import importlib import os import platform from pathlib import Path from packaging import version from .utils.logging import get_logger logger = get_logger(__name__) # Metrics S3_METRICS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/metrics" CLOUDFRONT_METRICS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/metric" REPO_METRICS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/metrics/{path}/{name}" REPO_MEASUREMENTS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/measurements/{path}/{name}" REPO_COMPARISONS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/comparisons/{path}/{name}" # Evaluation module types EVALUATION_MODULE_TYPES = ["metric", "comparison", "measurement"] # Hub HF_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") HF_LIST_ENDPOINT = HF_ENDPOINT + "/api/spaces?filter={type}" HUB_EVALUATE_URL = HF_ENDPOINT + "/spaces/{path}/resolve/{revision}/{name}" HUB_DEFAULT_VERSION = "main" PY_VERSION = version.parse(platform.python_version()) if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata # General environment variables accepted values for booleans ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) # Imports PANDAS_VERSION = version.parse(importlib_metadata.version("pandas")) PYARROW_VERSION = version.parse(importlib_metadata.version("pyarrow")) USE_TF = os.environ.get("USE_TF", "AUTO").upper() USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() USE_JAX = os.environ.get("USE_JAX", "AUTO").upper() TORCH_VERSION = "N/A" TORCH_AVAILABLE = False if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES: TORCH_AVAILABLE = importlib.util.find_spec("torch") is not None if TORCH_AVAILABLE: try: TORCH_VERSION = version.parse(importlib_metadata.version("torch")) logger.info(f"PyTorch version {TORCH_VERSION} available.") except importlib_metadata.PackageNotFoundError: pass else: logger.info("Disabling PyTorch because USE_TF is set") TF_VERSION = "N/A" TF_AVAILABLE = False if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES: TF_AVAILABLE = importlib.util.find_spec("tensorflow") is not None if TF_AVAILABLE: # For the metadata, we have to look for both tensorflow and tensorflow-cpu for package in [ "tensorflow", "tensorflow-cpu", "tensorflow-gpu", "tf-nightly", "tf-nightly-cpu", "tf-nightly-gpu", "intel-tensorflow", "tensorflow-rocm", "tensorflow-macos", ]: try: TF_VERSION = version.parse(importlib_metadata.version(package)) except importlib_metadata.PackageNotFoundError: continue else: break else: TF_AVAILABLE = False if TF_AVAILABLE: if TF_VERSION.major < 2: logger.info(f"TensorFlow found but with version {TF_VERSION}. `datasets` requires version 2 minimum.") TF_AVAILABLE = False else: logger.info(f"TensorFlow version {TF_VERSION} available.") else: logger.info("Disabling Tensorflow because USE_TORCH is set") JAX_VERSION = "N/A" JAX_AVAILABLE = False if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES: JAX_AVAILABLE = importlib.util.find_spec("jax") is not None if JAX_AVAILABLE: try: JAX_VERSION = version.parse(importlib_metadata.version("jax")) logger.info(f"JAX version {JAX_VERSION} available.") except importlib_metadata.PackageNotFoundError: pass else: logger.info("Disabling JAX because USE_JAX is set to False") # Cache location DEFAULT_XDG_CACHE_HOME = "~/.cache" XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME) DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface") HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME)) DEFAULT_HF_EVALUATE_CACHE = os.path.join(HF_CACHE_HOME, "evaluate") HF_EVALUATE_CACHE = Path(os.getenv("HF_EVALUATE_CACHE", DEFAULT_HF_EVALUATE_CACHE)) DEFAULT_HF_METRICS_CACHE = os.path.join(HF_CACHE_HOME, "metrics") HF_METRICS_CACHE = Path(os.getenv("HF_METRICS_CACHE", DEFAULT_HF_METRICS_CACHE)) DEFAULT_HF_MODULES_CACHE = os.path.join(HF_CACHE_HOME, "modules") HF_MODULES_CACHE = Path(os.getenv("HF_MODULES_CACHE", DEFAULT_HF_MODULES_CACHE)) DOWNLOADED_DATASETS_DIR = "downloads" DEFAULT_DOWNLOADED_EVALUATE_PATH = os.path.join(HF_EVALUATE_CACHE, DOWNLOADED_DATASETS_DIR) DOWNLOADED_EVALUATE_PATH = Path(os.getenv("HF_DATASETS_DOWNLOADED_EVALUATE_PATH", DEFAULT_DOWNLOADED_EVALUATE_PATH)) EXTRACTED_EVALUATE_DIR = "extracted" DEFAULT_EXTRACTED_EVALUATE_PATH = os.path.join(DEFAULT_DOWNLOADED_EVALUATE_PATH, EXTRACTED_EVALUATE_DIR) EXTRACTED_EVALUATE_PATH = Path(os.getenv("HF_DATASETS_EXTRACTED_EVALUATE_PATH", DEFAULT_EXTRACTED_EVALUATE_PATH)) # Download count for the website HF_UPDATE_DOWNLOAD_COUNTS = ( os.environ.get("HF_UPDATE_DOWNLOAD_COUNTS", "AUTO").upper() in ENV_VARS_TRUE_AND_AUTO_VALUES ) # Offline mode HF_EVALUATE_OFFLINE = os.environ.get("HF_EVALUATE_OFFLINE", "AUTO").upper() in ENV_VARS_TRUE_VALUES # File names LICENSE_FILENAME = "LICENSE" METRIC_INFO_FILENAME = "metric_info.json" DATASETDICT_JSON_FILENAME = "dataset_dict.json" MODULE_NAME_FOR_DYNAMIC_MODULES = "evaluate_modules" HF_HUB_ALLOWED_TASKS = [ "image-classification", "translation", "image-segmentation", "fill-mask", "automatic-speech-recognition", "token-classification", "sentence-similarity", "audio-classification", "question-answering", "summarization", "zero-shot-classification", "table-to-text", "feature-extraction", "other", "multiple-choice", "text-classification", "text-to-image", "text2text-generation", "zero-shot-image-classification", "tabular-classification", "tabular-regression", "image-to-image", "tabular-to-text", "unconditional-image-generation", "text-retrieval", "text-to-speech", "object-detection", "audio-to-audio", "text-generation", "conversational", "table-question-answering", "visual-question-answering", "image-to-text", "reinforcement-learning", "voice-activity-detection", "time-series-forecasting", "document-question-answering", ]