import logging from typing import Callable, Dict import evaluate as hf_evaluate from lm_eval.api.model import LM eval_logger = logging.getLogger("lm-eval") MODEL_REGISTRY = {} def register_model(*names): # either pass a list or a single alias. # function receives them as a tuple of strings def decorate(cls): for name in names: assert issubclass( cls, LM ), f"Model '{name}' ({cls.__name__}) must extend LM class" assert ( name not in MODEL_REGISTRY ), f"Model named '{name}' conflicts with existing model! Please register with a non-conflicting alias instead." MODEL_REGISTRY[name] = cls return cls return decorate def get_model(model_name): try: return MODEL_REGISTRY[model_name] except KeyError: raise ValueError( f"Attempted to load model '{model_name}', but no model for this name found! Supported model names: {', '.join(MODEL_REGISTRY.keys())}" ) TASK_REGISTRY = {} GROUP_REGISTRY = {} ALL_TASKS = set() func2task_index = {} def register_task(name): def decorate(fn): assert ( name not in TASK_REGISTRY ), f"task named '{name}' conflicts with existing registered task!" TASK_REGISTRY[name] = fn ALL_TASKS.add(name) func2task_index[fn.__name__] = name return fn return decorate def register_group(name): def decorate(fn): func_name = func2task_index[fn.__name__] if name in GROUP_REGISTRY: GROUP_REGISTRY[name].append(func_name) else: GROUP_REGISTRY[name] = [func_name] ALL_TASKS.add(name) return fn return decorate OUTPUT_TYPE_REGISTRY = {} METRIC_REGISTRY = {} METRIC_AGGREGATION_REGISTRY = {} AGGREGATION_REGISTRY: Dict[str, Callable[[], Dict[str, Callable]]] = {} HIGHER_IS_BETTER_REGISTRY = {} DEFAULT_METRIC_REGISTRY = { "loglikelihood": [ "perplexity", "acc", ], "loglikelihood_rolling": ["word_perplexity", "byte_perplexity", "bits_per_byte"], "multiple_choice": ["acc", "acc_norm"], "generate_until": ["exact_match"], } def register_metric(**args): # TODO: do we want to enforce a certain interface to registered metrics? def decorate(fn): assert "metric" in args name = args["metric"] for key, registry in [ ("metric", METRIC_REGISTRY), ("higher_is_better", HIGHER_IS_BETTER_REGISTRY), ("aggregation", METRIC_AGGREGATION_REGISTRY), ]: if key in args: value = args[key] assert ( value not in registry ), f"{key} named '{value}' conflicts with existing registered {key}!" if key == "metric": registry[name] = fn elif key == "aggregation": registry[name] = AGGREGATION_REGISTRY[value] else: registry[name] = value return fn return decorate def get_metric(name: str, hf_evaluate_metric=False) -> Callable: if not hf_evaluate_metric: if name in METRIC_REGISTRY: return METRIC_REGISTRY[name] else: eval_logger.warning( f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library..." ) try: metric_object = hf_evaluate.load(name) return metric_object.compute except Exception: eval_logger.error( f"{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric", ) def register_aggregation(name: str): def decorate(fn): assert ( name not in AGGREGATION_REGISTRY ), f"aggregation named '{name}' conflicts with existing registered aggregation!" AGGREGATION_REGISTRY[name] = fn return fn return decorate def get_aggregation(name: str) -> Callable[[], Dict[str, Callable]]: try: return AGGREGATION_REGISTRY[name] except KeyError: eval_logger.warning(f"{name} not a registered aggregation metric!") def get_metric_aggregation(name: str) -> Callable[[], Dict[str, Callable]]: try: return METRIC_AGGREGATION_REGISTRY[name] except KeyError: eval_logger.warning(f"{name} metric is not assigned a default aggregation!") def is_higher_better(metric_name) -> bool: try: return HIGHER_IS_BETTER_REGISTRY[metric_name] except KeyError: eval_logger.warning( f"higher_is_better not specified for metric '{metric_name}'!" )