""" .. codeauthor:: Tsuyoshi Hombashi """ import copy import enum import sys import typing from collections import Counter from decimal import Decimal from typing import Any, Dict, List, Mapping, Optional, Sequence, Tuple, Type, Union, cast import typepy from typepy import ( Bool, DateTime, Dictionary, Infinity, Integer, IpAddress, Nan, NoneType, NullString, RealNumber, StrictLevel, String, Typecode, is_empty_sequence, ) from typepy.type import AbstractType from ._column import ColumnDataProperty from ._common import MIN_STRICT_LEVEL_MAP, DefaultValue from ._converter import DataPropertyConverter from ._dataproperty import DataProperty from ._formatter import Format from ._preprocessor import Preprocessor from .logger import logger from .typing import ( DateTimeFormatter, StrictLevelMap, TransFunc, TypeHint, TypeValueMap, normalize_type_hint, ) DataPropertyMatrix = List[List[DataProperty]] @enum.unique class MatrixFormatting(enum.Enum): # raise exception if the matrix is not properly formatted EXCEPTION = 1 << 1 # trim to the minimum size column TRIM = 1 << 2 # Append None values to columns so that it is the same as the maximum # column size. FILL_NONE = 1 << 3 HEADER_ALIGNED = 1 << 4 class DataPropertyExtractor: """ .. py:attribute:: quoting_flags Configurations to add double quote to for each items in a matrix, where |Typecode| of table-value is |True| in the ``quote_flag_table`` mapping table. ``quote_flag_table`` should be a dictionary. And is ``{ Typecode : bool }``. Defaults to: .. code-block:: json :caption: The default values { Typecode.BOOL: False, Typecode.DATETIME: False, Typecode.DICTIONARY: False, Typecode.INFINITY: False, Typecode.INTEGER: False, Typecode.IP_ADDRESS: False, Typecode.LIST: False, Typecode.NAN: False, Typecode.NULL_STRING: False, Typecode.NONE: False, Typecode.REAL_NUMBER: False, Typecode.STRING: False, } """ def __init__(self, max_precision: Optional[int] = None) -> None: self.max_workers = DefaultValue.MAX_WORKERS if max_precision is None: self.__max_precision = DefaultValue.MAX_PRECISION else: self.__max_precision = max_precision self.__headers: Sequence[str] = [] self.__default_type_hint: TypeHint = None self.__col_type_hints: List[TypeHint] = [] self.__strip_str_header: Optional[str] = None self.__is_formatting_float = True self.__min_col_ascii_char_width = 0 self.__default_format_flags = Format.NONE self.__format_flags_list: Sequence[int] = [] self.__float_type: Union[Type[float], Type[Decimal], None] = None self.__datetime_format_str = DefaultValue.DATETIME_FORMAT self.__strict_level_map = copy.deepcopy( cast(Dict[Union[Typecode, str], int], DefaultValue.STRICT_LEVEL_MAP) ) self.__east_asian_ambiguous_width = 1 self.__preprocessor = Preprocessor() self.__type_value_map: Mapping[Typecode, Union[float, Decimal, None]] = copy.deepcopy( DefaultValue.TYPE_VALUE_MAP ) self.__trans_func_list: List[TransFunc] = [] self.__quoting_flags = copy.deepcopy(DefaultValue.QUOTING_FLAGS) self.__datetime_formatter: Optional[DateTimeFormatter] = None self.__matrix_formatting = MatrixFormatting.TRIM self.__dp_converter: DataPropertyConverter self.__clear_cache() def __clear_cache(self) -> None: self.__update_dp_converter() self.__dp_cache_zero = self.__to_dp_raw(0) self.__dp_cache_one = self.__to_dp_raw(1) self.__dp_cache_true = self.__to_dp_raw(True) self.__dp_cache_false = self.__to_dp_raw(False) self.__dp_cache_map = {None: self.__to_dp_raw(None), "": self.__to_dp_raw("")} @property def headers(self) -> Sequence[str]: return self.__headers @headers.setter def headers(self, value: Sequence[str]) -> None: if self.__headers == value: return self.__headers = value self.__clear_cache() @property def default_type_hint(self) -> TypeHint: return self.__default_type_hint @default_type_hint.setter def default_type_hint(self, value: TypeHint) -> None: if self.__default_type_hint == value: return self.