# MathQA ### Paper MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms https://arxiv.org/pdf/1905.13319.pdf MathQA is a large-scale dataset of 37k English multiple-choice math word problems covering multiple math domain categories by modeling operation programs corresponding to word problems in the AQuA dataset (Ling et al., 2017). Homepage: https://math-qa.github.io/math-QA/ ### Citation ``` @misc{amini2019mathqa, title={MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms}, author={Aida Amini and Saadia Gabriel and Peter Lin and Rik Koncel-Kedziorski and Yejin Choi and Hannaneh Hajishirzi}, year={2019}, eprint={1905.13319}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Groups and Tasks #### Groups * `math_word_problems` #### Tasks * `mathqa`: The MathQA dataset, as a multiple choice dataset where the answer choices are not in context. ### Checklist For adding novel benchmarks/datasets to the library: * [x] Is the task an existing benchmark in the literature? * [x] Have you referenced the original paper that introduced the task? * [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test? * The MathQA dataset predates transformer-based prompted LLMs. We should, however, return to this task to ensure equivalence to the non-CoT version of mathQA used in the Chain-of-Thought paper. If other tasks on this dataset are already supported: * [x] Is the "Main" variant of this task clearly denoted? * [x] Have you provided a short sentence in a README on what each new variant adds / evaluates? * [x] Have you noted which, if any, published evaluation setups are matched by this variant? * [x] Checked for equivalence with v0.3.0 LM Evaluation Harness