import numpy as np def process_docs(dataset): def _detokenize(text): text = text.replace(" '", "'") text = text.replace(" \n", "\n") text = text.replace("\n ", "\n") text = text.replace(" n't", "n't") text = text.replace("`` ", '"') text = text.replace("''", '"') # punctuation text = text.replace(" :", ":") text = text.replace(" ;", ";") text = text.replace(" !", "!") text = text.replace(" ?", "?") text = text.replace(" ,", ",") text = text.replace(" .", ".") return text def _process(doc): return { "article": _detokenize(doc["article"]), "options": [_detokenize(option) for option in doc["options"]], } return dataset.map(_process) def process_results(doc, results): gold = ["A", "B", "C", "D"].index(doc["answers"]) r4_1 = np.argmax(results) == gold # r4_1 = accuracy ranks = sorted(results, reverse=True) r4_2 = (ranks.index(results[gold]) == 1) + r4_1 mrr = 1.0 / (ranks.index(results[gold]) + 1) # `+ 1` for index offset return {"r@1": r4_1, "r@2": r4_2, "mrr": mrr}