__default_type_hint = value self.__clear_cache() @property def column_type_hints(self) -> List[TypeHint]: return self.__col_type_hints @column_type_hints.setter def column_type_hints(self, value: Sequence[Union[str, TypeHint]]) -> None: normalized_type_hints: List[TypeHint] = [] for type_hint in value: type_hint = normalize_type_hint(type_hint) if type_hint not in ( Bool, DateTime, Dictionary, Infinity, Integer, IpAddress, typepy.List, Nan, NoneType, RealNumber, String, NullString, None, ): raise ValueError(f"invalid type hint: {type(type_hint)}") normalized_type_hints.append(type_hint) if self.__col_type_hints == normalized_type_hints: return self.__col_type_hints = normalized_type_hints self.__clear_cache() @property def is_formatting_float(self) -> bool: return self.__is_formatting_float @is_formatting_float.setter def is_formatting_float(self, value: bool) -> None: self.__is_formatting_float = value @property def max_precision(self) -> int: return self.__max_precision @max_precision.setter def max_precision(self, value: int) -> None: if self.__max_precision == value: return self.__max_precision = value self.__clear_cache() @property def preprocessor(self) -> Preprocessor: return self.__preprocessor @preprocessor.setter def preprocessor(self, value: Preprocessor) -> None: if self.preprocessor == value: return self.__preprocessor = value self.__update_dp_converter() @property def strip_str_header(self) -> Optional[str]: return self.__strip_str_header @strip_str_header.setter def strip_str_header(self, value: str) -> None: if self.__strip_str_header == value: return self.__strip_str_header = value self.__clear_cache() @property def min_column_width(self) -> int: return self.__min_col_ascii_char_width @min_column_width.setter def min_column_width(self, value: int) -> None: if self.__min_col_ascii_char_width == value: return self.__min_col_ascii_char_width = value self.__clear_cache() @property def default_format_flags(self) -> int: return self.__default_format_flags @default_format_flags.setter def default_format_flags(self, value: int) -> None: if self.__default_format_flags == value: return self.__default_format_flags = value self.__clear_cache() @property def format_flags_list(self) -> Sequence[int]: return self.__format_flags_list @format_flags_list.setter def format_flags_list(self, value: Sequence[int]) -> None: if self.__format_flags_list == value: return self.__format_flags_list = value self.__clear_cache() @property def float_type(self) -> Union[Type[float], Type[Decimal], None]: return self.__float_type @float_type.setter def float_type(self, value: Union[Type[float], Type[Decimal]]) -> None: if self.__float_type == value: return self.__float_type = value self.__clear_cache() @property def datetime_format_str(self) -> str: return self.__datetime_format_str @datetime_format_str.setter def datetime_format_str(self, value: str) -> None: if self.__datetime_format_str == value: return self.__datetime_format_str = value self.__clear_cache() @property def strict_level_map(self) -> StrictLevelMap: return self.__strict_level_map @strict_level_map.setter def strict_level_map(self, value: StrictLevelMap) -> None: if self.__strict_level_map == value: return self.__strict_level_map = cast(Dict[Union[Typecode, str], int], value) self.__clear_cache() @property def east_asian_ambiguous_width(self) -> int: return self.__east_asian_ambiguous_width @east_asian_ambiguous_width.setter def east_asian_ambiguous_width(self, value: int) -> None: if self.__east_asian_ambiguous_width == value: return self.__east_asian_ambiguous_width = value self.__clear_cache() @property def type_value_map(self) -> TypeValueMap: return self.__type_value_map @type_value_map.setter def type_value_map(self, value: TypeValueMap) -> None: if self.__type_value_map == value: return self.__type_value_map = value self.__clear_cache() def register_trans_func(self, trans_func: TransFunc) -> None: self.