|
85 |
+
)
|
86 |
+
def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array):
|
87 |
+
# GH#22074, GH#15966
|
88 |
+
tz = tz_naive_fixture
|
89 |
+
|
90 |
+
rng = date_range("1/1/2000", periods=10, tz=tz)
|
91 |
+
dtarr = tm.box_expected(rng, box_with_array)
|
92 |
+
assert_invalid_comparison(dtarr, other, box_with_array)
|
93 |
+
|
94 |
+
@pytest.mark.parametrize(
|
95 |
+
"other",
|
96 |
+
[
|
97 |
+
# GH#4968 invalid date/int comparisons
|
98 |
+
list(range(10)),
|
99 |
+
np.arange(10),
|
100 |
+
np.arange(10).astype(np.float32),
|
101 |
+
np.arange(10).astype(object),
|
102 |
+
pd.timedelta_range("1ns", periods=10).array,
|
103 |
+
np.array(pd.timedelta_range("1ns", periods=10)),
|
104 |
+
list(pd.timedelta_range("1ns", periods=10)),
|
105 |
+
pd.timedelta_range("1 Day", periods=10).astype(object),
|
106 |
+
pd.period_range("1971-01-01", freq="D", periods=10).array,
|
107 |
+
pd.period_range("1971-01-01", freq="D", periods=10).astype(object),
|
108 |
+
],
|
109 |
+
)
|
110 |
+
def test_dt64arr_cmp_arraylike_invalid(
|
111 |
+
self, other, tz_naive_fixture, box_with_array
|
112 |
+
):
|
113 |
+
tz = tz_naive_fixture
|
114 |
+
|
115 |
+
dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data
|
116 |
+
obj = tm.box_expected(dta, box_with_array)
|
117 |
+
assert_invalid_comparison(obj, other, box_with_array)
|
118 |
+
|
119 |
+
def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture):
|
120 |
+
tz = tz_naive_fixture
|
121 |
+
|
122 |
+
dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data
|
123 |
+
|
124 |
+
other = np.array([0, 1, 2, dta[3], Timedelta(days=1)])
|
125 |
+
result = dta == other
|
126 |
+
expected = np.array([False, False, False, True, False])
|
127 |
+
tm.assert_numpy_array_equal(result, expected)
|
128 |
+
|
129 |
+
result = dta != other
|
130 |
+
tm.assert_numpy_array_equal(result, ~expected)
|
131 |
+
|
132 |
+
msg = "Invalid comparison between|Cannot compare type|not supported between"
|
133 |
+
with pytest.raises(TypeError, match=msg):
|
134 |
+
dta < other
|
135 |
+
with pytest.raises(TypeError, match=msg):
|
136 |
+
dta > other
|
137 |
+
with pytest.raises(TypeError, match=msg):
|
138 |
+
dta <= other
|
139 |
+
with pytest.raises(TypeError, match=msg):
|
140 |
+
dta >= other
|
141 |
+
|
142 |
+
def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array):
|
143 |
+
# GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly
|
144 |
+
tz = tz_naive_fixture
|
145 |
+
box = box_with_array
|
146 |
+
|
147 |
+
ts = Timestamp("2021-01-01", tz=tz)
|
148 |
+
ser = Series([ts, NaT])
|
149 |
+
|
150 |
+
obj = tm.box_expected(ser, box)
|
151 |
+
xbox = get_upcast_box(obj, ts, True)
|
152 |
+
|
153 |
+
expected = Series([True, False], dtype=np.bool_)
|
154 |
+
expected = tm.box_expected(expected, xbox)
|
155 |
+
|
156 |
+
result = obj == ts
|
157 |
+
tm.assert_equal(result, expected)
|
158 |
+
|
159 |
+
|
160 |
+
class TestDatetime64SeriesComparison:
|
161 |
+
# TODO: moved from tests.series.test_operators; needs cleanup
|
162 |
+
|
163 |
+
@pytest.mark.parametrize(
|
164 |
+
"pair",
|
165 |
+
[
|
166 |
+
(
|
167 |
+
[Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")],
|
168 |
+
[NaT, NaT, Timestamp("2011-01-03")],
|
169 |
+
),
|
170 |
+
(
|
171 |
+
[Timedelta("1 days"), NaT, Timedelta("3 days")],
|
172 |
+
[NaT, NaT, Timedelta("3 days")],
|
173 |
+
),
|
174 |
+
(
|
175 |
+
[Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")],
|
176 |
+
[NaT, NaT, Period("2011-03", freq="M")],
|
177 |
+
),
|
178 |
+
],
|
179 |
+
)
|
180 |
+
@pytest.mark.parametrize("reverse", [True, False])
|
181 |
+
@pytest.mark.parametrize("dtype", [None, object])
|
182 |
+
@pytest.mark.parametrize(
|
183 |
+
"op, expected",
|
184 |
+
[
|
185 |
+
(operator.eq, Series([False, False, True])),
|
186 |
+
(operator.ne, Series([True, True, False])),
|
187 |
+
(operator.lt, Series([False, False, False])),
|
188 |
+
(operator.gt, Series([False, False, False])),
|
189 |
+
(operator.ge, Series([False, False, True])),
|
190 |
+
(operator.le, Series([False, False, True])),
|
191 |
+
],
|
192 |
+
)
|
193 |
+
def test_nat_comparisons(
|
194 |
+
self,
|
195 |
+
dtype,
|
196 |
+
index_or_series,
|
197 |
+
reverse,
|
198 |
+
pair,
|
199 |
+
op,
|
200 |
+
expected,
|
201 |
+
):
|
202 |
+
box = index_or_series
|
203 |
+
lhs, rhs = pair
|
204 |
+
if reverse:
|
205 |
+
# add lhs / rhs switched data
|
206 |
+
lhs, rhs = rhs, lhs
|
207 |
+
|
208 |
+
left = Series(lhs, dtype=dtype)
|
209 |
+
right = box(rhs, dtype=dtype)
|
210 |
+
|
211 |
+
result = op(left, right)
|
212 |
+
|
213 |
+
tm.assert_series_equal(result, expected)
|
214 |
+
|
215 |
+
@pytest.mark.parametrize(
|
216 |
+
"data",
|
217 |
+
[
|
218 |
+
[Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")],
|
219 |
+
[Timedelta("1 days"), NaT, Timedelta("3 days")],
|
220 |
+
[Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")],
|
221 |
+
],
|
222 |
+
)
|
223 |
+
@pytest.mark.parametrize("dtype", [None, object])
|
224 |
+
def test_nat_comparisons_scalar(self, dtype, data, box_with_array):
|
225 |
+
box = box_with_array
|
226 |
+
|
227 |
+
left = Series(data, dtype=dtype)
|
228 |
+
left = tm.box_expected(left, box)
|
229 |
+
xbox = get_upcast_box(left, NaT, True)
|
230 |
+
|
231 |
+
expected = [False, False, False]
|
232 |
+
expected = tm.box_expected(expected, xbox)
|
233 |
+
if box is pd.array and dtype is object:
|
234 |
+
expected = pd.array(expected, dtype="bool")
|
235 |
+
|
236 |
+
tm.assert_equal(left == NaT, expected)
|
237 |
+
tm.assert_equal(NaT == left, expected)
|
238 |
+
|
239 |
+
expected = [True, True, True]
|
240 |
+
expected = tm.box_expected(expected, xbox)
|
241 |
+
if box is pd.array and dtype is object:
|
242 |
+
expected = pd.array(expected, dtype="bool")
|
243 |
+
tm.assert_equal(left != NaT, expected)
|
244 |
+
tm.assert_equal(NaT != left, expected)
|
245 |
+
|
246 |
+
expected = [False, False, False]
|
247 |
+
expected = tm.box_expected(expected, xbox)
|
248 |
+
if box is pd.array and dtype is object:
|
249 |
+
expected = pd.array(expected, dtype="bool")
|
250 |
+
tm.assert_equal(left < NaT, expected)
|
251 |
+
tm.assert_equal(NaT > left, expected)
|
252 |
+
tm.assert_equal(left <= NaT, expected)
|
253 |
+
tm.assert_equal(NaT >= left, expected)
|
254 |
+
|
255 |
+
tm.assert_equal(left > NaT, expected)
|
256 |
+
tm.assert_equal(NaT < left, expected)
|
257 |
+
tm.assert_equal(left >= NaT, expected)
|
258 |
+
tm.assert_equal(NaT <= left, expected)
|
259 |
+
|
260 |
+
@pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)])
|
261 |
+
def test_series_comparison_scalars(self, val):
|
262 |
+
series = Series(date_range("1/1/2000", periods=10))
|
263 |
+
|
264 |
+
result = series > val
|
265 |
+
expected = Series([x > val for x in series])
|
266 |
+
tm.assert_series_equal(result, expected)
|
267 |
+
|
268 |
+
@pytest.mark.parametrize(
|
269 |
+
"left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")]
|
270 |
+
)
|
271 |
+
def test_timestamp_compare_series(self, left, right):
|
272 |
+
# see gh-4982
|
273 |
+
# Make sure we can compare Timestamps on the right AND left hand side.
|
274 |
+
ser = Series(date_range("20010101", periods=10), name="dates")
|
275 |
+
s_nat = ser.copy(deep=True)
|
276 |
+
|
277 |
+
ser[0] = Timestamp("nat")
|
278 |
+
ser[3] = Timestamp("nat")
|
279 |
+
|
280 |
+
left_f = getattr(operator, left)
|
281 |
+
right_f = getattr(operator, right)
|
282 |
+
|
283 |
+
# No NaT
|
284 |
+
expected = left_f(ser, Timestamp("20010109"))
|
285 |
+
result = right_f(Timestamp("20010109"), ser)
|
286 |
+
tm.assert_series_equal(result, expected)
|
287 |
+
|
288 |
+
# NaT
|
289 |
+
expected = left_f(ser, Timestamp("nat"))
|
290 |
+
result = right_f(Timestamp("nat"), ser)
|
291 |
+
tm.assert_series_equal(result, expected)
|
292 |
+
|
293 |
+
# Compare to Timestamp with series containing NaT
|
294 |
+
expected = left_f(s_nat, Timestamp("20010109"))
|
295 |
+
result = right_f(Timestamp("20010109"), s_nat)
|
296 |
+
tm.assert_series_equal(result, expected)
|
297 |
+
|
298 |
+
# Compare to NaT with series containing NaT
|
299 |
+
expected = left_f(s_nat, NaT)
|
300 |
+
result = right_f(NaT, s_nat)
|
301 |
+
tm.assert_series_equal(result, expected)
|
302 |
+
|
303 |
+
def test_dt64arr_timestamp_equality(self, box_with_array):
|
304 |
+
# GH#11034
|
305 |
+
box = box_with_array
|
306 |
+
|
307 |
+
ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT])
|
308 |
+
ser = tm.box_expected(ser, box)
|
309 |
+
xbox = get_upcast_box(ser, ser, True)
|
310 |
+
|
311 |
+
result = ser != ser
|
312 |
+
expected = tm.box_expected([False, False, True], xbox)
|
313 |
+
tm.assert_equal(result, expected)
|
314 |
+
|
315 |
+
if box is pd.DataFrame:
|
316 |
+
# alignment for frame vs series comparisons deprecated
|
317 |
+
# in GH#46795 enforced 2.0
|
318 |
+
with pytest.raises(ValueError, match="not aligned"):
|
319 |
+
ser != ser[0]
|
320 |
+
|
321 |
+
else:
|
322 |
+
result = ser != ser[0]
|
323 |
+
expected = tm.box_expected([False, True, True], xbox)
|
324 |
+
tm.assert_equal(result, expected)
|
325 |
+
|
326 |
+
if box is pd.DataFrame:
|
327 |
+
# alignment for frame vs series comparisons deprecated
|
328 |
+
# in GH#46795 enforced 2.0
|
329 |
+
with pytest.raises(ValueError, match="not aligned"):
|
330 |
+
ser != ser[2]
|
331 |
+
else:
|
332 |
+
result = ser != ser[2]
|
333 |
+
expected = tm.box_expected([True, True, True], xbox)
|
334 |
+
tm.assert_equal(result, expected)
|
335 |
+
|
336 |
+
result = ser == ser
|
337 |
+
expected = tm.box_expected([True, True, False], xbox)
|
338 |
+
tm.assert_equal(result, expected)
|
339 |
+
|
340 |
+
if box is pd.DataFrame:
|
341 |
+
# alignment for frame vs series comparisons deprecated
|
342 |
+
# in GH#46795 enforced 2.0
|
343 |
+
with pytest.raises(ValueError, match="not aligned"):
|
344 |
+
ser == ser[0]
|
345 |
+
else:
|
346 |
+
result = ser == ser[0]
|
347 |
+
expected = tm.box_expected([True, False, False], xbox)
|
348 |
+
tm.assert_equal(result, expected)
|
349 |
+
|
350 |
+
if box is pd.DataFrame:
|
351 |
+
# alignment for frame vs series comparisons deprecated
|
352 |
+
# in GH#46795 enforced 2.0
|
353 |
+
with pytest.raises(ValueError, match="not aligned"):
|
354 |
+
ser == ser[2]
|
355 |
+
else:
|
356 |
+
result = ser == ser[2]
|
357 |
+
expected = tm.box_expected([False, False, False], xbox)
|
358 |
+
tm.assert_equal(result, expected)
|
359 |
+
|
360 |
+
@pytest.mark.parametrize(
|
361 |
+
"datetimelike",
|
362 |
+
[
|
363 |
+
Timestamp("20130101"),
|
364 |
+
datetime(2013, 1, 1),
|
365 |
+
np.datetime64("2013-01-01T00:00", "ns"),
|
366 |
+
],
|
367 |
+
)
|
368 |
+
@pytest.mark.parametrize(
|
369 |
+
"op,expected",
|
370 |
+
[
|
371 |
+
(operator.lt, [True, False, False, False]),
|
372 |
+
(operator.le, [True, True, False, False]),
|
373 |
+
(operator.eq, [False, True, False, False]),
|
374 |
+
(operator.gt, [False, False, False, True]),
|
375 |
+
],
|
376 |
+
)
|
377 |
+
def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected):
|
378 |
+
# GH#17965, test for ability to compare datetime64[ns] columns
|
379 |
+
# to datetimelike
|
380 |
+
ser = Series(
|
381 |
+
[
|
382 |
+
Timestamp("20120101"),
|
383 |
+
Timestamp("20130101"),
|
384 |
+
np.nan,
|
385 |
+
Timestamp("20130103"),
|
386 |
+
],
|
387 |
+
name="A",
|
388 |
+
)
|
389 |
+
result = op(ser, datetimelike)
|
390 |
+
expected = Series(expected, name="A")
|
391 |
+
tm.assert_series_equal(result, expected)
|
392 |
+
|
393 |
+
|
394 |
+
class TestDatetimeIndexComparisons:
|
395 |
+
# TODO: moved from tests.indexes.test_base; parametrize and de-duplicate
|
396 |
+
def test_comparators(self, comparison_op):
|
397 |
+
index = date_range("2020-01-01", periods=10)
|
398 |
+
element = index[len(index) // 2]
|
399 |
+
element = Timestamp(element).to_datetime64()
|
400 |
+
|
401 |
+
arr = np.array(index)
|
402 |
+
arr_result = comparison_op(arr, element)
|
403 |
+
index_result = comparison_op(index, element)
|
404 |
+
|
405 |
+
assert isinstance(index_result, np.ndarray)
|
406 |
+
tm.assert_numpy_array_equal(arr_result, index_result)
|
407 |
+
|
408 |
+
@pytest.mark.parametrize(
|
409 |
+
"other",
|
410 |
+
[datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")],
|
411 |
+
)
|
412 |
+
def test_dti_cmp_datetimelike(self, other, tz_naive_fixture):
|
413 |
+
tz = tz_naive_fixture
|
414 |
+
dti = date_range("2016-01-01", periods=2, tz=tz)
|
415 |
+
if tz is not None:
|
416 |
+
if isinstance(other, np.datetime64):
|
417 |
+
pytest.skip(f"{type(other).__name__} is not tz aware")
|
418 |
+
other = localize_pydatetime(other, dti.tzinfo)
|
419 |
+
|
420 |
+
result = dti == other
|
421 |
+
expected = np.array([True, False])
|
422 |
+
tm.assert_numpy_array_equal(result, expected)
|
423 |
+
|
424 |
+
result = dti > other
|
425 |
+
expected = np.array([False, True])
|
426 |
+
tm.assert_numpy_array_equal(result, expected)
|
427 |
+
|
428 |
+
result = dti >= other
|
429 |
+
expected = np.array([True, True])
|
430 |
+
tm.assert_numpy_array_equal(result, expected)
|
431 |
+
|
432 |
+
result = dti < other
|
433 |
+
expected = np.array([False, False])
|
434 |
+
tm.assert_numpy_array_equal(result, expected)
|
435 |
+
|
436 |
+
result = dti <= other
|
437 |
+
expected = np.array([True, False])
|
438 |
+
tm.assert_numpy_array_equal(result, expected)
|
439 |
+
|
440 |
+
@pytest.mark.parametrize("dtype", [None, object])
|
441 |
+
def test_dti_cmp_nat(self, dtype, box_with_array):
|
442 |
+
left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")])
|
443 |
+
right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")])
|
444 |
+
|
445 |
+
left = tm.box_expected(left, box_with_array)
|
446 |
+
right = tm.box_expected(right, box_with_array)
|
447 |
+
xbox = get_upcast_box(left, right, True)
|
448 |
+
|
449 |
+
lhs, rhs = left, right
|
450 |
+
if dtype is object:
|
451 |
+
lhs, rhs = left.astype(object), right.astype(object)
|
452 |
+
|
453 |
+
result = rhs == lhs
|
454 |
+
expected = np.array([False, False, True])
|
455 |
+
expected = tm.box_expected(expected, xbox)
|
456 |
+
tm.assert_equal(result, expected)
|
457 |
+
|
458 |
+
result = lhs != rhs
|
459 |
+
expected = np.array([True, True, False])
|
460 |
+
expected = tm.box_expected(expected, xbox)
|
461 |
+
tm.assert_equal(result, expected)
|
462 |
+
|
463 |
+
expected = np.array([False, False, False])
|
464 |
+
expected = tm.box_expected(expected, xbox)
|
465 |
+
tm.assert_equal(lhs == NaT, expected)
|
466 |
+
tm.assert_equal(NaT == rhs, expected)
|
467 |
+
|
468 |
+
expected = np.array([True, True, True])
|
469 |
+
expected = tm.box_expected(expected, xbox)
|
470 |
+
tm.assert_equal(lhs != NaT, expected)
|
471 |
+
tm.assert_equal(NaT != lhs, expected)
|
472 |
+
|
473 |
+
expected = np.array([False, False, False])
|
474 |
+
expected = tm.box_expected(expected, xbox)
|
475 |
+
tm.assert_equal(lhs < NaT, expected)
|
476 |
+
tm.assert_equal(NaT > lhs, expected)
|
477 |
+
|
478 |
+
def test_dti_cmp_nat_behaves_like_float_cmp_nan(self):
|
479 |
+
fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0])
|
480 |
+
fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0])
|
481 |
+
|
482 |
+
didx1 = DatetimeIndex(
|
483 |
+
["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"]
|
484 |
+
)
|
485 |
+
didx2 = DatetimeIndex(
|
486 |
+
["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"]
|
487 |
+
)
|
488 |
+
darr = np.array(
|
489 |
+
[
|
490 |
+
np.datetime64("2014-02-01 00:00"),
|
491 |
+
np.datetime64("2014-03-01 00:00"),
|
492 |
+
np.datetime64("nat"),
|
493 |
+
np.datetime64("nat"),
|
494 |
+
np.datetime64("2014-06-01 00:00"),
|
495 |
+
np.datetime64("2014-07-01 00:00"),
|
496 |
+
]
|
497 |
+
)
|
498 |
+
|
499 |
+
cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)]
|
500 |
+
|
501 |
+
# Check pd.NaT is handles as the same as np.nan
|
502 |
+
with tm.assert_produces_warning(None):
|
503 |
+
for idx1, idx2 in cases:
|
504 |
+
result = idx1 < idx2
|
505 |
+
expected = np.array([True, False, False, False, True, False])
|
506 |
+
tm.assert_numpy_array_equal(result, expected)
|
507 |
+
|
508 |
+
result = idx2 > idx1
|
509 |
+
expected = np.array([True, False, False, False, True, False])
|
510 |
+
tm.assert_numpy_array_equal(result, expected)
|
511 |
+
|
512 |
+
result = idx1 <= idx2
|
513 |
+
expected = np.array([True, False, False, False, True, True])
|
514 |
+
tm.assert_numpy_array_equal(result, expected)
|
515 |
+
|
516 |
+
result = idx2 >= idx1
|
517 |
+
expected = np.array([True, False, False, False, True, True])
|
518 |
+
tm.assert_numpy_array_equal(result, expected)
|
519 |
+
|
520 |
+
result = idx1 == idx2
|
521 |
+
expected = np.array([False, False, False, False, False, True])
|
522 |
+
tm.assert_numpy_array_equal(result, expected)
|
523 |
+
|
524 |
+
result = idx1 != idx2
|
525 |
+
expected = np.array([True, True, True, True, True, False])
|
526 |
+
tm.assert_numpy_array_equal(result, expected)
|
527 |
+
|
528 |
+
with tm.assert_produces_warning(None):
|
529 |
+
for idx1, val in [(fidx1, np.nan), (didx1, NaT)]:
|
530 |
+
result = idx1 < val
|
531 |
+
expected = np.array([False, False, False, False, False, False])
|
532 |
+
tm.assert_numpy_array_equal(result, expected)
|
533 |
+
result = idx1 > val
|
534 |
+
tm.assert_numpy_array_equal(result, expected)
|
535 |
+
|
536 |
+
result = idx1 <= val
|
537 |
+
tm.assert_numpy_array_equal(result, expected)
|
538 |
+
result = idx1 >= val
|
539 |
+
tm.assert_numpy_array_equal(result, expected)
|
540 |
+
|
541 |
+
result = idx1 == val
|
542 |
+
tm.assert_numpy_array_equal(result, expected)
|
543 |
+
|
544 |
+
result = idx1 != val
|
545 |
+
expected = np.array([True, True, True, True, True, True])
|
546 |
+
tm.assert_numpy_array_equal(result, expected)
|
547 |
+
|
548 |
+
# Check pd.NaT is handles as the same as np.nan
|
549 |
+
with tm.assert_produces_warning(None):
|
550 |
+
for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]:
|
551 |
+
result = idx1 < val
|
552 |
+
expected = np.array([True, False, False, False, False, False])
|
553 |
+
tm.assert_numpy_array_equal(result, expected)
|
554 |
+
result = idx1 > val
|
555 |
+
expected = np.array([False, False, False, False, True, True])
|
556 |
+
tm.assert_numpy_array_equal(result, expected)
|
557 |
+
|
558 |
+
result = idx1 <= val
|
559 |
+
expected = np.array([True, False, True, False, False, False])
|
560 |
+
tm.assert_numpy_array_equal(result, expected)
|
561 |
+
result = idx1 >= val
|
562 |
+
expected = np.array([False, False, True, False, True, True])
|
563 |
+
tm.assert_numpy_array_equal(result, expected)
|
564 |
+
|
565 |
+
result = idx1 == val
|
566 |
+
expected = np.array([False, False, True, False, False, False])
|
567 |
+
tm.assert_numpy_array_equal(result, expected)
|
568 |
+
|
569 |
+
result = idx1 != val
|
570 |
+
expected = np.array([True, True, False, True, True, True])
|
571 |
+
tm.assert_numpy_array_equal(result, expected)
|
572 |
+
|
573 |
+
def test_comparison_tzawareness_compat(self, comparison_op, box_with_array):
|
574 |
+
# GH#18162
|
575 |
+
op = comparison_op
|
576 |
+
box = box_with_array
|
577 |
+
|
578 |
+
dr = date_range("2016-01-01", periods=6)
|
579 |
+
dz = dr.tz_localize("US/Pacific")
|
580 |
+
|
581 |
+
dr = tm.box_expected(dr, box)
|
582 |
+
dz = tm.box_expected(dz, box)
|
583 |
+
|
584 |
+
if box is pd.DataFrame:
|
585 |
+
tolist = lambda x: x.astype(object).values.tolist()[0]
|
586 |
+
else:
|
587 |
+
tolist = list
|
588 |
+
|
589 |
+
if op not in [operator.eq, operator.ne]:
|
590 |
+
msg = (
|
591 |
+
r"Invalid comparison between dtype=datetime64\[ns.*\] "
|
592 |
+
"and (Timestamp|DatetimeArray|list|ndarray)"
|
593 |
+
)
|
594 |
+
with pytest.raises(TypeError, match=msg):
|
595 |
+
op(dr, dz)
|
596 |
+
|
597 |
+
with pytest.raises(TypeError, match=msg):
|
598 |
+
op(dr, tolist(dz))
|
599 |
+
with pytest.raises(TypeError, match=msg):
|
600 |
+
op(dr, np.array(tolist(dz), dtype=object))
|
601 |
+
with pytest.raises(TypeError, match=msg):
|
602 |
+
op(dz, dr)
|
603 |
+
|
604 |
+
with pytest.raises(TypeError, match=msg):
|
605 |
+
op(dz, tolist(dr))
|
606 |
+
with pytest.raises(TypeError, match=msg):
|
607 |
+
op(dz, np.array(tolist(dr), dtype=object))
|
608 |
+
|
609 |
+
# The aware==aware and naive==naive comparisons should *not* raise
|
610 |
+
assert np.all(dr == dr)
|
611 |
+
assert np.all(dr == tolist(dr))
|
612 |
+
assert np.all(tolist(dr) == dr)
|
613 |
+
assert np.all(np.array(tolist(dr), dtype=object) == dr)
|
614 |
+
assert np.all(dr == np.array(tolist(dr), dtype=object))
|
615 |
+
|
616 |
+
assert np.all(dz == dz)
|
617 |
+
assert np.all(dz == tolist(dz))
|
618 |
+
assert np.all(tolist(dz) == dz)
|
619 |
+
assert np.all(np.array(tolist(dz), dtype=object) == dz)
|
620 |
+
assert np.all(dz == np.array(tolist(dz), dtype=object))
|
621 |
+
|
622 |
+
def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array):
|
623 |
+
# GH#18162
|
624 |
+
op = comparison_op
|
625 |
+
|
626 |
+
dr = date_range("2016-01-01", periods=6)
|
627 |
+
dz = dr.tz_localize("US/Pacific")
|
628 |
+
|
629 |
+
dr = tm.box_expected(dr, box_with_array)
|
630 |
+
dz = tm.box_expected(dz, box_with_array)
|
631 |
+
|
632 |
+
# Check comparisons against scalar Timestamps
|
633 |
+
ts = Timestamp("2000-03-14 01:59")
|
634 |
+
ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam")
|
635 |
+
|
636 |
+
assert np.all(dr > ts)
|
637 |
+
msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp"
|
638 |
+
if op not in [operator.eq, operator.ne]:
|
639 |
+
with pytest.raises(TypeError, match=msg):
|
640 |
+
op(dr, ts_tz)
|
641 |
+
|
642 |
+
assert np.all(dz > ts_tz)
|
643 |
+
if op not in [operator.eq, operator.ne]:
|
644 |
+
with pytest.raises(TypeError, match=msg):
|
645 |
+
op(dz, ts)
|
646 |
+
|
647 |
+
if op not in [operator.eq, operator.ne]:
|
648 |
+
# GH#12601: Check comparison against Timestamps and DatetimeIndex
|
649 |
+
with pytest.raises(TypeError, match=msg):
|
650 |
+
op(ts, dz)
|
651 |
+
|
652 |
+
@pytest.mark.parametrize(
|
653 |
+
"other",
|
654 |
+
[datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")],
|
655 |
+
)
|
656 |
+
# Bug in NumPy? https://github.com/numpy/numpy/issues/13841
|
657 |
+
# Raising in __eq__ will fallback to NumPy, which warns, fails,
|
658 |
+
# then re-raises the original exception. So we just need to ignore.
|
659 |
+
@pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning")
|
660 |
+
def test_scalar_comparison_tzawareness(
|
661 |
+
self, comparison_op, other, tz_aware_fixture, box_with_array
|
662 |
+
):
|
663 |
+
op = comparison_op
|
664 |
+
tz = tz_aware_fixture
|
665 |
+
dti = date_range("2016-01-01", periods=2, tz=tz)
|
666 |
+
|
667 |
+
dtarr = tm.box_expected(dti, box_with_array)
|
668 |
+
xbox = get_upcast_box(dtarr, other, True)
|
669 |
+
if op in [operator.eq, operator.ne]:
|
670 |
+
exbool = op is operator.ne
|
671 |
+
expected = np.array([exbool, exbool], dtype=bool)
|
672 |
+
expected = tm.box_expected(expected, xbox)
|
673 |
+
|
674 |
+
result = op(dtarr, other)
|
675 |
+
tm.assert_equal(result, expected)
|
676 |
+
|
677 |
+
result = op(other, dtarr)
|
678 |
+
tm.assert_equal(result, expected)
|
679 |
+
else:
|
680 |
+
msg = (
|
681 |
+
r"Invalid comparison between dtype=datetime64\[ns, .*\] "
|
682 |
+
f"and {type(other).__name__}"
|
683 |
+
)
|
684 |
+
with pytest.raises(TypeError, match=msg):
|
685 |
+
op(dtarr, other)
|
686 |
+
with pytest.raises(TypeError, match=msg):
|
687 |
+
op(other, dtarr)
|
688 |
+
|
689 |
+
def test_nat_comparison_tzawareness(self, comparison_op):
|
690 |
+
# GH#19276
|
691 |
+
# tzaware DatetimeIndex should not raise when compared to NaT
|
692 |
+
op = comparison_op
|
693 |
+
|
694 |
+
dti = DatetimeIndex(
|
695 |
+
["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"]
|
696 |
+
)
|
697 |
+
expected = np.array([op == operator.ne] * len(dti))
|
698 |
+
result = op(dti, NaT)
|
699 |
+
tm.assert_numpy_array_equal(result, expected)
|
700 |
+
|
701 |
+
result = op(dti.tz_localize("US/Pacific"), NaT)
|
702 |
+
tm.assert_numpy_array_equal(result, expected)
|
703 |
+
|
704 |
+
def test_dti_cmp_str(self, tz_naive_fixture):
|
705 |
+
# GH#22074
|
706 |
+
# regardless of tz, we expect these comparisons are valid
|
707 |
+
tz = tz_naive_fixture
|
708 |
+
rng = date_range("1/1/2000", periods=10, tz=tz)
|
709 |
+
other = "1/1/2000"
|
710 |
+
|
711 |
+
result = rng == other
|
712 |
+
expected = np.array([True] + [False] * 9)
|
713 |
+
tm.assert_numpy_array_equal(result, expected)
|
714 |
+
|
715 |
+
result = rng != other
|
716 |
+
expected = np.array([False] + [True] * 9)
|
717 |
+
tm.assert_numpy_array_equal(result, expected)
|
718 |
+
|
719 |
+
result = rng < other
|
720 |
+
expected = np.array([False] * 10)
|
721 |
+
tm.assert_numpy_array_equal(result, expected)
|
722 |
+
|
723 |
+
result = rng <= other
|
724 |
+
expected = np.array([True] + [False] * 9)
|
725 |
+
tm.assert_numpy_array_equal(result, expected)
|
726 |
+
|
727 |
+
result = rng > other
|
728 |
+
expected = np.array([False] + [True] * 9)
|
729 |
+
tm.assert_numpy_array_equal(result, expected)
|
730 |
+
|
731 |
+
result = rng >= other
|
732 |
+
expected = np.array([True] * 10)
|
733 |
+
tm.assert_numpy_array_equal(result, expected)
|
734 |
+
|
735 |
+
def test_dti_cmp_list(self):
|
736 |
+
rng = date_range("1/1/2000", periods=10)
|
737 |
+
|
738 |
+
result = rng == list(rng)
|
739 |
+
expected = rng == rng
|
740 |
+
tm.assert_numpy_array_equal(result, expected)
|
741 |
+
|
742 |
+
@pytest.mark.parametrize(
|
743 |
+
"other",
|
744 |
+
[
|
745 |
+
pd.timedelta_range("1D", periods=10),
|
746 |
+
pd.timedelta_range("1D", periods=10).to_series(),
|
747 |
+
pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"),
|
748 |
+
],
|
749 |
+
ids=lambda x: type(x).__name__,
|
750 |
+
)
|
751 |
+
def test_dti_cmp_tdi_tzawareness(self, other):
|
752 |
+
# GH#22074
|
753 |
+
# reversion test that we _don't_ call _assert_tzawareness_compat
|
754 |
+
# when comparing against TimedeltaIndex
|
755 |
+
dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo")
|
756 |
+
|
757 |
+
result = dti == other
|
758 |
+
expected = np.array([False] * 10)
|
759 |
+
tm.assert_numpy_array_equal(result, expected)
|
760 |
+
|
761 |
+
result = dti != other
|
762 |
+
expected = np.array([True] * 10)
|
763 |
+
tm.assert_numpy_array_equal(result, expected)
|
764 |
+
msg = "Invalid comparison between"
|
765 |
+
with pytest.raises(TypeError, match=msg):
|
766 |
+
dti < other
|
767 |
+
with pytest.raises(TypeError, match=msg):
|
768 |
+
dti <= other
|
769 |
+
with pytest.raises(TypeError, match=msg):
|
770 |
+
dti > other
|
771 |
+
with pytest.raises(TypeError, match=msg):
|
772 |
+
dti >= other
|
773 |
+
|
774 |
+
def test_dti_cmp_object_dtype(self):
|
775 |
+
# GH#22074
|
776 |
+
dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo")
|
777 |
+
|
778 |
+
other = dti.astype("O")
|
779 |
+
|
780 |
+
result = dti == other
|
781 |
+
expected = np.array([True] * 10)
|
782 |
+
tm.assert_numpy_array_equal(result, expected)
|
783 |
+
|
784 |
+
other = dti.tz_localize(None)
|
785 |
+
result = dti != other
|
786 |
+
tm.assert_numpy_array_equal(result, expected)
|
787 |
+
|
788 |
+
other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5)
|
789 |
+
result = dti == other
|
790 |
+
expected = np.array([True] * 5 + [False] * 5)
|
791 |
+
tm.assert_numpy_array_equal(result, expected)
|
792 |
+
msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'"
|
793 |
+
with pytest.raises(TypeError, match=msg):
|
794 |
+
dti >= other
|
795 |
+
|
796 |
+
|
797 |
+
# ------------------------------------------------------------------
|
798 |
+
# Arithmetic
|
799 |
+
|
800 |
+
|
801 |
+
class TestDatetime64Arithmetic:
|
802 |
+
# This class is intended for "finished" tests that are fully parametrized
|
803 |
+
# over DataFrame/Series/Index/DatetimeArray
|
804 |
+
|
805 |
+
# -------------------------------------------------------------
|
806 |
+
# Addition/Subtraction of timedelta-like
|
807 |
+
|
808 |
+
@pytest.mark.arm_slow
|
809 |
+
def test_dt64arr_add_timedeltalike_scalar(
|
810 |
+
self, tz_naive_fixture, two_hours, box_with_array
|
811 |
+
):
|
812 |
+
# GH#22005, GH#22163 check DataFrame doesn't raise TypeError
|
813 |
+
tz = tz_naive_fixture
|
814 |
+
|
815 |
+
rng = date_range("2000-01-01", "2000-02-01", tz=tz)
|
816 |
+
expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz)
|
817 |
+
|
818 |
+
rng = tm.box_expected(rng, box_with_array)
|
819 |
+
expected = tm.box_expected(expected, box_with_array)
|
820 |
+
|
821 |
+
result = rng + two_hours
|
822 |
+
tm.assert_equal(result, expected)
|
823 |
+
|
824 |
+
result = two_hours + rng
|
825 |
+
tm.assert_equal(result, expected)
|
826 |
+
|
827 |
+
rng += two_hours
|
828 |
+
tm.assert_equal(rng, expected)
|
829 |
+
|
830 |
+
def test_dt64arr_sub_timedeltalike_scalar(
|
831 |
+
self, tz_naive_fixture, two_hours, box_with_array
|
832 |
+
):
|
833 |
+
tz = tz_naive_fixture
|
834 |
+
|
835 |
+
rng = date_range("2000-01-01", "2000-02-01", tz=tz)
|
836 |
+
expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz)
|
837 |
+
|
838 |
+
rng = tm.box_expected(rng, box_with_array)
|
839 |
+
expected = tm.box_expected(expected, box_with_array)
|
840 |
+
|
841 |
+
result = rng - two_hours
|
842 |
+
tm.assert_equal(result, expected)
|
843 |
+
|
844 |
+
rng -= two_hours
|
845 |
+
tm.assert_equal(rng, expected)
|
846 |
+
|
847 |
+
def test_dt64_array_sub_dt_with_different_timezone(self, box_with_array):
|
848 |
+
t1 = date_range("20130101", periods=3).tz_localize("US/Eastern")
|
849 |
+
t1 = tm.box_expected(t1, box_with_array)
|
850 |
+
t2 = Timestamp("20130101").tz_localize("CET")
|
851 |
+
tnaive = Timestamp(20130101)
|
852 |
+
|
853 |
+
result = t1 - t2
|
854 |
+
expected = TimedeltaIndex(
|
855 |
+
["0 days 06:00:00", "1 days 06:00:00", "2 days 06:00:00"]
|
856 |
+
)
|
857 |
+
expected = tm.box_expected(expected, box_with_array)
|
858 |
+
tm.assert_equal(result, expected)
|
859 |
+
|
860 |
+
result = t2 - t1
|
861 |
+
expected = TimedeltaIndex(
|
862 |
+
["-1 days +18:00:00", "-2 days +18:00:00", "-3 days +18:00:00"]
|
863 |
+
)
|
864 |
+
expected = tm.box_expected(expected, box_with_array)
|
865 |
+
tm.assert_equal(result, expected)
|
866 |
+
|
867 |
+
msg = "Cannot subtract tz-naive and tz-aware datetime-like objects"
|
868 |
+
with pytest.raises(TypeError, match=msg):
|
869 |
+
t1 - tnaive
|
870 |
+
|
871 |
+
with pytest.raises(TypeError, match=msg):
|
872 |
+
tnaive - t1
|
873 |
+
|
874 |
+
def test_dt64_array_sub_dt64_array_with_different_timezone(self, box_with_array):
|
875 |
+
t1 = date_range("20130101", periods=3).tz_localize("US/Eastern")
|
876 |
+
t1 = tm.box_expected(t1, box_with_array)
|
877 |
+
t2 = date_range("20130101", periods=3).tz_localize("CET")
|
878 |
+
t2 = tm.box_expected(t2, box_with_array)
|
879 |
+
tnaive = date_range("20130101", periods=3)
|
880 |
+
|
881 |
+
result = t1 - t2
|
882 |
+
expected = TimedeltaIndex(
|
883 |
+
["0 days 06:00:00", "0 days 06:00:00", "0 days 06:00:00"]
|
884 |
+
)
|
885 |
+
expected = tm.box_expected(expected, box_with_array)
|
886 |
+
tm.assert_equal(result, expected)
|
887 |
+
|
888 |
+
result = t2 - t1
|
889 |
+
expected = TimedeltaIndex(
|
890 |
+
["-1 days +18:00:00", "-1 days +18:00:00", "-1 days +18:00:00"]
|
891 |
+
)
|
892 |
+
expected = tm.box_expected(expected, box_with_array)
|
893 |
+
tm.assert_equal(result, expected)
|
894 |
+
|
895 |
+
msg = "Cannot subtract tz-naive and tz-aware datetime-like objects"
|
896 |
+
with pytest.raises(TypeError, match=msg):
|
897 |
+
t1 - tnaive
|
898 |
+
|
899 |
+
with pytest.raises(TypeError, match=msg):
|
900 |
+
tnaive - t1
|
901 |
+
|
902 |
+
def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture):
|
903 |
+
# GH#23320 special handling for timedelta64("NaT")
|
904 |
+
tz = tz_naive_fixture
|
905 |
+
|
906 |
+
dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS")
|
907 |
+
other = np.timedelta64("NaT")
|
908 |
+
expected = DatetimeIndex(["NaT"] * 9, tz=tz).as_unit("ns")
|
909 |
+
|
910 |
+
obj = tm.box_expected(dti, box_with_array)
|
911 |
+
expected = tm.box_expected(expected, box_with_array)
|
912 |
+
|
913 |
+
result = obj + other
|
914 |
+
tm.assert_equal(result, expected)
|
915 |
+
result = other + obj
|
916 |
+
tm.assert_equal(result, expected)
|
917 |
+
result = obj - other
|
918 |
+
tm.assert_equal(result, expected)
|
919 |
+
msg = "cannot subtract"
|
920 |
+
with pytest.raises(TypeError, match=msg):
|
921 |
+
other - obj
|
922 |
+
|
923 |
+
def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array):
|
924 |
+
tz = tz_naive_fixture
|
925 |
+
dti = date_range("2016-01-01", periods=3, tz=tz)
|
926 |
+
tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"])
|
927 |
+
tdarr = tdi.values
|
928 |
+
|
929 |
+
expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz)
|
930 |
+
|
931 |
+
dtarr = tm.box_expected(dti, box_with_array)
|
932 |
+
expected = tm.box_expected(expected, box_with_array)
|
933 |
+
|
934 |
+
result = dtarr + tdarr
|
935 |
+
tm.assert_equal(result, expected)
|
936 |
+
result = tdarr + dtarr
|
937 |
+
tm.assert_equal(result, expected)
|
938 |
+
|
939 |
+
expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz)
|
940 |
+
expected = tm.box_expected(expected, box_with_array)
|
941 |
+
|
942 |
+
result = dtarr - tdarr
|
943 |
+
tm.assert_equal(result, expected)
|
944 |
+
msg = "cannot subtract|(bad|unsupported) operand type for unary"
|
945 |
+
with pytest.raises(TypeError, match=msg):
|
946 |
+
tdarr - dtarr
|
947 |
+
|
948 |
+
# -----------------------------------------------------------------
|
949 |
+
# Subtraction of datetime-like scalars
|
950 |
+
|
951 |
+
@pytest.mark.parametrize(
|
952 |
+
"ts",
|
953 |
+
[
|
954 |
+
Timestamp("2013-01-01"),
|
955 |
+
Timestamp("2013-01-01").to_pydatetime(),
|
956 |
+
Timestamp("2013-01-01").to_datetime64(),
|
957 |
+
# GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano
|
958 |
+
# for DataFrame operation
|
959 |
+
np.datetime64("2013-01-01", "D"),
|
960 |
+
],
|
961 |
+
)
|
962 |
+
def test_dt64arr_sub_dtscalar(self, box_with_array, ts):
|
963 |
+
# GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype
|
964 |
+
idx = date_range("2013-01-01", periods=3)._with_freq(None)
|
965 |
+
idx = tm.box_expected(idx, box_with_array)
|
966 |
+
|
967 |
+
expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"])
|
968 |
+
expected = tm.box_expected(expected, box_with_array)
|
969 |
+
|
970 |
+
result = idx - ts
|
971 |
+
tm.assert_equal(result, expected)
|
972 |
+
|
973 |
+
result = ts - idx
|
974 |
+
tm.assert_equal(result, -expected)
|
975 |
+
tm.assert_equal(result, -expected)
|
976 |
+
|
977 |
+
def test_dt64arr_sub_timestamp_tzaware(self, box_with_array):
|
978 |
+
ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern")
|
979 |
+
ser = ser._with_freq(None)
|
980 |
+
ts = ser[0]
|
981 |
+
|
982 |
+
ser = tm.box_expected(ser, box_with_array)
|
983 |
+
|
984 |
+
delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")])
|
985 |
+
expected = tm.box_expected(delta_series, box_with_array)
|
986 |
+
|
987 |
+
tm.assert_equal(ser - ts, expected)
|
988 |
+
tm.assert_equal(ts - ser, -expected)
|
989 |
+
|
990 |
+
def test_dt64arr_sub_NaT(self, box_with_array, unit):
|
991 |
+
# GH#18808
|
992 |
+
dti = DatetimeIndex([NaT, Timestamp("19900315")]).as_unit(unit)
|
993 |
+
ser = tm.box_expected(dti, box_with_array)
|
994 |
+
|
995 |
+
result = ser - NaT
|
996 |
+
expected = Series([NaT, NaT], dtype=f"timedelta64[{unit}]")
|
997 |
+
expected = tm.box_expected(expected, box_with_array)
|
998 |
+
tm.assert_equal(result, expected)
|
999 |
+
|
1000 |
+
dti_tz = dti.tz_localize("Asia/Tokyo")
|
1001 |
+
ser_tz = tm.box_expected(dti_tz, box_with_array)
|
1002 |
+
|
1003 |
+
result = ser_tz - NaT
|
1004 |
+
expected = Series([NaT, NaT], dtype=f"timedelta64[{unit}]")
|
1005 |
+
expected = tm.box_expected(expected, box_with_array)
|
1006 |
+
tm.assert_equal(result, expected)
|
1007 |
+
|
1008 |
+
# -------------------------------------------------------------
|
1009 |
+
# Subtraction of datetime-like array-like
|
1010 |
+
|
1011 |
+
def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture):
|
1012 |
+
dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture)
|
1013 |
+
expected = dti - dti
|
1014 |
+
|
1015 |
+
obj = tm.box_expected(dti, box_with_array)
|
1016 |
+
expected = tm.box_expected(expected, box_with_array).astype(object)
|
1017 |
+
|
1018 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1019 |
+
result = obj - obj.astype(object)
|
1020 |
+
tm.assert_equal(result, expected)
|
1021 |
+
|
1022 |
+
def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array):
|
1023 |
+
dti = date_range("2016-01-01", periods=3, tz=None)
|
1024 |
+
dt64vals = dti.values
|
1025 |
+
|
1026 |
+
dtarr = tm.box_expected(dti, box_with_array)
|
1027 |
+
|
1028 |
+
expected = dtarr - dtarr
|
1029 |
+
result = dtarr - dt64vals
|
1030 |
+
tm.assert_equal(result, expected)
|
1031 |
+
result = dt64vals - dtarr
|
1032 |
+
tm.assert_equal(result, expected)
|
1033 |
+
|
1034 |
+
def test_dt64arr_aware_sub_dt64ndarray_raises(
|
1035 |
+
self, tz_aware_fixture, box_with_array
|
1036 |
+
):
|
1037 |
+
tz = tz_aware_fixture
|
1038 |
+
dti = date_range("2016-01-01", periods=3, tz=tz)
|
1039 |
+
dt64vals = dti.values
|
1040 |
+
|
1041 |
+
dtarr = tm.box_expected(dti, box_with_array)
|
1042 |
+
msg = "Cannot subtract tz-naive and tz-aware datetime"
|
1043 |
+
with pytest.raises(TypeError, match=msg):
|
1044 |
+
dtarr - dt64vals
|
1045 |
+
with pytest.raises(TypeError, match=msg):
|
1046 |
+
dt64vals - dtarr
|
1047 |
+
|
1048 |
+
# -------------------------------------------------------------
|
1049 |
+
# Addition of datetime-like others (invalid)
|
1050 |
+
|
1051 |
+
def test_dt64arr_add_dtlike_raises(self, tz_naive_fixture, box_with_array):
|
1052 |
+
# GH#22163 ensure DataFrame doesn't cast Timestamp to i8
|
1053 |
+
# GH#9631
|
1054 |
+
tz = tz_naive_fixture
|
1055 |
+
|
1056 |
+
dti = date_range("2016-01-01", periods=3, tz=tz)
|
1057 |
+
if tz is None:
|
1058 |
+
dti2 = dti.tz_localize("US/Eastern")
|
1059 |
+
else:
|
1060 |
+
dti2 = dti.tz_localize(None)
|
1061 |
+
dtarr = tm.box_expected(dti, box_with_array)
|
1062 |
+
|
1063 |
+
assert_cannot_add(dtarr, dti.values)
|
1064 |
+
assert_cannot_add(dtarr, dti)
|
1065 |
+
assert_cannot_add(dtarr, dtarr)
|
1066 |
+
assert_cannot_add(dtarr, dti[0])
|
1067 |
+
assert_cannot_add(dtarr, dti[0].to_pydatetime())
|
1068 |
+
assert_cannot_add(dtarr, dti[0].to_datetime64())
|
1069 |
+
assert_cannot_add(dtarr, dti2[0])
|
1070 |
+
assert_cannot_add(dtarr, dti2[0].to_pydatetime())
|
1071 |
+
assert_cannot_add(dtarr, np.datetime64("2011-01-01", "D"))
|
1072 |
+
|
1073 |
+
# -------------------------------------------------------------
|
1074 |
+
# Other Invalid Addition/Subtraction
|
1075 |
+
|
1076 |
+
# Note: freq here includes both Tick and non-Tick offsets; this is
|
1077 |
+
# relevant because historically integer-addition was allowed if we had
|
1078 |
+
# a freq.
|
1079 |
+
@pytest.mark.parametrize("freq", ["h", "D", "W", "2ME", "MS", "QE", "B", None])
|
1080 |
+
@pytest.mark.parametrize("dtype", [None, "uint8"])
|
1081 |
+
def test_dt64arr_addsub_intlike(
|
1082 |
+
self, request, dtype, index_or_series_or_array, freq, tz_naive_fixture
|
1083 |
+
):
|
1084 |
+
# GH#19959, GH#19123, GH#19012
|
1085 |
+
# GH#55860 use index_or_series_or_array instead of box_with_array
|
1086 |
+
# bc DataFrame alignment makes it inapplicable
|
1087 |
+
tz = tz_naive_fixture
|
1088 |
+
|
1089 |
+
if freq is None:
|
1090 |
+
dti = DatetimeIndex(["NaT", "2017-04-05 06:07:08"], tz=tz)
|
1091 |
+
else:
|
1092 |
+
dti = date_range("2016-01-01", periods=2, freq=freq, tz=tz)
|
1093 |
+
|
1094 |
+
obj = index_or_series_or_array(dti)
|
1095 |
+
other = np.array([4, -1])
|
1096 |
+
if dtype is not None:
|
1097 |
+
other = other.astype(dtype)
|
1098 |
+
|
1099 |
+
msg = "|".join(
|
1100 |
+
[
|
1101 |
+
"Addition/subtraction of integers",
|
1102 |
+
"cannot subtract DatetimeArray from",
|
1103 |
+
# IntegerArray
|
1104 |
+
"can only perform ops with numeric values",
|
1105 |
+
"unsupported operand type.*Categorical",
|
1106 |
+
r"unsupported operand type\(s\) for -: 'int' and 'Timestamp'",
|
1107 |
+
]
|
1108 |
+
)
|
1109 |
+
assert_invalid_addsub_type(obj, 1, msg)
|
1110 |
+
assert_invalid_addsub_type(obj, np.int64(2), msg)
|
1111 |
+
assert_invalid_addsub_type(obj, np.array(3, dtype=np.int64), msg)
|
1112 |
+
assert_invalid_addsub_type(obj, other, msg)
|
1113 |
+
assert_invalid_addsub_type(obj, np.array(other), msg)
|
1114 |
+
assert_invalid_addsub_type(obj, pd.array(other), msg)
|
1115 |
+
assert_invalid_addsub_type(obj, pd.Categorical(other), msg)
|
1116 |
+
assert_invalid_addsub_type(obj, pd.Index(other), msg)
|
1117 |
+
assert_invalid_addsub_type(obj, Series(other), msg)
|
1118 |
+
|
1119 |
+
@pytest.mark.parametrize(
|
1120 |
+
"other",
|
1121 |
+
[
|
1122 |
+
3.14,
|
1123 |
+
np.array([2.0, 3.0]),
|
1124 |
+
# GH#13078 datetime +/- Period is invalid
|
1125 |
+
Period("2011-01-01", freq="D"),
|
1126 |
+
# https://github.com/pandas-dev/pandas/issues/10329
|
1127 |
+
time(1, 2, 3),
|
1128 |
+
],
|
1129 |
+
)
|
1130 |
+
@pytest.mark.parametrize("dti_freq", [None, "D"])
|
1131 |
+
def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array):
|
1132 |
+
dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq)
|
1133 |
+
dtarr = tm.box_expected(dti, box_with_array)
|
1134 |
+
msg = "|".join(
|
1135 |
+
[
|
1136 |
+
"unsupported operand type",
|
1137 |
+
"cannot (add|subtract)",
|
1138 |
+
"cannot use operands with types",
|
1139 |
+
"ufunc '?(add|subtract)'? cannot use operands with types",
|
1140 |
+
"Concatenation operation is not implemented for NumPy arrays",
|
1141 |
+
]
|
1142 |
+
)
|
1143 |
+
assert_invalid_addsub_type(dtarr, other, msg)
|
1144 |
+
|
1145 |
+
@pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "h"])
|
1146 |
+
@pytest.mark.parametrize("dti_freq", [None, "D"])
|
1147 |
+
def test_dt64arr_add_sub_parr(
|
1148 |
+
self, dti_freq, pi_freq, box_with_array, box_with_array2
|
1149 |
+
):
|
1150 |
+
# GH#20049 subtracting PeriodIndex should raise TypeError
|
1151 |
+
dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq)
|
1152 |
+
pi = dti.to_period(pi_freq)
|
1153 |
+
|
1154 |
+
dtarr = tm.box_expected(dti, box_with_array)
|
1155 |
+
parr = tm.box_expected(pi, box_with_array2)
|
1156 |
+
msg = "|".join(
|
1157 |
+
[
|
1158 |
+
"cannot (add|subtract)",
|
1159 |
+
"unsupported operand",
|
1160 |
+
"descriptor.*requires",
|
1161 |
+
"ufunc.*cannot use operands",
|
1162 |
+
]
|
1163 |
+
)
|
1164 |
+
assert_invalid_addsub_type(dtarr, parr, msg)
|
1165 |
+
|
1166 |
+
@pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
|
1167 |
+
def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture):
|
1168 |
+
# https://github.com/pandas-dev/pandas/issues/10329
|
1169 |
+
|
1170 |
+
tz = tz_naive_fixture
|
1171 |
+
|
1172 |
+
obj1 = date_range("2012-01-01", periods=3, tz=tz)
|
1173 |
+
obj2 = [time(i, i, i) for i in range(3)]
|
1174 |
+
|
1175 |
+
obj1 = tm.box_expected(obj1, box_with_array)
|
1176 |
+
obj2 = tm.box_expected(obj2, box_with_array)
|
1177 |
+
|
1178 |
+
msg = "|".join(
|
1179 |
+
[
|
1180 |
+
"unsupported operand",
|
1181 |
+
"cannot subtract DatetimeArray from ndarray",
|
1182 |
+
]
|
1183 |
+
)
|
1184 |
+
# pandas.errors.PerformanceWarning: Non-vectorized DateOffset being
|
1185 |
+
# applied to Series or DatetimeIndex
|
1186 |
+
# we aren't testing that here, so ignore.
|
1187 |
+
assert_invalid_addsub_type(obj1, obj2, msg=msg)
|
1188 |
+
|
1189 |
+
# -------------------------------------------------------------
|
1190 |
+
# Other invalid operations
|
1191 |
+
|
1192 |
+
@pytest.mark.parametrize(
|
1193 |
+
"dt64_series",
|
1194 |
+
[
|
1195 |
+
Series([Timestamp("19900315"), Timestamp("19900315")]),
|
1196 |
+
Series([NaT, Timestamp("19900315")]),
|
1197 |
+
Series([NaT, NaT], dtype="datetime64[ns]"),
|
1198 |
+
],
|
1199 |
+
)
|
1200 |
+
@pytest.mark.parametrize("one", [1, 1.0, np.array(1)])
|
1201 |
+
def test_dt64_mul_div_numeric_invalid(self, one, dt64_series, box_with_array):
|
1202 |
+
obj = tm.box_expected(dt64_series, box_with_array)
|
1203 |
+
|
1204 |
+
msg = "cannot perform .* with this index type"
|
1205 |
+
|
1206 |
+
# multiplication
|
1207 |
+
with pytest.raises(TypeError, match=msg):
|
1208 |
+
obj * one
|
1209 |
+
with pytest.raises(TypeError, match=msg):
|
1210 |
+
one * obj
|
1211 |
+
|
1212 |
+
# division
|
1213 |
+
with pytest.raises(TypeError, match=msg):
|
1214 |
+
obj / one
|
1215 |
+
with pytest.raises(TypeError, match=msg):
|
1216 |
+
one / obj
|
1217 |
+
|
1218 |
+
|
1219 |
+
class TestDatetime64DateOffsetArithmetic:
|
1220 |
+
# -------------------------------------------------------------
|
1221 |
+
# Tick DateOffsets
|
1222 |
+
|
1223 |
+
# TODO: parametrize over timezone?
|
1224 |
+
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
|
1225 |
+
def test_dt64arr_series_add_tick_DateOffset(self, box_with_array, unit):
|
1226 |
+
# GH#4532
|
1227 |
+
# operate with pd.offsets
|
1228 |
+
ser = Series(
|
1229 |
+
[Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]
|
1230 |
+
).dt.as_unit(unit)
|
1231 |
+
expected = Series(
|
1232 |
+
[Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")]
|
1233 |
+
).dt.as_unit(unit)
|
1234 |
+
|
1235 |
+
ser = tm.box_expected(ser, box_with_array)
|
1236 |
+
expected = tm.box_expected(expected, box_with_array)
|
1237 |
+
|
1238 |
+
result = ser + pd.offsets.Second(5)
|
1239 |
+
tm.assert_equal(result, expected)
|
1240 |
+
|
1241 |
+
result2 = pd.offsets.Second(5) + ser
|
1242 |
+
tm.assert_equal(result2, expected)
|
1243 |
+
|
1244 |
+
def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array):
|
1245 |
+
# GH#4532
|
1246 |
+
# operate with pd.offsets
|
1247 |
+
ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")])
|
1248 |
+
expected = Series(
|
1249 |
+
[Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")]
|
1250 |
+
)
|
1251 |
+
|
1252 |
+
ser = tm.box_expected(ser, box_with_array)
|
1253 |
+
expected = tm.box_expected(expected, box_with_array)
|
1254 |
+
|
1255 |
+
result = ser - pd.offsets.Second(5)
|
1256 |
+
tm.assert_equal(result, expected)
|
1257 |
+
|
1258 |
+
result2 = -pd.offsets.Second(5) + ser
|
1259 |
+
tm.assert_equal(result2, expected)
|
1260 |
+
msg = "(bad|unsupported) operand type for unary"
|
1261 |
+
with pytest.raises(TypeError, match=msg):
|
1262 |
+
pd.offsets.Second(5) - ser
|
1263 |
+
|
1264 |
+
@pytest.mark.parametrize(
|
1265 |
+
"cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"]
|
1266 |
+
)
|
1267 |
+
def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array):
|
1268 |
+
# GH#4532
|
1269 |
+
# smoke tests for valid DateOffsets
|
1270 |
+
ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")])
|
1271 |
+
ser = tm.box_expected(ser, box_with_array)
|
1272 |
+
|
1273 |
+
offset_cls = getattr(pd.offsets, cls_name)
|
1274 |
+
ser + offset_cls(5)
|
1275 |
+
offset_cls(5) + ser
|
1276 |
+
ser - offset_cls(5)
|
1277 |
+
|
1278 |
+
def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array):
|
1279 |
+
# GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype
|
1280 |
+
tz = tz_aware_fixture
|
1281 |
+
if tz == "US/Pacific":
|
1282 |
+
dates = date_range("2012-11-01", periods=3, tz=tz)
|
1283 |
+
offset = dates + pd.offsets.Hour(5)
|
1284 |
+
assert dates[0] + pd.offsets.Hour(5) == offset[0]
|
1285 |
+
|
1286 |
+
dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="h")
|
1287 |
+
expected = DatetimeIndex(
|
1288 |
+
["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"],
|
1289 |
+
freq="h",
|
1290 |
+
tz=tz,
|
1291 |
+
).as_unit("ns")
|
1292 |
+
|
1293 |
+
dates = tm.box_expected(dates, box_with_array)
|
1294 |
+
expected = tm.box_expected(expected, box_with_array)
|
1295 |
+
|
1296 |
+
for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]:
|
1297 |
+
offset = dates + scalar
|
1298 |
+
tm.assert_equal(offset, expected)
|
1299 |
+
offset = scalar + dates
|
1300 |
+
tm.assert_equal(offset, expected)
|
1301 |
+
|
1302 |
+
roundtrip = offset - scalar
|
1303 |
+
tm.assert_equal(roundtrip, dates)
|
1304 |
+
|
1305 |
+
msg = "|".join(
|
1306 |
+
["bad operand type for unary -", "cannot subtract DatetimeArray"]
|
1307 |
+
)
|
1308 |
+
with pytest.raises(TypeError, match=msg):
|
1309 |
+
scalar - dates
|
1310 |
+
|
1311 |
+
# -------------------------------------------------------------
|
1312 |
+
# RelativeDelta DateOffsets
|
1313 |
+
|
1314 |
+
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
|
1315 |
+
def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array, unit):
|
1316 |
+
# GH#10699
|
1317 |
+
vec = DatetimeIndex(
|
1318 |
+
[
|
1319 |
+
Timestamp("2000-01-05 00:15:00"),
|
1320 |
+
Timestamp("2000-01-31 00:23:00"),
|
1321 |
+
Timestamp("2000-01-01"),
|
1322 |
+
Timestamp("2000-03-31"),
|
1323 |
+
Timestamp("2000-02-29"),
|
1324 |
+
Timestamp("2000-12-31"),
|
1325 |
+
Timestamp("2000-05-15"),
|
1326 |
+
Timestamp("2001-06-15"),
|
1327 |
+
]
|
1328 |
+
).as_unit(unit)
|
1329 |
+
vec = tm.box_expected(vec, box_with_array)
|
1330 |
+
vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec
|
1331 |
+
|
1332 |
+
# DateOffset relativedelta fastpath
|
1333 |
+
relative_kwargs = [
|
1334 |
+
("years", 2),
|
1335 |
+
("months", 5),
|
1336 |
+
("days", 3),
|
1337 |
+
("hours", 5),
|
1338 |
+
("minutes", 10),
|
1339 |
+
("seconds", 2),
|
1340 |
+
("microseconds", 5),
|
1341 |
+
]
|
1342 |
+
for i, (offset_unit, value) in enumerate(relative_kwargs):
|
1343 |
+
off = DateOffset(**{offset_unit: value})
|
1344 |
+
|
1345 |
+
exp_unit = unit
|
1346 |
+
if offset_unit == "microseconds" and unit != "ns":
|
1347 |
+
exp_unit = "us"
|
1348 |
+
|
1349 |
+
# TODO(GH#55564): as_unit will be unnecessary
|
1350 |
+
expected = DatetimeIndex([x + off for x in vec_items]).as_unit(exp_unit)
|
1351 |
+
expected = tm.box_expected(expected, box_with_array)
|
1352 |
+
tm.assert_equal(expected, vec + off)
|
1353 |
+
|
1354 |
+
expected = DatetimeIndex([x - off for x in vec_items]).as_unit(exp_unit)
|
1355 |
+
expected = tm.box_expected(expected, box_with_array)
|
1356 |
+
tm.assert_equal(expected, vec - off)
|
1357 |
+
|
1358 |
+
off = DateOffset(**dict(relative_kwargs[: i + 1]))
|
1359 |
+
|
1360 |
+
expected = DatetimeIndex([x + off for x in vec_items]).as_unit(exp_unit)
|
1361 |
+
expected = tm.box_expected(expected, box_with_array)
|
1362 |
+
tm.assert_equal(expected, vec + off)
|
1363 |
+
|
1364 |
+
expected = DatetimeIndex([x - off for x in vec_items]).as_unit(exp_unit)
|
1365 |
+
expected = tm.box_expected(expected, box_with_array)
|
1366 |
+
tm.assert_equal(expected, vec - off)
|
1367 |
+
msg = "(bad|unsupported) operand type for unary"
|
1368 |
+
with pytest.raises(TypeError, match=msg):
|
1369 |
+
off - vec
|
1370 |
+
|
1371 |
+
# -------------------------------------------------------------
|
1372 |
+
# Non-Tick, Non-RelativeDelta DateOffsets
|
1373 |
+
|
1374 |
+
# TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes
|
1375 |
+
# tz-aware cases which this does not
|
1376 |
+
@pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
|
1377 |
+
@pytest.mark.parametrize(
|
1378 |
+
"cls_and_kwargs",
|
1379 |
+
[
|
1380 |
+
"YearBegin",
|
1381 |
+
("YearBegin", {"month": 5}),
|
1382 |
+
"YearEnd",
|
1383 |
+
("YearEnd", {"month": 5}),
|
1384 |
+
"MonthBegin",
|
1385 |
+
"MonthEnd",
|
1386 |
+
"SemiMonthEnd",
|
1387 |
+
"SemiMonthBegin",
|
1388 |
+
"Week",
|
1389 |
+
("Week", {"weekday": 3}),
|
1390 |
+
"Week",
|
1391 |
+
("Week", {"weekday": 6}),
|
1392 |
+
"BusinessDay",
|
1393 |
+
"BDay",
|
1394 |
+
"QuarterEnd",
|
1395 |
+
"QuarterBegin",
|
1396 |
+
"CustomBusinessDay",
|
1397 |
+
"CDay",
|
1398 |
+
"CBMonthEnd",
|
1399 |
+
"CBMonthBegin",
|
1400 |
+
"BMonthBegin",
|
1401 |
+
"BMonthEnd",
|
1402 |
+
"BusinessHour",
|
1403 |
+
"BYearBegin",
|
1404 |
+
"BYearEnd",
|
1405 |
+
"BQuarterBegin",
|
1406 |
+
("LastWeekOfMonth", {"weekday": 2}),
|
1407 |
+
(
|
1408 |
+
"FY5253Quarter",
|
1409 |
+
{
|
1410 |
+
"qtr_with_extra_week": 1,
|
1411 |
+
"startingMonth": 1,
|
1412 |
+
"weekday": 2,
|
1413 |
+
"variation": "nearest",
|
1414 |
+
},
|
1415 |
+
),
|
1416 |
+
("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}),
|
1417 |
+
("WeekOfMonth", {"weekday": 2, "week": 2}),
|
1418 |
+
"Easter",
|
1419 |
+
("DateOffset", {"day": 4}),
|
1420 |
+
("DateOffset", {"month": 5}),
|
1421 |
+
],
|
1422 |
+
)
|
1423 |
+
@pytest.mark.parametrize("normalize", [True, False])
|
1424 |
+
@pytest.mark.parametrize("n", [0, 5])
|
1425 |
+
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
|
1426 |
+
@pytest.mark.parametrize("tz", [None, "US/Central"])
|
1427 |
+
def test_dt64arr_add_sub_DateOffsets(
|
1428 |
+
self, box_with_array, n, normalize, cls_and_kwargs, unit, tz
|
1429 |
+
):
|
1430 |
+
# GH#10699
|
1431 |
+
# assert vectorized operation matches pointwise operations
|
1432 |
+
|
1433 |
+
if isinstance(cls_and_kwargs, tuple):
|
1434 |
+
# If cls_name param is a tuple, then 2nd entry is kwargs for
|
1435 |
+
# the offset constructor
|
1436 |
+
cls_name, kwargs = cls_and_kwargs
|
1437 |
+
else:
|
1438 |
+
cls_name = cls_and_kwargs
|
1439 |
+
kwargs = {}
|
1440 |
+
|
1441 |
+
if n == 0 and cls_name in [
|
1442 |
+
"WeekOfMonth",
|
1443 |
+
"LastWeekOfMonth",
|
1444 |
+
"FY5253Quarter",
|
1445 |
+
"FY5253",
|
1446 |
+
]:
|
1447 |
+
# passing n = 0 is invalid for these offset classes
|
1448 |
+
return
|
1449 |
+
|
1450 |
+
vec = (
|
1451 |
+
DatetimeIndex(
|
1452 |
+
[
|
1453 |
+
Timestamp("2000-01-05 00:15:00"),
|
1454 |
+
Timestamp("2000-01-31 00:23:00"),
|
1455 |
+
Timestamp("2000-01-01"),
|
1456 |
+
Timestamp("2000-03-31"),
|
1457 |
+
Timestamp("2000-02-29"),
|
1458 |
+
Timestamp("2000-12-31"),
|
1459 |
+
Timestamp("2000-05-15"),
|
1460 |
+
Timestamp("2001-06-15"),
|
1461 |
+
]
|
1462 |
+
)
|
1463 |
+
.as_unit(unit)
|
1464 |
+
.tz_localize(tz)
|
1465 |
+
)
|
1466 |
+
vec = tm.box_expected(vec, box_with_array)
|
1467 |
+
vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec
|
1468 |
+
|
1469 |
+
offset_cls = getattr(pd.offsets, cls_name)
|
1470 |
+
offset = offset_cls(n, normalize=normalize, **kwargs)
|
1471 |
+
|
1472 |
+
# TODO(GH#55564): as_unit will be unnecessary
|
1473 |
+
expected = DatetimeIndex([x + offset for x in vec_items]).as_unit(unit)
|
1474 |
+
expected = tm.box_expected(expected, box_with_array)
|
1475 |
+
tm.assert_equal(expected, vec + offset)
|
1476 |
+
tm.assert_equal(expected, offset + vec)
|
1477 |
+
|
1478 |
+
expected = DatetimeIndex([x - offset for x in vec_items]).as_unit(unit)
|
1479 |
+
expected = tm.box_expected(expected, box_with_array)
|
1480 |
+
tm.assert_equal(expected, vec - offset)
|
1481 |
+
|
1482 |
+
expected = DatetimeIndex([offset + x for x in vec_items]).as_unit(unit)
|
1483 |
+
expected = tm.box_expected(expected, box_with_array)
|
1484 |
+
tm.assert_equal(expected, offset + vec)
|
1485 |
+
msg = "(bad|unsupported) operand type for unary"
|
1486 |
+
with pytest.raises(TypeError, match=msg):
|
1487 |
+
offset - vec
|
1488 |
+
|
1489 |
+
@pytest.mark.parametrize(
|
1490 |
+
"other",
|
1491 |
+
[
|
1492 |
+
np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]),
|
1493 |
+
np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]),
|
1494 |
+
np.array( # matching offsets
|
1495 |
+
[pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)]
|
1496 |
+
),
|
1497 |
+
],
|
1498 |
+
)
|
1499 |
+
@pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub])
|
1500 |
+
def test_dt64arr_add_sub_offset_array(
|
1501 |
+
self, tz_naive_fixture, box_with_array, op, other
|
1502 |
+
):
|
1503 |
+
# GH#18849
|
1504 |
+
# GH#10699 array of offsets
|
1505 |
+
|
1506 |
+
tz = tz_naive_fixture
|
1507 |
+
dti = date_range("2017-01-01", periods=2, tz=tz)
|
1508 |
+
dtarr = tm.box_expected(dti, box_with_array)
|
1509 |
+
|
1510 |
+
expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))])
|
1511 |
+
expected = tm.box_expected(expected, box_with_array).astype(object)
|
1512 |
+
|
1513 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1514 |
+
res = op(dtarr, other)
|
1515 |
+
tm.assert_equal(res, expected)
|
1516 |
+
|
1517 |
+
# Same thing but boxing other
|
1518 |
+
other = tm.box_expected(other, box_with_array)
|
1519 |
+
if box_with_array is pd.array and op is roperator.radd:
|
1520 |
+
# We expect a NumpyExtensionArray, not ndarray[object] here
|
1521 |
+
expected = pd.array(expected, dtype=object)
|
1522 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1523 |
+
res = op(dtarr, other)
|
1524 |
+
tm.assert_equal(res, expected)
|
1525 |
+
|
1526 |
+
@pytest.mark.parametrize(
|
1527 |
+
"op, offset, exp, exp_freq",
|
1528 |
+
[
|
1529 |
+
(
|
1530 |
+
"__add__",
|
1531 |
+
DateOffset(months=3, days=10),
|
1532 |
+
[
|
1533 |
+
Timestamp("2014-04-11"),
|
1534 |
+
Timestamp("2015-04-11"),
|
1535 |
+
Timestamp("2016-04-11"),
|
1536 |
+
Timestamp("2017-04-11"),
|
1537 |
+
],
|
1538 |
+
None,
|
1539 |
+
),
|
1540 |
+
(
|
1541 |
+
"__add__",
|
1542 |
+
DateOffset(months=3),
|
1543 |
+
[
|
1544 |
+
Timestamp("2014-04-01"),
|
1545 |
+
Timestamp("2015-04-01"),
|
1546 |
+
Timestamp("2016-04-01"),
|
1547 |
+
Timestamp("2017-04-01"),
|
1548 |
+
],
|
1549 |
+
"YS-APR",
|
1550 |
+
),
|
1551 |
+
(
|
1552 |
+
"__sub__",
|
1553 |
+
DateOffset(months=3, days=10),
|
1554 |
+
[
|
1555 |
+
Timestamp("2013-09-21"),
|
1556 |
+
Timestamp("2014-09-21"),
|
1557 |
+
Timestamp("2015-09-21"),
|
1558 |
+
Timestamp("2016-09-21"),
|
1559 |
+
],
|
1560 |
+
None,
|
1561 |
+
),
|
1562 |
+
(
|
1563 |
+
"__sub__",
|
1564 |
+
DateOffset(months=3),
|
1565 |
+
[
|
1566 |
+
Timestamp("2013-10-01"),
|
1567 |
+
Timestamp("2014-10-01"),
|
1568 |
+
Timestamp("2015-10-01"),
|
1569 |
+
Timestamp("2016-10-01"),
|
1570 |
+
],
|
1571 |
+
"YS-OCT",
|
1572 |
+
),
|
1573 |
+
],
|
1574 |
+
)
|
1575 |
+
def test_dti_add_sub_nonzero_mth_offset(
|
1576 |
+
self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array
|
1577 |
+
):
|
1578 |
+
# GH 26258
|
1579 |
+
tz = tz_aware_fixture
|
1580 |
+
date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="YS", tz=tz)
|
1581 |
+
date = tm.box_expected(date, box_with_array, False)
|
1582 |
+
mth = getattr(date, op)
|
1583 |
+
result = mth(offset)
|
1584 |
+
|
1585 |
+
expected = DatetimeIndex(exp, tz=tz).as_unit("ns")
|
1586 |
+
expected = tm.box_expected(expected, box_with_array, False)
|
1587 |
+
tm.assert_equal(result, expected)
|
1588 |
+
|
1589 |
+
def test_dt64arr_series_add_DateOffset_with_milli(self):
|
1590 |
+
# GH 57529
|
1591 |
+
dti = DatetimeIndex(
|
1592 |
+
[
|
1593 |
+
"2000-01-01 00:00:00.012345678",
|
1594 |
+
"2000-01-31 00:00:00.012345678",
|
1595 |
+
"2000-02-29 00:00:00.012345678",
|
1596 |
+
],
|
1597 |
+
dtype="datetime64[ns]",
|
1598 |
+
)
|
1599 |
+
result = dti + DateOffset(milliseconds=4)
|
1600 |
+
expected = DatetimeIndex(
|
1601 |
+
[
|
1602 |
+
"2000-01-01 00:00:00.016345678",
|
1603 |
+
"2000-01-31 00:00:00.016345678",
|
1604 |
+
"2000-02-29 00:00:00.016345678",
|
1605 |
+
],
|
1606 |
+
dtype="datetime64[ns]",
|
1607 |
+
)
|
1608 |
+
tm.assert_index_equal(result, expected)
|
1609 |
+
|
1610 |
+
result = dti + DateOffset(days=1, milliseconds=4)
|
1611 |
+
expected = DatetimeIndex(
|
1612 |
+
[
|
1613 |
+
"2000-01-02 00:00:00.016345678",
|
1614 |
+
"2000-02-01 00:00:00.016345678",
|
1615 |
+
"2000-03-01 00:00:00.016345678",
|
1616 |
+
],
|
1617 |
+
dtype="datetime64[ns]",
|
1618 |
+
)
|
1619 |
+
tm.assert_index_equal(result, expected)
|
1620 |
+
|
1621 |
+
|
1622 |
+
class TestDatetime64OverflowHandling:
|
1623 |
+
# TODO: box + de-duplicate
|
1624 |
+
|
1625 |
+
def test_dt64_overflow_masking(self, box_with_array):
|
1626 |
+
# GH#25317
|
1627 |
+
left = Series([Timestamp("1969-12-31")], dtype="M8[ns]")
|
1628 |
+
right = Series([NaT])
|
1629 |
+
|
1630 |
+
left = tm.box_expected(left, box_with_array)
|
1631 |
+
right = tm.box_expected(right, box_with_array)
|
1632 |
+
|
1633 |
+
expected = TimedeltaIndex([NaT], dtype="m8[ns]")
|
1634 |
+
expected = tm.box_expected(expected, box_with_array)
|
1635 |
+
|
1636 |
+
result = left - right
|
1637 |
+
tm.assert_equal(result, expected)
|
1638 |
+
|
1639 |
+
def test_dt64_series_arith_overflow(self):
|
1640 |
+
# GH#12534, fixed by GH#19024
|
1641 |
+
dt = Timestamp("1700-01-31")
|
1642 |
+
td = Timedelta("20000 Days")
|
1643 |
+
dti = date_range("1949-09-30", freq="100YE", periods=4)
|
1644 |
+
ser = Series(dti)
|
1645 |
+
msg = "Overflow in int64 addition"
|
1646 |
+
with pytest.raises(OverflowError, match=msg):
|
1647 |
+
ser - dt
|
1648 |
+
with pytest.raises(OverflowError, match=msg):
|
1649 |
+
dt - ser
|
1650 |
+
with pytest.raises(OverflowError, match=msg):
|
1651 |
+
ser + td
|
1652 |
+
with pytest.raises(OverflowError, match=msg):
|
1653 |
+
td + ser
|
1654 |
+
|
1655 |
+
ser.iloc[-1] = NaT
|
1656 |
+
expected = Series(
|
1657 |
+
["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]"
|
1658 |
+
)
|
1659 |
+
res = ser + td
|
1660 |
+
tm.assert_series_equal(res, expected)
|
1661 |
+
res = td + ser
|
1662 |
+
tm.assert_series_equal(res, expected)
|
1663 |
+
|
1664 |
+
ser.iloc[1:] = NaT
|
1665 |
+
expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]")
|
1666 |
+
res = ser - dt
|
1667 |
+
tm.assert_series_equal(res, expected)
|
1668 |
+
res = dt - ser
|
1669 |
+
tm.assert_series_equal(res, -expected)
|
1670 |
+
|
1671 |
+
def test_datetimeindex_sub_timestamp_overflow(self):
|
1672 |
+
dtimax = pd.to_datetime(["2021-12-28 17:19", Timestamp.max]).as_unit("ns")
|
1673 |
+
dtimin = pd.to_datetime(["2021-12-28 17:19", Timestamp.min]).as_unit("ns")
|
1674 |
+
|
1675 |
+
tsneg = Timestamp("1950-01-01").as_unit("ns")
|
1676 |
+
ts_neg_variants = [
|
1677 |
+
tsneg,
|
1678 |
+
tsneg.to_pydatetime(),
|
1679 |
+
tsneg.to_datetime64().astype("datetime64[ns]"),
|
1680 |
+
tsneg.to_datetime64().astype("datetime64[D]"),
|
1681 |
+
]
|
1682 |
+
|
1683 |
+
tspos = Timestamp("1980-01-01").as_unit("ns")
|
1684 |
+
ts_pos_variants = [
|
1685 |
+
tspos,
|
1686 |
+
tspos.to_pydatetime(),
|
1687 |
+
tspos.to_datetime64().astype("datetime64[ns]"),
|
1688 |
+
tspos.to_datetime64().astype("datetime64[D]"),
|
1689 |
+
]
|
1690 |
+
msg = "Overflow in int64 addition"
|
1691 |
+
for variant in ts_neg_variants:
|
1692 |
+
with pytest.raises(OverflowError, match=msg):
|
1693 |
+
dtimax - variant
|
1694 |
+
|
1695 |
+
expected = Timestamp.max._value - tspos._value
|
1696 |
+
for variant in ts_pos_variants:
|
1697 |
+
res = dtimax - variant
|
1698 |
+
assert res[1]._value == expected
|
1699 |
+
|
1700 |
+
expected = Timestamp.min._value - tsneg._value
|
1701 |
+
for variant in ts_neg_variants:
|
1702 |
+
res = dtimin - variant
|
1703 |
+
assert res[1]._value == expected
|
1704 |
+
|
1705 |
+
for variant in ts_pos_variants:
|
1706 |
+
with pytest.raises(OverflowError, match=msg):
|
1707 |
+
dtimin - variant
|
1708 |
+
|
1709 |
+
def test_datetimeindex_sub_datetimeindex_overflow(self):
|
1710 |
+
# GH#22492, GH#22508
|
1711 |
+
dtimax = pd.to_datetime(["2021-12-28 17:19", Timestamp.max]).as_unit("ns")
|
1712 |
+
dtimin = pd.to_datetime(["2021-12-28 17:19", Timestamp.min]).as_unit("ns")
|
1713 |
+
|
1714 |
+
ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]).as_unit("ns")
|
1715 |
+
ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]).as_unit("ns")
|
1716 |
+
|
1717 |
+
# General tests
|
1718 |
+
expected = Timestamp.max._value - ts_pos[1]._value
|
1719 |
+
result = dtimax - ts_pos
|
1720 |
+
assert result[1]._value == expected
|
1721 |
+
|
1722 |
+
expected = Timestamp.min._value - ts_neg[1]._value
|
1723 |
+
result = dtimin - ts_neg
|
1724 |
+
assert result[1]._value == expected
|
1725 |
+
msg = "Overflow in int64 addition"
|
1726 |
+
with pytest.raises(OverflowError, match=msg):
|
1727 |
+
dtimax - ts_neg
|
1728 |
+
|
1729 |
+
with pytest.raises(OverflowError, match=msg):
|
1730 |
+
dtimin - ts_pos
|
1731 |
+
|
1732 |
+
# Edge cases
|
1733 |
+
tmin = pd.to_datetime([Timestamp.min])
|
1734 |
+
t1 = tmin + Timedelta.max + Timedelta("1us")
|
1735 |
+
with pytest.raises(OverflowError, match=msg):
|
1736 |
+
t1 - tmin
|
1737 |
+
|
1738 |
+
tmax = pd.to_datetime([Timestamp.max])
|
1739 |
+
t2 = tmax + Timedelta.min - Timedelta("1us")
|
1740 |
+
with pytest.raises(OverflowError, match=msg):
|
1741 |
+
tmax - t2
|
1742 |
+
|
1743 |
+
|
1744 |
+
class TestTimestampSeriesArithmetic:
|
1745 |
+
def test_empty_series_add_sub(self, box_with_array):
|
1746 |
+
# GH#13844
|
1747 |
+
a = Series(dtype="M8[ns]")
|
1748 |
+
b = Series(dtype="m8[ns]")
|
1749 |
+
a = box_with_array(a)
|
1750 |
+
b = box_with_array(b)
|
1751 |
+
tm.assert_equal(a, a + b)
|
1752 |
+
tm.assert_equal(a, a - b)
|
1753 |
+
tm.assert_equal(a, b + a)
|
1754 |
+
msg = "cannot subtract"
|
1755 |
+
with pytest.raises(TypeError, match=msg):
|
1756 |
+
b - a
|
1757 |
+
|
1758 |
+
def test_operators_datetimelike(self):
|
1759 |
+
# ## timedelta64 ###
|
1760 |
+
td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
|
1761 |
+
td1.iloc[2] = np.nan
|
1762 |
+
|
1763 |
+
# ## datetime64 ###
|
1764 |
+
dt1 = Series(
|
1765 |
+
[
|
1766 |
+
Timestamp("20111230"),
|
1767 |
+
Timestamp("20120101"),
|
1768 |
+
Timestamp("20120103"),
|
1769 |
+
]
|
1770 |
+
)
|
1771 |
+
dt1.iloc[2] = np.nan
|
1772 |
+
dt2 = Series(
|
1773 |
+
[
|
1774 |
+
Timestamp("20111231"),
|
1775 |
+
Timestamp("20120102"),
|
1776 |
+
Timestamp("20120104"),
|
1777 |
+
]
|
1778 |
+
)
|
1779 |
+
dt1 - dt2
|
1780 |
+
dt2 - dt1
|
1781 |
+
|
1782 |
+
# datetime64 with timetimedelta
|
1783 |
+
dt1 + td1
|
1784 |
+
td1 + dt1
|
1785 |
+
dt1 - td1
|
1786 |
+
|
1787 |
+
# timetimedelta with datetime64
|
1788 |
+
td1 + dt1
|
1789 |
+
dt1 + td1
|
1790 |
+
|
1791 |
+
def test_dt64ser_sub_datetime_dtype(self, unit):
|
1792 |
+
ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00))
|
1793 |
+
dt = datetime(1993, 6, 22, 13, 30)
|
1794 |
+
ser = Series([ts], dtype=f"M8[{unit}]")
|
1795 |
+
result = ser - dt
|
1796 |
+
|
1797 |
+
# the expected unit is the max of `unit` and the unit imputed to `dt`,
|
1798 |
+
# which is "us"
|
1799 |
+
exp_unit = tm.get_finest_unit(unit, "us")
|
1800 |
+
assert result.dtype == f"timedelta64[{exp_unit}]"
|
1801 |
+
|
1802 |
+
# -------------------------------------------------------------
|
1803 |
+
# TODO: This next block of tests came from tests.series.test_operators,
|
1804 |
+
# needs to be de-duplicated and parametrized over `box` classes
|
1805 |
+
|
1806 |
+
@pytest.mark.parametrize(
|
1807 |
+
"left, right, op_fail",
|
1808 |
+
[
|
1809 |
+
[
|
1810 |
+
[Timestamp("20111230"), Timestamp("20120101"), NaT],
|
1811 |
+
[Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")],
|
1812 |
+
["__sub__", "__rsub__"],
|
1813 |
+
],
|
1814 |
+
[
|
1815 |
+
[Timestamp("20111230"), Timestamp("20120101"), NaT],
|
1816 |
+
[timedelta(minutes=5, seconds=3), timedelta(minutes=5, seconds=3), NaT],
|
1817 |
+
["__add__", "__radd__", "__sub__"],
|
1818 |
+
],
|
1819 |
+
[
|
1820 |
+
[
|
1821 |
+
Timestamp("20111230", tz="US/Eastern"),
|
1822 |
+
Timestamp("20111230", tz="US/Eastern"),
|
1823 |
+
NaT,
|
1824 |
+
],
|
1825 |
+
[timedelta(minutes=5, seconds=3), NaT, timedelta(minutes=5, seconds=3)],
|
1826 |
+
["__add__", "__radd__", "__sub__"],
|
1827 |
+
],
|
1828 |
+
],
|
1829 |
+
)
|
1830 |
+
def test_operators_datetimelike_invalid(
|
1831 |
+
self, left, right, op_fail, all_arithmetic_operators
|
1832 |
+
):
|
1833 |
+
# these are all TypeError ops
|
1834 |
+
op_str = all_arithmetic_operators
|
1835 |
+
arg1 = Series(left)
|
1836 |
+
arg2 = Series(right)
|
1837 |
+
# check that we are getting a TypeError
|
1838 |
+
# with 'operate' (from core/ops.py) for the ops that are not
|
1839 |
+
# defined
|
1840 |
+
op = getattr(arg1, op_str, None)
