import copy import json import logging import subprocess from collections import defaultdict from typing import List, Optional, Union import torch import torch.nn.functional as F import transformers from packaging import version from tqdm import tqdm from transformers import GenerationConfig from transformers.generation import StoppingCriteriaList import lm_eval.models.utils from lm_eval import utils from lm_eval.api.model import TemplateLM from lm_eval.api.registry import register_model from lm_eval.models.utils import stop_sequences_criteria try: NEURON_AVAILABLE = True from optimum.neuron import NeuronModelForCausalLM from optimum.neuron.generation import TokenSelector from optimum.neuron.version import __version__ as optimum_neuron_version except ImportError: NeuronModelForCausalLM = object NEURON_AVAILABLE = False logger = logging.getLogger(__name__) def get_nc_count() -> Union[int, None]: """Returns the number of neuron cores on the current instance.""" try: cmd = "neuron-ls --json-output" result = subprocess.run(cmd, shell=True, capture_output=True) print(f"inferring nc_count from `neuron-ls` {result.stdout}") json_output = json.loads(result.stdout) count = sum([x["nc_count"] for x in json_output]) print(f"nc_count={count}") return count except Exception: return None def wrap_constant_batch_size(func): def _decorator(self, input_ids): """input_ids a 2D array with batch_size on dim=0 makes sure the func runs with self.batch_size """ # access a from TestSample batch_size = input_ids.shape[0] if batch_size < self.batch_size: # handle the event of input_ids.shape[0] != batch_size # Neuron cores expect constant batch_size input_ids = torch.concat( ( input_ids, # add missing_batch_size dummy torch.zeros( [self.batch_size - batch_size, *input_ids.size()[1:]], dtype=input_ids.dtype, device=input_ids.device, ), ), dim=0, ) elif batch_size > self.batch_size: raise ValueError( f"The specified batch_size ({batch_size}) exceeds the model static batch size ({self.batch_size})" ) # return the forward pass that requires constant batch size return func(self, input_ids)[:batch_size] return _decorator class CustomNeuronModelForCausalLM(NeuronModelForCausalLM): """NeuronModelForCausalLM with `stopping_criteria` in `generate`""" def generate( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, stopping_criteria: Optional["StoppingCriteriaList"] = None, generation_config: Optional["GenerationConfig"] = None, **kwargs, ) -> torch.LongTensor: r""" A streamlined generate() method overriding the transformers.GenerationMixin.generate() method. This method uses the same logits processors/warpers and stopping criteria as the transformers library `generate()` method but restricts the generation to greedy search and sampling. It does not support transformers `generate()` advanced options. Please refer to https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationMixin.generate for details on generation configuration. Parameters: input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. generation_config (`~transformers.generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~transformers.generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. Returns: `torch.Tensor`: A `torch.FloatTensor`. """ # The actual generation configuration is a combination of config and parameters generation_config = copy.deepcopy( self.generation_config if generation_config is None else generation_config ) model_kwargs = generation_config.update( **kwargs ) # All unused kwargs must be model kwargs # Check model kwargs are actually used by either prepare_inputs_for_generation or forward self._validate_model_kwargs(model_kwargs) # Instantiate a TokenSelector for the specified configuration selector = TokenSelector.create( input_ids, generation_config, self, self.max_length ) selector.stopping_criteria.append(stopping_criteria) # Verify that the inputs are compatible with the model static input dimensions batch_size, sequence_length = input_ids.shape if sequence_length > self.max_length: raise ValueError( f"The input sequence length ({sequence_length}) exceeds the model static sequence length ({self.max_length})" ) padded_input_ids = input_ids padded_attention_mask = attention_mask if batch_size > self.batch_size: raise ValueError( f"The specified batch_size ({batch_size}) exceeds the model static batch size ({self.batch_size})" ) elif batch_size < self.batch_size: logger.warning( "Inputs will be padded to match the model static batch size. This will increase latency." ) padding_shape = [self.batch_size - batch_size, sequence_length] padding = torch.full( padding_shape, fill_value=self.config.eos_token_id, dtype=torch.int64 ) padded_input_ids = torch.cat([input_ids, padding]) if attention_mask is not None: padding = torch.zeros(padding_shape, dtype=torch.int64) padded_attention_mask = torch.cat([attention_mask, padding]) # Drop the current generation context and clear the Key/Value cache self.reset_generation() output_ids = self.generate_tokens( padded_input_ids, selector, batch_size, attention_mask=padded_attention_mask, **model_kwargs, ) return output_ids[:batch_size, :] @register_model("neuronx") class NEURON_HF(TemplateLM): """ Enables usage with on AWS Neuron using the HuggingFace Transformers + Transformers neuronx library. Tested with neuron 2.17.0 """ _DEFAULT_MAX_LENGTH = 2048 def __init__( self, pretrained: Optional[str] = "TinyLlama/TinyLlama-1.1B-Chat-v1.0", revision: Optional[str] = "main", tp_degree: Optional[int] = None, subfolder: Optional[str] = None, tokenizer: Optional[str] = None, truncation: