""" Usage: python requests_caching.py --tasks=comma,separated,list,of,tasks --cache_requests= """ import argparse import os from typing import List import torch from transformers import ( pipeline as trans_pipeline, ) from lm_eval import simple_evaluate from lm_eval.evaluator import request_caching_arg_to_dict from lm_eval.utils import eval_logger MODULE_DIR = os.path.dirname(os.path.realpath(__file__)) # Used to specify alternate cache path, useful if run in a docker container # NOTE raw datasets will break if you try to transfer the cache from your host to a docker image LM_HARNESS_CACHE_PATH = os.getenv("LM_HARNESS_CACHE_PATH") DEVICE = "cuda" if torch.cuda.is_available() else "cpu" MODEL = "EleutherAI/pythia-70m" TASK = "text-generation" def run_model_for_task_caching(tasks: List[str], cache_requests: str): eval_logger.info(f"Loading HF model: {MODEL}") trans_pipe = trans_pipeline( task=TASK, model=MODEL, device=DEVICE, trust_remote_code=True ) model = trans_pipe.model tokenizer = trans_pipe.tokenizer eval_logger.info( f"Running simple_evaluate to cache request objects for tasks: {tasks}" ) cache_args = request_caching_arg_to_dict(cache_requests=cache_requests) eval_logger.info( f"The following operations will be performed on the cache: {cache_requests}" ) eval_data = simple_evaluate( model="hf-auto", model_args={ "pretrained": model, "tokenizer": tokenizer, }, limit=1, device=DEVICE, tasks=tasks, write_out=True, **cache_args, ) return eval_data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--tasks", "-t", default=None, metavar="task1,task2", ) parser.add_argument( "--cache_requests", type=str, default=None, choices=["true", "refresh", "delete"], help="Speed up evaluation by caching the building of dataset requests. `None` if not caching.", ) args = parser.parse_args() tasks = args.tasks.split(",") eval_data = run_model_for_task_caching( tasks=tasks, model=MODEL, device=DEVICE, cache_requests=args.cache_requests )