|
1841 |
+
# Previously, _validate_for_numeric_binop in core/indexes/base.py
|
1842 |
+
# did this for us.
|
1843 |
+
if op_str not in op_fail:
|
1844 |
+
with pytest.raises(
|
1845 |
+
TypeError, match="operate|[cC]annot|unsupported operand"
|
1846 |
+
):
|
1847 |
+
op(arg2)
|
1848 |
+
else:
|
1849 |
+
# Smoke test
|
1850 |
+
op(arg2)
|
1851 |
+
|
1852 |
+
def test_sub_single_tz(self, unit):
|
1853 |
+
# GH#12290
|
1854 |
+
s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]).dt.as_unit(unit)
|
1855 |
+
s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]).dt.as_unit(unit)
|
1856 |
+
result = s1 - s2
|
1857 |
+
expected = Series([Timedelta("2days")]).dt.as_unit(unit)
|
1858 |
+
tm.assert_series_equal(result, expected)
|
1859 |
+
result = s2 - s1
|
1860 |
+
expected = Series([Timedelta("-2days")]).dt.as_unit(unit)
|
1861 |
+
tm.assert_series_equal(result, expected)
|
1862 |
+
|
1863 |
+
def test_dt64tz_series_sub_dtitz(self):
|
1864 |
+
# GH#19071 subtracting tzaware DatetimeIndex from tzaware Series
|
1865 |
+
# (with same tz) raises, fixed by #19024
|
1866 |
+
dti = date_range("1999-09-30", periods=10, tz="US/Pacific")
|
1867 |
+
ser = Series(dti)
|
1868 |
+
expected = Series(TimedeltaIndex(["0days"] * 10))
|
1869 |
+
|
1870 |
+
res = dti - ser
|
1871 |
+
tm.assert_series_equal(res, expected)
|
1872 |
+
res = ser - dti
|
1873 |
+
tm.assert_series_equal(res, expected)
|
1874 |
+
|
1875 |
+
def test_sub_datetime_compat(self, unit):
|
1876 |
+
# see GH#14088
|
1877 |
+
ser = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]).dt.as_unit(unit)
|
1878 |
+
dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc)
|
1879 |
+
# The datetime object has "us" so we upcast lower units
|
1880 |
+
exp_unit = tm.get_finest_unit(unit, "us")
|
1881 |
+
exp = Series([Timedelta("1 days"), NaT]).dt.as_unit(exp_unit)
|
1882 |
+
result = ser - dt
|
1883 |
+
tm.assert_series_equal(result, exp)
|
1884 |
+
result2 = ser - Timestamp(dt)
|
1885 |
+
tm.assert_series_equal(result2, exp)
|
1886 |
+
|
1887 |
+
def test_dt64_series_add_mixed_tick_DateOffset(self):
|
1888 |
+
# GH#4532
|
1889 |
+
# operate with pd.offsets
|
1890 |
+
s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")])
|
1891 |
+
|
1892 |
+
result = s + pd.offsets.Milli(5)
|
1893 |
+
result2 = pd.offsets.Milli(5) + s
|
1894 |
+
expected = Series(
|
1895 |
+
[Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")]
|
1896 |
+
)
|
1897 |
+
tm.assert_series_equal(result, expected)
|
1898 |
+
tm.assert_series_equal(result2, expected)
|
1899 |
+
|
1900 |
+
result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5)
|
1901 |
+
expected = Series(
|
1902 |
+
[Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")]
|
1903 |
+
)
|
1904 |
+
tm.assert_series_equal(result, expected)
|
1905 |
+
|
1906 |
+
def test_datetime64_ops_nat(self, unit):
|
1907 |
+
# GH#11349
|
1908 |
+
datetime_series = Series([NaT, Timestamp("19900315")]).dt.as_unit(unit)
|
1909 |
+
nat_series_dtype_timestamp = Series([NaT, NaT], dtype=f"datetime64[{unit}]")
|
1910 |
+
single_nat_dtype_datetime = Series([NaT], dtype=f"datetime64[{unit}]")
|
1911 |
+
|
1912 |
+
# subtraction
|
1913 |
+
tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp)
|
1914 |
+
msg = "bad operand type for unary -: 'DatetimeArray'"
|
1915 |
+
with pytest.raises(TypeError, match=msg):
|
1916 |
+
-single_nat_dtype_datetime + datetime_series
|
1917 |
+
|
1918 |
+
tm.assert_series_equal(
|
1919 |
+
-NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp
|
1920 |
+
)
|
1921 |
+
with pytest.raises(TypeError, match=msg):
|
1922 |
+
-single_nat_dtype_datetime + nat_series_dtype_timestamp
|
1923 |
+
|
1924 |
+
# addition
|
1925 |
+
tm.assert_series_equal(
|
1926 |
+
nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp
|
1927 |
+
)
|
1928 |
+
tm.assert_series_equal(
|
1929 |
+
NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp
|
1930 |
+
)
|
1931 |
+
|
1932 |
+
tm.assert_series_equal(
|
1933 |
+
nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp
|
1934 |
+
)
|
1935 |
+
tm.assert_series_equal(
|
1936 |
+
NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp
|
1937 |
+
)
|
1938 |
+
|
1939 |
+
# -------------------------------------------------------------
|
1940 |
+
# Timezone-Centric Tests
|
1941 |
+
|
1942 |
+
def test_operators_datetimelike_with_timezones(self):
|
1943 |
+
tz = "US/Eastern"
|
1944 |
+
dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo")
|
1945 |
+
dt2 = dt1.copy()
|
1946 |
+
dt2.iloc[2] = np.nan
|
1947 |
+
|
1948 |
+
td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="h"))
|
1949 |
+
td2 = td1.copy()
|
1950 |
+
td2.iloc[1] = np.nan
|
1951 |
+
assert td2._values.freq is None
|
1952 |
+
|
1953 |
+
result = dt1 + td1[0]
|
1954 |
+
exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz)
|
1955 |
+
tm.assert_series_equal(result, exp)
|
1956 |
+
|
1957 |
+
result = dt2 + td2[0]
|
1958 |
+
exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz)
|
1959 |
+
tm.assert_series_equal(result, exp)
|
1960 |
+
|
1961 |
+
# odd numpy behavior with scalar timedeltas
|
1962 |
+
result = td1[0] + dt1
|
1963 |
+
exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz)
|
1964 |
+
tm.assert_series_equal(result, exp)
|
1965 |
+
|
1966 |
+
result = td2[0] + dt2
|
1967 |
+
exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz)
|
1968 |
+
tm.assert_series_equal(result, exp)
|
1969 |
+
|
1970 |
+
result = dt1 - td1[0]
|
1971 |
+
exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz)
|
1972 |
+
tm.assert_series_equal(result, exp)
|
1973 |
+
msg = "(bad|unsupported) operand type for unary"
|
1974 |
+
with pytest.raises(TypeError, match=msg):
|
1975 |
+
td1[0] - dt1
|
1976 |
+
|
1977 |
+
result = dt2 - td2[0]
|
1978 |
+
exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz)
|
1979 |
+
tm.assert_series_equal(result, exp)
|
1980 |
+
with pytest.raises(TypeError, match=msg):
|
1981 |
+
td2[0] - dt2
|
1982 |
+
|
1983 |
+
result = dt1 + td1
|
1984 |
+
exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz)
|
1985 |
+
tm.assert_series_equal(result, exp)
|
1986 |
+
|
1987 |
+
result = dt2 + td2
|
1988 |
+
exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz)
|
1989 |
+
tm.assert_series_equal(result, exp)
|
1990 |
+
|
1991 |
+
result = dt1 - td1
|
1992 |
+
exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz)
|
1993 |
+
tm.assert_series_equal(result, exp)
|
1994 |
+
|
1995 |
+
result = dt2 - td2
|
1996 |
+
exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz)
|
1997 |
+
tm.assert_series_equal(result, exp)
|
1998 |
+
msg = "cannot (add|subtract)"
|
1999 |
+
with pytest.raises(TypeError, match=msg):
|
2000 |
+
td1 - dt1
|
2001 |
+
with pytest.raises(TypeError, match=msg):
|
2002 |
+
td2 - dt2
|
2003 |
+
|
2004 |
+
|
2005 |
+
class TestDatetimeIndexArithmetic:
|
2006 |
+
# -------------------------------------------------------------
|
2007 |
+
# Binary operations DatetimeIndex and TimedeltaIndex/array
|
2008 |
+
|
2009 |
+
def test_dti_add_tdi(self, tz_naive_fixture):
|
2010 |
+
# GH#17558
|
2011 |
+
tz = tz_naive_fixture
|
2012 |
+
dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10)
|
2013 |
+
tdi = pd.timedelta_range("0 days", periods=10)
|
2014 |
+
expected = date_range("2017-01-01", periods=10, tz=tz)
|
2015 |
+
expected = expected._with_freq(None)
|
2016 |
+
|
2017 |
+
# add with TimedeltaIndex
|
2018 |
+
result = dti + tdi
|
2019 |
+
tm.assert_index_equal(result, expected)
|
2020 |
+
|
2021 |
+
result = tdi + dti
|
2022 |
+
tm.assert_index_equal(result, expected)
|
2023 |
+
|
2024 |
+
# add with timedelta64 array
|
2025 |
+
result = dti + tdi.values
|
2026 |
+
tm.assert_index_equal(result, expected)
|
2027 |
+
|
2028 |
+
result = tdi.values + dti
|
2029 |
+
tm.assert_index_equal(result, expected)
|
2030 |
+
|
2031 |
+
def test_dti_iadd_tdi(self, tz_naive_fixture):
|
2032 |
+
# GH#17558
|
2033 |
+
tz = tz_naive_fixture
|
2034 |
+
dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10)
|
2035 |
+
tdi = pd.timedelta_range("0 days", periods=10)
|
2036 |
+
expected = date_range("2017-01-01", periods=10, tz=tz)
|
2037 |
+
expected = expected._with_freq(None)
|
2038 |
+
|
2039 |
+
# iadd with TimedeltaIndex
|
2040 |
+
result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10)
|
2041 |
+
result += tdi
|
2042 |
+
tm.assert_index_equal(result, expected)
|
2043 |
+
|
2044 |
+
result = pd.timedelta_range("0 days", periods=10)
|
2045 |
+
result += dti
|
2046 |
+
tm.assert_index_equal(result, expected)
|
2047 |
+
|
2048 |
+
# iadd with timedelta64 array
|
2049 |
+
result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10)
|
2050 |
+
result += tdi.values
|
2051 |
+
tm.assert_index_equal(result, expected)
|
2052 |
+
|
2053 |
+
result = pd.timedelta_range("0 days", periods=10)
|
2054 |
+
result += dti
|
2055 |
+
tm.assert_index_equal(result, expected)
|
2056 |
+
|
2057 |
+
def test_dti_sub_tdi(self, tz_naive_fixture):
|
2058 |
+
# GH#17558
|
2059 |
+
tz = tz_naive_fixture
|
2060 |
+
dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10)
|
2061 |
+
tdi = pd.timedelta_range("0 days", periods=10)
|
2062 |
+
expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D")
|
2063 |
+
expected = expected._with_freq(None)
|
2064 |
+
|
2065 |
+
# sub with TimedeltaIndex
|
2066 |
+
result = dti - tdi
|
2067 |
+
tm.assert_index_equal(result, expected)
|
2068 |
+
|
2069 |
+
msg = "cannot subtract .*TimedeltaArray"
|
2070 |
+
with pytest.raises(TypeError, match=msg):
|
2071 |
+
tdi - dti
|
2072 |
+
|
2073 |
+
# sub with timedelta64 array
|
2074 |
+
result = dti - tdi.values
|
2075 |
+
tm.assert_index_equal(result, expected)
|
2076 |
+
|
2077 |
+
msg = "cannot subtract a datelike from a TimedeltaArray"
|
2078 |
+
with pytest.raises(TypeError, match=msg):
|
2079 |
+
tdi.values - dti
|
2080 |
+
|
2081 |
+
def test_dti_isub_tdi(self, tz_naive_fixture, unit):
|
2082 |
+
# GH#17558
|
2083 |
+
tz = tz_naive_fixture
|
2084 |
+
dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10).as_unit(unit)
|
2085 |
+
tdi = pd.timedelta_range("0 days", periods=10, unit=unit)
|
2086 |
+
expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D", unit=unit)
|
2087 |
+
expected = expected._with_freq(None)
|
2088 |
+
|
2089 |
+
# isub with TimedeltaIndex
|
2090 |
+
result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10).as_unit(unit)
|
2091 |
+
result -= tdi
|
2092 |
+
tm.assert_index_equal(result, expected)
|
2093 |
+
|
2094 |
+
# DTA.__isub__ GH#43904
|
2095 |
+
dta = dti._data.copy()
|
2096 |
+
dta -= tdi
|
2097 |
+
tm.assert_datetime_array_equal(dta, expected._data)
|
2098 |
+
|
2099 |
+
out = dti._data.copy()
|
2100 |
+
np.subtract(out, tdi, out=out)
|
2101 |
+
tm.assert_datetime_array_equal(out, expected._data)
|
2102 |
+
|
2103 |
+
msg = "cannot subtract a datelike from a TimedeltaArray"
|
2104 |
+
with pytest.raises(TypeError, match=msg):
|
2105 |
+
tdi -= dti
|
2106 |
+
|
2107 |
+
# isub with timedelta64 array
|
2108 |
+
result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10).as_unit(unit)
|
2109 |
+
result -= tdi.values
|
2110 |
+
tm.assert_index_equal(result, expected)
|
2111 |
+
|
2112 |
+
with pytest.raises(TypeError, match=msg):
|
2113 |
+
tdi.values -= dti
|
2114 |
+
|
2115 |
+
with pytest.raises(TypeError, match=msg):
|
2116 |
+
tdi._values -= dti
|
2117 |
+
|
2118 |
+
# -------------------------------------------------------------
|
2119 |
+
# Binary Operations DatetimeIndex and datetime-like
|
2120 |
+
# TODO: A couple other tests belong in this section. Move them in
|
2121 |
+
# A PR where there isn't already a giant diff.
|
2122 |
+
|
2123 |
+
# -------------------------------------------------------------
|
2124 |
+
|
2125 |
+
def test_dta_add_sub_index(self, tz_naive_fixture):
|
2126 |
+
# Check that DatetimeArray defers to Index classes
|
2127 |
+
dti = date_range("20130101", periods=3, tz=tz_naive_fixture)
|
2128 |
+
dta = dti.array
|
2129 |
+
result = dta - dti
|
2130 |
+
expected = dti - dti
|
2131 |
+
tm.assert_index_equal(result, expected)
|
2132 |
+
|
2133 |
+
tdi = result
|
2134 |
+
result = dta + tdi
|
2135 |
+
expected = dti + tdi
|
2136 |
+
tm.assert_index_equal(result, expected)
|
2137 |
+
|
2138 |
+
result = dta - tdi
|
2139 |
+
expected = dti - tdi
|
2140 |
+
tm.assert_index_equal(result, expected)
|
2141 |
+
|
2142 |
+
def test_sub_dti_dti(self, unit):
|
2143 |
+
# previously performed setop (deprecated in 0.16.0), now changed to
|
2144 |
+
# return subtraction -> TimeDeltaIndex (GH ...)
|
2145 |
+
|
2146 |
+
dti = date_range("20130101", periods=3, unit=unit)
|
2147 |
+
dti_tz = date_range("20130101", periods=3, unit=unit).tz_localize("US/Eastern")
|
2148 |
+
expected = TimedeltaIndex([0, 0, 0]).as_unit(unit)
|
2149 |
+
|
2150 |
+
result = dti - dti
|
2151 |
+
tm.assert_index_equal(result, expected)
|
2152 |
+
|
2153 |
+
result = dti_tz - dti_tz
|
2154 |
+
tm.assert_index_equal(result, expected)
|
2155 |
+
msg = "Cannot subtract tz-naive and tz-aware datetime-like objects"
|
2156 |
+
with pytest.raises(TypeError, match=msg):
|
2157 |
+
dti_tz - dti
|
2158 |
+
|
2159 |
+
with pytest.raises(TypeError, match=msg):
|
2160 |
+
dti - dti_tz
|
2161 |
+
|
2162 |
+
# isub
|
2163 |
+
dti -= dti
|
2164 |
+
tm.assert_index_equal(dti, expected)
|
2165 |
+
|
2166 |
+
# different length raises ValueError
|
2167 |
+
dti1 = date_range("20130101", periods=3, unit=unit)
|
2168 |
+
dti2 = date_range("20130101", periods=4, unit=unit)
|
2169 |
+
msg = "cannot add indices of unequal length"
|
2170 |
+
with pytest.raises(ValueError, match=msg):
|
2171 |
+
dti1 - dti2
|
2172 |
+
|
2173 |
+
# NaN propagation
|
2174 |
+
dti1 = DatetimeIndex(["2012-01-01", np.nan, "2012-01-03"]).as_unit(unit)
|
2175 |
+
dti2 = DatetimeIndex(["2012-01-02", "2012-01-03", np.nan]).as_unit(unit)
|
2176 |
+
expected = TimedeltaIndex(["1 days", np.nan, np.nan]).as_unit(unit)
|
2177 |
+
result = dti2 - dti1
|
2178 |
+
tm.assert_index_equal(result, expected)
|
2179 |
+
|
2180 |
+
# -------------------------------------------------------------------
|
2181 |
+
# TODO: Most of this block is moved from series or frame tests, needs
|
2182 |
+
# cleanup, box-parametrization, and de-duplication
|
2183 |
+
|
2184 |
+
@pytest.mark.parametrize("op", [operator.add, operator.sub])
|
2185 |
+
def test_timedelta64_equal_timedelta_supported_ops(self, op, box_with_array):
|
2186 |
+
ser = Series(
|
2187 |
+
[
|
2188 |
+
Timestamp("20130301"),
|
2189 |
+
Timestamp("20130228 23:00:00"),
|
2190 |
+
Timestamp("20130228 22:00:00"),
|
2191 |
+
Timestamp("20130228 21:00:00"),
|
2192 |
+
]
|
2193 |
+
)
|
2194 |
+
obj = box_with_array(ser)
|
2195 |
+
|
2196 |
+
intervals = ["D", "h", "m", "s", "us"]
|
2197 |
+
|
2198 |
+
def timedelta64(*args):
|
2199 |
+
# see casting notes in NumPy gh-12927
|
2200 |
+
return np.sum(list(starmap(np.timedelta64, zip(args, intervals))))
|
2201 |
+
|
2202 |
+
for d, h, m, s, us in product(*([range(2)] * 5)):
|
2203 |
+
nptd = timedelta64(d, h, m, s, us)
|
2204 |
+
pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us)
|
2205 |
+
lhs = op(obj, nptd)
|
2206 |
+
rhs = op(obj, pytd)
|
2207 |
+
|
2208 |
+
tm.assert_equal(lhs, rhs)
|
2209 |
+
|
2210 |
+
def test_ops_nat_mixed_datetime64_timedelta64(self):
|
2211 |
+
# GH#11349
|
2212 |
+
timedelta_series = Series([NaT, Timedelta("1s")])
|
2213 |
+
datetime_series = Series([NaT, Timestamp("19900315")])
|
2214 |
+
nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]")
|
2215 |
+
nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]")
|
2216 |
+
single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]")
|
2217 |
+
single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]")
|
2218 |
+
|
2219 |
+
# subtraction
|
2220 |
+
tm.assert_series_equal(
|
2221 |
+
datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta
|
2222 |
+
)
|
2223 |
+
|
2224 |
+
tm.assert_series_equal(
|
2225 |
+
datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp
|
2226 |
+
)
|
2227 |
+
tm.assert_series_equal(
|
2228 |
+
-single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp
|
2229 |
+
)
|
2230 |
+
|
2231 |
+
# without a Series wrapping the NaT, it is ambiguous
|
2232 |
+
# whether it is a datetime64 or timedelta64
|
2233 |
+
# defaults to interpreting it as timedelta64
|
2234 |
+
tm.assert_series_equal(
|
2235 |
+
nat_series_dtype_timestamp - single_nat_dtype_datetime,
|
2236 |
+
nat_series_dtype_timedelta,
|
2237 |
+
)
|
2238 |
+
|
2239 |
+
tm.assert_series_equal(
|
2240 |
+
nat_series_dtype_timestamp - single_nat_dtype_timedelta,
|
2241 |
+
nat_series_dtype_timestamp,
|
2242 |
+
)
|
2243 |
+
tm.assert_series_equal(
|
2244 |
+
-single_nat_dtype_timedelta + nat_series_dtype_timestamp,
|
2245 |
+
nat_series_dtype_timestamp,
|
2246 |
+
)
|
2247 |
+
msg = "cannot subtract a datelike"
|
2248 |
+
with pytest.raises(TypeError, match=msg):
|
2249 |
+
timedelta_series - single_nat_dtype_datetime
|
2250 |
+
|
2251 |
+
# addition
|
2252 |
+
tm.assert_series_equal(
|
2253 |
+
nat_series_dtype_timestamp + single_nat_dtype_timedelta,
|
2254 |
+
nat_series_dtype_timestamp,
|
2255 |
+
)
|
2256 |
+
tm.assert_series_equal(
|
2257 |
+
single_nat_dtype_timedelta + nat_series_dtype_timestamp,
|
2258 |
+
nat_series_dtype_timestamp,
|
2259 |
+
)
|
2260 |
+
|
2261 |
+
tm.assert_series_equal(
|
2262 |
+
nat_series_dtype_timestamp + single_nat_dtype_timedelta,
|
2263 |
+
nat_series_dtype_timestamp,
|
2264 |
+
)
|
2265 |
+
tm.assert_series_equal(
|
2266 |
+
single_nat_dtype_timedelta + nat_series_dtype_timestamp,
|
2267 |
+
nat_series_dtype_timestamp,
|
2268 |
+
)
|
2269 |
+
|
2270 |
+
tm.assert_series_equal(
|
2271 |
+
nat_series_dtype_timedelta + single_nat_dtype_datetime,
|
2272 |
+
nat_series_dtype_timestamp,
|
2273 |
+
)
|
2274 |
+
tm.assert_series_equal(
|
2275 |
+
single_nat_dtype_datetime + nat_series_dtype_timedelta,
|
2276 |
+
nat_series_dtype_timestamp,
|
2277 |
+
)
|
2278 |
+
|
2279 |
+
def test_ufunc_coercions(self, unit):
|
2280 |
+
idx = date_range("2011-01-01", periods=3, freq="2D", name="x", unit=unit)
|
2281 |
+
|
2282 |
+
delta = np.timedelta64(1, "D")
|
2283 |
+
exp = date_range("2011-01-02", periods=3, freq="2D", name="x", unit=unit)
|
2284 |
+
for result in [idx + delta, np.add(idx, delta)]:
|
2285 |
+
assert isinstance(result, DatetimeIndex)
|
2286 |
+
tm.assert_index_equal(result, exp)
|
2287 |
+
assert result.freq == "2D"
|
2288 |
+
|
2289 |
+
exp = date_range("2010-12-31", periods=3, freq="2D", name="x", unit=unit)
|
2290 |
+
|
2291 |
+
for result in [idx - delta, np.subtract(idx, delta)]:
|
2292 |
+
assert isinstance(result, DatetimeIndex)
|
2293 |
+
tm.assert_index_equal(result, exp)
|
2294 |
+
assert result.freq == "2D"
|
2295 |
+
|
2296 |
+
# When adding/subtracting an ndarray (which has no .freq), the result
|
2297 |
+
# does not infer freq
|
2298 |
+
idx = idx._with_freq(None)
|
2299 |
+
delta = np.array(
|
2300 |
+
[np.timedelta64(1, "D"), np.timedelta64(2, "D"), np.timedelta64(3, "D")]
|
2301 |
+
)
|
2302 |
+
exp = DatetimeIndex(
|
2303 |
+
["2011-01-02", "2011-01-05", "2011-01-08"], name="x"
|
2304 |
+
).as_unit(unit)
|
2305 |
+
|
2306 |
+
for result in [idx + delta, np.add(idx, delta)]:
|
2307 |
+
tm.assert_index_equal(result, exp)
|
2308 |
+
assert result.freq == exp.freq
|
2309 |
+
|
2310 |
+
exp = DatetimeIndex(
|
2311 |
+
["2010-12-31", "2011-01-01", "2011-01-02"], name="x"
|
2312 |
+
).as_unit(unit)
|
2313 |
+
for result in [idx - delta, np.subtract(idx, delta)]:
|
2314 |
+
assert isinstance(result, DatetimeIndex)
|
2315 |
+
tm.assert_index_equal(result, exp)
|
2316 |
+
assert result.freq == exp.freq
|
2317 |
+
|
2318 |
+
def test_dti_add_series(self, tz_naive_fixture, names):
|
2319 |
+
# GH#13905
|
2320 |
+
tz = tz_naive_fixture
|
2321 |
+
index = DatetimeIndex(
|
2322 |
+
["2016-06-28 05:30", "2016-06-28 05:31"], tz=tz, name=names[0]
|
2323 |
+
).as_unit("ns")
|
2324 |
+
ser = Series([Timedelta(seconds=5)] * 2, index=index, name=names[1])
|
2325 |
+
expected = Series(index + Timedelta(seconds=5), index=index, name=names[2])
|
2326 |
+
|
2327 |
+
# passing name arg isn't enough when names[2] is None
|
2328 |
+
expected.name = names[2]
|
2329 |
+
assert expected.dtype == index.dtype
|
2330 |
+
result = ser + index
|
2331 |
+
tm.assert_series_equal(result, expected)
|
2332 |
+
result2 = index + ser
|
2333 |
+
tm.assert_series_equal(result2, expected)
|
2334 |
+
|
2335 |
+
expected = index + Timedelta(seconds=5)
|
2336 |
+
result3 = ser.values + index
|
2337 |
+
tm.assert_index_equal(result3, expected)
|
2338 |
+
result4 = index + ser.values
|
2339 |
+
tm.assert_index_equal(result4, expected)
|
2340 |
+
|
2341 |
+
@pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub])
|
2342 |
+
def test_dti_addsub_offset_arraylike(
|
2343 |
+
self, tz_naive_fixture, names, op, index_or_series
|
2344 |
+
):
|
2345 |
+
# GH#18849, GH#19744
|
2346 |
+
other_box = index_or_series
|
2347 |
+
|
2348 |
+
tz = tz_naive_fixture
|
2349 |
+
dti = date_range("2017-01-01", periods=2, tz=tz, name=names[0])
|
2350 |
+
other = other_box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1])
|
2351 |
+
|
2352 |
+
xbox = get_upcast_box(dti, other)
|
2353 |
+
|
2354 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
2355 |
+
res = op(dti, other)
|
2356 |
+
|
2357 |
+
expected = DatetimeIndex(
|
2358 |
+
[op(dti[n], other[n]) for n in range(len(dti))], name=names[2], freq="infer"
|
2359 |
+
)
|
2360 |
+
expected = tm.box_expected(expected, xbox).astype(object)
|
2361 |
+
tm.assert_equal(res, expected)
|
2362 |
+
|
2363 |
+
@pytest.mark.parametrize("other_box", [pd.Index, np.array])
|
2364 |
+
def test_dti_addsub_object_arraylike(
|
2365 |
+
self, tz_naive_fixture, box_with_array, other_box
|
2366 |
+
):
|
2367 |
+
tz = tz_naive_fixture
|
2368 |
+
|
2369 |
+
dti = date_range("2017-01-01", periods=2, tz=tz)
|
2370 |
+
dtarr = tm.box_expected(dti, box_with_array)
|
2371 |
+
other = other_box([pd.offsets.MonthEnd(), Timedelta(days=4)])
|
2372 |
+
xbox = get_upcast_box(dtarr, other)
|
2373 |
+
|
2374 |
+
expected = DatetimeIndex(["2017-01-31", "2017-01-06"], tz=tz_naive_fixture)
|
2375 |
+
expected = tm.box_expected(expected, xbox).astype(object)
|
2376 |
+
|
2377 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
2378 |
+
result = dtarr + other
|
2379 |
+
tm.assert_equal(result, expected)
|
2380 |
+
|
2381 |
+
expected = DatetimeIndex(["2016-12-31", "2016-12-29"], tz=tz_naive_fixture)
|
2382 |
+
expected = tm.box_expected(expected, xbox).astype(object)
|
2383 |
+
|
2384 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
2385 |
+
result = dtarr - other
|
2386 |
+
tm.assert_equal(result, expected)
|
2387 |
+
|
2388 |
+
|
2389 |
+
@pytest.mark.parametrize("years", [-1, 0, 1])
|
2390 |
+
@pytest.mark.parametrize("months", [-2, 0, 2])
|
2391 |
+
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
|
2392 |
+
def test_shift_months(years, months, unit):
|
2393 |
+
dti = DatetimeIndex(
|
2394 |
+
[
|
2395 |
+
Timestamp("2000-01-05 00:15:00"),
|
2396 |
+
Timestamp("2000-01-31 00:23:00"),
|
2397 |
+
Timestamp("2000-01-01"),
|
2398 |
+
Timestamp("2000-02-29"),
|
2399 |
+
Timestamp("2000-12-31"),
|
2400 |
+
]
|
2401 |
+
).as_unit(unit)
|
2402 |
+
shifted = shift_months(dti.asi8, years * 12 + months, reso=dti._data._creso)
|
2403 |
+
shifted_dt64 = shifted.view(f"M8[{dti.unit}]")
|
2404 |
+
actual = DatetimeIndex(shifted_dt64)
|
2405 |
+
|
2406 |
+
raw = [x + pd.offsets.DateOffset(years=years, months=months) for x in dti]
|
2407 |
+
expected = DatetimeIndex(raw).as_unit(dti.unit)
|
2408 |
+
tm.assert_index_equal(actual, expected)
|
2409 |
+
|
2410 |
+
|
2411 |
+
def test_dt64arr_addsub_object_dtype_2d():
|
2412 |
+
# block-wise DataFrame operations will require operating on 2D
|
2413 |
+
# DatetimeArray/TimedeltaArray, so check that specifically.
|
2414 |
+
dti = date_range("1994-02-13", freq="2W", periods=4)
|
2415 |
+
dta = dti._data.reshape((4, 1))
|
2416 |
+
|
2417 |
+
other = np.array([[pd.offsets.Day(n)] for n in range(4)])
|
2418 |
+
assert other.shape == dta.shape
|
2419 |
+
|
2420 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
2421 |
+
result = dta + other
|
2422 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
2423 |
+
expected = (dta[:, 0] + other[:, 0]).reshape(-1, 1)
|
2424 |
+
|
2425 |
+
tm.assert_numpy_array_equal(result, expected)
|
2426 |
+
|
2427 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
2428 |
+
# Case where we expect to get a TimedeltaArray back
|
2429 |
+
result2 = dta - dta.astype(object)
|
2430 |
+
|
2431 |
+
assert result2.shape == (4, 1)
|
2432 |
+
assert all(td._value == 0 for td in result2.ravel())
|
2433 |
+
|
2434 |
+
|
2435 |
+
def test_non_nano_dt64_addsub_np_nat_scalars():
|
2436 |
+
# GH 52295
|
2437 |
+
ser = Series([1233242342344, 232432434324, 332434242344], dtype="datetime64[ms]")
|
2438 |
+
result = ser - np.datetime64("nat", "ms")
|
2439 |
+
expected = Series([NaT] * 3, dtype="timedelta64[ms]")
|
2440 |
+
tm.assert_series_equal(result, expected)
|
2441 |
+
|
2442 |
+
result = ser + np.timedelta64("nat", "ms")
|
2443 |
+
expected = Series([NaT] * 3, dtype="datetime64[ms]")
|
2444 |
+
tm.assert_series_equal(result, expected)
|
2445 |
+
|
2446 |
+
|
2447 |
+
def test_non_nano_dt64_addsub_np_nat_scalars_unitless():
|
2448 |
+
# GH 52295
|
2449 |
+
# TODO: Can we default to the ser unit?
|
2450 |
+
ser = Series([1233242342344, 232432434324, 332434242344], dtype="datetime64[ms]")
|
2451 |
+
result = ser - np.datetime64("nat")
|
2452 |
+
expected = Series([NaT] * 3, dtype="timedelta64[ns]")
|
2453 |
+
tm.assert_series_equal(result, expected)
|
2454 |
+
|
2455 |
+
result = ser + np.timedelta64("nat")
|
2456 |
+
expected = Series([NaT] * 3, dtype="datetime64[ns]")
|
2457 |
+
tm.assert_series_equal(result, expected)
|
2458 |
+
|
2459 |
+
|
2460 |
+
def test_non_nano_dt64_addsub_np_nat_scalars_unsupported_unit():
|
2461 |
+
# GH 52295
|
2462 |
+
ser = Series([12332, 23243, 33243], dtype="datetime64[s]")
|
2463 |
+
result = ser - np.datetime64("nat", "D")
|
2464 |
+
expected = Series([NaT] * 3, dtype="timedelta64[s]")
|
2465 |
+
tm.assert_series_equal(result, expected)
|
2466 |
+
|
2467 |
+
result = ser + np.timedelta64("nat", "D")
|
2468 |
+
expected = Series([NaT] * 3, dtype="datetime64[s]")
|
2469 |
+
tm.assert_series_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_interval.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas.core.dtypes.common import is_list_like
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
from pandas import (
|
10 |
+
Categorical,
|
11 |
+
Index,
|
12 |
+
Interval,
|
13 |
+
IntervalIndex,
|
14 |
+
Period,
|
15 |
+
Series,
|
16 |
+
Timedelta,
|
17 |
+
Timestamp,
|
18 |
+
date_range,
|
19 |
+
period_range,
|
20 |
+
timedelta_range,
|
21 |
+
)
|
22 |
+
import pandas._testing as tm
|
23 |
+
from pandas.core.arrays import (
|
24 |
+
BooleanArray,
|
25 |
+
IntervalArray,
|
26 |
+
)
|
27 |
+
from pandas.tests.arithmetic.common import get_upcast_box
|
28 |
+
|
29 |
+
|
30 |
+
@pytest.fixture(
|
31 |
+
params=[
|
32 |
+
(Index([0, 2, 4, 4]), Index([1, 3, 5, 8])),
|
33 |
+
(Index([0.0, 1.0, 2.0, np.nan]), Index([1.0, 2.0, 3.0, np.nan])),
|
34 |
+
(
|
35 |
+
timedelta_range("0 days", periods=3).insert(3, pd.NaT),
|
36 |
+
timedelta_range("1 day", periods=3).insert(3, pd.NaT),
|
37 |
+
),
|
38 |
+
(
|
39 |
+
date_range("20170101", periods=3).insert(3, pd.NaT),
|
40 |
+
date_range("20170102", periods=3).insert(3, pd.NaT),
|
41 |
+
),
|
42 |
+
(
|
43 |
+
date_range("20170101", periods=3, tz="US/Eastern").insert(3, pd.NaT),
|
44 |
+
date_range("20170102", periods=3, tz="US/Eastern").insert(3, pd.NaT),
|
45 |
+
),
|
46 |
+
],
|
47 |
+
ids=lambda x: str(x[0].dtype),
|
48 |
+
)
|
49 |
+
def left_right_dtypes(request):
|
50 |
+
"""
|
51 |
+
Fixture for building an IntervalArray from various dtypes
|
52 |
+
"""
|
53 |
+
return request.param
|
54 |
+
|
55 |
+
|
56 |
+
@pytest.fixture
|
57 |
+
def interval_array(left_right_dtypes):
|
58 |
+
"""
|
59 |
+
Fixture to generate an IntervalArray of various dtypes containing NA if possible
|
60 |
+
"""
|
61 |
+
left, right = left_right_dtypes
|
62 |
+
return IntervalArray.from_arrays(left, right)
|
63 |
+
|
64 |
+
|
65 |
+
def create_categorical_intervals(left, right, closed="right"):
|
66 |
+
return Categorical(IntervalIndex.from_arrays(left, right, closed))
|
67 |
+
|
68 |
+
|
69 |
+
def create_series_intervals(left, right, closed="right"):
|
70 |
+
return Series(IntervalArray.from_arrays(left, right, closed))
|
71 |
+
|
72 |
+
|
73 |
+
def create_series_categorical_intervals(left, right, closed="right"):
|
74 |
+
return Series(Categorical(IntervalIndex.from_arrays(left, right, closed)))
|
75 |
+
|
76 |
+
|
77 |
+
class TestComparison:
|
78 |
+
@pytest.fixture(params=[operator.eq, operator.ne])
|
79 |
+
def op(self, request):
|
80 |
+
return request.param
|
81 |
+
|
82 |
+
@pytest.fixture(
|
83 |
+
params=[
|
84 |
+
IntervalArray.from_arrays,
|
85 |
+
IntervalIndex.from_arrays,
|
86 |
+
create_categorical_intervals,
|
87 |
+
create_series_intervals,
|
88 |
+
create_series_categorical_intervals,
|
89 |
+
],
|
90 |
+
ids=[
|
91 |
+
"IntervalArray",
|
92 |
+
"IntervalIndex",
|
93 |
+
"Categorical[Interval]",
|
94 |
+
"Series[Interval]",
|
95 |
+
"Series[Categorical[Interval]]",
|
96 |
+
],
|
97 |
+
)
|
98 |
+
def interval_constructor(self, request):
|
99 |
+
"""
|
100 |
+
Fixture for all pandas native interval constructors.
|
101 |
+
To be used as the LHS of IntervalArray comparisons.
|
102 |
+
"""
|
103 |
+
return request.param
|
104 |
+
|
105 |
+
def elementwise_comparison(self, op, interval_array, other):
|
106 |
+
"""
|
107 |
+
Helper that performs elementwise comparisons between `array` and `other`
|
108 |
+
"""
|
109 |
+
other = other if is_list_like(other) else [other] * len(interval_array)
|
110 |
+
expected = np.array([op(x, y) for x, y in zip(interval_array, other)])
|
111 |
+
if isinstance(other, Series):
|
112 |
+
return Series(expected, index=other.index)
|
113 |
+
return expected
|
114 |
+
|
115 |
+
def test_compare_scalar_interval(self, op, interval_array):
|
116 |
+
# matches first interval
|
117 |
+
other = interval_array[0]
|
118 |
+
result = op(interval_array, other)
|
119 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
120 |
+
tm.assert_numpy_array_equal(result, expected)
|
121 |
+
|
122 |
+
# matches on a single endpoint but not both
|
123 |
+
other = Interval(interval_array.left[0], interval_array.right[1])
|
124 |
+
result = op(interval_array, other)
|
125 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
126 |
+
tm.assert_numpy_array_equal(result, expected)
|
127 |
+
|
128 |
+
def test_compare_scalar_interval_mixed_closed(self, op, closed, other_closed):
|
129 |
+
interval_array = IntervalArray.from_arrays(range(2), range(1, 3), closed=closed)
|
130 |
+
other = Interval(0, 1, closed=other_closed)
|
131 |
+
|
132 |
+
result = op(interval_array, other)
|
133 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
134 |
+
tm.assert_numpy_array_equal(result, expected)
|
135 |
+
|
136 |
+
def test_compare_scalar_na(self, op, interval_array, nulls_fixture, box_with_array):
|
137 |
+
box = box_with_array
|
138 |
+
obj = tm.box_expected(interval_array, box)
|
139 |
+
result = op(obj, nulls_fixture)
|
140 |
+
|
141 |
+
if nulls_fixture is pd.NA:
|
142 |
+
# GH#31882
|
143 |
+
exp = np.ones(interval_array.shape, dtype=bool)
|
144 |
+
expected = BooleanArray(exp, exp)
|
145 |
+
else:
|
146 |
+
expected = self.elementwise_comparison(op, interval_array, nulls_fixture)
|
147 |
+
|
148 |
+
if not (box is Index and nulls_fixture is pd.NA):
|
149 |
+
# don't cast expected from BooleanArray to ndarray[object]
|
150 |
+
xbox = get_upcast_box(obj, nulls_fixture, True)
|
151 |
+
expected = tm.box_expected(expected, xbox)
|
152 |
+
|
153 |
+
tm.assert_equal(result, expected)
|
154 |
+
|
155 |
+
rev = op(nulls_fixture, obj)
|
156 |
+
tm.assert_equal(rev, expected)
|
157 |
+
|
158 |
+
@pytest.mark.parametrize(
|
159 |
+
"other",
|
160 |
+
[
|
161 |
+
0,
|
162 |
+
1.0,
|
163 |
+
True,
|
164 |
+
"foo",
|
165 |
+
Timestamp("2017-01-01"),
|
166 |
+
Timestamp("2017-01-01", tz="US/Eastern"),
|
167 |
+
Timedelta("0 days"),
|
168 |
+
Period("2017-01-01", "D"),
|
169 |
+
],
|
170 |
+
)
|
171 |
+
def test_compare_scalar_other(self, op, interval_array, other):
|
172 |
+
result = op(interval_array, other)
|
173 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
174 |
+
tm.assert_numpy_array_equal(result, expected)
|
175 |
+
|
176 |
+
def test_compare_list_like_interval(self, op, interval_array, interval_constructor):
|
177 |
+
# same endpoints
|
178 |
+
other = interval_constructor(interval_array.left, interval_array.right)
|
179 |
+
result = op(interval_array, other)
|
180 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
181 |
+
tm.assert_equal(result, expected)
|
182 |
+
|
183 |
+
# different endpoints
|
184 |
+
other = interval_constructor(
|
185 |
+
interval_array.left[::-1], interval_array.right[::-1]
|
186 |
+
)
|
187 |
+
result = op(interval_array, other)
|
188 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
189 |
+
tm.assert_equal(result, expected)
|
190 |
+
|
191 |
+
# all nan endpoints
|
192 |
+
other = interval_constructor([np.nan] * 4, [np.nan] * 4)
|
193 |
+
result = op(interval_array, other)
|
194 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
195 |
+
tm.assert_equal(result, expected)
|
196 |
+
|
197 |
+
def test_compare_list_like_interval_mixed_closed(
|
198 |
+
self, op, interval_constructor, closed, other_closed
|
199 |
+
):
|
200 |
+
interval_array = IntervalArray.from_arrays(range(2), range(1, 3), closed=closed)
|
201 |
+
other = interval_constructor(range(2), range(1, 3), closed=other_closed)
|
202 |
+
|
203 |
+
result = op(interval_array, other)
|
204 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
205 |
+
tm.assert_equal(result, expected)
|
206 |
+
|
207 |
+
@pytest.mark.parametrize(
|
208 |
+
"other",
|
209 |
+
[
|
210 |
+
(
|
211 |
+
Interval(0, 1),
|
212 |
+
Interval(Timedelta("1 day"), Timedelta("2 days")),
|
213 |
+
Interval(4, 5, "both"),
|
214 |
+
Interval(10, 20, "neither"),
|
215 |
+
),
|
216 |
+
(0, 1.5, Timestamp("20170103"), np.nan),
|
217 |
+
(
|
218 |
+
Timestamp("20170102", tz="US/Eastern"),
|
219 |
+
Timedelta("2 days"),
|
220 |
+
"baz",
|
221 |
+
pd.NaT,
|
222 |
+
),
|
223 |
+
],
|
224 |
+
)
|
225 |
+
def test_compare_list_like_object(self, op, interval_array, other):
|
226 |
+
result = op(interval_array, other)
|
227 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
228 |
+
tm.assert_numpy_array_equal(result, expected)
|
229 |
+
|
230 |
+
def test_compare_list_like_nan(self, op, interval_array, nulls_fixture):
|
231 |
+
other = [nulls_fixture] * 4
|
232 |
+
result = op(interval_array, other)
|
233 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
234 |
+
|
235 |
+
tm.assert_equal(result, expected)
|
236 |
+
|
237 |
+
@pytest.mark.parametrize(
|
238 |
+
"other",
|
239 |
+
[
|
240 |
+
np.arange(4, dtype="int64"),
|
241 |
+
np.arange(4, dtype="float64"),
|
242 |
+
date_range("2017-01-01", periods=4),
|
243 |
+
date_range("2017-01-01", periods=4, tz="US/Eastern"),
|
244 |
+
timedelta_range("0 days", periods=4),
|
245 |
+
period_range("2017-01-01", periods=4, freq="D"),
|
246 |
+
Categorical(list("abab")),
|
247 |
+
Categorical(date_range("2017-01-01", periods=4)),
|
248 |
+
pd.array(list("abcd")),
|
249 |
+
pd.array(["foo", 3.14, None, object()], dtype=object),
|
250 |
+
],
|
251 |
+
ids=lambda x: str(x.dtype),
|
252 |
+
)
|
253 |
+
def test_compare_list_like_other(self, op, interval_array, other):
|
254 |
+
result = op(interval_array, other)
|
255 |
+
expected = self.elementwise_comparison(op, interval_array, other)
|
256 |
+
tm.assert_numpy_array_equal(result, expected)
|
257 |
+
|
258 |
+
@pytest.mark.parametrize("length", [1, 3, 5])
|
259 |
+
@pytest.mark.parametrize("other_constructor", [IntervalArray, list])
|
260 |
+
def test_compare_length_mismatch_errors(self, op, other_constructor, length):
|
261 |
+
interval_array = IntervalArray.from_arrays(range(4), range(1, 5))
|
262 |
+
other = other_constructor([Interval(0, 1)] * length)
|
263 |
+
with pytest.raises(ValueError, match="Lengths must match to compare"):
|
264 |
+
op(interval_array, other)
|
265 |
+
|
266 |
+
@pytest.mark.parametrize(
|
267 |
+
"constructor, expected_type, assert_func",
|
268 |
+
[
|
269 |
+
(IntervalIndex, np.array, tm.assert_numpy_array_equal),
|
270 |
+
(Series, Series, tm.assert_series_equal),
|
271 |
+
],
|
272 |
+
)
|
273 |
+
def test_index_series_compat(self, op, constructor, expected_type, assert_func):
|
274 |
+
# IntervalIndex/Series that rely on IntervalArray for comparisons
|
275 |
+
breaks = range(4)
|
276 |
+
index = constructor(IntervalIndex.from_breaks(breaks))
|
277 |
+
|
278 |
+
# scalar comparisons
|
279 |
+
other = index[0]
|
280 |
+
result = op(index, other)
|
281 |
+
expected = expected_type(self.elementwise_comparison(op, index, other))
|
282 |
+
assert_func(result, expected)
|
283 |
+
|
284 |
+
other = breaks[0]
|
285 |
+
result = op(index, other)
|
286 |
+
expected = expected_type(self.elementwise_comparison(op, index, other))
|
287 |
+
assert_func(result, expected)
|
288 |
+
|
289 |
+
# list-like comparisons
|
290 |
+
other = IntervalArray.from_breaks(breaks)
|
291 |
+
result = op(index, other)
|
292 |
+
expected = expected_type(self.elementwise_comparison(op, index, other))
|
293 |
+
assert_func(result, expected)
|
294 |
+
|
295 |
+
other = [index[0], breaks[0], "foo"]
|
296 |
+
result = op(index, other)
|
297 |
+
expected = expected_type(self.elementwise_comparison(op, index, other))
|
298 |
+
assert_func(result, expected)
|
299 |
+
|
300 |
+
@pytest.mark.parametrize("scalars", ["a", False, 1, 1.0, None])
|
301 |
+
def test_comparison_operations(self, scalars):
|
302 |
+
# GH #28981
|
303 |
+
expected = Series([False, False])
|
304 |
+
s = Series([Interval(0, 1), Interval(1, 2)], dtype="interval")
|
305 |
+
result = s == scalars
|
306 |
+
tm.assert_series_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_numeric.py
ADDED
@@ -0,0 +1,1567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Arithmetic tests for DataFrame/Series/Index/Array classes that should
|
2 |
+
# behave identically.
|
3 |
+
# Specifically for numeric dtypes
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from collections import abc
|
7 |
+
from datetime import timedelta
|
8 |
+
from decimal import Decimal
|
9 |
+
import operator
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import pytest
|
13 |
+
|
14 |
+
import pandas as pd
|
15 |
+
from pandas import (
|
16 |
+
Index,
|
17 |
+
RangeIndex,
|
18 |
+
Series,
|
19 |
+
Timedelta,
|
20 |
+
TimedeltaIndex,
|
21 |
+
array,
|
22 |
+
date_range,
|
23 |
+
)
|
24 |
+
import pandas._testing as tm
|
25 |
+
from pandas.core import ops
|
26 |
+
from pandas.core.computation import expressions as expr
|
27 |
+
from pandas.tests.arithmetic.common import (
|
28 |
+
assert_invalid_addsub_type,
|
29 |
+
assert_invalid_comparison,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
@pytest.fixture(autouse=True, params=[0, 1000000], ids=["numexpr", "python"])
|
34 |
+
def switch_numexpr_min_elements(request, monkeypatch):
|
35 |
+
with monkeypatch.context() as m:
|
36 |
+
m.setattr(expr, "_MIN_ELEMENTS", request.param)
|
37 |
+
yield request.param
|
38 |
+
|
39 |
+
|
40 |
+
@pytest.fixture(params=[Index, Series, tm.to_array])
|
41 |
+
def box_pandas_1d_array(request):
|
42 |
+
"""
|
43 |
+
Fixture to test behavior for Index, Series and tm.to_array classes
|
44 |
+
"""
|
45 |
+
return request.param
|
46 |
+
|
47 |
+
|
48 |
+
@pytest.fixture(
|
49 |
+
params=[
|
50 |
+
# TODO: add more dtypes here
|
51 |
+
Index(np.arange(5, dtype="float64")),
|
52 |
+
Index(np.arange(5, dtype="int64")),
|
53 |
+
Index(np.arange(5, dtype="uint64")),
|
54 |
+
RangeIndex(5),
|
55 |
+
],
|
56 |
+
ids=lambda x: type(x).__name__,
|
57 |
+
)
|
58 |
+
def numeric_idx(request):
|
59 |
+
"""
|
60 |
+
Several types of numeric-dtypes Index objects
|
61 |
+
"""
|
62 |
+
return request.param
|
63 |
+
|
64 |
+
|
65 |
+
@pytest.fixture(
|
66 |
+
params=[Index, Series, tm.to_array, np.array, list], ids=lambda x: x.__name__
|
67 |
+
)
|
68 |
+
def box_1d_array(request):
|
69 |
+
"""
|
70 |
+
Fixture to test behavior for Index, Series, tm.to_array, numpy Array and list
|
71 |
+
classes
|
72 |
+
"""
|
73 |
+
return request.param
|
74 |
+
|
75 |
+
|
76 |
+
def adjust_negative_zero(zero, expected):
|
77 |
+
"""
|
78 |
+
Helper to adjust the expected result if we are dividing by -0.0
|
79 |
+
as opposed to 0.0
|
80 |
+
"""
|
81 |
+
if np.signbit(np.array(zero)).any():
|
82 |
+
# All entries in the `zero` fixture should be either
|
83 |
+
# all-negative or no-negative.
|
84 |
+
assert np.signbit(np.array(zero)).all()
|
85 |
+
|
86 |
+
expected *= -1
|
87 |
+
|
88 |
+
return expected
|
89 |
+
|
90 |
+
|
91 |
+
def compare_op(series, other, op):
|
92 |
+
left = np.abs(series) if op in (ops.rpow, operator.pow) else series
|
93 |
+
right = np.abs(other) if op in (ops.rpow, operator.pow) else other
|
94 |
+
|
95 |
+
cython_or_numpy = op(left, right)
|
96 |
+
python = left.combine(right, op)
|
97 |
+
if isinstance(other, Series) and not other.index.equals(series.index):
|
98 |
+
python.index = python.index._with_freq(None)
|
99 |
+
tm.assert_series_equal(cython_or_numpy, python)
|
100 |
+
|
101 |
+
|
102 |
+
# TODO: remove this kludge once mypy stops giving false positives here
|
103 |
+
# List comprehension has incompatible type List[PandasObject]; expected List[RangeIndex]
|
104 |
+
# See GH#29725
|
105 |
+
_ldtypes = ["i1", "i2", "i4", "i8", "u1", "u2", "u4", "u8", "f2", "f4", "f8"]
|
106 |
+
lefts: list[Index | Series] = [RangeIndex(10, 40, 10)]
|
107 |
+
lefts.extend([Series([10, 20, 30], dtype=dtype) for dtype in _ldtypes])
|
108 |
+
lefts.extend([Index([10, 20, 30], dtype=dtype) for dtype in _ldtypes if dtype != "f2"])
|
109 |
+
|
110 |
+
# ------------------------------------------------------------------
|
111 |
+
# Comparisons
|
112 |
+
|
113 |
+
|
114 |
+
class TestNumericComparisons:
|
115 |
+
def test_operator_series_comparison_zerorank(self):
|
116 |
+
# GH#13006
|
117 |
+
result = np.float64(0) > Series([1, 2, 3])
|
118 |
+
expected = 0.0 > Series([1, 2, 3])
|
119 |
+
tm.assert_series_equal(result, expected)
|
120 |
+
result = Series([1, 2, 3]) < np.float64(0)
|
121 |
+
expected = Series([1, 2, 3]) < 0.0
|
122 |
+
tm.assert_series_equal(result, expected)
|
123 |
+
result = np.array([0, 1, 2])[0] > Series([0, 1, 2])
|
124 |
+
expected = 0.0 > Series([1, 2, 3])
|
125 |
+
tm.assert_series_equal(result, expected)
|
126 |
+
|
127 |
+
def test_df_numeric_cmp_dt64_raises(self, box_with_array, fixed_now_ts):
|
128 |
+
# GH#8932, GH#22163
|
129 |
+
ts = fixed_now_ts
|
130 |
+
obj = np.array(range(5))
|
131 |
+
obj = tm.box_expected(obj, box_with_array)
|
132 |
+
|
133 |
+
assert_invalid_comparison(obj, ts, box_with_array)
|
134 |
+
|
135 |
+
def test_compare_invalid(self):
|
136 |
+
# GH#8058
|
137 |
+
# ops testing
|
138 |
+
a = Series(np.random.default_rng(2).standard_normal(5), name=0)
|
139 |
+
b = Series(np.random.default_rng(2).standard_normal(5))
|
140 |
+
b.name = pd.Timestamp("2000-01-01")
|
141 |
+
tm.assert_series_equal(a / b, 1 / (b / a))
|
142 |
+
|
143 |
+
def test_numeric_cmp_string_numexpr_path(self, box_with_array, monkeypatch):
|
144 |
+
# GH#36377, GH#35700
|
145 |
+
box = box_with_array
|
146 |
+
xbox = box if box is not Index else np.ndarray
|
147 |
+
|
148 |
+
obj = Series(np.random.default_rng(2).standard_normal(51))
|
149 |
+
obj = tm.box_expected(obj, box, transpose=False)
|
150 |
+
with monkeypatch.context() as m:
|
151 |
+
m.setattr(expr, "_MIN_ELEMENTS", 50)
|
152 |
+
result = obj == "a"
|
153 |
+
|
154 |
+
expected = Series(np.zeros(51, dtype=bool))
|
155 |
+
expected = tm.box_expected(expected, xbox, transpose=False)
|
156 |
+
tm.assert_equal(result, expected)
|
157 |
+
|
158 |
+
with monkeypatch.context() as m:
|
159 |
+
m.setattr(expr, "_MIN_ELEMENTS", 50)
|
160 |
+
result = obj != "a"
|
161 |
+
tm.assert_equal(result, ~expected)
|
162 |
+
|
163 |
+
msg = "Invalid comparison between dtype=float64 and str"
|
164 |
+
with pytest.raises(TypeError, match=msg):
|
165 |
+
obj < "a"
|
166 |
+
|
167 |
+
|
168 |
+
# ------------------------------------------------------------------
|
169 |
+
# Numeric dtypes Arithmetic with Datetime/Timedelta Scalar
|
170 |
+
|
171 |
+
|
172 |
+
class TestNumericArraylikeArithmeticWithDatetimeLike:
|
173 |
+
@pytest.mark.parametrize("box_cls", [np.array, Index, Series])
|
174 |
+
@pytest.mark.parametrize(
|
175 |
+
"left", lefts, ids=lambda x: type(x).__name__ + str(x.dtype)
|
176 |
+
)
|
177 |
+
def test_mul_td64arr(self, left, box_cls):
|
178 |
+
# GH#22390
|
179 |
+
right = np.array([1, 2, 3], dtype="m8[s]")
|
180 |
+
right = box_cls(right)
|
181 |
+
|
182 |
+
expected = TimedeltaIndex(["10s", "40s", "90s"], dtype=right.dtype)
|
183 |
+
|
184 |
+
if isinstance(left, Series) or box_cls is Series:
|
185 |
+
expected = Series(expected)
|
186 |
+
assert expected.dtype == right.dtype
|
187 |
+
|
188 |
+
result = left * right
|
189 |
+
tm.assert_equal(result, expected)
|
190 |
+
|
191 |
+
result = right * left
|
192 |
+
tm.assert_equal(result, expected)
|
193 |
+
|
194 |
+
@pytest.mark.parametrize("box_cls", [np.array, Index, Series])
|
195 |
+
@pytest.mark.parametrize(
|
196 |
+
"left", lefts, ids=lambda x: type(x).__name__ + str(x.dtype)
|
197 |
+
)
|
198 |
+
def test_div_td64arr(self, left, box_cls):
|
199 |
+
# GH#22390
|
200 |
+
right = np.array([10, 40, 90], dtype="m8[s]")
|
201 |
+
right = box_cls(right)
|
202 |
+
|
203 |
+
expected = TimedeltaIndex(["1s", "2s", "3s"], dtype=right.dtype)
|
204 |
+
if isinstance(left, Series) or box_cls is Series:
|
205 |
+
expected = Series(expected)
|
206 |
+
assert expected.dtype == right.dtype
|
207 |
+
|
208 |
+
result = right / left
|
209 |
+
tm.assert_equal(result, expected)
|
210 |
+
|
211 |
+
result = right // left
|
212 |
+
tm.assert_equal(result, expected)
|
213 |
+
|
214 |
+
# (true_) needed for min-versions build 2022-12-26
|
215 |
+
msg = "ufunc '(true_)?divide' cannot use operands with types"
|
216 |
+
with pytest.raises(TypeError, match=msg):
|
217 |
+
left / right
|
218 |
+
|
219 |
+
msg = "ufunc 'floor_divide' cannot use operands with types"
|
220 |
+
with pytest.raises(TypeError, match=msg):
|
221 |
+
left // right
|
222 |
+
|
223 |
+
# TODO: also test Tick objects;
|
224 |
+
# see test_numeric_arr_rdiv_tdscalar for note on these failing
|
225 |
+
@pytest.mark.parametrize(
|
226 |
+
"scalar_td",
|
227 |
+
[
|
228 |
+
Timedelta(days=1),
|
229 |
+
Timedelta(days=1).to_timedelta64(),
|
230 |
+
Timedelta(days=1).to_pytimedelta(),
|
231 |
+
Timedelta(days=1).to_timedelta64().astype("timedelta64[s]"),
|
232 |
+
Timedelta(days=1).to_timedelta64().astype("timedelta64[ms]"),
|
233 |
+
],
|
234 |
+
ids=lambda x: type(x).__name__,
|
235 |
+
)
|
236 |
+
def test_numeric_arr_mul_tdscalar(self, scalar_td, numeric_idx, box_with_array):
|
237 |
+
# GH#19333
|
238 |
+
box = box_with_array
|
239 |
+
index = numeric_idx
|
240 |
+
expected = TimedeltaIndex([Timedelta(days=n) for n in range(len(index))])
|
241 |
+
if isinstance(scalar_td, np.timedelta64):
|
242 |
+
dtype = scalar_td.dtype
|
243 |
+
expected = expected.astype(dtype)
|
244 |
+
elif type(scalar_td) is timedelta:
|
245 |
+
expected = expected.astype("m8[us]")
|
246 |
+
|
247 |
+
index = tm.box_expected(index, box)
|
248 |
+
expected = tm.box_expected(expected, box)
|
249 |
+
|
250 |
+
result = index * scalar_td
|
251 |
+
tm.assert_equal(result, expected)
|
252 |
+
|
253 |
+
commute = scalar_td * index
|
254 |
+
tm.assert_equal(commute, expected)
|
255 |
+
|
256 |
+
@pytest.mark.parametrize(
|
257 |
+
"scalar_td",
|
258 |
+
[
|
259 |
+
Timedelta(days=1),
|
260 |
+
Timedelta(days=1).to_timedelta64(),
|
261 |
+
Timedelta(days=1).to_pytimedelta(),
|
262 |
+
],
|
263 |
+
ids=lambda x: type(x).__name__,
|
264 |
+
)
|
265 |
+
@pytest.mark.parametrize("dtype", [np.int64, np.float64])
|
266 |
+
def test_numeric_arr_mul_tdscalar_numexpr_path(
|
267 |
+
self, dtype, scalar_td, box_with_array
|
268 |
+
):
|
269 |
+
# GH#44772 for the float64 case
|
270 |
+
box = box_with_array
|
271 |
+
|
272 |
+
arr_i8 = np.arange(2 * 10**4).astype(np.int64, copy=False)
|
273 |
+
arr = arr_i8.astype(dtype, copy=False)
|
274 |
+
obj = tm.box_expected(arr, box, transpose=False)
|
275 |
+
|
276 |
+
expected = arr_i8.view("timedelta64[D]").astype("timedelta64[ns]")
|
277 |
+
if type(scalar_td) is timedelta:
|
278 |
+
expected = expected.astype("timedelta64[us]")
|
279 |
+
|
280 |
+
expected = tm.box_expected(expected, box, transpose=False)
|
281 |
+
|
282 |
+
result = obj * scalar_td
|
283 |
+
tm.assert_equal(result, expected)
|
284 |
+
|
285 |
+
result = scalar_td * obj
|
286 |
+
tm.assert_equal(result, expected)
|
287 |
+
|
288 |
+
def test_numeric_arr_rdiv_tdscalar(self, three_days, numeric_idx, box_with_array):
|
289 |
+
box = box_with_array
|
290 |
+
|
291 |
+
index = numeric_idx[1:3]
|
292 |
+
|
293 |
+
expected = TimedeltaIndex(["3 Days", "36 Hours"])
|
294 |
+
if isinstance(three_days, np.timedelta64):
|
295 |
+
dtype = three_days.dtype
|
296 |
+
if dtype < np.dtype("m8[s]"):
|
297 |
+
# i.e. resolution is lower -> use lowest supported resolution
|
298 |
+
dtype = np.dtype("m8[s]")
|
299 |
+
expected = expected.astype(dtype)
|
300 |
+
elif type(three_days) is timedelta:
|
301 |
+
expected = expected.astype("m8[us]")
|
302 |
+
elif isinstance(
|
303 |
+
three_days,
|
304 |
+
(pd.offsets.Day, pd.offsets.Hour, pd.offsets.Minute, pd.offsets.Second),
|
305 |
+
):
|
306 |
+
# closest reso is Second
|
307 |
+
expected = expected.astype("m8[s]")
|
308 |
+
|
309 |
+
index = tm.box_expected(index, box)
|
310 |
+
expected = tm.box_expected(expected, box)
|
311 |
+
|
312 |
+
result = three_days / index
|
313 |
+
tm.assert_equal(result, expected)
|
314 |
+
|
315 |
+
msg = "cannot use operands with types dtype"
|
316 |
+
with pytest.raises(TypeError, match=msg):
|
317 |
+
index / three_days
|
318 |
+
|
319 |
+
@pytest.mark.parametrize(
|
320 |
+
"other",
|
321 |
+
[
|
322 |
+
Timedelta(hours=31),
|
323 |
+
Timedelta(hours=31).to_pytimedelta(),
|
324 |
+
Timedelta(hours=31).to_timedelta64(),
|
325 |
+
Timedelta(hours=31).to_timedelta64().astype("m8[h]"),
|
326 |
+
np.timedelta64("NaT"),
|
327 |
+
np.timedelta64("NaT", "D"),
|
328 |
+
pd.offsets.Minute(3),
|
329 |
+
pd.offsets.Second(0),
|
330 |
+
# GH#28080 numeric+datetimelike should raise; Timestamp used
|
331 |
+
# to raise NullFrequencyError but that behavior was removed in 1.0
|
332 |
+
pd.Timestamp("2021-01-01", tz="Asia/Tokyo"),
|
333 |
+
pd.Timestamp("2021-01-01"),
|
334 |
+
pd.Timestamp("2021-01-01").to_pydatetime(),
|
335 |
+
pd.Timestamp("2021-01-01", tz="UTC").to_pydatetime(),
|
336 |
+
pd.Timestamp("2021-01-01").to_datetime64(),
|
337 |
+
np.datetime64("NaT", "ns"),
|
338 |
+
pd.NaT,
|
339 |
+
],
|
340 |
+
ids=repr,
|
341 |
+
)
|
342 |
+
def test_add_sub_datetimedeltalike_invalid(
|
343 |
+
self, numeric_idx, other, box_with_array
|
344 |
+
):
|
345 |
+
box = box_with_array
|
346 |
+
|
347 |
+
left = tm.box_expected(numeric_idx, box)
|
348 |
+
msg = "|".join(
|
349 |
+
[
|
350 |
+
"unsupported operand type",
|
351 |
+
"Addition/subtraction of integers and integer-arrays",
|
352 |
+
"Instead of adding/subtracting",
|
353 |
+
"cannot use operands with types dtype",
|
354 |
+
"Concatenation operation is not implemented for NumPy arrays",
|
355 |
+
"Cannot (add|subtract) NaT (to|from) ndarray",
|
356 |
+
# pd.array vs np.datetime64 case
|
357 |
+
r"operand type\(s\) all returned NotImplemented from __array_ufunc__",
|
358 |
+
"can only perform ops with numeric values",
|
359 |
+
"cannot subtract DatetimeArray from ndarray",
|
360 |
+
# pd.Timedelta(1) + Index([0, 1, 2])
|
361 |
+
"Cannot add or subtract Timedelta from integers",
|
362 |
+
]
|
363 |
+
)
|
364 |
+
assert_invalid_addsub_type(left, other, msg)
|
365 |
+
|
366 |
+
|
367 |
+
# ------------------------------------------------------------------
|
368 |
+
# Arithmetic
|
369 |
+
|
370 |
+
|
371 |
+
class TestDivisionByZero:
|
372 |
+
def test_div_zero(self, zero, numeric_idx):
|
373 |
+
idx = numeric_idx
|
374 |
+
|
375 |
+
expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
|
376 |
+
# We only adjust for Index, because Series does not yet apply
|
377 |
+
# the adjustment correctly.
|
378 |
+
expected2 = adjust_negative_zero(zero, expected)
|
379 |
+
|
380 |
+
result = idx / zero
|
381 |
+
tm.assert_index_equal(result, expected2)
|
382 |
+
ser_compat = Series(idx).astype("i8") / np.array(zero).astype("i8")
|
383 |
+
tm.assert_series_equal(ser_compat, Series(expected))
|
384 |
+
|
385 |
+
def test_floordiv_zero(self, zero, numeric_idx):
