# Copyright 2022 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from numbers import Number from typing import Any, Callable, Dict, List, Optional, Union # Lint as: python3 from datasets import Dataset, load_dataset from evaluate.evaluator.utils import choose_split try: from scipy.stats import bootstrap SCIPY_AVAILABLE = True except ImportError: SCIPY_AVAILABLE = False try: import transformers from transformers import Pipeline, pipeline TRANSFORMERS_AVAILABLE = True except ImportError: TRANSFORMERS_AVAILABLE = False from time import perf_counter from typing_extensions import Literal from ..loading import load from ..module import EvaluationModule from ..utils.logging import get_logger from .utils import DatasetColumn logger = get_logger(__name__) EVALUTOR_COMPUTE_START_DOCSTRING = r""" Compute the metric for a given pipeline and dataset combination. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task (in this case `text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. data (`str` or `Dataset`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Defines which dataset subset to load. If `None` is passed the default subset is loaded. split (`str`, defaults to `None`): Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function. metric (`str` or `EvaluationModule`, defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`): Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"): specifies the evaluation strategy. Possible values are: - `"simple"` - we evaluate the metric and return the scores. - `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each of the returned metric keys, using `scipy`'s `bootstrap` method https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html. confidence_level (`float`, defaults to `0.95`): The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. n_resamples (`int`, defaults to `9999`): The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. device (`int`, defaults to `None`): Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and CUDA:0 used if available, CPU otherwise. random_state (`int`, *optional*, defaults to `None`): The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for debugging. """ EVALUATOR_COMPUTE_RETURN_DOCSTRING = r""" Return: A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the `"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict` containing the score, the confidence interval and the standard error calculated for each metric key. """ class Evaluator(ABC): """ The [`Evaluator`] class is the class from which all evaluators inherit. Refer to this class for methods shared across different evaluators. Base class implementing evaluator operations. """ PIPELINE_KWARGS = {} METRIC_KWARGS = {} def __init__(self, task: str, default_metric_name: str = None): if not TRANSFORMERS_AVAILABLE: raise ImportError( "If you want to use the `Evaluator` you need `transformers`. Run `pip install evaluate[evaluator]`." ) if not SCIPY_AVAILABLE: raise ImportError( "If you want to use the `Evaluator` you need `scipy>=1.7.1`. Run `pip install evaluate[evaluator]`." ) self.task = task self.default_metric_name = default_metric_name @staticmethod def _compute_confidence_interval( metric, metric_inputs, metric_keys: List[str], confidence_level: float = 0.95, n_resamples: int = 9999, random_state: Optional[int] = None, ) -> Dict[str, Any]: """ A utility function enabling the confidence interval calculation for metrics computed by the evaluator based on `scipy`'s `bootstrap` method. """ # bootstrap only works with functions that use args and no kwargs def build_args_metric(metric, key, **kwargs): def args_metric(*args): return metric.compute(**{k: v for k, v in zip(kwargs.keys(), args)})[key] return args_metric bootstrap_dict = {} for key in metric_keys: bs = bootstrap( data=list(metric_inputs.values()), statistic=build_args_metric(metric, key, **metric_inputs), paired=True, vectorized=False, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) bootstrap_dict[key] = { "confidence_interval": (bs.confidence_interval.low, bs.confidence_interval.high), "standard_error": bs.standard_error, } return bootstrap_dict @staticmethod def _compute_time_perf(start_time: float, end_time: float, num_samples: int) -> Dict[str, Any]: """ A utility function computing time performance metrics: - `total_time_in_seconds` - pipeline inference runtime for the evaluation data in seconds, - `samples_per_second` - pipeline throughput in the number of samples per second. - `latency_in_seconds` - pipeline inference runtime for the evaluation data in seconds per sample, """ latency = end_time - start_time throughput = num_samples / latency latency_sample = 1.0 / throughput return { "total_time_in_seconds": latency, "samples_per_second": throughput, "latency_in_seconds": latency_sample, } @staticmethod def _infer_device() -> int: """Helper function to check if GPU or CPU is available for inference.""" # try infer with torch first try: import torch if torch.cuda.is_available(): device = 0 # first GPU else: device = -1 # CPU except ImportError: # if not available try TF try: import tensorflow as tf if len(tf.config.list_physical_devices("GPU")) > 0: device = 0 # first GPU else: device = -1 # CPU except ImportError: device = -1 if device == -1: logger.info("No GPU found. The default device for pipeline inference is set to CPU.") else: logger.info("GPU found. The default device for pipeline inference is set to GPU (CUDA:0).") return device @abstractmethod def predictions_processor(self, *args, **kwargs): """ A core method of the `Evaluator` class, which processes the pipeline outputs for compatibility with the metric. """ raise NotImplementedError() def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", label_mapping: Optional[Dict[str, Number]] = None, ) -> Dict[str, float]: result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) # Prepare inputs data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data(data=data, input_column=input_column, label_column=label_column) pipe = self.prepare_pipeline( model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, feature_extractor=feature_extractor, device=device, ) metric = self.prepare_metric(metric) # Compute predictions predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) predictions = self.predictions_processor(predictions, label_mapping) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) # TODO: To clarify why `wer` and `cer` return float # even though metric.compute contract says that it # returns Optional[dict]. if type(metric_results) == float: metric_results = {metric.name: metric_results} result.update(metric_results) result.update(perf_results) return result @staticmethod def check_for_mismatch_in_device_setup(device, model_or_pipeline): if device is not None and device != -1 and isinstance(model_or_pipeline, Pipeline): if model_or_pipeline.device.type == "cpu": raise ValueError( "The value of the `device` kwarg passed to `compute` suggests that this pipe should be run on an " "accelerator, but the pipe was instantiated on CPU. Pass `device` to the pipeline during " "initialization to use an accelerator, or pass `device=None` to `compute`. " ) elif device != model_or_pipeline.device.index: raise ValueError( f"This pipeline was instantiated on device {model_or_pipeline.device.index} but device={device} was passed to `compute`." ) def check_required_columns(self, data: Union[str, Dataset], columns_names: Dict[str, str]): """ Ensure the columns required for the evaluation are present in the dataset. Args: data (`str` or [`Dataset`]): Specifies the dataset we will run evaluation on. columns_names (`List[str]`): List of column names to check in the dataset. The keys are the arguments to the [`evaluate.EvaluationModule.compute`] method, while the values are the column names to check. Example: ```py >>> from datasets import load_dataset >>> from evaluate import evaluator >>> data = load_dataset("rotten_tomatoes', split="train") >>> evaluator.check_required_columns(data, {"input_column": "text", "label_column": "label"}) ``` """ for input_name, column_name in columns_names.items(): if column_name not in data.column_names: raise ValueError( f"Invalid `{input_name}` {column_name} specified. The dataset contains the following columns: {data.column_names}." ) @staticmethod def get_dataset_split(data, subset=None, split=None): """ Infers which split to use if `None` is given. Args: data (`str`): Name of dataset. subset (`str`): Name of config for datasets with multiple configurations (e.g. 'glue/cola'). split (`str`, defaults to `None`): Split to use. Returns: `split`: `str` containing which split to use Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").get_dataset_split(data="rotten_tomatoes") WARNING:evaluate.evaluator.base:Dataset split not defined! Automatically evaluating with split: TEST 'test' ``` """ if split is None: split = choose_split(data, subset) logger.warning(f"Dataset split not defined! Automatically evaluating with split: {split.upper()}") return split def load_data(self, data: Union[str, Dataset], subset: str = None, split: str = None): """ Load dataset with given subset and split. Args: data ([`Dataset`] or `str`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Specifies dataset subset to be passed to `name` in `load_dataset`. To be used with datasets with several configurations (e.g. glue/sst2). split (`str`, defaults to `None`): User-defined dataset split by name (e.g. train, validation, test). Supports slice-split (`test[:n]`). If not defined and data is a `str` type, will automatically select the best one via `choose_split()`. Returns: data ([`Dataset`]): Loaded dataset which will be used for evaluation. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").load_data(data="rotten_tomatoes", split="train") Dataset({ features: ['text', 'label'], num_rows: 8530 }) ``` """ if isinstance(data, str): split = self.get_dataset_split(data, subset, split) data = load_dataset(data, name=subset, split=split) return data elif isinstance(data, Dataset): if split is not None or subset is not None: logger.warning("`data` is a preloaded Dataset! Ignoring `subset` and `split`.") return data else: raise ValueError( "Please specify a valid `data` object - either a `str` with a name or a `Dataset` object." ) def prepare_data(self, data: Dataset, input_column: str, label_column: str, *args, **kwargs): """ Prepare data. Args: data ([`Dataset`]): Specifies the dataset we will run evaluation on. input_column (`str`, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. second_input_column(`str`, *optional*): The name of the column containing the second text feature if there is one. Otherwise, set to `None`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. Returns: `dict`: metric inputs. `list`: pipeline inputs. Example: ```py >>> from evaluate import evaluator >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="train") >>> evaluator("text-classification").prepare_data(ds, input_column="text", second_input_column=None, label_column="label") ``` """ self.check_required_columns(data, {"input_column": input_column, "label_column": label_column}) return {"references": data[label_column]}, DatasetColumn(data, input_column) def prepare_pipeline( self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821 tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 device: int = None, ): """ Prepare pipeline. Args: model_or_pipeline (`str` or [`~transformers.Pipeline`] or `Callable` or [`~transformers.PreTrainedModel`] or [`~transformers.TFPreTrainedModel`], defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task. If the argument is of the type `str` or is a model instance, we use it to initialize a new [`~transformers.Pipeline`] with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. preprocessor ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.FeatureExtractionMixin`], *optional*, defaults to `None`): Argument can be used to overwrite a default preprocessor if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. Returns: The initialized pipeline. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").prepare_pipeline(model_or_pipeline="distilbert-base-uncased") ``` """ if device is None: device = self._infer_device() if ( isinstance(model_or_pipeline, str) or isinstance(model_or_pipeline, transformers.PreTrainedModel) or isinstance(model_or_pipeline, transformers.TFPreTrainedModel) ): pipe = pipeline( self.task, model=model_or_pipeline, tokenizer=tokenizer, feature_extractor=feature_extractor, device=device, ) else: if model_or_pipeline is None: pipe = pipeline(self.task, device=device) else: pipe = model_or_pipeline if tokenizer is not None and feature_extractor is not None: logger.warning("Ignoring the value of the preprocessor argument (`tokenizer` or `feature_extractor`).") if (pipe.task != self.task) and not (self.task == "translation" and pipe.task.startswith("translation")): raise ValueError( f"Incompatible `model_or_pipeline`. Please specify `model_or_pipeline` compatible with the `{self.task}` task." ) return pipe def prepare_metric(self, metric: Union[str, EvaluationModule]): """ Prepare metric. Args: metric (`str` or [`EvaluationModule`], defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. Returns: The loaded metric. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").prepare_metric("accuracy") ``` """ # Prepare metric. if metric is None: if self.default_metric_name is None: raise ValueError( "`Evaluator` doesn't specify a default metric. Please specify a valid `metric` argument." ) metric = load(self.default_metric_name) elif isinstance(metric, str): metric = load(metric) return metric def call_pipeline(self, pipe, *args, **kwargs): start_time = perf_counter() pipe_output = pipe(*args, **kwargs, **self.PIPELINE_KWARGS) end_time = perf_counter() return pipe_output, self._compute_time_perf(start_time, end_time, len(pipe_output)) def compute_metric( self, metric: EvaluationModule, metric_inputs: Dict, strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, random_state: Optional[int] = None, ): """Compute and return metrics.""" result = metric.compute(**metric_inputs, **self.METRIC_KWARGS) if strategy == "bootstrap": metric_keys = result.keys() bootstrap_dict = self._compute_confidence_interval( metric, metric_inputs, metric_keys, confidence_level, n_resamples, random_state, ) for key in metric_keys: bootstrap_dict[key]["score"] = result[key] return bootstrap_dict return result