import re import string from collections import Counter def normalize_answer(s): """ Taken from the official evaluation script for v1.1 of the SQuAD dataset. Lower text and remove punctuation, articles and extra whitespace. """ def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_abstractive(predictions, references): """ Taken from the official evaluation script for v1.1 of the SQuAD dataset. """ prediction_tokens = normalize_answer(predictions[0]).split() references_tokens = normalize_answer(references[0]).split() common = Counter(prediction_tokens) & Counter(references_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(references_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1