|
386 |
+
idx = numeric_idx
|
387 |
+
|
388 |
+
expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
|
389 |
+
# We only adjust for Index, because Series does not yet apply
|
390 |
+
# the adjustment correctly.
|
391 |
+
expected2 = adjust_negative_zero(zero, expected)
|
392 |
+
|
393 |
+
result = idx // zero
|
394 |
+
tm.assert_index_equal(result, expected2)
|
395 |
+
ser_compat = Series(idx).astype("i8") // np.array(zero).astype("i8")
|
396 |
+
tm.assert_series_equal(ser_compat, Series(expected))
|
397 |
+
|
398 |
+
def test_mod_zero(self, zero, numeric_idx):
|
399 |
+
idx = numeric_idx
|
400 |
+
|
401 |
+
expected = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64)
|
402 |
+
result = idx % zero
|
403 |
+
tm.assert_index_equal(result, expected)
|
404 |
+
ser_compat = Series(idx).astype("i8") % np.array(zero).astype("i8")
|
405 |
+
tm.assert_series_equal(ser_compat, Series(result))
|
406 |
+
|
407 |
+
def test_divmod_zero(self, zero, numeric_idx):
|
408 |
+
idx = numeric_idx
|
409 |
+
|
410 |
+
exleft = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
|
411 |
+
exright = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64)
|
412 |
+
exleft = adjust_negative_zero(zero, exleft)
|
413 |
+
|
414 |
+
result = divmod(idx, zero)
|
415 |
+
tm.assert_index_equal(result[0], exleft)
|
416 |
+
tm.assert_index_equal(result[1], exright)
|
417 |
+
|
418 |
+
@pytest.mark.parametrize("op", [operator.truediv, operator.floordiv])
|
419 |
+
def test_div_negative_zero(self, zero, numeric_idx, op):
|
420 |
+
# Check that -1 / -0.0 returns np.inf, not -np.inf
|
421 |
+
if numeric_idx.dtype == np.uint64:
|
422 |
+
pytest.skip(f"Div by negative 0 not relevant for {numeric_idx.dtype}")
|
423 |
+
idx = numeric_idx - 3
|
424 |
+
|
425 |
+
expected = Index([-np.inf, -np.inf, -np.inf, np.nan, np.inf], dtype=np.float64)
|
426 |
+
expected = adjust_negative_zero(zero, expected)
|
427 |
+
|
428 |
+
result = op(idx, zero)
|
429 |
+
tm.assert_index_equal(result, expected)
|
430 |
+
|
431 |
+
# ------------------------------------------------------------------
|
432 |
+
|
433 |
+
@pytest.mark.parametrize("dtype1", [np.int64, np.float64, np.uint64])
|
434 |
+
def test_ser_div_ser(
|
435 |
+
self,
|
436 |
+
switch_numexpr_min_elements,
|
437 |
+
dtype1,
|
438 |
+
any_real_numpy_dtype,
|
439 |
+
):
|
440 |
+
# no longer do integer div for any ops, but deal with the 0's
|
441 |
+
dtype2 = any_real_numpy_dtype
|
442 |
+
|
443 |
+
first = Series([3, 4, 5, 8], name="first").astype(dtype1)
|
444 |
+
second = Series([0, 0, 0, 3], name="second").astype(dtype2)
|
445 |
+
|
446 |
+
with np.errstate(all="ignore"):
|
447 |
+
expected = Series(
|
448 |
+
first.values.astype(np.float64) / second.values,
|
449 |
+
dtype="float64",
|
450 |
+
name=None,
|
451 |
+
)
|
452 |
+
expected.iloc[0:3] = np.inf
|
453 |
+
if first.dtype == "int64" and second.dtype == "float32":
|
454 |
+
# when using numexpr, the casting rules are slightly different
|
455 |
+
# and int64/float32 combo results in float32 instead of float64
|
456 |
+
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0:
|
457 |
+
expected = expected.astype("float32")
|
458 |
+
|
459 |
+
result = first / second
|
460 |
+
tm.assert_series_equal(result, expected)
|
461 |
+
assert not result.equals(second / first)
|
462 |
+
|
463 |
+
@pytest.mark.parametrize("dtype1", [np.int64, np.float64, np.uint64])
|
464 |
+
def test_ser_divmod_zero(self, dtype1, any_real_numpy_dtype):
|
465 |
+
# GH#26987
|
466 |
+
dtype2 = any_real_numpy_dtype
|
467 |
+
left = Series([1, 1]).astype(dtype1)
|
468 |
+
right = Series([0, 2]).astype(dtype2)
|
469 |
+
|
470 |
+
# GH#27321 pandas convention is to set 1 // 0 to np.inf, as opposed
|
471 |
+
# to numpy which sets to np.nan; patch `expected[0]` below
|
472 |
+
expected = left // right, left % right
|
473 |
+
expected = list(expected)
|
474 |
+
expected[0] = expected[0].astype(np.float64)
|
475 |
+
expected[0][0] = np.inf
|
476 |
+
result = divmod(left, right)
|
477 |
+
|
478 |
+
tm.assert_series_equal(result[0], expected[0])
|
479 |
+
tm.assert_series_equal(result[1], expected[1])
|
480 |
+
|
481 |
+
# rdivmod case
|
482 |
+
result = divmod(left.values, right)
|
483 |
+
tm.assert_series_equal(result[0], expected[0])
|
484 |
+
tm.assert_series_equal(result[1], expected[1])
|
485 |
+
|
486 |
+
def test_ser_divmod_inf(self):
|
487 |
+
left = Series([np.inf, 1.0])
|
488 |
+
right = Series([np.inf, 2.0])
|
489 |
+
|
490 |
+
expected = left // right, left % right
|
491 |
+
result = divmod(left, right)
|
492 |
+
|
493 |
+
tm.assert_series_equal(result[0], expected[0])
|
494 |
+
tm.assert_series_equal(result[1], expected[1])
|
495 |
+
|
496 |
+
# rdivmod case
|
497 |
+
result = divmod(left.values, right)
|
498 |
+
tm.assert_series_equal(result[0], expected[0])
|
499 |
+
tm.assert_series_equal(result[1], expected[1])
|
500 |
+
|
501 |
+
def test_rdiv_zero_compat(self):
|
502 |
+
# GH#8674
|
503 |
+
zero_array = np.array([0] * 5)
|
504 |
+
data = np.random.default_rng(2).standard_normal(5)
|
505 |
+
expected = Series([0.0] * 5)
|
506 |
+
|
507 |
+
result = zero_array / Series(data)
|
508 |
+
tm.assert_series_equal(result, expected)
|
509 |
+
|
510 |
+
result = Series(zero_array) / data
|
511 |
+
tm.assert_series_equal(result, expected)
|
512 |
+
|
513 |
+
result = Series(zero_array) / Series(data)
|
514 |
+
tm.assert_series_equal(result, expected)
|
515 |
+
|
516 |
+
def test_div_zero_inf_signs(self):
|
517 |
+
# GH#9144, inf signing
|
518 |
+
ser = Series([-1, 0, 1], name="first")
|
519 |
+
expected = Series([-np.inf, np.nan, np.inf], name="first")
|
520 |
+
|
521 |
+
result = ser / 0
|
522 |
+
tm.assert_series_equal(result, expected)
|
523 |
+
|
524 |
+
def test_rdiv_zero(self):
|
525 |
+
# GH#9144
|
526 |
+
ser = Series([-1, 0, 1], name="first")
|
527 |
+
expected = Series([0.0, np.nan, 0.0], name="first")
|
528 |
+
|
529 |
+
result = 0 / ser
|
530 |
+
tm.assert_series_equal(result, expected)
|
531 |
+
|
532 |
+
def test_floordiv_div(self):
|
533 |
+
# GH#9144
|
534 |
+
ser = Series([-1, 0, 1], name="first")
|
535 |
+
|
536 |
+
result = ser // 0
|
537 |
+
expected = Series([-np.inf, np.nan, np.inf], name="first")
|
538 |
+
tm.assert_series_equal(result, expected)
|
539 |
+
|
540 |
+
def test_df_div_zero_df(self):
|
541 |
+
# integer div, but deal with the 0's (GH#9144)
|
542 |
+
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
543 |
+
result = df / df
|
544 |
+
|
545 |
+
first = Series([1.0, 1.0, 1.0, 1.0])
|
546 |
+
second = Series([np.nan, np.nan, np.nan, 1])
|
547 |
+
expected = pd.DataFrame({"first": first, "second": second})
|
548 |
+
tm.assert_frame_equal(result, expected)
|
549 |
+
|
550 |
+
def test_df_div_zero_array(self):
|
551 |
+
# integer div, but deal with the 0's (GH#9144)
|
552 |
+
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
553 |
+
|
554 |
+
first = Series([1.0, 1.0, 1.0, 1.0])
|
555 |
+
second = Series([np.nan, np.nan, np.nan, 1])
|
556 |
+
expected = pd.DataFrame({"first": first, "second": second})
|
557 |
+
|
558 |
+
with np.errstate(all="ignore"):
|
559 |
+
arr = df.values.astype("float") / df.values
|
560 |
+
result = pd.DataFrame(arr, index=df.index, columns=df.columns)
|
561 |
+
tm.assert_frame_equal(result, expected)
|
562 |
+
|
563 |
+
def test_df_div_zero_int(self):
|
564 |
+
# integer div, but deal with the 0's (GH#9144)
|
565 |
+
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
566 |
+
|
567 |
+
result = df / 0
|
568 |
+
expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns)
|
569 |
+
expected.iloc[0:3, 1] = np.nan
|
570 |
+
tm.assert_frame_equal(result, expected)
|
571 |
+
|
572 |
+
# numpy has a slightly different (wrong) treatment
|
573 |
+
with np.errstate(all="ignore"):
|
574 |
+
arr = df.values.astype("float64") / 0
|
575 |
+
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
|
576 |
+
tm.assert_frame_equal(result2, expected)
|
577 |
+
|
578 |
+
def test_df_div_zero_series_does_not_commute(self):
|
579 |
+
# integer div, but deal with the 0's (GH#9144)
|
580 |
+
df = pd.DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
|
581 |
+
ser = df[0]
|
582 |
+
res = ser / df
|
583 |
+
res2 = df / ser
|
584 |
+
assert not res.fillna(0).equals(res2.fillna(0))
|
585 |
+
|
586 |
+
# ------------------------------------------------------------------
|
587 |
+
# Mod By Zero
|
588 |
+
|
589 |
+
def test_df_mod_zero_df(self, using_array_manager):
|
590 |
+
# GH#3590, modulo as ints
|
591 |
+
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
592 |
+
# this is technically wrong, as the integer portion is coerced to float
|
593 |
+
first = Series([0, 0, 0, 0])
|
594 |
+
if not using_array_manager:
|
595 |
+
# INFO(ArrayManager) BlockManager doesn't preserve dtype per column
|
596 |
+
# while ArrayManager performs op column-wisedoes and thus preserves
|
597 |
+
# dtype if possible
|
598 |
+
first = first.astype("float64")
|
599 |
+
second = Series([np.nan, np.nan, np.nan, 0])
|
600 |
+
expected = pd.DataFrame({"first": first, "second": second})
|
601 |
+
result = df % df
|
602 |
+
tm.assert_frame_equal(result, expected)
|
603 |
+
|
604 |
+
# GH#38939 If we dont pass copy=False, df is consolidated and
|
605 |
+
# result["first"] is float64 instead of int64
|
606 |
+
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}, copy=False)
|
607 |
+
first = Series([0, 0, 0, 0], dtype="int64")
|
608 |
+
second = Series([np.nan, np.nan, np.nan, 0])
|
609 |
+
expected = pd.DataFrame({"first": first, "second": second})
|
610 |
+
result = df % df
|
611 |
+
tm.assert_frame_equal(result, expected)
|
612 |
+
|
613 |
+
def test_df_mod_zero_array(self):
|
614 |
+
# GH#3590, modulo as ints
|
615 |
+
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
616 |
+
|
617 |
+
# this is technically wrong, as the integer portion is coerced to float
|
618 |
+
# ###
|
619 |
+
first = Series([0, 0, 0, 0], dtype="float64")
|
620 |
+
second = Series([np.nan, np.nan, np.nan, 0])
|
621 |
+
expected = pd.DataFrame({"first": first, "second": second})
|
622 |
+
|
623 |
+
# numpy has a slightly different (wrong) treatment
|
624 |
+
with np.errstate(all="ignore"):
|
625 |
+
arr = df.values % df.values
|
626 |
+
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns, dtype="float64")
|
627 |
+
result2.iloc[0:3, 1] = np.nan
|
628 |
+
tm.assert_frame_equal(result2, expected)
|
629 |
+
|
630 |
+
def test_df_mod_zero_int(self):
|
631 |
+
# GH#3590, modulo as ints
|
632 |
+
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
633 |
+
|
634 |
+
result = df % 0
|
635 |
+
expected = pd.DataFrame(np.nan, index=df.index, columns=df.columns)
|
636 |
+
tm.assert_frame_equal(result, expected)
|
637 |
+
|
638 |
+
# numpy has a slightly different (wrong) treatment
|
639 |
+
with np.errstate(all="ignore"):
|
640 |
+
arr = df.values.astype("float64") % 0
|
641 |
+
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
|
642 |
+
tm.assert_frame_equal(result2, expected)
|
643 |
+
|
644 |
+
def test_df_mod_zero_series_does_not_commute(self):
|
645 |
+
# GH#3590, modulo as ints
|
646 |
+
# not commutative with series
|
647 |
+
df = pd.DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
|
648 |
+
ser = df[0]
|
649 |
+
res = ser % df
|
650 |
+
res2 = df % ser
|
651 |
+
assert not res.fillna(0).equals(res2.fillna(0))
|
652 |
+
|
653 |
+
|
654 |
+
class TestMultiplicationDivision:
|
655 |
+
# __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__
|
656 |
+
# for non-timestamp/timedelta/period dtypes
|
657 |
+
|
658 |
+
def test_divide_decimal(self, box_with_array):
|
659 |
+
# resolves issue GH#9787
|
660 |
+
box = box_with_array
|
661 |
+
ser = Series([Decimal(10)])
|
662 |
+
expected = Series([Decimal(5)])
|
663 |
+
|
664 |
+
ser = tm.box_expected(ser, box)
|
665 |
+
expected = tm.box_expected(expected, box)
|
666 |
+
|
667 |
+
result = ser / Decimal(2)
|
668 |
+
|
669 |
+
tm.assert_equal(result, expected)
|
670 |
+
|
671 |
+
result = ser // Decimal(2)
|
672 |
+
tm.assert_equal(result, expected)
|
673 |
+
|
674 |
+
def test_div_equiv_binop(self):
|
675 |
+
# Test Series.div as well as Series.__div__
|
676 |
+
# float/integer issue
|
677 |
+
# GH#7785
|
678 |
+
first = Series([1, 0], name="first")
|
679 |
+
second = Series([-0.01, -0.02], name="second")
|
680 |
+
expected = Series([-0.01, -np.inf])
|
681 |
+
|
682 |
+
result = second.div(first)
|
683 |
+
tm.assert_series_equal(result, expected, check_names=False)
|
684 |
+
|
685 |
+
result = second / first
|
686 |
+
tm.assert_series_equal(result, expected)
|
687 |
+
|
688 |
+
def test_div_int(self, numeric_idx):
|
689 |
+
idx = numeric_idx
|
690 |
+
result = idx / 1
|
691 |
+
expected = idx.astype("float64")
|
692 |
+
tm.assert_index_equal(result, expected)
|
693 |
+
|
694 |
+
result = idx / 2
|
695 |
+
expected = Index(idx.values / 2)
|
696 |
+
tm.assert_index_equal(result, expected)
|
697 |
+
|
698 |
+
@pytest.mark.parametrize("op", [operator.mul, ops.rmul, operator.floordiv])
|
699 |
+
def test_mul_int_identity(self, op, numeric_idx, box_with_array):
|
700 |
+
idx = numeric_idx
|
701 |
+
idx = tm.box_expected(idx, box_with_array)
|
702 |
+
|
703 |
+
result = op(idx, 1)
|
704 |
+
tm.assert_equal(result, idx)
|
705 |
+
|
706 |
+
def test_mul_int_array(self, numeric_idx):
|
707 |
+
idx = numeric_idx
|
708 |
+
didx = idx * idx
|
709 |
+
|
710 |
+
result = idx * np.array(5, dtype="int64")
|
711 |
+
tm.assert_index_equal(result, idx * 5)
|
712 |
+
|
713 |
+
arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64"
|
714 |
+
result = idx * np.arange(5, dtype=arr_dtype)
|
715 |
+
tm.assert_index_equal(result, didx)
|
716 |
+
|
717 |
+
def test_mul_int_series(self, numeric_idx):
|
718 |
+
idx = numeric_idx
|
719 |
+
didx = idx * idx
|
720 |
+
|
721 |
+
arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64"
|
722 |
+
result = idx * Series(np.arange(5, dtype=arr_dtype))
|
723 |
+
tm.assert_series_equal(result, Series(didx))
|
724 |
+
|
725 |
+
def test_mul_float_series(self, numeric_idx):
|
726 |
+
idx = numeric_idx
|
727 |
+
rng5 = np.arange(5, dtype="float64")
|
728 |
+
|
729 |
+
result = idx * Series(rng5 + 0.1)
|
730 |
+
expected = Series(rng5 * (rng5 + 0.1))
|
731 |
+
tm.assert_series_equal(result, expected)
|
732 |
+
|
733 |
+
def test_mul_index(self, numeric_idx):
|
734 |
+
idx = numeric_idx
|
735 |
+
|
736 |
+
result = idx * idx
|
737 |
+
tm.assert_index_equal(result, idx**2)
|
738 |
+
|
739 |
+
def test_mul_datelike_raises(self, numeric_idx):
|
740 |
+
idx = numeric_idx
|
741 |
+
msg = "cannot perform __rmul__ with this index type"
|
742 |
+
with pytest.raises(TypeError, match=msg):
|
743 |
+
idx * date_range("20130101", periods=5)
|
744 |
+
|
745 |
+
def test_mul_size_mismatch_raises(self, numeric_idx):
|
746 |
+
idx = numeric_idx
|
747 |
+
msg = "operands could not be broadcast together"
|
748 |
+
with pytest.raises(ValueError, match=msg):
|
749 |
+
idx * idx[0:3]
|
750 |
+
with pytest.raises(ValueError, match=msg):
|
751 |
+
idx * np.array([1, 2])
|
752 |
+
|
753 |
+
@pytest.mark.parametrize("op", [operator.pow, ops.rpow])
|
754 |
+
def test_pow_float(self, op, numeric_idx, box_with_array):
|
755 |
+
# test power calculations both ways, GH#14973
|
756 |
+
box = box_with_array
|
757 |
+
idx = numeric_idx
|
758 |
+
expected = Index(op(idx.values, 2.0))
|
759 |
+
|
760 |
+
idx = tm.box_expected(idx, box)
|
761 |
+
expected = tm.box_expected(expected, box)
|
762 |
+
|
763 |
+
result = op(idx, 2.0)
|
764 |
+
tm.assert_equal(result, expected)
|
765 |
+
|
766 |
+
def test_modulo(self, numeric_idx, box_with_array):
|
767 |
+
# GH#9244
|
768 |
+
box = box_with_array
|
769 |
+
idx = numeric_idx
|
770 |
+
expected = Index(idx.values % 2)
|
771 |
+
|
772 |
+
idx = tm.box_expected(idx, box)
|
773 |
+
expected = tm.box_expected(expected, box)
|
774 |
+
|
775 |
+
result = idx % 2
|
776 |
+
tm.assert_equal(result, expected)
|
777 |
+
|
778 |
+
def test_divmod_scalar(self, numeric_idx):
|
779 |
+
idx = numeric_idx
|
780 |
+
|
781 |
+
result = divmod(idx, 2)
|
782 |
+
with np.errstate(all="ignore"):
|
783 |
+
div, mod = divmod(idx.values, 2)
|
784 |
+
|
785 |
+
expected = Index(div), Index(mod)
|
786 |
+
for r, e in zip(result, expected):
|
787 |
+
tm.assert_index_equal(r, e)
|
788 |
+
|
789 |
+
def test_divmod_ndarray(self, numeric_idx):
|
790 |
+
idx = numeric_idx
|
791 |
+
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
|
792 |
+
|
793 |
+
result = divmod(idx, other)
|
794 |
+
with np.errstate(all="ignore"):
|
795 |
+
div, mod = divmod(idx.values, other)
|
796 |
+
|
797 |
+
expected = Index(div), Index(mod)
|
798 |
+
for r, e in zip(result, expected):
|
799 |
+
tm.assert_index_equal(r, e)
|
800 |
+
|
801 |
+
def test_divmod_series(self, numeric_idx):
|
802 |
+
idx = numeric_idx
|
803 |
+
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
|
804 |
+
|
805 |
+
result = divmod(idx, Series(other))
|
806 |
+
with np.errstate(all="ignore"):
|
807 |
+
div, mod = divmod(idx.values, other)
|
808 |
+
|
809 |
+
expected = Series(div), Series(mod)
|
810 |
+
for r, e in zip(result, expected):
|
811 |
+
tm.assert_series_equal(r, e)
|
812 |
+
|
813 |
+
@pytest.mark.parametrize("other", [np.nan, 7, -23, 2.718, -3.14, np.inf])
|
814 |
+
def test_ops_np_scalar(self, other):
|
815 |
+
vals = np.random.default_rng(2).standard_normal((5, 3))
|
816 |
+
f = lambda x: pd.DataFrame(
|
817 |
+
x, index=list("ABCDE"), columns=["jim", "joe", "jolie"]
|
818 |
+
)
|
819 |
+
|
820 |
+
df = f(vals)
|
821 |
+
|
822 |
+
tm.assert_frame_equal(df / np.array(other), f(vals / other))
|
823 |
+
tm.assert_frame_equal(np.array(other) * df, f(vals * other))
|
824 |
+
tm.assert_frame_equal(df + np.array(other), f(vals + other))
|
825 |
+
tm.assert_frame_equal(np.array(other) - df, f(other - vals))
|
826 |
+
|
827 |
+
# TODO: This came from series.test.test_operators, needs cleanup
|
828 |
+
def test_operators_frame(self):
|
829 |
+
# rpow does not work with DataFrame
|
830 |
+
ts = Series(
|
831 |
+
np.arange(10, dtype=np.float64),
|
832 |
+
index=date_range("2020-01-01", periods=10),
|
833 |
+
name="ts",
|
834 |
+
)
|
835 |
+
ts.name = "ts"
|
836 |
+
|
837 |
+
df = pd.DataFrame({"A": ts})
|
838 |
+
|
839 |
+
tm.assert_series_equal(ts + ts, ts + df["A"], check_names=False)
|
840 |
+
tm.assert_series_equal(ts**ts, ts ** df["A"], check_names=False)
|
841 |
+
tm.assert_series_equal(ts < ts, ts < df["A"], check_names=False)
|
842 |
+
tm.assert_series_equal(ts / ts, ts / df["A"], check_names=False)
|
843 |
+
|
844 |
+
# TODO: this came from tests.series.test_analytics, needs cleanup and
|
845 |
+
# de-duplication with test_modulo above
|
846 |
+
def test_modulo2(self):
|
847 |
+
with np.errstate(all="ignore"):
|
848 |
+
# GH#3590, modulo as ints
|
849 |
+
p = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
850 |
+
result = p["first"] % p["second"]
|
851 |
+
expected = Series(p["first"].values % p["second"].values, dtype="float64")
|
852 |
+
expected.iloc[0:3] = np.nan
|
853 |
+
tm.assert_series_equal(result, expected)
|
854 |
+
|
855 |
+
result = p["first"] % 0
|
856 |
+
expected = Series(np.nan, index=p.index, name="first")
|
857 |
+
tm.assert_series_equal(result, expected)
|
858 |
+
|
859 |
+
p = p.astype("float64")
|
860 |
+
result = p["first"] % p["second"]
|
861 |
+
expected = Series(p["first"].values % p["second"].values)
|
862 |
+
tm.assert_series_equal(result, expected)
|
863 |
+
|
864 |
+
p = p.astype("float64")
|
865 |
+
result = p["first"] % p["second"]
|
866 |
+
result2 = p["second"] % p["first"]
|
867 |
+
assert not result.equals(result2)
|
868 |
+
|
869 |
+
def test_modulo_zero_int(self):
|
870 |
+
# GH#9144
|
871 |
+
with np.errstate(all="ignore"):
|
872 |
+
s = Series([0, 1])
|
873 |
+
|
874 |
+
result = s % 0
|
875 |
+
expected = Series([np.nan, np.nan])
|
876 |
+
tm.assert_series_equal(result, expected)
|
877 |
+
|
878 |
+
result = 0 % s
|
879 |
+
expected = Series([np.nan, 0.0])
|
880 |
+
tm.assert_series_equal(result, expected)
|
881 |
+
|
882 |
+
|
883 |
+
class TestAdditionSubtraction:
|
884 |
+
# __add__, __sub__, __radd__, __rsub__, __iadd__, __isub__
|
885 |
+
# for non-timestamp/timedelta/period dtypes
|
886 |
+
|
887 |
+
@pytest.mark.parametrize(
|
888 |
+
"first, second, expected",
|
889 |
+
[
|
890 |
+
(
|
891 |
+
Series([1, 2, 3], index=list("ABC"), name="x"),
|
892 |
+
Series([2, 2, 2], index=list("ABD"), name="x"),
|
893 |
+
Series([3.0, 4.0, np.nan, np.nan], index=list("ABCD"), name="x"),
|
894 |
+
),
|
895 |
+
(
|
896 |
+
Series([1, 2, 3], index=list("ABC"), name="x"),
|
897 |
+
Series([2, 2, 2, 2], index=list("ABCD"), name="x"),
|
898 |
+
Series([3, 4, 5, np.nan], index=list("ABCD"), name="x"),
|
899 |
+
),
|
900 |
+
],
|
901 |
+
)
|
902 |
+
def test_add_series(self, first, second, expected):
|
903 |
+
# GH#1134
|
904 |
+
tm.assert_series_equal(first + second, expected)
|
905 |
+
tm.assert_series_equal(second + first, expected)
|
906 |
+
|
907 |
+
@pytest.mark.parametrize(
|
908 |
+
"first, second, expected",
|
909 |
+
[
|
910 |
+
(
|
911 |
+
pd.DataFrame({"x": [1, 2, 3]}, index=list("ABC")),
|
912 |
+
pd.DataFrame({"x": [2, 2, 2]}, index=list("ABD")),
|
913 |
+
pd.DataFrame({"x": [3.0, 4.0, np.nan, np.nan]}, index=list("ABCD")),
|
914 |
+
),
|
915 |
+
(
|
916 |
+
pd.DataFrame({"x": [1, 2, 3]}, index=list("ABC")),
|
917 |
+
pd.DataFrame({"x": [2, 2, 2, 2]}, index=list("ABCD")),
|
918 |
+
pd.DataFrame({"x": [3, 4, 5, np.nan]}, index=list("ABCD")),
|
919 |
+
),
|
920 |
+
],
|
921 |
+
)
|
922 |
+
def test_add_frames(self, first, second, expected):
|
923 |
+
# GH#1134
|
924 |
+
tm.assert_frame_equal(first + second, expected)
|
925 |
+
tm.assert_frame_equal(second + first, expected)
|
926 |
+
|
927 |
+
# TODO: This came from series.test.test_operators, needs cleanup
|
928 |
+
def test_series_frame_radd_bug(self, fixed_now_ts):
|
929 |
+
# GH#353
|
930 |
+
vals = Series([str(i) for i in range(5)])
|
931 |
+
result = "foo_" + vals
|
932 |
+
expected = vals.map(lambda x: "foo_" + x)
|
933 |
+
tm.assert_series_equal(result, expected)
|
934 |
+
|
935 |
+
frame = pd.DataFrame({"vals": vals})
|
936 |
+
result = "foo_" + frame
|
937 |
+
expected = pd.DataFrame({"vals": vals.map(lambda x: "foo_" + x)})
|
938 |
+
tm.assert_frame_equal(result, expected)
|
939 |
+
|
940 |
+
ts = Series(
|
941 |
+
np.arange(10, dtype=np.float64),
|
942 |
+
index=date_range("2020-01-01", periods=10),
|
943 |
+
name="ts",
|
944 |
+
)
|
945 |
+
|
946 |
+
# really raise this time
|
947 |
+
fix_now = fixed_now_ts.to_pydatetime()
|
948 |
+
msg = "|".join(
|
949 |
+
[
|
950 |
+
"unsupported operand type",
|
951 |
+
# wrong error message, see https://github.com/numpy/numpy/issues/18832
|
952 |
+
"Concatenation operation",
|
953 |
+
]
|
954 |
+
)
|
955 |
+
with pytest.raises(TypeError, match=msg):
|
956 |
+
fix_now + ts
|
957 |
+
|
958 |
+
with pytest.raises(TypeError, match=msg):
|
959 |
+
ts + fix_now
|
960 |
+
|
961 |
+
# TODO: This came from series.test.test_operators, needs cleanup
|
962 |
+
def test_datetime64_with_index(self):
|
963 |
+
# arithmetic integer ops with an index
|
964 |
+
ser = Series(np.random.default_rng(2).standard_normal(5))
|
965 |
+
expected = ser - ser.index.to_series()
|
966 |
+
result = ser - ser.index
|
967 |
+
tm.assert_series_equal(result, expected)
|
968 |
+
|
969 |
+
# GH#4629
|
970 |
+
# arithmetic datetime64 ops with an index
|
971 |
+
ser = Series(
|
972 |
+
date_range("20130101", periods=5),
|
973 |
+
index=date_range("20130101", periods=5),
|
974 |
+
)
|
975 |
+
expected = ser - ser.index.to_series()
|
976 |
+
result = ser - ser.index
|
977 |
+
tm.assert_series_equal(result, expected)
|
978 |
+
|
979 |
+
msg = "cannot subtract PeriodArray from DatetimeArray"
|
980 |
+
with pytest.raises(TypeError, match=msg):
|
981 |
+
# GH#18850
|
982 |
+
result = ser - ser.index.to_period()
|
983 |
+
|
984 |
+
df = pd.DataFrame(
|
985 |
+
np.random.default_rng(2).standard_normal((5, 2)),
|
986 |
+
index=date_range("20130101", periods=5),
|
987 |
+
)
|
988 |
+
df["date"] = pd.Timestamp("20130102")
|
989 |
+
df["expected"] = df["date"] - df.index.to_series()
|
990 |
+
df["result"] = df["date"] - df.index
|
991 |
+
tm.assert_series_equal(df["result"], df["expected"], check_names=False)
|
992 |
+
|
993 |
+
# TODO: taken from tests.frame.test_operators, needs cleanup
|
994 |
+
def test_frame_operators(self, float_frame):
|
995 |
+
frame = float_frame
|
996 |
+
|
997 |
+
garbage = np.random.default_rng(2).random(4)
|
998 |
+
colSeries = Series(garbage, index=np.array(frame.columns))
|
999 |
+
|
1000 |
+
idSum = frame + frame
|
1001 |
+
seriesSum = frame + colSeries
|
1002 |
+
|
1003 |
+
for col, series in idSum.items():
|
1004 |
+
for idx, val in series.items():
|
1005 |
+
origVal = frame[col][idx] * 2
|
1006 |
+
if not np.isnan(val):
|
1007 |
+
assert val == origVal
|
1008 |
+
else:
|
1009 |
+
assert np.isnan(origVal)
|
1010 |
+
|
1011 |
+
for col, series in seriesSum.items():
|
1012 |
+
for idx, val in series.items():
|
1013 |
+
origVal = frame[col][idx] + colSeries[col]
|
1014 |
+
if not np.isnan(val):
|
1015 |
+
assert val == origVal
|
1016 |
+
else:
|
1017 |
+
assert np.isnan(origVal)
|
1018 |
+
|
1019 |
+
def test_frame_operators_col_align(self, float_frame):
|
1020 |
+
frame2 = pd.DataFrame(float_frame, columns=["D", "C", "B", "A"])
|
1021 |
+
added = frame2 + frame2
|
1022 |
+
expected = frame2 * 2
|
1023 |
+
tm.assert_frame_equal(added, expected)
|
1024 |
+
|
1025 |
+
def test_frame_operators_none_to_nan(self):
|
1026 |
+
df = pd.DataFrame({"a": ["a", None, "b"]})
|
1027 |
+
tm.assert_frame_equal(df + df, pd.DataFrame({"a": ["aa", np.nan, "bb"]}))
|
1028 |
+
|
1029 |
+
@pytest.mark.parametrize("dtype", ("float", "int64"))
|
1030 |
+
def test_frame_operators_empty_like(self, dtype):
|
1031 |
+
# Test for issue #10181
|
1032 |
+
frames = [
|
1033 |
+
pd.DataFrame(dtype=dtype),
|
1034 |
+
pd.DataFrame(columns=["A"], dtype=dtype),
|
1035 |
+
pd.DataFrame(index=[0], dtype=dtype),
|
1036 |
+
]
|
1037 |
+
for df in frames:
|
1038 |
+
assert (df + df).equals(df)
|
1039 |
+
tm.assert_frame_equal(df + df, df)
|
1040 |
+
|
1041 |
+
@pytest.mark.parametrize(
|
1042 |
+
"func",
|
1043 |
+
[lambda x: x * 2, lambda x: x[::2], lambda x: 5],
|
1044 |
+
ids=["multiply", "slice", "constant"],
|
1045 |
+
)
|
1046 |
+
def test_series_operators_arithmetic(self, all_arithmetic_functions, func):
|
1047 |
+
op = all_arithmetic_functions
|
1048 |
+
series = Series(
|
1049 |
+
np.arange(10, dtype=np.float64),
|
1050 |
+
index=date_range("2020-01-01", periods=10),
|
1051 |
+
name="ts",
|
1052 |
+
)
|
1053 |
+
other = func(series)
|
1054 |
+
compare_op(series, other, op)
|
1055 |
+
|
1056 |
+
@pytest.mark.parametrize(
|
1057 |
+
"func", [lambda x: x + 1, lambda x: 5], ids=["add", "constant"]
|
1058 |
+
)
|
1059 |
+
def test_series_operators_compare(self, comparison_op, func):
|
1060 |
+
op = comparison_op
|
1061 |
+
series = Series(
|
1062 |
+
np.arange(10, dtype=np.float64),
|
1063 |
+
index=date_range("2020-01-01", periods=10),
|
1064 |
+
name="ts",
|
1065 |
+
)
|
1066 |
+
other = func(series)
|
1067 |
+
compare_op(series, other, op)
|
1068 |
+
|
1069 |
+
@pytest.mark.parametrize(
|
1070 |
+
"func",
|
1071 |
+
[lambda x: x * 2, lambda x: x[::2], lambda x: 5],
|
1072 |
+
ids=["multiply", "slice", "constant"],
|
1073 |
+
)
|
1074 |
+
def test_divmod(self, func):
|
1075 |
+
series = Series(
|
1076 |
+
np.arange(10, dtype=np.float64),
|
1077 |
+
index=date_range("2020-01-01", periods=10),
|
1078 |
+
name="ts",
|
1079 |
+
)
|
1080 |
+
other = func(series)
|
1081 |
+
results = divmod(series, other)
|
1082 |
+
if isinstance(other, abc.Iterable) and len(series) != len(other):
|
1083 |
+
# if the lengths don't match, this is the test where we use
|
1084 |
+
# `tser[::2]`. Pad every other value in `other_np` with nan.
|
1085 |
+
other_np = []
|
1086 |
+
for n in other:
|
1087 |
+
other_np.append(n)
|
1088 |
+
other_np.append(np.nan)
|
1089 |
+
else:
|
1090 |
+
other_np = other
|
1091 |
+
other_np = np.asarray(other_np)
|
1092 |
+
with np.errstate(all="ignore"):
|
1093 |
+
expecteds = divmod(series.values, np.asarray(other_np))
|
1094 |
+
|
1095 |
+
for result, expected in zip(results, expecteds):
|
1096 |
+
# check the values, name, and index separately
|
1097 |
+
tm.assert_almost_equal(np.asarray(result), expected)
|
1098 |
+
|
1099 |
+
assert result.name == series.name
|
1100 |
+
tm.assert_index_equal(result.index, series.index._with_freq(None))
|
1101 |
+
|
1102 |
+
def test_series_divmod_zero(self):
|
1103 |
+
# Check that divmod uses pandas convention for division by zero,
|
1104 |
+
# which does not match numpy.
|
1105 |
+
# pandas convention has
|
1106 |
+
# 1/0 == np.inf
|
1107 |
+
# -1/0 == -np.inf
|
1108 |
+
# 1/-0.0 == -np.inf
|
1109 |
+
# -1/-0.0 == np.inf
|
1110 |
+
tser = Series(
|
1111 |
+
np.arange(1, 11, dtype=np.float64),
|
1112 |
+
index=date_range("2020-01-01", periods=10),
|
1113 |
+
name="ts",
|
1114 |
+
)
|
1115 |
+
other = tser * 0
|
1116 |
+
|
1117 |
+
result = divmod(tser, other)
|
1118 |
+
exp1 = Series([np.inf] * len(tser), index=tser.index, name="ts")
|
1119 |
+
exp2 = Series([np.nan] * len(tser), index=tser.index, name="ts")
|
1120 |
+
tm.assert_series_equal(result[0], exp1)
|
1121 |
+
tm.assert_series_equal(result[1], exp2)
|
1122 |
+
|
1123 |
+
|
1124 |
+
class TestUFuncCompat:
|
1125 |
+
# TODO: add more dtypes
|
1126 |
+
@pytest.mark.parametrize("holder", [Index, RangeIndex, Series])
|
1127 |
+
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
|
1128 |
+
def test_ufunc_compat(self, holder, dtype):
|
1129 |
+
box = Series if holder is Series else Index
|
1130 |
+
|
1131 |
+
if holder is RangeIndex:
|
1132 |
+
if dtype != np.int64:
|
1133 |
+
pytest.skip(f"dtype {dtype} not relevant for RangeIndex")
|
1134 |
+
idx = RangeIndex(0, 5, name="foo")
|
1135 |
+
else:
|
1136 |
+
idx = holder(np.arange(5, dtype=dtype), name="foo")
|
1137 |
+
result = np.sin(idx)
|
1138 |
+
expected = box(np.sin(np.arange(5, dtype=dtype)), name="foo")
|
1139 |
+
tm.assert_equal(result, expected)
|
1140 |
+
|
1141 |
+
# TODO: add more dtypes
|
1142 |
+
@pytest.mark.parametrize("holder", [Index, Series])
|
1143 |
+
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
|
1144 |
+
def test_ufunc_coercions(self, holder, dtype):
|
1145 |
+
idx = holder([1, 2, 3, 4, 5], dtype=dtype, name="x")
|
1146 |
+
box = Series if holder is Series else Index
|
1147 |
+
|
1148 |
+
result = np.sqrt(idx)
|
1149 |
+
assert result.dtype == "f8" and isinstance(result, box)
|
1150 |
+
exp = Index(np.sqrt(np.array([1, 2, 3, 4, 5], dtype=np.float64)), name="x")
|
1151 |
+
exp = tm.box_expected(exp, box)
|
1152 |
+
tm.assert_equal(result, exp)
|
1153 |
+
|
1154 |
+
result = np.divide(idx, 2.0)
|
1155 |
+
assert result.dtype == "f8" and isinstance(result, box)
|
1156 |
+
exp = Index([0.5, 1.0, 1.5, 2.0, 2.5], dtype=np.float64, name="x")
|
1157 |
+
exp = tm.box_expected(exp, box)
|
1158 |
+
tm.assert_equal(result, exp)
|
1159 |
+
|
1160 |
+
# _evaluate_numeric_binop
|
1161 |
+
result = idx + 2.0
|
1162 |
+
assert result.dtype == "f8" and isinstance(result, box)
|
1163 |
+
exp = Index([3.0, 4.0, 5.0, 6.0, 7.0], dtype=np.float64, name="x")
|
1164 |
+
exp = tm.box_expected(exp, box)
|
1165 |
+
tm.assert_equal(result, exp)
|
1166 |
+
|
1167 |
+
result = idx - 2.0
|
1168 |
+
assert result.dtype == "f8" and isinstance(result, box)
|
1169 |
+
exp = Index([-1.0, 0.0, 1.0, 2.0, 3.0], dtype=np.float64, name="x")
|
1170 |
+
exp = tm.box_expected(exp, box)
|
1171 |
+
tm.assert_equal(result, exp)
|
1172 |
+
|
1173 |
+
result = idx * 1.0
|
1174 |
+
assert result.dtype == "f8" and isinstance(result, box)
|
1175 |
+
exp = Index([1.0, 2.0, 3.0, 4.0, 5.0], dtype=np.float64, name="x")
|
1176 |
+
exp = tm.box_expected(exp, box)
|
1177 |
+
tm.assert_equal(result, exp)
|
1178 |
+
|
1179 |
+
result = idx / 2.0
|
1180 |
+
assert result.dtype == "f8" and isinstance(result, box)
|
1181 |
+
exp = Index([0.5, 1.0, 1.5, 2.0, 2.5], dtype=np.float64, name="x")
|
1182 |
+
exp = tm.box_expected(exp, box)
|
1183 |
+
tm.assert_equal(result, exp)
|
1184 |
+
|
1185 |
+
# TODO: add more dtypes
|
1186 |
+
@pytest.mark.parametrize("holder", [Index, Series])
|
1187 |
+
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
|
1188 |
+
def test_ufunc_multiple_return_values(self, holder, dtype):
|
1189 |
+
obj = holder([1, 2, 3], dtype=dtype, name="x")
|
1190 |
+
box = Series if holder is Series else Index
|
1191 |
+
|
1192 |
+
result = np.modf(obj)
|
1193 |
+
assert isinstance(result, tuple)
|
1194 |
+
exp1 = Index([0.0, 0.0, 0.0], dtype=np.float64, name="x")
|
1195 |
+
exp2 = Index([1.0, 2.0, 3.0], dtype=np.float64, name="x")
|
1196 |
+
tm.assert_equal(result[0], tm.box_expected(exp1, box))
|
1197 |
+
tm.assert_equal(result[1], tm.box_expected(exp2, box))
|
1198 |
+
|
1199 |
+
def test_ufunc_at(self):
|
1200 |
+
s = Series([0, 1, 2], index=[1, 2, 3], name="x")
|
1201 |
+
np.add.at(s, [0, 2], 10)
|
1202 |
+
expected = Series([10, 1, 12], index=[1, 2, 3], name="x")
|
1203 |
+
tm.assert_series_equal(s, expected)
|
1204 |
+
|
1205 |
+
|
1206 |
+
class TestObjectDtypeEquivalence:
|
1207 |
+
# Tests that arithmetic operations match operations executed elementwise
|
1208 |
+
|
1209 |
+
@pytest.mark.parametrize("dtype", [None, object])
|
1210 |
+
def test_numarr_with_dtype_add_nan(self, dtype, box_with_array):
|
1211 |
+
box = box_with_array
|
1212 |
+
ser = Series([1, 2, 3], dtype=dtype)
|
1213 |
+
expected = Series([np.nan, np.nan, np.nan], dtype=dtype)
|
1214 |
+
|
1215 |
+
ser = tm.box_expected(ser, box)
|
1216 |
+
expected = tm.box_expected(expected, box)
|
1217 |
+
|
1218 |
+
result = np.nan + ser
|
1219 |
+
tm.assert_equal(result, expected)
|
1220 |
+
|
1221 |
+
result = ser + np.nan
|
1222 |
+
tm.assert_equal(result, expected)
|
1223 |
+
|
1224 |
+
@pytest.mark.parametrize("dtype", [None, object])
|
1225 |
+
def test_numarr_with_dtype_add_int(self, dtype, box_with_array):
|
1226 |
+
box = box_with_array
|
1227 |
+
ser = Series([1, 2, 3], dtype=dtype)
|
1228 |
+
expected = Series([2, 3, 4], dtype=dtype)
|
1229 |
+
|
1230 |
+
ser = tm.box_expected(ser, box)
|
1231 |
+
expected = tm.box_expected(expected, box)
|
1232 |
+
|
1233 |
+
result = 1 + ser
|
1234 |
+
tm.assert_equal(result, expected)
|
1235 |
+
|
1236 |
+
result = ser + 1
|
1237 |
+
tm.assert_equal(result, expected)
|
1238 |
+
|
1239 |
+
# TODO: moved from tests.series.test_operators; needs cleanup
|
1240 |
+
@pytest.mark.parametrize(
|
1241 |
+
"op",
|
1242 |
+
[operator.add, operator.sub, operator.mul, operator.truediv, operator.floordiv],
|
1243 |
+
)
|
1244 |
+
def test_operators_reverse_object(self, op):
|
1245 |
+
# GH#56
|
1246 |
+
arr = Series(
|
1247 |
+
np.random.default_rng(2).standard_normal(10),
|
1248 |
+
index=np.arange(10),
|
1249 |
+
dtype=object,
|
1250 |
+
)
|
1251 |
+
|
1252 |
+
result = op(1.0, arr)
|
1253 |
+
expected = op(1.0, arr.astype(float))
|
1254 |
+
tm.assert_series_equal(result.astype(float), expected)
|
1255 |
+
|
1256 |
+
|
1257 |
+
class TestNumericArithmeticUnsorted:
|
1258 |
+
# Tests in this class have been moved from type-specific test modules
|
1259 |
+
# but not yet sorted, parametrized, and de-duplicated
|
1260 |
+
@pytest.mark.parametrize(
|
1261 |
+
"op",
|
1262 |
+
[
|
1263 |
+
operator.add,
|
1264 |
+
operator.sub,
|
1265 |
+
operator.mul,
|
1266 |
+
operator.floordiv,
|
1267 |
+
operator.truediv,
|
1268 |
+
],
|
1269 |
+
)
|
1270 |
+
@pytest.mark.parametrize(
|
1271 |
+
"idx1",
|
1272 |
+
[
|
1273 |
+
RangeIndex(0, 10, 1),
|
1274 |
+
RangeIndex(0, 20, 2),
|
1275 |
+
RangeIndex(-10, 10, 2),
|
1276 |
+
RangeIndex(5, -5, -1),
|
1277 |
+
],
|
1278 |
+
)
|
1279 |
+
@pytest.mark.parametrize(
|
1280 |
+
"idx2",
|
1281 |
+
[
|
1282 |
+
RangeIndex(0, 10, 1),
|
1283 |
+
RangeIndex(0, 20, 2),
|
1284 |
+
RangeIndex(-10, 10, 2),
|
1285 |
+
RangeIndex(5, -5, -1),
|
1286 |
+
],
|
1287 |
+
)
|
1288 |
+
def test_binops_index(self, op, idx1, idx2):
|
1289 |
+
idx1 = idx1._rename("foo")
|
1290 |
+
idx2 = idx2._rename("bar")
|
1291 |
+
result = op(idx1, idx2)
|
1292 |
+
expected = op(Index(idx1.to_numpy()), Index(idx2.to_numpy()))
|
1293 |
+
tm.assert_index_equal(result, expected, exact="equiv")
|
1294 |
+
|
1295 |
+
@pytest.mark.parametrize(
|
1296 |
+
"op",
|
1297 |
+
[
|
1298 |
+
operator.add,
|
1299 |
+
operator.sub,
|
1300 |
+
operator.mul,
|
1301 |
+
operator.floordiv,
|
1302 |
+
operator.truediv,
|
1303 |
+
],
|
1304 |
+
)
|
1305 |
+
@pytest.mark.parametrize(
|
1306 |
+
"idx",
|
1307 |
+
[
|
1308 |
+
RangeIndex(0, 10, 1),
|
1309 |
+
RangeIndex(0, 20, 2),
|
1310 |
+
RangeIndex(-10, 10, 2),
|
1311 |
+
RangeIndex(5, -5, -1),
|
1312 |
+
],
|
1313 |
+
)
|
1314 |
+
@pytest.mark.parametrize("scalar", [-1, 1, 2])
|
1315 |
+
def test_binops_index_scalar(self, op, idx, scalar):
|
1316 |
+
result = op(idx, scalar)
|
1317 |
+
expected = op(Index(idx.to_numpy()), scalar)
|
1318 |
+
tm.assert_index_equal(result, expected, exact="equiv")
|
1319 |
+
|
1320 |
+
@pytest.mark.parametrize("idx1", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
|
1321 |
+
@pytest.mark.parametrize("idx2", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
|
1322 |
+
def test_binops_index_pow(self, idx1, idx2):
|
1323 |
+
# numpy does not allow powers of negative integers so test separately
|
1324 |
+
# https://github.com/numpy/numpy/pull/8127
|
1325 |
+
idx1 = idx1._rename("foo")
|
1326 |
+
idx2 = idx2._rename("bar")
|
1327 |
+
result = pow(idx1, idx2)
|
1328 |
+
expected = pow(Index(idx1.to_numpy()), Index(idx2.to_numpy()))
|
1329 |
+
tm.assert_index_equal(result, expected, exact="equiv")
|
1330 |
+
|
1331 |
+
@pytest.mark.parametrize("idx", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
|
1332 |
+
@pytest.mark.parametrize("scalar", [1, 2])
|
1333 |
+
def test_binops_index_scalar_pow(self, idx, scalar):
|
1334 |
+
# numpy does not allow powers of negative integers so test separately
|
1335 |
+
# https://github.com/numpy/numpy/pull/8127
|
1336 |
+
result = pow(idx, scalar)
|
1337 |
+
expected = pow(Index(idx.to_numpy()), scalar)
|
1338 |
+
tm.assert_index_equal(result, expected, exact="equiv")
|
1339 |
+
|
1340 |
+
# TODO: divmod?
|
1341 |
+
@pytest.mark.parametrize(
|
1342 |
+
"op",
|
1343 |
+
[
|
1344 |
+
operator.add,
|
1345 |
+
operator.sub,
|
1346 |
+
operator.mul,
|
1347 |
+
operator.floordiv,
|
1348 |
+
operator.truediv,
|
1349 |
+
operator.pow,
|
1350 |
+
operator.mod,
|
1351 |
+
],
|
1352 |
+
)
|
1353 |
+
def test_arithmetic_with_frame_or_series(self, op):
|
1354 |
+
# check that we return NotImplemented when operating with Series
|
1355 |
+
# or DataFrame
|
1356 |
+
index = RangeIndex(5)
|
1357 |
+
other = Series(np.random.default_rng(2).standard_normal(5))
|
1358 |
+
|
1359 |
+
expected = op(Series(index), other)
|
1360 |
+
result = op(index, other)
|
1361 |
+
tm.assert_series_equal(result, expected)
|
1362 |
+
|
1363 |
+
other = pd.DataFrame(np.random.default_rng(2).standard_normal((2, 5)))
|
1364 |
+
expected = op(pd.DataFrame([index, index]), other)
|
1365 |
+
result = op(index, other)
|
1366 |
+
tm.assert_frame_equal(result, expected)
|
1367 |
+
|
1368 |
+
def test_numeric_compat2(self):
|
1369 |
+
# validate that we are handling the RangeIndex overrides to numeric ops
|
1370 |
+
# and returning RangeIndex where possible
|
1371 |
+
|
1372 |
+
idx = RangeIndex(0, 10, 2)
|
1373 |
+
|
1374 |
+
result = idx * 2
|
1375 |
+
expected = RangeIndex(0, 20, 4)
|
1376 |
+
tm.assert_index_equal(result, expected, exact=True)
|
1377 |
+
|
1378 |
+
result = idx + 2
|
1379 |
+
expected = RangeIndex(2, 12, 2)
|
1380 |
+
tm.assert_index_equal(result, expected, exact=True)
|
1381 |
+
|
1382 |
+
result = idx - 2
|
1383 |
+
expected = RangeIndex(-2, 8, 2)
|
1384 |
+
tm.assert_index_equal(result, expected, exact=True)
|
1385 |
+
|
1386 |
+
result = idx / 2
|
1387 |
+
expected = RangeIndex(0, 5, 1).astype("float64")
|
1388 |
+
tm.assert_index_equal(result, expected, exact=True)
|
1389 |
+
|
1390 |
+
result = idx / 4
|
1391 |
+
expected = RangeIndex(0, 10, 2) / 4
|
1392 |
+
tm.assert_index_equal(result, expected, exact=True)
|
1393 |
+
|
1394 |
+
result = idx // 1
|
1395 |
+
expected = idx
|
1396 |
+
tm.assert_index_equal(result, expected, exact=True)
|
1397 |
+
|
1398 |
+
# __mul__
|
1399 |
+
result = idx * idx
|
1400 |
+
expected = Index(idx.values * idx.values)
|
1401 |
+
tm.assert_index_equal(result, expected, exact=True)
|
1402 |
+
|
1403 |
+
# __pow__
|
1404 |
+
idx = RangeIndex(0, 1000, 2)
|
1405 |
+
result = idx**2
|
1406 |
+
expected = Index(idx._values) ** 2
|
1407 |
+
tm.assert_index_equal(Index(result.values), expected, exact=True)
|
1408 |
+
|
1409 |
+
@pytest.mark.parametrize(
|
1410 |
+
"idx, div, expected",
|
1411 |
+
[
|
1412 |
+
# TODO: add more dtypes
|
1413 |
+
(RangeIndex(0, 1000, 2), 2, RangeIndex(0, 500, 1)),
|
1414 |
+
(RangeIndex(-99, -201, -3), -3, RangeIndex(33, 67, 1)),
|
1415 |
+
(
|
1416 |
+
RangeIndex(0, 1000, 1),
|
1417 |
+
2,
|
1418 |
+
Index(RangeIndex(0, 1000, 1)._values) // 2,
|
1419 |
+
),
|
1420 |
+
(
|
1421 |
+
RangeIndex(0, 100, 1),
|
1422 |
+
2.0,
|
1423 |
+
Index(RangeIndex(0, 100, 1)._values) // 2.0,
|
1424 |
+
),
|
1425 |
+
(RangeIndex(0), 50, RangeIndex(0)),
|
1426 |
+
(RangeIndex(2, 4, 2), 3, RangeIndex(0, 1, 1)),
|
1427 |
+
(RangeIndex(-5, -10, -6), 4, RangeIndex(-2, -1, 1)),
|
1428 |
+
(RangeIndex(-100, -200, 3), 2, RangeIndex(0)),
|
1429 |
+
],
|
1430 |
+
)
|
1431 |
+
def test_numeric_compat2_floordiv(self, idx, div, expected):
|
1432 |
+
# __floordiv__
|
1433 |
+
tm.assert_index_equal(idx // div, expected, exact=True)
|
1434 |
+
|
1435 |
+
@pytest.mark.parametrize("dtype", [np.int64, np.float64])
|
1436 |
+
@pytest.mark.parametrize("delta", [1, 0, -1])
|
1437 |
+
def test_addsub_arithmetic(self, dtype, delta):
|
1438 |
+
# GH#8142
|
1439 |
+
delta = dtype(delta)
|
1440 |
+
index = Index([10, 11, 12], dtype=dtype)
|
1441 |
+
result = index + delta
|
1442 |
+
expected = Index(index.values + delta, dtype=dtype)
|
1443 |
+
tm.assert_index_equal(result, expected)
|
1444 |
+
|
1445 |
+
# this subtraction used to fail
|
1446 |
+
result = index - delta
|
1447 |
+
expected = Index(index.values - delta, dtype=dtype)
|
1448 |
+
tm.assert_index_equal(result, expected)
|
1449 |
+
|
1450 |
+
tm.assert_index_equal(index + index, 2 * index)
|
1451 |
+
tm.assert_index_equal(index - index, 0 * index)
|
1452 |
+
assert not (index - index).empty
|
1453 |
+
|
1454 |
+
def test_pow_nan_with_zero(self, box_with_array):
|
1455 |
+
left = Index([np.nan, np.nan, np.nan])
|
1456 |
+
right = Index([0, 0, 0])
|
1457 |
+
expected = Index([1.0, 1.0, 1.0])
|
1458 |
+
|
1459 |
+
left = tm.box_expected(left, box_with_array)
|
1460 |
+
right = tm.box_expected(right, box_with_array)
|
1461 |
+
expected = tm.box_expected(expected, box_with_array)
|
1462 |
+
|
1463 |
+
result = left**right
|
1464 |
+
tm.assert_equal(result, expected)
|
1465 |
+
|
1466 |
+
|
1467 |
+
def test_fill_value_inf_masking():
|
1468 |
+
# GH #27464 make sure we mask 0/1 with Inf and not NaN
|
1469 |
+
df = pd.DataFrame({"A": [0, 1, 2], "B": [1.1, None, 1.1]})
|
1470 |
+
|
1471 |
+
other = pd.DataFrame({"A": [1.1, 1.2, 1.3]}, index=[0, 2, 3])
|
1472 |
+
|
1473 |
+
result = df.rfloordiv(other, fill_value=1)
|
1474 |
+
|
1475 |
+
expected = pd.DataFrame(
|
1476 |
+
{"A": [np.inf, 1.0, 0.0, 1.0], "B": [0.0, np.nan, 0.0, np.nan]}
|
1477 |
+
)
|
1478 |
+
tm.assert_frame_equal(result, expected)
|
1479 |
+
|
1480 |
+
|
1481 |
+
def test_dataframe_div_silenced():
|
1482 |
+
# GH#26793
|
1483 |
+
pdf1 = pd.DataFrame(
|
1484 |
+
{
|
1485 |
+
"A": np.arange(10),
|
1486 |
+
"B": [np.nan, 1, 2, 3, 4] * 2,
|
1487 |
+
"C": [np.nan] * 10,
|
1488 |
+
"D": np.arange(10),
|
1489 |
+
},
|
1490 |
+
index=list("abcdefghij"),
|
1491 |
+
columns=list("ABCD"),
|
1492 |
+
)
|
1493 |
+
pdf2 = pd.DataFrame(
|
1494 |
+
np.random.default_rng(2).standard_normal((10, 4)),
|
1495 |
+
index=list("abcdefghjk"),
|
1496 |
+
columns=list("ABCX"),
|
1497 |
+
)
|
1498 |
+
with tm.assert_produces_warning(None):
|
1499 |
+
pdf1.div(pdf2, fill_value=0)
|
1500 |
+
|
1501 |
+
|
1502 |
+
@pytest.mark.parametrize(
|
1503 |
+
"data, expected_data",
|
1504 |
+
[([0, 1, 2], [0, 2, 4])],
|
1505 |
+
)
|
1506 |
+
def test_integer_array_add_list_like(
|
1507 |
+
box_pandas_1d_array, box_1d_array, data, expected_data
|
1508 |
+
):
|
1509 |
+
# GH22606 Verify operators with IntegerArray and list-likes
|
1510 |
+
arr = array(data, dtype="Int64")
|
1511 |
+
container = box_pandas_1d_array(arr)
|
1512 |
+
left = container + box_1d_array(data)
|
1513 |
+
right = box_1d_array(data) + container
|
1514 |
+
|
1515 |
+
if Series in [box_1d_array, box_pandas_1d_array]:
|
1516 |
+
cls = Series
|
1517 |
+
elif Index in [box_1d_array, box_pandas_1d_array]:
|
1518 |
+
cls = Index
|
1519 |
+
else:
|
1520 |
+
cls = array
|
1521 |
+
|
1522 |
+
expected = cls(expected_data, dtype="Int64")
|
1523 |
+
|
1524 |
+
tm.assert_equal(left, expected)
|
1525 |
+
tm.assert_equal(right, expected)
|
1526 |
+
|
1527 |
+
|
1528 |
+
def test_sub_multiindex_swapped_levels():
|
1529 |
+
# GH 9952
|
1530 |
+
df = pd.DataFrame(
|
1531 |
+
{"a": np.random.default_rng(2).standard_normal(6)},
|
1532 |
+
index=pd.MultiIndex.from_product(
|
1533 |
+
[["a", "b"], [0, 1, 2]], names=["levA", "levB"]
|
1534 |
+
),
|
1535 |
+
)
|
1536 |
+
df2 = df.copy()
|
1537 |
+
df2.index = df2.index.swaplevel(0, 1)
|
1538 |
+
result = df - df2
|
1539 |
+
expected = pd.DataFrame([0.0] * 6, columns=["a"], index=df.index)
|
1540 |
+
tm.assert_frame_equal(result, expected)
|
1541 |
+
|
1542 |
+
|
1543 |
+
@pytest.mark.parametrize("power", [1, 2, 5])
|
1544 |
+
@pytest.mark.parametrize("string_size", [0, 1, 2, 5])
|
1545 |
+
def test_empty_str_comparison(power, string_size):
|
1546 |
+
# GH 37348
|
1547 |
+
a = np.array(range(10**power))
|
1548 |
+
right = pd.DataFrame(a, dtype=np.int64)
|
1549 |
+
left = " " * string_size
|
1550 |
+
|
1551 |
+
result = right == left
|
1552 |
+
expected = pd.DataFrame(np.zeros(right.shape, dtype=bool))
|
1553 |
+
tm.assert_frame_equal(result, expected)
|
1554 |
+
|
1555 |
+
|
1556 |
+
def test_series_add_sub_with_UInt64():
|
1557 |
+
# GH 22023
|
1558 |
+
series1 = Series([1, 2, 3])
|
1559 |
+
series2 = Series([2, 1, 3], dtype="UInt64")
|
1560 |
+
|
1561 |
+
result = series1 + series2
|
1562 |
+
expected = Series([3, 3, 6], dtype="Float64")
|
1563 |
+
tm.assert_series_equal(result, expected)
|
1564 |
+
|
1565 |
+
result = series1 - series2
|
1566 |
+
expected = Series([-1, 1, 0], dtype="Float64")
|
1567 |
+
tm.assert_series_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_object.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Arithmetic tests for DataFrame/Series/Index/Array classes that should
|
2 |
+
# behave identically.
|
3 |
+
# Specifically for object dtype
|
4 |
+
import datetime
|
5 |
+
from decimal import Decimal
|
6 |
+
import operator
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pytest
|
10 |
+
|
11 |
+
from pandas._config import using_pyarrow_string_dtype
|
12 |
+
|
13 |
+
import pandas.util._test_decorators as td
|
14 |
+
|
15 |
+
import pandas as pd
|
16 |
+
from pandas import (
|
17 |
+
Series,
|
18 |
+
Timestamp,
|
19 |
+
option_context,
|
20 |
+
)
|
21 |
+
import pandas._testing as tm
|
22 |
+
from pandas.core import ops
|
23 |
+
|
24 |
+
# ------------------------------------------------------------------
|
25 |
+
# Comparisons
|
26 |
+
|
27 |
+
|
28 |
+
class TestObjectComparisons:
|
29 |
+
def test_comparison_object_numeric_nas(self, comparison_op):
|
30 |
+
ser = Series(np.random.default_rng(2).standard_normal(10), dtype=object)
|
31 |
+
shifted = ser.shift(2)
|
32 |
+
|
33 |
+
func = comparison_op
|
34 |
+
|
35 |
+
result = func(ser, shifted)
|
36 |
+
expected = func(ser.astype(float), shifted.astype(float))
|
37 |
+
tm.assert_series_equal(result, expected)
|
38 |
+
|
39 |
+
@pytest.mark.parametrize(
|
40 |
+
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
|
41 |
+
)
|
42 |
+
def test_object_comparisons(self, infer_string):
|
43 |
+
with option_context("future.infer_string", infer_string):
|
44 |
+
ser = Series(["a", "b", np.nan, "c", "a"])
|
45 |
+
|
46 |
+
result = ser == "a"
|
47 |
+
expected = Series([True, False, False, False, True])
|
48 |
+
tm.assert_series_equal(result, expected)
|
49 |
+
|
50 |
+
result = ser < "a"
|
51 |
+
expected = Series([False, False, False, False, False])
|
52 |
+
tm.assert_series_equal(result, expected)
|
53 |
+
|
54 |
+
result = ser != "a"
|
55 |
+
expected = -(ser == "a")
|
56 |
+
tm.assert_series_equal(result, expected)
|
57 |
+
|
58 |
+
@pytest.mark.parametrize("dtype", [None, object])
|
59 |
+
def test_more_na_comparisons(self, dtype):
|
60 |
+
left = Series(["a", np.nan, "c"], dtype=dtype)
|
61 |
+
right = Series(["a", np.nan, "d"], dtype=dtype)
|
62 |
+
|
63 |
+
result = left == right
|
64 |
+
expected = Series([True, False, False])
|
65 |
+
tm.assert_series_equal(result, expected)
|
66 |
+
|
67 |
+
result = left != right
|
68 |
+
expected = Series([False, True, True])
|
69 |
+
tm.assert_series_equal(result, expected)
|
70 |
+
|
71 |
+
result = left == np.nan
|
72 |
+
expected = Series([False, False, False])
|
73 |
+
tm.assert_series_equal(result, expected)
|
74 |
+
|
75 |
+
result = left != np.nan
|
76 |
+
expected = Series([True, True, True])
|
77 |
+
tm.assert_series_equal(result, expected)
|
78 |
+
|
79 |
+
|
80 |
+
# ------------------------------------------------------------------
|
81 |
+
# Arithmetic
|
82 |
+
|
83 |
+
|
84 |
+
class TestArithmetic:
|
85 |
+
def test_add_period_to_array_of_offset(self):
|
86 |
+
# GH#50162
|
87 |
+
per = pd.Period("2012-1-1", freq="D")
|
88 |
+
pi = pd.period_range("2012-1-1", periods=10, freq="D")
|
89 |
+
idx = per - pi
|
90 |
+
|
91 |
+
expected = pd.Index([x + per for x in idx], dtype=object)
|
92 |
+
result = idx + per
|
93 |
+
tm.assert_index_equal(result, expected)
|
94 |
+
|
95 |
+
result = per + idx
|
96 |
+
tm.assert_index_equal(result, expected)
|
97 |
+
|
98 |
+
# TODO: parametrize
|
99 |
+
def test_pow_ops_object(self):
|
100 |
+
# GH#22922
|
101 |
+
# pow is weird with masking & 1, so testing here
|
102 |
+
a = Series([1, np.nan, 1, np.nan], dtype=object)
|
103 |
+
b = Series([1, np.nan, np.nan, 1], dtype=object)
|
104 |
+
result = a**b
|
105 |
+
expected = Series(a.values**b.values, dtype=object)
|
106 |
+
tm.assert_series_equal(result, expected)
|
107 |
+
|
108 |
+
result = b**a
|
109 |
+
expected = Series(b.values**a.values, dtype=object)
|
110 |
+
|
111 |
+
tm.assert_series_equal(result, expected)
|
112 |
+
|
113 |
+
@pytest.mark.parametrize("op", [operator.add, ops.radd])
|
114 |
+
@pytest.mark.parametrize("other", ["category", "Int64"])
|
115 |
+
def test_add_extension_scalar(self, other, box_with_array, op):
|
116 |
+
# GH#22378
|
117 |
+
# Check that scalars satisfying is_extension_array_dtype(obj)
|
118 |
+
# do not incorrectly try to dispatch to an ExtensionArray operation
|
119 |
+
|
120 |
+
arr = Series(["a", "b", "c"])
|
121 |
+
expected = Series([op(x, other) for x in arr])
|
122 |
+
|
123 |
+
arr = tm.box_expected(arr, box_with_array)
|
124 |
+
expected = tm.box_expected(expected, box_with_array)
|
125 |
+
|
126 |
+
result = op(arr, other)
|
127 |
+
tm.assert_equal(result, expected)
|
128 |
+
|
129 |
+
def test_objarr_add_str(self, box_with_array):
|
130 |
+
ser = Series(["x", np.nan, "x"])
|
131 |
+
expected = Series(["xa", np.nan, "xa"])
|
132 |
+
|
133 |
+
ser = tm.box_expected(ser, box_with_array)
|
134 |
+
expected = tm.box_expected(expected, box_with_array)
|
135 |
+
|
136 |
+
result = ser + "a"
|
137 |
+
tm.assert_equal(result, expected)
|
138 |
+
|
139 |
+
def test_objarr_radd_str(self, box_with_array):
|
140 |
+
ser = Series(["x", np.nan, "x"])
|
141 |
+
expected = Series(["ax", np.nan, "ax"])
|
142 |
+
|
143 |
+
ser = tm.box_expected(ser, box_with_array)
|
144 |
+
expected = tm.box_expected(expected, box_with_array)
|
145 |
+
|
146 |
+
result = "a" + ser
|
147 |
+
tm.assert_equal(result, expected)
|
148 |
+
|
149 |
+
@pytest.mark.parametrize(
|
150 |
+
"data",
|
151 |
+
[
|
152 |
+
[1, 2, 3],
|
153 |
+
[1.1, 2.2, 3.3],
|
154 |
+
[Timestamp("2011-01-01"), Timestamp("2011-01-02"), pd.NaT],
|
155 |
+
["x", "y", 1],
|
156 |
+
],
|
157 |
+
)
|
158 |
+
@pytest.mark.parametrize("dtype", [None, object])
|
159 |
+
def test_objarr_radd_str_invalid(self, dtype, data, box_with_array):
|
160 |
+
ser = Series(data, dtype=dtype)
|
161 |
+
|
162 |
+
ser = tm.box_expected(ser, box_with_array)
|
163 |
+
msg = "|".join(
|
164 |
+
[
|
165 |
+
"can only concatenate str",
|
166 |
+
"did not contain a loop with signature matching types",
|
167 |
+
"unsupported operand type",
|
168 |
+
"must be str",
|
169 |
+
]
|
170 |
+
)
|
171 |
+
with pytest.raises(TypeError, match=msg):
|
172 |
+
"foo_" + ser
|
173 |
+
|
174 |
+
@pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub])
|
175 |
+
def test_objarr_add_invalid(self, op, box_with_array):
|
176 |
+
# invalid ops
|
177 |
+
box = box_with_array
|
178 |
+
|
179 |
+
obj_ser = Series(list("abc"), dtype=object, name="objects")
|
180 |
+
|
181 |
+
obj_ser = tm.box_expected(obj_ser, box)
|
182 |
+
msg = "|".join(
|
183 |
+
[
|
184 |
+
"can only concatenate str",
|
185 |
+
"unsupported operand type",
|
186 |
+
"must be str",
|
187 |
+
"has no kernel",
|
188 |
+
]
|
189 |
+
)
|
190 |
+
with pytest.raises(Exception, match=msg):
|
191 |
+
op(obj_ser, 1)
|
192 |
+
with pytest.raises(Exception, match=msg):
|
193 |
+
op(obj_ser, np.array(1, dtype=np.int64))
|
194 |
+
|
195 |
+
# TODO: Moved from tests.series.test_operators; needs cleanup
|
196 |
+
def test_operators_na_handling(self):
|
197 |
+
ser = Series(["foo", "bar", "baz", np.nan])
|
198 |
+
result = "prefix_" + ser
|
199 |
+
expected = Series(["prefix_foo", "prefix_bar", "prefix_baz", np.nan])
|
200 |
+
tm.assert_series_equal(result, expected)
|
201 |
+
|
202 |
+
result = ser + "_suffix"
|
203 |
+
expected = Series(["foo_suffix", "bar_suffix", "baz_suffix", np.nan])
|
204 |
+
tm.assert_series_equal(result, expected)
|
205 |
+
|
206 |
+
# TODO: parametrize over box
|
207 |
+
@pytest.mark.parametrize("dtype", [None, object])
|
208 |
+
def test_series_with_dtype_radd_timedelta(self, dtype):
|
209 |
+
# note this test is _not_ aimed at timedelta64-dtyped Series
|
210 |
+
# as of 2.0 we retain object dtype when ser.dtype == object
|
211 |
+
ser = Series(
|
212 |
+
[pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days")],
|
213 |
+
dtype=dtype,
|
214 |
+
)
|
215 |
+
expected = Series(
|
216 |
+
[pd.Timedelta("4 days"), pd.Timedelta("5 days"), pd.Timedelta("6 days")],
|
217 |
+
dtype=dtype,
|
218 |
+
)
|
219 |
+
|
220 |
+
result = pd.Timedelta("3 days") + ser
|
221 |
+
tm.assert_series_equal(result, expected)
|
222 |
+
|
223 |
+
result = ser + pd.Timedelta("3 days")
|
224 |
+
tm.assert_series_equal(result, expected)
|
225 |
+
|
226 |
+
# TODO: cleanup & parametrize over box
|
227 |
+
def test_mixed_timezone_series_ops_object(self):
|
228 |
+
# GH#13043
|
229 |
+
ser = Series(
|
230 |
+
[
|
231 |
+
Timestamp("2015-01-01", tz="US/Eastern"),
|
232 |
+
Timestamp("2015-01-01", tz="Asia/Tokyo"),
|
233 |
+
],
|
234 |
+
name="xxx",
|
235 |
+
)
|
236 |
+
assert ser.dtype == object
|
237 |
+
|
238 |
+
exp = Series(
|
239 |
+
[
|
240 |
+
Timestamp("2015-01-02", tz="US/Eastern"),
|
241 |
+
Timestamp("2015-01-02", tz="Asia/Tokyo"),
|
242 |
+
],
|
243 |
+
name="xxx",
|
244 |
+
)
|
245 |
+
tm.assert_series_equal(ser + pd.Timedelta("1 days"), exp)
|
246 |
+
tm.assert_series_equal(pd.Timedelta("1 days") + ser, exp)
|
247 |
+
|
248 |
+
# object series & object series
|
249 |
+
ser2 = Series(
|
250 |
+
[
|
251 |
+
Timestamp("2015-01-03", tz="US/Eastern"),
|
252 |
+
Timestamp("2015-01-05", tz="Asia/Tokyo"),
|
253 |
+
],
|
254 |
+
name="xxx",
|
255 |
+
)
|
256 |
+
assert ser2.dtype == object
|
257 |
+
exp = Series(
|
258 |
+
[pd.Timedelta("2 days"), pd.Timedelta("4 days")], name="xxx", dtype=object
|
259 |
+
)
|
260 |
+
tm.assert_series_equal(ser2 - ser, exp)
|
261 |
+
tm.assert_series_equal(ser - ser2, -exp)
|
262 |
+
|
263 |
+
ser = Series(
|
264 |
+
[pd.Timedelta("01:00:00"), pd.Timedelta("02:00:00")],
|
265 |
+
name="xxx",
|
266 |
+
dtype=object,
|
267 |
+
)
|
268 |
+
assert ser.dtype == object
|
269 |
+
|
270 |
+
exp = Series(
|
271 |
+
[pd.Timedelta("01:30:00"), pd.Timedelta("02:30:00")],
|
272 |
+
name="xxx",
|
273 |
+
dtype=object,
|
274 |
+
)
|
275 |
+
tm.assert_series_equal(ser + pd.Timedelta("00:30:00"), exp)
|
276 |
+
tm.assert_series_equal(pd.Timedelta("00:30:00") + ser, exp)
|
277 |
+
|
278 |
+
# TODO: cleanup & parametrize over box
|
279 |
+
def test_iadd_preserves_name(self):
|
280 |
+
# GH#17067, GH#19723 __iadd__ and __isub__ should preserve index name
|
281 |
+
ser = Series([1, 2, 3])
|
282 |
+
ser.index.name = "foo"
|
283 |
+
|
284 |
+
ser.index += 1
|
285 |
+
assert ser.index.name == "foo"
|
286 |
+
|
287 |
+
ser.index -= 1
|
288 |
+
assert ser.index.name == "foo"
|
289 |
+
|
290 |
+
def test_add_string(self):
|
291 |
+
# from bug report
|
292 |
+
index = pd.Index(["a", "b", "c"])
|
293 |
+
index2 = index + "foo"
|
294 |
+
|
295 |
+
assert "a" not in index2
|
296 |
+
assert "afoo" in index2
|
297 |
+
|
298 |
+
def test_iadd_string(self):
|
299 |
+
index = pd.Index(["a", "b", "c"])
|
300 |
+
# doesn't fail test unless there is a check before `+=`
|
301 |
+
assert "a" in index
|
302 |
+
|
303 |
+
index += "_x"
|
304 |
+
assert "a_x" in index
|
305 |
+
|
306 |
+
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="add doesn't work")
|
307 |
+
def test_add(self):
|
308 |
+
index = pd.Index([str(i) for i in range(10)])
|
309 |
+
expected = pd.Index(index.values * 2)
|
310 |
+
tm.assert_index_equal(index + index, expected)
|
311 |
+
tm.assert_index_equal(index + index.tolist(), expected)
|
312 |
+
tm.assert_index_equal(index.tolist() + index, expected)
|
313 |
+
|
314 |
+
# test add and radd
|
315 |
+
index = pd.Index(list("abc"))
|
316 |
+
expected = pd.Index(["a1", "b1", "c1"])
|
317 |
+
tm.assert_index_equal(index + "1", expected)
|
318 |
+
expected = pd.Index(["1a", "1b", "1c"])
|
319 |
+
tm.assert_index_equal("1" + index, expected)
|
320 |
+
|
321 |
+
def test_sub_fail(self, using_infer_string):
|
322 |
+
index = pd.Index([str(i) for i in range(10)])
|
323 |
+
|
324 |
+
if using_infer_string:
|
325 |
+
import pyarrow as pa
|
326 |
+
|
327 |
+
err = pa.lib.ArrowNotImplementedError
|
328 |
+
msg = "has no kernel"
|
329 |
+
else:
|
330 |
+
err = TypeError
|
331 |
+
msg = "unsupported operand type|Cannot broadcast"
|
332 |
+
with pytest.raises(err, match=msg):
|
333 |
+
index - "a"
|
334 |
+
with pytest.raises(err, match=msg):
|
335 |
+
index - index
|
336 |
+
with pytest.raises(err, match=msg):
|
337 |
+
index - index.tolist()
|
338 |
+
with pytest.raises(err, match=msg):
|
339 |
+
index.tolist() - index
|
340 |
+
|
341 |
+
def test_sub_object(self):
|
342 |
+
# GH#19369
|
343 |
+
index = pd.Index([Decimal(1), Decimal(2)])
|
344 |
+
expected = pd.Index([Decimal(0), Decimal(1)])
|
345 |
+
|
346 |
+
result = index - Decimal(1)
|
347 |
+
tm.assert_index_equal(result, expected)
|
348 |
+
|
349 |
+
result = index - pd.Index([Decimal(1), Decimal(1)])
|
350 |
+
tm.assert_index_equal(result, expected)
|
351 |
+
|
352 |
+
msg = "unsupported operand type"
|
353 |
+
with pytest.raises(TypeError, match=msg):
|
354 |
+
index - "foo"
|
355 |
+
|
356 |
+
with pytest.raises(TypeError, match=msg):
|
357 |
+
index - np.array([2, "foo"], dtype=object)
|
358 |
+
|
359 |
+
def test_rsub_object(self, fixed_now_ts):
|
360 |
+
# GH#19369
|
361 |
+
index = pd.Index([Decimal(1), Decimal(2)])
|
362 |
+
expected = pd.Index([Decimal(1), Decimal(0)])
|
363 |
+
|
364 |
+
result = Decimal(2) - index
|
365 |
+
tm.assert_index_equal(result, expected)
|
366 |
+
|
367 |
+
result = np.array([Decimal(2), Decimal(2)]) - index
|
368 |
+
tm.assert_index_equal(result, expected)
|
369 |
+
|
370 |
+
msg = "unsupported operand type"
|
371 |
+
with pytest.raises(TypeError, match=msg):
|
372 |
+
"foo" - index
|
373 |
+
|
374 |
+
with pytest.raises(TypeError, match=msg):
|
375 |
+
np.array([True, fixed_now_ts]) - index
|
376 |
+
|
377 |
+
|
378 |
+
class MyIndex(pd.Index):
|
379 |
+
# Simple index subclass that tracks ops calls.
|
380 |
+
|
381 |
+
_calls: int
|
382 |
+
|
383 |
+
@classmethod
|
384 |
+
def _simple_new(cls, values, name=None, dtype=None):
|
385 |
+
result = object.__new__(cls)
|
386 |
+
result._data = values
|
387 |
+
result._name = name
|
388 |
+
result._calls = 0
|
389 |
+
result._reset_identity()
|
390 |
+
|
391 |
+
return result
|
392 |
+
|
393 |
+
def __add__(self, other):
|
394 |
+
self._calls += 1
|
395 |
+
return self._simple_new(self._data)
|
396 |
+
|
397 |
+
def __radd__(self, other):
|
398 |
+
return self.__add__(other)
|
399 |
+
|
400 |
+
|
401 |
+
@pytest.mark.parametrize(
|
402 |
+
"other",
|
403 |
+
[
|
404 |
+
[datetime.timedelta(1), datetime.timedelta(2)],
|
405 |
+
[datetime.datetime(2000, 1, 1), datetime.datetime(2000, 1, 2)],
|
406 |
+
[pd.Period("2000"), pd.Period("2001")],
|
407 |
+
["a", "b"],
|
408 |
+
],
|
409 |
+
ids=["timedelta", "datetime", "period", "object"],
|
410 |
+
)
|
411 |
+
def test_index_ops_defer_to_unknown_subclasses(other):
|
412 |
+
# https://github.com/pandas-dev/pandas/issues/31109
|
413 |
+
values = np.array(
|
414 |
+
[datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)], dtype=object
|
415 |
+
)
|
416 |
+
a = MyIndex._simple_new(values)
|
417 |
+
other = pd.Index(other)
|
418 |
+
result = other + a
|
419 |
+
assert isinstance(result, MyIndex)
|
420 |
+
assert a._calls == 1
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_period.py
ADDED
@@ -0,0 +1,1675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Arithmetic tests for DataFrame/Series/Index/Array classes that should
|
2 |
+
# behave identically.
|
3 |
+
# Specifically for Period dtype
|
4 |
+
import operator
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pytest
|
8 |
+
|
9 |
+
from pandas._libs.tslibs import (
|
10 |
+
IncompatibleFrequency,
|
11 |
+
Period,
|
12 |
+
Timestamp,
|
13 |
+
to_offset,
|
14 |
+
)
|
15 |
+
from pandas.errors import PerformanceWarning
|
16 |
+
|
17 |
+
import pandas as pd
|
18 |
+
from pandas import (
|
19 |
+
PeriodIndex,
|
20 |
+
Series,
|
21 |
+
Timedelta,
|
22 |
+
TimedeltaIndex,
|
23 |
+
period_range,
|
24 |
+
)
|
25 |
+
import pandas._testing as tm
|
26 |
+
from pandas.core import ops
|
27 |
+
from pandas.core.arrays import TimedeltaArray
|
28 |
+
from pandas.tests.arithmetic.common import (
|
29 |
+
assert_invalid_addsub_type,
|
30 |
+
assert_invalid_comparison,
|
31 |
+
get_upcast_box,
|
32 |
+
)
|
33 |
+
|
34 |
+
_common_mismatch = [
|
35 |
+
pd.offsets.YearBegin(2),
|
36 |
+
pd.offsets.MonthBegin(1),
|
37 |
+
pd.offsets.Minute(),
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
@pytest.fixture(
|
42 |
+
params=[
|
43 |
+
Timedelta(minutes=30).to_pytimedelta(),
|
44 |
+
np.timedelta64(30, "s"),
|
45 |
+
Timedelta(seconds=30),
|
46 |
+
]
|
47 |
+
+ _common_mismatch
|
48 |
+
)
|
49 |
+
def not_hourly(request):
|
50 |
+
"""
|
51 |
+
Several timedelta-like and DateOffset instances that are _not_
|
52 |
+
compatible with Hourly frequencies.
|
53 |
+
"""
|
54 |
+
return request.param
|
55 |
+
|
56 |
+
|
57 |
+
@pytest.fixture(
|
58 |
+
params=[
|
59 |
+
np.timedelta64(365, "D"),
|
60 |
+
Timedelta(days=365).to_pytimedelta(),
|
61 |
+
Timedelta(days=365),
|
62 |
+
]
|
63 |
+
+ _common_mismatch
|
64 |
+
)
|
65 |
+
def mismatched_freq(request):
|
66 |
+
"""
|
67 |
+
Several timedelta-like and DateOffset instances that are _not_
|
68 |
+
compatible with Monthly or Annual frequencies.
