import collections import math import pathlib import sys from typing import Dict, List, Optional, Tuple, Union from lm_eval.api import metrics from lm_eval.utils import eval_logger, positional_deprecated class TaskOutput: """ Wrapper class for Task outputs.It contains various attributes and methods to manage and calculate metrics for the task. Attributes: task (object): The task object. task_name (str): The name of the task. task_config (dict): The configuration of the task. version (str): The version of the task. group_name (str): The name of the task group. n_shot (int): The number of shots for the task. task_alias (str): The alias of the task. group_alias (str): The alias of the task group. is_group (bool): Indicates if the task is a group. logged_samples (list): The list of logged samples. sample_len (int): The length of the samples. sample_metrics (defaultdict): The dictionary of samples' metrics. agg_metrics (defaultdict): The dictionary of aggregate metrics. Methods: from_taskdict(cls, task_name: str, task): Creates a TaskOutput instance from a task dictionary. calculate_aggregate_metric(bootstrap_iters=100000) -> None: Calculates the aggregate metrics for the task. """ def __init__( self, task=None, task_name=None, task_config=None, version=None, group_name=None, n_shot=None, task_alias=None, group_alias=None, is_group=None, ): self.task = task self.task_config = task_config self.task_name = task_name self.group_name = group_name self.version = version self.n_shot = n_shot self.task_alias = task_alias self.group_alias = group_alias self.is_group = is_group self.logged_samples = [] self.sample_len = None self.sample_metrics = collections.defaultdict(list) self.agg_metrics = collections.defaultdict(list) @classmethod def from_taskdict(cls, task_name: str, task): if isinstance(task, tuple): group_name, task = task else: group_name = None if not task: # these gets filtered out in get_task_list # once they are added to group hierarchy is_group = True return cls( task=task, task_name=task_name, is_group=is_group, group_name=group_name ) version = task.VERSION task_config = dict(task.dump_config()) if (n_shot := task_config.get("num_fewshot")) == 0: n_shot = task_config.get("metadata", {}).get("num_fewshot", 0) task_alias = task_config.get("alias") group_alias = task_config.get("group_alias") return cls( task=task, task_name=task_name, task_config=task_config, group_name=group_name, version=version, n_shot=n_shot, task_alias=task_alias, group_alias=group_alias, ) def calculate_aggregate_metric(self, bootstrap_iters=100000) -> None: for (metric, filter_key), items in self.sample_metrics.items(): agg_fn = self.task.aggregation()[metric] metric_key = f"{metric},{filter_key}" self.agg_metrics[metric_key] = agg_fn(items) self.sample_len = len(items) # TODO: same sample size for each metric? if bootstrap_iters: stderr_fn = metrics.stderr_for_metric( metric=agg_fn, bootstrap_iters=min(bootstrap_iters, 100) if metric in ["bleu", "chrf", "ter"] else bootstrap_iters, ) self.agg_metrics[f"{metric}_stderr,{filter_key}"] = ( stderr_fn(items) if (stderr_fn and len(items) > 1) else "N/A" ) def __repr__(self): return ( f"TaskOutput(task_name={self.task_name}, " f"group_name={self.group_name}, " f"version={self.version}," f"n_shot={self.n_shot}" f"task_alias={self.task_alias}, group_alias={self.group_alias})" ) def get_task_list(task_dict: dict) -> Tuple[Dict[str, list], List[TaskOutput]]: task_hierarchy = collections.defaultdict(list) outputs = list(TaskOutput.from_taskdict(x, y) for x, y in task_dict.items()) for task_output in outputs: if group_name := task_output.group_name: task_hierarchy[group_name].append(task_output.task_name) else: task_hierarchy[task_output.task_name] = [] # returns task_hierarchy tracking which groups contain which subtasks, # and a list of TaskOutput classes for each non-group subtask return task_hierarchy, [x for x in outputs if x.task] def print_writeout(task) -> None: for inst in task.instances: # print the prompt for the first few documents if inst.doc_id < 1: eval_logger.info( f"Task: {task}; document {inst.doc_id}; context prompt (starting on next line):\ \n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)" ) eval_logger.info(f"Request: {str(inst)}") def get_sample_size(task, limit: Optional[int]) -> Union[int, None]: if limit is not None: limit = ( int(math.ceil(len(task.eval_docs) * limit)) if limit < 1.0 else int(limit) ) return limit def prepare_print_tasks( task_hierarchy: dict, results: dict, tab=0 ) -> Tuple[dict, dict]: """ @param task_hierarchy: Dictionary representing the group hierarchy of tasks. Each key is a group name and its value is a list of task names. @param results: Dictionary containing the results of each task. Each key is a group name and its value is a dictionary of task results. @param tab: The indentation level for printing the task hierarchy. Default is 0. @return: A tuple of two dictionaries: results_agg and groups_agg. results_agg contains aggregated results for each task, and groups_agg contains aggregated results for each group. Prepares the task hierarchy and aggregates