__trans_func_list.insert(0, trans_func) self.__clear_cache() @property def quoting_flags(self) -> Dict[Typecode, bool]: return self.__quoting_flags @quoting_flags.setter def quoting_flags(self, value: Dict[Typecode, bool]) -> None: if self.__quoting_flags == value: return self.__quoting_flags = value self.__clear_cache() @property def datetime_formatter(self) -> Optional[DateTimeFormatter]: return self.__datetime_formatter @datetime_formatter.setter def datetime_formatter(self, value: Optional[DateTimeFormatter]) -> None: if self.__datetime_formatter == value: return self.__datetime_formatter = value self.__clear_cache() @property def matrix_formatting(self) -> MatrixFormatting: return self.__matrix_formatting @matrix_formatting.setter def matrix_formatting(self, value: MatrixFormatting) -> None: if self.__matrix_formatting == value: return self.__matrix_formatting = value self.__clear_cache() @property def max_workers(self) -> int: assert self.__max_workers return self.__max_workers @max_workers.setter def max_workers(self, value: Optional[int]) -> None: try: from _multiprocessing import SemLock, sem_unlink # noqa except ImportError: logger.debug("This platform lacks a functioning sem_open implementation") value = 1 if "pytest" in sys.modules and value != 1: logger.debug("set max_workers to 1 to avoid deadlock when executed from pytest") value = 1 self.__max_workers = value if not self.__max_workers: self.__max_workers = DefaultValue.MAX_WORKERS def to_dp(self, value: Any) -> DataProperty: self.__update_dp_converter() return self.__to_dp(value) def to_dp_list(self, values: Sequence[Any]) -> List[DataProperty]: if is_empty_sequence(values): return [] self.__update_dp_converter() return self._to_dp_list(values) def to_column_dp_list( self, value_dp_matrix: Any, previous_column_dp_list: Optional[Sequence[ColumnDataProperty]] = None, ) -> List[ColumnDataProperty]: col_dp_list = self.__get_col_dp_list_base() logger.debug("converting to column dataproperty:") logs = [" params:"] if self.headers: logs.append(f" headers={len(self.headers)}") logs.extend( [ " prev_col_count={}".format( len(previous_column_dp_list) if previous_column_dp_list else None ), f" matrix_formatting={self.matrix_formatting}", ] ) if self.column_type_hints: logs.append( " column_type_hints=({})".format( ", ".join( [ type_hint.__name__ if type_hint else "none" for type_hint in self.column_type_hints ] ) ) ) else: logs.append(" column_type_hints=()") for log in logs: logger.debug(log) logger.debug(" results:") for col_idx, value_dp_list in enumerate(zip(*value_dp_matrix)): try: col_dp_list[col_idx] except IndexError: col_dp_list.append( ColumnDataProperty( column_index=col_idx, float_type=self.float_type, min_width=self.min_column_width, format_flags=self.__get_format_flags(col_idx), is_formatting_float=self.is_formatting_float, datetime_format_str=self.datetime_format_str, east_asian_ambiguous_width=self.east_asian_ambiguous_width, max_precision=self.__max_precision, ) ) col_dp = col_dp_list[col_idx] col_dp.begin_update() try: col_dp.merge(previous_column_dp_list[col_idx]) # type: ignore except (TypeError, IndexError): pass for value_dp in value_dp_list: col_dp.update_body(value_dp) col_dp.end_update() logger.debug(f" {str(col_dp):s}") return col_dp_list def to_dp_matrix(self, value_matrix: Sequence[Sequence[Any]]) -> DataPropertyMatrix: self.__update_dp_converter() logger.debug(f"max_workers={self.max_workers}, preprocessor={self.__preprocessor}") value_matrix = self.__strip_data_matrix(value_matrix) if self.__is_dp_matrix(value_matrix): logger.debug("already a dataproperty matrix") return value_matrix # type: ignore if self.max_workers <= 1: return self.__to_dp_matrix_st(value_matrix) return self.__to_dp_matrix_mt(value_matrix) def to_header_dp_list(self) -> List[DataProperty]: self.__update_dp_converter() preprocessor = copy.deepcopy(self.