|
69 |
+
"""
|
70 |
+
return request.param
|
71 |
+
|
72 |
+
|
73 |
+
# ------------------------------------------------------------------
|
74 |
+
# Comparisons
|
75 |
+
|
76 |
+
|
77 |
+
class TestPeriodArrayLikeComparisons:
|
78 |
+
# Comparison tests for PeriodDtype vectors fully parametrized over
|
79 |
+
# DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison
|
80 |
+
# tests will eventually end up here.
|
81 |
+
|
82 |
+
@pytest.mark.parametrize("other", ["2017", Period("2017", freq="D")])
|
83 |
+
def test_eq_scalar(self, other, box_with_array):
|
84 |
+
idx = PeriodIndex(["2017", "2017", "2018"], freq="D")
|
85 |
+
idx = tm.box_expected(idx, box_with_array)
|
86 |
+
xbox = get_upcast_box(idx, other, True)
|
87 |
+
|
88 |
+
expected = np.array([True, True, False])
|
89 |
+
expected = tm.box_expected(expected, xbox)
|
90 |
+
|
91 |
+
result = idx == other
|
92 |
+
|
93 |
+
tm.assert_equal(result, expected)
|
94 |
+
|
95 |
+
def test_compare_zerodim(self, box_with_array):
|
96 |
+
# GH#26689 make sure we unbox zero-dimensional arrays
|
97 |
+
|
98 |
+
pi = period_range("2000", periods=4)
|
99 |
+
other = np.array(pi.to_numpy()[0])
|
100 |
+
|
101 |
+
pi = tm.box_expected(pi, box_with_array)
|
102 |
+
xbox = get_upcast_box(pi, other, True)
|
103 |
+
|
104 |
+
result = pi <= other
|
105 |
+
expected = np.array([True, False, False, False])
|
106 |
+
expected = tm.box_expected(expected, xbox)
|
107 |
+
tm.assert_equal(result, expected)
|
108 |
+
|
109 |
+
@pytest.mark.parametrize(
|
110 |
+
"scalar",
|
111 |
+
[
|
112 |
+
"foo",
|
113 |
+
Timestamp("2021-01-01"),
|
114 |
+
Timedelta(days=4),
|
115 |
+
9,
|
116 |
+
9.5,
|
117 |
+
2000, # specifically don't consider 2000 to match Period("2000", "D")
|
118 |
+
False,
|
119 |
+
None,
|
120 |
+
],
|
121 |
+
)
|
122 |
+
def test_compare_invalid_scalar(self, box_with_array, scalar):
|
123 |
+
# GH#28980
|
124 |
+
# comparison with scalar that cannot be interpreted as a Period
|
125 |
+
pi = period_range("2000", periods=4)
|
126 |
+
parr = tm.box_expected(pi, box_with_array)
|
127 |
+
assert_invalid_comparison(parr, scalar, box_with_array)
|
128 |
+
|
129 |
+
@pytest.mark.parametrize(
|
130 |
+
"other",
|
131 |
+
[
|
132 |
+
pd.date_range("2000", periods=4).array,
|
133 |
+
pd.timedelta_range("1D", periods=4).array,
|
134 |
+
np.arange(4),
|
135 |
+
np.arange(4).astype(np.float64),
|
136 |
+
list(range(4)),
|
137 |
+
# match Period semantics by not treating integers as Periods
|
138 |
+
[2000, 2001, 2002, 2003],
|
139 |
+
np.arange(2000, 2004),
|
140 |
+
np.arange(2000, 2004).astype(object),
|
141 |
+
pd.Index([2000, 2001, 2002, 2003]),
|
142 |
+
],
|
143 |
+
)
|
144 |
+
def test_compare_invalid_listlike(self, box_with_array, other):
|
145 |
+
pi = period_range("2000", periods=4)
|
146 |
+
parr = tm.box_expected(pi, box_with_array)
|
147 |
+
assert_invalid_comparison(parr, other, box_with_array)
|
148 |
+
|
149 |
+
@pytest.mark.parametrize("other_box", [list, np.array, lambda x: x.astype(object)])
|
150 |
+
def test_compare_object_dtype(self, box_with_array, other_box):
|
151 |
+
pi = period_range("2000", periods=5)
|
152 |
+
parr = tm.box_expected(pi, box_with_array)
|
153 |
+
|
154 |
+
other = other_box(pi)
|
155 |
+
xbox = get_upcast_box(parr, other, True)
|
156 |
+
|
157 |
+
expected = np.array([True, True, True, True, True])
|
158 |
+
expected = tm.box_expected(expected, xbox)
|
159 |
+
|
160 |
+
result = parr == other
|
161 |
+
tm.assert_equal(result, expected)
|
162 |
+
result = parr <= other
|
163 |
+
tm.assert_equal(result, expected)
|
164 |
+
result = parr >= other
|
165 |
+
tm.assert_equal(result, expected)
|
166 |
+
|
167 |
+
result = parr != other
|
168 |
+
tm.assert_equal(result, ~expected)
|
169 |
+
result = parr < other
|
170 |
+
tm.assert_equal(result, ~expected)
|
171 |
+
result = parr > other
|
172 |
+
tm.assert_equal(result, ~expected)
|
173 |
+
|
174 |
+
other = other_box(pi[::-1])
|
175 |
+
|
176 |
+
expected = np.array([False, False, True, False, False])
|
177 |
+
expected = tm.box_expected(expected, xbox)
|
178 |
+
result = parr == other
|
179 |
+
tm.assert_equal(result, expected)
|
180 |
+
|
181 |
+
expected = np.array([True, True, True, False, False])
|
182 |
+
expected = tm.box_expected(expected, xbox)
|
183 |
+
result = parr <= other
|
184 |
+
tm.assert_equal(result, expected)
|
185 |
+
|
186 |
+
expected = np.array([False, False, True, True, True])
|
187 |
+
expected = tm.box_expected(expected, xbox)
|
188 |
+
result = parr >= other
|
189 |
+
tm.assert_equal(result, expected)
|
190 |
+
|
191 |
+
expected = np.array([True, True, False, True, True])
|
192 |
+
expected = tm.box_expected(expected, xbox)
|
193 |
+
result = parr != other
|
194 |
+
tm.assert_equal(result, expected)
|
195 |
+
|
196 |
+
expected = np.array([True, True, False, False, False])
|
197 |
+
expected = tm.box_expected(expected, xbox)
|
198 |
+
result = parr < other
|
199 |
+
tm.assert_equal(result, expected)
|
200 |
+
|
201 |
+
expected = np.array([False, False, False, True, True])
|
202 |
+
expected = tm.box_expected(expected, xbox)
|
203 |
+
result = parr > other
|
204 |
+
tm.assert_equal(result, expected)
|
205 |
+
|
206 |
+
|
207 |
+
class TestPeriodIndexComparisons:
|
208 |
+
# TODO: parameterize over boxes
|
209 |
+
|
210 |
+
def test_pi_cmp_period(self):
|
211 |
+
idx = period_range("2007-01", periods=20, freq="M")
|
212 |
+
per = idx[10]
|
213 |
+
|
214 |
+
result = idx < per
|
215 |
+
exp = idx.values < idx.values[10]
|
216 |
+
tm.assert_numpy_array_equal(result, exp)
|
217 |
+
|
218 |
+
# Tests Period.__richcmp__ against ndarray[object, ndim=2]
|
219 |
+
result = idx.values.reshape(10, 2) < per
|
220 |
+
tm.assert_numpy_array_equal(result, exp.reshape(10, 2))
|
221 |
+
|
222 |
+
# Tests Period.__richcmp__ against ndarray[object, ndim=0]
|
223 |
+
result = idx < np.array(per)
|
224 |
+
tm.assert_numpy_array_equal(result, exp)
|
225 |
+
|
226 |
+
# TODO: moved from test_datetime64; de-duplicate with version below
|
227 |
+
def test_parr_cmp_period_scalar2(self, box_with_array):
|
228 |
+
pi = period_range("2000-01-01", periods=10, freq="D")
|
229 |
+
|
230 |
+
val = pi[3]
|
231 |
+
expected = [x > val for x in pi]
|
232 |
+
|
233 |
+
ser = tm.box_expected(pi, box_with_array)
|
234 |
+
xbox = get_upcast_box(ser, val, True)
|
235 |
+
|
236 |
+
expected = tm.box_expected(expected, xbox)
|
237 |
+
result = ser > val
|
238 |
+
tm.assert_equal(result, expected)
|
239 |
+
|
240 |
+
val = pi[5]
|
241 |
+
result = ser > val
|
242 |
+
expected = [x > val for x in pi]
|
243 |
+
expected = tm.box_expected(expected, xbox)
|
244 |
+
tm.assert_equal(result, expected)
|
245 |
+
|
246 |
+
@pytest.mark.parametrize("freq", ["M", "2M", "3M"])
|
247 |
+
def test_parr_cmp_period_scalar(self, freq, box_with_array):
|
248 |
+
# GH#13200
|
249 |
+
base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq)
|
250 |
+
base = tm.box_expected(base, box_with_array)
|
251 |
+
per = Period("2011-02", freq=freq)
|
252 |
+
xbox = get_upcast_box(base, per, True)
|
253 |
+
|
254 |
+
exp = np.array([False, True, False, False])
|
255 |
+
exp = tm.box_expected(exp, xbox)
|
256 |
+
tm.assert_equal(base == per, exp)
|
257 |
+
tm.assert_equal(per == base, exp)
|
258 |
+
|
259 |
+
exp = np.array([True, False, True, True])
|
260 |
+
exp = tm.box_expected(exp, xbox)
|
261 |
+
tm.assert_equal(base != per, exp)
|
262 |
+
tm.assert_equal(per != base, exp)
|
263 |
+
|
264 |
+
exp = np.array([False, False, True, True])
|
265 |
+
exp = tm.box_expected(exp, xbox)
|
266 |
+
tm.assert_equal(base > per, exp)
|
267 |
+
tm.assert_equal(per < base, exp)
|
268 |
+
|
269 |
+
exp = np.array([True, False, False, False])
|
270 |
+
exp = tm.box_expected(exp, xbox)
|
271 |
+
tm.assert_equal(base < per, exp)
|
272 |
+
tm.assert_equal(per > base, exp)
|
273 |
+
|
274 |
+
exp = np.array([False, True, True, True])
|
275 |
+
exp = tm.box_expected(exp, xbox)
|
276 |
+
tm.assert_equal(base >= per, exp)
|
277 |
+
tm.assert_equal(per <= base, exp)
|
278 |
+
|
279 |
+
exp = np.array([True, True, False, False])
|
280 |
+
exp = tm.box_expected(exp, xbox)
|
281 |
+
tm.assert_equal(base <= per, exp)
|
282 |
+
tm.assert_equal(per >= base, exp)
|
283 |
+
|
284 |
+
@pytest.mark.parametrize("freq", ["M", "2M", "3M"])
|
285 |
+
def test_parr_cmp_pi(self, freq, box_with_array):
|
286 |
+
# GH#13200
|
287 |
+
base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq)
|
288 |
+
base = tm.box_expected(base, box_with_array)
|
289 |
+
|
290 |
+
# TODO: could also box idx?
|
291 |
+
idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq)
|
292 |
+
|
293 |
+
xbox = get_upcast_box(base, idx, True)
|
294 |
+
|
295 |
+
exp = np.array([False, False, True, False])
|
296 |
+
exp = tm.box_expected(exp, xbox)
|
297 |
+
tm.assert_equal(base == idx, exp)
|
298 |
+
|
299 |
+
exp = np.array([True, True, False, True])
|
300 |
+
exp = tm.box_expected(exp, xbox)
|
301 |
+
tm.assert_equal(base != idx, exp)
|
302 |
+
|
303 |
+
exp = np.array([False, True, False, False])
|
304 |
+
exp = tm.box_expected(exp, xbox)
|
305 |
+
tm.assert_equal(base > idx, exp)
|
306 |
+
|
307 |
+
exp = np.array([True, False, False, True])
|
308 |
+
exp = tm.box_expected(exp, xbox)
|
309 |
+
tm.assert_equal(base < idx, exp)
|
310 |
+
|
311 |
+
exp = np.array([False, True, True, False])
|
312 |
+
exp = tm.box_expected(exp, xbox)
|
313 |
+
tm.assert_equal(base >= idx, exp)
|
314 |
+
|
315 |
+
exp = np.array([True, False, True, True])
|
316 |
+
exp = tm.box_expected(exp, xbox)
|
317 |
+
tm.assert_equal(base <= idx, exp)
|
318 |
+
|
319 |
+
@pytest.mark.parametrize("freq", ["M", "2M", "3M"])
|
320 |
+
def test_parr_cmp_pi_mismatched_freq(self, freq, box_with_array):
|
321 |
+
# GH#13200
|
322 |
+
# different base freq
|
323 |
+
base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq)
|
324 |
+
base = tm.box_expected(base, box_with_array)
|
325 |
+
|
326 |
+
msg = rf"Invalid comparison between dtype=period\[{freq}\] and Period"
|
327 |
+
with pytest.raises(TypeError, match=msg):
|
328 |
+
base <= Period("2011", freq="Y")
|
329 |
+
|
330 |
+
with pytest.raises(TypeError, match=msg):
|
331 |
+
Period("2011", freq="Y") >= base
|
332 |
+
|
333 |
+
# TODO: Could parametrize over boxes for idx?
|
334 |
+
idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="Y")
|
335 |
+
rev_msg = r"Invalid comparison between dtype=period\[Y-DEC\] and PeriodArray"
|
336 |
+
idx_msg = rev_msg if box_with_array in [tm.to_array, pd.array] else msg
|
337 |
+
with pytest.raises(TypeError, match=idx_msg):
|
338 |
+
base <= idx
|
339 |
+
|
340 |
+
# Different frequency
|
341 |
+
msg = rf"Invalid comparison between dtype=period\[{freq}\] and Period"
|
342 |
+
with pytest.raises(TypeError, match=msg):
|
343 |
+
base <= Period("2011", freq="4M")
|
344 |
+
|
345 |
+
with pytest.raises(TypeError, match=msg):
|
346 |
+
Period("2011", freq="4M") >= base
|
347 |
+
|
348 |
+
idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M")
|
349 |
+
rev_msg = r"Invalid comparison between dtype=period\[4M\] and PeriodArray"
|
350 |
+
idx_msg = rev_msg if box_with_array in [tm.to_array, pd.array] else msg
|
351 |
+
with pytest.raises(TypeError, match=idx_msg):
|
352 |
+
base <= idx
|
353 |
+
|
354 |
+
@pytest.mark.parametrize("freq", ["M", "2M", "3M"])
|
355 |
+
def test_pi_cmp_nat(self, freq):
|
356 |
+
idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq)
|
357 |
+
per = idx1[1]
|
358 |
+
|
359 |
+
result = idx1 > per
|
360 |
+
exp = np.array([False, False, False, True])
|
361 |
+
tm.assert_numpy_array_equal(result, exp)
|
362 |
+
result = per < idx1
|
363 |
+
tm.assert_numpy_array_equal(result, exp)
|
364 |
+
|
365 |
+
result = idx1 == pd.NaT
|
366 |
+
exp = np.array([False, False, False, False])
|
367 |
+
tm.assert_numpy_array_equal(result, exp)
|
368 |
+
result = pd.NaT == idx1
|
369 |
+
tm.assert_numpy_array_equal(result, exp)
|
370 |
+
|
371 |
+
result = idx1 != pd.NaT
|
372 |
+
exp = np.array([True, True, True, True])
|
373 |
+
tm.assert_numpy_array_equal(result, exp)
|
374 |
+
result = pd.NaT != idx1
|
375 |
+
tm.assert_numpy_array_equal(result, exp)
|
376 |
+
|
377 |
+
idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq)
|
378 |
+
result = idx1 < idx2
|
379 |
+
exp = np.array([True, False, False, False])
|
380 |
+
tm.assert_numpy_array_equal(result, exp)
|
381 |
+
|
382 |
+
result = idx1 == idx2
|
383 |
+
exp = np.array([False, False, False, False])
|
384 |
+
tm.assert_numpy_array_equal(result, exp)
|
385 |
+
|
386 |
+
result = idx1 != idx2
|
387 |
+
exp = np.array([True, True, True, True])
|
388 |
+
tm.assert_numpy_array_equal(result, exp)
|
389 |
+
|
390 |
+
result = idx1 == idx1
|
391 |
+
exp = np.array([True, True, False, True])
|
392 |
+
tm.assert_numpy_array_equal(result, exp)
|
393 |
+
|
394 |
+
result = idx1 != idx1
|
395 |
+
exp = np.array([False, False, True, False])
|
396 |
+
tm.assert_numpy_array_equal(result, exp)
|
397 |
+
|
398 |
+
@pytest.mark.parametrize("freq", ["M", "2M", "3M"])
|
399 |
+
def test_pi_cmp_nat_mismatched_freq_raises(self, freq):
|
400 |
+
idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq)
|
401 |
+
|
402 |
+
diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M")
|
403 |
+
msg = rf"Invalid comparison between dtype=period\[{freq}\] and PeriodArray"
|
404 |
+
with pytest.raises(TypeError, match=msg):
|
405 |
+
idx1 > diff
|
406 |
+
|
407 |
+
result = idx1 == diff
|
408 |
+
expected = np.array([False, False, False, False], dtype=bool)
|
409 |
+
tm.assert_numpy_array_equal(result, expected)
|
410 |
+
|
411 |
+
# TODO: De-duplicate with test_pi_cmp_nat
|
412 |
+
@pytest.mark.parametrize("dtype", [object, None])
|
413 |
+
def test_comp_nat(self, dtype):
|
414 |
+
left = PeriodIndex([Period("2011-01-01"), pd.NaT, Period("2011-01-03")])
|
415 |
+
right = PeriodIndex([pd.NaT, pd.NaT, Period("2011-01-03")])
|
416 |
+
|
417 |
+
if dtype is not None:
|
418 |
+
left = left.astype(dtype)
|
419 |
+
right = right.astype(dtype)
|
420 |
+
|
421 |
+
result = left == right
|
422 |
+
expected = np.array([False, False, True])
|
423 |
+
tm.assert_numpy_array_equal(result, expected)
|
424 |
+
|
425 |
+
result = left != right
|
426 |
+
expected = np.array([True, True, False])
|
427 |
+
tm.assert_numpy_array_equal(result, expected)
|
428 |
+
|
429 |
+
expected = np.array([False, False, False])
|
430 |
+
tm.assert_numpy_array_equal(left == pd.NaT, expected)
|
431 |
+
tm.assert_numpy_array_equal(pd.NaT == right, expected)
|
432 |
+
|
433 |
+
expected = np.array([True, True, True])
|
434 |
+
tm.assert_numpy_array_equal(left != pd.NaT, expected)
|
435 |
+
tm.assert_numpy_array_equal(pd.NaT != left, expected)
|
436 |
+
|
437 |
+
expected = np.array([False, False, False])
|
438 |
+
tm.assert_numpy_array_equal(left < pd.NaT, expected)
|
439 |
+
tm.assert_numpy_array_equal(pd.NaT > left, expected)
|
440 |
+
|
441 |
+
|
442 |
+
class TestPeriodSeriesComparisons:
|
443 |
+
def test_cmp_series_period_series_mixed_freq(self):
|
444 |
+
# GH#13200
|
445 |
+
base = Series(
|
446 |
+
[
|
447 |
+
Period("2011", freq="Y"),
|
448 |
+
Period("2011-02", freq="M"),
|
449 |
+
Period("2013", freq="Y"),
|
450 |
+
Period("2011-04", freq="M"),
|
451 |
+
]
|
452 |
+
)
|
453 |
+
|
454 |
+
ser = Series(
|
455 |
+
[
|
456 |
+
Period("2012", freq="Y"),
|
457 |
+
Period("2011-01", freq="M"),
|
458 |
+
Period("2013", freq="Y"),
|
459 |
+
Period("2011-05", freq="M"),
|
460 |
+
]
|
461 |
+
)
|
462 |
+
|
463 |
+
exp = Series([False, False, True, False])
|
464 |
+
tm.assert_series_equal(base == ser, exp)
|
465 |
+
|
466 |
+
exp = Series([True, True, False, True])
|
467 |
+
tm.assert_series_equal(base != ser, exp)
|
468 |
+
|
469 |
+
exp = Series([False, True, False, False])
|
470 |
+
tm.assert_series_equal(base > ser, exp)
|
471 |
+
|
472 |
+
exp = Series([True, False, False, True])
|
473 |
+
tm.assert_series_equal(base < ser, exp)
|
474 |
+
|
475 |
+
exp = Series([False, True, True, False])
|
476 |
+
tm.assert_series_equal(base >= ser, exp)
|
477 |
+
|
478 |
+
exp = Series([True, False, True, True])
|
479 |
+
tm.assert_series_equal(base <= ser, exp)
|
480 |
+
|
481 |
+
|
482 |
+
class TestPeriodIndexSeriesComparisonConsistency:
|
483 |
+
"""Test PeriodIndex and Period Series Ops consistency"""
|
484 |
+
|
485 |
+
# TODO: needs parametrization+de-duplication
|
486 |
+
|
487 |
+
def _check(self, values, func, expected):
|
488 |
+
# Test PeriodIndex and Period Series Ops consistency
|
489 |
+
|
490 |
+
idx = PeriodIndex(values)
|
491 |
+
result = func(idx)
|
492 |
+
|
493 |
+
# check that we don't pass an unwanted type to tm.assert_equal
|
494 |
+
assert isinstance(expected, (pd.Index, np.ndarray))
|
495 |
+
tm.assert_equal(result, expected)
|
496 |
+
|
497 |
+
s = Series(values)
|
498 |
+
result = func(s)
|
499 |
+
|
500 |
+
exp = Series(expected, name=values.name)
|
501 |
+
tm.assert_series_equal(result, exp)
|
502 |
+
|
503 |
+
def test_pi_comp_period(self):
|
504 |
+
idx = PeriodIndex(
|
505 |
+
["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx"
|
506 |
+
)
|
507 |
+
per = idx[2]
|
508 |
+
|
509 |
+
f = lambda x: x == per
|
510 |
+
exp = np.array([False, False, True, False], dtype=np.bool_)
|
511 |
+
self._check(idx, f, exp)
|
512 |
+
f = lambda x: per == x
|
513 |
+
self._check(idx, f, exp)
|
514 |
+
|
515 |
+
f = lambda x: x != per
|
516 |
+
exp = np.array([True, True, False, True], dtype=np.bool_)
|
517 |
+
self._check(idx, f, exp)
|
518 |
+
f = lambda x: per != x
|
519 |
+
self._check(idx, f, exp)
|
520 |
+
|
521 |
+
f = lambda x: per >= x
|
522 |
+
exp = np.array([True, True, True, False], dtype=np.bool_)
|
523 |
+
self._check(idx, f, exp)
|
524 |
+
|
525 |
+
f = lambda x: x > per
|
526 |
+
exp = np.array([False, False, False, True], dtype=np.bool_)
|
527 |
+
self._check(idx, f, exp)
|
528 |
+
|
529 |
+
f = lambda x: per >= x
|
530 |
+
exp = np.array([True, True, True, False], dtype=np.bool_)
|
531 |
+
self._check(idx, f, exp)
|
532 |
+
|
533 |
+
def test_pi_comp_period_nat(self):
|
534 |
+
idx = PeriodIndex(
|
535 |
+
["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx"
|
536 |
+
)
|
537 |
+
per = idx[2]
|
538 |
+
|
539 |
+
f = lambda x: x == per
|
540 |
+
exp = np.array([False, False, True, False], dtype=np.bool_)
|
541 |
+
self._check(idx, f, exp)
|
542 |
+
f = lambda x: per == x
|
543 |
+
self._check(idx, f, exp)
|
544 |
+
|
545 |
+
f = lambda x: x == pd.NaT
|
546 |
+
exp = np.array([False, False, False, False], dtype=np.bool_)
|
547 |
+
self._check(idx, f, exp)
|
548 |
+
f = lambda x: pd.NaT == x
|
549 |
+
self._check(idx, f, exp)
|
550 |
+
|
551 |
+
f = lambda x: x != per
|
552 |
+
exp = np.array([True, True, False, True], dtype=np.bool_)
|
553 |
+
self._check(idx, f, exp)
|
554 |
+
f = lambda x: per != x
|
555 |
+
self._check(idx, f, exp)
|
556 |
+
|
557 |
+
f = lambda x: x != pd.NaT
|
558 |
+
exp = np.array([True, True, True, True], dtype=np.bool_)
|
559 |
+
self._check(idx, f, exp)
|
560 |
+
f = lambda x: pd.NaT != x
|
561 |
+
self._check(idx, f, exp)
|
562 |
+
|
563 |
+
f = lambda x: per >= x
|
564 |
+
exp = np.array([True, False, True, False], dtype=np.bool_)
|
565 |
+
self._check(idx, f, exp)
|
566 |
+
|
567 |
+
f = lambda x: x < per
|
568 |
+
exp = np.array([True, False, False, False], dtype=np.bool_)
|
569 |
+
self._check(idx, f, exp)
|
570 |
+
|
571 |
+
f = lambda x: x > pd.NaT
|
572 |
+
exp = np.array([False, False, False, False], dtype=np.bool_)
|
573 |
+
self._check(idx, f, exp)
|
574 |
+
|
575 |
+
f = lambda x: pd.NaT >= x
|
576 |
+
exp = np.array([False, False, False, False], dtype=np.bool_)
|
577 |
+
self._check(idx, f, exp)
|
578 |
+
|
579 |
+
|
580 |
+
# ------------------------------------------------------------------
|
581 |
+
# Arithmetic
|
582 |
+
|
583 |
+
|
584 |
+
class TestPeriodFrameArithmetic:
|
585 |
+
def test_ops_frame_period(self):
|
586 |
+
# GH#13043
|
587 |
+
df = pd.DataFrame(
|
588 |
+
{
|
589 |
+
"A": [Period("2015-01", freq="M"), Period("2015-02", freq="M")],
|
590 |
+
"B": [Period("2014-01", freq="M"), Period("2014-02", freq="M")],
|
591 |
+
}
|
592 |
+
)
|
593 |
+
assert df["A"].dtype == "Period[M]"
|
594 |
+
assert df["B"].dtype == "Period[M]"
|
595 |
+
|
596 |
+
p = Period("2015-03", freq="M")
|
597 |
+
off = p.freq
|
598 |
+
# dtype will be object because of original dtype
|
599 |
+
exp = pd.DataFrame(
|
600 |
+
{
|
601 |
+
"A": np.array([2 * off, 1 * off], dtype=object),
|
602 |
+
"B": np.array([14 * off, 13 * off], dtype=object),
|
603 |
+
}
|
604 |
+
)
|
605 |
+
tm.assert_frame_equal(p - df, exp)
|
606 |
+
tm.assert_frame_equal(df - p, -1 * exp)
|
607 |
+
|
608 |
+
df2 = pd.DataFrame(
|
609 |
+
{
|
610 |
+
"A": [Period("2015-05", freq="M"), Period("2015-06", freq="M")],
|
611 |
+
"B": [Period("2015-05", freq="M"), Period("2015-06", freq="M")],
|
612 |
+
}
|
613 |
+
)
|
614 |
+
assert df2["A"].dtype == "Period[M]"
|
615 |
+
assert df2["B"].dtype == "Period[M]"
|
616 |
+
|
617 |
+
exp = pd.DataFrame(
|
618 |
+
{
|
619 |
+
"A": np.array([4 * off, 4 * off], dtype=object),
|
620 |
+
"B": np.array([16 * off, 16 * off], dtype=object),
|
621 |
+
}
|
622 |
+
)
|
623 |
+
tm.assert_frame_equal(df2 - df, exp)
|
624 |
+
tm.assert_frame_equal(df - df2, -1 * exp)
|
625 |
+
|
626 |
+
|
627 |
+
class TestPeriodIndexArithmetic:
|
628 |
+
# ---------------------------------------------------------------
|
629 |
+
# __add__/__sub__ with PeriodIndex
|
630 |
+
# PeriodIndex + other is defined for integers and timedelta-like others
|
631 |
+
# PeriodIndex - other is defined for integers, timedelta-like others,
|
632 |
+
# and PeriodIndex (with matching freq)
|
633 |
+
|
634 |
+
def test_parr_add_iadd_parr_raises(self, box_with_array):
|
635 |
+
rng = period_range("1/1/2000", freq="D", periods=5)
|
636 |
+
other = period_range("1/6/2000", freq="D", periods=5)
|
637 |
+
# TODO: parametrize over boxes for other?
|
638 |
+
|
639 |
+
rng = tm.box_expected(rng, box_with_array)
|
640 |
+
# An earlier implementation of PeriodIndex addition performed
|
641 |
+
# a set operation (union). This has since been changed to
|
642 |
+
# raise a TypeError. See GH#14164 and GH#13077 for historical
|
643 |
+
# reference.
|
644 |
+
msg = r"unsupported operand type\(s\) for \+: .* and .*"
|
645 |
+
with pytest.raises(TypeError, match=msg):
|
646 |
+
rng + other
|
647 |
+
|
648 |
+
with pytest.raises(TypeError, match=msg):
|
649 |
+
rng += other
|
650 |
+
|
651 |
+
def test_pi_sub_isub_pi(self):
|
652 |
+
# GH#20049
|
653 |
+
# For historical reference see GH#14164, GH#13077.
|
654 |
+
# PeriodIndex subtraction originally performed set difference,
|
655 |
+
# then changed to raise TypeError before being implemented in GH#20049
|
656 |
+
rng = period_range("1/1/2000", freq="D", periods=5)
|
657 |
+
other = period_range("1/6/2000", freq="D", periods=5)
|
658 |
+
|
659 |
+
off = rng.freq
|
660 |
+
expected = pd.Index([-5 * off] * 5)
|
661 |
+
result = rng - other
|
662 |
+
tm.assert_index_equal(result, expected)
|
663 |
+
|
664 |
+
rng -= other
|
665 |
+
tm.assert_index_equal(rng, expected)
|
666 |
+
|
667 |
+
def test_pi_sub_pi_with_nat(self):
|
668 |
+
rng = period_range("1/1/2000", freq="D", periods=5)
|
669 |
+
other = rng[1:].insert(0, pd.NaT)
|
670 |
+
assert other[1:].equals(rng[1:])
|
671 |
+
|
672 |
+
result = rng - other
|
673 |
+
off = rng.freq
|
674 |
+
expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off])
|
675 |
+
tm.assert_index_equal(result, expected)
|
676 |
+
|
677 |
+
def test_parr_sub_pi_mismatched_freq(self, box_with_array, box_with_array2):
|
678 |
+
rng = period_range("1/1/2000", freq="D", periods=5)
|
679 |
+
other = period_range("1/6/2000", freq="h", periods=5)
|
680 |
+
|
681 |
+
rng = tm.box_expected(rng, box_with_array)
|
682 |
+
other = tm.box_expected(other, box_with_array2)
|
683 |
+
msg = r"Input has different freq=[hD] from PeriodArray\(freq=[Dh]\)"
|
684 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
685 |
+
rng - other
|
686 |
+
|
687 |
+
@pytest.mark.parametrize("n", [1, 2, 3, 4])
|
688 |
+
def test_sub_n_gt_1_ticks(self, tick_classes, n):
|
689 |
+
# GH 23878
|
690 |
+
p1_d = "19910905"
|
691 |
+
p2_d = "19920406"
|
692 |
+
p1 = PeriodIndex([p1_d], freq=tick_classes(n))
|
693 |
+
p2 = PeriodIndex([p2_d], freq=tick_classes(n))
|
694 |
+
|
695 |
+
expected = PeriodIndex([p2_d], freq=p2.freq.base) - PeriodIndex(
|
696 |
+
[p1_d], freq=p1.freq.base
|
697 |
+
)
|
698 |
+
|
699 |
+
tm.assert_index_equal((p2 - p1), expected)
|
700 |
+
|
701 |
+
@pytest.mark.parametrize("n", [1, 2, 3, 4])
|
702 |
+
@pytest.mark.parametrize(
|
703 |
+
"offset, kwd_name",
|
704 |
+
[
|
705 |
+
(pd.offsets.YearEnd, "month"),
|
706 |
+
(pd.offsets.QuarterEnd, "startingMonth"),
|
707 |
+
(pd.offsets.MonthEnd, None),
|
708 |
+
(pd.offsets.Week, "weekday"),
|
709 |
+
],
|
710 |
+
)
|
711 |
+
def test_sub_n_gt_1_offsets(self, offset, kwd_name, n):
|
712 |
+
# GH 23878
|
713 |
+
kwds = {kwd_name: 3} if kwd_name is not None else {}
|
714 |
+
p1_d = "19910905"
|
715 |
+
p2_d = "19920406"
|
716 |
+
freq = offset(n, normalize=False, **kwds)
|
717 |
+
p1 = PeriodIndex([p1_d], freq=freq)
|
718 |
+
p2 = PeriodIndex([p2_d], freq=freq)
|
719 |
+
|
720 |
+
result = p2 - p1
|
721 |
+
expected = PeriodIndex([p2_d], freq=freq.base) - PeriodIndex(
|
722 |
+
[p1_d], freq=freq.base
|
723 |
+
)
|
724 |
+
|
725 |
+
tm.assert_index_equal(result, expected)
|
726 |
+
|
727 |
+
# -------------------------------------------------------------
|
728 |
+
# Invalid Operations
|
729 |
+
|
730 |
+
@pytest.mark.parametrize(
|
731 |
+
"other",
|
732 |
+
[
|
733 |
+
# datetime scalars
|
734 |
+
Timestamp("2016-01-01"),
|
735 |
+
Timestamp("2016-01-01").to_pydatetime(),
|
736 |
+
Timestamp("2016-01-01").to_datetime64(),
|
737 |
+
# datetime-like arrays
|
738 |
+
pd.date_range("2016-01-01", periods=3, freq="h"),
|
739 |
+
pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels"),
|
740 |
+
pd.date_range("2016-01-01", periods=3, freq="s")._data,
|
741 |
+
pd.date_range("2016-01-01", periods=3, tz="Asia/Tokyo")._data,
|
742 |
+
# Miscellaneous invalid types
|
743 |
+
3.14,
|
744 |
+
np.array([2.0, 3.0, 4.0]),
|
745 |
+
],
|
746 |
+
)
|
747 |
+
def test_parr_add_sub_invalid(self, other, box_with_array):
|
748 |
+
# GH#23215
|
749 |
+
rng = period_range("1/1/2000", freq="D", periods=3)
|
750 |
+
rng = tm.box_expected(rng, box_with_array)
|
751 |
+
|
752 |
+
msg = "|".join(
|
753 |
+
[
|
754 |
+
r"(:?cannot add PeriodArray and .*)",
|
755 |
+
r"(:?cannot subtract .* from (:?a\s)?.*)",
|
756 |
+
r"(:?unsupported operand type\(s\) for \+: .* and .*)",
|
757 |
+
r"unsupported operand type\(s\) for [+-]: .* and .*",
|
758 |
+
]
|
759 |
+
)
|
760 |
+
assert_invalid_addsub_type(rng, other, msg)
|
761 |
+
with pytest.raises(TypeError, match=msg):
|
762 |
+
rng + other
|
763 |
+
with pytest.raises(TypeError, match=msg):
|
764 |
+
other + rng
|
765 |
+
with pytest.raises(TypeError, match=msg):
|
766 |
+
rng - other
|
767 |
+
with pytest.raises(TypeError, match=msg):
|
768 |
+
other - rng
|
769 |
+
|
770 |
+
# -----------------------------------------------------------------
|
771 |
+
# __add__/__sub__ with ndarray[datetime64] and ndarray[timedelta64]
|
772 |
+
|
773 |
+
def test_pi_add_sub_td64_array_non_tick_raises(self):
|
774 |
+
rng = period_range("1/1/2000", freq="Q", periods=3)
|
775 |
+
tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"])
|
776 |
+
tdarr = tdi.values
|
777 |
+
|
778 |
+
msg = r"Cannot add or subtract timedelta64\[ns\] dtype from period\[Q-DEC\]"
|
779 |
+
with pytest.raises(TypeError, match=msg):
|
780 |
+
rng + tdarr
|
781 |
+
with pytest.raises(TypeError, match=msg):
|
782 |
+
tdarr + rng
|
783 |
+
|
784 |
+
with pytest.raises(TypeError, match=msg):
|
785 |
+
rng - tdarr
|
786 |
+
msg = r"cannot subtract PeriodArray from TimedeltaArray"
|
787 |
+
with pytest.raises(TypeError, match=msg):
|
788 |
+
tdarr - rng
|
789 |
+
|
790 |
+
def test_pi_add_sub_td64_array_tick(self):
|
791 |
+
# PeriodIndex + Timedelta-like is allowed only with
|
792 |
+
# tick-like frequencies
|
793 |
+
rng = period_range("1/1/2000", freq="90D", periods=3)
|
794 |
+
tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"])
|
795 |
+
tdarr = tdi.values
|
796 |
+
|
797 |
+
expected = period_range("12/31/1999", freq="90D", periods=3)
|
798 |
+
result = rng + tdi
|
799 |
+
tm.assert_index_equal(result, expected)
|
800 |
+
result = rng + tdarr
|
801 |
+
tm.assert_index_equal(result, expected)
|
802 |
+
result = tdi + rng
|
803 |
+
tm.assert_index_equal(result, expected)
|
804 |
+
result = tdarr + rng
|
805 |
+
tm.assert_index_equal(result, expected)
|
806 |
+
|
807 |
+
expected = period_range("1/2/2000", freq="90D", periods=3)
|
808 |
+
|
809 |
+
result = rng - tdi
|
810 |
+
tm.assert_index_equal(result, expected)
|
811 |
+
result = rng - tdarr
|
812 |
+
tm.assert_index_equal(result, expected)
|
813 |
+
|
814 |
+
msg = r"cannot subtract .* from .*"
|
815 |
+
with pytest.raises(TypeError, match=msg):
|
816 |
+
tdarr - rng
|
817 |
+
|
818 |
+
with pytest.raises(TypeError, match=msg):
|
819 |
+
tdi - rng
|
820 |
+
|
821 |
+
@pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "h"])
|
822 |
+
@pytest.mark.parametrize("tdi_freq", [None, "h"])
|
823 |
+
def test_parr_sub_td64array(self, box_with_array, tdi_freq, pi_freq):
|
824 |
+
box = box_with_array
|
825 |
+
xbox = box if box not in [pd.array, tm.to_array] else pd.Index
|
826 |
+
|
827 |
+
tdi = TimedeltaIndex(["1 hours", "2 hours"], freq=tdi_freq)
|
828 |
+
dti = Timestamp("2018-03-07 17:16:40") + tdi
|
829 |
+
pi = dti.to_period(pi_freq)
|
830 |
+
|
831 |
+
# TODO: parametrize over box for pi?
|
832 |
+
td64obj = tm.box_expected(tdi, box)
|
833 |
+
|
834 |
+
if pi_freq == "h":
|
835 |
+
result = pi - td64obj
|
836 |
+
expected = (pi.to_timestamp("s") - tdi).to_period(pi_freq)
|
837 |
+
expected = tm.box_expected(expected, xbox)
|
838 |
+
tm.assert_equal(result, expected)
|
839 |
+
|
840 |
+
# Subtract from scalar
|
841 |
+
result = pi[0] - td64obj
|
842 |
+
expected = (pi[0].to_timestamp("s") - tdi).to_period(pi_freq)
|
843 |
+
expected = tm.box_expected(expected, box)
|
844 |
+
tm.assert_equal(result, expected)
|
845 |
+
|
846 |
+
elif pi_freq == "D":
|
847 |
+
# Tick, but non-compatible
|
848 |
+
msg = (
|
849 |
+
"Cannot add/subtract timedelta-like from PeriodArray that is "
|
850 |
+
"not an integer multiple of the PeriodArray's freq."
|
851 |
+
)
|
852 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
853 |
+
pi - td64obj
|
854 |
+
|
855 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
856 |
+
pi[0] - td64obj
|
857 |
+
|
858 |
+
else:
|
859 |
+
# With non-Tick freq, we could not add timedelta64 array regardless
|
860 |
+
# of what its resolution is
|
861 |
+
msg = "Cannot add or subtract timedelta64"
|
862 |
+
with pytest.raises(TypeError, match=msg):
|
863 |
+
pi - td64obj
|
864 |
+
with pytest.raises(TypeError, match=msg):
|
865 |
+
pi[0] - td64obj
|
866 |
+
|
867 |
+
# -----------------------------------------------------------------
|
868 |
+
# operations with array/Index of DateOffset objects
|
869 |
+
|
870 |
+
@pytest.mark.parametrize("box", [np.array, pd.Index])
|
871 |
+
def test_pi_add_offset_array(self, box):
|
872 |
+
# GH#18849
|
873 |
+
pi = PeriodIndex([Period("2015Q1"), Period("2016Q2")])
|
874 |
+
offs = box(
|
875 |
+
[
|
876 |
+
pd.offsets.QuarterEnd(n=1, startingMonth=12),
|
877 |
+
pd.offsets.QuarterEnd(n=-2, startingMonth=12),
|
878 |
+
]
|
879 |
+
)
|
880 |
+
expected = PeriodIndex([Period("2015Q2"), Period("2015Q4")]).astype(object)
|
881 |
+
|
882 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
883 |
+
res = pi + offs
|
884 |
+
tm.assert_index_equal(res, expected)
|
885 |
+
|
886 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
887 |
+
res2 = offs + pi
|
888 |
+
tm.assert_index_equal(res2, expected)
|
889 |
+
|
890 |
+
unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)])
|
891 |
+
# addition/subtraction ops with incompatible offsets should issue
|
892 |
+
# a PerformanceWarning and _then_ raise a TypeError.
|
893 |
+
msg = r"Input cannot be converted to Period\(freq=Q-DEC\)"
|
894 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
895 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
896 |
+
pi + unanchored
|
897 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
898 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
899 |
+
unanchored + pi
|
900 |
+
|
901 |
+
@pytest.mark.parametrize("box", [np.array, pd.Index])
|
902 |
+
def test_pi_sub_offset_array(self, box):
|
903 |
+
# GH#18824
|
904 |
+
pi = PeriodIndex([Period("2015Q1"), Period("2016Q2")])
|
905 |
+
other = box(
|
906 |
+
[
|
907 |
+
pd.offsets.QuarterEnd(n=1, startingMonth=12),
|
908 |
+
pd.offsets.QuarterEnd(n=-2, startingMonth=12),
|
909 |
+
]
|
910 |
+
)
|
911 |
+
|
912 |
+
expected = PeriodIndex([pi[n] - other[n] for n in range(len(pi))])
|
913 |
+
expected = expected.astype(object)
|
914 |
+
|
915 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
916 |
+
res = pi - other
|
917 |
+
tm.assert_index_equal(res, expected)
|
918 |
+
|
919 |
+
anchored = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)])
|
920 |
+
|
921 |
+
# addition/subtraction ops with anchored offsets should issue
|
922 |
+
# a PerformanceWarning and _then_ raise a TypeError.
|
923 |
+
msg = r"Input has different freq=-1M from Period\(freq=Q-DEC\)"
|
924 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
925 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
926 |
+
pi - anchored
|
927 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
928 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
929 |
+
anchored - pi
|
930 |
+
|
931 |
+
def test_pi_add_iadd_int(self, one):
|
932 |
+
# Variants of `one` for #19012
|
933 |
+
rng = period_range("2000-01-01 09:00", freq="h", periods=10)
|
934 |
+
result = rng + one
|
935 |
+
expected = period_range("2000-01-01 10:00", freq="h", periods=10)
|
936 |
+
tm.assert_index_equal(result, expected)
|
937 |
+
rng += one
|
938 |
+
tm.assert_index_equal(rng, expected)
|
939 |
+
|
940 |
+
def test_pi_sub_isub_int(self, one):
|
941 |
+
"""
|
942 |
+
PeriodIndex.__sub__ and __isub__ with several representations of
|
943 |
+
the integer 1, e.g. int, np.int64, np.uint8, ...
|
944 |
+
"""
|
945 |
+
rng = period_range("2000-01-01 09:00", freq="h", periods=10)
|
946 |
+
result = rng - one
|
947 |
+
expected = period_range("2000-01-01 08:00", freq="h", periods=10)
|
948 |
+
tm.assert_index_equal(result, expected)
|
949 |
+
rng -= one
|
950 |
+
tm.assert_index_equal(rng, expected)
|
951 |
+
|
952 |
+
@pytest.mark.parametrize("five", [5, np.array(5, dtype=np.int64)])
|
953 |
+
def test_pi_sub_intlike(self, five):
|
954 |
+
rng = period_range("2007-01", periods=50)
|
955 |
+
|
956 |
+
result = rng - five
|
957 |
+
exp = rng + (-five)
|
958 |
+
tm.assert_index_equal(result, exp)
|
959 |
+
|
960 |
+
def test_pi_add_sub_int_array_freqn_gt1(self):
|
961 |
+
# GH#47209 test adding array of ints when freq.n > 1 matches
|
962 |
+
# scalar behavior
|
963 |
+
pi = period_range("2016-01-01", periods=10, freq="2D")
|
964 |
+
arr = np.arange(10)
|
965 |
+
result = pi + arr
|
966 |
+
expected = pd.Index([x + y for x, y in zip(pi, arr)])
|
967 |
+
tm.assert_index_equal(result, expected)
|
968 |
+
|
969 |
+
result = pi - arr
|
970 |
+
expected = pd.Index([x - y for x, y in zip(pi, arr)])
|
971 |
+
tm.assert_index_equal(result, expected)
|
972 |
+
|
973 |
+
def test_pi_sub_isub_offset(self):
|
974 |
+
# offset
|
975 |
+
# DateOffset
|
976 |
+
rng = period_range("2014", "2024", freq="Y")
|
977 |
+
result = rng - pd.offsets.YearEnd(5)
|
978 |
+
expected = period_range("2009", "2019", freq="Y")
|
979 |
+
tm.assert_index_equal(result, expected)
|
980 |
+
rng -= pd.offsets.YearEnd(5)
|
981 |
+
tm.assert_index_equal(rng, expected)
|
982 |
+
|
983 |
+
rng = period_range("2014-01", "2016-12", freq="M")
|
984 |
+
result = rng - pd.offsets.MonthEnd(5)
|
985 |
+
expected = period_range("2013-08", "2016-07", freq="M")
|
986 |
+
tm.assert_index_equal(result, expected)
|
987 |
+
|
988 |
+
rng -= pd.offsets.MonthEnd(5)
|
989 |
+
tm.assert_index_equal(rng, expected)
|
990 |
+
|
991 |
+
@pytest.mark.parametrize("transpose", [True, False])
|
992 |
+
def test_pi_add_offset_n_gt1(self, box_with_array, transpose):
|
993 |
+
# GH#23215
|
994 |
+
# add offset to PeriodIndex with freq.n > 1
|
995 |
+
|
996 |
+
per = Period("2016-01", freq="2M")
|
997 |
+
pi = PeriodIndex([per])
|
998 |
+
|
999 |
+
expected = PeriodIndex(["2016-03"], freq="2M")
|
1000 |
+
|
1001 |
+
pi = tm.box_expected(pi, box_with_array, transpose=transpose)
|
1002 |
+
expected = tm.box_expected(expected, box_with_array, transpose=transpose)
|
1003 |
+
|
1004 |
+
result = pi + per.freq
|
1005 |
+
tm.assert_equal(result, expected)
|
1006 |
+
|
1007 |
+
result = per.freq + pi
|
1008 |
+
tm.assert_equal(result, expected)
|
1009 |
+
|
1010 |
+
def test_pi_add_offset_n_gt1_not_divisible(self, box_with_array):
|
1011 |
+
# GH#23215
|
1012 |
+
# PeriodIndex with freq.n > 1 add offset with offset.n % freq.n != 0
|
1013 |
+
pi = PeriodIndex(["2016-01"], freq="2M")
|
1014 |
+
expected = PeriodIndex(["2016-04"], freq="2M")
|
1015 |
+
|
1016 |
+
pi = tm.box_expected(pi, box_with_array)
|
1017 |
+
expected = tm.box_expected(expected, box_with_array)
|
1018 |
+
|
1019 |
+
result = pi + to_offset("3ME")
|
1020 |
+
tm.assert_equal(result, expected)
|
1021 |
+
|
1022 |
+
result = to_offset("3ME") + pi
|
1023 |
+
tm.assert_equal(result, expected)
|
1024 |
+
|
1025 |
+
# ---------------------------------------------------------------
|
1026 |
+
# __add__/__sub__ with integer arrays
|
1027 |
+
|
1028 |
+
@pytest.mark.parametrize("int_holder", [np.array, pd.Index])
|
1029 |
+
@pytest.mark.parametrize("op", [operator.add, ops.radd])
|
1030 |
+
def test_pi_add_intarray(self, int_holder, op):
|
1031 |
+
# GH#19959
|
1032 |
+
pi = PeriodIndex([Period("2015Q1"), Period("NaT")])
|
1033 |
+
other = int_holder([4, -1])
|
1034 |
+
|
1035 |
+
result = op(pi, other)
|
1036 |
+
expected = PeriodIndex([Period("2016Q1"), Period("NaT")])
|
1037 |
+
tm.assert_index_equal(result, expected)
|
1038 |
+
|
1039 |
+
@pytest.mark.parametrize("int_holder", [np.array, pd.Index])
|
1040 |
+
def test_pi_sub_intarray(self, int_holder):
|
1041 |
+
# GH#19959
|
1042 |
+
pi = PeriodIndex([Period("2015Q1"), Period("NaT")])
|
1043 |
+
other = int_holder([4, -1])
|
1044 |
+
|
1045 |
+
result = pi - other
|
1046 |
+
expected = PeriodIndex([Period("2014Q1"), Period("NaT")])
|
1047 |
+
tm.assert_index_equal(result, expected)
|
1048 |
+
|
1049 |
+
msg = r"bad operand type for unary -: 'PeriodArray'"
|
1050 |
+
with pytest.raises(TypeError, match=msg):
|
1051 |
+
other - pi
|
1052 |
+
|
1053 |
+
# ---------------------------------------------------------------
|
1054 |
+
# Timedelta-like (timedelta, timedelta64, Timedelta, Tick)
|
1055 |
+
# TODO: Some of these are misnomers because of non-Tick DateOffsets
|
1056 |
+
|
1057 |
+
def test_parr_add_timedeltalike_minute_gt1(self, three_days, box_with_array):
|
1058 |
+
# GH#23031 adding a time-delta-like offset to a PeriodArray that has
|
1059 |
+
# minute frequency with n != 1. A more general case is tested below
|
1060 |
+
# in test_pi_add_timedeltalike_tick_gt1, but here we write out the
|
1061 |
+
# expected result more explicitly.
|
1062 |
+
other = three_days
|
1063 |
+
rng = period_range("2014-05-01", periods=3, freq="2D")
|
1064 |
+
rng = tm.box_expected(rng, box_with_array)
|
1065 |
+
|
1066 |
+
expected = PeriodIndex(["2014-05-04", "2014-05-06", "2014-05-08"], freq="2D")
|
1067 |
+
expected = tm.box_expected(expected, box_with_array)
|
1068 |
+
|
1069 |
+
result = rng + other
|
1070 |
+
tm.assert_equal(result, expected)
|
1071 |
+
|
1072 |
+
result = other + rng
|
1073 |
+
tm.assert_equal(result, expected)
|
1074 |
+
|
1075 |
+
# subtraction
|
1076 |
+
expected = PeriodIndex(["2014-04-28", "2014-04-30", "2014-05-02"], freq="2D")
|
1077 |
+
expected = tm.box_expected(expected, box_with_array)
|
1078 |
+
result = rng - other
|
1079 |
+
tm.assert_equal(result, expected)
|
1080 |
+
|
1081 |
+
msg = "|".join(
|
1082 |
+
[
|
1083 |
+
r"bad operand type for unary -: 'PeriodArray'",
|
1084 |
+
r"cannot subtract PeriodArray from timedelta64\[[hD]\]",
|
1085 |
+
]
|
1086 |
+
)
|
1087 |
+
with pytest.raises(TypeError, match=msg):
|
1088 |
+
other - rng
|
1089 |
+
|
1090 |
+
@pytest.mark.parametrize("freqstr", ["5ns", "5us", "5ms", "5s", "5min", "5h", "5d"])
|
1091 |
+
def test_parr_add_timedeltalike_tick_gt1(self, three_days, freqstr, box_with_array):
|
1092 |
+
# GH#23031 adding a time-delta-like offset to a PeriodArray that has
|
1093 |
+
# tick-like frequency with n != 1
|
1094 |
+
other = three_days
|
1095 |
+
rng = period_range("2014-05-01", periods=6, freq=freqstr)
|
1096 |
+
first = rng[0]
|
1097 |
+
rng = tm.box_expected(rng, box_with_array)
|
1098 |
+
|
1099 |
+
expected = period_range(first + other, periods=6, freq=freqstr)
|
1100 |
+
expected = tm.box_expected(expected, box_with_array)
|
1101 |
+
|
1102 |
+
result = rng + other
|
1103 |
+
tm.assert_equal(result, expected)
|
1104 |
+
|
1105 |
+
result = other + rng
|
1106 |
+
tm.assert_equal(result, expected)
|
1107 |
+
|
1108 |
+
# subtraction
|
1109 |
+
expected = period_range(first - other, periods=6, freq=freqstr)
|
1110 |
+
expected = tm.box_expected(expected, box_with_array)
|
1111 |
+
result = rng - other
|
1112 |
+
tm.assert_equal(result, expected)
|
1113 |
+
msg = "|".join(
|
1114 |
+
[
|
1115 |
+
r"bad operand type for unary -: 'PeriodArray'",
|
1116 |
+
r"cannot subtract PeriodArray from timedelta64\[[hD]\]",
|
1117 |
+
]
|
1118 |
+
)
|
1119 |
+
with pytest.raises(TypeError, match=msg):
|
1120 |
+
other - rng
|
1121 |
+
|
1122 |
+
def test_pi_add_iadd_timedeltalike_daily(self, three_days):
|
1123 |
+
# Tick
|
1124 |
+
other = three_days
|
1125 |
+
rng = period_range("2014-05-01", "2014-05-15", freq="D")
|
1126 |
+
expected = period_range("2014-05-04", "2014-05-18", freq="D")
|
1127 |
+
|
1128 |
+
result = rng + other
|
1129 |
+
tm.assert_index_equal(result, expected)
|
1130 |
+
|
1131 |
+
rng += other
|
1132 |
+
tm.assert_index_equal(rng, expected)
|
1133 |
+
|
1134 |
+
def test_pi_sub_isub_timedeltalike_daily(self, three_days):
|
1135 |
+
# Tick-like 3 Days
|
1136 |
+
other = three_days
|
1137 |
+
rng = period_range("2014-05-01", "2014-05-15", freq="D")
|
1138 |
+
expected = period_range("2014-04-28", "2014-05-12", freq="D")
|
1139 |
+
|
1140 |
+
result = rng - other
|
1141 |
+
tm.assert_index_equal(result, expected)
|
1142 |
+
|
1143 |
+
rng -= other
|
1144 |
+
tm.assert_index_equal(rng, expected)
|
1145 |
+
|
1146 |
+
def test_parr_add_sub_timedeltalike_freq_mismatch_daily(
|
1147 |
+
self, not_daily, box_with_array
|
1148 |
+
):
|
1149 |
+
other = not_daily
|
1150 |
+
rng = period_range("2014-05-01", "2014-05-15", freq="D")
|
1151 |
+
rng = tm.box_expected(rng, box_with_array)
|
1152 |
+
|
1153 |
+
msg = "|".join(
|
1154 |
+
[
|
1155 |
+
# non-timedelta-like DateOffset
|
1156 |
+
"Input has different freq(=.+)? from Period.*?\\(freq=D\\)",
|
1157 |
+
# timedelta/td64/Timedelta but not a multiple of 24H
|
1158 |
+
"Cannot add/subtract timedelta-like from PeriodArray that is "
|
1159 |
+
"not an integer multiple of the PeriodArray's freq.",
|
1160 |
+
]
|
1161 |
+
)
|
1162 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1163 |
+
rng + other
|
1164 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1165 |
+
rng += other
|
1166 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1167 |
+
rng - other
|
1168 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1169 |
+
rng -= other
|
1170 |
+
|
1171 |
+
def test_pi_add_iadd_timedeltalike_hourly(self, two_hours):
|
1172 |
+
other = two_hours
|
1173 |
+
rng = period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="h")
|
1174 |
+
expected = period_range("2014-01-01 12:00", "2014-01-05 12:00", freq="h")
|
1175 |
+
|
1176 |
+
result = rng + other
|
1177 |
+
tm.assert_index_equal(result, expected)
|
1178 |
+
|
1179 |
+
rng += other
|
1180 |
+
tm.assert_index_equal(rng, expected)
|
1181 |
+
|
1182 |
+
def test_parr_add_timedeltalike_mismatched_freq_hourly(
|
1183 |
+
self, not_hourly, box_with_array
|
1184 |
+
):
|
1185 |
+
other = not_hourly
|
1186 |
+
rng = period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="h")
|
1187 |
+
rng = tm.box_expected(rng, box_with_array)
|
1188 |
+
msg = "|".join(
|
1189 |
+
[
|
1190 |
+
# non-timedelta-like DateOffset
|
1191 |
+
"Input has different freq(=.+)? from Period.*?\\(freq=h\\)",
|
1192 |
+
# timedelta/td64/Timedelta but not a multiple of 24H
|
1193 |
+
"Cannot add/subtract timedelta-like from PeriodArray that is "
|
1194 |
+
"not an integer multiple of the PeriodArray's freq.",
|
1195 |
+
]
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1199 |
+
rng + other
|
1200 |
+
|
1201 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1202 |
+
rng += other
|
1203 |
+
|
1204 |
+
def test_pi_sub_isub_timedeltalike_hourly(self, two_hours):
|
1205 |
+
other = two_hours
|
1206 |
+
rng = period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="h")
|
1207 |
+
expected = period_range("2014-01-01 08:00", "2014-01-05 08:00", freq="h")
|
1208 |
+
|
1209 |
+
result = rng - other
|
1210 |
+
tm.assert_index_equal(result, expected)
|
1211 |
+
|
1212 |
+
rng -= other
|
1213 |
+
tm.assert_index_equal(rng, expected)
|
1214 |
+
|
1215 |
+
def test_add_iadd_timedeltalike_annual(self):
|
1216 |
+
# offset
|
1217 |
+
# DateOffset
|
1218 |
+
rng = period_range("2014", "2024", freq="Y")
|
1219 |
+
result = rng + pd.offsets.YearEnd(5)
|
1220 |
+
expected = period_range("2019", "2029", freq="Y")
|
1221 |
+
tm.assert_index_equal(result, expected)
|
1222 |
+
rng += pd.offsets.YearEnd(5)
|
1223 |
+
tm.assert_index_equal(rng, expected)
|
1224 |
+
|
1225 |
+
def test_pi_add_sub_timedeltalike_freq_mismatch_annual(self, mismatched_freq):
|
1226 |
+
other = mismatched_freq
|
1227 |
+
rng = period_range("2014", "2024", freq="Y")
|
1228 |
+
msg = "Input has different freq(=.+)? from Period.*?\\(freq=Y-DEC\\)"
|
1229 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1230 |
+
rng + other
|
1231 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1232 |
+
rng += other
|
1233 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1234 |
+
rng - other
|
1235 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1236 |
+
rng -= other
|
1237 |
+
|
1238 |
+
def test_pi_add_iadd_timedeltalike_M(self):
|
1239 |
+
rng = period_range("2014-01", "2016-12", freq="M")
|
1240 |
+
expected = period_range("2014-06", "2017-05", freq="M")
|
1241 |
+
|
1242 |
+
result = rng + pd.offsets.MonthEnd(5)
|
1243 |
+
tm.assert_index_equal(result, expected)
|
1244 |
+
|
1245 |
+
rng += pd.offsets.MonthEnd(5)
|
1246 |
+
tm.assert_index_equal(rng, expected)
|
1247 |
+
|
1248 |
+
def test_pi_add_sub_timedeltalike_freq_mismatch_monthly(self, mismatched_freq):
|
1249 |
+
other = mismatched_freq
|
1250 |
+
rng = period_range("2014-01", "2016-12", freq="M")
|
1251 |
+
msg = "Input has different freq(=.+)? from Period.*?\\(freq=M\\)"
|
1252 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1253 |
+
rng + other
|
1254 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1255 |
+
rng += other
|
1256 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1257 |
+
rng - other
|
1258 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1259 |
+
rng -= other
|
1260 |
+
|
1261 |
+
@pytest.mark.parametrize("transpose", [True, False])
|
1262 |
+
def test_parr_add_sub_td64_nat(self, box_with_array, transpose):
|
1263 |
+
# GH#23320 special handling for timedelta64("NaT")
|
1264 |
+
pi = period_range("1994-04-01", periods=9, freq="19D")
|
1265 |
+
other = np.timedelta64("NaT")
|
1266 |
+
expected = PeriodIndex(["NaT"] * 9, freq="19D")
|
1267 |
+
|
1268 |
+
obj = tm.box_expected(pi, box_with_array, transpose=transpose)
|
1269 |
+
expected = tm.box_expected(expected, box_with_array, transpose=transpose)
|
1270 |
+
|
1271 |
+
result = obj + other
|
1272 |
+
tm.assert_equal(result, expected)
|
1273 |
+
result = other + obj
|
1274 |
+
tm.assert_equal(result, expected)
|
1275 |
+
result = obj - other
|
1276 |
+
tm.assert_equal(result, expected)
|
1277 |
+
msg = r"cannot subtract .* from .*"
|
1278 |
+
with pytest.raises(TypeError, match=msg):
|
1279 |
+
other - obj
|
1280 |
+
|
1281 |
+
@pytest.mark.parametrize(
|
1282 |
+
"other",
|
1283 |
+
[
|
1284 |
+
np.array(["NaT"] * 9, dtype="m8[ns]"),
|
1285 |
+
TimedeltaArray._from_sequence(["NaT"] * 9, dtype="m8[ns]"),
|
1286 |
+
],
|
1287 |
+
)
|
1288 |
+
def test_parr_add_sub_tdt64_nat_array(self, box_with_array, other):
|
1289 |
+
pi = period_range("1994-04-01", periods=9, freq="19D")
|
1290 |
+
expected = PeriodIndex(["NaT"] * 9, freq="19D")
|
1291 |
+
|
1292 |
+
obj = tm.box_expected(pi, box_with_array)
|
1293 |
+
expected = tm.box_expected(expected, box_with_array)
|
1294 |
+
|
1295 |
+
result = obj + other
|
1296 |
+
tm.assert_equal(result, expected)
|
1297 |
+
result = other + obj
|
1298 |
+
tm.assert_equal(result, expected)
|
1299 |
+
result = obj - other
|
1300 |
+
tm.assert_equal(result, expected)
|
1301 |
+
msg = r"cannot subtract .* from .*"
|
1302 |
+
with pytest.raises(TypeError, match=msg):
|
1303 |
+
other - obj
|
1304 |
+
|
1305 |
+
# some but not *all* NaT
|
1306 |
+
other = other.copy()
|
1307 |
+
other[0] = np.timedelta64(0, "ns")
|
1308 |
+
expected = PeriodIndex([pi[0]] + ["NaT"] * 8, freq="19D")
|
1309 |
+
expected = tm.box_expected(expected, box_with_array)
|
1310 |
+
|
1311 |
+
result = obj + other
|
1312 |
+
tm.assert_equal(result, expected)
|
1313 |
+
result = other + obj
|
1314 |
+
tm.assert_equal(result, expected)
|
1315 |
+
result = obj - other
|
1316 |
+
tm.assert_equal(result, expected)
|
1317 |
+
with pytest.raises(TypeError, match=msg):
|
1318 |
+
other - obj
|
1319 |
+
|
1320 |
+
# ---------------------------------------------------------------
|
1321 |
+
# Unsorted
|
1322 |
+
|
1323 |
+
def test_parr_add_sub_index(self):
|
1324 |
+
# Check that PeriodArray defers to Index on arithmetic ops
|
1325 |
+
pi = period_range("2000-12-31", periods=3)
|
1326 |
+
parr = pi.array
|
1327 |
+
|
1328 |
+
result = parr - pi
|
1329 |
+
expected = pi - pi
|
1330 |
+
tm.assert_index_equal(result, expected)
|
1331 |
+
|
1332 |
+
def test_parr_add_sub_object_array(self):
|
1333 |
+
pi = period_range("2000-12-31", periods=3, freq="D")
|
1334 |
+
parr = pi.array
|
1335 |
+
|
1336 |
+
other = np.array([Timedelta(days=1), pd.offsets.Day(2), 3])
|
1337 |
+
|
1338 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1339 |
+
result = parr + other
|
1340 |
+
|
1341 |
+
expected = PeriodIndex(
|
1342 |
+
["2001-01-01", "2001-01-03", "2001-01-05"], freq="D"
|
1343 |
+
)._data.astype(object)
|
1344 |
+
tm.assert_equal(result, expected)
|
1345 |
+
|
1346 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1347 |
+
result = parr - other
|
1348 |
+
|
1349 |
+
expected = PeriodIndex(["2000-12-30"] * 3, freq="D")._data.astype(object)
|
1350 |
+
tm.assert_equal(result, expected)
|
1351 |
+
|
1352 |
+
def test_period_add_timestamp_raises(self, box_with_array):
|
1353 |
+
# GH#17983
|
1354 |
+
ts = Timestamp("2017")
|
1355 |
+
per = Period("2017", freq="M")
|
1356 |
+
|
1357 |
+
arr = pd.Index([per], dtype="Period[M]")
|
1358 |
+
arr = tm.box_expected(arr, box_with_array)
|
1359 |
+
|
1360 |
+
msg = "cannot add PeriodArray and Timestamp"
|
1361 |
+
with pytest.raises(TypeError, match=msg):
|
1362 |
+
arr + ts
|
1363 |
+
with pytest.raises(TypeError, match=msg):
|
1364 |
+
ts + arr
|
1365 |
+
msg = "cannot add PeriodArray and DatetimeArray"
|
1366 |
+
with pytest.raises(TypeError, match=msg):
|
1367 |
+
arr + Series([ts])
|
1368 |
+
with pytest.raises(TypeError, match=msg):
|
1369 |
+
Series([ts]) + arr
|
1370 |
+
with pytest.raises(TypeError, match=msg):
|
1371 |
+
arr + pd.Index([ts])
|
1372 |
+
with pytest.raises(TypeError, match=msg):
|
1373 |
+
pd.Index([ts]) + arr
|
1374 |
+
|
1375 |
+
if box_with_array is pd.DataFrame:
|
1376 |
+
msg = "cannot add PeriodArray and DatetimeArray"
|
1377 |
+
else:
|
1378 |
+
msg = r"unsupported operand type\(s\) for \+: 'Period' and 'DatetimeArray"
|
1379 |
+
with pytest.raises(TypeError, match=msg):
|
1380 |
+
arr + pd.DataFrame([ts])
|
1381 |
+
if box_with_array is pd.DataFrame:
|
1382 |
+
msg = "cannot add PeriodArray and DatetimeArray"
|
1383 |
+
else:
|
1384 |
+
msg = r"unsupported operand type\(s\) for \+: 'DatetimeArray' and 'Period'"
|
1385 |
+
with pytest.raises(TypeError, match=msg):
|
1386 |
+
pd.DataFrame([ts]) + arr
|
1387 |
+
|
1388 |
+
|
1389 |
+
class TestPeriodSeriesArithmetic:
|
1390 |
+
def test_parr_add_timedeltalike_scalar(self, three_days, box_with_array):
|
1391 |
+
# GH#13043
|
1392 |
+
ser = Series(
|
1393 |
+
[Period("2015-01-01", freq="D"), Period("2015-01-02", freq="D")],
|
1394 |
+
name="xxx",
|
1395 |
+
)
|
1396 |
+
assert ser.dtype == "Period[D]"
|
1397 |
+
|
1398 |
+
expected = Series(
|
1399 |
+
[Period("2015-01-04", freq="D"), Period("2015-01-05", freq="D")],
|
1400 |
+
name="xxx",
|
1401 |
+
)
|
1402 |
+
|
1403 |
+
obj = tm.box_expected(ser, box_with_array)
|
1404 |
+
if box_with_array is pd.DataFrame:
|
1405 |
+
assert (obj.dtypes == "Period[D]").all()
|
1406 |
+
|
1407 |
+
expected = tm.box_expected(expected, box_with_array)
|
1408 |
+
|
1409 |
+
result = obj + three_days
|
1410 |
+
tm.assert_equal(result, expected)
|
1411 |
+
|
1412 |
+
result = three_days + obj
|
1413 |
+
tm.assert_equal(result, expected)
|
1414 |
+
|
1415 |
+
def test_ops_series_period(self):
|
1416 |
+
# GH#13043
|
1417 |
+
ser = Series(
|
1418 |
+
[Period("2015-01-01", freq="D"), Period("2015-01-02", freq="D")],
|
1419 |
+
name="xxx",
|
1420 |
+
)
|
1421 |
+
assert ser.dtype == "Period[D]"
|
1422 |
+
|
1423 |
+
per = Period("2015-01-10", freq="D")
|
1424 |
+
off = per.freq
|
1425 |
+
# dtype will be object because of original dtype
|
1426 |
+
expected = Series([9 * off, 8 * off], name="xxx", dtype=object)
|
1427 |
+
tm.assert_series_equal(per - ser, expected)
|
1428 |
+
tm.assert_series_equal(ser - per, -1 * expected)
|
1429 |
+
|
1430 |
+
s2 = Series(
|
1431 |
+
[Period("2015-01-05", freq="D"), Period("2015-01-04", freq="D")],
|
1432 |
+
name="xxx",
|
1433 |
+
)
|
1434 |
+
assert s2.dtype == "Period[D]"
|
1435 |
+
|
1436 |
+
expected = Series([4 * off, 2 * off], name="xxx", dtype=object)
|
1437 |
+
tm.assert_series_equal(s2 - ser, expected)
|
1438 |
+
tm.assert_series_equal(ser - s2, -1 * expected)
|
1439 |
+
|
1440 |
+
|
1441 |
+
class TestPeriodIndexSeriesMethods:
|
1442 |
+
"""Test PeriodIndex and Period Series Ops consistency"""
|
1443 |
+
|
1444 |
+
def _check(self, values, func, expected):
|
1445 |
+
idx = PeriodIndex(values)
|
1446 |
+
result = func(idx)
|
1447 |
+
tm.assert_equal(result, expected)
|
1448 |
+
|
1449 |
+
ser = Series(values)
|
1450 |
+
result = func(ser)
|
1451 |
+
|
1452 |
+
exp = Series(expected, name=values.name)
|
1453 |
+
tm.assert_series_equal(result, exp)
|
1454 |
+
|
1455 |
+
def test_pi_ops(self):
|
1456 |
+
idx = PeriodIndex(
|
1457 |
+
["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx"
|
1458 |
+
)
|
1459 |
+
|
1460 |
+
expected = PeriodIndex(
|
1461 |
+
["2011-03", "2011-04", "2011-05", "2011-06"], freq="M", name="idx"
|
1462 |
+
)
|
1463 |
+
|
1464 |
+
self._check(idx, lambda x: x + 2, expected)
|
1465 |
+
self._check(idx, lambda x: 2 + x, expected)
|
1466 |
+
|
1467 |
+
self._check(idx + 2, lambda x: x - 2, idx)
|
1468 |
+
|
1469 |
+
result = idx - Period("2011-01", freq="M")
|
1470 |
+
off = idx.freq
|
1471 |
+
exp = pd.Index([0 * off, 1 * off, 2 * off, 3 * off], name="idx")
|
1472 |
+
tm.assert_index_equal(result, exp)
|
1473 |
+
|
1474 |
+
result = Period("2011-01", freq="M") - idx
|
1475 |
+
exp = pd.Index([0 * off, -1 * off, -2 * off, -3 * off], name="idx")
|
1476 |
+
tm.assert_index_equal(result, exp)
|
1477 |
+
|
1478 |
+
@pytest.mark.parametrize("ng", ["str", 1.5])
|
1479 |
+
@pytest.mark.parametrize(
|
1480 |
+
"func",
|
1481 |
+
[
|
1482 |
+
lambda obj, ng: obj + ng,
|
1483 |
+
lambda obj, ng: ng + obj,
|
1484 |
+
lambda obj, ng: obj - ng,
|
1485 |
+
lambda obj, ng: ng - obj,
|
1486 |
+
lambda obj, ng: np.add(obj, ng),
|
1487 |
+
lambda obj, ng: np.add(ng, obj),
|
1488 |
+
lambda obj, ng: np.subtract(obj, ng),
|
1489 |
+
lambda obj, ng: np.subtract(ng, obj),
|
1490 |
+
],
|
1491 |
+
)
|
1492 |
+
def test_parr_ops_errors(self, ng, func, box_with_array):
|
1493 |
+
idx = PeriodIndex(
|
1494 |
+
["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx"
|
1495 |
+
)
|
1496 |
+
obj = tm.box_expected(idx, box_with_array)
|
1497 |
+
msg = "|".join(
|
1498 |
+
[
|
1499 |
+
r"unsupported operand type\(s\)",
|
1500 |
+
"can only concatenate",
|
1501 |
+
r"must be str",
|
1502 |
+
"object to str implicitly",
|
1503 |
+
]
|
1504 |
+
)
|
1505 |
+
|
1506 |
+
with pytest.raises(TypeError, match=msg):
|
1507 |
+
func(obj, ng)
|
1508 |
+
|
1509 |
+
def test_pi_ops_nat(self):
|
1510 |
+
idx = PeriodIndex(
|
1511 |
+
["2011-01", "2011-02", "NaT", "2011-04"], freq="M", name="idx"
|
1512 |
+
)
|
1513 |
+
expected = PeriodIndex(
|
1514 |
+
["2011-03", "2011-04", "NaT", "2011-06"], freq="M", name="idx"
|
1515 |
+
)
|
1516 |
+
|
1517 |
+
self._check(idx, lambda x: x + 2, expected)
|
1518 |
+
self._check(idx, lambda x: 2 + x, expected)
|
1519 |
+
self._check(idx, lambda x: np.add(x, 2), expected)
|
1520 |
+
|
1521 |
+
self._check(idx + 2, lambda x: x - 2, idx)
|
1522 |
+
self._check(idx + 2, lambda x: np.subtract(x, 2), idx)
|
1523 |
+
|
1524 |
+
# freq with mult
|
1525 |
+
idx = PeriodIndex(
|
1526 |
+
["2011-01", "2011-02", "NaT", "2011-04"], freq="2M", name="idx"
|
1527 |
+
)
|
1528 |
+
expected = PeriodIndex(
|
1529 |
+
["2011-07", "2011-08", "NaT", "2011-10"], freq="2M", name="idx"
|
1530 |
+
)
|
1531 |
+
|
1532 |
+
self._check(idx, lambda x: x + 3, expected)
|
1533 |
+
self._check(idx, lambda x: 3 + x, expected)
|
1534 |
+
self._check(idx, lambda x: np.add(x, 3), expected)
|
1535 |
+
|
1536 |
+
self._check(idx + 3, lambda x: x - 3, idx)
|
1537 |
+
self._check(idx + 3, lambda x: np.subtract(x, 3), idx)
|
1538 |
+
|
1539 |
+
def test_pi_ops_array_int(self):
|
1540 |
+
idx = PeriodIndex(
|
1541 |
+
["2011-01", "2011-02", "NaT", "2011-04"], freq="M", name="idx"
|
1542 |
+
)
|
1543 |
+
f = lambda x: x + np.array([1, 2, 3, 4])
|
1544 |
+
exp = PeriodIndex(
|
1545 |
+
["2011-02", "2011-04", "NaT", "2011-08"], freq="M", name="idx"
|
1546 |
+
)
|
1547 |
+
self._check(idx, f, exp)
|
1548 |
+
|
1549 |
+
f = lambda x: np.add(x, np.array([4, -1, 1, 2]))
|
1550 |
+
exp = PeriodIndex(
|
1551 |
+
["2011-05", "2011-01", "NaT", "2011-06"], freq="M", name="idx"
|
1552 |
+
)
|
1553 |
+
self._check(idx, f, exp)
|
1554 |
+
|
1555 |
+
f = lambda x: x - np.array([1, 2, 3, 4])
|
1556 |
+
exp = PeriodIndex(
|
1557 |
+
["2010-12", "2010-12", "NaT", "2010-12"], freq="M", name="idx"
|
1558 |
+
)
|
1559 |
+
self._check(idx, f, exp)
|
1560 |
+
|
1561 |
+
f = lambda x: np.subtract(x, np.array([3, 2, 3, -2]))
|
1562 |
+
exp = PeriodIndex(
|
1563 |
+
["2010-10", "2010-12", "NaT", "2011-06"], freq="M", name="idx"
|
1564 |
+
)
|
1565 |
+
self._check(idx, f, exp)
|
1566 |
+
|
1567 |
+
def test_pi_ops_offset(self):
|
1568 |
+
idx = PeriodIndex(
|
1569 |
+
["2011-01-01", "2011-02-01", "2011-03-01", "2011-04-01"],
|
1570 |
+
freq="D",
|
1571 |
+
name="idx",
|
1572 |
+
)
|
1573 |
+
f = lambda x: x + pd.offsets.Day()
|
1574 |
+
exp = PeriodIndex(
|
1575 |
+
["2011-01-02", "2011-02-02", "2011-03-02", "2011-04-02"],
|
1576 |
+
freq="D",
|
1577 |
+
name="idx",
|
1578 |
+
)
|
1579 |
+
self._check(idx, f, exp)
|
1580 |
+
|
1581 |
+
f = lambda x: x + pd.offsets.Day(2)
|
1582 |
+
exp = PeriodIndex(
|
1583 |
+
["2011-01-03", "2011-02-03", "2011-03-03", "2011-04-03"],
|
1584 |
+
freq="D",
|
1585 |
+
name="idx",
|
1586 |
+
)
|
1587 |
+
self._check(idx, f, exp)
|
1588 |
+
|
1589 |
+
f = lambda x: x - pd.offsets.Day(2)
|
1590 |
+
exp = PeriodIndex(
|
1591 |
+
["2010-12-30", "2011-01-30", "2011-02-27", "2011-03-30"],
|
1592 |
+
freq="D",
|
1593 |
+
name="idx",
|
1594 |
+
)
|
1595 |
+
self._check(idx, f, exp)
|
1596 |
+
|
1597 |
+
def test_pi_offset_errors(self):
|
1598 |
+
idx = PeriodIndex(
|
1599 |
+
["2011-01-01", "2011-02-01", "2011-03-01", "2011-04-01"],
|
1600 |
+
freq="D",
|
1601 |
+
name="idx",
|
1602 |
+
)
|
1603 |
+
ser = Series(idx)
|
1604 |
+
|
1605 |
+
msg = (
|
1606 |
+
"Cannot add/subtract timedelta-like from PeriodArray that is not "
|
1607 |
+
"an integer multiple of the PeriodArray's freq"
|
1608 |
+
)
|
1609 |
+
for obj in [idx, ser]:
|
1610 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1611 |
+
obj + pd.offsets.Hour(2)
|
1612 |
+
|
1613 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1614 |
+
pd.offsets.Hour(2) + obj
|
1615 |
+
|
1616 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
1617 |
+
obj - pd.offsets.Hour(2)
|
1618 |
+
|
1619 |
+
def test_pi_sub_period(self):
|
1620 |
+
# GH#13071
|
1621 |
+
idx = PeriodIndex(
|
1622 |
+
["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx"
|
1623 |
+
)
|
1624 |
+
|
1625 |
+
result = idx - Period("2012-01", freq="M")
|
1626 |
+
off = idx.freq
|
1627 |
+
exp = pd.Index([-12 * off, -11 * off, -10 * off, -9 * off], name="idx")
|
1628 |
+
tm.assert_index_equal(result, exp)
|
1629 |
+
|
1630 |
+
result = np.subtract(idx, Period("2012-01", freq="M"))
|
1631 |
+
tm.assert_index_equal(result, exp)
|
1632 |
+
|
1633 |
+
result = Period("2012-01", freq="M") - idx
|
1634 |
+
exp = pd.Index([12 * off, 11 * off, 10 * off, 9 * off], name="idx")
|
1635 |
+
tm.assert_index_equal(result, exp)
|
1636 |
+
|
1637 |
+
result = np.subtract(Period("2012-01", freq="M"), idx)
|
1638 |
+
tm.assert_index_equal(result, exp)
|
1639 |
+
|
1640 |
+
exp = TimedeltaIndex([np.nan, np.nan, np.nan, np.nan], name="idx")
|
1641 |
+
result = idx - Period("NaT", freq="M")
|
1642 |
+
tm.assert_index_equal(result, exp)
|
1643 |
+
assert result.freq == exp.freq
|
1644 |
+
|
1645 |
+
result = Period("NaT", freq="M") - idx
|
1646 |
+
tm.assert_index_equal(result, exp)
|
1647 |
+
assert result.freq == exp.freq
|
1648 |
+
|
1649 |
+
def test_pi_sub_pdnat(self):
|
1650 |
+
# GH#13071, GH#19389
|
1651 |
+
idx = PeriodIndex(
|
1652 |
+
["2011-01", "2011-02", "NaT", "2011-04"], freq="M", name="idx"
|
1653 |
+
)
|
1654 |
+
exp = TimedeltaIndex([pd.NaT] * 4, name="idx")
|
1655 |
+
tm.assert_index_equal(pd.NaT - idx, exp)
|
1656 |
+
tm.assert_index_equal(idx - pd.NaT, exp)
|
1657 |
+
|
1658 |
+
def test_pi_sub_period_nat(self):
|
1659 |
+
# GH#13071
|
1660 |
+
idx = PeriodIndex(
|
1661 |
+
["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx"
|
1662 |
+
)
|
1663 |
+
|
1664 |
+
result = idx - Period("2012-01", freq="M")
|
1665 |
+
off = idx.freq
|
1666 |
+
exp = pd.Index([-12 * off, pd.NaT, -10 * off, -9 * off], name="idx")
|
1667 |
+
tm.assert_index_equal(result, exp)
|
1668 |
+
|
1669 |
+
result = Period("2012-01", freq="M") - idx
|
1670 |
+
exp = pd.Index([12 * off, pd.NaT, 10 * off, 9 * off], name="idx")
|
1671 |
+
tm.assert_index_equal(result, exp)
|
1672 |
+
|
1673 |
+
exp = TimedeltaIndex([np.nan, np.nan, np.nan, np.nan], name="idx")
|
1674 |
+
tm.assert_index_equal(idx - Period("NaT", freq="M"), exp)
|
1675 |
+
tm.assert_index_equal(Period("NaT", freq="M") - idx, exp)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arithmetic/test_timedelta64.py
ADDED
@@ -0,0 +1,2173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Arithmetic tests for DataFrame/Series/Index/Array classes that should
|
2 |
+
# behave identically.
|
3 |
+
from datetime import (
|
4 |
+
datetime,
|
5 |
+
timedelta,
|
6 |
+
)
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pytest
|
10 |
+
|
11 |
+
from pandas.errors import (
|
12 |
+
OutOfBoundsDatetime,
|
13 |
+
PerformanceWarning,
|
14 |
+
)
|
15 |
+
|
16 |
+
import pandas as pd
|
17 |
+
from pandas import (
|
18 |
+
DataFrame,
|
19 |
+
DatetimeIndex,
|
20 |
+
Index,
|
21 |
+
NaT,
|
22 |
+
Series,
|
23 |
+
Timedelta,
|
24 |
+
TimedeltaIndex,
|
25 |
+
Timestamp,
|
26 |
+
offsets,
|
27 |
+
timedelta_range,
|
28 |
+
)
|
29 |
+
import pandas._testing as tm
|
30 |
+
from pandas.core.arrays import NumpyExtensionArray
|
31 |
+
from pandas.tests.arithmetic.common import (
|
32 |
+
assert_invalid_addsub_type,
|
33 |
+
assert_invalid_comparison,
|
34 |
+
get_upcast_box,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def assert_dtype(obj, expected_dtype):
|
39 |
+
"""
|
40 |
+
Helper to check the dtype for a Series, Index, or single-column DataFrame.