the results for each task and group recursively for printing. """ results_agg = collections.defaultdict(dict) groups_agg = collections.defaultdict(dict) (group_name, task_list), *_ = task_hierarchy.items() task_list = sorted(task_list) results_agg[group_name] = results[group_name].copy() # results_agg[group_name]["tab"] = tab if "samples" in results_agg[group_name]: results_agg[group_name].pop("samples") tab_string = " " * tab + "- " if tab > 0 else "" if "alias" in results_agg[group_name]: results_agg[group_name]["alias"] = tab_string + results_agg[group_name]["alias"] else: results_agg[group_name]["alias"] = tab_string + group_name if len(task_list) > 0: groups_agg[group_name] = results[group_name].copy() # groups_agg[group_name]["tab"] = tab if "samples" in groups_agg[group_name]: groups_agg[group_name].pop("samples") if "alias" in groups_agg[group_name]: groups_agg[group_name]["alias"] = ( tab_string + groups_agg[group_name]["alias"] ) else: groups_agg[group_name]["alias"] = tab_string + group_name for task_name in task_list: if task_name in task_hierarchy: _task_hierarchy = { **{task_name: task_hierarchy[task_name]}, **task_hierarchy, } else: _task_hierarchy = { **{task_name: []}, **task_hierarchy, } _results_agg, _groups_agg = prepare_print_tasks( _task_hierarchy, results, tab + 1 ) results_agg = {**results_agg, **_results_agg} groups_agg = {**groups_agg, **_groups_agg} return results_agg, groups_agg def consolidate_results( eval_tasks: List[TaskOutput], ) -> Tuple[dict, dict, dict, dict, dict]: """ @param eval_tasks: list(TaskOutput). @return: A tuple containing the consolidated results, samples, configs, versions, and num_fewshot. Consolidates the results of multiple evaluation tasks into a single structure. The method iterates over each evaluation instance and extracts relevant information to create the consolidated results structure. The consolidated results structure has the following properties: - results: A defaultdict with task names as keys and dictionaries as values. Each dictionary contains metric/filter pairs as keys and corresponding metric values as values. The "alias" key is used to store task aliases specified in the task configuration. - samples: A defaultdict with task names as keys and lists of log samples as values. - configs: A defaultdict with task names as keys and task configurations as values. - versions: A defaultdict with task names as keys and task versions as values. - num_fewshot: A defaultdict with task names as keys and number of few-shot samples as values. The method then returns the consolidated results, samples, configs, versions, and num_fewshot as a tuple. """ # stores the final result for each task, for each metric/filter pair. results = collections.defaultdict(dict) # logs info about each document evaluated. samples = collections.defaultdict(list) # store num-fewshot value per task num_fewshot = collections.defaultdict(int) # Tracks the YAML configs of all chosen task configs = collections.defaultdict(dict) # Tracks each task's version. versions = collections.defaultdict(dict) for task_output in eval_tasks: if "task_alias" in (task_config := task_output.task_config): results[task_output.task_name]["alias"] = task_config["task_alias"] if group_alias := task_output.group_alias: if group_alias not in results and (group_name := task_output.group_name): results[group_name]["alias"] = group_alias num_fewshot[task_output.task_name] = task_output.n_shot configs[task_output.task_name] = task_output.task_config versions[task_output.task_name] = task_output.version samples[task_output.task_name] = task_output.logged_samples for (metric, filter_key), items in task_output.sample_metrics.items(): metric_key = f"{metric},{filter_key}" results[task_output.task_name][metric_key] = task_output.agg_metrics[ metric_key ] results[task_output.task_name]["samples"] = task_output.sample_len results[task_output.task_name][ f"{metric}_stderr,{filter_key}" ] = task_output.agg_metrics[f"{metric}_stderr,{filter_key}"] return results, samples, configs, versions, num_fewshot @positional_deprecated def find_test_root(start_path: pathlib.Path) -> pathlib.Path: """ Search upward in the directory tree to a maximum of three layers to find and return the package root (containing the 'tests' folder) """ cur_path = start_path.resolve() max_layers = 3 for _ in range(max_layers): if (cur_path / "tests" / "test_version_stable.py").exists(): return cur_path else: cur_path = cur_path.parent.resolve() raise FileNotFoundError( f"Unable to find package root within {max_layers} upwards" + f"of {start_path}" ) @positional_deprecated def run_task_tests(task_list: List[str]): """ Find the package root and run the tests for the given tasks """ import pytest package_root = find_test_root(start_path=pathlib.Path(__file__)) task_string = " or ".join(task_list) args = [ f"{package_root}/tests/test_version_stable.py", f"--rootdir={package_root}", "-k", f"{task_string}", ] sys.path.append(str(package_root)) pytest_return_val = pytest.main(args) if pytest_return_val: raise ValueError( f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}" )