__preprocessor) preprocessor.strip_str = self.strip_str_header return self._to_dp_list( self.headers, type_hint=String, preprocessor=preprocessor, strict_level_map=MIN_STRICT_LEVEL_MAP, ) def update_preprocessor(self, **kwargs: Any) -> bool: is_updated = self.__preprocessor.update(**kwargs) self.__update_dp_converter() return is_updated def update_strict_level_map(self, value: StrictLevelMap) -> bool: org = copy.deepcopy(self.__strict_level_map) self.__strict_level_map.update(value) if org == self.__strict_level_map: return False self.__clear_cache() return True """ def update_dict(self, lhs: Mapping, rhs: Mapping) -> bool: is_updated = False for key, value in rhs.items(): if key not in lhs: lhs[] continue if getattr(lhs, key) == value: continue setattr(lhs, key, value) is_updated = True return is_updated """ @staticmethod def __is_dp_matrix(value: Any) -> bool: try: return isinstance(value[0][0], DataProperty) except (TypeError, IndexError): return False def __get_col_type_hint(self, col_idx: int) -> TypeHint: try: return self.column_type_hints[col_idx] except (TypeError, IndexError): return self.default_type_hint def __get_format_flags(self, col_idx: int) -> int: try: return self.format_flags_list[col_idx] except (TypeError, IndexError): return self.__default_format_flags def __to_dp( self, data: Any, type_hint: TypeHint = None, preprocessor: Optional[Preprocessor] = None, strict_level_map: Optional[StrictLevelMap] = None, ) -> DataProperty: for trans_func in self.__trans_func_list: data = trans_func(data) if type_hint: return self.__to_dp_raw( data, type_hint=type_hint, preprocessor=preprocessor, strict_level_map=strict_level_map, ) try: if data in self.__dp_cache_map: return self.__dp_cache_map[data] except TypeError: # unhashable type pass if data == 0: if data is False: return self.__dp_cache_false return self.__dp_cache_zero if data == 1: if data is True: return self.__dp_cache_true return self.__dp_cache_one return self.__to_dp_raw( data, type_hint=type_hint, preprocessor=preprocessor, strict_level_map=strict_level_map ) def __to_dp_raw( self, data: Any, type_hint: TypeHint = None, preprocessor: Optional[Preprocessor] = None, strict_level_map: Optional[StrictLevelMap] = None, ) -> DataProperty: if preprocessor: preprocessor = Preprocessor( dequote=preprocessor.dequote, line_break_handling=preprocessor.line_break_handling, line_break_repl=preprocessor.line_break_repl, strip_str=preprocessor.strip_str, is_escape_formula_injection=preprocessor.is_escape_formula_injection, ) else: preprocessor = Preprocessor( dequote=self.preprocessor.dequote, line_break_handling=self.preprocessor.line_break_handling, line_break_repl=self.preprocessor.line_break_repl, strip_str=self.preprocessor.strip_str, is_escape_formula_injection=self.__preprocessor.is_escape_formula_injection, ) value_dp = DataProperty( data, preprocessor=preprocessor, type_hint=(type_hint if type_hint is not None else self.default_type_hint), float_type=self.float_type, datetime_format_str=self.datetime_format_str, strict_level_map=(strict_level_map if type_hint is not None else self.strict_level_map), east_asian_ambiguous_width=self.east_asian_ambiguous_width, ) return self.__dp_converter.convert(value_dp) def __to_dp_matrix_st(self, value_matrix: Sequence[Sequence[Any]]) -> DataPropertyMatrix: return list( zip( # type: ignore *( _to_dp_list_helper( self, col_idx, values, self.__get_col_type_hint(col_idx), self.__preprocessor, )[1] for col_idx, values in enumerate(zip(*value_matrix)) ) ) ) def __to_dp_matrix_mt(self, value_matrix: Sequence[Sequence[Any]]) -> DataPropertyMatrix: from concurrent import futures col_data_map = {} with futures.ProcessPoolExecutor(self.max_workers) as executor: future_list = [ executor.submit( _to_dp_list_helper, self, col_idx, values, self.__get_col_type_hint(col_idx), self.