|
41 |
+
"""
|
42 |
+
dtype = tm.get_dtype(obj)
|
43 |
+
|
44 |
+
assert dtype == expected_dtype
|
45 |
+
|
46 |
+
|
47 |
+
def get_expected_name(box, names):
|
48 |
+
if box is DataFrame:
|
49 |
+
# Since we are operating with a DataFrame and a non-DataFrame,
|
50 |
+
# the non-DataFrame is cast to Series and its name ignored.
|
51 |
+
exname = names[0]
|
52 |
+
elif box in [tm.to_array, pd.array]:
|
53 |
+
exname = names[1]
|
54 |
+
else:
|
55 |
+
exname = names[2]
|
56 |
+
return exname
|
57 |
+
|
58 |
+
|
59 |
+
# ------------------------------------------------------------------
|
60 |
+
# Timedelta64[ns] dtype Comparisons
|
61 |
+
|
62 |
+
|
63 |
+
class TestTimedelta64ArrayLikeComparisons:
|
64 |
+
# Comparison tests for timedelta64[ns] vectors fully parametrized over
|
65 |
+
# DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison
|
66 |
+
# tests will eventually end up here.
|
67 |
+
|
68 |
+
def test_compare_timedelta64_zerodim(self, box_with_array):
|
69 |
+
# GH#26689 should unbox when comparing with zerodim array
|
70 |
+
box = box_with_array
|
71 |
+
xbox = box_with_array if box_with_array not in [Index, pd.array] else np.ndarray
|
72 |
+
|
73 |
+
tdi = timedelta_range("2h", periods=4)
|
74 |
+
other = np.array(tdi.to_numpy()[0])
|
75 |
+
|
76 |
+
tdi = tm.box_expected(tdi, box)
|
77 |
+
res = tdi <= other
|
78 |
+
expected = np.array([True, False, False, False])
|
79 |
+
expected = tm.box_expected(expected, xbox)
|
80 |
+
tm.assert_equal(res, expected)
|
81 |
+
|
82 |
+
@pytest.mark.parametrize(
|
83 |
+
"td_scalar",
|
84 |
+
[
|
85 |
+
timedelta(days=1),
|
86 |
+
Timedelta(days=1),
|
87 |
+
Timedelta(days=1).to_timedelta64(),
|
88 |
+
offsets.Hour(24),
|
89 |
+
],
|
90 |
+
)
|
91 |
+
def test_compare_timedeltalike_scalar(self, box_with_array, td_scalar):
|
92 |
+
# regression test for GH#5963
|
93 |
+
box = box_with_array
|
94 |
+
xbox = box if box not in [Index, pd.array] else np.ndarray
|
95 |
+
|
96 |
+
ser = Series([timedelta(days=1), timedelta(days=2)])
|
97 |
+
ser = tm.box_expected(ser, box)
|
98 |
+
actual = ser > td_scalar
|
99 |
+
expected = Series([False, True])
|
100 |
+
expected = tm.box_expected(expected, xbox)
|
101 |
+
tm.assert_equal(actual, expected)
|
102 |
+
|
103 |
+
@pytest.mark.parametrize(
|
104 |
+
"invalid",
|
105 |
+
[
|
106 |
+
345600000000000,
|
107 |
+
"a",
|
108 |
+
Timestamp("2021-01-01"),
|
109 |
+
Timestamp("2021-01-01").now("UTC"),
|
110 |
+
Timestamp("2021-01-01").now().to_datetime64(),
|
111 |
+
Timestamp("2021-01-01").now().to_pydatetime(),
|
112 |
+
Timestamp("2021-01-01").date(),
|
113 |
+
np.array(4), # zero-dim mismatched dtype
|
114 |
+
],
|
115 |
+
)
|
116 |
+
def test_td64_comparisons_invalid(self, box_with_array, invalid):
|
117 |
+
# GH#13624 for str
|
118 |
+
box = box_with_array
|
119 |
+
|
120 |
+
rng = timedelta_range("1 days", periods=10)
|
121 |
+
obj = tm.box_expected(rng, box)
|
122 |
+
|
123 |
+
assert_invalid_comparison(obj, invalid, box)
|
124 |
+
|
125 |
+
@pytest.mark.parametrize(
|
126 |
+
"other",
|
127 |
+
[
|
128 |
+
list(range(10)),
|
129 |
+
np.arange(10),
|
130 |
+
np.arange(10).astype(np.float32),
|
131 |
+
np.arange(10).astype(object),
|
132 |
+
pd.date_range("1970-01-01", periods=10, tz="UTC").array,
|
133 |
+
np.array(pd.date_range("1970-01-01", periods=10)),
|
134 |
+
list(pd.date_range("1970-01-01", periods=10)),
|
135 |
+
pd.date_range("1970-01-01", periods=10).astype(object),
|
136 |
+
pd.period_range("1971-01-01", freq="D", periods=10).array,
|
137 |
+
pd.period_range("1971-01-01", freq="D", periods=10).astype(object),
|
138 |
+
],
|
139 |
+
)
|
140 |
+
def test_td64arr_cmp_arraylike_invalid(self, other, box_with_array):
|
141 |
+
# We don't parametrize this over box_with_array because listlike
|
142 |
+
# other plays poorly with assert_invalid_comparison reversed checks
|
143 |
+
|
144 |
+
rng = timedelta_range("1 days", periods=10)._data
|
145 |
+
rng = tm.box_expected(rng, box_with_array)
|
146 |
+
assert_invalid_comparison(rng, other, box_with_array)
|
147 |
+
|
148 |
+
def test_td64arr_cmp_mixed_invalid(self):
|
149 |
+
rng = timedelta_range("1 days", periods=5)._data
|
150 |
+
other = np.array([0, 1, 2, rng[3], Timestamp("2021-01-01")])
|
151 |
+
|
152 |
+
result = rng == other
|
153 |
+
expected = np.array([False, False, False, True, False])
|
154 |
+
tm.assert_numpy_array_equal(result, expected)
|
155 |
+
|
156 |
+
result = rng != other
|
157 |
+
tm.assert_numpy_array_equal(result, ~expected)
|
158 |
+
|
159 |
+
msg = "Invalid comparison between|Cannot compare type|not supported between"
|
160 |
+
with pytest.raises(TypeError, match=msg):
|
161 |
+
rng < other
|
162 |
+
with pytest.raises(TypeError, match=msg):
|
163 |
+
rng > other
|
164 |
+
with pytest.raises(TypeError, match=msg):
|
165 |
+
rng <= other
|
166 |
+
with pytest.raises(TypeError, match=msg):
|
167 |
+
rng >= other
|
168 |
+
|
169 |
+
|
170 |
+
class TestTimedelta64ArrayComparisons:
|
171 |
+
# TODO: All of these need to be parametrized over box
|
172 |
+
|
173 |
+
@pytest.mark.parametrize("dtype", [None, object])
|
174 |
+
def test_comp_nat(self, dtype):
|
175 |
+
left = TimedeltaIndex([Timedelta("1 days"), NaT, Timedelta("3 days")])
|
176 |
+
right = TimedeltaIndex([NaT, NaT, Timedelta("3 days")])
|
177 |
+
|
178 |
+
lhs, rhs = left, right
|
179 |
+
if dtype is object:
|
180 |
+
lhs, rhs = left.astype(object), right.astype(object)
|
181 |
+
|
182 |
+
result = rhs == lhs
|
183 |
+
expected = np.array([False, False, True])
|
184 |
+
tm.assert_numpy_array_equal(result, expected)
|
185 |
+
|
186 |
+
result = rhs != lhs
|
187 |
+
expected = np.array([True, True, False])
|
188 |
+
tm.assert_numpy_array_equal(result, expected)
|
189 |
+
|
190 |
+
expected = np.array([False, False, False])
|
191 |
+
tm.assert_numpy_array_equal(lhs == NaT, expected)
|
192 |
+
tm.assert_numpy_array_equal(NaT == rhs, expected)
|
193 |
+
|
194 |
+
expected = np.array([True, True, True])
|
195 |
+
tm.assert_numpy_array_equal(lhs != NaT, expected)
|
196 |
+
tm.assert_numpy_array_equal(NaT != lhs, expected)
|
197 |
+
|
198 |
+
expected = np.array([False, False, False])
|
199 |
+
tm.assert_numpy_array_equal(lhs < NaT, expected)
|
200 |
+
tm.assert_numpy_array_equal(NaT > lhs, expected)
|
201 |
+
|
202 |
+
@pytest.mark.parametrize(
|
203 |
+
"idx2",
|
204 |
+
[
|
205 |
+
TimedeltaIndex(
|
206 |
+
["2 day", "2 day", NaT, NaT, "1 day 00:00:02", "5 days 00:00:03"]
|
207 |
+
),
|
208 |
+
np.array(
|
209 |
+
[
|
210 |
+
np.timedelta64(2, "D"),
|
211 |
+
np.timedelta64(2, "D"),
|
212 |
+
np.timedelta64("nat"),
|
213 |
+
np.timedelta64("nat"),
|
214 |
+
np.timedelta64(1, "D") + np.timedelta64(2, "s"),
|
215 |
+
np.timedelta64(5, "D") + np.timedelta64(3, "s"),
|
216 |
+
]
|
217 |
+
),
|
218 |
+
],
|
219 |
+
)
|
220 |
+
def test_comparisons_nat(self, idx2):
|
221 |
+
idx1 = TimedeltaIndex(
|
222 |
+
[
|
223 |
+
"1 day",
|
224 |
+
NaT,
|
225 |
+
"1 day 00:00:01",
|
226 |
+
NaT,
|
227 |
+
"1 day 00:00:01",
|
228 |
+
"5 day 00:00:03",
|
229 |
+
]
|
230 |
+
)
|
231 |
+
# Check pd.NaT is handles as the same as np.nan
|
232 |
+
result = idx1 < idx2
|
233 |
+
expected = np.array([True, False, False, False, True, False])
|
234 |
+
tm.assert_numpy_array_equal(result, expected)
|
235 |
+
|
236 |
+
result = idx2 > idx1
|
237 |
+
expected = np.array([True, False, False, False, True, False])
|
238 |
+
tm.assert_numpy_array_equal(result, expected)
|
239 |
+
|
240 |
+
result = idx1 <= idx2
|
241 |
+
expected = np.array([True, False, False, False, True, True])
|
242 |
+
tm.assert_numpy_array_equal(result, expected)
|
243 |
+
|
244 |
+
result = idx2 >= idx1
|
245 |
+
expected = np.array([True, False, False, False, True, True])
|
246 |
+
tm.assert_numpy_array_equal(result, expected)
|
247 |
+
|
248 |
+
result = idx1 == idx2
|
249 |
+
expected = np.array([False, False, False, False, False, True])
|
250 |
+
tm.assert_numpy_array_equal(result, expected)
|
251 |
+
|
252 |
+
result = idx1 != idx2
|
253 |
+
expected = np.array([True, True, True, True, True, False])
|
254 |
+
tm.assert_numpy_array_equal(result, expected)
|
255 |
+
|
256 |
+
# TODO: better name
|
257 |
+
def test_comparisons_coverage(self):
|
258 |
+
rng = timedelta_range("1 days", periods=10)
|
259 |
+
|
260 |
+
result = rng < rng[3]
|
261 |
+
expected = np.array([True, True, True] + [False] * 7)
|
262 |
+
tm.assert_numpy_array_equal(result, expected)
|
263 |
+
|
264 |
+
result = rng == list(rng)
|
265 |
+
exp = rng == rng
|
266 |
+
tm.assert_numpy_array_equal(result, exp)
|
267 |
+
|
268 |
+
|
269 |
+
# ------------------------------------------------------------------
|
270 |
+
# Timedelta64[ns] dtype Arithmetic Operations
|
271 |
+
|
272 |
+
|
273 |
+
class TestTimedelta64ArithmeticUnsorted:
|
274 |
+
# Tests moved from type-specific test files but not
|
275 |
+
# yet sorted/parametrized/de-duplicated
|
276 |
+
|
277 |
+
def test_ufunc_coercions(self):
|
278 |
+
# normal ops are also tested in tseries/test_timedeltas.py
|
279 |
+
idx = TimedeltaIndex(["2h", "4h", "6h", "8h", "10h"], freq="2h", name="x")
|
280 |
+
|
281 |
+
for result in [idx * 2, np.multiply(idx, 2)]:
|
282 |
+
assert isinstance(result, TimedeltaIndex)
|
283 |
+
exp = TimedeltaIndex(["4h", "8h", "12h", "16h", "20h"], freq="4h", name="x")
|
284 |
+
tm.assert_index_equal(result, exp)
|
285 |
+
assert result.freq == "4h"
|
286 |
+
|
287 |
+
for result in [idx / 2, np.divide(idx, 2)]:
|
288 |
+
assert isinstance(result, TimedeltaIndex)
|
289 |
+
exp = TimedeltaIndex(["1h", "2h", "3h", "4h", "5h"], freq="h", name="x")
|
290 |
+
tm.assert_index_equal(result, exp)
|
291 |
+
assert result.freq == "h"
|
292 |
+
|
293 |
+
for result in [-idx, np.negative(idx)]:
|
294 |
+
assert isinstance(result, TimedeltaIndex)
|
295 |
+
exp = TimedeltaIndex(
|
296 |
+
["-2h", "-4h", "-6h", "-8h", "-10h"], freq="-2h", name="x"
|
297 |
+
)
|
298 |
+
tm.assert_index_equal(result, exp)
|
299 |
+
assert result.freq == "-2h"
|
300 |
+
|
301 |
+
idx = TimedeltaIndex(["-2h", "-1h", "0h", "1h", "2h"], freq="h", name="x")
|
302 |
+
for result in [abs(idx), np.absolute(idx)]:
|
303 |
+
assert isinstance(result, TimedeltaIndex)
|
304 |
+
exp = TimedeltaIndex(["2h", "1h", "0h", "1h", "2h"], freq=None, name="x")
|
305 |
+
tm.assert_index_equal(result, exp)
|
306 |
+
assert result.freq is None
|
307 |
+
|
308 |
+
def test_subtraction_ops(self):
|
309 |
+
# with datetimes/timedelta and tdi/dti
|
310 |
+
tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
|
311 |
+
dti = pd.date_range("20130101", periods=3, name="bar")
|
312 |
+
td = Timedelta("1 days")
|
313 |
+
dt = Timestamp("20130101")
|
314 |
+
|
315 |
+
msg = "cannot subtract a datelike from a TimedeltaArray"
|
316 |
+
with pytest.raises(TypeError, match=msg):
|
317 |
+
tdi - dt
|
318 |
+
with pytest.raises(TypeError, match=msg):
|
319 |
+
tdi - dti
|
320 |
+
|
321 |
+
msg = r"unsupported operand type\(s\) for -"
|
322 |
+
with pytest.raises(TypeError, match=msg):
|
323 |
+
td - dt
|
324 |
+
|
325 |
+
msg = "(bad|unsupported) operand type for unary"
|
326 |
+
with pytest.raises(TypeError, match=msg):
|
327 |
+
td - dti
|
328 |
+
|
329 |
+
result = dt - dti
|
330 |
+
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"], name="bar")
|
331 |
+
tm.assert_index_equal(result, expected)
|
332 |
+
|
333 |
+
result = dti - dt
|
334 |
+
expected = TimedeltaIndex(["0 days", "1 days", "2 days"], name="bar")
|
335 |
+
tm.assert_index_equal(result, expected)
|
336 |
+
|
337 |
+
result = tdi - td
|
338 |
+
expected = TimedeltaIndex(["0 days", NaT, "1 days"], name="foo")
|
339 |
+
tm.assert_index_equal(result, expected)
|
340 |
+
|
341 |
+
result = td - tdi
|
342 |
+
expected = TimedeltaIndex(["0 days", NaT, "-1 days"], name="foo")
|
343 |
+
tm.assert_index_equal(result, expected)
|
344 |
+
|
345 |
+
result = dti - td
|
346 |
+
expected = DatetimeIndex(
|
347 |
+
["20121231", "20130101", "20130102"], dtype="M8[ns]", freq="D", name="bar"
|
348 |
+
)
|
349 |
+
tm.assert_index_equal(result, expected)
|
350 |
+
|
351 |
+
result = dt - tdi
|
352 |
+
expected = DatetimeIndex(
|
353 |
+
["20121231", NaT, "20121230"], dtype="M8[ns]", name="foo"
|
354 |
+
)
|
355 |
+
tm.assert_index_equal(result, expected)
|
356 |
+
|
357 |
+
def test_subtraction_ops_with_tz(self, box_with_array):
|
358 |
+
# check that dt/dti subtraction ops with tz are validated
|
359 |
+
dti = pd.date_range("20130101", periods=3)
|
360 |
+
dti = tm.box_expected(dti, box_with_array)
|
361 |
+
ts = Timestamp("20130101")
|
362 |
+
dt = ts.to_pydatetime()
|
363 |
+
dti_tz = pd.date_range("20130101", periods=3).tz_localize("US/Eastern")
|
364 |
+
dti_tz = tm.box_expected(dti_tz, box_with_array)
|
365 |
+
ts_tz = Timestamp("20130101").tz_localize("US/Eastern")
|
366 |
+
ts_tz2 = Timestamp("20130101").tz_localize("CET")
|
367 |
+
dt_tz = ts_tz.to_pydatetime()
|
368 |
+
td = Timedelta("1 days")
|
369 |
+
|
370 |
+
def _check(result, expected):
|
371 |
+
assert result == expected
|
372 |
+
assert isinstance(result, Timedelta)
|
373 |
+
|
374 |
+
# scalars
|
375 |
+
result = ts - ts
|
376 |
+
expected = Timedelta("0 days")
|
377 |
+
_check(result, expected)
|
378 |
+
|
379 |
+
result = dt_tz - ts_tz
|
380 |
+
expected = Timedelta("0 days")
|
381 |
+
_check(result, expected)
|
382 |
+
|
383 |
+
result = ts_tz - dt_tz
|
384 |
+
expected = Timedelta("0 days")
|
385 |
+
_check(result, expected)
|
386 |
+
|
387 |
+
# tz mismatches
|
388 |
+
msg = "Cannot subtract tz-naive and tz-aware datetime-like objects."
|
389 |
+
with pytest.raises(TypeError, match=msg):
|
390 |
+
dt_tz - ts
|
391 |
+
msg = "can't subtract offset-naive and offset-aware datetimes"
|
392 |
+
with pytest.raises(TypeError, match=msg):
|
393 |
+
dt_tz - dt
|
394 |
+
msg = "can't subtract offset-naive and offset-aware datetimes"
|
395 |
+
with pytest.raises(TypeError, match=msg):
|
396 |
+
dt - dt_tz
|
397 |
+
msg = "Cannot subtract tz-naive and tz-aware datetime-like objects."
|
398 |
+
with pytest.raises(TypeError, match=msg):
|
399 |
+
ts - dt_tz
|
400 |
+
with pytest.raises(TypeError, match=msg):
|
401 |
+
ts_tz2 - ts
|
402 |
+
with pytest.raises(TypeError, match=msg):
|
403 |
+
ts_tz2 - dt
|
404 |
+
|
405 |
+
msg = "Cannot subtract tz-naive and tz-aware"
|
406 |
+
# with dti
|
407 |
+
with pytest.raises(TypeError, match=msg):
|
408 |
+
dti - ts_tz
|
409 |
+
with pytest.raises(TypeError, match=msg):
|
410 |
+
dti_tz - ts
|
411 |
+
|
412 |
+
result = dti_tz - dt_tz
|
413 |
+
expected = TimedeltaIndex(["0 days", "1 days", "2 days"])
|
414 |
+
expected = tm.box_expected(expected, box_with_array)
|
415 |
+
tm.assert_equal(result, expected)
|
416 |
+
|
417 |
+
result = dt_tz - dti_tz
|
418 |
+
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"])
|
419 |
+
expected = tm.box_expected(expected, box_with_array)
|
420 |
+
tm.assert_equal(result, expected)
|
421 |
+
|
422 |
+
result = dti_tz - ts_tz
|
423 |
+
expected = TimedeltaIndex(["0 days", "1 days", "2 days"])
|
424 |
+
expected = tm.box_expected(expected, box_with_array)
|
425 |
+
tm.assert_equal(result, expected)
|
426 |
+
|
427 |
+
result = ts_tz - dti_tz
|
428 |
+
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"])
|
429 |
+
expected = tm.box_expected(expected, box_with_array)
|
430 |
+
tm.assert_equal(result, expected)
|
431 |
+
|
432 |
+
result = td - td
|
433 |
+
expected = Timedelta("0 days")
|
434 |
+
_check(result, expected)
|
435 |
+
|
436 |
+
result = dti_tz - td
|
437 |
+
expected = DatetimeIndex(
|
438 |
+
["20121231", "20130101", "20130102"], tz="US/Eastern"
|
439 |
+
).as_unit("ns")
|
440 |
+
expected = tm.box_expected(expected, box_with_array)
|
441 |
+
tm.assert_equal(result, expected)
|
442 |
+
|
443 |
+
def test_dti_tdi_numeric_ops(self):
|
444 |
+
# These are normally union/diff set-like ops
|
445 |
+
tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
|
446 |
+
dti = pd.date_range("20130101", periods=3, name="bar")
|
447 |
+
|
448 |
+
result = tdi - tdi
|
449 |
+
expected = TimedeltaIndex(["0 days", NaT, "0 days"], name="foo")
|
450 |
+
tm.assert_index_equal(result, expected)
|
451 |
+
|
452 |
+
result = tdi + tdi
|
453 |
+
expected = TimedeltaIndex(["2 days", NaT, "4 days"], name="foo")
|
454 |
+
tm.assert_index_equal(result, expected)
|
455 |
+
|
456 |
+
result = dti - tdi # name will be reset
|
457 |
+
expected = DatetimeIndex(["20121231", NaT, "20130101"], dtype="M8[ns]")
|
458 |
+
tm.assert_index_equal(result, expected)
|
459 |
+
|
460 |
+
def test_addition_ops(self):
|
461 |
+
# with datetimes/timedelta and tdi/dti
|
462 |
+
tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
|
463 |
+
dti = pd.date_range("20130101", periods=3, name="bar")
|
464 |
+
td = Timedelta("1 days")
|
465 |
+
dt = Timestamp("20130101")
|
466 |
+
|
467 |
+
result = tdi + dt
|
468 |
+
expected = DatetimeIndex(
|
469 |
+
["20130102", NaT, "20130103"], dtype="M8[ns]", name="foo"
|
470 |
+
)
|
471 |
+
tm.assert_index_equal(result, expected)
|
472 |
+
|
473 |
+
result = dt + tdi
|
474 |
+
expected = DatetimeIndex(
|
475 |
+
["20130102", NaT, "20130103"], dtype="M8[ns]", name="foo"
|
476 |
+
)
|
477 |
+
tm.assert_index_equal(result, expected)
|
478 |
+
|
479 |
+
result = td + tdi
|
480 |
+
expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo")
|
481 |
+
tm.assert_index_equal(result, expected)
|
482 |
+
|
483 |
+
result = tdi + td
|
484 |
+
expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo")
|
485 |
+
tm.assert_index_equal(result, expected)
|
486 |
+
|
487 |
+
# unequal length
|
488 |
+
msg = "cannot add indices of unequal length"
|
489 |
+
with pytest.raises(ValueError, match=msg):
|
490 |
+
tdi + dti[0:1]
|
491 |
+
with pytest.raises(ValueError, match=msg):
|
492 |
+
tdi[0:1] + dti
|
493 |
+
|
494 |
+
# random indexes
|
495 |
+
msg = "Addition/subtraction of integers and integer-arrays"
|
496 |
+
with pytest.raises(TypeError, match=msg):
|
497 |
+
tdi + Index([1, 2, 3], dtype=np.int64)
|
498 |
+
|
499 |
+
# this is a union!
|
500 |
+
# FIXME: don't leave commented-out
|
501 |
+
# pytest.raises(TypeError, lambda : Index([1,2,3]) + tdi)
|
502 |
+
|
503 |
+
result = tdi + dti # name will be reset
|
504 |
+
expected = DatetimeIndex(["20130102", NaT, "20130105"], dtype="M8[ns]")
|
505 |
+
tm.assert_index_equal(result, expected)
|
506 |
+
|
507 |
+
result = dti + tdi # name will be reset
|
508 |
+
expected = DatetimeIndex(["20130102", NaT, "20130105"], dtype="M8[ns]")
|
509 |
+
tm.assert_index_equal(result, expected)
|
510 |
+
|
511 |
+
result = dt + td
|
512 |
+
expected = Timestamp("20130102")
|
513 |
+
assert result == expected
|
514 |
+
|
515 |
+
result = td + dt
|
516 |
+
expected = Timestamp("20130102")
|
517 |
+
assert result == expected
|
518 |
+
|
519 |
+
# TODO: Needs more informative name, probably split up into
|
520 |
+
# more targeted tests
|
521 |
+
@pytest.mark.parametrize("freq", ["D", "B"])
|
522 |
+
def test_timedelta(self, freq):
|
523 |
+
index = pd.date_range("1/1/2000", periods=50, freq=freq)
|
524 |
+
|
525 |
+
shifted = index + timedelta(1)
|
526 |
+
back = shifted + timedelta(-1)
|
527 |
+
back = back._with_freq("infer")
|
528 |
+
tm.assert_index_equal(index, back)
|
529 |
+
|
530 |
+
if freq == "D":
|
531 |
+
expected = pd.tseries.offsets.Day(1)
|
532 |
+
assert index.freq == expected
|
533 |
+
assert shifted.freq == expected
|
534 |
+
assert back.freq == expected
|
535 |
+
else: # freq == 'B'
|
536 |
+
assert index.freq == pd.tseries.offsets.BusinessDay(1)
|
537 |
+
assert shifted.freq is None
|
538 |
+
assert back.freq == pd.tseries.offsets.BusinessDay(1)
|
539 |
+
|
540 |
+
result = index - timedelta(1)
|
541 |
+
expected = index + timedelta(-1)
|
542 |
+
tm.assert_index_equal(result, expected)
|
543 |
+
|
544 |
+
def test_timedelta_tick_arithmetic(self):
|
545 |
+
# GH#4134, buggy with timedeltas
|
546 |
+
rng = pd.date_range("2013", "2014")
|
547 |
+
s = Series(rng)
|
548 |
+
result1 = rng - offsets.Hour(1)
|
549 |
+
result2 = DatetimeIndex(s - np.timedelta64(100000000))
|
550 |
+
result3 = rng - np.timedelta64(100000000)
|
551 |
+
result4 = DatetimeIndex(s - offsets.Hour(1))
|
552 |
+
|
553 |
+
assert result1.freq == rng.freq
|
554 |
+
result1 = result1._with_freq(None)
|
555 |
+
tm.assert_index_equal(result1, result4)
|
556 |
+
|
557 |
+
assert result3.freq == rng.freq
|
558 |
+
result3 = result3._with_freq(None)
|
559 |
+
tm.assert_index_equal(result2, result3)
|
560 |
+
|
561 |
+
def test_tda_add_sub_index(self):
|
562 |
+
# Check that TimedeltaArray defers to Index on arithmetic ops
|
563 |
+
tdi = TimedeltaIndex(["1 days", NaT, "2 days"])
|
564 |
+
tda = tdi.array
|
565 |
+
|
566 |
+
dti = pd.date_range("1999-12-31", periods=3, freq="D")
|
567 |
+
|
568 |
+
result = tda + dti
|
569 |
+
expected = tdi + dti
|
570 |
+
tm.assert_index_equal(result, expected)
|
571 |
+
|
572 |
+
result = tda + tdi
|
573 |
+
expected = tdi + tdi
|
574 |
+
tm.assert_index_equal(result, expected)
|
575 |
+
|
576 |
+
result = tda - tdi
|
577 |
+
expected = tdi - tdi
|
578 |
+
tm.assert_index_equal(result, expected)
|
579 |
+
|
580 |
+
def test_tda_add_dt64_object_array(self, box_with_array, tz_naive_fixture):
|
581 |
+
# Result should be cast back to DatetimeArray
|
582 |
+
box = box_with_array
|
583 |
+
|
584 |
+
dti = pd.date_range("2016-01-01", periods=3, tz=tz_naive_fixture)
|
585 |
+
dti = dti._with_freq(None)
|
586 |
+
tdi = dti - dti
|
587 |
+
|
588 |
+
obj = tm.box_expected(tdi, box)
|
589 |
+
other = tm.box_expected(dti, box)
|
590 |
+
|
591 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
592 |
+
result = obj + other.astype(object)
|
593 |
+
tm.assert_equal(result, other.astype(object))
|
594 |
+
|
595 |
+
# -------------------------------------------------------------
|
596 |
+
# Binary operations TimedeltaIndex and timedelta-like
|
597 |
+
|
598 |
+
def test_tdi_iadd_timedeltalike(self, two_hours, box_with_array):
|
599 |
+
# only test adding/sub offsets as + is now numeric
|
600 |
+
rng = timedelta_range("1 days", "10 days")
|
601 |
+
expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")
|
602 |
+
|
603 |
+
rng = tm.box_expected(rng, box_with_array)
|
604 |
+
expected = tm.box_expected(expected, box_with_array)
|
605 |
+
|
606 |
+
orig_rng = rng
|
607 |
+
rng += two_hours
|
608 |
+
tm.assert_equal(rng, expected)
|
609 |
+
if box_with_array is not Index:
|
610 |
+
# Check that operation is actually inplace
|
611 |
+
tm.assert_equal(orig_rng, expected)
|
612 |
+
|
613 |
+
def test_tdi_isub_timedeltalike(self, two_hours, box_with_array):
|
614 |
+
# only test adding/sub offsets as - is now numeric
|
615 |
+
rng = timedelta_range("1 days", "10 days")
|
616 |
+
expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")
|
617 |
+
|
618 |
+
rng = tm.box_expected(rng, box_with_array)
|
619 |
+
expected = tm.box_expected(expected, box_with_array)
|
620 |
+
|
621 |
+
orig_rng = rng
|
622 |
+
rng -= two_hours
|
623 |
+
tm.assert_equal(rng, expected)
|
624 |
+
if box_with_array is not Index:
|
625 |
+
# Check that operation is actually inplace
|
626 |
+
tm.assert_equal(orig_rng, expected)
|
627 |
+
|
628 |
+
# -------------------------------------------------------------
|
629 |
+
|
630 |
+
def test_tdi_ops_attributes(self):
|
631 |
+
rng = timedelta_range("2 days", periods=5, freq="2D", name="x")
|
632 |
+
|
633 |
+
result = rng + 1 * rng.freq
|
634 |
+
exp = timedelta_range("4 days", periods=5, freq="2D", name="x")
|
635 |
+
tm.assert_index_equal(result, exp)
|
636 |
+
assert result.freq == "2D"
|
637 |
+
|
638 |
+
result = rng - 2 * rng.freq
|
639 |
+
exp = timedelta_range("-2 days", periods=5, freq="2D", name="x")
|
640 |
+
tm.assert_index_equal(result, exp)
|
641 |
+
assert result.freq == "2D"
|
642 |
+
|
643 |
+
result = rng * 2
|
644 |
+
exp = timedelta_range("4 days", periods=5, freq="4D", name="x")
|
645 |
+
tm.assert_index_equal(result, exp)
|
646 |
+
assert result.freq == "4D"
|
647 |
+
|
648 |
+
result = rng / 2
|
649 |
+
exp = timedelta_range("1 days", periods=5, freq="D", name="x")
|
650 |
+
tm.assert_index_equal(result, exp)
|
651 |
+
assert result.freq == "D"
|
652 |
+
|
653 |
+
result = -rng
|
654 |
+
exp = timedelta_range("-2 days", periods=5, freq="-2D", name="x")
|
655 |
+
tm.assert_index_equal(result, exp)
|
656 |
+
assert result.freq == "-2D"
|
657 |
+
|
658 |
+
rng = timedelta_range("-2 days", periods=5, freq="D", name="x")
|
659 |
+
|
660 |
+
result = abs(rng)
|
661 |
+
exp = TimedeltaIndex(
|
662 |
+
["2 days", "1 days", "0 days", "1 days", "2 days"], name="x"
|
663 |
+
)
|
664 |
+
tm.assert_index_equal(result, exp)
|
665 |
+
assert result.freq is None
|
666 |
+
|
667 |
+
|
668 |
+
class TestAddSubNaTMasking:
|
669 |
+
# TODO: parametrize over boxes
|
670 |
+
|
671 |
+
@pytest.mark.parametrize("str_ts", ["1950-01-01", "1980-01-01"])
|
672 |
+
def test_tdarr_add_timestamp_nat_masking(self, box_with_array, str_ts):
|
673 |
+
# GH#17991 checking for overflow-masking with NaT
|
674 |
+
tdinat = pd.to_timedelta(["24658 days 11:15:00", "NaT"])
|
675 |
+
tdobj = tm.box_expected(tdinat, box_with_array)
|
676 |
+
|
677 |
+
ts = Timestamp(str_ts)
|
678 |
+
ts_variants = [
|
679 |
+
ts,
|
680 |
+
ts.to_pydatetime(),
|
681 |
+
ts.to_datetime64().astype("datetime64[ns]"),
|
682 |
+
ts.to_datetime64().astype("datetime64[D]"),
|
683 |
+
]
|
684 |
+
|
685 |
+
for variant in ts_variants:
|
686 |
+
res = tdobj + variant
|
687 |
+
if box_with_array is DataFrame:
|
688 |
+
assert res.iloc[1, 1] is NaT
|
689 |
+
else:
|
690 |
+
assert res[1] is NaT
|
691 |
+
|
692 |
+
def test_tdi_add_overflow(self):
|
693 |
+
# See GH#14068
|
694 |
+
# preliminary test scalar analogue of vectorized tests below
|
695 |
+
# TODO: Make raised error message more informative and test
|
696 |
+
with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"):
|
697 |
+
pd.to_timedelta(106580, "D") + Timestamp("2000")
|
698 |
+
with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"):
|
699 |
+
Timestamp("2000") + pd.to_timedelta(106580, "D")
|
700 |
+
|
701 |
+
_NaT = NaT._value + 1
|
702 |
+
msg = "Overflow in int64 addition"
|
703 |
+
with pytest.raises(OverflowError, match=msg):
|
704 |
+
pd.to_timedelta([106580], "D") + Timestamp("2000")
|
705 |
+
with pytest.raises(OverflowError, match=msg):
|
706 |
+
Timestamp("2000") + pd.to_timedelta([106580], "D")
|
707 |
+
with pytest.raises(OverflowError, match=msg):
|
708 |
+
pd.to_timedelta([_NaT]) - Timedelta("1 days")
|
709 |
+
with pytest.raises(OverflowError, match=msg):
|
710 |
+
pd.to_timedelta(["5 days", _NaT]) - Timedelta("1 days")
|
711 |
+
with pytest.raises(OverflowError, match=msg):
|
712 |
+
(
|
713 |
+
pd.to_timedelta([_NaT, "5 days", "1 hours"])
|
714 |
+
- pd.to_timedelta(["7 seconds", _NaT, "4 hours"])
|
715 |
+
)
|
716 |
+
|
717 |
+
# These should not overflow!
|
718 |
+
exp = TimedeltaIndex([NaT])
|
719 |
+
result = pd.to_timedelta([NaT]) - Timedelta("1 days")
|
720 |
+
tm.assert_index_equal(result, exp)
|
721 |
+
|
722 |
+
exp = TimedeltaIndex(["4 days", NaT])
|
723 |
+
result = pd.to_timedelta(["5 days", NaT]) - Timedelta("1 days")
|
724 |
+
tm.assert_index_equal(result, exp)
|
725 |
+
|
726 |
+
exp = TimedeltaIndex([NaT, NaT, "5 hours"])
|
727 |
+
result = pd.to_timedelta([NaT, "5 days", "1 hours"]) + pd.to_timedelta(
|
728 |
+
["7 seconds", NaT, "4 hours"]
|
729 |
+
)
|
730 |
+
tm.assert_index_equal(result, exp)
|
731 |
+
|
732 |
+
|
733 |
+
class TestTimedeltaArraylikeAddSubOps:
|
734 |
+
# Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__
|
735 |
+
|
736 |
+
def test_sub_nat_retain_unit(self):
|
737 |
+
ser = pd.to_timedelta(Series(["00:00:01"])).astype("m8[s]")
|
738 |
+
|
739 |
+
result = ser - NaT
|
740 |
+
expected = Series([NaT], dtype="m8[s]")
|
741 |
+
tm.assert_series_equal(result, expected)
|
742 |
+
|
743 |
+
# TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs
|
744 |
+
# parametrization+de-duplication
|
745 |
+
def test_timedelta_ops_with_missing_values(self):
|
746 |
+
# setup
|
747 |
+
s1 = pd.to_timedelta(Series(["00:00:01"]))
|
748 |
+
s2 = pd.to_timedelta(Series(["00:00:02"]))
|
749 |
+
|
750 |
+
sn = pd.to_timedelta(Series([NaT], dtype="m8[ns]"))
|
751 |
+
|
752 |
+
df1 = DataFrame(["00:00:01"]).apply(pd.to_timedelta)
|
753 |
+
df2 = DataFrame(["00:00:02"]).apply(pd.to_timedelta)
|
754 |
+
|
755 |
+
dfn = DataFrame([NaT._value]).apply(pd.to_timedelta)
|
756 |
+
|
757 |
+
scalar1 = pd.to_timedelta("00:00:01")
|
758 |
+
scalar2 = pd.to_timedelta("00:00:02")
|
759 |
+
timedelta_NaT = pd.to_timedelta("NaT")
|
760 |
+
|
761 |
+
actual = scalar1 + scalar1
|
762 |
+
assert actual == scalar2
|
763 |
+
actual = scalar2 - scalar1
|
764 |
+
assert actual == scalar1
|
765 |
+
|
766 |
+
actual = s1 + s1
|
767 |
+
tm.assert_series_equal(actual, s2)
|
768 |
+
actual = s2 - s1
|
769 |
+
tm.assert_series_equal(actual, s1)
|
770 |
+
|
771 |
+
actual = s1 + scalar1
|
772 |
+
tm.assert_series_equal(actual, s2)
|
773 |
+
actual = scalar1 + s1
|
774 |
+
tm.assert_series_equal(actual, s2)
|
775 |
+
actual = s2 - scalar1
|
776 |
+
tm.assert_series_equal(actual, s1)
|
777 |
+
actual = -scalar1 + s2
|
778 |
+
tm.assert_series_equal(actual, s1)
|
779 |
+
|
780 |
+
actual = s1 + timedelta_NaT
|
781 |
+
tm.assert_series_equal(actual, sn)
|
782 |
+
actual = timedelta_NaT + s1
|
783 |
+
tm.assert_series_equal(actual, sn)
|
784 |
+
actual = s1 - timedelta_NaT
|
785 |
+
tm.assert_series_equal(actual, sn)
|
786 |
+
actual = -timedelta_NaT + s1
|
787 |
+
tm.assert_series_equal(actual, sn)
|
788 |
+
|
789 |
+
msg = "unsupported operand type"
|
790 |
+
with pytest.raises(TypeError, match=msg):
|
791 |
+
s1 + np.nan
|
792 |
+
with pytest.raises(TypeError, match=msg):
|
793 |
+
np.nan + s1
|
794 |
+
with pytest.raises(TypeError, match=msg):
|
795 |
+
s1 - np.nan
|
796 |
+
with pytest.raises(TypeError, match=msg):
|
797 |
+
-np.nan + s1
|
798 |
+
|
799 |
+
actual = s1 + NaT
|
800 |
+
tm.assert_series_equal(actual, sn)
|
801 |
+
actual = s2 - NaT
|
802 |
+
tm.assert_series_equal(actual, sn)
|
803 |
+
|
804 |
+
actual = s1 + df1
|
805 |
+
tm.assert_frame_equal(actual, df2)
|
806 |
+
actual = s2 - df1
|
807 |
+
tm.assert_frame_equal(actual, df1)
|
808 |
+
actual = df1 + s1
|
809 |
+
tm.assert_frame_equal(actual, df2)
|
810 |
+
actual = df2 - s1
|
811 |
+
tm.assert_frame_equal(actual, df1)
|
812 |
+
|
813 |
+
actual = df1 + df1
|
814 |
+
tm.assert_frame_equal(actual, df2)
|
815 |
+
actual = df2 - df1
|
816 |
+
tm.assert_frame_equal(actual, df1)
|
817 |
+
|
818 |
+
actual = df1 + scalar1
|
819 |
+
tm.assert_frame_equal(actual, df2)
|
820 |
+
actual = df2 - scalar1
|
821 |
+
tm.assert_frame_equal(actual, df1)
|
822 |
+
|
823 |
+
actual = df1 + timedelta_NaT
|
824 |
+
tm.assert_frame_equal(actual, dfn)
|
825 |
+
actual = df1 - timedelta_NaT
|
826 |
+
tm.assert_frame_equal(actual, dfn)
|
827 |
+
|
828 |
+
msg = "cannot subtract a datelike from|unsupported operand type"
|
829 |
+
with pytest.raises(TypeError, match=msg):
|
830 |
+
df1 + np.nan
|
831 |
+
with pytest.raises(TypeError, match=msg):
|
832 |
+
df1 - np.nan
|
833 |
+
|
834 |
+
actual = df1 + NaT # NaT is datetime, not timedelta
|
835 |
+
tm.assert_frame_equal(actual, dfn)
|
836 |
+
actual = df1 - NaT
|
837 |
+
tm.assert_frame_equal(actual, dfn)
|
838 |
+
|
839 |
+
# TODO: moved from tests.series.test_operators, needs splitting, cleanup,
|
840 |
+
# de-duplication, box-parametrization...
|
841 |
+
def test_operators_timedelta64(self):
|
842 |
+
# series ops
|
843 |
+
v1 = pd.date_range("2012-1-1", periods=3, freq="D")
|
844 |
+
v2 = pd.date_range("2012-1-2", periods=3, freq="D")
|
845 |
+
rs = Series(v2) - Series(v1)
|
846 |
+
xp = Series(1e9 * 3600 * 24, rs.index).astype("int64").astype("timedelta64[ns]")
|
847 |
+
tm.assert_series_equal(rs, xp)
|
848 |
+
assert rs.dtype == "timedelta64[ns]"
|
849 |
+
|
850 |
+
df = DataFrame({"A": v1})
|
851 |
+
td = Series([timedelta(days=i) for i in range(3)])
|
852 |
+
assert td.dtype == "timedelta64[ns]"
|
853 |
+
|
854 |
+
# series on the rhs
|
855 |
+
result = df["A"] - df["A"].shift()
|
856 |
+
assert result.dtype == "timedelta64[ns]"
|
857 |
+
|
858 |
+
result = df["A"] + td
|
859 |
+
assert result.dtype == "M8[ns]"
|
860 |
+
|
861 |
+
# scalar Timestamp on rhs
|
862 |
+
maxa = df["A"].max()
|
863 |
+
assert isinstance(maxa, Timestamp)
|
864 |
+
|
865 |
+
resultb = df["A"] - df["A"].max()
|
866 |
+
assert resultb.dtype == "timedelta64[ns]"
|
867 |
+
|
868 |
+
# timestamp on lhs
|
869 |
+
result = resultb + df["A"]
|
870 |
+
values = [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")]
|
871 |
+
expected = Series(values, dtype="M8[ns]", name="A")
|
872 |
+
tm.assert_series_equal(result, expected)
|
873 |
+
|
874 |
+
# datetimes on rhs
|
875 |
+
result = df["A"] - datetime(2001, 1, 1)
|
876 |
+
expected = Series([timedelta(days=4017 + i) for i in range(3)], name="A")
|
877 |
+
tm.assert_series_equal(result, expected)
|
878 |
+
assert result.dtype == "m8[ns]"
|
879 |
+
|
880 |
+
d = datetime(2001, 1, 1, 3, 4)
|
881 |
+
resulta = df["A"] - d
|
882 |
+
assert resulta.dtype == "m8[ns]"
|
883 |
+
|
884 |
+
# roundtrip
|
885 |
+
resultb = resulta + d
|
886 |
+
tm.assert_series_equal(df["A"], resultb)
|
887 |
+
|
888 |
+
# timedeltas on rhs
|
889 |
+
td = timedelta(days=1)
|
890 |
+
resulta = df["A"] + td
|
891 |
+
resultb = resulta - td
|
892 |
+
tm.assert_series_equal(resultb, df["A"])
|
893 |
+
assert resultb.dtype == "M8[ns]"
|
894 |
+
|
895 |
+
# roundtrip
|
896 |
+
td = timedelta(minutes=5, seconds=3)
|
897 |
+
resulta = df["A"] + td
|
898 |
+
resultb = resulta - td
|
899 |
+
tm.assert_series_equal(df["A"], resultb)
|
900 |
+
assert resultb.dtype == "M8[ns]"
|
901 |
+
|
902 |
+
# inplace
|
903 |
+
value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1))
|
904 |
+
rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1))
|
905 |
+
assert rs[2] == value
|
906 |
+
|
907 |
+
def test_timedelta64_ops_nat(self):
|
908 |
+
# GH 11349
|
909 |
+
timedelta_series = Series([NaT, Timedelta("1s")])
|
910 |
+
nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]")
|
911 |
+
single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]")
|
912 |
+
|
913 |
+
# subtraction
|
914 |
+
tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta)
|
915 |
+
tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta)
|
916 |
+
|
917 |
+
tm.assert_series_equal(
|
918 |
+
timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta
|
919 |
+
)
|
920 |
+
tm.assert_series_equal(
|
921 |
+
-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta
|
922 |
+
)
|
923 |
+
|
924 |
+
# addition
|
925 |
+
tm.assert_series_equal(
|
926 |
+
nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta
|
927 |
+
)
|
928 |
+
tm.assert_series_equal(
|
929 |
+
NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta
|
930 |
+
)
|
931 |
+
|
932 |
+
tm.assert_series_equal(
|
933 |
+
nat_series_dtype_timedelta + single_nat_dtype_timedelta,
|
934 |
+
nat_series_dtype_timedelta,
|
935 |
+
)
|
936 |
+
tm.assert_series_equal(
|
937 |
+
single_nat_dtype_timedelta + nat_series_dtype_timedelta,
|
938 |
+
nat_series_dtype_timedelta,
|
939 |
+
)
|
940 |
+
|
941 |
+
tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta)
|
942 |
+
tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta)
|
943 |
+
|
944 |
+
tm.assert_series_equal(
|
945 |
+
timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta
|
946 |
+
)
|
947 |
+
tm.assert_series_equal(
|
948 |
+
single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta
|
949 |
+
)
|
950 |
+
|
951 |
+
tm.assert_series_equal(
|
952 |
+
nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta
|
953 |
+
)
|
954 |
+
tm.assert_series_equal(
|
955 |
+
NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta
|
956 |
+
)
|
957 |
+
|
958 |
+
tm.assert_series_equal(
|
959 |
+
nat_series_dtype_timedelta + single_nat_dtype_timedelta,
|
960 |
+
nat_series_dtype_timedelta,
|
961 |
+
)
|
962 |
+
tm.assert_series_equal(
|
963 |
+
single_nat_dtype_timedelta + nat_series_dtype_timedelta,
|
964 |
+
nat_series_dtype_timedelta,
|
965 |
+
)
|
966 |
+
|
967 |
+
# multiplication
|
968 |
+
tm.assert_series_equal(
|
969 |
+
nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta
|
970 |
+
)
|
971 |
+
tm.assert_series_equal(
|
972 |
+
1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta
|
973 |
+
)
|
974 |
+
|
975 |
+
tm.assert_series_equal(timedelta_series * 1, timedelta_series)
|
976 |
+
tm.assert_series_equal(1 * timedelta_series, timedelta_series)
|
977 |
+
|
978 |
+
tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta("1.5s")]))
|
979 |
+
tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta("1.5s")]))
|
980 |
+
|
981 |
+
tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta)
|
982 |
+
tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta)
|
983 |
+
|
984 |
+
# division
|
985 |
+
tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta("0.5s")]))
|
986 |
+
tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta("0.5s")]))
|
987 |
+
tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta)
|
988 |
+
|
989 |
+
# -------------------------------------------------------------
|
990 |
+
# Binary operations td64 arraylike and datetime-like
|
991 |
+
|
992 |
+
@pytest.mark.parametrize("cls", [Timestamp, datetime, np.datetime64])
|
993 |
+
def test_td64arr_add_sub_datetimelike_scalar(
|
994 |
+
self, cls, box_with_array, tz_naive_fixture
|
995 |
+
):
|
996 |
+
# GH#11925, GH#29558, GH#23215
|
997 |
+
tz = tz_naive_fixture
|
998 |
+
|
999 |
+
dt_scalar = Timestamp("2012-01-01", tz=tz)
|
1000 |
+
if cls is datetime:
|
1001 |
+
ts = dt_scalar.to_pydatetime()
|
1002 |
+
elif cls is np.datetime64:
|
1003 |
+
if tz_naive_fixture is not None:
|
1004 |
+
pytest.skip(f"{cls} doesn support {tz_naive_fixture}")
|
1005 |
+
ts = dt_scalar.to_datetime64()
|
1006 |
+
else:
|
1007 |
+
ts = dt_scalar
|
1008 |
+
|
1009 |
+
tdi = timedelta_range("1 day", periods=3)
|
1010 |
+
expected = pd.date_range("2012-01-02", periods=3, tz=tz)
|
1011 |
+
|
1012 |
+
tdarr = tm.box_expected(tdi, box_with_array)
|
1013 |
+
expected = tm.box_expected(expected, box_with_array)
|
1014 |
+
|
1015 |
+
tm.assert_equal(ts + tdarr, expected)
|
1016 |
+
tm.assert_equal(tdarr + ts, expected)
|
1017 |
+
|
1018 |
+
expected2 = pd.date_range("2011-12-31", periods=3, freq="-1D", tz=tz)
|
1019 |
+
expected2 = tm.box_expected(expected2, box_with_array)
|
1020 |
+
|
1021 |
+
tm.assert_equal(ts - tdarr, expected2)
|
1022 |
+
tm.assert_equal(ts + (-tdarr), expected2)
|
1023 |
+
|
1024 |
+
msg = "cannot subtract a datelike"
|
1025 |
+
with pytest.raises(TypeError, match=msg):
|
1026 |
+
tdarr - ts
|
1027 |
+
|
1028 |
+
def test_td64arr_add_datetime64_nat(self, box_with_array):
|
1029 |
+
# GH#23215
|
1030 |
+
other = np.datetime64("NaT")
|
1031 |
+
|
1032 |
+
tdi = timedelta_range("1 day", periods=3)
|
1033 |
+
expected = DatetimeIndex(["NaT", "NaT", "NaT"], dtype="M8[ns]")
|
1034 |
+
|
1035 |
+
tdser = tm.box_expected(tdi, box_with_array)
|
1036 |
+
expected = tm.box_expected(expected, box_with_array)
|
1037 |
+
|
1038 |
+
tm.assert_equal(tdser + other, expected)
|
1039 |
+
tm.assert_equal(other + tdser, expected)
|
1040 |
+
|
1041 |
+
def test_td64arr_sub_dt64_array(self, box_with_array):
|
1042 |
+
dti = pd.date_range("2016-01-01", periods=3)
|
1043 |
+
tdi = TimedeltaIndex(["-1 Day"] * 3)
|
1044 |
+
dtarr = dti.values
|
1045 |
+
expected = DatetimeIndex(dtarr) - tdi
|
1046 |
+
|
1047 |
+
tdi = tm.box_expected(tdi, box_with_array)
|
1048 |
+
expected = tm.box_expected(expected, box_with_array)
|
1049 |
+
|
1050 |
+
msg = "cannot subtract a datelike from"
|
1051 |
+
with pytest.raises(TypeError, match=msg):
|
1052 |
+
tdi - dtarr
|
1053 |
+
|
1054 |
+
# TimedeltaIndex.__rsub__
|
1055 |
+
result = dtarr - tdi
|
1056 |
+
tm.assert_equal(result, expected)
|
1057 |
+
|
1058 |
+
def test_td64arr_add_dt64_array(self, box_with_array):
|
1059 |
+
dti = pd.date_range("2016-01-01", periods=3)
|
1060 |
+
tdi = TimedeltaIndex(["-1 Day"] * 3)
|
1061 |
+
dtarr = dti.values
|
1062 |
+
expected = DatetimeIndex(dtarr) + tdi
|
1063 |
+
|
1064 |
+
tdi = tm.box_expected(tdi, box_with_array)
|
1065 |
+
expected = tm.box_expected(expected, box_with_array)
|
1066 |
+
|
1067 |
+
result = tdi + dtarr
|
1068 |
+
tm.assert_equal(result, expected)
|
1069 |
+
result = dtarr + tdi
|
1070 |
+
tm.assert_equal(result, expected)
|
1071 |
+
|
1072 |
+
# ------------------------------------------------------------------
|
1073 |
+
# Invalid __add__/__sub__ operations
|
1074 |
+
|
1075 |
+
@pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "h"])
|
1076 |
+
@pytest.mark.parametrize("tdi_freq", [None, "h"])
|
1077 |
+
def test_td64arr_sub_periodlike(
|
1078 |
+
self, box_with_array, box_with_array2, tdi_freq, pi_freq
|
1079 |
+
):
|
1080 |
+
# GH#20049 subtracting PeriodIndex should raise TypeError
|
1081 |
+
tdi = TimedeltaIndex(["1 hours", "2 hours"], freq=tdi_freq)
|
1082 |
+
dti = Timestamp("2018-03-07 17:16:40") + tdi
|
1083 |
+
pi = dti.to_period(pi_freq)
|
1084 |
+
per = pi[0]
|
1085 |
+
|
1086 |
+
tdi = tm.box_expected(tdi, box_with_array)
|
1087 |
+
pi = tm.box_expected(pi, box_with_array2)
|
1088 |
+
msg = "cannot subtract|unsupported operand type"
|
1089 |
+
with pytest.raises(TypeError, match=msg):
|
1090 |
+
tdi - pi
|
1091 |
+
|
1092 |
+
# GH#13078 subtraction of Period scalar not supported
|
1093 |
+
with pytest.raises(TypeError, match=msg):
|
1094 |
+
tdi - per
|
1095 |
+
|
1096 |
+
@pytest.mark.parametrize(
|
1097 |
+
"other",
|
1098 |
+
[
|
1099 |
+
# GH#12624 for str case
|
1100 |
+
"a",
|
1101 |
+
# GH#19123
|
1102 |
+
1,
|
1103 |
+
1.5,
|
1104 |
+
np.array(2),
|
1105 |
+
],
|
1106 |
+
)
|
1107 |
+
def test_td64arr_addsub_numeric_scalar_invalid(self, box_with_array, other):
|
1108 |
+
# vector-like others are tested in test_td64arr_add_sub_numeric_arr_invalid
|
1109 |
+
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
1110 |
+
tdarr = tm.box_expected(tdser, box_with_array)
|
1111 |
+
|
1112 |
+
assert_invalid_addsub_type(tdarr, other)
|
1113 |
+
|
1114 |
+
@pytest.mark.parametrize(
|
1115 |
+
"vec",
|
1116 |
+
[
|
1117 |
+
np.array([1, 2, 3]),
|
1118 |
+
Index([1, 2, 3]),
|
1119 |
+
Series([1, 2, 3]),
|
1120 |
+
DataFrame([[1, 2, 3]]),
|
1121 |
+
],
|
1122 |
+
ids=lambda x: type(x).__name__,
|
1123 |
+
)
|
1124 |
+
def test_td64arr_addsub_numeric_arr_invalid(
|
1125 |
+
self, box_with_array, vec, any_real_numpy_dtype
|
1126 |
+
):
|
1127 |
+
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
1128 |
+
tdarr = tm.box_expected(tdser, box_with_array)
|
1129 |
+
|
1130 |
+
vector = vec.astype(any_real_numpy_dtype)
|
1131 |
+
assert_invalid_addsub_type(tdarr, vector)
|
1132 |
+
|
1133 |
+
def test_td64arr_add_sub_int(self, box_with_array, one):
|
1134 |
+
# Variants of `one` for #19012, deprecated GH#22535
|
1135 |
+
rng = timedelta_range("1 days 09:00:00", freq="h", periods=10)
|
1136 |
+
tdarr = tm.box_expected(rng, box_with_array)
|
1137 |
+
|
1138 |
+
msg = "Addition/subtraction of integers"
|
1139 |
+
assert_invalid_addsub_type(tdarr, one, msg)
|
1140 |
+
|
1141 |
+
# TODO: get inplace ops into assert_invalid_addsub_type
|
1142 |
+
with pytest.raises(TypeError, match=msg):
|
1143 |
+
tdarr += one
|
1144 |
+
with pytest.raises(TypeError, match=msg):
|
1145 |
+
tdarr -= one
|
1146 |
+
|
1147 |
+
def test_td64arr_add_sub_integer_array(self, box_with_array):
|
1148 |
+
# GH#19959, deprecated GH#22535
|
1149 |
+
# GH#22696 for DataFrame case, check that we don't dispatch to numpy
|
1150 |
+
# implementation, which treats int64 as m8[ns]
|
1151 |
+
box = box_with_array
|
1152 |
+
xbox = np.ndarray if box is pd.array else box
|
1153 |
+
|
1154 |
+
rng = timedelta_range("1 days 09:00:00", freq="h", periods=3)
|
1155 |
+
tdarr = tm.box_expected(rng, box)
|
1156 |
+
other = tm.box_expected([4, 3, 2], xbox)
|
1157 |
+
|
1158 |
+
msg = "Addition/subtraction of integers and integer-arrays"
|
1159 |
+
assert_invalid_addsub_type(tdarr, other, msg)
|
1160 |
+
|
1161 |
+
def test_td64arr_addsub_integer_array_no_freq(self, box_with_array):
|
1162 |
+
# GH#19959
|
1163 |
+
box = box_with_array
|
1164 |
+
xbox = np.ndarray if box is pd.array else box
|
1165 |
+
|
1166 |
+
tdi = TimedeltaIndex(["1 Day", "NaT", "3 Hours"])
|
1167 |
+
tdarr = tm.box_expected(tdi, box)
|
1168 |
+
other = tm.box_expected([14, -1, 16], xbox)
|
1169 |
+
|
1170 |
+
msg = "Addition/subtraction of integers"
|
1171 |
+
assert_invalid_addsub_type(tdarr, other, msg)
|
1172 |
+
|
1173 |
+
# ------------------------------------------------------------------
|
1174 |
+
# Operations with timedelta-like others
|
1175 |
+
|
1176 |
+
def test_td64arr_add_sub_td64_array(self, box_with_array):
|
1177 |
+
box = box_with_array
|
1178 |
+
dti = pd.date_range("2016-01-01", periods=3)
|
1179 |
+
tdi = dti - dti.shift(1)
|
1180 |
+
tdarr = tdi.values
|
1181 |
+
|
1182 |
+
expected = 2 * tdi
|
1183 |
+
tdi = tm.box_expected(tdi, box)
|
1184 |
+
expected = tm.box_expected(expected, box)
|
1185 |
+
|
1186 |
+
result = tdi + tdarr
|
1187 |
+
tm.assert_equal(result, expected)
|
1188 |
+
result = tdarr + tdi
|
1189 |
+
tm.assert_equal(result, expected)
|
1190 |
+
|
1191 |
+
expected_sub = 0 * tdi
|
1192 |
+
result = tdi - tdarr
|
1193 |
+
tm.assert_equal(result, expected_sub)
|
1194 |
+
result = tdarr - tdi
|
1195 |
+
tm.assert_equal(result, expected_sub)
|
1196 |
+
|
1197 |
+
def test_td64arr_add_sub_tdi(self, box_with_array, names):
|
1198 |
+
# GH#17250 make sure result dtype is correct
|
1199 |
+
# GH#19043 make sure names are propagated correctly
|
1200 |
+
box = box_with_array
|
1201 |
+
exname = get_expected_name(box, names)
|
1202 |
+
|
1203 |
+
tdi = TimedeltaIndex(["0 days", "1 day"], name=names[1])
|
1204 |
+
tdi = np.array(tdi) if box in [tm.to_array, pd.array] else tdi
|
1205 |
+
ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[0])
|
1206 |
+
expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=exname)
|
1207 |
+
|
1208 |
+
ser = tm.box_expected(ser, box)
|
1209 |
+
expected = tm.box_expected(expected, box)
|
1210 |
+
|
1211 |
+
result = tdi + ser
|
1212 |
+
tm.assert_equal(result, expected)
|
1213 |
+
assert_dtype(result, "timedelta64[ns]")
|
1214 |
+
|
1215 |
+
result = ser + tdi
|
1216 |
+
tm.assert_equal(result, expected)
|
1217 |
+
assert_dtype(result, "timedelta64[ns]")
|
1218 |
+
|
1219 |
+
expected = Series(
|
1220 |
+
[Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=exname
|
1221 |
+
)
|
1222 |
+
expected = tm.box_expected(expected, box)
|
1223 |
+
|
1224 |
+
result = tdi - ser
|
1225 |
+
tm.assert_equal(result, expected)
|
1226 |
+
assert_dtype(result, "timedelta64[ns]")
|
1227 |
+
|
1228 |
+
result = ser - tdi
|
1229 |
+
tm.assert_equal(result, -expected)
|
1230 |
+
assert_dtype(result, "timedelta64[ns]")
|
1231 |
+
|
1232 |
+
@pytest.mark.parametrize("tdnat", [np.timedelta64("NaT"), NaT])
|
1233 |
+
def test_td64arr_add_sub_td64_nat(self, box_with_array, tdnat):
|
1234 |
+
# GH#18808, GH#23320 special handling for timedelta64("NaT")
|
1235 |
+
box = box_with_array
|
1236 |
+
tdi = TimedeltaIndex([NaT, Timedelta("1s")])
|
1237 |
+
expected = TimedeltaIndex(["NaT"] * 2)
|
1238 |
+
|
1239 |
+
obj = tm.box_expected(tdi, box)
|
1240 |
+
expected = tm.box_expected(expected, box)
|
1241 |
+
|
1242 |
+
result = obj + tdnat
|
1243 |
+
tm.assert_equal(result, expected)
|
1244 |
+
result = tdnat + obj
|
1245 |
+
tm.assert_equal(result, expected)
|
1246 |
+
result = obj - tdnat
|
1247 |
+
tm.assert_equal(result, expected)
|
1248 |
+
result = tdnat - obj
|
1249 |
+
tm.assert_equal(result, expected)
|
1250 |
+
|
1251 |
+
def test_td64arr_add_timedeltalike(self, two_hours, box_with_array):
|
1252 |
+
# only test adding/sub offsets as + is now numeric
|
1253 |
+
# GH#10699 for Tick cases
|
1254 |
+
box = box_with_array
|
1255 |
+
rng = timedelta_range("1 days", "10 days")
|
1256 |
+
expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")
|
1257 |
+
rng = tm.box_expected(rng, box)
|
1258 |
+
expected = tm.box_expected(expected, box)
|
1259 |
+
|
1260 |
+
result = rng + two_hours
|
1261 |
+
tm.assert_equal(result, expected)
|
1262 |
+
|
1263 |
+
result = two_hours + rng
|
1264 |
+
tm.assert_equal(result, expected)
|
1265 |
+
|
1266 |
+
def test_td64arr_sub_timedeltalike(self, two_hours, box_with_array):
|
1267 |
+
# only test adding/sub offsets as - is now numeric
|
1268 |
+
# GH#10699 for Tick cases
|
1269 |
+
box = box_with_array
|
1270 |
+
rng = timedelta_range("1 days", "10 days")
|
1271 |
+
expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")
|
1272 |
+
|
1273 |
+
rng = tm.box_expected(rng, box)
|
1274 |
+
expected = tm.box_expected(expected, box)
|
1275 |
+
|
1276 |
+
result = rng - two_hours
|
1277 |
+
tm.assert_equal(result, expected)
|
1278 |
+
|
1279 |
+
result = two_hours - rng
|
1280 |
+
tm.assert_equal(result, -expected)
|
1281 |
+
|
1282 |
+
# ------------------------------------------------------------------
|
1283 |
+
# __add__/__sub__ with DateOffsets and arrays of DateOffsets
|
1284 |
+
|
1285 |
+
def test_td64arr_add_sub_offset_index(self, names, box_with_array):
|
1286 |
+
# GH#18849, GH#19744
|
1287 |
+
box = box_with_array
|
1288 |
+
exname = get_expected_name(box, names)
|
1289 |
+
|
1290 |
+
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
|
1291 |
+
other = Index([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1])
|
1292 |
+
other = np.array(other) if box in [tm.to_array, pd.array] else other
|
1293 |
+
|
1294 |
+
expected = TimedeltaIndex(
|
1295 |
+
[tdi[n] + other[n] for n in range(len(tdi))], freq="infer", name=exname
|
1296 |
+
)
|
1297 |
+
expected_sub = TimedeltaIndex(
|
1298 |
+
[tdi[n] - other[n] for n in range(len(tdi))], freq="infer", name=exname
|
1299 |
+
)
|
1300 |
+
|
1301 |
+
tdi = tm.box_expected(tdi, box)
|
1302 |
+
expected = tm.box_expected(expected, box).astype(object, copy=False)
|
1303 |
+
expected_sub = tm.box_expected(expected_sub, box).astype(object, copy=False)
|
1304 |
+
|
1305 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1306 |
+
res = tdi + other
|
1307 |
+
tm.assert_equal(res, expected)
|
1308 |
+
|
1309 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1310 |
+
res2 = other + tdi
|
1311 |
+
tm.assert_equal(res2, expected)
|
1312 |
+
|
1313 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1314 |
+
res_sub = tdi - other
|
1315 |
+
tm.assert_equal(res_sub, expected_sub)
|
1316 |
+
|
1317 |
+
def test_td64arr_add_sub_offset_array(self, box_with_array):
|
1318 |
+
# GH#18849, GH#18824
|
1319 |
+
box = box_with_array
|
1320 |
+
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
|
1321 |
+
other = np.array([offsets.Hour(n=1), offsets.Minute(n=-2)])
|
1322 |
+
|
1323 |
+
expected = TimedeltaIndex(
|
1324 |
+
[tdi[n] + other[n] for n in range(len(tdi))], freq="infer"
|
1325 |
+
)
|
1326 |
+
expected_sub = TimedeltaIndex(
|
1327 |
+
[tdi[n] - other[n] for n in range(len(tdi))], freq="infer"
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
tdi = tm.box_expected(tdi, box)
|
1331 |
+
expected = tm.box_expected(expected, box).astype(object)
|
1332 |
+
|
1333 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1334 |
+
res = tdi + other
|
1335 |
+
tm.assert_equal(res, expected)
|
1336 |
+
|
1337 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1338 |
+
res2 = other + tdi
|
1339 |
+
tm.assert_equal(res2, expected)
|
1340 |
+
|
1341 |
+
expected_sub = tm.box_expected(expected_sub, box_with_array).astype(object)
|
1342 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1343 |
+
res_sub = tdi - other
|
1344 |
+
tm.assert_equal(res_sub, expected_sub)
|
1345 |
+
|
1346 |
+
def test_td64arr_with_offset_series(self, names, box_with_array):
|
1347 |
+
# GH#18849
|
1348 |
+
box = box_with_array
|
1349 |
+
box2 = Series if box in [Index, tm.to_array, pd.array] else box
|
1350 |
+
exname = get_expected_name(box, names)
|
1351 |
+
|
1352 |
+
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
|
1353 |
+
other = Series([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1])
|
1354 |
+
|
1355 |
+
expected_add = Series(
|
1356 |
+
[tdi[n] + other[n] for n in range(len(tdi))], name=exname, dtype=object
|
1357 |
+
)
|
1358 |
+
obj = tm.box_expected(tdi, box)
|
1359 |
+
expected_add = tm.box_expected(expected_add, box2).astype(object)
|
1360 |
+
|
1361 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1362 |
+
res = obj + other
|
1363 |
+
tm.assert_equal(res, expected_add)
|
1364 |
+
|
1365 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1366 |
+
res2 = other + obj
|
1367 |
+
tm.assert_equal(res2, expected_add)
|
1368 |
+
|
1369 |
+
expected_sub = Series(
|
1370 |
+
[tdi[n] - other[n] for n in range(len(tdi))], name=exname, dtype=object
|
1371 |
+
)
|
1372 |
+
expected_sub = tm.box_expected(expected_sub, box2).astype(object)
|
1373 |
+
|
1374 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1375 |
+
res3 = obj - other
|
1376 |
+
tm.assert_equal(res3, expected_sub)
|
1377 |
+
|
1378 |
+
@pytest.mark.parametrize("obox", [np.array, Index, Series])
|
1379 |
+
def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array):
|
1380 |
+
# GH#18824
|
1381 |
+
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
|
1382 |
+
tdi = tm.box_expected(tdi, box_with_array)
|
1383 |
+
|
1384 |
+
anchored = obox([offsets.MonthEnd(), offsets.Day(n=2)])
|
1385 |
+
|
1386 |
+
# addition/subtraction ops with anchored offsets should issue
|
1387 |
+
# a PerformanceWarning and _then_ raise a TypeError.
|
1388 |
+
msg = "has incorrect type|cannot add the type MonthEnd"
|
1389 |
+
with pytest.raises(TypeError, match=msg):
|
1390 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1391 |
+
tdi + anchored
|
1392 |
+
with pytest.raises(TypeError, match=msg):
|
1393 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1394 |
+
anchored + tdi
|
1395 |
+
with pytest.raises(TypeError, match=msg):
|
1396 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1397 |
+
tdi - anchored
|
1398 |
+
with pytest.raises(TypeError, match=msg):
|
1399 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1400 |
+
anchored - tdi
|
1401 |
+
|
1402 |
+
# ------------------------------------------------------------------
|
1403 |
+
# Unsorted
|
1404 |
+
|
1405 |
+
def test_td64arr_add_sub_object_array(self, box_with_array):
|
1406 |
+
box = box_with_array
|
1407 |
+
xbox = np.ndarray if box is pd.array else box
|
1408 |
+
|
1409 |
+
tdi = timedelta_range("1 day", periods=3, freq="D")
|
1410 |
+
tdarr = tm.box_expected(tdi, box)
|
1411 |
+
|
1412 |
+
other = np.array([Timedelta(days=1), offsets.Day(2), Timestamp("2000-01-04")])
|
1413 |
+
|
1414 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1415 |
+
result = tdarr + other
|
1416 |
+
|
1417 |
+
expected = Index(
|
1418 |
+
[Timedelta(days=2), Timedelta(days=4), Timestamp("2000-01-07")]
|
1419 |
+
)
|
1420 |
+
expected = tm.box_expected(expected, xbox).astype(object)
|
1421 |
+
tm.assert_equal(result, expected)
|
1422 |
+
|
1423 |
+
msg = "unsupported operand type|cannot subtract a datelike"
|
1424 |
+
with pytest.raises(TypeError, match=msg):
|
1425 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1426 |
+
tdarr - other
|
1427 |
+
|
1428 |
+
with tm.assert_produces_warning(PerformanceWarning):
|
1429 |
+
result = other - tdarr
|
1430 |
+
|
1431 |
+
expected = Index([Timedelta(0), Timedelta(0), Timestamp("2000-01-01")])
|
1432 |
+
expected = tm.box_expected(expected, xbox).astype(object)
|
1433 |
+
tm.assert_equal(result, expected)
|
1434 |
+
|
1435 |
+
|
1436 |
+
class TestTimedeltaArraylikeMulDivOps:
|
1437 |
+
# Tests for timedelta64[ns]
|
1438 |
+
# __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__
|
1439 |
+
|
1440 |
+
# ------------------------------------------------------------------
|
1441 |
+
# Multiplication
|
1442 |
+
# organized with scalar others first, then array-like
|
1443 |
+
|
1444 |
+
def test_td64arr_mul_int(self, box_with_array):
|
1445 |
+
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
1446 |
+
idx = tm.box_expected(idx, box_with_array)
|
1447 |
+
|
1448 |
+
result = idx * 1
|
1449 |
+
tm.assert_equal(result, idx)
|
1450 |
+
|
1451 |
+
result = 1 * idx
|
1452 |
+
tm.assert_equal(result, idx)
|
1453 |
+
|
1454 |
+
def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array):
|
1455 |
+
rng = timedelta_range("1 days", "10 days", name="foo")
|
1456 |
+
rng = tm.box_expected(rng, box_with_array)
|
1457 |
+
msg = "argument must be an integer|cannot use operands with types dtype"
|
1458 |
+
with pytest.raises(TypeError, match=msg):
|
1459 |
+
rng * two_hours
|
1460 |
+
|
1461 |
+
def test_tdi_mul_int_array_zerodim(self, box_with_array):
|
1462 |
+
rng5 = np.arange(5, dtype="int64")
|
1463 |
+
idx = TimedeltaIndex(rng5)
|
1464 |
+
expected = TimedeltaIndex(rng5 * 5)
|
1465 |
+
|
1466 |
+
idx = tm.box_expected(idx, box_with_array)
|
1467 |
+
expected = tm.box_expected(expected, box_with_array)
|
1468 |
+
|
1469 |
+
result = idx * np.array(5, dtype="int64")
|
1470 |
+
tm.assert_equal(result, expected)
|
1471 |
+
|
1472 |
+
def test_tdi_mul_int_array(self, box_with_array):
|
1473 |
+
rng5 = np.arange(5, dtype="int64")
|
1474 |
+
idx = TimedeltaIndex(rng5)
|
1475 |
+
expected = TimedeltaIndex(rng5**2)
|
1476 |
+
|
1477 |
+
idx = tm.box_expected(idx, box_with_array)
|
1478 |
+
expected = tm.box_expected(expected, box_with_array)
|
1479 |
+
|
1480 |
+
result = idx * rng5
|
1481 |
+
tm.assert_equal(result, expected)
|
1482 |
+
|
1483 |
+
def test_tdi_mul_int_series(self, box_with_array):
|
1484 |
+
box = box_with_array
|
1485 |
+
xbox = Series if box in [Index, tm.to_array, pd.array] else box
|
1486 |
+
|
1487 |
+
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
1488 |
+
expected = TimedeltaIndex(np.arange(5, dtype="int64") ** 2)
|
1489 |
+
|
1490 |
+
idx = tm.box_expected(idx, box)
|
1491 |
+
expected = tm.box_expected(expected, xbox)
|
1492 |
+
|
1493 |
+
result = idx * Series(np.arange(5, dtype="int64"))
|
1494 |
+
tm.assert_equal(result, expected)
|
1495 |
+
|
1496 |
+
def test_tdi_mul_float_series(self, box_with_array):
|
1497 |
+
box = box_with_array
|
1498 |
+
xbox = Series if box in [Index, tm.to_array, pd.array] else box
|
1499 |
+
|
1500 |
+
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
1501 |
+
idx = tm.box_expected(idx, box)
|
1502 |
+
|
1503 |
+
rng5f = np.arange(5, dtype="float64")
|
1504 |
+
expected = TimedeltaIndex(rng5f * (rng5f + 1.0))
|
1505 |
+
expected = tm.box_expected(expected, xbox)
|
1506 |
+
|
1507 |
+
result = idx * Series(rng5f + 1.0)
|
1508 |
+
tm.assert_equal(result, expected)
