import os from typing import Dict, Optional, Union import numpy as np import paddle from safetensors import numpy def save(tensors: Dict[str, paddle.Tensor], metadata: Optional[Dict[str, str]] = None) -> bytes: """ Saves a dictionary of tensors into raw bytes in safetensors format. Args: tensors (`Dict[str, paddle.Tensor]`): The incoming tensors. Tensors need to be contiguous and dense. metadata (`Dict[str, str]`, *optional*, defaults to `None`): Optional text only metadata you might want to save in your header. For instance it can be useful to specify more about the underlying tensors. This is purely informative and does not affect tensor loading. Returns: `bytes`: The raw bytes representing the format Example: ```python from safetensors.paddle import save import paddle tensors = {"embedding": paddle.zeros((512, 1024)), "attention": paddle.zeros((256, 256))} byte_data = save(tensors) ``` """ np_tensors = _paddle2np(tensors) return numpy.save(np_tensors, metadata=metadata) def save_file( tensors: Dict[str, paddle.Tensor], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]] = None, ) -> None: """ Saves a dictionary of tensors into raw bytes in safetensors format. Args: tensors (`Dict[str, paddle.Tensor]`): The incoming tensors. Tensors need to be contiguous and dense. filename (`str`, or `os.PathLike`)): The filename we're saving into. metadata (`Dict[str, str]`, *optional*, defaults to `None`): Optional text only metadata you might want to save in your header. For instance it can be useful to specify more about the underlying tensors. This is purely informative and does not affect tensor loading. Returns: `None` Example: ```python from safetensors.paddle import save_file import paddle tensors = {"embedding": paddle.zeros((512, 1024)), "attention": paddle.zeros((256, 256))} save_file(tensors, "model.safetensors") ``` """ np_tensors = _paddle2np(tensors) return numpy.save_file(np_tensors, filename, metadata=metadata) def load(data: bytes, device: str = "cpu") -> Dict[str, paddle.Tensor]: """ Loads a safetensors file into paddle format from pure bytes. Args: data (`bytes`): The content of a safetensors file Returns: `Dict[str, paddle.Tensor]`: dictionary that contains name as key, value as `paddle.Tensor` on cpu Example: ```python from safetensors.paddle import load file_path = "./my_folder/bert.safetensors" with open(file_path, "rb") as f: data = f.read() loaded = load(data) ``` """ flat = numpy.load(data) return _np2paddle(flat, device) def load_file(filename: Union[str, os.PathLike], device="cpu") -> Dict[str, paddle.Tensor]: """ Loads a safetensors file into paddle format. Args: filename (`str`, or `os.PathLike`)): The name of the file which contains the tensors device (`Dict[str, any]`, *optional*, defaults to `cpu`): The device where the tensors need to be located after load. available options are all regular paddle device locations Returns: `Dict[str, paddle.Tensor]`: dictionary that contains name as key, value as `paddle.Tensor` Example: ```python from safetensors.paddle import load_file file_path = "./my_folder/bert.safetensors" loaded = load_file(file_path) ``` """ flat = numpy.load_file(filename) output = _np2paddle(flat, device) return output def _np2paddle(numpy_dict: Dict[str, np.ndarray], device: str = "cpu") -> Dict[str, paddle.Tensor]: for k, v in numpy_dict.items(): numpy_dict[k] = paddle.to_tensor(v, place=device) return numpy_dict def _paddle2np(paddle_dict: Dict[str, paddle.Tensor]) -> Dict[str, np.array]: for k, v in paddle_dict.items(): paddle_dict[k] = v.detach().cpu().numpy() return paddle_dict