__preprocessor, ) for col_idx, values in enumerate(zip(*value_matrix)) ] for future in futures.as_completed(future_list): col_idx, value_dp_list = future.result() col_data_map[col_idx] = value_dp_list return list( zip(*(col_data_map[col_idx] for col_idx in sorted(col_data_map))) # type: ignore ) def _to_dp_list( self, data_list: Sequence[Any], type_hint: TypeHint = None, preprocessor: Optional[Preprocessor] = None, strict_level_map: Optional[StrictLevelMap] = None, ) -> List[DataProperty]: if is_empty_sequence(data_list): return [] type_counter: typing.Counter[Type[AbstractType]] = Counter() dp_list = [] for data in data_list: expect_type_hint: TypeHint = type_hint if type_hint is None: try: expect_type_hint, _count = type_counter.most_common(1)[0] if not expect_type_hint( data, float_type=self.float_type, strict_level=StrictLevel.MAX ).is_type(): expect_type_hint = None except IndexError: pass dataprop = self.__to_dp( data=data, type_hint=expect_type_hint, preprocessor=preprocessor if preprocessor else self.__preprocessor, strict_level_map=strict_level_map, ) type_counter[dataprop.type_class] += 1 dp_list.append(dataprop) return dp_list def __strip_data_matrix(self, data_matrix: Sequence[Sequence[Any]]) -> Sequence[Sequence[Any]]: header_col_size = len(self.headers) if self.headers else 0 try: col_size_list = [len(data_list) for data_list in data_matrix] except TypeError: return [] if self.headers: min_col_size = min([header_col_size] + col_size_list) max_col_size = max([header_col_size] + col_size_list) elif col_size_list: min_col_size = min(col_size_list) max_col_size = max(col_size_list) else: min_col_size = 0 max_col_size = 0 if self.matrix_formatting == MatrixFormatting.EXCEPTION: if min_col_size != max_col_size: raise ValueError( "nonuniform column size found: min={}, max={}".format( min_col_size, max_col_size ) ) return data_matrix if self.matrix_formatting == MatrixFormatting.HEADER_ALIGNED: if header_col_size > 0: format_col_size = header_col_size else: format_col_size = max_col_size elif self.matrix_formatting == MatrixFormatting.TRIM: format_col_size = min_col_size elif self.matrix_formatting == MatrixFormatting.FILL_NONE: format_col_size = max_col_size else: raise ValueError(f"unknown matrix formatting: {self.matrix_formatting}") return [ list(data_matrix[row_idx][:format_col_size]) + [None] * (format_col_size - col_size) for row_idx, col_size in enumerate(col_size_list) ] def __get_col_dp_list_base(self) -> List[ColumnDataProperty]: header_dp_list = self.to_header_dp_list() col_dp_list = [] for col_idx, header_dp in enumerate(header_dp_list): col_dp = ColumnDataProperty( column_index=col_idx, float_type=self.float_type, min_width=self.min_column_width, format_flags=self.__get_format_flags(col_idx), is_formatting_float=self.is_formatting_float, datetime_format_str=self.datetime_format_str, east_asian_ambiguous_width=self.east_asian_ambiguous_width, max_precision=self.__max_precision, ) col_dp.update_header(header_dp) col_dp_list.append(col_dp) return col_dp_list def __update_dp_converter(self) -> None: preprocessor = Preprocessor( line_break_handling=self.__preprocessor.line_break_handling, line_break_repl=self.preprocessor.line_break_repl, is_escape_html_tag=self.__preprocessor.is_escape_html_tag, is_escape_formula_injection=self.__preprocessor.is_escape_formula_injection, ) self.__dp_converter = DataPropertyConverter( preprocessor=preprocessor, type_value_map=self.type_value_map, quoting_flags=self.quoting_flags, datetime_formatter=self.datetime_formatter, datetime_format_str=self.datetime_format_str, float_type=self.float_type, strict_level_map=self.strict_level_map, ) def _to_dp_list_helper( extractor: DataPropertyExtractor, col_idx: int, data_list: Sequence[Any], type_hint: TypeHint, preprocessor: Preprocessor, ) -> Tuple[int, List[DataProperty]]: return ( col_idx, extractor._to_dp_list(data_list, type_hint=type_hint, preprocessor=preprocessor), )