|
1509 |
+
|
1510 |
+
# TODO: Put Series/DataFrame in others?
|
1511 |
+
@pytest.mark.parametrize(
|
1512 |
+
"other",
|
1513 |
+
[
|
1514 |
+
np.arange(1, 11),
|
1515 |
+
Index(np.arange(1, 11), np.int64),
|
1516 |
+
Index(range(1, 11), np.uint64),
|
1517 |
+
Index(range(1, 11), np.float64),
|
1518 |
+
pd.RangeIndex(1, 11),
|
1519 |
+
],
|
1520 |
+
ids=lambda x: type(x).__name__,
|
1521 |
+
)
|
1522 |
+
def test_tdi_rmul_arraylike(self, other, box_with_array):
|
1523 |
+
box = box_with_array
|
1524 |
+
|
1525 |
+
tdi = TimedeltaIndex(["1 Day"] * 10)
|
1526 |
+
expected = timedelta_range("1 days", "10 days")._with_freq(None)
|
1527 |
+
|
1528 |
+
tdi = tm.box_expected(tdi, box)
|
1529 |
+
xbox = get_upcast_box(tdi, other)
|
1530 |
+
|
1531 |
+
expected = tm.box_expected(expected, xbox)
|
1532 |
+
|
1533 |
+
result = other * tdi
|
1534 |
+
tm.assert_equal(result, expected)
|
1535 |
+
commute = tdi * other
|
1536 |
+
tm.assert_equal(commute, expected)
|
1537 |
+
|
1538 |
+
# ------------------------------------------------------------------
|
1539 |
+
# __div__, __rdiv__
|
1540 |
+
|
1541 |
+
def test_td64arr_div_nat_invalid(self, box_with_array):
|
1542 |
+
# don't allow division by NaT (maybe could in the future)
|
1543 |
+
rng = timedelta_range("1 days", "10 days", name="foo")
|
1544 |
+
rng = tm.box_expected(rng, box_with_array)
|
1545 |
+
|
1546 |
+
with pytest.raises(TypeError, match="unsupported operand type"):
|
1547 |
+
rng / NaT
|
1548 |
+
with pytest.raises(TypeError, match="Cannot divide NaTType by"):
|
1549 |
+
NaT / rng
|
1550 |
+
|
1551 |
+
dt64nat = np.datetime64("NaT", "ns")
|
1552 |
+
msg = "|".join(
|
1553 |
+
[
|
1554 |
+
# 'divide' on npdev as of 2021-12-18
|
1555 |
+
"ufunc '(true_divide|divide)' cannot use operands",
|
1556 |
+
"cannot perform __r?truediv__",
|
1557 |
+
"Cannot divide datetime64 by TimedeltaArray",
|
1558 |
+
]
|
1559 |
+
)
|
1560 |
+
with pytest.raises(TypeError, match=msg):
|
1561 |
+
rng / dt64nat
|
1562 |
+
with pytest.raises(TypeError, match=msg):
|
1563 |
+
dt64nat / rng
|
1564 |
+
|
1565 |
+
def test_td64arr_div_td64nat(self, box_with_array):
|
1566 |
+
# GH#23829
|
1567 |
+
box = box_with_array
|
1568 |
+
xbox = np.ndarray if box is pd.array else box
|
1569 |
+
|
1570 |
+
rng = timedelta_range("1 days", "10 days")
|
1571 |
+
rng = tm.box_expected(rng, box)
|
1572 |
+
|
1573 |
+
other = np.timedelta64("NaT")
|
1574 |
+
|
1575 |
+
expected = np.array([np.nan] * 10)
|
1576 |
+
expected = tm.box_expected(expected, xbox)
|
1577 |
+
|
1578 |
+
result = rng / other
|
1579 |
+
tm.assert_equal(result, expected)
|
1580 |
+
|
1581 |
+
result = other / rng
|
1582 |
+
tm.assert_equal(result, expected)
|
1583 |
+
|
1584 |
+
def test_td64arr_div_int(self, box_with_array):
|
1585 |
+
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
1586 |
+
idx = tm.box_expected(idx, box_with_array)
|
1587 |
+
|
1588 |
+
result = idx / 1
|
1589 |
+
tm.assert_equal(result, idx)
|
1590 |
+
|
1591 |
+
with pytest.raises(TypeError, match="Cannot divide"):
|
1592 |
+
# GH#23829
|
1593 |
+
1 / idx
|
1594 |
+
|
1595 |
+
def test_td64arr_div_tdlike_scalar(self, two_hours, box_with_array):
|
1596 |
+
# GH#20088, GH#22163 ensure DataFrame returns correct dtype
|
1597 |
+
box = box_with_array
|
1598 |
+
xbox = np.ndarray if box is pd.array else box
|
1599 |
+
|
1600 |
+
rng = timedelta_range("1 days", "10 days", name="foo")
|
1601 |
+
expected = Index((np.arange(10) + 1) * 12, dtype=np.float64, name="foo")
|
1602 |
+
|
1603 |
+
rng = tm.box_expected(rng, box)
|
1604 |
+
expected = tm.box_expected(expected, xbox)
|
1605 |
+
|
1606 |
+
result = rng / two_hours
|
1607 |
+
tm.assert_equal(result, expected)
|
1608 |
+
|
1609 |
+
result = two_hours / rng
|
1610 |
+
expected = 1 / expected
|
1611 |
+
tm.assert_equal(result, expected)
|
1612 |
+
|
1613 |
+
@pytest.mark.parametrize("m", [1, 3, 10])
|
1614 |
+
@pytest.mark.parametrize("unit", ["D", "h", "m", "s", "ms", "us", "ns"])
|
1615 |
+
def test_td64arr_div_td64_scalar(self, m, unit, box_with_array):
|
1616 |
+
box = box_with_array
|
1617 |
+
xbox = np.ndarray if box is pd.array else box
|
1618 |
+
|
1619 |
+
ser = Series([Timedelta(days=59)] * 3)
|
1620 |
+
ser[2] = np.nan
|
1621 |
+
flat = ser
|
1622 |
+
ser = tm.box_expected(ser, box)
|
1623 |
+
|
1624 |
+
# op
|
1625 |
+
expected = Series([x / np.timedelta64(m, unit) for x in flat])
|
1626 |
+
expected = tm.box_expected(expected, xbox)
|
1627 |
+
result = ser / np.timedelta64(m, unit)
|
1628 |
+
tm.assert_equal(result, expected)
|
1629 |
+
|
1630 |
+
# reverse op
|
1631 |
+
expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in flat])
|
1632 |
+
expected = tm.box_expected(expected, xbox)
|
1633 |
+
result = np.timedelta64(m, unit) / ser
|
1634 |
+
tm.assert_equal(result, expected)
|
1635 |
+
|
1636 |
+
def test_td64arr_div_tdlike_scalar_with_nat(self, two_hours, box_with_array):
|
1637 |
+
box = box_with_array
|
1638 |
+
xbox = np.ndarray if box is pd.array else box
|
1639 |
+
|
1640 |
+
rng = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
|
1641 |
+
expected = Index([12, np.nan, 24], dtype=np.float64, name="foo")
|
1642 |
+
|
1643 |
+
rng = tm.box_expected(rng, box)
|
1644 |
+
expected = tm.box_expected(expected, xbox)
|
1645 |
+
|
1646 |
+
result = rng / two_hours
|
1647 |
+
tm.assert_equal(result, expected)
|
1648 |
+
|
1649 |
+
result = two_hours / rng
|
1650 |
+
expected = 1 / expected
|
1651 |
+
tm.assert_equal(result, expected)
|
1652 |
+
|
1653 |
+
def test_td64arr_div_td64_ndarray(self, box_with_array):
|
1654 |
+
# GH#22631
|
1655 |
+
box = box_with_array
|
1656 |
+
xbox = np.ndarray if box is pd.array else box
|
1657 |
+
|
1658 |
+
rng = TimedeltaIndex(["1 days", NaT, "2 days"])
|
1659 |
+
expected = Index([12, np.nan, 24], dtype=np.float64)
|
1660 |
+
|
1661 |
+
rng = tm.box_expected(rng, box)
|
1662 |
+
expected = tm.box_expected(expected, xbox)
|
1663 |
+
|
1664 |
+
other = np.array([2, 4, 2], dtype="m8[h]")
|
1665 |
+
result = rng / other
|
1666 |
+
tm.assert_equal(result, expected)
|
1667 |
+
|
1668 |
+
result = rng / tm.box_expected(other, box)
|
1669 |
+
tm.assert_equal(result, expected)
|
1670 |
+
|
1671 |
+
result = rng / other.astype(object)
|
1672 |
+
tm.assert_equal(result, expected.astype(object))
|
1673 |
+
|
1674 |
+
result = rng / list(other)
|
1675 |
+
tm.assert_equal(result, expected)
|
1676 |
+
|
1677 |
+
# reversed op
|
1678 |
+
expected = 1 / expected
|
1679 |
+
result = other / rng
|
1680 |
+
tm.assert_equal(result, expected)
|
1681 |
+
|
1682 |
+
result = tm.box_expected(other, box) / rng
|
1683 |
+
tm.assert_equal(result, expected)
|
1684 |
+
|
1685 |
+
result = other.astype(object) / rng
|
1686 |
+
tm.assert_equal(result, expected)
|
1687 |
+
|
1688 |
+
result = list(other) / rng
|
1689 |
+
tm.assert_equal(result, expected)
|
1690 |
+
|
1691 |
+
def test_tdarr_div_length_mismatch(self, box_with_array):
|
1692 |
+
rng = TimedeltaIndex(["1 days", NaT, "2 days"])
|
1693 |
+
mismatched = [1, 2, 3, 4]
|
1694 |
+
|
1695 |
+
rng = tm.box_expected(rng, box_with_array)
|
1696 |
+
msg = "Cannot divide vectors|Unable to coerce to Series"
|
1697 |
+
for obj in [mismatched, mismatched[:2]]:
|
1698 |
+
# one shorter, one longer
|
1699 |
+
for other in [obj, np.array(obj), Index(obj)]:
|
1700 |
+
with pytest.raises(ValueError, match=msg):
|
1701 |
+
rng / other
|
1702 |
+
with pytest.raises(ValueError, match=msg):
|
1703 |
+
other / rng
|
1704 |
+
|
1705 |
+
def test_td64_div_object_mixed_result(self, box_with_array):
|
1706 |
+
# Case where we having a NaT in the result inseat of timedelta64("NaT")
|
1707 |
+
# is misleading
|
1708 |
+
orig = timedelta_range("1 Day", periods=3).insert(1, NaT)
|
1709 |
+
tdi = tm.box_expected(orig, box_with_array, transpose=False)
|
1710 |
+
|
1711 |
+
other = np.array([orig[0], 1.5, 2.0, orig[2]], dtype=object)
|
1712 |
+
other = tm.box_expected(other, box_with_array, transpose=False)
|
1713 |
+
|
1714 |
+
res = tdi / other
|
1715 |
+
|
1716 |
+
expected = Index([1.0, np.timedelta64("NaT", "ns"), orig[0], 1.5], dtype=object)
|
1717 |
+
expected = tm.box_expected(expected, box_with_array, transpose=False)
|
1718 |
+
if isinstance(expected, NumpyExtensionArray):
|
1719 |
+
expected = expected.to_numpy()
|
1720 |
+
tm.assert_equal(res, expected)
|
1721 |
+
if box_with_array is DataFrame:
|
1722 |
+
# We have a np.timedelta64(NaT), not pd.NaT
|
1723 |
+
assert isinstance(res.iloc[1, 0], np.timedelta64)
|
1724 |
+
|
1725 |
+
res = tdi // other
|
1726 |
+
|
1727 |
+
expected = Index([1, np.timedelta64("NaT", "ns"), orig[0], 1], dtype=object)
|
1728 |
+
expected = tm.box_expected(expected, box_with_array, transpose=False)
|
1729 |
+
if isinstance(expected, NumpyExtensionArray):
|
1730 |
+
expected = expected.to_numpy()
|
1731 |
+
tm.assert_equal(res, expected)
|
1732 |
+
if box_with_array is DataFrame:
|
1733 |
+
# We have a np.timedelta64(NaT), not pd.NaT
|
1734 |
+
assert isinstance(res.iloc[1, 0], np.timedelta64)
|
1735 |
+
|
1736 |
+
# ------------------------------------------------------------------
|
1737 |
+
# __floordiv__, __rfloordiv__
|
1738 |
+
|
1739 |
+
def test_td64arr_floordiv_td64arr_with_nat(
|
1740 |
+
self, box_with_array, using_array_manager
|
1741 |
+
):
|
1742 |
+
# GH#35529
|
1743 |
+
box = box_with_array
|
1744 |
+
xbox = np.ndarray if box is pd.array else box
|
1745 |
+
|
1746 |
+
left = Series([1000, 222330, 30], dtype="timedelta64[ns]")
|
1747 |
+
right = Series([1000, 222330, None], dtype="timedelta64[ns]")
|
1748 |
+
|
1749 |
+
left = tm.box_expected(left, box)
|
1750 |
+
right = tm.box_expected(right, box)
|
1751 |
+
|
1752 |
+
expected = np.array([1.0, 1.0, np.nan], dtype=np.float64)
|
1753 |
+
expected = tm.box_expected(expected, xbox)
|
1754 |
+
if box is DataFrame and using_array_manager:
|
1755 |
+
# INFO(ArrayManager) floordiv returns integer, and ArrayManager
|
1756 |
+
# performs ops column-wise and thus preserves int64 dtype for
|
1757 |
+
# columns without missing values
|
1758 |
+
expected[[0, 1]] = expected[[0, 1]].astype("int64")
|
1759 |
+
|
1760 |
+
with tm.maybe_produces_warning(
|
1761 |
+
RuntimeWarning, box is pd.array, check_stacklevel=False
|
1762 |
+
):
|
1763 |
+
result = left // right
|
1764 |
+
|
1765 |
+
tm.assert_equal(result, expected)
|
1766 |
+
|
1767 |
+
# case that goes through __rfloordiv__ with arraylike
|
1768 |
+
with tm.maybe_produces_warning(
|
1769 |
+
RuntimeWarning, box is pd.array, check_stacklevel=False
|
1770 |
+
):
|
1771 |
+
result = np.asarray(left) // right
|
1772 |
+
tm.assert_equal(result, expected)
|
1773 |
+
|
1774 |
+
@pytest.mark.filterwarnings("ignore:invalid value encountered:RuntimeWarning")
|
1775 |
+
def test_td64arr_floordiv_tdscalar(self, box_with_array, scalar_td):
|
1776 |
+
# GH#18831, GH#19125
|
1777 |
+
box = box_with_array
|
1778 |
+
xbox = np.ndarray if box is pd.array else box
|
1779 |
+
td = Timedelta("5m3s") # i.e. (scalar_td - 1sec) / 2
|
1780 |
+
|
1781 |
+
td1 = Series([td, td, NaT], dtype="m8[ns]")
|
1782 |
+
td1 = tm.box_expected(td1, box, transpose=False)
|
1783 |
+
|
1784 |
+
expected = Series([0, 0, np.nan])
|
1785 |
+
expected = tm.box_expected(expected, xbox, transpose=False)
|
1786 |
+
|
1787 |
+
result = td1 // scalar_td
|
1788 |
+
tm.assert_equal(result, expected)
|
1789 |
+
|
1790 |
+
# Reversed op
|
1791 |
+
expected = Series([2, 2, np.nan])
|
1792 |
+
expected = tm.box_expected(expected, xbox, transpose=False)
|
1793 |
+
|
1794 |
+
result = scalar_td // td1
|
1795 |
+
tm.assert_equal(result, expected)
|
1796 |
+
|
1797 |
+
# same thing buts let's be explicit about calling __rfloordiv__
|
1798 |
+
result = td1.__rfloordiv__(scalar_td)
|
1799 |
+
tm.assert_equal(result, expected)
|
1800 |
+
|
1801 |
+
def test_td64arr_floordiv_int(self, box_with_array):
|
1802 |
+
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
1803 |
+
idx = tm.box_expected(idx, box_with_array)
|
1804 |
+
result = idx // 1
|
1805 |
+
tm.assert_equal(result, idx)
|
1806 |
+
|
1807 |
+
pattern = "floor_divide cannot use operands|Cannot divide int by Timedelta*"
|
1808 |
+
with pytest.raises(TypeError, match=pattern):
|
1809 |
+
1 // idx
|
1810 |
+
|
1811 |
+
# ------------------------------------------------------------------
|
1812 |
+
# mod, divmod
|
1813 |
+
# TODO: operations with timedelta-like arrays, numeric arrays,
|
1814 |
+
# reversed ops
|
1815 |
+
|
1816 |
+
def test_td64arr_mod_tdscalar(self, box_with_array, three_days):
|
1817 |
+
tdi = timedelta_range("1 Day", "9 days")
|
1818 |
+
tdarr = tm.box_expected(tdi, box_with_array)
|
1819 |
+
|
1820 |
+
expected = TimedeltaIndex(["1 Day", "2 Days", "0 Days"] * 3)
|
1821 |
+
expected = tm.box_expected(expected, box_with_array)
|
1822 |
+
|
1823 |
+
result = tdarr % three_days
|
1824 |
+
tm.assert_equal(result, expected)
|
1825 |
+
|
1826 |
+
warn = None
|
1827 |
+
if box_with_array is DataFrame and isinstance(three_days, pd.DateOffset):
|
1828 |
+
warn = PerformanceWarning
|
1829 |
+
# TODO: making expected be object here a result of DataFrame.__divmod__
|
1830 |
+
# being defined in a naive way that does not dispatch to the underlying
|
1831 |
+
# array's __divmod__
|
1832 |
+
expected = expected.astype(object)
|
1833 |
+
|
1834 |
+
with tm.assert_produces_warning(warn):
|
1835 |
+
result = divmod(tdarr, three_days)
|
1836 |
+
|
1837 |
+
tm.assert_equal(result[1], expected)
|
1838 |
+
tm.assert_equal(result[0], tdarr // three_days)
|
1839 |
+
|
1840 |
+
def test_td64arr_mod_int(self, box_with_array):
|
1841 |
+
tdi = timedelta_range("1 ns", "10 ns", periods=10)
|
1842 |
+
tdarr = tm.box_expected(tdi, box_with_array)
|
1843 |
+
|
1844 |
+
expected = TimedeltaIndex(["1 ns", "0 ns"] * 5)
|
1845 |
+
expected = tm.box_expected(expected, box_with_array)
|
1846 |
+
|
1847 |
+
result = tdarr % 2
|
1848 |
+
tm.assert_equal(result, expected)
|
1849 |
+
|
1850 |
+
msg = "Cannot divide int by"
|
1851 |
+
with pytest.raises(TypeError, match=msg):
|
1852 |
+
2 % tdarr
|
1853 |
+
|
1854 |
+
result = divmod(tdarr, 2)
|
1855 |
+
tm.assert_equal(result[1], expected)
|
1856 |
+
tm.assert_equal(result[0], tdarr // 2)
|
1857 |
+
|
1858 |
+
def test_td64arr_rmod_tdscalar(self, box_with_array, three_days):
|
1859 |
+
tdi = timedelta_range("1 Day", "9 days")
|
1860 |
+
tdarr = tm.box_expected(tdi, box_with_array)
|
1861 |
+
|
1862 |
+
expected = ["0 Days", "1 Day", "0 Days"] + ["3 Days"] * 6
|
1863 |
+
expected = TimedeltaIndex(expected)
|
1864 |
+
expected = tm.box_expected(expected, box_with_array)
|
1865 |
+
|
1866 |
+
result = three_days % tdarr
|
1867 |
+
tm.assert_equal(result, expected)
|
1868 |
+
|
1869 |
+
result = divmod(three_days, tdarr)
|
1870 |
+
tm.assert_equal(result[1], expected)
|
1871 |
+
tm.assert_equal(result[0], three_days // tdarr)
|
1872 |
+
|
1873 |
+
# ------------------------------------------------------------------
|
1874 |
+
# Operations with invalid others
|
1875 |
+
|
1876 |
+
def test_td64arr_mul_tdscalar_invalid(self, box_with_array, scalar_td):
|
1877 |
+
td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
|
1878 |
+
td1.iloc[2] = np.nan
|
1879 |
+
|
1880 |
+
td1 = tm.box_expected(td1, box_with_array)
|
1881 |
+
|
1882 |
+
# check that we are getting a TypeError
|
1883 |
+
# with 'operate' (from core/ops.py) for the ops that are not
|
1884 |
+
# defined
|
1885 |
+
pattern = "operate|unsupported|cannot|not supported"
|
1886 |
+
with pytest.raises(TypeError, match=pattern):
|
1887 |
+
td1 * scalar_td
|
1888 |
+
with pytest.raises(TypeError, match=pattern):
|
1889 |
+
scalar_td * td1
|
1890 |
+
|
1891 |
+
def test_td64arr_mul_too_short_raises(self, box_with_array):
|
1892 |
+
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
1893 |
+
idx = tm.box_expected(idx, box_with_array)
|
1894 |
+
msg = "|".join(
|
1895 |
+
[
|
1896 |
+
"cannot use operands with types dtype",
|
1897 |
+
"Cannot multiply with unequal lengths",
|
1898 |
+
"Unable to coerce to Series",
|
1899 |
+
]
|
1900 |
+
)
|
1901 |
+
with pytest.raises(TypeError, match=msg):
|
1902 |
+
# length check before dtype check
|
1903 |
+
idx * idx[:3]
|
1904 |
+
with pytest.raises(ValueError, match=msg):
|
1905 |
+
idx * np.array([1, 2])
|
1906 |
+
|
1907 |
+
def test_td64arr_mul_td64arr_raises(self, box_with_array):
|
1908 |
+
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
1909 |
+
idx = tm.box_expected(idx, box_with_array)
|
1910 |
+
msg = "cannot use operands with types dtype"
|
1911 |
+
with pytest.raises(TypeError, match=msg):
|
1912 |
+
idx * idx
|
1913 |
+
|
1914 |
+
# ------------------------------------------------------------------
|
1915 |
+
# Operations with numeric others
|
1916 |
+
|
1917 |
+
def test_td64arr_mul_numeric_scalar(self, box_with_array, one):
|
1918 |
+
# GH#4521
|
1919 |
+
# divide/multiply by integers
|
1920 |
+
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
1921 |
+
expected = Series(["-59 Days", "-59 Days", "NaT"], dtype="timedelta64[ns]")
|
1922 |
+
|
1923 |
+
tdser = tm.box_expected(tdser, box_with_array)
|
1924 |
+
expected = tm.box_expected(expected, box_with_array)
|
1925 |
+
|
1926 |
+
result = tdser * (-one)
|
1927 |
+
tm.assert_equal(result, expected)
|
1928 |
+
result = (-one) * tdser
|
1929 |
+
tm.assert_equal(result, expected)
|
1930 |
+
|
1931 |
+
expected = Series(["118 Days", "118 Days", "NaT"], dtype="timedelta64[ns]")
|
1932 |
+
expected = tm.box_expected(expected, box_with_array)
|
1933 |
+
|
1934 |
+
result = tdser * (2 * one)
|
1935 |
+
tm.assert_equal(result, expected)
|
1936 |
+
result = (2 * one) * tdser
|
1937 |
+
tm.assert_equal(result, expected)
|
1938 |
+
|
1939 |
+
@pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)])
|
1940 |
+
def test_td64arr_div_numeric_scalar(self, box_with_array, two):
|
1941 |
+
# GH#4521
|
1942 |
+
# divide/multiply by integers
|
1943 |
+
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
1944 |
+
expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]")
|
1945 |
+
|
1946 |
+
tdser = tm.box_expected(tdser, box_with_array)
|
1947 |
+
expected = tm.box_expected(expected, box_with_array)
|
1948 |
+
|
1949 |
+
result = tdser / two
|
1950 |
+
tm.assert_equal(result, expected)
|
1951 |
+
|
1952 |
+
with pytest.raises(TypeError, match="Cannot divide"):
|
1953 |
+
two / tdser
|
1954 |
+
|
1955 |
+
@pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)])
|
1956 |
+
def test_td64arr_floordiv_numeric_scalar(self, box_with_array, two):
|
1957 |
+
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
1958 |
+
expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]")
|
1959 |
+
|
1960 |
+
tdser = tm.box_expected(tdser, box_with_array)
|
1961 |
+
expected = tm.box_expected(expected, box_with_array)
|
1962 |
+
|
1963 |
+
result = tdser // two
|
1964 |
+
tm.assert_equal(result, expected)
|
1965 |
+
|
1966 |
+
with pytest.raises(TypeError, match="Cannot divide"):
|
1967 |
+
two // tdser
|
1968 |
+
|
1969 |
+
@pytest.mark.parametrize(
|
1970 |
+
"vector",
|
1971 |
+
[np.array([20, 30, 40]), Index([20, 30, 40]), Series([20, 30, 40])],
|
1972 |
+
ids=lambda x: type(x).__name__,
|
1973 |
+
)
|
1974 |
+
def test_td64arr_rmul_numeric_array(
|
1975 |
+
self,
|
1976 |
+
box_with_array,
|
1977 |
+
vector,
|
1978 |
+
any_real_numpy_dtype,
|
1979 |
+
):
|
1980 |
+
# GH#4521
|
1981 |
+
# divide/multiply by integers
|
1982 |
+
|
1983 |
+
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
1984 |
+
vector = vector.astype(any_real_numpy_dtype)
|
1985 |
+
|
1986 |
+
expected = Series(["1180 Days", "1770 Days", "NaT"], dtype="timedelta64[ns]")
|
1987 |
+
|
1988 |
+
tdser = tm.box_expected(tdser, box_with_array)
|
1989 |
+
xbox = get_upcast_box(tdser, vector)
|
1990 |
+
|
1991 |
+
expected = tm.box_expected(expected, xbox)
|
1992 |
+
|
1993 |
+
result = tdser * vector
|
1994 |
+
tm.assert_equal(result, expected)
|
1995 |
+
|
1996 |
+
result = vector * tdser
|
1997 |
+
tm.assert_equal(result, expected)
|
1998 |
+
|
1999 |
+
@pytest.mark.parametrize(
|
2000 |
+
"vector",
|
2001 |
+
[np.array([20, 30, 40]), Index([20, 30, 40]), Series([20, 30, 40])],
|
2002 |
+
ids=lambda x: type(x).__name__,
|
2003 |
+
)
|
2004 |
+
def test_td64arr_div_numeric_array(
|
2005 |
+
self, box_with_array, vector, any_real_numpy_dtype
|
2006 |
+
):
|
2007 |
+
# GH#4521
|
2008 |
+
# divide/multiply by integers
|
2009 |
+
|
2010 |
+
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
2011 |
+
vector = vector.astype(any_real_numpy_dtype)
|
2012 |
+
|
2013 |
+
expected = Series(["2.95D", "1D 23h 12m", "NaT"], dtype="timedelta64[ns]")
|
2014 |
+
|
2015 |
+
tdser = tm.box_expected(tdser, box_with_array)
|
2016 |
+
xbox = get_upcast_box(tdser, vector)
|
2017 |
+
expected = tm.box_expected(expected, xbox)
|
2018 |
+
|
2019 |
+
result = tdser / vector
|
2020 |
+
tm.assert_equal(result, expected)
|
2021 |
+
|
2022 |
+
pattern = "|".join(
|
2023 |
+
[
|
2024 |
+
"true_divide'? cannot use operands",
|
2025 |
+
"cannot perform __div__",
|
2026 |
+
"cannot perform __truediv__",
|
2027 |
+
"unsupported operand",
|
2028 |
+
"Cannot divide",
|
2029 |
+
"ufunc 'divide' cannot use operands with types",
|
2030 |
+
]
|
2031 |
+
)
|
2032 |
+
with pytest.raises(TypeError, match=pattern):
|
2033 |
+
vector / tdser
|
2034 |
+
|
2035 |
+
result = tdser / vector.astype(object)
|
2036 |
+
if box_with_array is DataFrame:
|
2037 |
+
expected = [tdser.iloc[0, n] / vector[n] for n in range(len(vector))]
|
2038 |
+
expected = tm.box_expected(expected, xbox).astype(object)
|
2039 |
+
# We specifically expect timedelta64("NaT") here, not pd.NA
|
2040 |
+
msg = "The 'downcast' keyword in fillna"
|
2041 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
2042 |
+
expected[2] = expected[2].fillna(
|
2043 |
+
np.timedelta64("NaT", "ns"), downcast=False
|
2044 |
+
)
|
2045 |
+
else:
|
2046 |
+
expected = [tdser[n] / vector[n] for n in range(len(tdser))]
|
2047 |
+
expected = [
|
2048 |
+
x if x is not NaT else np.timedelta64("NaT", "ns") for x in expected
|
2049 |
+
]
|
2050 |
+
if xbox is tm.to_array:
|
2051 |
+
expected = tm.to_array(expected).astype(object)
|
2052 |
+
else:
|
2053 |
+
expected = xbox(expected, dtype=object)
|
2054 |
+
|
2055 |
+
tm.assert_equal(result, expected)
|
2056 |
+
|
2057 |
+
with pytest.raises(TypeError, match=pattern):
|
2058 |
+
vector.astype(object) / tdser
|
2059 |
+
|
2060 |
+
def test_td64arr_mul_int_series(self, box_with_array, names):
|
2061 |
+
# GH#19042 test for correct name attachment
|
2062 |
+
box = box_with_array
|
2063 |
+
exname = get_expected_name(box, names)
|
2064 |
+
|
2065 |
+
tdi = TimedeltaIndex(
|
2066 |
+
["0days", "1day", "2days", "3days", "4days"], name=names[0]
|
2067 |
+
)
|
2068 |
+
# TODO: Should we be parametrizing over types for `ser` too?
|
2069 |
+
ser = Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1])
|
2070 |
+
|
2071 |
+
expected = Series(
|
2072 |
+
["0days", "1day", "4days", "9days", "16days"],
|
2073 |
+
dtype="timedelta64[ns]",
|
2074 |
+
name=exname,
|
2075 |
+
)
|
2076 |
+
|
2077 |
+
tdi = tm.box_expected(tdi, box)
|
2078 |
+
xbox = get_upcast_box(tdi, ser)
|
2079 |
+
|
2080 |
+
expected = tm.box_expected(expected, xbox)
|
2081 |
+
|
2082 |
+
result = ser * tdi
|
2083 |
+
tm.assert_equal(result, expected)
|
2084 |
+
|
2085 |
+
result = tdi * ser
|
2086 |
+
tm.assert_equal(result, expected)
|
2087 |
+
|
2088 |
+
# TODO: Should we be parametrizing over types for `ser` too?
|
2089 |
+
def test_float_series_rdiv_td64arr(self, box_with_array, names):
|
2090 |
+
# GH#19042 test for correct name attachment
|
2091 |
+
box = box_with_array
|
2092 |
+
tdi = TimedeltaIndex(
|
2093 |
+
["0days", "1day", "2days", "3days", "4days"], name=names[0]
|
2094 |
+
)
|
2095 |
+
ser = Series([1.5, 3, 4.5, 6, 7.5], dtype=np.float64, name=names[1])
|
2096 |
+
|
2097 |
+
xname = names[2] if box not in [tm.to_array, pd.array] else names[1]
|
2098 |
+
expected = Series(
|
2099 |
+
[tdi[n] / ser[n] for n in range(len(ser))],
|
2100 |
+
dtype="timedelta64[ns]",
|
2101 |
+
name=xname,
|
2102 |
+
)
|
2103 |
+
|
2104 |
+
tdi = tm.box_expected(tdi, box)
|
2105 |
+
xbox = get_upcast_box(tdi, ser)
|
2106 |
+
expected = tm.box_expected(expected, xbox)
|
2107 |
+
|
2108 |
+
result = ser.__rtruediv__(tdi)
|
2109 |
+
if box is DataFrame:
|
2110 |
+
assert result is NotImplemented
|
2111 |
+
else:
|
2112 |
+
tm.assert_equal(result, expected)
|
2113 |
+
|
2114 |
+
def test_td64arr_all_nat_div_object_dtype_numeric(self, box_with_array):
|
2115 |
+
# GH#39750 make sure we infer the result as td64
|
2116 |
+
tdi = TimedeltaIndex([NaT, NaT])
|
2117 |
+
|
2118 |
+
left = tm.box_expected(tdi, box_with_array)
|
2119 |
+
right = np.array([2, 2.0], dtype=object)
|
2120 |
+
|
2121 |
+
tdnat = np.timedelta64("NaT", "ns")
|
2122 |
+
expected = Index([tdnat] * 2, dtype=object)
|
2123 |
+
if box_with_array is not Index:
|
2124 |
+
expected = tm.box_expected(expected, box_with_array).astype(object)
|
2125 |
+
if box_with_array in [Series, DataFrame]:
|
2126 |
+
msg = "The 'downcast' keyword in fillna is deprecated"
|
2127 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
2128 |
+
expected = expected.fillna(tdnat, downcast=False) # GH#18463
|
2129 |
+
|
2130 |
+
result = left / right
|
2131 |
+
tm.assert_equal(result, expected)
|
2132 |
+
|
2133 |
+
result = left // right
|
2134 |
+
tm.assert_equal(result, expected)
|
2135 |
+
|
2136 |
+
|
2137 |
+
class TestTimedelta64ArrayLikeArithmetic:
|
2138 |
+
# Arithmetic tests for timedelta64[ns] vectors fully parametrized over
|
2139 |
+
# DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all arithmetic
|
2140 |
+
# tests will eventually end up here.
|
2141 |
+
|
2142 |
+
def test_td64arr_pow_invalid(self, scalar_td, box_with_array):
|
2143 |
+
td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
|
2144 |
+
td1.iloc[2] = np.nan
|
2145 |
+
|
2146 |
+
td1 = tm.box_expected(td1, box_with_array)
|
2147 |
+
|
2148 |
+
# check that we are getting a TypeError
|
2149 |
+
# with 'operate' (from core/ops.py) for the ops that are not
|
2150 |
+
# defined
|
2151 |
+
pattern = "operate|unsupported|cannot|not supported"
|
2152 |
+
with pytest.raises(TypeError, match=pattern):
|
2153 |
+
scalar_td**td1
|
2154 |
+
|
2155 |
+
with pytest.raises(TypeError, match=pattern):
|
2156 |
+
td1**scalar_td
|
2157 |
+
|
2158 |
+
|
2159 |
+
def test_add_timestamp_to_timedelta():
|
2160 |
+
# GH: 35897
|
2161 |
+
timestamp = Timestamp("2021-01-01")
|
2162 |
+
result = timestamp + timedelta_range("0s", "1s", periods=31)
|
2163 |
+
expected = DatetimeIndex(
|
2164 |
+
[
|
2165 |
+
timestamp
|
2166 |
+
+ (
|
2167 |
+
pd.to_timedelta("0.033333333s") * i
|
2168 |
+
+ pd.to_timedelta("0.000000001s") * divmod(i, 3)[0]
|
2169 |
+
)
|
2170 |
+
for i in range(31)
|
2171 |
+
]
|
2172 |
+
)
|
2173 |
+
tm.assert_index_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_odf.cpython-310.pyc
ADDED
Binary file (2.34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_odswriter.cpython-310.pyc
ADDED
Binary file (3.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_openpyxl.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_readers.cpython-310.pyc
ADDED
Binary file (48.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_style.cpython-310.pyc
ADDED
Binary file (8.72 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_writers.cpython-310.pyc
ADDED
Binary file (46.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_xlrd.cpython-310.pyc
ADDED
Binary file (2.35 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/__pycache__/test_xlsxwriter.cpython-310.pyc
ADDED
Binary file (2.74 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_odf.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas.compat import is_platform_windows
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import pandas._testing as tm
|
10 |
+
|
11 |
+
pytest.importorskip("odf")
|
12 |
+
|
13 |
+
if is_platform_windows():
|
14 |
+
pytestmark = pytest.mark.single_cpu
|
15 |
+
|
16 |
+
|
17 |
+
@pytest.fixture(autouse=True)
|
18 |
+
def cd_and_set_engine(monkeypatch, datapath):
|
19 |
+
func = functools.partial(pd.read_excel, engine="odf")
|
20 |
+
monkeypatch.setattr(pd, "read_excel", func)
|
21 |
+
monkeypatch.chdir(datapath("io", "data", "excel"))
|
22 |
+
|
23 |
+
|
24 |
+
def test_read_invalid_types_raises():
|
25 |
+
# the invalid_value_type.ods required manually editing
|
26 |
+
# of the included content.xml file
|
27 |
+
with pytest.raises(ValueError, match="Unrecognized type awesome_new_type"):
|
28 |
+
pd.read_excel("invalid_value_type.ods")
|
29 |
+
|
30 |
+
|
31 |
+
def test_read_writer_table():
|
32 |
+
# Also test reading tables from an text OpenDocument file
|
33 |
+
# (.odt)
|
34 |
+
index = pd.Index(["Row 1", "Row 2", "Row 3"], name="Header")
|
35 |
+
expected = pd.DataFrame(
|
36 |
+
[[1, np.nan, 7], [2, np.nan, 8], [3, np.nan, 9]],
|
37 |
+
index=index,
|
38 |
+
columns=["Column 1", "Unnamed: 2", "Column 3"],
|
39 |
+
)
|
40 |
+
|
41 |
+
result = pd.read_excel("writertable.odt", sheet_name="Table1", index_col=0)
|
42 |
+
|
43 |
+
tm.assert_frame_equal(result, expected)
|
44 |
+
|
45 |
+
|
46 |
+
def test_read_newlines_between_xml_elements_table():
|
47 |
+
# GH#45598
|
48 |
+
expected = pd.DataFrame(
|
49 |
+
[[1.0, 4.0, 7], [np.nan, np.nan, 8], [3.0, 6.0, 9]],
|
50 |
+
columns=["Column 1", "Column 2", "Column 3"],
|
51 |
+
)
|
52 |
+
|
53 |
+
result = pd.read_excel("test_newlines.ods")
|
54 |
+
|
55 |
+
tm.assert_frame_equal(result, expected)
|
56 |
+
|
57 |
+
|
58 |
+
def test_read_unempty_cells():
|
59 |
+
expected = pd.DataFrame(
|
60 |
+
[1, np.nan, 3, np.nan, 5],
|
61 |
+
columns=["Column 1"],
|
62 |
+
)
|
63 |
+
|
64 |
+
result = pd.read_excel("test_unempty_cells.ods")
|
65 |
+
|
66 |
+
tm.assert_frame_equal(result, expected)
|
67 |
+
|
68 |
+
|
69 |
+
def test_read_cell_annotation():
|
70 |
+
expected = pd.DataFrame(
|
71 |
+
["test", np.nan, "test 3"],
|
72 |
+
columns=["Column 1"],
|
73 |
+
)
|
74 |
+
|
75 |
+
result = pd.read_excel("test_cell_annotation.ods")
|
76 |
+
|
77 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_odswriter.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
date,
|
3 |
+
datetime,
|
4 |
+
)
|
5 |
+
import re
|
6 |
+
|
7 |
+
import pytest
|
8 |
+
|
9 |
+
from pandas.compat import is_platform_windows
|
10 |
+
|
11 |
+
import pandas as pd
|
12 |
+
import pandas._testing as tm
|
13 |
+
|
14 |
+
from pandas.io.excel import ExcelWriter
|
15 |
+
|
16 |
+
odf = pytest.importorskip("odf")
|
17 |
+
|
18 |
+
if is_platform_windows():
|
19 |
+
pytestmark = pytest.mark.single_cpu
|
20 |
+
|
21 |
+
|
22 |
+
@pytest.fixture
|
23 |
+
def ext():
|
24 |
+
return ".ods"
|
25 |
+
|
26 |
+
|
27 |
+
def test_write_append_mode_raises(ext):
|
28 |
+
msg = "Append mode is not supported with odf!"
|
29 |
+
|
30 |
+
with tm.ensure_clean(ext) as f:
|
31 |
+
with pytest.raises(ValueError, match=msg):
|
32 |
+
ExcelWriter(f, engine="odf", mode="a")
|
33 |
+
|
34 |
+
|
35 |
+
@pytest.mark.parametrize("engine_kwargs", [None, {"kwarg": 1}])
|
36 |
+
def test_engine_kwargs(ext, engine_kwargs):
|
37 |
+
# GH 42286
|
38 |
+
# GH 43445
|
39 |
+
# test for error: OpenDocumentSpreadsheet does not accept any arguments
|
40 |
+
with tm.ensure_clean(ext) as f:
|
41 |
+
if engine_kwargs is not None:
|
42 |
+
error = re.escape(
|
43 |
+
"OpenDocumentSpreadsheet() got an unexpected keyword argument 'kwarg'"
|
44 |
+
)
|
45 |
+
with pytest.raises(
|
46 |
+
TypeError,
|
47 |
+
match=error,
|
48 |
+
):
|
49 |
+
ExcelWriter(f, engine="odf", engine_kwargs=engine_kwargs)
|
50 |
+
else:
|
51 |
+
with ExcelWriter(f, engine="odf", engine_kwargs=engine_kwargs) as _:
|
52 |
+
pass
|
53 |
+
|
54 |
+
|
55 |
+
def test_book_and_sheets_consistent(ext):
|
56 |
+
# GH#45687 - Ensure sheets is updated if user modifies book
|
57 |
+
with tm.ensure_clean(ext) as f:
|
58 |
+
with ExcelWriter(f) as writer:
|
59 |
+
assert writer.sheets == {}
|
60 |
+
table = odf.table.Table(name="test_name")
|
61 |
+
writer.book.spreadsheet.addElement(table)
|
62 |
+
assert writer.sheets == {"test_name": table}
|
63 |
+
|
64 |
+
|
65 |
+
@pytest.mark.parametrize(
|
66 |
+
["value", "cell_value_type", "cell_value_attribute", "cell_value"],
|
67 |
+
argvalues=[
|
68 |
+
(True, "boolean", "boolean-value", "true"),
|
69 |
+
("test string", "string", "string-value", "test string"),
|
70 |
+
(1, "float", "value", "1"),
|
71 |
+
(1.5, "float", "value", "1.5"),
|
72 |
+
(
|
73 |
+
datetime(2010, 10, 10, 10, 10, 10),
|
74 |
+
"date",
|
75 |
+
"date-value",
|
76 |
+
"2010-10-10T10:10:10",
|
77 |
+
),
|
78 |
+
(date(2010, 10, 10), "date", "date-value", "2010-10-10"),
|
79 |
+
],
|
80 |
+
)
|
81 |
+
def test_cell_value_type(ext, value, cell_value_type, cell_value_attribute, cell_value):
|
82 |
+
# GH#54994 ODS: cell attributes should follow specification
|
83 |
+
# http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os-part1.html#refTable13
|
84 |
+
from odf.namespaces import OFFICENS
|
85 |
+
from odf.table import (
|
86 |
+
TableCell,
|
87 |
+
TableRow,
|
88 |
+
)
|
89 |
+
|
90 |
+
table_cell_name = TableCell().qname
|
91 |
+
|
92 |
+
with tm.ensure_clean(ext) as f:
|
93 |
+
pd.DataFrame([[value]]).to_excel(f, header=False, index=False)
|
94 |
+
|
95 |
+
with pd.ExcelFile(f) as wb:
|
96 |
+
sheet = wb._reader.get_sheet_by_index(0)
|
97 |
+
sheet_rows = sheet.getElementsByType(TableRow)
|
98 |
+
sheet_cells = [
|
99 |
+
x
|
100 |
+
for x in sheet_rows[0].childNodes
|
101 |
+
if hasattr(x, "qname") and x.qname == table_cell_name
|
102 |
+
]
|
103 |
+
|
104 |
+
cell = sheet_cells[0]
|
105 |
+
assert cell.attributes.get((OFFICENS, "value-type")) == cell_value_type
|
106 |
+
assert cell.attributes.get((OFFICENS, cell_value_attribute)) == cell_value
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_openpyxl.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
from pathlib import Path
|
3 |
+
import re
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
from pandas.compat import is_platform_windows
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
from pandas import DataFrame
|
12 |
+
import pandas._testing as tm
|
13 |
+
|
14 |
+
from pandas.io.excel import (
|
15 |
+
ExcelWriter,
|
16 |
+
_OpenpyxlWriter,
|
17 |
+
)
|
18 |
+
from pandas.io.excel._openpyxl import OpenpyxlReader
|
19 |
+
|
20 |
+
openpyxl = pytest.importorskip("openpyxl")
|
21 |
+
|
22 |
+
if is_platform_windows():
|
23 |
+
pytestmark = pytest.mark.single_cpu
|
24 |
+
|
25 |
+
|
26 |
+
@pytest.fixture
|
27 |
+
def ext():
|
28 |
+
return ".xlsx"
|
29 |
+
|
30 |
+
|
31 |
+
def test_to_excel_styleconverter():
|
32 |
+
from openpyxl import styles
|
33 |
+
|
34 |
+
hstyle = {
|
35 |
+
"font": {"color": "00FF0000", "bold": True},
|
36 |
+
"borders": {"top": "thin", "right": "thin", "bottom": "thin", "left": "thin"},
|
37 |
+
"alignment": {"horizontal": "center", "vertical": "top"},
|
38 |
+
"fill": {"patternType": "solid", "fgColor": {"rgb": "006666FF", "tint": 0.3}},
|
39 |
+
"number_format": {"format_code": "0.00"},
|
40 |
+
"protection": {"locked": True, "hidden": False},
|
41 |
+
}
|
42 |
+
|
43 |
+
font_color = styles.Color("00FF0000")
|
44 |
+
font = styles.Font(bold=True, color=font_color)
|
45 |
+
side = styles.Side(style=styles.borders.BORDER_THIN)
|
46 |
+
border = styles.Border(top=side, right=side, bottom=side, left=side)
|
47 |
+
alignment = styles.Alignment(horizontal="center", vertical="top")
|
48 |
+
fill_color = styles.Color(rgb="006666FF", tint=0.3)
|
49 |
+
fill = styles.PatternFill(patternType="solid", fgColor=fill_color)
|
50 |
+
|
51 |
+
number_format = "0.00"
|
52 |
+
|
53 |
+
protection = styles.Protection(locked=True, hidden=False)
|
54 |
+
|
55 |
+
kw = _OpenpyxlWriter._convert_to_style_kwargs(hstyle)
|
56 |
+
assert kw["font"] == font
|
57 |
+
assert kw["border"] == border
|
58 |
+
assert kw["alignment"] == alignment
|
59 |
+
assert kw["fill"] == fill
|
60 |
+
assert kw["number_format"] == number_format
|
61 |
+
assert kw["protection"] == protection
|
62 |
+
|
63 |
+
|
64 |
+
def test_write_cells_merge_styled(ext):
|
65 |
+
from pandas.io.formats.excel import ExcelCell
|
66 |
+
|
67 |
+
sheet_name = "merge_styled"
|
68 |
+
|
69 |
+
sty_b1 = {"font": {"color": "00FF0000"}}
|
70 |
+
sty_a2 = {"font": {"color": "0000FF00"}}
|
71 |
+
|
72 |
+
initial_cells = [
|
73 |
+
ExcelCell(col=1, row=0, val=42, style=sty_b1),
|
74 |
+
ExcelCell(col=0, row=1, val=99, style=sty_a2),
|
75 |
+
]
|
76 |
+
|
77 |
+
sty_merged = {"font": {"color": "000000FF", "bold": True}}
|
78 |
+
sty_kwargs = _OpenpyxlWriter._convert_to_style_kwargs(sty_merged)
|
79 |
+
openpyxl_sty_merged = sty_kwargs["font"]
|
80 |
+
merge_cells = [
|
81 |
+
ExcelCell(
|
82 |
+
col=0, row=0, val="pandas", mergestart=1, mergeend=1, style=sty_merged
|
83 |
+
)
|
84 |
+
]
|
85 |
+
|
86 |
+
with tm.ensure_clean(ext) as path:
|
87 |
+
with _OpenpyxlWriter(path) as writer:
|
88 |
+
writer._write_cells(initial_cells, sheet_name=sheet_name)
|
89 |
+
writer._write_cells(merge_cells, sheet_name=sheet_name)
|
90 |
+
|
91 |
+
wks = writer.sheets[sheet_name]
|
92 |
+
xcell_b1 = wks["B1"]
|
93 |
+
xcell_a2 = wks["A2"]
|
94 |
+
assert xcell_b1.font == openpyxl_sty_merged
|
95 |
+
assert xcell_a2.font == openpyxl_sty_merged
|
96 |
+
|
97 |
+
|
98 |
+
@pytest.mark.parametrize("iso_dates", [True, False])
|
99 |
+
def test_engine_kwargs_write(ext, iso_dates):
|
100 |
+
# GH 42286 GH 43445
|
101 |
+
engine_kwargs = {"iso_dates": iso_dates}
|
102 |
+
with tm.ensure_clean(ext) as f:
|
103 |
+
with ExcelWriter(f, engine="openpyxl", engine_kwargs=engine_kwargs) as writer:
|
104 |
+
assert writer.book.iso_dates == iso_dates
|
105 |
+
# ExcelWriter won't allow us to close without writing something
|
106 |
+
DataFrame().to_excel(writer)
|
107 |
+
|
108 |
+
|
109 |
+
def test_engine_kwargs_append_invalid(ext):
|
110 |
+
# GH 43445
|
111 |
+
# test whether an invalid engine kwargs actually raises
|
112 |
+
with tm.ensure_clean(ext) as f:
|
113 |
+
DataFrame(["hello", "world"]).to_excel(f)
|
114 |
+
with pytest.raises(
|
115 |
+
TypeError,
|
116 |
+
match=re.escape(
|
117 |
+
"load_workbook() got an unexpected keyword argument 'apple_banana'"
|
118 |
+
),
|
119 |
+
):
|
120 |
+
with ExcelWriter(
|
121 |
+
f, engine="openpyxl", mode="a", engine_kwargs={"apple_banana": "fruit"}
|
122 |
+
) as writer:
|
123 |
+
# ExcelWriter needs us to write something to close properly
|
124 |
+
DataFrame(["good"]).to_excel(writer, sheet_name="Sheet2")
|
125 |
+
|
126 |
+
|
127 |
+
@pytest.mark.parametrize("data_only, expected", [(True, 0), (False, "=1+1")])
|
128 |
+
def test_engine_kwargs_append_data_only(ext, data_only, expected):
|
129 |
+
# GH 43445
|
130 |
+
# tests whether the data_only engine_kwarg actually works well for
|
131 |
+
# openpyxl's load_workbook
|
132 |
+
with tm.ensure_clean(ext) as f:
|
133 |
+
DataFrame(["=1+1"]).to_excel(f)
|
134 |
+
with ExcelWriter(
|
135 |
+
f, engine="openpyxl", mode="a", engine_kwargs={"data_only": data_only}
|
136 |
+
) as writer:
|
137 |
+
assert writer.sheets["Sheet1"]["B2"].value == expected
|
138 |
+
# ExcelWriter needs us to writer something to close properly?
|
139 |
+
DataFrame().to_excel(writer, sheet_name="Sheet2")
|
140 |
+
|
141 |
+
# ensure that data_only also works for reading
|
142 |
+
# and that formulas/values roundtrip
|
143 |
+
assert (
|
144 |
+
pd.read_excel(
|
145 |
+
f,
|
146 |
+
sheet_name="Sheet1",
|
147 |
+
engine="openpyxl",
|
148 |
+
engine_kwargs={"data_only": data_only},
|
149 |
+
).iloc[0, 1]
|
150 |
+
== expected
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
@pytest.mark.parametrize("kwarg_name", ["read_only", "data_only"])
|
155 |
+
@pytest.mark.parametrize("kwarg_value", [True, False])
|
156 |
+
def test_engine_kwargs_append_reader(datapath, ext, kwarg_name, kwarg_value):
|
157 |
+
# GH 55027
|
158 |
+
# test that `read_only` and `data_only` can be passed to
|
159 |
+
# `openpyxl.reader.excel.load_workbook` via `engine_kwargs`
|
160 |
+
filename = datapath("io", "data", "excel", "test1" + ext)
|
161 |
+
with contextlib.closing(
|
162 |
+
OpenpyxlReader(filename, engine_kwargs={kwarg_name: kwarg_value})
|
163 |
+
) as reader:
|
164 |
+
assert getattr(reader.book, kwarg_name) == kwarg_value
|
165 |
+
|
166 |
+
|
167 |
+
@pytest.mark.parametrize(
|
168 |
+
"mode,expected", [("w", ["baz"]), ("a", ["foo", "bar", "baz"])]
|
169 |
+
)
|
170 |
+
def test_write_append_mode(ext, mode, expected):
|
171 |
+
df = DataFrame([1], columns=["baz"])
|
172 |
+
|
173 |
+
with tm.ensure_clean(ext) as f:
|
174 |
+
wb = openpyxl.Workbook()
|
175 |
+
wb.worksheets[0].title = "foo"
|
176 |
+
wb.worksheets[0]["A1"].value = "foo"
|
177 |
+
wb.create_sheet("bar")
|
178 |
+
wb.worksheets[1]["A1"].value = "bar"
|
179 |
+
wb.save(f)
|
180 |
+
|
181 |
+
with ExcelWriter(f, engine="openpyxl", mode=mode) as writer:
|
182 |
+
df.to_excel(writer, sheet_name="baz", index=False)
|
183 |
+
|
184 |
+
with contextlib.closing(openpyxl.load_workbook(f)) as wb2:
|
185 |
+
result = [sheet.title for sheet in wb2.worksheets]
|
186 |
+
assert result == expected
|
187 |
+
|
188 |
+
for index, cell_value in enumerate(expected):
|
189 |
+
assert wb2.worksheets[index]["A1"].value == cell_value
|
190 |
+
|
191 |
+
|
192 |
+
@pytest.mark.parametrize(
|
193 |
+
"if_sheet_exists,num_sheets,expected",
|
194 |
+
[
|
195 |
+
("new", 2, ["apple", "banana"]),
|
196 |
+
("replace", 1, ["pear"]),
|
197 |
+
("overlay", 1, ["pear", "banana"]),
|
198 |
+
],
|
199 |
+
)
|
200 |
+
def test_if_sheet_exists_append_modes(ext, if_sheet_exists, num_sheets, expected):
|
201 |
+
# GH 40230
|
202 |
+
df1 = DataFrame({"fruit": ["apple", "banana"]})
|
203 |
+
df2 = DataFrame({"fruit": ["pear"]})
|
204 |
+
|
205 |
+
with tm.ensure_clean(ext) as f:
|
206 |
+
df1.to_excel(f, engine="openpyxl", sheet_name="foo", index=False)
|
207 |
+
with ExcelWriter(
|
208 |
+
f, engine="openpyxl", mode="a", if_sheet_exists=if_sheet_exists
|
209 |
+
) as writer:
|
210 |
+
df2.to_excel(writer, sheet_name="foo", index=False)
|
211 |
+
|
212 |
+
with contextlib.closing(openpyxl.load_workbook(f)) as wb:
|
213 |
+
assert len(wb.sheetnames) == num_sheets
|
214 |
+
assert wb.sheetnames[0] == "foo"
|
215 |
+
result = pd.read_excel(wb, "foo", engine="openpyxl")
|
216 |
+
assert list(result["fruit"]) == expected
|
217 |
+
if len(wb.sheetnames) == 2:
|
218 |
+
result = pd.read_excel(wb, wb.sheetnames[1], engine="openpyxl")
|
219 |
+
tm.assert_frame_equal(result, df2)
|
220 |
+
|
221 |
+
|
222 |
+
@pytest.mark.parametrize(
|
223 |
+
"startrow, startcol, greeting, goodbye",
|
224 |
+
[
|
225 |
+
(0, 0, ["poop", "world"], ["goodbye", "people"]),
|
226 |
+
(0, 1, ["hello", "world"], ["poop", "people"]),
|
227 |
+
(1, 0, ["hello", "poop"], ["goodbye", "people"]),
|
228 |
+
(1, 1, ["hello", "world"], ["goodbye", "poop"]),
|
229 |
+
],
|
230 |
+
)
|
231 |
+
def test_append_overlay_startrow_startcol(ext, startrow, startcol, greeting, goodbye):
|
232 |
+
df1 = DataFrame({"greeting": ["hello", "world"], "goodbye": ["goodbye", "people"]})
|
233 |
+
df2 = DataFrame(["poop"])
|
234 |
+
|
235 |
+
with tm.ensure_clean(ext) as f:
|
236 |
+
df1.to_excel(f, engine="openpyxl", sheet_name="poo", index=False)
|
237 |
+
with ExcelWriter(
|
238 |
+
f, engine="openpyxl", mode="a", if_sheet_exists="overlay"
|
239 |
+
) as writer:
|
240 |
+
# use startrow+1 because we don't have a header
|
241 |
+
df2.to_excel(
|
242 |
+
writer,
|
243 |
+
index=False,
|
244 |
+
header=False,
|
245 |
+
startrow=startrow + 1,
|
246 |
+
startcol=startcol,
|
247 |
+
sheet_name="poo",
|
248 |
+
)
|
249 |
+
|
250 |
+
result = pd.read_excel(f, sheet_name="poo", engine="openpyxl")
|
251 |
+
expected = DataFrame({"greeting": greeting, "goodbye": goodbye})
|
252 |
+
tm.assert_frame_equal(result, expected)
|
253 |
+
|
254 |
+
|
255 |
+
@pytest.mark.parametrize(
|
256 |
+
"if_sheet_exists,msg",
|
257 |
+
[
|
258 |
+
(
|
259 |
+
"invalid",
|
260 |
+
"'invalid' is not valid for if_sheet_exists. Valid options "
|
261 |
+
"are 'error', 'new', 'replace' and 'overlay'.",
|
262 |
+
),
|
263 |
+
(
|
264 |
+
"error",
|
265 |
+
"Sheet 'foo' already exists and if_sheet_exists is set to 'error'.",
|
266 |
+
),
|
267 |
+
(
|
268 |
+
None,
|
269 |
+
"Sheet 'foo' already exists and if_sheet_exists is set to 'error'.",
|
270 |
+
),
|
271 |
+
],
|
272 |
+
)
|
273 |
+
def test_if_sheet_exists_raises(ext, if_sheet_exists, msg):
|
274 |
+
# GH 40230
|
275 |
+
df = DataFrame({"fruit": ["pear"]})
|
276 |
+
with tm.ensure_clean(ext) as f:
|
277 |
+
with pytest.raises(ValueError, match=re.escape(msg)):
|
278 |
+
df.to_excel(f, sheet_name="foo", engine="openpyxl")
|
279 |
+
with ExcelWriter(
|
280 |
+
f, engine="openpyxl", mode="a", if_sheet_exists=if_sheet_exists
|
281 |
+
) as writer:
|
282 |
+
df.to_excel(writer, sheet_name="foo")
|
283 |
+
|
284 |
+
|
285 |
+
def test_to_excel_with_openpyxl_engine(ext):
|
286 |
+
# GH 29854
|
287 |
+
with tm.ensure_clean(ext) as filename:
|
288 |
+
df1 = DataFrame({"A": np.linspace(1, 10, 10)})
|
289 |
+
df2 = DataFrame({"B": np.linspace(1, 20, 10)})
|
290 |
+
df = pd.concat([df1, df2], axis=1)
|
291 |
+
styled = df.style.map(
|
292 |
+
lambda val: f"color: {'red' if val < 0 else 'black'}"
|
293 |
+
).highlight_max()
|
294 |
+
|
295 |
+
styled.to_excel(filename, engine="openpyxl")
|
296 |
+
|
297 |
+
|
298 |
+
@pytest.mark.parametrize("read_only", [True, False])
|
299 |
+
def test_read_workbook(datapath, ext, read_only):
|
300 |
+
# GH 39528
|
301 |
+
filename = datapath("io", "data", "excel", "test1" + ext)
|
302 |
+
with contextlib.closing(
|
303 |
+
openpyxl.load_workbook(filename, read_only=read_only)
|
304 |
+
) as wb:
|
305 |
+
result = pd.read_excel(wb, engine="openpyxl")
|
306 |
+
expected = pd.read_excel(filename)
|
307 |
+
tm.assert_frame_equal(result, expected)
|
308 |
+
|
309 |
+
|
310 |
+
@pytest.mark.parametrize(
|
311 |
+
"header, expected_data",
|
312 |
+
[
|
313 |
+
(
|
314 |
+
0,
|
315 |
+
{
|
316 |
+
"Title": [np.nan, "A", 1, 2, 3],
|
317 |
+
"Unnamed: 1": [np.nan, "B", 4, 5, 6],
|
318 |
+
"Unnamed: 2": [np.nan, "C", 7, 8, 9],
|
319 |
+
},
|
320 |
+
),
|
321 |
+
(2, {"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}),
|
322 |
+
],
|
323 |
+
)
|
324 |
+
@pytest.mark.parametrize(
|
325 |
+
"filename", ["dimension_missing", "dimension_small", "dimension_large"]
|
326 |
+
)
|
327 |
+
# When read_only is None, use read_excel instead of a workbook
|
328 |
+
@pytest.mark.parametrize("read_only", [True, False, None])
|
329 |
+
def test_read_with_bad_dimension(
|
330 |
+
datapath, ext, header, expected_data, filename, read_only
|
331 |
+
):
|
332 |
+
# GH 38956, 39001 - no/incorrect dimension information
|
333 |
+
path = datapath("io", "data", "excel", f"{filename}{ext}")
|
334 |
+
if read_only is None:
|
335 |
+
result = pd.read_excel(path, header=header)
|
336 |
+
else:
|
337 |
+
with contextlib.closing(
|
338 |
+
openpyxl.load_workbook(path, read_only=read_only)
|
339 |
+
) as wb:
|
340 |
+
result = pd.read_excel(wb, engine="openpyxl", header=header)
|
341 |
+
expected = DataFrame(expected_data)
|
342 |
+
tm.assert_frame_equal(result, expected)
|
343 |
+
|
344 |
+
|
345 |
+
def test_append_mode_file(ext):
|
346 |
+
# GH 39576
|
347 |
+
df = DataFrame()
|
348 |
+
|
349 |
+
with tm.ensure_clean(ext) as f:
|
350 |
+
df.to_excel(f, engine="openpyxl")
|
351 |
+
|
352 |
+
with ExcelWriter(
|
353 |
+
f, mode="a", engine="openpyxl", if_sheet_exists="new"
|
354 |
+
) as writer:
|
355 |
+
df.to_excel(writer)
|
356 |
+
|
357 |
+
# make sure that zip files are not concatenated by making sure that
|
358 |
+
# "docProps/app.xml" only occurs twice in the file
|
359 |
+
data = Path(f).read_bytes()
|
360 |
+
first = data.find(b"docProps/app.xml")
|
361 |
+
second = data.find(b"docProps/app.xml", first + 1)
|
362 |
+
third = data.find(b"docProps/app.xml", second + 1)
|
363 |
+
assert second != -1 and third == -1
|
364 |
+
|
365 |
+
|
366 |
+
# When read_only is None, use read_excel instead of a workbook
|
367 |
+
@pytest.mark.parametrize("read_only", [True, False, None])
|
368 |
+
def test_read_with_empty_trailing_rows(datapath, ext, read_only):
|
369 |
+
# GH 39181
|
370 |
+
path = datapath("io", "data", "excel", f"empty_trailing_rows{ext}")
|
371 |
+
if read_only is None:
|
372 |
+
result = pd.read_excel(path)
|
373 |
+
else:
|
374 |
+
with contextlib.closing(
|
375 |
+
openpyxl.load_workbook(path, read_only=read_only)
|
376 |
+
) as wb:
|
377 |
+
result = pd.read_excel(wb, engine="openpyxl")
|
378 |
+
expected = DataFrame(
|
379 |
+
{
|
380 |
+
"Title": [np.nan, "A", 1, 2, 3],
|
381 |
+
"Unnamed: 1": [np.nan, "B", 4, 5, 6],
|
382 |
+
"Unnamed: 2": [np.nan, "C", 7, 8, 9],
|
383 |
+
}
|
384 |
+
)
|
385 |
+
tm.assert_frame_equal(result, expected)
|
386 |
+
|
387 |
+
|
388 |
+
# When read_only is None, use read_excel instead of a workbook
|
389 |
+
@pytest.mark.parametrize("read_only", [True, False, None])
|
390 |
+
def test_read_empty_with_blank_row(datapath, ext, read_only):
|
391 |
+
# GH 39547 - empty excel file with a row that has no data
|
392 |
+
path = datapath("io", "data", "excel", f"empty_with_blank_row{ext}")
|
393 |
+
if read_only is None:
|
394 |
+
result = pd.read_excel(path)
|
395 |
+
else:
|
396 |
+
with contextlib.closing(
|
397 |
+
openpyxl.load_workbook(path, read_only=read_only)
|
398 |
+
) as wb:
|
399 |
+
result = pd.read_excel(wb, engine="openpyxl")
|
400 |
+
expected = DataFrame()
|
401 |
+
tm.assert_frame_equal(result, expected)
|
402 |
+
|
403 |
+
|
404 |
+
def test_book_and_sheets_consistent(ext):
|
405 |
+
# GH#45687 - Ensure sheets is updated if user modifies book
|
406 |
+
with tm.ensure_clean(ext) as f:
|
407 |
+
with ExcelWriter(f, engine="openpyxl") as writer:
|
408 |
+
assert writer.sheets == {}
|
409 |
+
sheet = writer.book.create_sheet("test_name", 0)
|
410 |
+
assert writer.sheets == {"test_name": sheet}
|
411 |
+
|
412 |
+
|
413 |
+
def test_ints_spelled_with_decimals(datapath, ext):
|
414 |
+
# GH 46988 - openpyxl returns this sheet with floats
|
415 |
+
path = datapath("io", "data", "excel", f"ints_spelled_with_decimals{ext}")
|
416 |
+
result = pd.read_excel(path)
|
417 |
+
expected = DataFrame(range(2, 12), columns=[1])
|
418 |
+
tm.assert_frame_equal(result, expected)
|
419 |
+
|
420 |
+
|
421 |
+
def test_read_multiindex_header_no_index_names(datapath, ext):
|
422 |
+
# GH#47487
|
423 |
+
path = datapath("io", "data", "excel", f"multiindex_no_index_names{ext}")
|
424 |
+
result = pd.read_excel(path, index_col=[0, 1, 2], header=[0, 1, 2])
|
425 |
+
expected = DataFrame(
|
426 |
+
[[np.nan, "x", "x", "x"], ["x", np.nan, np.nan, np.nan]],
|
427 |
+
columns=pd.MultiIndex.from_tuples(
|
428 |
+
[("X", "Y", "A1"), ("X", "Y", "A2"), ("XX", "YY", "B1"), ("XX", "YY", "B2")]
|
429 |
+
),
|
430 |
+
index=pd.MultiIndex.from_tuples([("A", "AA", "AAA"), ("A", "BB", "BBB")]),
|
431 |
+
)
|
432 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_readers.py
ADDED
@@ -0,0 +1,1751 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from datetime import (
|
4 |
+
datetime,
|
5 |
+
time,
|
6 |
+
)
|
7 |
+
from functools import partial
|
8 |
+
from io import BytesIO
|
9 |
+
import os
|
10 |
+
from pathlib import Path
|
11 |
+
import platform
|
12 |
+
import re
|
13 |
+
from urllib.error import URLError
|
14 |
+
from zipfile import BadZipFile
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import pytest
|
18 |
+
|
19 |
+
from pandas._config import using_pyarrow_string_dtype
|
20 |
+
|
21 |
+
from pandas.compat import is_platform_windows
|
22 |
+
import pandas.util._test_decorators as td
|
23 |
+
|
24 |
+
import pandas as pd
|
25 |
+
from pandas import (
|
26 |
+
DataFrame,
|
27 |
+
Index,
|
28 |
+
MultiIndex,
|
29 |
+
Series,
|
30 |
+
read_csv,
|
31 |
+
)
|
32 |
+
import pandas._testing as tm
|
33 |
+
from pandas.core.arrays import (
|
34 |
+
ArrowStringArray,
|
35 |
+
StringArray,
|
36 |
+
)
|
37 |
+
|
38 |
+
if is_platform_windows():
|
39 |
+
pytestmark = pytest.mark.single_cpu
|
40 |
+
|
41 |
+
read_ext_params = [".xls", ".xlsx", ".xlsm", ".xlsb", ".ods"]
|
42 |
+
engine_params = [
|
43 |
+
# Add any engines to test here
|
44 |
+
# When defusedxml is installed it triggers deprecation warnings for
|
45 |
+
# xlrd and openpyxl, so catch those here
|
46 |
+
pytest.param(
|
47 |
+
"xlrd",
|
48 |
+
marks=[
|
49 |
+
td.skip_if_no("xlrd"),
|
50 |
+
],
|
51 |
+
),
|
52 |
+
pytest.param(
|
53 |
+
"openpyxl",
|
54 |
+
marks=[
|
55 |
+
td.skip_if_no("openpyxl"),
|
56 |
+
],
|
57 |
+
),
|
58 |
+
pytest.param(
|
59 |
+
None,
|
60 |
+
marks=[
|
61 |
+
td.skip_if_no("xlrd"),
|
62 |
+
],
|
63 |
+
),
|
64 |
+
pytest.param("pyxlsb", marks=td.skip_if_no("pyxlsb")),
|
65 |
+
pytest.param("odf", marks=td.skip_if_no("odf")),
|
66 |
+
pytest.param("calamine", marks=td.skip_if_no("python_calamine")),
|
67 |
+
]
|
68 |
+
|
69 |
+
|
70 |
+
def _is_valid_engine_ext_pair(engine, read_ext: str) -> bool:
|
71 |
+
"""
|
72 |
+
Filter out invalid (engine, ext) pairs instead of skipping, as that
|
73 |
+
produces 500+ pytest.skips.
|
74 |
+
"""
|
75 |
+
engine = engine.values[0]
|
76 |
+
if engine == "openpyxl" and read_ext == ".xls":
|
77 |
+
return False
|
78 |
+
if engine == "odf" and read_ext != ".ods":
|
79 |
+
return False
|
80 |
+
if read_ext == ".ods" and engine not in {"odf", "calamine"}:
|
81 |
+
return False
|
82 |
+
if engine == "pyxlsb" and read_ext != ".xlsb":
|
83 |
+
return False
|
84 |
+
if read_ext == ".xlsb" and engine not in {"pyxlsb", "calamine"}:
|
85 |
+
return False
|
86 |
+
if engine == "xlrd" and read_ext != ".xls":
|
87 |
+
return False
|
88 |
+
return True
|
89 |
+
|
90 |
+
|
91 |
+
def _transfer_marks(engine, read_ext):
|
92 |
+
"""
|
93 |
+
engine gives us a pytest.param object with some marks, read_ext is just
|
94 |
+
a string. We need to generate a new pytest.param inheriting the marks.
|
95 |
+
"""
|
96 |
+
values = engine.values + (read_ext,)
|
97 |
+
new_param = pytest.param(values, marks=engine.marks)
|
98 |
+
return new_param
|
99 |
+
|
100 |
+
|
101 |
+
@pytest.fixture(
|
102 |
+
params=[
|
103 |
+
_transfer_marks(eng, ext)
|
104 |
+
for eng in engine_params
|
105 |
+
for ext in read_ext_params
|
106 |
+
if _is_valid_engine_ext_pair(eng, ext)
|
107 |
+
],
|
108 |
+
ids=str,
|
109 |
+
)
|
110 |
+
def engine_and_read_ext(request):
|
111 |
+
"""
|
112 |
+
Fixture for Excel reader engine and read_ext, only including valid pairs.
|
113 |
+
"""
|
114 |
+
return request.param
|
115 |
+
|
116 |
+
|
117 |
+
@pytest.fixture
|
118 |
+
def engine(engine_and_read_ext):
|
119 |
+
engine, read_ext = engine_and_read_ext
|
120 |
+
return engine
|
121 |
+
|
122 |
+
|
123 |
+
@pytest.fixture
|
124 |
+
def read_ext(engine_and_read_ext):
|
125 |
+
engine, read_ext = engine_and_read_ext
|
126 |
+
return read_ext
|
127 |
+
|
128 |
+
|
129 |
+
@pytest.fixture
|
130 |
+
def df_ref(datapath):
|
131 |
+
"""
|
132 |
+
Obtain the reference data from read_csv with the Python engine.
|
133 |
+
"""
|
134 |
+
filepath = datapath("io", "data", "csv", "test1.csv")
|
135 |
+
df_ref = read_csv(filepath, index_col=0, parse_dates=True, engine="python")
|
136 |
+
return df_ref
|
137 |
+
|
138 |
+
|
139 |
+
def get_exp_unit(read_ext: str, engine: str | None) -> str:
|
140 |
+
return "ns"
|
141 |
+
|
142 |
+
|
143 |
+
def adjust_expected(expected: DataFrame, read_ext: str, engine: str) -> None:
|
144 |
+
expected.index.name = None
|
145 |
+
unit = get_exp_unit(read_ext, engine)
|
146 |
+
# error: "Index" has no attribute "as_unit"
|
147 |
+
expected.index = expected.index.as_unit(unit) # type: ignore[attr-defined]
|
148 |
+
|
149 |
+
|
150 |
+
def xfail_datetimes_with_pyxlsb(engine, request):
|
151 |
+
if engine == "pyxlsb":
|
152 |
+
request.applymarker(
|
153 |
+
pytest.mark.xfail(
|
154 |
+
reason="Sheets containing datetimes not supported by pyxlsb"
|
155 |
+
)
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
class TestReaders:
|
160 |
+
@pytest.fixture(autouse=True)
|
161 |
+
def cd_and_set_engine(self, engine, datapath, monkeypatch):
|
162 |
+
"""
|
163 |
+
Change directory and set engine for read_excel calls.
|
164 |
+
"""
|
165 |
+
func = partial(pd.read_excel, engine=engine)
|
166 |
+
monkeypatch.chdir(datapath("io", "data", "excel"))
|
167 |
+
monkeypatch.setattr(pd, "read_excel", func)
|
168 |
+
|
169 |
+
def test_engine_used(self, read_ext, engine, monkeypatch):
|
170 |
+
# GH 38884
|
171 |
+
def parser(self, *args, **kwargs):
|
172 |
+
return self.engine
|
173 |
+
|
174 |
+
monkeypatch.setattr(pd.ExcelFile, "parse", parser)
|
175 |
+
|
176 |
+
expected_defaults = {
|
177 |
+
"xlsx": "openpyxl",
|
178 |
+
"xlsm": "openpyxl",
|
179 |
+
"xlsb": "pyxlsb",
|
180 |
+
"xls": "xlrd",
|
181 |
+
"ods": "odf",
|
182 |
+
}
|
183 |
+
|
184 |
+
with open("test1" + read_ext, "rb") as f:
|
185 |
+
result = pd.read_excel(f)
|
186 |
+
|
187 |
+
if engine is not None:
|
188 |
+
expected = engine
|
189 |
+
else:
|
190 |
+
expected = expected_defaults[read_ext[1:]]
|
191 |
+
assert result == expected
|
192 |
+
|
193 |
+
def test_engine_kwargs(self, read_ext, engine):
|
194 |
+
# GH#52214
|
195 |
+
expected_defaults = {
|
196 |
+
"xlsx": {"foo": "abcd"},
|
197 |
+
"xlsm": {"foo": 123},
|
198 |
+
"xlsb": {"foo": "True"},
|
199 |
+
"xls": {"foo": True},
|
200 |
+
"ods": {"foo": "abcd"},
|
201 |
+
}
|
202 |
+
|
203 |
+
if engine in {"xlrd", "pyxlsb"}:
|
204 |
+
msg = re.escape(r"open_workbook() got an unexpected keyword argument 'foo'")
|
205 |
+
elif engine == "odf":
|
206 |
+
msg = re.escape(r"load() got an unexpected keyword argument 'foo'")
|
207 |
+
else:
|
208 |
+
msg = re.escape(r"load_workbook() got an unexpected keyword argument 'foo'")
|
209 |
+
|
210 |
+
if engine is not None:
|
211 |
+
with pytest.raises(TypeError, match=msg):
|
212 |
+
pd.read_excel(
|
213 |
+
"test1" + read_ext,
|
214 |
+
sheet_name="Sheet1",
|
215 |
+
index_col=0,
|
216 |
+
engine_kwargs=expected_defaults[read_ext[1:]],
|
217 |
+
)
|
218 |
+
|
219 |
+
def test_usecols_int(self, read_ext):
|
220 |
+
# usecols as int
|
221 |
+
msg = "Passing an integer for `usecols`"
|
222 |
+
with pytest.raises(ValueError, match=msg):
|
223 |
+
pd.read_excel(
|
224 |
+
"test1" + read_ext, sheet_name="Sheet1", index_col=0, usecols=3
|
225 |
+
)
|
226 |
+
|
227 |
+
# usecols as int
|
228 |
+
with pytest.raises(ValueError, match=msg):
|
229 |
+
pd.read_excel(
|
230 |
+
"test1" + read_ext,
|
231 |
+
sheet_name="Sheet2",
|
232 |
+
skiprows=[1],
|
233 |
+
index_col=0,
|
234 |
+
usecols=3,
|
235 |
+
)
|
236 |
+
|
237 |
+
def test_usecols_list(self, request, engine, read_ext, df_ref):
|
238 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
239 |
+
|
240 |
+
expected = df_ref[["B", "C"]]
|
241 |
+
adjust_expected(expected, read_ext, engine)
|
242 |
+
|
243 |
+
df1 = pd.read_excel(
|
244 |
+
"test1" + read_ext, sheet_name="Sheet1", index_col=0, usecols=[0, 2, 3]
|
245 |
+
)
|
246 |
+
df2 = pd.read_excel(
|
247 |
+
"test1" + read_ext,
|
248 |
+
sheet_name="Sheet2",
|
249 |
+
skiprows=[1],
|
250 |
+
index_col=0,
|
251 |
+
usecols=[0, 2, 3],
|
252 |
+
)
|
253 |
+
|
254 |
+
# TODO add index to xls file)
|
255 |
+
tm.assert_frame_equal(df1, expected)
|
256 |
+
tm.assert_frame_equal(df2, expected)
|
257 |
+
|
258 |
+
def test_usecols_str(self, request, engine, read_ext, df_ref):
|
259 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
260 |
+
|
261 |
+
expected = df_ref[["A", "B", "C"]]
|
262 |
+
adjust_expected(expected, read_ext, engine)
|
263 |
+
|
264 |
+
df2 = pd.read_excel(
|
265 |
+
"test1" + read_ext, sheet_name="Sheet1", index_col=0, usecols="A:D"
|
266 |
+
)
|
267 |
+
df3 = pd.read_excel(
|
268 |
+
"test1" + read_ext,
|
269 |
+
sheet_name="Sheet2",
|
270 |
+
skiprows=[1],
|
271 |
+
index_col=0,
|
272 |
+
usecols="A:D",
|
273 |
+
)
|
274 |
+
|
275 |
+
# TODO add index to xls, read xls ignores index name ?
|
276 |
+
tm.assert_frame_equal(df2, expected)
|
277 |
+
tm.assert_frame_equal(df3, expected)
|
278 |
+
|
279 |
+
expected = df_ref[["B", "C"]]
|
280 |
+
adjust_expected(expected, read_ext, engine)
|
281 |
+
|
282 |
+
df2 = pd.read_excel(
|
283 |
+
"test1" + read_ext, sheet_name="Sheet1", index_col=0, usecols="A,C,D"
|
284 |
+
)
|
285 |
+
df3 = pd.read_excel(
|
286 |
+
"test1" + read_ext,
|
287 |
+
sheet_name="Sheet2",
|
288 |
+
skiprows=[1],
|
289 |
+
index_col=0,
|
290 |
+
usecols="A,C,D",
|
291 |
+
)
|
292 |
+
# TODO add index to xls file
|
293 |
+
tm.assert_frame_equal(df2, expected)
|
294 |
+
tm.assert_frame_equal(df3, expected)
|
295 |
+
|
296 |
+
df2 = pd.read_excel(
|
297 |
+
"test1" + read_ext, sheet_name="Sheet1", index_col=0, usecols="A,C:D"
|
298 |
+
)
|
299 |
+
df3 = pd.read_excel(
|
300 |
+
"test1" + read_ext,
|
301 |
+
sheet_name="Sheet2",
|
302 |
+
skiprows=[1],
|
303 |
+
index_col=0,
|
304 |
+
usecols="A,C:D",
|
305 |
+
)
|
306 |
+
tm.assert_frame_equal(df2, expected)
|
307 |
+
tm.assert_frame_equal(df3, expected)
|
308 |
+
|
309 |
+
@pytest.mark.parametrize(
|
310 |
+
"usecols", [[0, 1, 3], [0, 3, 1], [1, 0, 3], [1, 3, 0], [3, 0, 1], [3, 1, 0]]
|
311 |
+
)
|
312 |
+
def test_usecols_diff_positional_int_columns_order(
|
313 |
+
self, request, engine, read_ext, usecols, df_ref
|
314 |
+
):
|
315 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
316 |
+
|
317 |
+
expected = df_ref[["A", "C"]]
|
318 |
+
adjust_expected(expected, read_ext, engine)
|
319 |
+
|
320 |
+
result = pd.read_excel(
|
321 |
+
"test1" + read_ext, sheet_name="Sheet1", index_col=0, usecols=usecols
|
322 |
+
)
|
323 |
+
tm.assert_frame_equal(result, expected)
|
324 |
+
|
325 |
+
@pytest.mark.parametrize("usecols", [["B", "D"], ["D", "B"]])
|
326 |
+
def test_usecols_diff_positional_str_columns_order(self, read_ext, usecols, df_ref):
|
327 |
+
expected = df_ref[["B", "D"]]
|
328 |
+
expected.index = range(len(expected))
|
329 |
+
|
330 |
+
result = pd.read_excel("test1" + read_ext, sheet_name="Sheet1", usecols=usecols)
|
331 |
+
tm.assert_frame_equal(result, expected)
|
332 |
+
|
333 |
+
def test_read_excel_without_slicing(self, request, engine, read_ext, df_ref):
|
334 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
335 |
+
|
336 |
+
expected = df_ref
|
337 |
+
adjust_expected(expected, read_ext, engine)
|
338 |
+
|
339 |
+
result = pd.read_excel("test1" + read_ext, sheet_name="Sheet1", index_col=0)
|
340 |
+
tm.assert_frame_equal(result, expected)
|
341 |
+
|
342 |
+
def test_usecols_excel_range_str(self, request, engine, read_ext, df_ref):
|
343 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
344 |
+
|
345 |
+
expected = df_ref[["C", "D"]]
|
346 |
+
adjust_expected(expected, read_ext, engine)
|
347 |
+
|
348 |
+
result = pd.read_excel(
|
349 |
+
"test1" + read_ext, sheet_name="Sheet1", index_col=0, usecols="A,D:E"
|
350 |
+
)
|
351 |
+
tm.assert_frame_equal(result, expected)
|
352 |
+
|
353 |
+
def test_usecols_excel_range_str_invalid(self, read_ext):
|
354 |
+
msg = "Invalid column name: E1"
|
355 |
+
|
356 |
+
with pytest.raises(ValueError, match=msg):
|
357 |
+
pd.read_excel("test1" + read_ext, sheet_name="Sheet1", usecols="D:E1")
|
358 |
+
|
359 |
+
def test_index_col_label_error(self, read_ext):
|
360 |
+
msg = "list indices must be integers.*, not str"
|
361 |
+
|
362 |
+
with pytest.raises(TypeError, match=msg):
|
363 |
+
pd.read_excel(
|
364 |
+
"test1" + read_ext,
|
365 |
+
sheet_name="Sheet1",
|
366 |
+
index_col=["A"],
|
367 |
+
usecols=["A", "C"],
|
368 |
+
)
|
369 |
+
|
370 |
+
def test_index_col_str(self, read_ext):
|
371 |
+
# see gh-52716
|
372 |
+
result = pd.read_excel("test1" + read_ext, sheet_name="Sheet3", index_col="A")
|
373 |
+
expected = DataFrame(
|
374 |
+
columns=["B", "C", "D", "E", "F"], index=Index([], name="A")
|
375 |
+
)
|
376 |
+
tm.assert_frame_equal(result, expected)
|
377 |
+
|
378 |
+
def test_index_col_empty(self, read_ext):
|
379 |
+
# see gh-9208
|
380 |
+
result = pd.read_excel(
|
381 |
+
"test1" + read_ext, sheet_name="Sheet3", index_col=["A", "B", "C"]
|
382 |
+
)
|
383 |
+
expected = DataFrame(
|
384 |
+
columns=["D", "E", "F"],
|
385 |
+
index=MultiIndex(levels=[[]] * 3, codes=[[]] * 3, names=["A", "B", "C"]),
|
386 |
+
)
|
387 |
+
tm.assert_frame_equal(result, expected)
|
388 |
+
|
389 |
+
@pytest.mark.parametrize("index_col", [None, 2])
|
390 |
+
def test_index_col_with_unnamed(self, read_ext, index_col):
|
391 |
+
# see gh-18792
|
392 |
+
result = pd.read_excel(
|
393 |
+
"test1" + read_ext, sheet_name="Sheet4", index_col=index_col
|
394 |
+
)
|
395 |
+
expected = DataFrame(
|
396 |
+
[["i1", "a", "x"], ["i2", "b", "y"]], columns=["Unnamed: 0", "col1", "col2"]
|
397 |
+
)
|
398 |
+
if index_col:
|
399 |
+
expected = expected.set_index(expected.columns[index_col])
|
400 |
+
|
401 |
+
tm.assert_frame_equal(result, expected)
|
402 |
+
|
403 |
+
def test_usecols_pass_non_existent_column(self, read_ext):
|
404 |
+
msg = (
|
405 |
+
"Usecols do not match columns, "
|
406 |
+
"columns expected but not found: "
|
407 |
+
r"\['E'\]"
|
408 |
+
)
|
409 |
+
|
410 |
+
with pytest.raises(ValueError, match=msg):
|
411 |
+
pd.read_excel("test1" + read_ext, usecols=["E"])
|
412 |
+
|
413 |
+
def test_usecols_wrong_type(self, read_ext):
|
414 |
+
msg = (
|
415 |
+
"'usecols' must either be list-like of "
|
416 |
+
"all strings, all unicode, all integers or a callable."
|
417 |
+
)
|
418 |
+
|
419 |
+
with pytest.raises(ValueError, match=msg):
|
420 |
+
pd.read_excel("test1" + read_ext, usecols=["E1", 0])
|
421 |
+
|
422 |
+
def test_excel_stop_iterator(self, read_ext):
|
423 |
+
parsed = pd.read_excel("test2" + read_ext, sheet_name="Sheet1")
|
424 |
+
expected = DataFrame([["aaaa", "bbbbb"]], columns=["Test", "Test1"])
|
425 |
+
tm.assert_frame_equal(parsed, expected)
|
426 |
+
|
427 |
+
def test_excel_cell_error_na(self, request, engine, read_ext):
|
428 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
429 |
+
|
430 |
+
# https://github.com/tafia/calamine/issues/355
|
431 |
+
if engine == "calamine" and read_ext == ".ods":
|
432 |
+
request.applymarker(
|
433 |
+
pytest.mark.xfail(reason="Calamine can't extract error from ods files")
|
434 |
+
)
|
435 |
+
|
436 |
+
parsed = pd.read_excel("test3" + read_ext, sheet_name="Sheet1")
|
437 |
+
expected = DataFrame([[np.nan]], columns=["Test"])
|
438 |
+
tm.assert_frame_equal(parsed, expected)
|
439 |
+
|
440 |
+
def test_excel_table(self, request, engine, read_ext, df_ref):
|
441 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
442 |
+
|
443 |
+
expected = df_ref
|
444 |
+
adjust_expected(expected, read_ext, engine)
|
445 |
+
|
446 |
+
df1 = pd.read_excel("test1" + read_ext, sheet_name="Sheet1", index_col=0)
|
447 |
+
df2 = pd.read_excel(
|
448 |
+
"test1" + read_ext, sheet_name="Sheet2", skiprows=[1], index_col=0
|
449 |
+
)
|
450 |
+
# TODO add index to file
|
451 |
+
tm.assert_frame_equal(df1, expected)
|
452 |
+
tm.assert_frame_equal(df2, expected)
|
453 |
+
|
454 |
+
df3 = pd.read_excel(
|
455 |
+
"test1" + read_ext, sheet_name="Sheet1", index_col=0, skipfooter=1
|
456 |
+
)
|
457 |
+
tm.assert_frame_equal(df3, df1.iloc[:-1])
|
458 |
+
|
459 |
+
def test_reader_special_dtypes(self, request, engine, read_ext):
|
460 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
461 |
+
|
462 |
+
unit = get_exp_unit(read_ext, engine)
|
463 |
+
expected = DataFrame.from_dict(
|
464 |
+
{
|
465 |
+
"IntCol": [1, 2, -3, 4, 0],
|
466 |
+
"FloatCol": [1.25, 2.25, 1.83, 1.92, 0.0000000005],
|
467 |
+
"BoolCol": [True, False, True, True, False],
|
468 |
+
"StrCol": [1, 2, 3, 4, 5],
|
469 |
+
"Str2Col": ["a", 3, "c", "d", "e"],
|
470 |
+
"DateCol": Index(
|
471 |
+
[
|
472 |
+
datetime(2013, 10, 30),
|
473 |
+
datetime(2013, 10, 31),
|
474 |
+
datetime(1905, 1, 1),
|
475 |
+
datetime(2013, 12, 14),
|
476 |
+
datetime(2015, 3, 14),
|
477 |
+
],
|
478 |
+
dtype=f"M8[{unit}]",
|
479 |
+
),
|
480 |
+
},
|
481 |
+
)
|
482 |
+
basename = "test_types"
|
483 |
+
|
484 |
+
# should read in correctly and infer types
|
485 |
+
actual = pd.read_excel(basename + read_ext, sheet_name="Sheet1")
|
486 |
+
tm.assert_frame_equal(actual, expected)
|
487 |
+
|
488 |
+
# if not coercing number, then int comes in as float
|
489 |
+
float_expected = expected.copy()
|
490 |
+
float_expected.loc[float_expected.index[1], "Str2Col"] = 3.0
|
491 |
+
actual = pd.read_excel(basename + read_ext, sheet_name="Sheet1")
|
492 |
+
tm.assert_frame_equal(actual, float_expected)
|
493 |
+
|
494 |
+
# check setting Index (assuming xls and xlsx are the same here)
|
495 |
+
for icol, name in enumerate(expected.columns):
|
496 |
+
actual = pd.read_excel(
|
497 |
+
basename + read_ext, sheet_name="Sheet1", index_col=icol
|
498 |
+
)
|
499 |
+
exp = expected.set_index(name)
|
500 |
+
tm.assert_frame_equal(actual, exp)
|
501 |
+
|
502 |
+
expected["StrCol"] = expected["StrCol"].apply(str)
|
503 |
+
actual = pd.read_excel(
|
504 |
+
basename + read_ext, sheet_name="Sheet1", converters={"StrCol": str}
|
505 |
+
)
|
506 |
+
tm.assert_frame_equal(actual, expected)
|
507 |
+
|
508 |
+
# GH8212 - support for converters and missing values
|
509 |
+
def test_reader_converters(self, read_ext):
|
510 |
+
basename = "test_converters"
|
511 |
+
|
512 |
+
expected = DataFrame.from_dict(
|
513 |
+
{
|
514 |
+
"IntCol": [1, 2, -3, -1000, 0],
|
515 |
+
"FloatCol": [12.5, np.nan, 18.3, 19.2, 0.000000005],
|
516 |
+
"BoolCol": ["Found", "Found", "Found", "Not found", "Found"],
|
517 |
+
"StrCol": ["1", np.nan, "3", "4", "5"],
|
518 |
+
}
|
519 |
+
)
|
520 |
+
|
521 |
+
converters = {
|
522 |
+
"IntCol": lambda x: int(x) if x != "" else -1000,
|
523 |
+
"FloatCol": lambda x: 10 * x if x else np.nan,
|
524 |
+
2: lambda x: "Found" if x != "" else "Not found",
|
525 |
+
3: lambda x: str(x) if x else "",
|
526 |
+
}
|
527 |
+
|
528 |
+
# should read in correctly and set types of single cells (not array
|
529 |
+
# dtypes)
|
530 |
+
actual = pd.read_excel(
|
531 |
+
basename + read_ext, sheet_name="Sheet1", converters=converters
|
532 |
+
)
|
533 |
+
tm.assert_frame_equal(actual, expected)
|
534 |
+
|
535 |
+
def test_reader_dtype(self, read_ext):
|
536 |
+
# GH 8212
|
537 |
+
basename = "testdtype"
|
538 |
+
actual = pd.read_excel(basename + read_ext)
|
539 |
+
|
540 |
+
expected = DataFrame(
|
541 |
+
{
|
542 |
+
"a": [1, 2, 3, 4],
|
543 |
+
"b": [2.5, 3.5, 4.5, 5.5],
|
544 |
+
"c": [1, 2, 3, 4],
|
545 |
+
"d": [1.0, 2.0, np.nan, 4.0],
|
546 |
+
}
|
547 |
+
)
|
548 |
+
|
549 |
+
tm.assert_frame_equal(actual, expected)
|
550 |
+
|
551 |
+
actual = pd.read_excel(
|
552 |
+
basename + read_ext, dtype={"a": "float64", "b": "float32", "c": str}
|
553 |
+
)
|
554 |
+
|
555 |
+
expected["a"] = expected["a"].astype("float64")
|
556 |
+
expected["b"] = expected["b"].astype("float32")
|
557 |
+
expected["c"] = Series(["001", "002", "003", "004"], dtype=object)
|
558 |
+
tm.assert_frame_equal(actual, expected)
|
559 |
+
|
560 |
+
msg = "Unable to convert column d to type int64"
|
561 |
+
with pytest.raises(ValueError, match=msg):
|
562 |
+
pd.read_excel(basename + read_ext, dtype={"d": "int64"})
|
563 |
+
|
564 |
+
@pytest.mark.parametrize(
|
565 |
+
"dtype,expected",
|
566 |
+
[
|
567 |
+
(
|
568 |
+
None,
|
569 |
+
DataFrame(
|
570 |
+
{
|
571 |
+
"a": [1, 2, 3, 4],
|
572 |
+
"b": [2.5, 3.5, 4.5, 5.5],
|
573 |
+
"c": [1, 2, 3, 4],
|
574 |
+
"d": [1.0, 2.0, np.nan, 4.0],
|
575 |
+
}
|
576 |
+
),
|
577 |
+
),
|
578 |
+
(
|
579 |
+
{"a": "float64", "b": "float32", "c": str, "d": str},
|
580 |
+
DataFrame(
|
581 |
+
{
|
582 |
+
"a": Series([1, 2, 3, 4], dtype="float64"),
|
583 |
+
"b": Series([2.5, 3.5, 4.5, 5.5], dtype="float32"),
|
584 |
+
"c": Series(["001", "002", "003", "004"], dtype=object),
|
585 |
+
"d": Series(["1", "2", np.nan, "4"], dtype=object),
|
586 |
+
}
|
587 |
+
),
|
588 |
+
),
|
589 |
+
],
|
590 |
+
)
|
591 |
+
def test_reader_dtype_str(self, read_ext, dtype, expected):
|
592 |
+
# see gh-20377
|
593 |
+
basename = "testdtype"
|
594 |
+
|
595 |
+
actual = pd.read_excel(basename + read_ext, dtype=dtype)
|
596 |
+
tm.assert_frame_equal(actual, expected)
|
597 |
+
|
598 |
+
def test_dtype_backend(self, read_ext, dtype_backend, engine):
|
599 |
+
# GH#36712
|
600 |
+
if read_ext in (".xlsb", ".xls"):
|
601 |
+
pytest.skip(f"No engine for filetype: '{read_ext}'")
|
602 |
+
|
603 |
+
df = DataFrame(
|
604 |
+
{
|
605 |
+
"a": Series([1, 3], dtype="Int64"),
|
606 |
+
"b": Series([2.5, 4.5], dtype="Float64"),
|
607 |
+
"c": Series([True, False], dtype="boolean"),
|
608 |
+
"d": Series(["a", "b"], dtype="string"),
|
609 |
+
"e": Series([pd.NA, 6], dtype="Int64"),
|
610 |
+
"f": Series([pd.NA, 7.5], dtype="Float64"),
|
611 |
+
"g": Series([pd.NA, True], dtype="boolean"),
|
612 |
+
"h": Series([pd.NA, "a"], dtype="string"),
|
613 |
+
"i": Series([pd.Timestamp("2019-12-31")] * 2),
|
614 |
+
"j": Series([pd.NA, pd.NA], dtype="Int64"),
|
615 |
+
}
|
616 |
+
)
|
617 |
+
with tm.ensure_clean(read_ext) as file_path:
|
618 |
+
df.to_excel(file_path, sheet_name="test", index=False)
|
619 |
+
result = pd.read_excel(
|
620 |
+
file_path, sheet_name="test", dtype_backend=dtype_backend
|
621 |
+
)
|
622 |
+
if dtype_backend == "pyarrow":
|
623 |
+
import pyarrow as pa
|
624 |
+
|
625 |
+
from pandas.arrays import ArrowExtensionArray
|
626 |
+
|
627 |
+
expected = DataFrame(
|
628 |
+
{
|
629 |
+
col: ArrowExtensionArray(pa.array(df[col], from_pandas=True))
|
630 |
+
for col in df.columns
|
631 |
+
}
|
632 |
+
)
|
633 |
+
# pyarrow by default infers timestamp resolution as us, not ns
|
634 |
+
expected["i"] = ArrowExtensionArray(
|
635 |
+
expected["i"].array._pa_array.cast(pa.timestamp(unit="us"))
|
636 |
+
)
|
637 |
+
# pyarrow supports a null type, so don't have to default to Int64
|
638 |
+
expected["j"] = ArrowExtensionArray(pa.array([None, None]))
|
639 |
+
else:
|
640 |
+
expected = df
|
641 |
+
unit = get_exp_unit(read_ext, engine)
|
642 |
+
expected["i"] = expected["i"].astype(f"M8[{unit}]")
|
643 |
+
|
644 |
+
tm.assert_frame_equal(result, expected)
|
645 |
+
|
646 |
+
def test_dtype_backend_and_dtype(self, read_ext):
|
647 |
+
# GH#36712
|
648 |
+
if read_ext in (".xlsb", ".xls"):
|
649 |
+
pytest.skip(f"No engine for filetype: '{read_ext}'")
|
650 |
+
|
651 |
+
df = DataFrame({"a": [np.nan, 1.0], "b": [2.5, np.nan]})
|
652 |
+
with tm.ensure_clean(read_ext) as file_path:
|
653 |
+
df.to_excel(file_path, sheet_name="test", index=False)
|
654 |
+
result = pd.read_excel(
|
655 |
+
file_path,
|
656 |
+
sheet_name="test",
|
657 |
+
dtype_backend="numpy_nullable",
|
658 |
+
dtype="float64",
|
659 |
+
)
|
660 |
+
tm.assert_frame_equal(result, df)
|
661 |
+
|
662 |
+
@pytest.mark.xfail(
|
663 |
+
using_pyarrow_string_dtype(), reason="infer_string takes precedence"
|
664 |
+
)
|
665 |
+
def test_dtype_backend_string(self, read_ext, string_storage):
|
666 |
+
# GH#36712
|
667 |
+
if read_ext in (".xlsb", ".xls"):
|
668 |
+
pytest.skip(f"No engine for filetype: '{read_ext}'")
|
669 |
+
|
670 |
+
pa = pytest.importorskip("pyarrow")
|
671 |
+
|
672 |
+
with pd.option_context("mode.string_storage", string_storage):
|
673 |
+
df = DataFrame(
|
674 |
+
{
|
675 |
+
"a": np.array(["a", "b"], dtype=np.object_),
|
676 |
+
"b": np.array(["x", pd.NA], dtype=np.object_),
|
677 |
+
}
|
678 |
+
)
|
679 |
+
with tm.ensure_clean(read_ext) as file_path:
|
680 |
+
df.to_excel(file_path, sheet_name="test", index=False)
|
681 |
+
result = pd.read_excel(
|
682 |
+
file_path, sheet_name="test", dtype_backend="numpy_nullable"
|
683 |
+
)
|
684 |
+
|
685 |
+
if string_storage == "python":
|
686 |
+
expected = DataFrame(
|
687 |
+
{
|
688 |
+
"a": StringArray(np.array(["a", "b"], dtype=np.object_)),
|
689 |
+
"b": StringArray(np.array(["x", pd.NA], dtype=np.object_)),
|
690 |
+
}
|
691 |
+
)
|
692 |
+
else:
|
693 |
+
expected = DataFrame(
|
694 |
+
{
|
695 |
+
"a": ArrowStringArray(pa.array(["a", "b"])),
|
696 |
+
"b": ArrowStringArray(pa.array(["x", None])),
|
697 |
+
}
|
698 |
+
)
|
699 |
+
tm.assert_frame_equal(result, expected)
|
700 |
+
|
701 |
+
@pytest.mark.parametrize("dtypes, exp_value", [({}, 1), ({"a.1": "int64"}, 1)])
|
702 |
+
def test_dtype_mangle_dup_cols(self, read_ext, dtypes, exp_value):
|
703 |
+
# GH#35211
|
704 |
+
basename = "df_mangle_dup_col_dtypes"
|
705 |
+
dtype_dict = {"a": object, **dtypes}
|
706 |
+
dtype_dict_copy = dtype_dict.copy()
|
707 |
+
# GH#42462
|
708 |
+
result = pd.read_excel(basename + read_ext, dtype=dtype_dict)
|
709 |
+
expected = DataFrame(
|
710 |
+
{
|
711 |
+
"a": Series([1], dtype=object),
|
712 |
+
"a.1": Series([exp_value], dtype=object if not dtypes else None),
|
713 |
+
}
|
714 |
+
)
|
715 |
+
assert dtype_dict == dtype_dict_copy, "dtype dict changed"
|
716 |
+
tm.assert_frame_equal(result, expected)
|
717 |
+
|
718 |
+
def test_reader_spaces(self, read_ext):
|
719 |
+
# see gh-32207
|
720 |
+
basename = "test_spaces"
|
721 |
+
|
722 |
+
actual = pd.read_excel(basename + read_ext)
|
723 |
+
expected = DataFrame(
|
724 |
+
{
|
725 |
+
"testcol": [
|
726 |
+
"this is great",
|
727 |
+
"4 spaces",
|
728 |
+
"1 trailing ",
|
729 |
+
" 1 leading",
|
730 |
+
"2 spaces multiple times",
|
731 |
+
]
|
732 |
+
}
|
733 |
+
)
|
734 |
+
tm.assert_frame_equal(actual, expected)
|
735 |
+
|
736 |
+
# gh-36122, gh-35802
|
737 |
+
@pytest.mark.parametrize(
|
738 |
+
"basename,expected",
|
739 |
+
[
|
740 |
+
("gh-35802", DataFrame({"COLUMN": ["Test (1)"]})),
|
741 |
+
("gh-36122", DataFrame(columns=["got 2nd sa"])),
|
742 |
+
],
|
743 |
+
)
|
744 |
+
def test_read_excel_ods_nested_xml(self, engine, read_ext, basename, expected):
|
745 |
+
# see gh-35802
|
746 |
+
if engine != "odf":
|
747 |
+
pytest.skip(f"Skipped for engine: {engine}")
|
748 |
+
|
749 |
+
actual = pd.read_excel(basename + read_ext)
|
750 |
+
tm.assert_frame_equal(actual, expected)
|
751 |
+
|
752 |
+
def test_reading_all_sheets(self, read_ext):
|
753 |
+
# Test reading all sheet names by setting sheet_name to None,
|
754 |
+
# Ensure a dict is returned.
|
755 |
+
# See PR #9450
|
756 |
+
basename = "test_multisheet"
|
757 |
+
dfs = pd.read_excel(basename + read_ext, sheet_name=None)
|
758 |
+
# ensure this is not alphabetical to test order preservation
|
759 |
+
expected_keys = ["Charlie", "Alpha", "Beta"]
|
760 |
+
tm.assert_contains_all(expected_keys, dfs.keys())
|
761 |
+
# Issue 9930
|
762 |
+
# Ensure sheet order is preserved
|
763 |
+
assert expected_keys == list(dfs.keys())
|
764 |
+
|
765 |
+
def test_reading_multiple_specific_sheets(self, read_ext):
|
766 |
+
# Test reading specific sheet names by specifying a mixed list
|
767 |
+
# of integers and strings, and confirm that duplicated sheet
|
768 |
+
# references (positions/names) are removed properly.
|
769 |
+
# Ensure a dict is returned
|
770 |
+
# See PR #9450
|
771 |
+
basename = "test_multisheet"
|
772 |
+
# Explicitly request duplicates. Only the set should be returned.
|
773 |
+
expected_keys = [2, "Charlie", "Charlie"]
|
774 |
+
dfs = pd.read_excel(basename + read_ext, sheet_name=expected_keys)
|
775 |
+
expected_keys = list(set(expected_keys))
|
776 |
+
tm.assert_contains_all(expected_keys, dfs.keys())
|
777 |
+
assert len(expected_keys) == len(dfs.keys())
|
778 |
+
|
779 |
+
def test_reading_all_sheets_with_blank(self, read_ext):
|
780 |
+
# Test reading all sheet names by setting sheet_name to None,
|
781 |
+
# In the case where some sheets are blank.
|
782 |
+
# Issue #11711
|
783 |
+
basename = "blank_with_header"
|
784 |
+
dfs = pd.read_excel(basename + read_ext, sheet_name=None)
|
785 |
+
expected_keys = ["Sheet1", "Sheet2", "Sheet3"]
|
786 |
+
tm.assert_contains_all(expected_keys, dfs.keys())
|
787 |
+
|
788 |
+
# GH6403
|
789 |
+
def test_read_excel_blank(self, read_ext):
|
790 |
+
actual = pd.read_excel("blank" + read_ext, sheet_name="Sheet1")
|
791 |
+
tm.assert_frame_equal(actual, DataFrame())
|
792 |
+
|
793 |
+
def test_read_excel_blank_with_header(self, read_ext):
|
794 |
+
expected = DataFrame(columns=["col_1", "col_2"])
|
795 |
+
actual = pd.read_excel("blank_with_header" + read_ext, sheet_name="Sheet1")
|
796 |
+
tm.assert_frame_equal(actual, expected)
|
797 |
+
|
798 |
+
def test_exception_message_includes_sheet_name(self, read_ext):
|
799 |
+
# GH 48706
|
800 |
+
with pytest.raises(ValueError, match=r" \(sheet: Sheet1\)$"):
|
801 |
+
pd.read_excel("blank_with_header" + read_ext, header=[1], sheet_name=None)
|
802 |
+
with pytest.raises(ZeroDivisionError, match=r" \(sheet: Sheet1\)$"):
|
803 |
+
pd.read_excel("test1" + read_ext, usecols=lambda x: 1 / 0, sheet_name=None)
|
804 |
+
|
805 |
+
@pytest.mark.filterwarnings("ignore:Cell A4 is marked:UserWarning:openpyxl")
|
806 |
+
def test_date_conversion_overflow(self, request, engine, read_ext):
|
807 |
+
# GH 10001 : pandas.ExcelFile ignore parse_dates=False
|
808 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
809 |
+
|
810 |
+
expected = DataFrame(
|
811 |
+
[
|
812 |
+
[pd.Timestamp("2016-03-12"), "Marc Johnson"],
|
813 |
+
[pd.Timestamp("2016-03-16"), "Jack Black"],
|
814 |
+
[1e20, "Timothy Brown"],
|
815 |
+
],
|
816 |
+
columns=["DateColWithBigInt", "StringCol"],
|
817 |
+
)
|
818 |
+
|
819 |
+
if engine == "openpyxl":
|
820 |
+
request.applymarker(
|
821 |
+
pytest.mark.xfail(reason="Maybe not supported by openpyxl")
|
822 |
+
)
|
823 |
+
|
824 |
+
if engine is None and read_ext in (".xlsx", ".xlsm"):
|
825 |
+
# GH 35029
|
826 |
+
request.applymarker(
|
827 |
+
pytest.mark.xfail(reason="Defaults to openpyxl, maybe not supported")
|
828 |
+
)
|
829 |
+
|
830 |
+
result = pd.read_excel("testdateoverflow" + read_ext)
|
831 |
+
tm.assert_frame_equal(result, expected)
|
832 |
+
|
833 |
+
def test_sheet_name(self, request, read_ext, engine, df_ref):
|
834 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
835 |
+
|
836 |
+
filename = "test1"
|
837 |
+
sheet_name = "Sheet1"
|
838 |
+
|
839 |
+
expected = df_ref
|
840 |
+
adjust_expected(expected, read_ext, engine)
|
841 |
+
|
842 |
+
df1 = pd.read_excel(
|
843 |
+
filename + read_ext, sheet_name=sheet_name, index_col=0
|
844 |
+
) # doc
|
845 |
+
df2 = pd.read_excel(filename + read_ext, index_col=0, sheet_name=sheet_name)
|
846 |
+
|
847 |
+
tm.assert_frame_equal(df1, expected)
|
848 |
+
tm.assert_frame_equal(df2, expected)
|
849 |
+
|
850 |
+
def test_excel_read_buffer(self, read_ext):
|
851 |
+
pth = "test1" + read_ext
|
852 |
+
expected = pd.read_excel(pth, sheet_name="Sheet1", index_col=0)
|
853 |
+
with open(pth, "rb") as f:
|
854 |
+
actual = pd.read_excel(f, sheet_name="Sheet1", index_col=0)
|
855 |
+
tm.assert_frame_equal(expected, actual)
|
856 |
+
|
857 |
+
def test_bad_engine_raises(self):
|
858 |
+
bad_engine = "foo"
|
859 |
+
with pytest.raises(ValueError, match="Unknown engine: foo"):
|
860 |
+
pd.read_excel("", engine=bad_engine)
|
861 |
+
|
862 |
+
@pytest.mark.parametrize(
|
863 |
+
"sheet_name",
|
864 |
+
[3, [0, 3], [3, 0], "Sheet4", ["Sheet1", "Sheet4"], ["Sheet4", "Sheet1"]],
|
865 |
+
)
|
866 |
+
def test_bad_sheetname_raises(self, read_ext, sheet_name):
|
867 |
+
# GH 39250
|
868 |
+
msg = "Worksheet index 3 is invalid|Worksheet named 'Sheet4' not found"
|
869 |
+
with pytest.raises(ValueError, match=msg):
|
870 |
+
pd.read_excel("blank" + read_ext, sheet_name=sheet_name)
|
871 |
+
|
872 |
+
def test_missing_file_raises(self, read_ext):
|
873 |
+
bad_file = f"foo{read_ext}"
|
874 |
+
# CI tests with other languages, translates to "No such file or directory"
|
875 |
+
match = "|".join(
|
876 |
+
[
|
877 |
+
"(No such file or directory",
|
878 |
+
"没有那个文件或目录",
|
879 |
+
"File o directory non esistente)",
|
880 |
+
]
|
881 |
+
)
|
882 |
+
with pytest.raises(FileNotFoundError, match=match):
|
883 |
+
pd.read_excel(bad_file)
|
884 |
+
|
885 |
+
def test_corrupt_bytes_raises(self, engine):
|
886 |
+
bad_stream = b"foo"
|
887 |
+
if engine is None:
|
888 |
+
error = ValueError
|
889 |
+
msg = (
|
890 |
+
"Excel file format cannot be determined, you must "
|
891 |
+
"specify an engine manually."
|
892 |
+
)
|
893 |
+
elif engine == "xlrd":
|
894 |
+
from xlrd import XLRDError
|
895 |
+
|
896 |
+
error = XLRDError
|
897 |
+
msg = (
|
898 |
+
"Unsupported format, or corrupt file: Expected BOF "
|
899 |
+
"record; found b'foo'"
|
900 |
+
)
|
901 |
+
elif engine == "calamine":
|
902 |
+
from python_calamine import CalamineError
|
903 |
+
|
904 |
+
error = CalamineError
|
905 |
+
msg = "Cannot detect file format"
|
906 |
+
else:
|
907 |
+
error = BadZipFile
|
908 |
+
msg = "File is not a zip file"
|
909 |
+
with pytest.raises(error, match=msg):
|
910 |
+
pd.read_excel(BytesIO(bad_stream))
|
911 |
+
|
912 |
+
@pytest.mark.network
|
913 |
+
@pytest.mark.single_cpu
|
914 |
+
def test_read_from_http_url(self, httpserver, read_ext):
|
915 |
+
with open("test1" + read_ext, "rb") as f:
|
916 |
+
httpserver.serve_content(content=f.read())
|
917 |
+
url_table = pd.read_excel(httpserver.url)
|
918 |
+
local_table = pd.read_excel("test1" + read_ext)
|
919 |
+
tm.assert_frame_equal(url_table, local_table)
|
920 |
+
|
921 |
+
@td.skip_if_not_us_locale
|
922 |
+
@pytest.mark.single_cpu
|
923 |
+
def test_read_from_s3_url(self, read_ext, s3_public_bucket, s3so):
|
924 |
+
# Bucket created in tests/io/conftest.py
|
925 |
+
with open("test1" + read_ext, "rb") as f:
|
926 |
+
s3_public_bucket.put_object(Key="test1" + read_ext, Body=f)
|
927 |
+
|
928 |
+
url = f"s3://{s3_public_bucket.name}/test1" + read_ext
|
929 |
+
|
930 |
+
url_table = pd.read_excel(url, storage_options=s3so)
|
931 |
+
local_table = pd.read_excel("test1" + read_ext)
|
932 |
+
tm.assert_frame_equal(url_table, local_table)
|
933 |
+
|
934 |
+
@pytest.mark.single_cpu
|
935 |
+
def test_read_from_s3_object(self, read_ext, s3_public_bucket, s3so):
|
936 |
+
# GH 38788
|
937 |
+
# Bucket created in tests/io/conftest.py
|
938 |
+
with open("test1" + read_ext, "rb") as f:
|
939 |
+
s3_public_bucket.put_object(Key="test1" + read_ext, Body=f)
|
940 |
+
|
941 |
+
import s3fs
|
942 |
+
|
943 |
+
s3 = s3fs.S3FileSystem(**s3so)
|
944 |
+
|
945 |
+
with s3.open(f"s3://{s3_public_bucket.name}/test1" + read_ext) as f:
|
946 |
+
url_table = pd.read_excel(f)
|
947 |
+
|
948 |
+
local_table = pd.read_excel("test1" + read_ext)
|
949 |
+
tm.assert_frame_equal(url_table, local_table)
|
950 |
+
|
951 |
+
@pytest.mark.slow
|
952 |
+
def test_read_from_file_url(self, read_ext, datapath):
|
953 |
+
# FILE
|
954 |
+
localtable = os.path.join(datapath("io", "data", "excel"), "test1" + read_ext)
|
955 |
+
local_table = pd.read_excel(localtable)
|
956 |
+
|
957 |
+
try:
|
958 |
+
url_table = pd.read_excel("file://localhost/" + localtable)
|
959 |
+
except URLError:
|
960 |
+
# fails on some systems
|
961 |
+
platform_info = " ".join(platform.uname()).strip()
|
962 |
+
pytest.skip(f"failing on {platform_info}")
|
963 |
+
|
964 |
+
tm.assert_frame_equal(url_table, local_table)
|
965 |
+
|
966 |
+
def test_read_from_pathlib_path(self, read_ext):
|
967 |
+
# GH12655
|
968 |
+
str_path = "test1" + read_ext
|
969 |
+
expected = pd.read_excel(str_path, sheet_name="Sheet1", index_col=0)
|
970 |
+
|
971 |
+
path_obj = Path("test1" + read_ext)
|
972 |
+
actual = pd.read_excel(path_obj, sheet_name="Sheet1", index_col=0)
|
973 |
+
|
974 |
+
tm.assert_frame_equal(expected, actual)
|
975 |
+
|
976 |
+
@td.skip_if_no("py.path")
|
977 |
+
def test_read_from_py_localpath(self, read_ext):
|
978 |
+
# GH12655
|
979 |
+
from py.path import local as LocalPath
|
980 |
+
|
981 |
+
str_path = os.path.join("test1" + read_ext)
|
982 |
+
expected = pd.read_excel(str_path, sheet_name="Sheet1", index_col=0)
|
983 |
+
|
984 |
+
path_obj = LocalPath().join("test1" + read_ext)
|
985 |
+
actual = pd.read_excel(path_obj, sheet_name="Sheet1", index_col=0)
|
986 |
+
|
987 |
+
tm.assert_frame_equal(expected, actual)
|
988 |
+
|
989 |
+
def test_close_from_py_localpath(self, read_ext):
|
990 |
+
# GH31467
|
991 |
+
str_path = os.path.join("test1" + read_ext)
|
992 |
+
with open(str_path, "rb") as f:
|
993 |
+
x = pd.read_excel(f, sheet_name="Sheet1", index_col=0)
|
994 |
+
del x
|
995 |
+
# should not throw an exception because the passed file was closed
|
996 |
+
f.read()
|
997 |
+
|
998 |
+
def test_reader_seconds(self, request, engine, read_ext):
|
999 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
1000 |
+
|
1001 |
+
# GH 55045
|
1002 |
+
if engine == "calamine" and read_ext == ".ods":
|
1003 |
+
request.applymarker(
|
1004 |
+
pytest.mark.xfail(
|
1005 |
+
reason="ODS file contains bad datetime (seconds as text)"
|
1006 |
+
)
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
# Test reading times with and without milliseconds. GH5945.
|
1010 |
+
expected = DataFrame.from_dict(
|
1011 |
+
{
|
1012 |
+
"Time": [
|
1013 |
+
time(1, 2, 3),
|
1014 |
+
time(2, 45, 56, 100000),
|
1015 |
+
time(4, 29, 49, 200000),
|
1016 |
+
time(6, 13, 42, 300000),
|
1017 |
+
time(7, 57, 35, 400000),
|
1018 |
+
time(9, 41, 28, 500000),
|
1019 |
+
time(11, 25, 21, 600000),
|
1020 |
+
time(13, 9, 14, 700000),
|
1021 |
+
time(14, 53, 7, 800000),
|
1022 |
+
time(16, 37, 0, 900000),
|
1023 |
+
time(18, 20, 54),
|
1024 |
+
]
|
1025 |
+
}
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
actual = pd.read_excel("times_1900" + read_ext, sheet_name="Sheet1")
|
1029 |
+
tm.assert_frame_equal(actual, expected)
|
1030 |
+
|
1031 |
+
actual = pd.read_excel("times_1904" + read_ext, sheet_name="Sheet1")
|
1032 |
+
tm.assert_frame_equal(actual, expected)
|
1033 |
+
|
1034 |
+
def test_read_excel_multiindex(self, request, engine, read_ext):
|
1035 |
+
# see gh-4679
|
1036 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
1037 |
+
|
1038 |
+
unit = get_exp_unit(read_ext, engine)
|
1039 |
+
|
1040 |
+
mi = MultiIndex.from_product([["foo", "bar"], ["a", "b"]])
|
1041 |
+
mi_file = "testmultiindex" + read_ext
|
1042 |
+
|
1043 |
+
# "mi_column" sheet
|
1044 |
+
expected = DataFrame(
|
1045 |
+
[
|
1046 |
+
[1, 2.5, pd.Timestamp("2015-01-01"), True],
|
1047 |
+
[2, 3.5, pd.Timestamp("2015-01-02"), False],
|
1048 |
+
[3, 4.5, pd.Timestamp("2015-01-03"), False],
|
1049 |
+
[4, 5.5, pd.Timestamp("2015-01-04"), True],
|
1050 |
+
],
|
1051 |
+
columns=mi,
|
1052 |
+
)
|
1053 |
+
expected[mi[2]] = expected[mi[2]].astype(f"M8[{unit}]")
|
1054 |
+
|
1055 |
+
actual = pd.read_excel(
|
1056 |
+
mi_file, sheet_name="mi_column", header=[0, 1], index_col=0
|
1057 |
+
)
|
1058 |
+
tm.assert_frame_equal(actual, expected)
|
1059 |
+
|
1060 |
+
# "mi_index" sheet
|
1061 |
+
expected.index = mi
|
1062 |
+
expected.columns = ["a", "b", "c", "d"]
|
1063 |
+
|
1064 |
+
actual = pd.read_excel(mi_file, sheet_name="mi_index", index_col=[0, 1])
|
1065 |
+
tm.assert_frame_equal(actual, expected)
|
1066 |
+
|
1067 |
+
# "both" sheet
|
1068 |
+
expected.columns = mi
|
1069 |
+
|
1070 |
+
actual = pd.read_excel(
|
1071 |
+
mi_file, sheet_name="both", index_col=[0, 1], header=[0, 1]
|
1072 |
+
)
|
1073 |
+
tm.assert_frame_equal(actual, expected)
|
1074 |
+
|
1075 |
+
# "mi_index_name" sheet
|
1076 |
+
expected.columns = ["a", "b", "c", "d"]
|
1077 |
+
expected.index = mi.set_names(["ilvl1", "ilvl2"])
|
1078 |
+
|
1079 |
+
actual = pd.read_excel(mi_file, sheet_name="mi_index_name", index_col=[0, 1])
|
1080 |
+
tm.assert_frame_equal(actual, expected)
|
1081 |
+
|
1082 |
+
# "mi_column_name" sheet
|
1083 |
+
expected.index = list(range(4))
|
1084 |
+
expected.columns = mi.set_names(["c1", "c2"])
|
1085 |
+
actual = pd.read_excel(
|
1086 |
+
mi_file, sheet_name="mi_column_name", header=[0, 1], index_col=0
|
1087 |
+
)
|
1088 |
+
tm.assert_frame_equal(actual, expected)
|
1089 |
+
|
1090 |
+
# see gh-11317
|
1091 |
+
# "name_with_int" sheet
|
1092 |
+
expected.columns = mi.set_levels([1, 2], level=1).set_names(["c1", "c2"])
|
1093 |
+
|
1094 |
+
actual = pd.read_excel(
|
1095 |
+
mi_file, sheet_name="name_with_int", index_col=0, header=[0, 1]
|
1096 |
+
)
|
1097 |
+
tm.assert_frame_equal(actual, expected)
|
1098 |
+
|
1099 |
+
# "both_name" sheet
|
1100 |
+
expected.columns = mi.set_names(["c1", "c2"])
|
1101 |
+
expected.index = mi.set_names(["ilvl1", "ilvl2"])
|
1102 |
+
|
1103 |
+
actual = pd.read_excel(
|
1104 |
+
mi_file, sheet_name="both_name", index_col=[0, 1], header=[0, 1]
|
1105 |
+
)
|
1106 |
+
tm.assert_frame_equal(actual, expected)
|
1107 |
+
|
1108 |
+
# "both_skiprows" sheet
|
1109 |
+
actual = pd.read_excel(
|
1110 |
+
mi_file,
|
1111 |
+
sheet_name="both_name_skiprows",
|
1112 |
+
index_col=[0, 1],
|
1113 |
+
header=[0, 1],
|
1114 |
+
skiprows=2,
|
1115 |
+
)
|
1116 |
+
tm.assert_frame_equal(actual, expected)
|
1117 |
+
|
1118 |
+
@pytest.mark.parametrize(
|
1119 |
+
"sheet_name,idx_lvl2",
|
1120 |
+
[
|
1121 |
+
("both_name_blank_after_mi_name", [np.nan, "b", "a", "b"]),
|
1122 |
+
("both_name_multiple_blanks", [np.nan] * 4),
|
1123 |
+
],
|
1124 |
+
)
|
1125 |
+
def test_read_excel_multiindex_blank_after_name(
|
1126 |
+
self, request, engine, read_ext, sheet_name, idx_lvl2
|
1127 |
+
):
|
1128 |
+
# GH34673
|
1129 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
1130 |
+
|
1131 |
+
mi_file = "testmultiindex" + read_ext
|
1132 |
+
mi = MultiIndex.from_product([["foo", "bar"], ["a", "b"]], names=["c1", "c2"])
|
1133 |
+
|
1134 |
+
unit = get_exp_unit(read_ext, engine)
|
1135 |
+
|
1136 |
+
expected = DataFrame(
|
1137 |
+
[
|
1138 |
+
[1, 2.5, pd.Timestamp("2015-01-01"), True],
|
1139 |
+
[2, 3.5, pd.Timestamp("2015-01-02"), False],
|
1140 |
+
[3, 4.5, pd.Timestamp("2015-01-03"), False],
|
1141 |
+
[4, 5.5, pd.Timestamp("2015-01-04"), True],
|
1142 |
+
],
|
1143 |
+
columns=mi,
|
1144 |
+
index=MultiIndex.from_arrays(
|
1145 |
+
(["foo", "foo", "bar", "bar"], idx_lvl2),
|
1146 |
+
names=["ilvl1", "ilvl2"],
|
1147 |
+
),
|
1148 |
+
)
|
1149 |
+
expected[mi[2]] = expected[mi[2]].astype(f"M8[{unit}]")
|
1150 |
+
result = pd.read_excel(
|
1151 |
+
mi_file,
|
1152 |
+
sheet_name=sheet_name,
|
1153 |
+
index_col=[0, 1],
|
1154 |
+
header=[0, 1],
|
1155 |
+
)
|
1156 |
+
tm.assert_frame_equal(result, expected)
|
1157 |
+
|
1158 |
+
def test_read_excel_multiindex_header_only(self, read_ext):
|
1159 |
+
# see gh-11733.
|
1160 |
+
#
|
1161 |
+
# Don't try to parse a header name if there isn't one.
|
1162 |
+
mi_file = "testmultiindex" + read_ext
|
1163 |
+
result = pd.read_excel(mi_file, sheet_name="index_col_none", header=[0, 1])
|
1164 |
+
|
1165 |
+
exp_columns = MultiIndex.from_product([("A", "B"), ("key", "val")])
|
1166 |
+
expected = DataFrame([[1, 2, 3, 4]] * 2, columns=exp_columns)
|
1167 |
+
tm.assert_frame_equal(result, expected)
|
1168 |
+
|
1169 |
+
def test_excel_old_index_format(self, read_ext):
|
1170 |
+
# see gh-4679
|
1171 |
+
filename = "test_index_name_pre17" + read_ext
|
1172 |
+
|
1173 |
+
# We detect headers to determine if index names exist, so
|
1174 |
+
# that "index" name in the "names" version of the data will
|
1175 |
+
# now be interpreted as rows that include null data.
|
1176 |
+
data = np.array(
|
1177 |
+
[
|
1178 |
+
[np.nan, np.nan, np.nan, np.nan, np.nan],
|
1179 |
+
["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"],
|
1180 |
+
["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"],
|
1181 |
+
["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"],
|
1182 |
+
["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"],
|
1183 |
+
["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"],
|
1184 |
+
],
|
1185 |
+
dtype=object,
|
1186 |
+
)
|
1187 |
+
columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"]
|
1188 |
+
mi = MultiIndex(
|
1189 |
+
levels=[
|
1190 |
+
["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"],
|
1191 |
+
["R1", "R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"],
|
1192 |
+
],
|
1193 |
+
codes=[[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]],
|
1194 |
+
names=[None, None],
|
1195 |
+
)
|
1196 |
+
si = Index(
|
1197 |
+
["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
expected = DataFrame(data, index=si, columns=columns)
|
1201 |
+
|
1202 |
+
actual = pd.read_excel(filename, sheet_name="single_names", index_col=0)
|
1203 |
+
tm.assert_frame_equal(actual, expected)
|
1204 |
+
|
1205 |
+
expected.index = mi
|
1206 |
+
|
1207 |
+
actual = pd.read_excel(filename, sheet_name="multi_names", index_col=[0, 1])
|
1208 |
+
tm.assert_frame_equal(actual, expected)
|
1209 |
+
|
1210 |
+
# The analogous versions of the "names" version data
|
1211 |
+
# where there are explicitly no names for the indices.
|
1212 |
+
data = np.array(
|
1213 |
+
[
|
1214 |
+
["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"],
|
1215 |
+
["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"],
|
1216 |
+
["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"],
|
1217 |
+
["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"],
|
1218 |
+
["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"],
|
1219 |
+
]
|
1220 |
+
)
|
1221 |
+
columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"]
|
1222 |
+
mi = MultiIndex(
|
1223 |
+
levels=[
|
1224 |
+
["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"],
|
1225 |
+
["R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"],
|
1226 |
+
],
|
1227 |
+
codes=[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]],
|
1228 |
+
names=[None, None],
|
1229 |
+
)
|
1230 |
+
si = Index(["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None)
|
1231 |
+
|
1232 |
+
expected = DataFrame(data, index=si, columns=columns)
|
1233 |
+
|
1234 |
+
actual = pd.read_excel(filename, sheet_name="single_no_names", index_col=0)
|
1235 |
+
tm.assert_frame_equal(actual, expected)
|
1236 |
+
|
1237 |
+
expected.index = mi
|
1238 |
+
|
1239 |
+
actual = pd.read_excel(filename, sheet_name="multi_no_names", index_col=[0, 1])
|
1240 |
+
tm.assert_frame_equal(actual, expected)
|
1241 |
+
|
1242 |
+
def test_read_excel_bool_header_arg(self, read_ext):
|
1243 |
+
# GH 6114
|
1244 |
+
msg = "Passing a bool to header is invalid"
|
1245 |
+
for arg in [True, False]:
|
1246 |
+
with pytest.raises(TypeError, match=msg):
|
1247 |
+
pd.read_excel("test1" + read_ext, header=arg)
|
1248 |
+
|
1249 |
+
def test_read_excel_skiprows(self, request, engine, read_ext):
|
1250 |
+
# GH 4903
|
1251 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
1252 |
+
|
1253 |
+
unit = get_exp_unit(read_ext, engine)
|
1254 |
+
|
1255 |
+
actual = pd.read_excel(
|
1256 |
+
"testskiprows" + read_ext, sheet_name="skiprows_list", skiprows=[0, 2]
|
1257 |
+
)
|
1258 |
+
expected = DataFrame(
|
1259 |
+
[
|
1260 |
+
[1, 2.5, pd.Timestamp("2015-01-01"), True],
|
1261 |
+
[2, 3.5, pd.Timestamp("2015-01-02"), False],
|
1262 |
+
[3, 4.5, pd.Timestamp("2015-01-03"), False],
|
1263 |
+
[4, 5.5, pd.Timestamp("2015-01-04"), True],
|
1264 |
+
],
|
1265 |
+
columns=["a", "b", "c", "d"],
|
1266 |
+
)
|
1267 |
+
expected["c"] = expected["c"].astype(f"M8[{unit}]")
|
1268 |
+
tm.assert_frame_equal(actual, expected)
|
1269 |
+
|
1270 |
+
actual = pd.read_excel(
|
1271 |
+
"testskiprows" + read_ext,
|
1272 |
+
sheet_name="skiprows_list",
|
1273 |
+
skiprows=np.array([0, 2]),
|
1274 |
+
)
|
1275 |
+
tm.assert_frame_equal(actual, expected)
|
1276 |
+
|
1277 |
+
# GH36435
|
1278 |
+
actual = pd.read_excel(
|
1279 |
+
"testskiprows" + read_ext,
|
1280 |
+
sheet_name="skiprows_list",
|
1281 |
+
skiprows=lambda x: x in [0, 2],
|
1282 |
+
)
|
1283 |
+
tm.assert_frame_equal(actual, expected)
|
1284 |
+
|
1285 |
+
actual = pd.read_excel(
|
1286 |
+
"testskiprows" + read_ext,
|
1287 |
+
sheet_name="skiprows_list",
|
1288 |
+
skiprows=3,
|
1289 |
+
names=["a", "b", "c", "d"],
|
1290 |
+
)
|
1291 |
+
expected = DataFrame(
|
1292 |
+
[
|
1293 |
+
# [1, 2.5, pd.Timestamp("2015-01-01"), True],
|
1294 |
+
[2, 3.5, pd.Timestamp("2015-01-02"), False],
|
1295 |
+
[3, 4.5, pd.Timestamp("2015-01-03"), False],
|
1296 |
+
[4, 5.5, pd.Timestamp("2015-01-04"), True],
|
1297 |
+
],
|
1298 |
+
columns=["a", "b", "c", "d"],
|
1299 |
+
)
|
1300 |
+
expected["c"] = expected["c"].astype(f"M8[{unit}]")
|
1301 |
+
tm.assert_frame_equal(actual, expected)
|
1302 |
+
|
1303 |
+
def test_read_excel_skiprows_callable_not_in(self, request, engine, read_ext):
|
1304 |
+
# GH 4903
|
1305 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
1306 |
+
unit = get_exp_unit(read_ext, engine)
|
1307 |
+
|
1308 |
+
actual = pd.read_excel(
|
1309 |
+
"testskiprows" + read_ext,
|
1310 |
+
sheet_name="skiprows_list",
|
1311 |
+
skiprows=lambda x: x not in [1, 3, 5],
|
1312 |
+
)
|
1313 |
+
expected = DataFrame(
|
1314 |
+
[
|
1315 |
+
[1, 2.5, pd.Timestamp("2015-01-01"), True],
|
1316 |
+
# [2, 3.5, pd.Timestamp("2015-01-02"), False],
|
1317 |
+
[3, 4.5, pd.Timestamp("2015-01-03"), False],
|
1318 |
+
# [4, 5.5, pd.Timestamp("2015-01-04"), True],
|
1319 |
+
],
|
1320 |
+
columns=["a", "b", "c", "d"],
|
1321 |
+
)
|
1322 |
+
expected["c"] = expected["c"].astype(f"M8[{unit}]")
|
1323 |
+
tm.assert_frame_equal(actual, expected)
|
1324 |
+
|
1325 |
+
def test_read_excel_nrows(self, read_ext):
|
1326 |
+
# GH 16645
|
1327 |
+
num_rows_to_pull = 5
|
1328 |
+
actual = pd.read_excel("test1" + read_ext, nrows=num_rows_to_pull)
|
1329 |
+
expected = pd.read_excel("test1" + read_ext)
|
1330 |
+
expected = expected[:num_rows_to_pull]
|
1331 |
+
tm.assert_frame_equal(actual, expected)
|
1332 |
+
|
1333 |
+
def test_read_excel_nrows_greater_than_nrows_in_file(self, read_ext):
|
1334 |
+
# GH 16645
|
1335 |
+
expected = pd.read_excel("test1" + read_ext)
|
1336 |
+
num_records_in_file = len(expected)
|
1337 |
+
num_rows_to_pull = num_records_in_file + 10
|
1338 |
+
actual = pd.read_excel("test1" + read_ext, nrows=num_rows_to_pull)
|
1339 |
+
tm.assert_frame_equal(actual, expected)
|
1340 |
+
|
1341 |
+
def test_read_excel_nrows_non_integer_parameter(self, read_ext):
|
1342 |
+
# GH 16645
|
1343 |
+
msg = "'nrows' must be an integer >=0"
|
1344 |
+
with pytest.raises(ValueError, match=msg):
|
1345 |
+
pd.read_excel("test1" + read_ext, nrows="5")
|
1346 |
+
|
1347 |
+
@pytest.mark.parametrize(
|
1348 |
+
"filename,sheet_name,header,index_col,skiprows",
|
1349 |
+
[
|
1350 |
+
("testmultiindex", "mi_column", [0, 1], 0, None),
|
1351 |
+
("testmultiindex", "mi_index", None, [0, 1], None),
|
1352 |
+
("testmultiindex", "both", [0, 1], [0, 1], None),
|
1353 |
+
("testmultiindex", "mi_column_name", [0, 1], 0, None),
|
1354 |
+
("testskiprows", "skiprows_list", None, None, [0, 2]),
|
1355 |
+
("testskiprows", "skiprows_list", None, None, lambda x: x in (0, 2)),
|
1356 |
+
],
|
1357 |
+
)
|
1358 |
+
def test_read_excel_nrows_params(
|
1359 |
+
self, read_ext, filename, sheet_name, header, index_col, skiprows
|
1360 |
+
):
|
1361 |
+
"""
|
1362 |
+
For various parameters, we should get the same result whether we
|
1363 |
+
limit the rows during load (nrows=3) or after (df.iloc[:3]).
|
1364 |
+
"""
|
1365 |
+
# GH 46894
|
1366 |
+
expected = pd.read_excel(
|
1367 |
+
filename + read_ext,
|
1368 |
+
sheet_name=sheet_name,
|
1369 |
+
header=header,
|
1370 |
+
index_col=index_col,
|
1371 |
+
skiprows=skiprows,
|
1372 |
+
).iloc[:3]
|
1373 |
+
actual = pd.read_excel(
|
1374 |
+
filename + read_ext,
|
1375 |
+
sheet_name=sheet_name,
|
1376 |
+
header=header,
|
1377 |
+
index_col=index_col,
|
1378 |
+
skiprows=skiprows,
|
1379 |
+
nrows=3,
|
1380 |
+
)
|
1381 |
+
tm.assert_frame_equal(actual, expected)
|
1382 |
+
|
1383 |
+
def test_deprecated_kwargs(self, read_ext):
|
1384 |
+
with pytest.raises(TypeError, match="but 3 positional arguments"):
|
1385 |
+
pd.read_excel("test1" + read_ext, "Sheet1", 0)
|
1386 |
+
|
1387 |
+
def test_no_header_with_list_index_col(self, read_ext):
|
1388 |
+
# GH 31783
|
1389 |
+
file_name = "testmultiindex" + read_ext
|
1390 |
+
data = [("B", "B"), ("key", "val"), (3, 4), (3, 4)]
|
1391 |
+
idx = MultiIndex.from_tuples(
|
1392 |
+
[("A", "A"), ("key", "val"), (1, 2), (1, 2)], names=(0, 1)
|
1393 |
+
)
|
1394 |
+
expected = DataFrame(data, index=idx, columns=(2, 3))
|
1395 |
+
result = pd.read_excel(
|
1396 |
+
file_name, sheet_name="index_col_none", index_col=[0, 1], header=None
|
1397 |
+
)
|
1398 |
+
tm.assert_frame_equal(expected, result)
|
1399 |
+
|
1400 |
+
def test_one_col_noskip_blank_line(self, read_ext):
|
1401 |
+
# GH 39808
|
1402 |
+
file_name = "one_col_blank_line" + read_ext
|
1403 |
+
data = [0.5, np.nan, 1, 2]
|
1404 |
+
expected = DataFrame(data, columns=["numbers"])
|
1405 |
+
result = pd.read_excel(file_name)
|
1406 |
+
tm.assert_frame_equal(result, expected)
|
1407 |
+
|
1408 |
+
def test_multiheader_two_blank_lines(self, read_ext):
|
1409 |
+
# GH 40442
|
1410 |
+
file_name = "testmultiindex" + read_ext
|
1411 |
+
columns = MultiIndex.from_tuples([("a", "A"), ("b", "B")])
|
1412 |
+
data = [[np.nan, np.nan], [np.nan, np.nan], [1, 3], [2, 4]]
|
1413 |
+
expected = DataFrame(data, columns=columns)
|
1414 |
+
result = pd.read_excel(
|
1415 |
+
file_name, sheet_name="mi_column_empty_rows", header=[0, 1]
|
1416 |
+
)
|
1417 |
+
tm.assert_frame_equal(result, expected)
|
1418 |
+
|
1419 |
+
def test_trailing_blanks(self, read_ext):
|
1420 |
+
"""
|
1421 |
+
Sheets can contain blank cells with no data. Some of our readers
|
1422 |
+
were including those cells, creating many empty rows and columns
|
1423 |
+
"""
|
1424 |
+
file_name = "trailing_blanks" + read_ext
|
1425 |
+
result = pd.read_excel(file_name)
|
1426 |
+
assert result.shape == (3, 3)
|
1427 |
+
|
1428 |
+
def test_ignore_chartsheets_by_str(self, request, engine, read_ext):
|
1429 |
+
# GH 41448
|
1430 |
+
if read_ext == ".ods":
|
1431 |
+
pytest.skip("chartsheets do not exist in the ODF format")
|
1432 |
+
if engine == "pyxlsb":
|
1433 |
+
request.applymarker(
|
1434 |
+
pytest.mark.xfail(
|
1435 |
+
reason="pyxlsb can't distinguish chartsheets from worksheets"
|
1436 |
+
)
|
1437 |
+
)
|
1438 |
+
with pytest.raises(ValueError, match="Worksheet named 'Chart1' not found"):
|
1439 |
+
pd.read_excel("chartsheet" + read_ext, sheet_name="Chart1")
|
1440 |
+
|
1441 |
+
def test_ignore_chartsheets_by_int(self, request, engine, read_ext):
|
1442 |
+
# GH 41448
|
1443 |
+
if read_ext == ".ods":
|
1444 |
+
pytest.skip("chartsheets do not exist in the ODF format")
|
1445 |
+
if engine == "pyxlsb":
|
1446 |
+
request.applymarker(
|
1447 |
+
pytest.mark.xfail(
|
1448 |
+
reason="pyxlsb can't distinguish chartsheets from worksheets"
|
1449 |
+
)
|
1450 |
+
)
|
1451 |
+
with pytest.raises(
|
1452 |
+
ValueError, match="Worksheet index 1 is invalid, 1 worksheets found"
|
1453 |
+
):
|
1454 |
+
pd.read_excel("chartsheet" + read_ext, sheet_name=1)
|
1455 |
+
|
1456 |
+
def test_euro_decimal_format(self, read_ext):
|
1457 |
+
# copied from read_csv
|
1458 |
+
result = pd.read_excel("test_decimal" + read_ext, decimal=",", skiprows=1)
|
1459 |
+
expected = DataFrame(
|
1460 |
+
[
|
1461 |
+
[1, 1521.1541, 187101.9543, "ABC", "poi", 4.738797819],
|
1462 |
+
[2, 121.12, 14897.76, "DEF", "uyt", 0.377320872],
|
1463 |
+
[3, 878.158, 108013.434, "GHI", "rez", 2.735694704],
|
1464 |
+
],
|
1465 |
+
columns=["Id", "Number1", "Number2", "Text1", "Text2", "Number3"],
|
1466 |
+
)
|
1467 |
+
tm.assert_frame_equal(result, expected)
|
1468 |
+
|
1469 |
+
|
1470 |
+
class TestExcelFileRead:
|
1471 |
+
def test_deprecate_bytes_input(self, engine, read_ext):
|
1472 |
+
# GH 53830
|
1473 |
+
msg = (
|
1474 |
+
"Passing bytes to 'read_excel' is deprecated and "
|
1475 |
+
"will be removed in a future version. To read from a "
|
1476 |
+
"byte string, wrap it in a `BytesIO` object."
|
1477 |
+
)
|
1478 |
+
|
1479 |
+
with tm.assert_produces_warning(
|
1480 |
+
FutureWarning, match=msg, raise_on_extra_warnings=False
|
1481 |
+
):
|
1482 |
+
with open("test1" + read_ext, "rb") as f:
|
1483 |
+
pd.read_excel(f.read(), engine=engine)
|
1484 |
+
|
1485 |
+
@pytest.fixture(autouse=True)
|
1486 |
+
def cd_and_set_engine(self, engine, datapath, monkeypatch):
|
1487 |
+
"""
|
1488 |
+
Change directory and set engine for ExcelFile objects.
|
1489 |
+
"""
|
1490 |
+
func = partial(pd.ExcelFile, engine=engine)
|
1491 |
+
monkeypatch.chdir(datapath("io", "data", "excel"))
|
1492 |
+
monkeypatch.setattr(pd, "ExcelFile", func)
|
1493 |
+
|
1494 |
+
def test_engine_used(self, read_ext, engine):
|
1495 |
+
expected_defaults = {
|
1496 |
+
"xlsx": "openpyxl",
|
1497 |
+
"xlsm": "openpyxl",
|
1498 |
+
"xlsb": "pyxlsb",
|
1499 |
+
"xls": "xlrd",
|
1500 |
+
"ods": "odf",
|
1501 |
+
}
|
1502 |
+
|
1503 |
+
with pd.ExcelFile("test1" + read_ext) as excel:
|
1504 |
+
result = excel.engine
|
1505 |
+
|
1506 |
+
if engine is not None:
|
1507 |
+
expected = engine
|
1508 |
+
else:
|
1509 |
+
expected = expected_defaults[read_ext[1:]]
|
1510 |
+
assert result == expected
|
1511 |
+
|
1512 |
+
def test_excel_passes_na(self, read_ext):
|
1513 |
+
with pd.ExcelFile("test4" + read_ext) as excel:
|
1514 |
+
parsed = pd.read_excel(
|
1515 |
+
excel, sheet_name="Sheet1", keep_default_na=False, na_values=["apple"]
|
1516 |
+
)
|
1517 |
+
expected = DataFrame(
|
1518 |
+
[["NA"], [1], ["NA"], [np.nan], ["rabbit"]], columns=["Test"]
|
1519 |
+
)
|
1520 |
+
tm.assert_frame_equal(parsed, expected)
|
1521 |
+
|
1522 |
+
with pd.ExcelFile("test4" + read_ext) as excel:
|
1523 |
+
parsed = pd.read_excel(
|
1524 |
+
excel, sheet_name="Sheet1", keep_default_na=True, na_values=["apple"]
|
1525 |
+
)
|
1526 |
+
expected = DataFrame(
|
1527 |
+
[[np.nan], [1], [np.nan], [np.nan], ["rabbit"]], columns=["Test"]
|
1528 |
+
)
|
1529 |
+
tm.assert_frame_equal(parsed, expected)
|
1530 |
+
|
1531 |
+
# 13967
|
1532 |
+
with pd.ExcelFile("test5" + read_ext) as excel:
|
1533 |
+
parsed = pd.read_excel(
|
1534 |
+
excel, sheet_name="Sheet1", keep_default_na=False, na_values=["apple"]
|
1535 |
+
)
|
1536 |
+
expected = DataFrame(
|
1537 |
+
[["1.#QNAN"], [1], ["nan"], [np.nan], ["rabbit"]], columns=["Test"]
|
1538 |
+
)
|
1539 |
+
tm.assert_frame_equal(parsed, expected)
|
1540 |
+
|
1541 |
+
with pd.ExcelFile("test5" + read_ext) as excel:
|
1542 |
+
parsed = pd.read_excel(
|
1543 |
+
excel, sheet_name="Sheet1", keep_default_na=True, na_values=["apple"]
|
1544 |
+
)
|
1545 |
+
expected = DataFrame(
|
1546 |
+
[[np.nan], [1], [np.nan], [np.nan], ["rabbit"]], columns=["Test"]
|
1547 |
+
)
|
1548 |
+
tm.assert_frame_equal(parsed, expected)
|
1549 |
+
|
1550 |
+
@pytest.mark.parametrize("na_filter", [None, True, False])
|
1551 |
+
def test_excel_passes_na_filter(self, read_ext, na_filter):
|
1552 |
+
# gh-25453
|
1553 |
+
kwargs = {}
|
1554 |
+
|
1555 |
+
if na_filter is not None:
|
1556 |
+
kwargs["na_filter"] = na_filter
|
1557 |
+
|
1558 |
+
with pd.ExcelFile("test5" + read_ext) as excel:
|
1559 |
+
parsed = pd.read_excel(
|
1560 |
+
excel,
|
1561 |
+
sheet_name="Sheet1",
|
1562 |
+
keep_default_na=True,
|
1563 |
+
na_values=["apple"],
|
1564 |
+
**kwargs,
|
1565 |
+
)
|
1566 |
+
|
1567 |
+
if na_filter is False:
|
1568 |
+
expected = [["1.#QNAN"], [1], ["nan"], ["apple"], ["rabbit"]]
|
1569 |
+
else:
|
1570 |
+
expected = [[np.nan], [1], [np.nan], [np.nan], ["rabbit"]]
|
1571 |
+
|
1572 |
+
expected = DataFrame(expected, columns=["Test"])
|
1573 |
+
tm.assert_frame_equal(parsed, expected)
|
1574 |
+
|
1575 |
+
def test_excel_table_sheet_by_index(self, request, engine, read_ext, df_ref):
|
1576 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
1577 |
+
|
1578 |
+
expected = df_ref
|
1579 |
+
adjust_expected(expected, read_ext, engine)
|
1580 |
+
|
1581 |
+
with pd.ExcelFile("test1" + read_ext) as excel:
|
1582 |
+
df1 = pd.read_excel(excel, sheet_name=0, index_col=0)
|
1583 |
+
df2 = pd.read_excel(excel, sheet_name=1, skiprows=[1], index_col=0)
|
1584 |
+
tm.assert_frame_equal(df1, expected)
|
1585 |
+
tm.assert_frame_equal(df2, expected)
|
1586 |
+
|
1587 |
+
with pd.ExcelFile("test1" + read_ext) as excel:
|
1588 |
+
df1 = excel.parse(0, index_col=0)
|
1589 |
+
df2 = excel.parse(1, skiprows=[1], index_col=0)
|
1590 |
+
tm.assert_frame_equal(df1, expected)
|
1591 |
+
tm.assert_frame_equal(df2, expected)
|
1592 |
+
|
1593 |
+
with pd.ExcelFile("test1" + read_ext) as excel:
|
1594 |
+
df3 = pd.read_excel(excel, sheet_name=0, index_col=0, skipfooter=1)
|
1595 |
+
tm.assert_frame_equal(df3, df1.iloc[:-1])
|
1596 |
+
|
1597 |
+
with pd.ExcelFile("test1" + read_ext) as excel:
|
1598 |
+
df3 = excel.parse(0, index_col=0, skipfooter=1)
|
1599 |
+
|
1600 |
+
tm.assert_frame_equal(df3, df1.iloc[:-1])
|
1601 |
+
|
1602 |
+
def test_sheet_name(self, request, engine, read_ext, df_ref):
|
1603 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
1604 |
+
|
1605 |
+
expected = df_ref
|
1606 |
+
adjust_expected(expected, read_ext, engine)
|
1607 |
+
|
1608 |
+
filename = "test1"
|
1609 |
+
sheet_name = "Sheet1"
|
1610 |
+
|
1611 |
+
with pd.ExcelFile(filename + read_ext) as excel:
|
1612 |
+
df1_parse = excel.parse(sheet_name=sheet_name, index_col=0) # doc
|
1613 |
+
|
1614 |
+
with pd.ExcelFile(filename + read_ext) as excel:
|
1615 |
+
df2_parse = excel.parse(index_col=0, sheet_name=sheet_name)
|
1616 |
+
|
1617 |
+
tm.assert_frame_equal(df1_parse, expected)
|
1618 |
+
tm.assert_frame_equal(df2_parse, expected)
|
1619 |
+
|
1620 |
+
@pytest.mark.parametrize(
|
1621 |
+
"sheet_name",
|
1622 |
+
[3, [0, 3], [3, 0], "Sheet4", ["Sheet1", "Sheet4"], ["Sheet4", "Sheet1"]],
|
1623 |
+
)
|
1624 |
+
def test_bad_sheetname_raises(self, read_ext, sheet_name):
|
1625 |
+
# GH 39250
|
1626 |
+
msg = "Worksheet index 3 is invalid|Worksheet named 'Sheet4' not found"
|
1627 |
+
with pytest.raises(ValueError, match=msg):
|
1628 |
+
with pd.ExcelFile("blank" + read_ext) as excel:
|
1629 |
+
excel.parse(sheet_name=sheet_name)
|
1630 |
+
|
1631 |
+
def test_excel_read_buffer(self, engine, read_ext):
|
1632 |
+
pth = "test1" + read_ext
|
1633 |
+
expected = pd.read_excel(pth, sheet_name="Sheet1", index_col=0, engine=engine)
|
1634 |
+
|
1635 |
+
with open(pth, "rb") as f:
|
1636 |
+
with pd.ExcelFile(f) as xls:
|
1637 |
+
actual = pd.read_excel(xls, sheet_name="Sheet1", index_col=0)
|
1638 |
+
|
1639 |
+
tm.assert_frame_equal(expected, actual)
|
1640 |
+
|
1641 |
+
def test_reader_closes_file(self, engine, read_ext):
|
1642 |
+
with open("test1" + read_ext, "rb") as f:
|
1643 |
+
with pd.ExcelFile(f) as xlsx:
|
1644 |
+
# parses okay
|
1645 |
+
pd.read_excel(xlsx, sheet_name="Sheet1", index_col=0, engine=engine)
|
1646 |
+
|
1647 |
+
assert f.closed
|
1648 |
+
|
1649 |
+
def test_conflicting_excel_engines(self, read_ext):
|
1650 |
+
# GH 26566
|
1651 |
+
msg = "Engine should not be specified when passing an ExcelFile"
|
1652 |
+
|
1653 |
+
with pd.ExcelFile("test1" + read_ext) as xl:
|
1654 |
+
with pytest.raises(ValueError, match=msg):
|
1655 |
+
pd.read_excel(xl, engine="foo")
|
1656 |
+
|
1657 |
+
def test_excel_read_binary(self, engine, read_ext):
|
1658 |
+
# GH 15914
|
1659 |
+
expected = pd.read_excel("test1" + read_ext, engine=engine)
|
1660 |
+
|
1661 |
+
with open("test1" + read_ext, "rb") as f:
|
1662 |
+
data = f.read()
|
1663 |
+
|
1664 |
+
actual = pd.read_excel(BytesIO(data), engine=engine)
|
1665 |
+
tm.assert_frame_equal(expected, actual)
|
1666 |
+
|
1667 |
+
def test_excel_read_binary_via_read_excel(self, read_ext, engine):
|
1668 |
+
# GH 38424
|
1669 |
+
with open("test1" + read_ext, "rb") as f:
|
1670 |
+
result = pd.read_excel(f, engine=engine)
|
1671 |
+
expected = pd.read_excel("test1" + read_ext, engine=engine)
|
1672 |
+
tm.assert_frame_equal(result, expected)
|
1673 |
+
|
1674 |
+
def test_read_excel_header_index_out_of_range(self, engine):
|
1675 |
+
# GH#43143
|
1676 |
+
with open("df_header_oob.xlsx", "rb") as f:
|
1677 |
+
with pytest.raises(ValueError, match="exceeds maximum"):
|
1678 |
+
pd.read_excel(f, header=[0, 1])
|
1679 |
+
|
1680 |
+
@pytest.mark.parametrize("filename", ["df_empty.xlsx", "df_equals.xlsx"])
|
1681 |
+
def test_header_with_index_col(self, filename):
|
1682 |
+
# GH 33476
|
1683 |
+
idx = Index(["Z"], name="I2")
|
1684 |
+
cols = MultiIndex.from_tuples([("A", "B"), ("A", "B.1")], names=["I11", "I12"])
|
1685 |
+
expected = DataFrame([[1, 3]], index=idx, columns=cols, dtype="int64")
|
1686 |
+
result = pd.read_excel(
|
1687 |
+
filename, sheet_name="Sheet1", index_col=0, header=[0, 1]
|
1688 |
+
)
|
1689 |
+
tm.assert_frame_equal(expected, result)
|
1690 |
+
|
1691 |
+
def test_read_datetime_multiindex(self, request, engine, read_ext):
|
1692 |
+
# GH 34748
|
1693 |
+
xfail_datetimes_with_pyxlsb(engine, request)
|
1694 |
+
|
1695 |
+
f = "test_datetime_mi" + read_ext
|
1696 |
+
with pd.ExcelFile(f) as excel:
|
1697 |
+
actual = pd.read_excel(excel, header=[0, 1], index_col=0, engine=engine)
|
1698 |
+
|
1699 |
+
unit = get_exp_unit(read_ext, engine)
|
1700 |
+
dti = pd.DatetimeIndex(["2020-02-29", "2020-03-01"], dtype=f"M8[{unit}]")
|
1701 |
+
expected_column_index = MultiIndex.from_arrays(
|
1702 |
+
[dti[:1], dti[1:]],
|
1703 |
+
names=[
|
1704 |
+
dti[0].to_pydatetime(),
|
1705 |
+
dti[1].to_pydatetime(),
|
1706 |
+
],
|
1707 |
+
)
|
1708 |
+
expected = DataFrame([], index=[], columns=expected_column_index)
|
1709 |
+
|
1710 |
+
tm.assert_frame_equal(expected, actual)
|
1711 |
+
|
1712 |
+
def test_engine_invalid_option(self, read_ext):
|
1713 |
+
# read_ext includes the '.' hence the weird formatting
|
1714 |
+
with pytest.raises(ValueError, match="Value must be one of *"):
|
1715 |
+
with pd.option_context(f"io.excel{read_ext}.reader", "abc"):
|
1716 |
+
pass
|
1717 |
+
|
1718 |
+
def test_ignore_chartsheets(self, request, engine, read_ext):
|
1719 |
+
# GH 41448
|
1720 |
+
if read_ext == ".ods":
|
1721 |
+
pytest.skip("chartsheets do not exist in the ODF format")
|
1722 |
+
if engine == "pyxlsb":
|
1723 |
+
request.applymarker(
|
1724 |
+
pytest.mark.xfail(
|
1725 |
+
reason="pyxlsb can't distinguish chartsheets from worksheets"
|
1726 |
+
)
|
1727 |
+
)
|
1728 |
+
with pd.ExcelFile("chartsheet" + read_ext) as excel:
|
1729 |
+
assert excel.sheet_names == ["Sheet1"]
|
1730 |
+
|
1731 |
+
def test_corrupt_files_closed(self, engine, read_ext):
|
1732 |
+
# GH41778
|
1733 |
+
errors = (BadZipFile,)
|
1734 |
+
if engine is None:
|
1735 |
+
pytest.skip(f"Invalid test for engine={engine}")
|
1736 |
+
elif engine == "xlrd":
|
1737 |
+
import xlrd
|
1738 |
+
|
1739 |
+
errors = (BadZipFile, xlrd.biffh.XLRDError)
|
1740 |
+
elif engine == "calamine":
|
1741 |
+
from python_calamine import CalamineError
|
1742 |
+
|
1743 |
+
errors = (CalamineError,)
|
1744 |
+
|
1745 |
+
with tm.ensure_clean(f"corrupt{read_ext}") as file:
|
1746 |
+
Path(file).write_text("corrupt", encoding="utf-8")
|
1747 |
+
with tm.assert_produces_warning(False):
|
1748 |
+
try:
|
1749 |
+
pd.ExcelFile(file, engine=engine)
|
1750 |
+
except errors:
|
1751 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_style.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import time
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas.compat import is_platform_windows
|
8 |
+
import pandas.util._test_decorators as td
|
9 |
+
|
10 |
+
from pandas import (
|
11 |
+
DataFrame,
|
12 |
+
read_excel,
|
13 |
+
)
|
14 |
+
import pandas._testing as tm
|
15 |
+
|
16 |
+
from pandas.io.excel import ExcelWriter
|
17 |
+
from pandas.io.formats.excel import ExcelFormatter
|
18 |
+
|
19 |
+
pytest.importorskip("jinja2")
|
20 |
+
# jinja2 is currently required for Styler.__init__(). Technically Styler.to_excel
|
21 |
+
# could compute styles and render to excel without jinja2, since there is no
|
22 |
+
# 'template' file, but this needs the import error to delayed until render time.
|
23 |
+
|
24 |
+
if is_platform_windows():
|
25 |
+
pytestmark = pytest.mark.single_cpu
|
26 |
+
|
27 |
+
|
28 |
+
def assert_equal_cell_styles(cell1, cell2):
|
29 |
+
# TODO: should find a better way to check equality
|
30 |
+
assert cell1.alignment.__dict__ == cell2.alignment.__dict__
|
31 |
+
assert cell1.border.__dict__ == cell2.border.__dict__
|
32 |
+
assert cell1.fill.__dict__ == cell2.fill.__dict__
|
33 |
+
assert cell1.font.__dict__ == cell2.font.__dict__
|
34 |
+
assert cell1.number_format == cell2.number_format
|
35 |
+
assert cell1.protection.__dict__ == cell2.protection.__dict__
|
36 |
+
|
37 |
+
|
38 |
+
@pytest.mark.parametrize(
|
39 |
+
"engine",
|
40 |
+
["xlsxwriter", "openpyxl"],
|
41 |
+
)
|
42 |
+
def test_styler_to_excel_unstyled(engine):
|
43 |
+
# compare DataFrame.to_excel and Styler.to_excel when no styles applied
|
44 |
+
pytest.importorskip(engine)
|
45 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((2, 2)))
|
46 |
+
with tm.ensure_clean(".xlsx") as path:
|
47 |
+
with ExcelWriter(path, engine=engine) as writer:
|
48 |
+
df.to_excel(writer, sheet_name="dataframe")
|
49 |
+
df.style.to_excel(writer, sheet_name="unstyled")
|
50 |
+
|
51 |
+
openpyxl = pytest.importorskip("openpyxl") # test loading only with openpyxl
|
52 |
+
with contextlib.closing(openpyxl.load_workbook(path)) as wb:
|
53 |
+
for col1, col2 in zip(wb["dataframe"].columns, wb["unstyled"].columns):
|
54 |
+
assert len(col1) == len(col2)
|
55 |
+
for cell1, cell2 in zip(col1, col2):
|
56 |
+
assert cell1.value == cell2.value
|
57 |
+
assert_equal_cell_styles(cell1, cell2)
|
58 |
+
|
59 |
+
|
60 |
+
shared_style_params = [
|
61 |
+
(
|
62 |
+
"background-color: #111222",
|
63 |
+
["fill", "fgColor", "rgb"],
|
64 |
+
{"xlsxwriter": "FF111222", "openpyxl": "00111222"},
|
65 |
+
),
|
66 |
+
(
|
67 |
+
"color: #111222",
|
68 |
+
["font", "color", "value"],
|
69 |
+
{"xlsxwriter": "FF111222", "openpyxl": "00111222"},
|
70 |
+
),
|
71 |
+
("font-family: Arial;", ["font", "name"], "arial"),
|
72 |
+
("font-weight: bold;", ["font", "b"], True),
|
73 |
+
("font-style: italic;", ["font", "i"], True),
|
74 |
+
("text-decoration: underline;", ["font", "u"], "single"),
|
75 |
+
("number-format: $??,???.00;", ["number_format"], "$??,???.00"),
|
76 |
+
("text-align: left;", ["alignment", "horizontal"], "left"),
|
77 |
+
(
|
78 |
+
"vertical-align: bottom;",
|
79 |
+
["alignment", "vertical"],
|
80 |
+
{"xlsxwriter": None, "openpyxl": "bottom"}, # xlsxwriter Fails
|
81 |
+
),
|
82 |
+
("vertical-align: middle;", ["alignment", "vertical"], "center"),
|
83 |
+
# Border widths
|
84 |
+
("border-left: 2pt solid red", ["border", "left", "style"], "medium"),
|
85 |
+
("border-left: 1pt dotted red", ["border", "left", "style"], "dotted"),
|
86 |
+
("border-left: 2pt dotted red", ["border", "left", "style"], "mediumDashDotDot"),
|
87 |
+
("border-left: 1pt dashed red", ["border", "left", "style"], "dashed"),
|
88 |
+
("border-left: 2pt dashed red", ["border", "left", "style"], "mediumDashed"),
|
89 |
+
("border-left: 1pt solid red", ["border", "left", "style"], "thin"),
|
90 |
+
("border-left: 3pt solid red", ["border", "left", "style"], "thick"),
|
91 |
+
# Border expansion
|
92 |
+
(
|
93 |
+
"border-left: 2pt solid #111222",
|
94 |
+
["border", "left", "color", "rgb"],
|
95 |
+
{"xlsxwriter": "FF111222", "openpyxl": "00111222"},
|
96 |
+
),
|
97 |
+
("border: 1pt solid red", ["border", "top", "style"], "thin"),
|
98 |
+
(
|
99 |
+
"border: 1pt solid #111222",
|
100 |
+
["border", "top", "color", "rgb"],
|
101 |
+
{"xlsxwriter": "FF111222", "openpyxl": "00111222"},
|
102 |
+
),
|
103 |
+
("border: 1pt solid red", ["border", "right", "style"], "thin"),
|
104 |
+
(
|
105 |
+
"border: 1pt solid #111222",
|
106 |
+
["border", "right", "color", "rgb"],
|
107 |
+
{"xlsxwriter": "FF111222", "openpyxl": "00111222"},
|
108 |
+
),
|
109 |
+
("border: 1pt solid red", ["border", "bottom", "style"], "thin"),
|
110 |
+
(
|
111 |
+
"border: 1pt solid #111222",
|
112 |
+
["border", "bottom", "color", "rgb"],
|
113 |
+
{"xlsxwriter": "FF111222", "openpyxl": "00111222"},
|
114 |
+
),
|
115 |
+
("border: 1pt solid red", ["border", "left", "style"], "thin"),
|
116 |
+
(
|
117 |
+
"border: 1pt solid #111222",
|
118 |
+
["border", "left", "color", "rgb"],
|
119 |
+
{"xlsxwriter": "FF111222", "openpyxl": "00111222"},
|
120 |
+
),
|
121 |
+
# Border styles
|
122 |
+
(
|
123 |
+
"border-left-style: hair; border-left-color: black",
|
124 |
+
["border", "left", "style"],
|
125 |
+
"hair",
|
126 |
+
),
|
127 |
+
]
|
128 |
+
|
129 |
+
|
130 |
+
@pytest.mark.parametrize(
|
131 |
+
"engine",
|
132 |
+
["xlsxwriter", "openpyxl"],
|
133 |
+
)
|
134 |
+
@pytest.mark.parametrize("css, attrs, expected", shared_style_params)
|
135 |
+
def test_styler_to_excel_basic(engine, css, attrs, expected):
|
136 |
+
pytest.importorskip(engine)
|
137 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((1, 1)))
|
138 |
+
styler = df.style.map(lambda x: css)
|
139 |
+
|
140 |
+
with tm.ensure_clean(".xlsx") as path:
|
141 |
+
with ExcelWriter(path, engine=engine) as writer:
|
142 |
+
df.to_excel(writer, sheet_name="dataframe")
|
143 |
+
styler.to_excel(writer, sheet_name="styled")
|
144 |
+
|
145 |
+
openpyxl = pytest.importorskip("openpyxl") # test loading only with openpyxl
|
146 |
+
with contextlib.closing(openpyxl.load_workbook(path)) as wb:
|
147 |
+
# test unstyled data cell does not have expected styles
|
148 |
+
# test styled cell has expected styles
|
149 |
+
u_cell, s_cell = wb["dataframe"].cell(2, 2), wb["styled"].cell(2, 2)
|
150 |
+
for attr in attrs:
|
151 |
+
u_cell, s_cell = getattr(u_cell, attr, None), getattr(s_cell, attr)
|
152 |
+
|
153 |
+
if isinstance(expected, dict):
|
154 |
+
assert u_cell is None or u_cell != expected[engine]
|
155 |
+
assert s_cell == expected[engine]
|
156 |
+
else:
|
157 |
+
assert u_cell is None or u_cell != expected
|
158 |
+
assert s_cell == expected
|
159 |
+
|
160 |
+
|
161 |
+
@pytest.mark.parametrize(
|
162 |
+
"engine",
|
163 |
+
["xlsxwriter", "openpyxl"],
|
164 |
+
)
|
165 |
+
@pytest.mark.parametrize("css, attrs, expected", shared_style_params)
|
166 |
+
def test_styler_to_excel_basic_indexes(engine, css, attrs, expected):
|
167 |
+
pytest.importorskip(engine)
|
168 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((1, 1)))
|
169 |
+
|
170 |
+
styler = df.style
|
171 |
+
styler.map_index(lambda x: css, axis=0)
|
172 |
+
styler.map_index(lambda x: css, axis=1)
|
173 |
+
|
174 |
+
null_styler = df.style
|
175 |
+
null_styler.map(lambda x: "null: css;")
|
176 |
+
null_styler.map_index(lambda x: "null: css;", axis=0)
|
177 |
+
null_styler.map_index(lambda x: "null: css;", axis=1)
|
178 |
+
|
179 |
+
with tm.ensure_clean(".xlsx") as path:
|
180 |
+
with ExcelWriter(path, engine=engine) as writer:
|
181 |
+
null_styler.to_excel(writer, sheet_name="null_styled")
|
182 |
+
styler.to_excel(writer, sheet_name="styled")
|
183 |
+
|
184 |
+
openpyxl = pytest.importorskip("openpyxl") # test loading only with openpyxl
|
185 |
+
with contextlib.closing(openpyxl.load_workbook(path)) as wb:
|
186 |
+
# test null styled index cells does not have expected styles
|
187 |
+
# test styled cell has expected styles
|
188 |
+
ui_cell, si_cell = wb["null_styled"].cell(2, 1), wb["styled"].cell(2, 1)
|
189 |
+
uc_cell, sc_cell = wb["null_styled"].cell(1, 2), wb["styled"].cell(1, 2)
|
190 |
+
for attr in attrs:
|
191 |
+
ui_cell, si_cell = getattr(ui_cell, attr, None), getattr(si_cell, attr)
|
192 |
+
uc_cell, sc_cell = getattr(uc_cell, attr, None), getattr(sc_cell, attr)
|
193 |
+
|
194 |
+
if isinstance(expected, dict):
|
195 |
+
assert ui_cell is None or ui_cell != expected[engine]
|
196 |
+
assert si_cell == expected[engine]
|
197 |
+
assert uc_cell is None or uc_cell != expected[engine]
|
198 |
+
assert sc_cell == expected[engine]
|
199 |
+
else:
|
200 |
+
assert ui_cell is None or ui_cell != expected
|
201 |
+
assert si_cell == expected
|
202 |
+
assert uc_cell is None or uc_cell != expected
|
203 |
+
assert sc_cell == expected
|
204 |
+
|
205 |
+
|
206 |
+
# From https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.borders.html
|
207 |
+
# Note: Leaving behavior of "width"-type styles undefined; user should use border-width
|
208 |
+
# instead
|
209 |
+
excel_border_styles = [
|
210 |
+
# "thin",
|
211 |
+
"dashed",
|
212 |
+
"mediumDashDot",
|
213 |
+
"dashDotDot",
|
214 |
+
"hair",
|
215 |
+
"dotted",
|
216 |
+
"mediumDashDotDot",
|
217 |
+
# "medium",
|
218 |
+
"double",
|
219 |
+
"dashDot",
|
220 |
+
"slantDashDot",
|
221 |
+
# "thick",
|
222 |
+
"mediumDashed",
|
223 |
+
]
|
224 |
+
|
225 |
+
|
226 |
+
@pytest.mark.parametrize(
|
227 |
+
"engine",
|
228 |
+
["xlsxwriter", "openpyxl"],
|
229 |
+
)
|
230 |
+
@pytest.mark.parametrize("border_style", excel_border_styles)
|
231 |
+
def test_styler_to_excel_border_style(engine, border_style):
|
232 |
+
css = f"border-left: {border_style} black thin"
|
233 |
+
attrs = ["border", "left", "style"]
|
234 |
+
expected = border_style
|
235 |
+
|
236 |
+
pytest.importorskip(engine)
|
237 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((1, 1)))
|
238 |
+
styler = df.style.map(lambda x: css)
|
239 |
+
|
240 |
+
with tm.ensure_clean(".xlsx") as path:
|
241 |
+
with ExcelWriter(path, engine=engine) as writer:
|
242 |
+
df.to_excel(writer, sheet_name="dataframe")
|
243 |
+
styler.to_excel(writer, sheet_name="styled")
|
244 |
+
|
245 |
+
openpyxl = pytest.importorskip("openpyxl") # test loading only with openpyxl
|
246 |
+
with contextlib.closing(openpyxl.load_workbook(path)) as wb:
|
247 |
+
# test unstyled data cell does not have expected styles
|
248 |
+
# test styled cell has expected styles
|
249 |
+
u_cell, s_cell = wb["dataframe"].cell(2, 2), wb["styled"].cell(2, 2)
|
250 |
+
for attr in attrs:
|
251 |
+
u_cell, s_cell = getattr(u_cell, attr, None), getattr(s_cell, attr)
|
252 |
+
|
253 |
+
if isinstance(expected, dict):
|
254 |
+
assert u_cell is None or u_cell != expected[engine]
|
255 |
+
assert s_cell == expected[engine]
|
256 |
+
else:
|
257 |
+
assert u_cell is None or u_cell != expected
|
258 |
+
assert s_cell == expected
|
259 |
+
|
260 |
+
|
261 |
+
def test_styler_custom_converter():
|
262 |
+
openpyxl = pytest.importorskip("openpyxl")
|
263 |
+
|
264 |
+
def custom_converter(css):
|
265 |
+
return {"font": {"color": {"rgb": "111222"}}}
|
266 |
+
|
267 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((1, 1)))
|
268 |
+
styler = df.style.map(lambda x: "color: #888999")
|
269 |
+
with tm.ensure_clean(".xlsx") as path:
|
270 |
+
with ExcelWriter(path, engine="openpyxl") as writer:
|
271 |
+
ExcelFormatter(styler, style_converter=custom_converter).write(
|
272 |
+
writer, sheet_name="custom"
|
273 |
+
)
|
274 |
+
|
275 |
+
with contextlib.closing(openpyxl.load_workbook(path)) as wb:
|
276 |
+
assert wb["custom"].cell(2, 2).font.color.value == "00111222"
|
277 |
+
|
278 |
+
|
279 |
+
@pytest.mark.single_cpu
|
280 |
+
@td.skip_if_not_us_locale
|
281 |
+
def test_styler_to_s3(s3_public_bucket, s3so):
|
282 |
+
# GH#46381
|
283 |
+
|
284 |
+
mock_bucket_name, target_file = s3_public_bucket.name, "test.xlsx"
|
285 |
+
df = DataFrame({"x": [1, 2, 3], "y": [2, 4, 6]})
|
286 |
+
styler = df.style.set_sticky(axis="index")
|
287 |
+
styler.to_excel(f"s3://{mock_bucket_name}/{target_file}", storage_options=s3so)
|
288 |
+
timeout = 5
|
289 |
+
while True:
|
290 |
+
if target_file in (obj.key for obj in s3_public_bucket.objects.all()):
|
291 |
+
break
|
292 |
+
time.sleep(0.1)
|
293 |
+
timeout -= 0.1
|
294 |
+
assert timeout > 0, "Timed out waiting for file to appear on moto"
|
295 |
+
result = read_excel(
|
296 |
+
f"s3://{mock_bucket_name}/{target_file}", index_col=0, storage_options=s3so
|
297 |
+
)
|
298 |
+
tm.assert_frame_equal(result, df)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_writers.py
ADDED
@@ -0,0 +1,1511 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
date,
|
3 |
+
datetime,
|
4 |
+
timedelta,
|
5 |
+
)
|
6 |
+
from functools import partial
|
7 |
+
from io import BytesIO
|
8 |
+
import os
|
9 |
+
import re
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import pytest
|
13 |
+
|
14 |
+
from pandas.compat import is_platform_windows
|
15 |
+
from pandas.compat._constants import PY310
|
16 |
+
from pandas.compat._optional import import_optional_dependency
|
17 |
+
import pandas.util._test_decorators as td
|
18 |
+
|
19 |
+
import pandas as pd
|
20 |
+
from pandas import (
|
21 |
+
DataFrame,
|
22 |
+
Index,
|
23 |
+
MultiIndex,
|
24 |
+
date_range,
|
25 |
+
option_context,
|
26 |
+
)
|
27 |
+
import pandas._testing as tm
|
28 |
+
|
29 |
+
from pandas.io.excel import (
|
30 |
+
ExcelFile,
|
31 |
+
ExcelWriter,
|
32 |
+
_OpenpyxlWriter,
|
33 |
+
_XlsxWriter,
|
34 |
+
register_writer,
|
35 |
+
)
|
36 |
+
from pandas.io.excel._util import _writers
|
37 |
+
|
38 |
+
if is_platform_windows():
|
39 |
+
pytestmark = pytest.mark.single_cpu
|
40 |
+
|
41 |
+
|
42 |
+
def get_exp_unit(path: str) -> str:
|
43 |
+
return "ns"
|
44 |
+
|
45 |
+
|
46 |
+
@pytest.fixture
|
47 |
+
def frame(float_frame):
|
48 |
+
"""
|
49 |
+
Returns the first ten items in fixture "float_frame".
|
50 |
+
"""
|
51 |
+
return float_frame[:10]
|
52 |
+
|
53 |
+
|
54 |
+
@pytest.fixture(params=[True, False])
|
55 |
+
def merge_cells(request):
|
56 |
+
return request.param
|
57 |
+
|
58 |
+
|
59 |
+
@pytest.fixture
|
60 |
+
def path(ext):
|
61 |
+
"""
|
62 |
+
Fixture to open file for use in each test case.
|
63 |
+
"""
|
64 |
+
with tm.ensure_clean(ext) as file_path:
|
65 |
+
yield file_path
|
66 |
+
|
67 |
+
|
68 |
+
@pytest.fixture
|
69 |
+
def set_engine(engine, ext):
|
70 |
+
"""
|
71 |
+
Fixture to set engine for use in each test case.
|
72 |
+
|
73 |
+
Rather than requiring `engine=...` to be provided explicitly as an
|
74 |
+
argument in each test, this fixture sets a global option to dictate
|
75 |
+
which engine should be used to write Excel files. After executing
|
76 |
+
the test it rolls back said change to the global option.
|
77 |
+
"""
|
78 |
+
option_name = f"io.excel.{ext.strip('.')}.writer"
|
79 |
+
with option_context(option_name, engine):
|
80 |
+
yield
|
81 |
+
|
82 |
+
|
83 |
+
@pytest.mark.parametrize(
|
84 |
+
"ext",
|
85 |
+
[
|
86 |
+
pytest.param(".xlsx", marks=[td.skip_if_no("openpyxl"), td.skip_if_no("xlrd")]),
|
87 |
+
pytest.param(".xlsm", marks=[td.skip_if_no("openpyxl"), td.skip_if_no("xlrd")]),
|
88 |
+
pytest.param(
|
89 |
+
".xlsx", marks=[td.skip_if_no("xlsxwriter"), td.skip_if_no("xlrd")]
|
90 |
+
),
|
91 |
+
pytest.param(".ods", marks=td.skip_if_no("odf")),
|
92 |
+
],
|
93 |
+
)
|
94 |
+
class TestRoundTrip:
|
95 |
+
@pytest.mark.parametrize(
|
96 |
+
"header,expected",
|
97 |
+
[(None, DataFrame([np.nan] * 4)), (0, DataFrame({"Unnamed: 0": [np.nan] * 3}))],
|
98 |
+
)
|
99 |
+
def test_read_one_empty_col_no_header(self, ext, header, expected):
|
100 |
+
# xref gh-12292
|
101 |
+
filename = "no_header"
|
102 |
+
df = DataFrame([["", 1, 100], ["", 2, 200], ["", 3, 300], ["", 4, 400]])
|
103 |
+
|
104 |
+
with tm.ensure_clean(ext) as path:
|
105 |
+
df.to_excel(path, sheet_name=filename, index=False, header=False)
|
106 |
+
result = pd.read_excel(
|
107 |
+
path, sheet_name=filename, usecols=[0], header=header
|
108 |
+
)
|
109 |
+
|
110 |
+
tm.assert_frame_equal(result, expected)
|
111 |
+
|
112 |
+
@pytest.mark.parametrize(
|
113 |
+
"header,expected",
|
114 |
+
[(None, DataFrame([0] + [np.nan] * 4)), (0, DataFrame([np.nan] * 4))],
|
115 |
+
)
|
116 |
+
def test_read_one_empty_col_with_header(self, ext, header, expected):
|
117 |
+
filename = "with_header"
|
118 |
+
df = DataFrame([["", 1, 100], ["", 2, 200], ["", 3, 300], ["", 4, 400]])
|
119 |
+
|
120 |
+
with tm.ensure_clean(ext) as path:
|
121 |
+
df.to_excel(path, sheet_name="with_header", index=False, header=True)
|
122 |
+
result = pd.read_excel(
|
123 |
+
path, sheet_name=filename, usecols=[0], header=header
|
124 |
+
)
|
125 |
+
|
126 |
+
tm.assert_frame_equal(result, expected)
|
127 |
+
|
128 |
+
def test_set_column_names_in_parameter(self, ext):
|
129 |
+
# GH 12870 : pass down column names associated with
|
130 |
+
# keyword argument names
|
131 |
+
refdf = DataFrame([[1, "foo"], [2, "bar"], [3, "baz"]], columns=["a", "b"])
|
132 |
+
|
133 |
+
with tm.ensure_clean(ext) as pth:
|
134 |
+
with ExcelWriter(pth) as writer:
|
135 |
+
refdf.to_excel(
|
136 |
+
writer, sheet_name="Data_no_head", header=False, index=False
|
137 |
+
)
|
138 |
+
refdf.to_excel(writer, sheet_name="Data_with_head", index=False)
|
139 |
+
|
140 |
+
refdf.columns = ["A", "B"]
|
141 |
+
|
142 |
+
with ExcelFile(pth) as reader:
|
143 |
+
xlsdf_no_head = pd.read_excel(
|
144 |
+
reader, sheet_name="Data_no_head", header=None, names=["A", "B"]
|
145 |
+
)
|
146 |
+
xlsdf_with_head = pd.read_excel(
|
147 |
+
reader,
|
148 |
+
sheet_name="Data_with_head",
|
149 |
+
index_col=None,
|
150 |
+
names=["A", "B"],
|
151 |
+
)
|
152 |
+
|
153 |
+
tm.assert_frame_equal(xlsdf_no_head, refdf)
|
154 |
+
tm.assert_frame_equal(xlsdf_with_head, refdf)
|
155 |
+
|
156 |
+
def test_creating_and_reading_multiple_sheets(self, ext):
|
157 |
+
# see gh-9450
|
158 |
+
#
|
159 |
+
# Test reading multiple sheets, from a runtime
|
160 |
+
# created Excel file with multiple sheets.
|
161 |
+
def tdf(col_sheet_name):
|
162 |
+
d, i = [11, 22, 33], [1, 2, 3]
|
163 |
+
return DataFrame(d, i, columns=[col_sheet_name])
|
164 |
+
|
165 |
+
sheets = ["AAA", "BBB", "CCC"]
|
166 |
+
|
167 |
+
dfs = [tdf(s) for s in sheets]
|
168 |
+
dfs = dict(zip(sheets, dfs))
|
169 |
+
|
170 |
+
with tm.ensure_clean(ext) as pth:
|
171 |
+
with ExcelWriter(pth) as ew:
|
172 |
+
for sheetname, df in dfs.items():
|
173 |
+
df.to_excel(ew, sheet_name=sheetname)
|
174 |
+
|
175 |
+
dfs_returned = pd.read_excel(pth, sheet_name=sheets, index_col=0)
|
176 |
+
|
177 |
+
for s in sheets:
|
178 |
+
tm.assert_frame_equal(dfs[s], dfs_returned[s])
|
179 |
+
|
180 |
+
def test_read_excel_multiindex_empty_level(self, ext):
|
181 |
+
# see gh-12453
|
182 |
+
with tm.ensure_clean(ext) as path:
|
183 |
+
df = DataFrame(
|
184 |
+
{
|
185 |
+
("One", "x"): {0: 1},
|
186 |
+
("Two", "X"): {0: 3},
|
187 |
+
("Two", "Y"): {0: 7},
|
188 |
+
("Zero", ""): {0: 0},
|
189 |
+
}
|
190 |
+
)
|
191 |
+
|
192 |
+
expected = DataFrame(
|
193 |
+
{
|
194 |
+
("One", "x"): {0: 1},
|
195 |
+
("Two", "X"): {0: 3},
|
196 |
+
("Two", "Y"): {0: 7},
|
197 |
+
("Zero", "Unnamed: 4_level_1"): {0: 0},
|
198 |
+
}
|
199 |
+
)
|
200 |
+
|
201 |
+
df.to_excel(path)
|
202 |
+
actual = pd.read_excel(path, header=[0, 1], index_col=0)
|
203 |
+
tm.assert_frame_equal(actual, expected)
|
204 |
+
|
205 |
+
df = DataFrame(
|
206 |
+
{
|
207 |
+
("Beg", ""): {0: 0},
|
208 |
+
("Middle", "x"): {0: 1},
|
209 |
+
("Tail", "X"): {0: 3},
|
210 |
+
("Tail", "Y"): {0: 7},
|
211 |
+
}
|
212 |
+
)
|
213 |
+
|
214 |
+
expected = DataFrame(
|
215 |
+
{
|
216 |
+
("Beg", "Unnamed: 1_level_1"): {0: 0},
|
217 |
+
("Middle", "x"): {0: 1},
|
218 |
+
("Tail", "X"): {0: 3},
|
219 |
+
("Tail", "Y"): {0: 7},
|
220 |
+
}
|
221 |
+
)
|
222 |
+
|
223 |
+
df.to_excel(path)
|
224 |
+
actual = pd.read_excel(path, header=[0, 1], index_col=0)
|
225 |
+
tm.assert_frame_equal(actual, expected)
|
226 |
+
|
227 |
+
@pytest.mark.parametrize("c_idx_names", ["a", None])
|
228 |
+
@pytest.mark.parametrize("r_idx_names", ["b", None])
|
229 |
+
@pytest.mark.parametrize("c_idx_levels", [1, 3])
|
230 |
+
@pytest.mark.parametrize("r_idx_levels", [1, 3])
|
231 |
+
def test_excel_multindex_roundtrip(
|
232 |
+
self, ext, c_idx_names, r_idx_names, c_idx_levels, r_idx_levels, request
|
233 |
+
):
|
234 |
+
# see gh-4679
|
235 |
+
with tm.ensure_clean(ext) as pth:
|
236 |
+
# Empty name case current read in as
|
237 |
+
# unnamed levels, not Nones.
|
238 |
+
check_names = bool(r_idx_names) or r_idx_levels <= 1
|
239 |
+
|
240 |
+
if c_idx_levels == 1:
|
241 |
+
columns = Index(list("abcde"))
|
242 |
+
else:
|
243 |
+
columns = MultiIndex.from_arrays(
|
244 |
+
[range(5) for _ in range(c_idx_levels)],
|
245 |
+
names=[f"{c_idx_names}-{i}" for i in range(c_idx_levels)],
|
246 |
+
)
|
247 |
+
if r_idx_levels == 1:
|
248 |
+
index = Index(list("ghijk"))
|
249 |
+
else:
|
250 |
+
index = MultiIndex.from_arrays(
|
251 |
+
[range(5) for _ in range(r_idx_levels)],
|
252 |
+
names=[f"{r_idx_names}-{i}" for i in range(r_idx_levels)],
|
253 |
+
)
|
254 |
+
df = DataFrame(
|
255 |
+
1.1 * np.ones((5, 5)),
|
256 |
+
columns=columns,
|
257 |
+
index=index,
|
258 |
+
)
|
259 |
+
df.to_excel(pth)
|
260 |
+
|
261 |
+
act = pd.read_excel(
|
262 |
+
pth,
|
263 |
+
index_col=list(range(r_idx_levels)),
|
264 |
+
header=list(range(c_idx_levels)),
|
265 |
+
)
|
266 |
+
tm.assert_frame_equal(df, act, check_names=check_names)
|
267 |
+
|
268 |
+
df.iloc[0, :] = np.nan
|
269 |
+
df.to_excel(pth)
|
270 |
+
|
271 |
+
act = pd.read_excel(
|
272 |
+
pth,
|
273 |
+
index_col=list(range(r_idx_levels)),
|
274 |
+
header=list(range(c_idx_levels)),
|
275 |
+
)
|
276 |
+
tm.assert_frame_equal(df, act, check_names=check_names)
|
277 |
+
|
278 |
+
df.iloc[-1, :] = np.nan
|
279 |
+
df.to_excel(pth)
|
280 |
+
act = pd.read_excel(
|
281 |
+
pth,
|
282 |
+
index_col=list(range(r_idx_levels)),
|
283 |
+
header=list(range(c_idx_levels)),
|
284 |
+
)
|
285 |
+
tm.assert_frame_equal(df, act, check_names=check_names)
|
286 |
+
|
287 |
+
def test_read_excel_parse_dates(self, ext):
|
288 |
+
# see gh-11544, gh-12051
|
289 |
+
df = DataFrame(
|
290 |
+
{"col": [1, 2, 3], "date_strings": date_range("2012-01-01", periods=3)}
|
291 |
+
)
|
292 |
+
df2 = df.copy()
|
293 |
+
df2["date_strings"] = df2["date_strings"].dt.strftime("%m/%d/%Y")
|
294 |
+
|
295 |
+
with tm.ensure_clean(ext) as pth:
|
296 |
+
df2.to_excel(pth)
|
297 |
+
|
298 |
+
res = pd.read_excel(pth, index_col=0)
|
299 |
+
tm.assert_frame_equal(df2, res)
|
300 |
+
|
301 |
+
res = pd.read_excel(pth, parse_dates=["date_strings"], index_col=0)
|
302 |
+
tm.assert_frame_equal(df, res)
|
303 |
+
|
304 |
+
date_parser = lambda x: datetime.strptime(x, "%m/%d/%Y")
|
305 |
+
with tm.assert_produces_warning(
|
306 |
+
FutureWarning,
|
307 |
+
match="use 'date_format' instead",
|
308 |
+
raise_on_extra_warnings=False,
|
309 |
+
):
|
310 |
+
res = pd.read_excel(
|
311 |
+
pth,
|
312 |
+
parse_dates=["date_strings"],
|
313 |
+
date_parser=date_parser,
|
314 |
+
index_col=0,
|
315 |
+
)
|
316 |
+
tm.assert_frame_equal(df, res)
|
317 |
+
res = pd.read_excel(
|
318 |
+
pth, parse_dates=["date_strings"], date_format="%m/%d/%Y", index_col=0
|
319 |
+
)
|
320 |
+
tm.assert_frame_equal(df, res)
|
321 |
+
|
322 |
+
def test_multiindex_interval_datetimes(self, ext):
|
323 |
+
# GH 30986
|
324 |
+
midx = MultiIndex.from_arrays(
|
325 |
+
[
|
326 |
+
range(4),
|
327 |
+
pd.interval_range(
|
328 |
+
start=pd.Timestamp("2020-01-01"), periods=4, freq="6ME"
|
329 |
+
),
|
330 |
+
]
|
331 |
+
)
|
332 |
+
df = DataFrame(range(4), index=midx)
|
333 |
+
with tm.ensure_clean(ext) as pth:
|
334 |
+
df.to_excel(pth)
|
335 |
+
result = pd.read_excel(pth, index_col=[0, 1])
|
336 |
+
expected = DataFrame(
|
337 |
+
range(4),
|
338 |
+
MultiIndex.from_arrays(
|
339 |
+
[
|
340 |
+
range(4),
|
341 |
+
[
|
342 |
+
"(2020-01-31 00:00:00, 2020-07-31 00:00:00]",
|
343 |
+
"(2020-07-31 00:00:00, 2021-01-31 00:00:00]",
|
344 |
+
"(2021-01-31 00:00:00, 2021-07-31 00:00:00]",
|
345 |
+
"(2021-07-31 00:00:00, 2022-01-31 00:00:00]",
|
346 |
+
],
|
347 |
+
]
|
348 |
+
),
|
349 |
+
)
|
350 |
+
tm.assert_frame_equal(result, expected)
|
351 |
+
|
352 |
+
|
353 |
+
@pytest.mark.parametrize(
|
354 |
+
"engine,ext",
|
355 |
+
[
|
356 |
+
pytest.param(
|
357 |
+
"openpyxl",
|
358 |
+
".xlsx",
|
359 |
+
marks=[td.skip_if_no("openpyxl"), td.skip_if_no("xlrd")],
|
360 |
+
),
|
361 |
+
pytest.param(
|
362 |
+
"openpyxl",
|
363 |
+
".xlsm",
|
364 |
+
marks=[td.skip_if_no("openpyxl"), td.skip_if_no("xlrd")],
|
365 |
+
),
|
366 |
+
pytest.param(
|
367 |
+
"xlsxwriter",
|
368 |
+
".xlsx",
|
369 |
+
marks=[td.skip_if_no("xlsxwriter"), td.skip_if_no("xlrd")],
|
370 |
+
),
|
371 |
+
pytest.param("odf", ".ods", marks=td.skip_if_no("odf")),
|
372 |
+
],
|
373 |
+
)
|
374 |
+
@pytest.mark.usefixtures("set_engine")
|
375 |
+
class TestExcelWriter:
|
376 |
+
def test_excel_sheet_size(self, path):
|
377 |
+
# GH 26080
|
378 |
+
breaking_row_count = 2**20 + 1
|
379 |
+
breaking_col_count = 2**14 + 1
|
380 |
+
# purposely using two arrays to prevent memory issues while testing
|
381 |
+
row_arr = np.zeros(shape=(breaking_row_count, 1))
|
382 |
+
col_arr = np.zeros(shape=(1, breaking_col_count))
|
383 |
+
row_df = DataFrame(row_arr)
|
384 |
+
col_df = DataFrame(col_arr)
|
385 |
+
|
386 |
+
msg = "sheet is too large"
|
387 |
+
with pytest.raises(ValueError, match=msg):
|
388 |
+
row_df.to_excel(path)
|
389 |
+
|
390 |
+
with pytest.raises(ValueError, match=msg):
|
391 |
+
col_df.to_excel(path)
|
392 |
+
|
393 |
+
def test_excel_sheet_by_name_raise(self, path):
|
394 |
+
gt = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
|
395 |
+
gt.to_excel(path)
|
396 |
+
|
397 |
+
with ExcelFile(path) as xl:
|
398 |
+
df = pd.read_excel(xl, sheet_name=0, index_col=0)
|
399 |
+
|
400 |
+
tm.assert_frame_equal(gt, df)
|
401 |
+
|
402 |
+
msg = "Worksheet named '0' not found"
|
403 |
+
with pytest.raises(ValueError, match=msg):
|
404 |
+
pd.read_excel(xl, "0")
|
405 |
+
|
406 |
+
def test_excel_writer_context_manager(self, frame, path):
|
407 |
+
with ExcelWriter(path) as writer:
|
408 |
+
frame.to_excel(writer, sheet_name="Data1")
|
409 |
+
frame2 = frame.copy()
|
410 |
+
frame2.columns = frame.columns[::-1]
|
411 |
+
frame2.to_excel(writer, sheet_name="Data2")
|
412 |
+
|
413 |
+
with ExcelFile(path) as reader:
|
414 |
+
found_df = pd.read_excel(reader, sheet_name="Data1", index_col=0)
|
415 |
+
found_df2 = pd.read_excel(reader, sheet_name="Data2", index_col=0)
|
416 |
+
|
417 |
+
tm.assert_frame_equal(found_df, frame)
|
418 |
+
tm.assert_frame_equal(found_df2, frame2)
|
419 |
+
|
420 |
+
def test_roundtrip(self, frame, path):
|
421 |
+
frame = frame.copy()
|
422 |
+
frame.iloc[:5, frame.columns.get_loc("A")] = np.nan
|
423 |
+
|
424 |
+
frame.to_excel(path, sheet_name="test1")
|
425 |
+
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
|
426 |
+
frame.to_excel(path, sheet_name="test1", header=False)
|
427 |
+
frame.to_excel(path, sheet_name="test1", index=False)
|
428 |
+
|
429 |
+
# test roundtrip
|
430 |
+
frame.to_excel(path, sheet_name="test1")
|
431 |
+
recons = pd.read_excel(path, sheet_name="test1", index_col=0)
|
432 |
+
tm.assert_frame_equal(frame, recons)
|
433 |
+
|
434 |
+
frame.to_excel(path, sheet_name="test1", index=False)
|
435 |
+
recons = pd.read_excel(path, sheet_name="test1", index_col=None)
|
436 |
+
recons.index = frame.index
|
437 |
+
tm.assert_frame_equal(frame, recons)
|
438 |
+
|
439 |
+
frame.to_excel(path, sheet_name="test1", na_rep="NA")
|
440 |
+
recons = pd.read_excel(path, sheet_name="test1", index_col=0, na_values=["NA"])
|
441 |
+
tm.assert_frame_equal(frame, recons)
|
442 |
+
|
443 |
+
# GH 3611
|
444 |
+
frame.to_excel(path, sheet_name="test1", na_rep="88")
|
445 |
+
recons = pd.read_excel(path, sheet_name="test1", index_col=0, na_values=["88"])
|
446 |
+
tm.assert_frame_equal(frame, recons)
|
447 |
+
|
448 |
+
frame.to_excel(path, sheet_name="test1", na_rep="88")
|
449 |
+
recons = pd.read_excel(
|
450 |
+
path, sheet_name="test1", index_col=0, na_values=[88, 88.0]
|
451 |
+
)
|
452 |
+
tm.assert_frame_equal(frame, recons)
|
453 |
+
|
454 |
+
# GH 6573
|
455 |
+
frame.to_excel(path, sheet_name="Sheet1")
|
456 |
+
recons = pd.read_excel(path, index_col=0)
|
457 |
+
tm.assert_frame_equal(frame, recons)
|
458 |
+
|
459 |
+
frame.to_excel(path, sheet_name="0")
|
460 |
+
recons = pd.read_excel(path, index_col=0)
|
461 |
+
tm.assert_frame_equal(frame, recons)
|
462 |
+
|
463 |
+
# GH 8825 Pandas Series should provide to_excel method
|
464 |
+
s = frame["A"]
|
465 |
+
s.to_excel(path)
|
466 |
+
recons = pd.read_excel(path, index_col=0)
|
467 |
+
tm.assert_frame_equal(s.to_frame(), recons)
|
468 |
+
|
469 |
+
def test_mixed(self, frame, path):
|
470 |
+
mixed_frame = frame.copy()
|
471 |
+
mixed_frame["foo"] = "bar"
|
472 |
+
|
473 |
+
mixed_frame.to_excel(path, sheet_name="test1")
|
474 |
+
with ExcelFile(path) as reader:
|
475 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
476 |
+
tm.assert_frame_equal(mixed_frame, recons)
|
477 |
+
|
478 |
+
def test_ts_frame(self, path):
|
479 |
+
unit = get_exp_unit(path)
|
480 |
+
df = DataFrame(
|
481 |
+
np.random.default_rng(2).standard_normal((5, 4)),
|
482 |
+
columns=Index(list("ABCD")),
|
483 |
+
index=date_range("2000-01-01", periods=5, freq="B"),
|
484 |
+
)
|
485 |
+
|
486 |
+
# freq doesn't round-trip
|
487 |
+
index = pd.DatetimeIndex(np.asarray(df.index), freq=None)
|
488 |
+
df.index = index
|
489 |
+
|
490 |
+
expected = df[:]
|
491 |
+
expected.index = expected.index.as_unit(unit)
|
492 |
+
|
493 |
+
df.to_excel(path, sheet_name="test1")
|
494 |
+
with ExcelFile(path) as reader:
|
495 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
496 |
+
tm.assert_frame_equal(expected, recons)
|
497 |
+
|
498 |
+
def test_basics_with_nan(self, frame, path):
|
499 |
+
frame = frame.copy()
|
500 |
+
frame.iloc[:5, frame.columns.get_loc("A")] = np.nan
|
501 |
+
frame.to_excel(path, sheet_name="test1")
|
502 |
+
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
|
503 |
+
frame.to_excel(path, sheet_name="test1", header=False)
|
504 |
+
frame.to_excel(path, sheet_name="test1", index=False)
|
505 |
+
|
506 |
+
@pytest.mark.parametrize("np_type", [np.int8, np.int16, np.int32, np.int64])
|
507 |
+
def test_int_types(self, np_type, path):
|
508 |
+
# Test np.int values read come back as int
|
509 |
+
# (rather than float which is Excel's format).
|
510 |
+
df = DataFrame(
|
511 |
+
np.random.default_rng(2).integers(-10, 10, size=(10, 2)), dtype=np_type
|
512 |
+
)
|
513 |
+
df.to_excel(path, sheet_name="test1")
|
514 |
+
|
515 |
+
with ExcelFile(path) as reader:
|
516 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
517 |
+
|
518 |
+
int_frame = df.astype(np.int64)
|
519 |
+
tm.assert_frame_equal(int_frame, recons)
|
520 |
+
|
521 |
+
recons2 = pd.read_excel(path, sheet_name="test1", index_col=0)
|
522 |
+
tm.assert_frame_equal(int_frame, recons2)
|
523 |
+
|
524 |
+
@pytest.mark.parametrize("np_type", [np.float16, np.float32, np.float64])
|
525 |
+
def test_float_types(self, np_type, path):
|
526 |
+
# Test np.float values read come back as float.
|
527 |
+
df = DataFrame(np.random.default_rng(2).random(10), dtype=np_type)
|
528 |
+
df.to_excel(path, sheet_name="test1")
|
529 |
+
|
530 |
+
with ExcelFile(path) as reader:
|
531 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
|
532 |
+
np_type
|
533 |
+
)
|
534 |
+
|
535 |
+
tm.assert_frame_equal(df, recons)
|
536 |
+
|
537 |
+
def test_bool_types(self, path):
|
538 |
+
# Test np.bool_ values read come back as float.
|
539 |
+
df = DataFrame([1, 0, True, False], dtype=np.bool_)
|
540 |
+
df.to_excel(path, sheet_name="test1")
|
541 |
+
|
542 |
+
with ExcelFile(path) as reader:
|
543 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
|
544 |
+
np.bool_
|
545 |
+
)
|
546 |
+
|
547 |
+
tm.assert_frame_equal(df, recons)
|
548 |
+
|
549 |
+
def test_inf_roundtrip(self, path):
|
550 |
+
df = DataFrame([(1, np.inf), (2, 3), (5, -np.inf)])
|
551 |
+
df.to_excel(path, sheet_name="test1")
|
552 |
+
|
553 |
+
with ExcelFile(path) as reader:
|
554 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
555 |
+
|
556 |
+
tm.assert_frame_equal(df, recons)
|
557 |
+
|
558 |
+
def test_sheets(self, frame, path):
|
559 |
+
# freq doesn't round-trip
|
560 |
+
unit = get_exp_unit(path)
|
561 |
+
tsframe = DataFrame(
|
562 |
+
np.random.default_rng(2).standard_normal((5, 4)),
|
563 |
+
columns=Index(list("ABCD")),
|
564 |
+
index=date_range("2000-01-01", periods=5, freq="B"),
|
565 |
+
)
|
566 |
+
index = pd.DatetimeIndex(np.asarray(tsframe.index), freq=None)
|
567 |
+
tsframe.index = index
|
568 |
+
|
569 |
+
expected = tsframe[:]
|
570 |
+
expected.index = expected.index.as_unit(unit)
|
571 |
+
|
572 |
+
frame = frame.copy()
|
573 |
+
frame.iloc[:5, frame.columns.get_loc("A")] = np.nan
|
574 |
+
|
575 |
+
frame.to_excel(path, sheet_name="test1")
|
576 |
+
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
|
577 |
+
frame.to_excel(path, sheet_name="test1", header=False)
|
578 |
+
frame.to_excel(path, sheet_name="test1", index=False)
|
579 |
+
|
580 |
+
# Test writing to separate sheets
|
581 |
+
with ExcelWriter(path) as writer:
|
582 |
+
frame.to_excel(writer, sheet_name="test1")
|
583 |
+
tsframe.to_excel(writer, sheet_name="test2")
|
584 |
+
with ExcelFile(path) as reader:
|
585 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
586 |
+
tm.assert_frame_equal(frame, recons)
|
587 |
+
recons = pd.read_excel(reader, sheet_name="test2", index_col=0)
|
588 |
+
tm.assert_frame_equal(expected, recons)
|
589 |
+
assert 2 == len(reader.sheet_names)
|
590 |
+
assert "test1" == reader.sheet_names[0]
|
591 |
+
assert "test2" == reader.sheet_names[1]
|
592 |
+
|
593 |
+
def test_colaliases(self, frame, path):
|
594 |
+
frame = frame.copy()
|
595 |
+
frame.iloc[:5, frame.columns.get_loc("A")] = np.nan
|
596 |
+
|
597 |
+
frame.to_excel(path, sheet_name="test1")
|
598 |
+
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
|
599 |
+
frame.to_excel(path, sheet_name="test1", header=False)
|
600 |
+
frame.to_excel(path, sheet_name="test1", index=False)
|
601 |
+
|
602 |
+
# column aliases
|
603 |
+
col_aliases = Index(["AA", "X", "Y", "Z"])
|
604 |
+
frame.to_excel(path, sheet_name="test1", header=col_aliases)
|
605 |
+
with ExcelFile(path) as reader:
|
606 |
+
rs = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
607 |
+
xp = frame.copy()
|
608 |
+
xp.columns = col_aliases
|
609 |
+
tm.assert_frame_equal(xp, rs)
|
610 |
+
|
611 |
+
def test_roundtrip_indexlabels(self, merge_cells, frame, path):
|
612 |
+
frame = frame.copy()
|
613 |
+
frame.iloc[:5, frame.columns.get_loc("A")] = np.nan
|
614 |
+
|
615 |
+
frame.to_excel(path, sheet_name="test1")
|
616 |
+
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
|
617 |
+
frame.to_excel(path, sheet_name="test1", header=False)
|
618 |
+
frame.to_excel(path, sheet_name="test1", index=False)
|
619 |
+
|
620 |
+
# test index_label
|
621 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) >= 0
|
622 |
+
df.to_excel(
|
623 |
+
path, sheet_name="test1", index_label=["test"], merge_cells=merge_cells
|
624 |
+
)
|
625 |
+
with ExcelFile(path) as reader:
|
626 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
|
627 |
+
np.int64
|
628 |
+
)
|
629 |
+
df.index.names = ["test"]
|
630 |
+
assert df.index.names == recons.index.names
|
631 |
+
|
632 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) >= 0
|
633 |
+
df.to_excel(
|
634 |
+
path,
|
635 |
+
sheet_name="test1",
|
636 |
+
index_label=["test", "dummy", "dummy2"],
|
637 |
+
merge_cells=merge_cells,
|
638 |
+
)
|
639 |
+
with ExcelFile(path) as reader:
|
640 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
|
641 |
+
np.int64
|
642 |
+
)
|
643 |
+
df.index.names = ["test"]
|
644 |
+
assert df.index.names == recons.index.names
|
645 |
+
|
646 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) >= 0
|
647 |
+
df.to_excel(
|
648 |
+
path, sheet_name="test1", index_label="test", merge_cells=merge_cells
|
649 |
+
)
|
650 |
+
with ExcelFile(path) as reader:
|
651 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
|
652 |
+
np.int64
|
653 |
+
)
|
654 |
+
df.index.names = ["test"]
|
655 |
+
tm.assert_frame_equal(df, recons.astype(bool))
|
656 |
+
|
657 |
+
frame.to_excel(
|
658 |
+
path,
|
659 |
+
sheet_name="test1",
|
660 |
+
columns=["A", "B", "C", "D"],
|
661 |
+
index=False,
|
662 |
+
merge_cells=merge_cells,
|
663 |
+
)
|
664 |
+
# take 'A' and 'B' as indexes (same row as cols 'C', 'D')
|
665 |
+
df = frame.copy()
|
666 |
+
df = df.set_index(["A", "B"])
|
667 |
+
|
668 |
+
with ExcelFile(path) as reader:
|
669 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=[0, 1])
|
670 |
+
tm.assert_frame_equal(df, recons)
|
671 |
+
|
672 |
+
def test_excel_roundtrip_indexname(self, merge_cells, path):
|
673 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
|
674 |
+
df.index.name = "foo"
|
675 |
+
|
676 |
+
df.to_excel(path, merge_cells=merge_cells)
|
677 |
+
|
678 |
+
with ExcelFile(path) as xf:
|
679 |
+
result = pd.read_excel(xf, sheet_name=xf.sheet_names[0], index_col=0)
|
680 |
+
|
681 |
+
tm.assert_frame_equal(result, df)
|
682 |
+
assert result.index.name == "foo"
|
683 |
+
|
684 |
+
def test_excel_roundtrip_datetime(self, merge_cells, path):
|
685 |
+
# datetime.date, not sure what to test here exactly
|
686 |
+
unit = get_exp_unit(path)
|
687 |
+
|
688 |
+
# freq does not round-trip
|
689 |
+
tsframe = DataFrame(
|
690 |
+
np.random.default_rng(2).standard_normal((5, 4)),
|
691 |
+
columns=Index(list("ABCD")),
|
692 |
+
index=date_range("2000-01-01", periods=5, freq="B"),
|
693 |
+
)
|
694 |
+
index = pd.DatetimeIndex(np.asarray(tsframe.index), freq=None)
|
695 |
+
tsframe.index = index
|
696 |
+
|
697 |
+
tsf = tsframe.copy()
|
698 |
+
|
699 |
+
tsf.index = [x.date() for x in tsframe.index]
|
700 |
+
tsf.to_excel(path, sheet_name="test1", merge_cells=merge_cells)
|
701 |
+
|
702 |
+
with ExcelFile(path) as reader:
|
703 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
704 |
+
|
705 |
+
expected = tsframe[:]
|
706 |
+
expected.index = expected.index.as_unit(unit)
|
707 |
+
tm.assert_frame_equal(expected, recons)
|
708 |
+
|
709 |
+
def test_excel_date_datetime_format(self, ext, path):
|
710 |
+
# see gh-4133
|
711 |
+
#
|
712 |
+
# Excel output format strings
|
713 |
+
unit = get_exp_unit(path)
|
714 |
+
|
715 |
+
df = DataFrame(
|
716 |
+
[
|
717 |
+
[date(2014, 1, 31), date(1999, 9, 24)],
|
718 |
+
[datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)],
|
719 |
+
],
|
720 |
+
index=["DATE", "DATETIME"],
|
721 |
+
columns=["X", "Y"],
|
722 |
+
)
|
723 |
+
df_expected = DataFrame(
|
724 |
+
[
|
725 |
+
[datetime(2014, 1, 31), datetime(1999, 9, 24)],
|
726 |
+
[datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)],
|
727 |
+
],
|
728 |
+
index=["DATE", "DATETIME"],
|
729 |
+
columns=["X", "Y"],
|
730 |
+
)
|
731 |
+
df_expected = df_expected.astype(f"M8[{unit}]")
|
732 |
+
|
733 |
+
with tm.ensure_clean(ext) as filename2:
|
734 |
+
with ExcelWriter(path) as writer1:
|
735 |
+
df.to_excel(writer1, sheet_name="test1")
|
736 |
+
|
737 |
+
with ExcelWriter(
|
738 |
+
filename2,
|
739 |
+
date_format="DD.MM.YYYY",
|
740 |
+
datetime_format="DD.MM.YYYY HH-MM-SS",
|
741 |
+
) as writer2:
|
742 |
+
df.to_excel(writer2, sheet_name="test1")
|
743 |
+
|
744 |
+
with ExcelFile(path) as reader1:
|
745 |
+
rs1 = pd.read_excel(reader1, sheet_name="test1", index_col=0)
|
746 |
+
|
747 |
+
with ExcelFile(filename2) as reader2:
|
748 |
+
rs2 = pd.read_excel(reader2, sheet_name="test1", index_col=0)
|
749 |
+
|
750 |
+
tm.assert_frame_equal(rs1, rs2)
|
751 |
+
|
752 |
+
# Since the reader returns a datetime object for dates,
|
753 |
+
# we need to use df_expected to check the result.
|
754 |
+
tm.assert_frame_equal(rs2, df_expected)
|
755 |
+
|
756 |
+
def test_to_excel_interval_no_labels(self, path, using_infer_string):
|
757 |
+
# see gh-19242
|
758 |
+
#
|
759 |
+
# Test writing Interval without labels.
|
760 |
+
df = DataFrame(
|
761 |
+
np.random.default_rng(2).integers(-10, 10, size=(20, 1)), dtype=np.int64
|
762 |
+
)
|
763 |
+
expected = df.copy()
|
764 |
+
|
765 |
+
df["new"] = pd.cut(df[0], 10)
|
766 |
+
expected["new"] = pd.cut(expected[0], 10).astype(
|
767 |
+
str if not using_infer_string else "string[pyarrow_numpy]"
|
768 |
+
)
|
769 |
+
|
770 |
+
df.to_excel(path, sheet_name="test1")
|
771 |
+
with ExcelFile(path) as reader:
|
772 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
773 |
+
tm.assert_frame_equal(expected, recons)
|
774 |
+
|
775 |
+
def test_to_excel_interval_labels(self, path):
|
776 |
+
# see gh-19242
|
777 |
+
#
|
778 |
+
# Test writing Interval with labels.
|
779 |
+
df = DataFrame(
|
780 |
+
np.random.default_rng(2).integers(-10, 10, size=(20, 1)), dtype=np.int64
|
781 |
+
)
|
782 |
+
expected = df.copy()
|
783 |
+
intervals = pd.cut(
|
784 |
+
df[0], 10, labels=["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]
|
785 |
+
)
|
786 |
+
df["new"] = intervals
|
787 |
+
expected["new"] = pd.Series(list(intervals))
|
788 |
+
|
789 |
+
df.to_excel(path, sheet_name="test1")
|
790 |
+
with ExcelFile(path) as reader:
|
791 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
792 |
+
tm.assert_frame_equal(expected, recons)
|
793 |
+
|
794 |
+
def test_to_excel_timedelta(self, path):
|
795 |
+
# see gh-19242, gh-9155
|
796 |
+
#
|
797 |
+
# Test writing timedelta to xls.
|
798 |
+
df = DataFrame(
|
799 |
+
np.random.default_rng(2).integers(-10, 10, size=(20, 1)),
|
800 |
+
columns=["A"],
|
801 |
+
dtype=np.int64,
|
802 |
+
)
|
803 |
+
expected = df.copy()
|
804 |
+
|
805 |
+
df["new"] = df["A"].apply(lambda x: timedelta(seconds=x))
|
806 |
+
expected["new"] = expected["A"].apply(
|
807 |
+
lambda x: timedelta(seconds=x).total_seconds() / 86400
|
808 |
+
)
|
809 |
+
|
810 |
+
df.to_excel(path, sheet_name="test1")
|
811 |
+
with ExcelFile(path) as reader:
|
812 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
813 |
+
tm.assert_frame_equal(expected, recons)
|
814 |
+
|
815 |
+
def test_to_excel_periodindex(self, path):
|
816 |
+
# xp has a PeriodIndex
|
817 |
+
df = DataFrame(
|
818 |
+
np.random.default_rng(2).standard_normal((5, 4)),
|
819 |
+
columns=Index(list("ABCD")),
|
820 |
+
index=date_range("2000-01-01", periods=5, freq="B"),
|
821 |
+
)
|
822 |
+
xp = df.resample("ME").mean().to_period("M")
|
823 |
+
|
824 |
+
xp.to_excel(path, sheet_name="sht1")
|
825 |
+
|
826 |
+
with ExcelFile(path) as reader:
|
827 |
+
rs = pd.read_excel(reader, sheet_name="sht1", index_col=0)
|
828 |
+
tm.assert_frame_equal(xp, rs.to_period("M"))
|
829 |
+
|
830 |
+
def test_to_excel_multiindex(self, merge_cells, frame, path):
|
831 |
+
arrays = np.arange(len(frame.index) * 2, dtype=np.int64).reshape(2, -1)
|
832 |
+
new_index = MultiIndex.from_arrays(arrays, names=["first", "second"])
|
833 |
+
frame.index = new_index
|
834 |
+
|
835 |
+
frame.to_excel(path, sheet_name="test1", header=False)
|
836 |
+
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
|
837 |
+
|
838 |
+
# round trip
|
839 |
+
frame.to_excel(path, sheet_name="test1", merge_cells=merge_cells)
|
840 |
+
with ExcelFile(path) as reader:
|
841 |
+
df = pd.read_excel(reader, sheet_name="test1", index_col=[0, 1])
|
842 |
+
tm.assert_frame_equal(frame, df)
|
843 |
+
|
844 |
+
# GH13511
|
845 |
+
def test_to_excel_multiindex_nan_label(self, merge_cells, path):
|
846 |
+
df = DataFrame(
|
847 |
+
{
|
848 |
+
"A": [None, 2, 3],
|
849 |
+
"B": [10, 20, 30],
|
850 |
+
"C": np.random.default_rng(2).random(3),
|
851 |
+
}
|
852 |
+
)
|
853 |
+
df = df.set_index(["A", "B"])
|
854 |
+
|
855 |
+
df.to_excel(path, merge_cells=merge_cells)
|
856 |
+
df1 = pd.read_excel(path, index_col=[0, 1])
|
857 |
+
tm.assert_frame_equal(df, df1)
|
858 |
+
|
859 |
+
# Test for Issue 11328. If column indices are integers, make
|
860 |
+
# sure they are handled correctly for either setting of
|
861 |
+
# merge_cells
|
862 |
+
def test_to_excel_multiindex_cols(self, merge_cells, frame, path):
|
863 |
+
arrays = np.arange(len(frame.index) * 2, dtype=np.int64).reshape(2, -1)
|
864 |
+
new_index = MultiIndex.from_arrays(arrays, names=["first", "second"])
|
865 |
+
frame.index = new_index
|
866 |
+
|
867 |
+
new_cols_index = MultiIndex.from_tuples([(40, 1), (40, 2), (50, 1), (50, 2)])
|
868 |
+
frame.columns = new_cols_index
|
869 |
+
header = [0, 1]
|
870 |
+
if not merge_cells:
|
871 |
+
header = 0
|
872 |
+
|
873 |
+
# round trip
|
874 |
+
frame.to_excel(path, sheet_name="test1", merge_cells=merge_cells)
|
875 |
+
with ExcelFile(path) as reader:
|
876 |
+
df = pd.read_excel(
|
877 |
+
reader, sheet_name="test1", header=header, index_col=[0, 1]
|
878 |
+
)
|
879 |
+
if not merge_cells:
|
880 |
+
fm = frame.columns._format_multi(sparsify=False, include_names=False)
|
881 |
+
frame.columns = [".".join(map(str, q)) for q in zip(*fm)]
|
882 |
+
tm.assert_frame_equal(frame, df)
|
883 |
+
|
884 |
+
def test_to_excel_multiindex_dates(self, merge_cells, path):
|
885 |
+
# try multiindex with dates
|
886 |
+
unit = get_exp_unit(path)
|
887 |
+
tsframe = DataFrame(
|
888 |
+
np.random.default_rng(2).standard_normal((5, 4)),
|
889 |
+
columns=Index(list("ABCD")),
|
890 |
+
index=date_range("2000-01-01", periods=5, freq="B"),
|
891 |
+
)
|
892 |
+
tsframe.index = MultiIndex.from_arrays(
|
893 |
+
[
|
894 |
+
tsframe.index.as_unit(unit),
|
895 |
+
np.arange(len(tsframe.index), dtype=np.int64),
|
896 |
+
],
|
897 |
+
names=["time", "foo"],
|
898 |
+
)
|
899 |
+
|
900 |
+
tsframe.to_excel(path, sheet_name="test1", merge_cells=merge_cells)
|
901 |
+
with ExcelFile(path) as reader:
|
902 |
+
recons = pd.read_excel(reader, sheet_name="test1", index_col=[0, 1])
|
903 |
+
|
904 |
+
tm.assert_frame_equal(tsframe, recons)
|
905 |
+
assert recons.index.names == ("time", "foo")
|
906 |
+
|
907 |
+
def test_to_excel_multiindex_no_write_index(self, path):
|
908 |
+
# Test writing and re-reading a MI without the index. GH 5616.
|
909 |
+
|
910 |
+
# Initial non-MI frame.
|
911 |
+
frame1 = DataFrame({"a": [10, 20], "b": [30, 40], "c": [50, 60]})
|
912 |
+
|
913 |
+
# Add a MI.
|
914 |
+
frame2 = frame1.copy()
|
915 |
+
multi_index = MultiIndex.from_tuples([(70, 80), (90, 100)])
|
916 |
+
frame2.index = multi_index
|
917 |
+
|
918 |
+
# Write out to Excel without the index.
|
919 |
+
frame2.to_excel(path, sheet_name="test1", index=False)
|
920 |
+
|
921 |
+
# Read it back in.
|
922 |
+
with ExcelFile(path) as reader:
|
923 |
+
frame3 = pd.read_excel(reader, sheet_name="test1")
|
924 |
+
|
925 |
+
# Test that it is the same as the initial frame.
|
926 |
+
tm.assert_frame_equal(frame1, frame3)
|
927 |
+
|
928 |
+
def test_to_excel_empty_multiindex(self, path):
|
929 |
+
# GH 19543.
|
930 |
+
expected = DataFrame([], columns=[0, 1, 2])
|
931 |
+
|
932 |
+
df = DataFrame([], index=MultiIndex.from_tuples([], names=[0, 1]), columns=[2])
|
933 |
+
df.to_excel(path, sheet_name="test1")
|
934 |
+
|
935 |
+
with ExcelFile(path) as reader:
|
936 |
+
result = pd.read_excel(reader, sheet_name="test1")
|
937 |
+
tm.assert_frame_equal(
|
938 |
+
result, expected, check_index_type=False, check_dtype=False
|
939 |
+
)
|
940 |
+
|
941 |
+
def test_to_excel_float_format(self, path):
|
942 |
+
df = DataFrame(
|
943 |
+
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
|
944 |
+
index=["A", "B"],
|
945 |
+
columns=["X", "Y", "Z"],
|
946 |
+
)
|
947 |
+
df.to_excel(path, sheet_name="test1", float_format="%.2f")
|
948 |
+
|
949 |
+
with ExcelFile(path) as reader:
|
950 |
+
result = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
951 |
+
|
952 |
+
expected = DataFrame(
|
953 |
+
[[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]],
|
954 |
+
index=["A", "B"],
|
955 |
+
columns=["X", "Y", "Z"],
|
956 |
+
)
|
957 |
+
tm.assert_frame_equal(result, expected)
|
958 |
+
|
959 |
+
def test_to_excel_output_encoding(self, ext):
|
960 |
+
# Avoid mixed inferred_type.
|
961 |
+
df = DataFrame(
|
962 |
+
[["\u0192", "\u0193", "\u0194"], ["\u0195", "\u0196", "\u0197"]],
|
963 |
+
index=["A\u0192", "B"],
|
964 |
+
columns=["X\u0193", "Y", "Z"],
|
965 |
+
)
|
966 |
+
|
967 |
+
with tm.ensure_clean("__tmp_to_excel_float_format__." + ext) as filename:
|
968 |
+
df.to_excel(filename, sheet_name="TestSheet")
|
969 |
+
result = pd.read_excel(filename, sheet_name="TestSheet", index_col=0)
|
970 |
+
tm.assert_frame_equal(result, df)
|
971 |
+
|
972 |
+
def test_to_excel_unicode_filename(self, ext):
|
973 |
+
with tm.ensure_clean("\u0192u." + ext) as filename:
|
974 |
+
try:
|
975 |
+
with open(filename, "wb"):
|
976 |
+
pass
|
977 |
+
except UnicodeEncodeError:
|
978 |
+
pytest.skip("No unicode file names on this system")
|
979 |
+
|
980 |
+
df = DataFrame(
|
981 |
+
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
|
982 |
+
index=["A", "B"],
|
983 |
+
columns=["X", "Y", "Z"],
|
984 |
+
)
|
985 |
+
df.to_excel(filename, sheet_name="test1", float_format="%.2f")
|
986 |
+
|
987 |
+
with ExcelFile(filename) as reader:
|
988 |
+
result = pd.read_excel(reader, sheet_name="test1", index_col=0)
|
989 |
+
|
990 |
+
expected = DataFrame(
|
991 |
+
[[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]],
|
992 |
+
index=["A", "B"],
|
993 |
+
columns=["X", "Y", "Z"],
|
994 |
+
)
|
995 |
+
tm.assert_frame_equal(result, expected)
|
996 |
+
|
997 |
+
@pytest.mark.parametrize("use_headers", [True, False])
|
998 |
+
@pytest.mark.parametrize("r_idx_nlevels", [1, 2, 3])
|
999 |
+
@pytest.mark.parametrize("c_idx_nlevels", [1, 2, 3])
|
1000 |
+
def test_excel_010_hemstring(
|
1001 |
+
self, merge_cells, c_idx_nlevels, r_idx_nlevels, use_headers, path
|
1002 |
+
):
|
1003 |
+
def roundtrip(data, header=True, parser_hdr=0, index=True):
|
1004 |
+
data.to_excel(path, header=header, merge_cells=merge_cells, index=index)
|
1005 |
+
|
1006 |
+
with ExcelFile(path) as xf:
|
1007 |
+
return pd.read_excel(
|
1008 |
+
xf, sheet_name=xf.sheet_names[0], header=parser_hdr
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
# Basic test.
|
1012 |
+
parser_header = 0 if use_headers else None
|
1013 |
+
res = roundtrip(DataFrame([0]), use_headers, parser_header)
|
1014 |
+
|
1015 |
+
assert res.shape == (1, 2)
|
1016 |
+
assert res.iloc[0, 0] is not np.nan
|
1017 |
+
|
1018 |
+
# More complex tests with multi-index.
|
1019 |
+
nrows = 5
|
1020 |
+
ncols = 3
|
1021 |
+
|
1022 |
+
# ensure limited functionality in 0.10
|
1023 |
+
# override of gh-2370 until sorted out in 0.11
|
1024 |
+
|
1025 |
+
if c_idx_nlevels == 1:
|
1026 |
+
columns = Index([f"a-{i}" for i in range(ncols)], dtype=object)
|
1027 |
+
else:
|
1028 |
+
columns = MultiIndex.from_arrays(
|
1029 |
+
[range(ncols) for _ in range(c_idx_nlevels)],
|
1030 |
+
names=[f"i-{i}" for i in range(c_idx_nlevels)],
|
1031 |
+
)
|
1032 |
+
if r_idx_nlevels == 1:
|
1033 |
+
index = Index([f"b-{i}" for i in range(nrows)], dtype=object)
|
1034 |
+
else:
|
1035 |
+
index = MultiIndex.from_arrays(
|
1036 |
+
[range(nrows) for _ in range(r_idx_nlevels)],
|
1037 |
+
names=[f"j-{i}" for i in range(r_idx_nlevels)],
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
df = DataFrame(
|
1041 |
+
np.ones((nrows, ncols)),
|
1042 |
+
columns=columns,
|
1043 |
+
index=index,
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
# This if will be removed once multi-column Excel writing
|
1047 |
+
# is implemented. For now fixing gh-9794.
|
1048 |
+
if c_idx_nlevels > 1:
|
1049 |
+
msg = (
|
1050 |
+
"Writing to Excel with MultiIndex columns and no index "
|
1051 |
+
"\\('index'=False\\) is not yet implemented."
|
1052 |
+
)
|
1053 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1054 |
+
roundtrip(df, use_headers, index=False)
|
1055 |
+
else:
|
1056 |
+
res = roundtrip(df, use_headers)
|
1057 |
+
|
1058 |
+
if use_headers:
|
1059 |
+
assert res.shape == (nrows, ncols + r_idx_nlevels)
|
1060 |
+
else:
|
1061 |
+
# First row taken as columns.
|
1062 |
+
assert res.shape == (nrows - 1, ncols + r_idx_nlevels)
|
1063 |
+
|
1064 |
+
# No NaNs.
|
1065 |
+
for r in range(len(res.index)):
|
1066 |
+
for c in range(len(res.columns)):
|
1067 |
+
assert res.iloc[r, c] is not np.nan
|
1068 |
+
|
1069 |
+
def test_duplicated_columns(self, path):
|
1070 |
+
# see gh-5235
|
1071 |
+
df = DataFrame([[1, 2, 3], [1, 2, 3], [1, 2, 3]], columns=["A", "B", "B"])
|
1072 |
+
df.to_excel(path, sheet_name="test1")
|
1073 |
+
expected = DataFrame(
|
1074 |
+
[[1, 2, 3], [1, 2, 3], [1, 2, 3]], columns=["A", "B", "B.1"]
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
# By default, we mangle.
|
1078 |
+
result = pd.read_excel(path, sheet_name="test1", index_col=0)
|
1079 |
+
tm.assert_frame_equal(result, expected)
|
1080 |
+
|
1081 |
+
# see gh-11007, gh-10970
|
1082 |
+
df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "A", "B"])
|
1083 |
+
df.to_excel(path, sheet_name="test1")
|
1084 |
+
|
1085 |
+
result = pd.read_excel(path, sheet_name="test1", index_col=0)
|
1086 |
+
expected = DataFrame(
|
1087 |
+
[[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "A.1", "B.1"]
|
1088 |
+
)
|
1089 |
+
tm.assert_frame_equal(result, expected)
|
1090 |
+
|
1091 |
+
# see gh-10982
|
1092 |
+
df.to_excel(path, sheet_name="test1", index=False, header=False)
|
1093 |
+
result = pd.read_excel(path, sheet_name="test1", header=None)
|
1094 |
+
|
1095 |
+
expected = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]])
|
1096 |
+
tm.assert_frame_equal(result, expected)
|
1097 |
+
|
1098 |
+
def test_swapped_columns(self, path):
|
1099 |
+
# Test for issue #5427.
|
1100 |
+
write_frame = DataFrame({"A": [1, 1, 1], "B": [2, 2, 2]})
|
1101 |
+
write_frame.to_excel(path, sheet_name="test1", columns=["B", "A"])
|
1102 |
+
|
1103 |
+
read_frame = pd.read_excel(path, sheet_name="test1", header=0)
|
1104 |
+
|
1105 |
+
tm.assert_series_equal(write_frame["A"], read_frame["A"])
|
1106 |
+
tm.assert_series_equal(write_frame["B"], read_frame["B"])
|
1107 |
+
|
1108 |
+
def test_invalid_columns(self, path):
|
1109 |
+
# see gh-10982
|
1110 |
+
write_frame = DataFrame({"A": [1, 1, 1], "B": [2, 2, 2]})
|
1111 |
+
|
1112 |
+
with pytest.raises(KeyError, match="Not all names specified"):
|
1113 |
+
write_frame.to_excel(path, sheet_name="test1", columns=["B", "C"])
|
1114 |
+
|
1115 |
+
with pytest.raises(
|
1116 |
+
KeyError, match="'passes columns are not ALL present dataframe'"
|
1117 |
+
):
|
1118 |
+
write_frame.to_excel(path, sheet_name="test1", columns=["C", "D"])
|
1119 |
+
|
1120 |
+
@pytest.mark.parametrize(
|
1121 |
+
"to_excel_index,read_excel_index_col",
|
1122 |
+
[
|
1123 |
+
(True, 0), # Include index in write to file
|
1124 |
+
(False, None), # Dont include index in write to file
|
1125 |
+
],
|
1126 |
+
)
|
1127 |
+
def test_write_subset_columns(self, path, to_excel_index, read_excel_index_col):
|
1128 |
+
# GH 31677
|
1129 |
+
write_frame = DataFrame({"A": [1, 1, 1], "B": [2, 2, 2], "C": [3, 3, 3]})
|
1130 |
+
write_frame.to_excel(
|
1131 |
+
path, sheet_name="col_subset_bug", columns=["A", "B"], index=to_excel_index
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
expected = write_frame[["A", "B"]]
|
1135 |
+
read_frame = pd.read_excel(
|
1136 |
+
path, sheet_name="col_subset_bug", index_col=read_excel_index_col
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
tm.assert_frame_equal(expected, read_frame)
|
1140 |
+
|
1141 |
+
def test_comment_arg(self, path):
|
1142 |
+
# see gh-18735
|
1143 |
+
#
|
1144 |
+
# Test the comment argument functionality to pd.read_excel.
|
1145 |
+
|
1146 |
+
# Create file to read in.
|
1147 |
+
df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]})
|
1148 |
+
df.to_excel(path, sheet_name="test_c")
|
1149 |
+
|
1150 |
+
# Read file without comment arg.
|
1151 |
+
result1 = pd.read_excel(path, sheet_name="test_c", index_col=0)
|
1152 |
+
|
1153 |
+
result1.iloc[1, 0] = None
|
1154 |
+
result1.iloc[1, 1] = None
|
1155 |
+
result1.iloc[2, 1] = None
|
1156 |
+
|
1157 |
+
result2 = pd.read_excel(path, sheet_name="test_c", comment="#", index_col=0)
|
1158 |
+
tm.assert_frame_equal(result1, result2)
|
1159 |
+
|
1160 |
+
def test_comment_default(self, path):
|
1161 |
+
# Re issue #18735
|
1162 |
+
# Test the comment argument default to pd.read_excel
|
1163 |
+
|
1164 |
+
# Create file to read in
|
1165 |
+
df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]})
|
1166 |
+
df.to_excel(path, sheet_name="test_c")
|
1167 |
+
|
1168 |
+
# Read file with default and explicit comment=None
|
1169 |
+
result1 = pd.read_excel(path, sheet_name="test_c")
|
1170 |
+
result2 = pd.read_excel(path, sheet_name="test_c", comment=None)
|
1171 |
+
tm.assert_frame_equal(result1, result2)
|
1172 |
+
|
1173 |
+
def test_comment_used(self, path):
|
1174 |
+
# see gh-18735
|
1175 |
+
#
|
1176 |
+
# Test the comment argument is working as expected when used.
|
1177 |
+
|
1178 |
+
# Create file to read in.
|
1179 |
+
df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]})
|
1180 |
+
df.to_excel(path, sheet_name="test_c")
|
1181 |
+
|
1182 |
+
# Test read_frame_comment against manually produced expected output.
|
1183 |
+
expected = DataFrame({"A": ["one", None, "one"], "B": ["two", None, None]})
|
1184 |
+
result = pd.read_excel(path, sheet_name="test_c", comment="#", index_col=0)
|
1185 |
+
tm.assert_frame_equal(result, expected)
|
1186 |
+
|
1187 |
+
def test_comment_empty_line(self, path):
|
1188 |
+
# Re issue #18735
|
1189 |
+
# Test that pd.read_excel ignores commented lines at the end of file
|
1190 |
+
|
1191 |
+
df = DataFrame({"a": ["1", "#2"], "b": ["2", "3"]})
|
1192 |
+
df.to_excel(path, index=False)
|
1193 |
+
|
1194 |
+
# Test that all-comment lines at EoF are ignored
|
1195 |
+
expected = DataFrame({"a": [1], "b": [2]})
|
1196 |
+
result = pd.read_excel(path, comment="#")
|
1197 |
+
tm.assert_frame_equal(result, expected)
|
1198 |
+
|
1199 |
+
def test_datetimes(self, path):
|
1200 |
+
# Test writing and reading datetimes. For issue #9139. (xref #9185)
|
1201 |
+
unit = get_exp_unit(path)
|
1202 |
+
datetimes = [
|
1203 |
+
datetime(2013, 1, 13, 1, 2, 3),
|
1204 |
+
datetime(2013, 1, 13, 2, 45, 56),
|
1205 |
+
datetime(2013, 1, 13, 4, 29, 49),
|
1206 |
+
datetime(2013, 1, 13, 6, 13, 42),
|
1207 |
+
datetime(2013, 1, 13, 7, 57, 35),
|
1208 |
+
datetime(2013, 1, 13, 9, 41, 28),
|
1209 |
+
datetime(2013, 1, 13, 11, 25, 21),
|
1210 |
+
datetime(2013, 1, 13, 13, 9, 14),
|
1211 |
+
datetime(2013, 1, 13, 14, 53, 7),
|
1212 |
+
datetime(2013, 1, 13, 16, 37, 0),
|
1213 |
+
datetime(2013, 1, 13, 18, 20, 52),
|
1214 |
+
]
|
1215 |
+
|
1216 |
+
write_frame = DataFrame({"A": datetimes})
|
1217 |
+
write_frame.to_excel(path, sheet_name="Sheet1")
|
1218 |
+
read_frame = pd.read_excel(path, sheet_name="Sheet1", header=0)
|
1219 |
+
|
1220 |
+
expected = write_frame.astype(f"M8[{unit}]")
|
1221 |
+
tm.assert_series_equal(expected["A"], read_frame["A"])
|
1222 |
+
|
1223 |
+
def test_bytes_io(self, engine):
|
1224 |
+
# see gh-7074
|
1225 |
+
with BytesIO() as bio:
|
1226 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
|
1227 |
+
|
1228 |
+
# Pass engine explicitly, as there is no file path to infer from.
|
1229 |
+
with ExcelWriter(bio, engine=engine) as writer:
|
1230 |
+
df.to_excel(writer)
|
1231 |
+
|
1232 |
+
bio.seek(0)
|
1233 |
+
reread_df = pd.read_excel(bio, index_col=0)
|
1234 |
+
tm.assert_frame_equal(df, reread_df)
|
1235 |
+
|
1236 |
+
def test_engine_kwargs(self, engine, path):
|
1237 |
+
# GH#52368
|
1238 |
+
df = DataFrame([{"A": 1, "B": 2}, {"A": 3, "B": 4}])
|
1239 |
+
|
1240 |
+
msgs = {
|
1241 |
+
"odf": r"OpenDocumentSpreadsheet() got an unexpected keyword "
|
1242 |
+
r"argument 'foo'",
|
1243 |
+
"openpyxl": r"__init__() got an unexpected keyword argument 'foo'",
|
1244 |
+
"xlsxwriter": r"__init__() got an unexpected keyword argument 'foo'",
|
1245 |
+
}
|
1246 |
+
|
1247 |
+
if PY310:
|
1248 |
+
msgs[
|
1249 |
+
"openpyxl"
|
1250 |
+
] = "Workbook.__init__() got an unexpected keyword argument 'foo'"
|
1251 |
+
msgs[
|
1252 |
+
"xlsxwriter"
|
1253 |
+
] = "Workbook.__init__() got an unexpected keyword argument 'foo'"
|
1254 |
+
|
1255 |
+
# Handle change in error message for openpyxl (write and append mode)
|
1256 |
+
if engine == "openpyxl" and not os.path.exists(path):
|
1257 |
+
msgs[
|
1258 |
+
"openpyxl"
|
1259 |
+
] = r"load_workbook() got an unexpected keyword argument 'foo'"
|
1260 |
+
|
1261 |
+
with pytest.raises(TypeError, match=re.escape(msgs[engine])):
|
1262 |
+
df.to_excel(
|
1263 |
+
path,
|
1264 |
+
engine=engine,
|
1265 |
+
engine_kwargs={"foo": "bar"},
|
1266 |
+
)
|
1267 |
+
|
1268 |
+
def test_write_lists_dict(self, path):
|
1269 |
+
# see gh-8188.
|
1270 |
+
df = DataFrame(
|
1271 |
+
{
|
1272 |
+
"mixed": ["a", ["b", "c"], {"d": "e", "f": 2}],
|
1273 |
+
"numeric": [1, 2, 3.0],
|
1274 |
+
"str": ["apple", "banana", "cherry"],
|
1275 |
+
}
|
1276 |
+
)
|
1277 |
+
df.to_excel(path, sheet_name="Sheet1")
|
1278 |
+
read = pd.read_excel(path, sheet_name="Sheet1", header=0, index_col=0)
|
1279 |
+
|
1280 |
+
expected = df.copy()
|
1281 |
+
expected.mixed = expected.mixed.apply(str)
|
1282 |
+
expected.numeric = expected.numeric.astype("int64")
|
1283 |
+
|
1284 |
+
tm.assert_frame_equal(read, expected)
|
1285 |
+
|
1286 |
+
def test_render_as_column_name(self, path):
|
1287 |
+
# see gh-34331
|
1288 |
+
df = DataFrame({"render": [1, 2], "data": [3, 4]})
|
1289 |
+
df.to_excel(path, sheet_name="Sheet1")
|
1290 |
+
read = pd.read_excel(path, "Sheet1", index_col=0)
|
1291 |
+
expected = df
|
1292 |
+
tm.assert_frame_equal(read, expected)
|
1293 |
+
|
1294 |
+
def test_true_and_false_value_options(self, path):
|
1295 |
+
# see gh-13347
|
1296 |
+
df = DataFrame([["foo", "bar"]], columns=["col1", "col2"], dtype=object)
|
1297 |
+
with option_context("future.no_silent_downcasting", True):
|
1298 |
+
expected = df.replace({"foo": True, "bar": False}).astype("bool")
|
1299 |
+
|
1300 |
+
df.to_excel(path)
|
1301 |
+
read_frame = pd.read_excel(
|
1302 |
+
path, true_values=["foo"], false_values=["bar"], index_col=0
|
1303 |
+
)
|
1304 |
+
tm.assert_frame_equal(read_frame, expected)
|
1305 |
+
|
1306 |
+
def test_freeze_panes(self, path):
|
1307 |
+
# see gh-15160
|
1308 |
+
expected = DataFrame([[1, 2], [3, 4]], columns=["col1", "col2"])
|
1309 |
+
expected.to_excel(path, sheet_name="Sheet1", freeze_panes=(1, 1))
|
1310 |
+
|
1311 |
+
result = pd.read_excel(path, index_col=0)
|
1312 |
+
tm.assert_frame_equal(result, expected)
|
1313 |
+
|
1314 |
+
def test_path_path_lib(self, engine, ext):
|
1315 |
+
df = DataFrame(
|
1316 |
+
1.1 * np.arange(120).reshape((30, 4)),
|
1317 |
+
columns=Index(list("ABCD")),
|
1318 |
+
index=Index([f"i-{i}" for i in range(30)], dtype=object),
|
1319 |
+
)
|
1320 |
+
writer = partial(df.to_excel, engine=engine)
|
1321 |
+
|
1322 |
+
reader = partial(pd.read_excel, index_col=0)
|
1323 |
+
result = tm.round_trip_pathlib(writer, reader, path=f"foo{ext}")
|
1324 |
+
tm.assert_frame_equal(result, df)
|
1325 |
+
|
1326 |
+
def test_path_local_path(self, engine, ext):
|
1327 |
+
df = DataFrame(
|
1328 |
+
1.1 * np.arange(120).reshape((30, 4)),
|
1329 |
+
columns=Index(list("ABCD")),
|
1330 |
+
index=Index([f"i-{i}" for i in range(30)]),
|
1331 |
+
)
|
1332 |
+
writer = partial(df.to_excel, engine=engine)
|
1333 |
+
|
1334 |
+
reader = partial(pd.read_excel, index_col=0)
|
1335 |
+
result = tm.round_trip_localpath(writer, reader, path=f"foo{ext}")
|
1336 |
+
tm.assert_frame_equal(result, df)
|
1337 |
+
|
1338 |
+
def test_merged_cell_custom_objects(self, path):
|
1339 |
+
# see GH-27006
|
1340 |
+
mi = MultiIndex.from_tuples(
|
1341 |
+
[
|
1342 |
+
(pd.Period("2018"), pd.Period("2018Q1")),
|
1343 |
+
(pd.Period("2018"), pd.Period("2018Q2")),
|
1344 |
+
]
|
1345 |
+
)
|
1346 |
+
expected = DataFrame(np.ones((2, 2), dtype="int64"), columns=mi)
|
1347 |
+
expected.to_excel(path)
|
1348 |
+
result = pd.read_excel(path, header=[0, 1], index_col=0)
|
1349 |
+
# need to convert PeriodIndexes to standard Indexes for assert equal
|
1350 |
+
expected.columns = expected.columns.set_levels(
|
1351 |
+
[[str(i) for i in mi.levels[0]], [str(i) for i in mi.levels[1]]],
|
1352 |
+
level=[0, 1],
|
1353 |
+
)
|
1354 |
+
tm.assert_frame_equal(result, expected)
|
1355 |
+
|
1356 |
+
@pytest.mark.parametrize("dtype", [None, object])
|
1357 |
+
def test_raise_when_saving_timezones(self, dtype, tz_aware_fixture, path):
|
1358 |
+
# GH 27008, GH 7056
|
1359 |
+
tz = tz_aware_fixture
|
1360 |
+
data = pd.Timestamp("2019", tz=tz)
|
1361 |
+
df = DataFrame([data], dtype=dtype)
|
1362 |
+
with pytest.raises(ValueError, match="Excel does not support"):
|
1363 |
+
df.to_excel(path)
|
1364 |
+
|
1365 |
+
data = data.to_pydatetime()
|
1366 |
+
df = DataFrame([data], dtype=dtype)
|
1367 |
+
with pytest.raises(ValueError, match="Excel does not support"):
|
1368 |
+
df.to_excel(path)
|
1369 |
+
|
1370 |
+
def test_excel_duplicate_columns_with_names(self, path):
|
1371 |
+
# GH#39695
|
1372 |
+
df = DataFrame({"A": [0, 1], "B": [10, 11]})
|
1373 |
+
df.to_excel(path, columns=["A", "B", "A"], index=False)
|
1374 |
+
|
1375 |
+
result = pd.read_excel(path)
|
1376 |
+
expected = DataFrame([[0, 10, 0], [1, 11, 1]], columns=["A", "B", "A.1"])
|
1377 |
+
tm.assert_frame_equal(result, expected)
|
1378 |
+
|
1379 |
+
def test_if_sheet_exists_raises(self, ext):
|
1380 |
+
# GH 40230
|
1381 |
+
msg = "if_sheet_exists is only valid in append mode (mode='a')"
|
1382 |
+
|
1383 |
+
with tm.ensure_clean(ext) as f:
|
1384 |
+
with pytest.raises(ValueError, match=re.escape(msg)):
|
1385 |
+
ExcelWriter(f, if_sheet_exists="replace")
|
1386 |
+
|
1387 |
+
def test_excel_writer_empty_frame(self, engine, ext):
|
1388 |
+
# GH#45793
|
1389 |
+
with tm.ensure_clean(ext) as path:
|
1390 |
+
with ExcelWriter(path, engine=engine) as writer:
|
1391 |
+
DataFrame().to_excel(writer)
|
1392 |
+
result = pd.read_excel(path)
|
1393 |
+
expected = DataFrame()
|
1394 |
+
tm.assert_frame_equal(result, expected)
|
1395 |
+
|
1396 |
+
def test_to_excel_empty_frame(self, engine, ext):
|
1397 |
+
# GH#45793
|
1398 |
+
with tm.ensure_clean(ext) as path:
|
1399 |
+
DataFrame().to_excel(path, engine=engine)
|
1400 |
+
result = pd.read_excel(path)
|
1401 |
+
expected = DataFrame()
|
1402 |
+
tm.assert_frame_equal(result, expected)
|
1403 |
+
|
1404 |
+
|
1405 |
+
class TestExcelWriterEngineTests:
|
1406 |
+
@pytest.mark.parametrize(
|
1407 |
+
"klass,ext",
|
1408 |
+
[
|
1409 |
+
pytest.param(_XlsxWriter, ".xlsx", marks=td.skip_if_no("xlsxwriter")),
|
1410 |
+
pytest.param(_OpenpyxlWriter, ".xlsx", marks=td.skip_if_no("openpyxl")),
|
1411 |
+
],
|
1412 |
+
)
|
1413 |
+
def test_ExcelWriter_dispatch(self, klass, ext):
|
1414 |
+
with tm.ensure_clean(ext) as path:
|
1415 |
+
with ExcelWriter(path) as writer:
|
1416 |
+
if ext == ".xlsx" and bool(
|
1417 |
+
import_optional_dependency("xlsxwriter", errors="ignore")
|
1418 |
+
):
|
1419 |
+
# xlsxwriter has preference over openpyxl if both installed
|
1420 |
+
assert isinstance(writer, _XlsxWriter)
|
1421 |
+
else:
|
1422 |
+
assert isinstance(writer, klass)
|
1423 |
+
|
1424 |
+
def test_ExcelWriter_dispatch_raises(self):
|
1425 |
+
with pytest.raises(ValueError, match="No engine"):
|
1426 |
+
ExcelWriter("nothing")
|
1427 |
+
|
1428 |
+
def test_register_writer(self):
|
1429 |
+
class DummyClass(ExcelWriter):
|
1430 |
+
called_save = False
|
1431 |
+
called_write_cells = False
|
1432 |
+
called_sheets = False
|
1433 |
+
_supported_extensions = ("xlsx", "xls")
|
1434 |
+
_engine = "dummy"
|
1435 |
+
|
1436 |
+
def book(self):
|
1437 |
+
pass
|
1438 |
+
|
1439 |
+
def _save(self):
|
1440 |
+
type(self).called_save = True
|
1441 |
+
|
1442 |
+
def _write_cells(self, *args, **kwargs):
|
1443 |
+
type(self).called_write_cells = True
|
1444 |
+
|
1445 |
+
@property
|
1446 |
+
def sheets(self):
|
1447 |
+
type(self).called_sheets = True
|
1448 |
+
|
1449 |
+
@classmethod
|
1450 |
+
def assert_called_and_reset(cls):
|
1451 |
+
assert cls.called_save
|
1452 |
+
assert cls.called_write_cells
|
1453 |
+
assert not cls.called_sheets
|
1454 |
+
cls.called_save = False
|
1455 |
+
cls.called_write_cells = False
|
1456 |
+
|
1457 |
+
register_writer(DummyClass)
|
1458 |
+
|
1459 |
+
with option_context("io.excel.xlsx.writer", "dummy"):
|
1460 |
+
path = "something.xlsx"
|
1461 |
+
with tm.ensure_clean(path) as filepath:
|
1462 |
+
with ExcelWriter(filepath) as writer:
|
1463 |
+
assert isinstance(writer, DummyClass)
|
1464 |
+
df = DataFrame(
|
1465 |
+
["a"],
|
1466 |
+
columns=Index(["b"], name="foo"),
|
1467 |
+
index=Index(["c"], name="bar"),
|
1468 |
+
)
|
1469 |
+
df.to_excel(filepath)
|
1470 |
+
DummyClass.assert_called_and_reset()
|
1471 |
+
|
1472 |
+
with tm.ensure_clean("something.xls") as filepath:
|
1473 |
+
df.to_excel(filepath, engine="dummy")
|
1474 |
+
DummyClass.assert_called_and_reset()
|
1475 |
+
|
1476 |
+
|
1477 |
+
@td.skip_if_no("xlrd")
|
1478 |
+
@td.skip_if_no("openpyxl")
|
1479 |
+
class TestFSPath:
|
1480 |
+
def test_excelfile_fspath(self):
|
1481 |
+
with tm.ensure_clean("foo.xlsx") as path:
|
1482 |
+
df = DataFrame({"A": [1, 2]})
|
1483 |
+
df.to_excel(path)
|
1484 |
+
with ExcelFile(path) as xl:
|
1485 |
+
result = os.fspath(xl)
|
1486 |
+
assert result == path
|
1487 |
+
|
1488 |
+
def test_excelwriter_fspath(self):
|
1489 |
+
with tm.ensure_clean("foo.xlsx") as path:
|
1490 |
+
with ExcelWriter(path) as writer:
|
1491 |
+
assert os.fspath(writer) == str(path)
|
1492 |
+
|
1493 |
+
def test_to_excel_pos_args_deprecation(self):
|
1494 |
+
# GH-54229
|
1495 |
+
df = DataFrame({"a": [1, 2, 3]})
|
1496 |
+
msg = (
|
1497 |
+
r"Starting with pandas version 3.0 all arguments of to_excel except "
|
1498 |
+
r"for the argument 'excel_writer' will be keyword-only."
|
1499 |
+
)
|
1500 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1501 |
+
buf = BytesIO()
|
1502 |
+
writer = ExcelWriter(buf)
|
1503 |
+
df.to_excel(writer, "Sheet_name_1")
|
1504 |
+
|
1505 |
+
|
1506 |
+
@pytest.mark.parametrize("klass", _writers.values())
|
1507 |
+
def test_subclass_attr(klass):
|
1508 |
+
# testing that subclasses of ExcelWriter don't have public attributes (issue 49602)
|
1509 |
+
attrs_base = {name for name in dir(ExcelWriter) if not name.startswith("_")}
|
1510 |
+
attrs_klass = {name for name in dir(klass) if not name.startswith("_")}
|
1511 |
+
assert not attrs_base.symmetric_difference(attrs_klass)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_xlrd.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas.compat import is_platform_windows
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import pandas._testing as tm
|
10 |
+
|
11 |
+
from pandas.io.excel import ExcelFile
|
12 |
+
from pandas.io.excel._base import inspect_excel_format
|
13 |
+
|
14 |
+
xlrd = pytest.importorskip("xlrd")
|
15 |
+
|
16 |
+
if is_platform_windows():
|
17 |
+
pytestmark = pytest.mark.single_cpu
|
18 |
+
|
19 |
+
|
20 |
+
@pytest.fixture(params=[".xls"])
|
21 |
+
def read_ext_xlrd(request):
|
22 |
+
"""
|
23 |
+
Valid extensions for reading Excel files with xlrd.
|
24 |
+
|
25 |
+
Similar to read_ext, but excludes .ods, .xlsb, and for xlrd>2 .xlsx, .xlsm
|
26 |
+
"""
|
27 |
+
return request.param
|
28 |
+
|
29 |
+
|
30 |
+
def test_read_xlrd_book(read_ext_xlrd, datapath):
|
31 |
+
engine = "xlrd"
|
32 |
+
sheet_name = "Sheet1"
|
33 |
+
pth = datapath("io", "data", "excel", "test1.xls")
|
34 |
+
with xlrd.open_workbook(pth) as book:
|
35 |
+
with ExcelFile(book, engine=engine) as xl:
|
36 |
+
result = pd.read_excel(xl, sheet_name=sheet_name, index_col=0)
|
37 |
+
|
38 |
+
expected = pd.read_excel(
|
39 |
+
book, sheet_name=sheet_name, engine=engine, index_col=0
|
40 |
+
)
|
41 |
+
tm.assert_frame_equal(result, expected)
|
42 |
+
|
43 |
+
|
44 |
+
def test_read_xlsx_fails(datapath):
|
45 |
+
# GH 29375
|
46 |
+
from xlrd.biffh import XLRDError
|
47 |
+
|
48 |
+
path = datapath("io", "data", "excel", "test1.xlsx")
|
49 |
+
with pytest.raises(XLRDError, match="Excel xlsx file; not supported"):
|
50 |
+
pd.read_excel(path, engine="xlrd")
|
51 |
+
|
52 |
+
|
53 |
+
def test_nan_in_xls(datapath):
|
54 |
+
# GH 54564
|
55 |
+
path = datapath("io", "data", "excel", "test6.xls")
|
56 |
+
|
57 |
+
expected = pd.DataFrame({0: np.r_[0, 2].astype("int64"), 1: np.r_[1, np.nan]})
|
58 |
+
|
59 |
+
result = pd.read_excel(path, header=None)
|
60 |
+
|
61 |
+
tm.assert_frame_equal(result, expected)
|
62 |
+
|
63 |
+
|
64 |
+
@pytest.mark.parametrize(
|
65 |
+
"file_header",
|
66 |
+
[
|
67 |
+
b"\x09\x00\x04\x00\x07\x00\x10\x00",
|
68 |
+
b"\x09\x02\x06\x00\x00\x00\x10\x00",
|
69 |
+
b"\x09\x04\x06\x00\x00\x00\x10\x00",
|
70 |
+
b"\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1",
|
71 |
+
],
|
72 |
+
)
|
73 |
+
def test_read_old_xls_files(file_header):
|
74 |
+
# GH 41226
|
75 |
+
f = io.BytesIO(file_header)
|
76 |
+
assert inspect_excel_format(f) == "xls"
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/excel/test_xlsxwriter.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
from pandas.compat import is_platform_windows
|
6 |
+
|
7 |
+
from pandas import DataFrame
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
from pandas.io.excel import ExcelWriter
|
11 |
+
|
12 |
+
xlsxwriter = pytest.importorskip("xlsxwriter")
|
13 |
+
|
14 |
+
if is_platform_windows():
|
15 |
+
pytestmark = pytest.mark.single_cpu
|
16 |
+
|
17 |
+
|
18 |
+
@pytest.fixture
|
19 |
+
def ext():
|
20 |
+
return ".xlsx"
|
21 |
+
|
22 |
+
|
23 |
+
def test_column_format(ext):
|
24 |
+
# Test that column formats are applied to cells. Test for issue #9167.
|
25 |
+
# Applicable to xlsxwriter only.
|
26 |
+
openpyxl = pytest.importorskip("openpyxl")
|
27 |
+
|
28 |
+
with tm.ensure_clean(ext) as path:
|
29 |
+
frame = DataFrame({"A": [123456, 123456], "B": [123456, 123456]})
|
30 |
+
|
31 |
+
with ExcelWriter(path) as writer:
|
32 |
+
frame.to_excel(writer)
|
33 |
+
|
34 |
+
# Add a number format to col B and ensure it is applied to cells.
|
35 |
+
num_format = "#,##0"
|
36 |
+
write_workbook = writer.book
|
37 |
+
write_worksheet = write_workbook.worksheets()[0]
|
38 |
+
col_format = write_workbook.add_format({"num_format": num_format})
|
39 |
+
write_worksheet.set_column("B:B", None, col_format)
|
40 |
+
|
41 |
+
with contextlib.closing(openpyxl.load_workbook(path)) as read_workbook:
|
42 |
+
try:
|
43 |
+
read_worksheet = read_workbook["Sheet1"]
|
44 |
+
except TypeError:
|
45 |
+
# compat
|
46 |
+
read_worksheet = read_workbook.get_sheet_by_name(name="Sheet1")
|
47 |
+
|
48 |
+
# Get the number format from the cell.
|
49 |
+
try:
|
50 |
+
cell = read_worksheet["B2"]
|
51 |
+
except TypeError:
|
52 |
+
# compat
|
53 |
+
cell = read_worksheet.cell("B2")
|
54 |
+
|
55 |
+
try:
|
56 |
+
read_num_format = cell.number_format
|
57 |
+
except AttributeError:
|
58 |
+
read_num_format = cell.style.number_format._format_code
|
59 |
+
|
60 |
+
assert read_num_format == num_format
|
61 |
+
|
62 |
+
|
63 |
+
def test_write_append_mode_raises(ext):
|
64 |
+
msg = "Append mode is not supported with xlsxwriter!"
|
65 |
+
|
66 |
+
with tm.ensure_clean(ext) as f:
|
67 |
+
with pytest.raises(ValueError, match=msg):
|
68 |
+
ExcelWriter(f, engine="xlsxwriter", mode="a")
|
69 |
+
|
70 |
+
|
71 |
+
@pytest.mark.parametrize("nan_inf_to_errors", [True, False])
|
72 |
+
def test_engine_kwargs(ext, nan_inf_to_errors):
|
73 |
+
# GH 42286
|
74 |
+
engine_kwargs = {"options": {"nan_inf_to_errors": nan_inf_to_errors}}
|
75 |
+
with tm.ensure_clean(ext) as f:
|
76 |
+
with ExcelWriter(f, engine="xlsxwriter", engine_kwargs=engine_kwargs) as writer:
|
77 |
+
assert writer.book.nan_inf_to_errors == nan_inf_to_errors
|
78 |
+
|
79 |
+
|
80 |
+
def test_book_and_sheets_consistent(ext):
|
81 |
+
# GH#45687 - Ensure sheets is updated if user modifies book
|
82 |
+
with tm.ensure_clean(ext) as f:
|
83 |
+
with ExcelWriter(f, engine="xlsxwriter") as writer:
|
84 |
+
assert writer.sheets == {}
|
85 |
+
sheet = writer.book.add_worksheet("test_name")
|
86 |
+
assert writer.sheets == {"test_name": sheet}
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_console.cpython-310.pyc
ADDED
Binary file (2.81 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_eng_formatting.cpython-310.pyc
ADDED
Binary file (7.86 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_markdown.cpython-310.pyc
ADDED
Binary file (3.12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/test_bar.cpython-310.pyc
ADDED
Binary file (9.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/test_exceptions.cpython-310.pyc
ADDED
Binary file (1.68 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/test_format.cpython-310.pyc
ADDED
Binary file (18.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/test_highlight.cpython-310.pyc
ADDED
Binary file (5.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/__pycache__/test_html.cpython-310.pyc
ADDED
Binary file (29.8 kB). View file
|
|