Optional[bool] = False, max_length: Optional[int] = None, dtype: Optional[Union[str, torch.dtype]] = "auto", batch_size: Optional[int] = 1, low_cpu_mem_usage: Optional[bool] = True, trust_remote_code: Optional[bool] = False, use_fast_tokenizer: Optional[bool] = True, add_bos_token: Optional[bool] = False, ) -> None: if not NEURON_AVAILABLE: raise Exception( "Tried to load neuron model, but neuron is not installed ", "please install neuron via pip install transformers-neuron ", "also make sure you are running on an AWS inf2 instance", ) if version.parse(optimum_neuron_version) != version.parse("0.0.17"): logger.warning( '`optimum-neuron` model requires `pip install "optimum[neuronx]>=0.0.17" ' "preferably using the Hugging Face Neuron Deep Learning AMI (Ubuntu 22.04) " "https://aws.amazon.com/marketplace/pp/prodview-gr3e6yiscria2 " f"You are using optimum-neuron={optimum_neuron_version}" ) super().__init__() assert isinstance(pretrained, str) assert isinstance(batch_size, (int, str)) self.batch_size_per_gpu = int(batch_size) batch_size = int(batch_size) if tp_degree is None: # execute `neuron-ls --json-output | jq '.[0].nc_count'`` # to get the number of neuron cores on your instance tp_degree = get_nc_count() assert isinstance(tp_degree, int), ( f"model_args must include tp_degree. tp_degree must be set to an integer," f" but is tp_degree=`{tp_degree}` with type=`{type(tp_degree)}`." "Set it to number of neuron cores on your instance." " For inf2.xlarge and inf2.8xlarge, set it to `2`." " For inf2.24xlarge, set it to `12`." " For inf2.48xlarge, set it to `24`." ) # TODO: update this to be less of a hack once subfolder is fixed in HF revision = revision + ("/" + subfolder if subfolder is not None else "") self._config = transformers.AutoConfig.from_pretrained( pretrained, revision=revision, trust_remote_code=trust_remote_code, ) torch_dtype = lm_eval.models.utils.get_dtype(dtype) assert torch_dtype in [ torch.float16, torch.bfloat16, ], "Only float16 and bfloat16 are supported" self.tokenizer = transformers.AutoTokenizer.from_pretrained( pretrained if tokenizer is None else tokenizer, revision=revision, trust_remote_code=trust_remote_code, use_fast=use_fast_tokenizer, ) # Neuron specific code if torch_dtype == torch.float16: self.amp_dtype = "f16" elif torch_dtype == torch.bfloat16: self.amp_dtype = "bf16" elif torch_dtype == torch.float32: self.amp_dtype = "f32" else: raise NotImplementedError("Only float16 and bfloat16 are implemented.") compiler_args = {"num_cores": tp_degree, "auto_cast_type": self.amp_dtype} input_shapes = { "batch_size": batch_size, "sequence_length": self._DEFAULT_MAX_LENGTH, } print( f"{'='*20} \n loading model to neuron with" f" {compiler_args}, {input_shapes}..." ) self.model = CustomNeuronModelForCausalLM.from_pretrained( pretrained, revision=revision, trust_remote_code=trust_remote_code, low_cpu_mem_usage=low_cpu_mem_usage, export=True, **compiler_args, **input_shapes, ) print(f"SUCCESS: neuron model compiled. \n {'='*20}") self.truncation = truncation self.vocab_size = self.tokenizer.vocab_size self.tokenizer.pad_token_id = self.tokenizer.eos_token_id self.add_bos_token = self.add_bos_token self._max_length = max_length self.batch_schedule = 1 self.batch_sizes = {} @property def config(self): # return the associated transformers.AutoConfig for the given pretrained model. return self._config @property def eot_token_id(self): # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* return self.tokenizer.eos_token_id @property def prefix_token_id(self): # it is used as prefix for loglikelihood return self.tokenizer.bos_token_id or self.tokenizer.eos_token_id @property def max_length(self): if self._max_length: # if max length manually set, return it return self._max_length seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx") for attr in seqlen_config_attrs: if hasattr(self.model.config, attr): return getattr(self.model.config, attr) if hasattr(self.tokenizer, "model_max_length"): if self.tokenizer.model_max_length == 1000000000000000019884624838656: return self._DEFAULT_MAX_LENGTH return self.tokenizer.model_max_length return self._DEFAULT_MAX_LENGTH @property def max_gen_toks(self) -> int: return 256 @property def batch_size(self): return self.batch_size_per_gpu @property def device(self): """device are neuron cores, but the created tensors are on CPU.""" return "cpu" @property def rank(self): return 0 @property def world_size(self): return 1 def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None): """ """ if add_special_tokens is None: add_special_tokens = False or self.add_bos_token encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens) # left-truncate the encoded context to be at most `left_truncate_len` tokens long if left_truncate_len: encoding = encoding[-left_truncate_len:] return encoding def tok_batch_encode( self, strings: List[str], padding_side: str = "left", left_truncate_len: int = None, truncation: bool = False, ): # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode. old_padding_side = self.tokenizer.padding_side self.tokenizer.padding_side = padding_side add_special_tokens = False or self.add_bos_token encoding = self.tokenizer( strings, truncation=truncation, padding="longest", return_tensors="pt", add_special_tokens=add_special_tokens, ) if left_truncate_len: encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:] encoding["attention_mask"] = encoding["attention_mask"][ :, -left_truncate_len: ] self.tokenizer.padding_side = old_padding_side return encoding["input_ids"], encoding["attention_mask"] def tok_decode(self, tokens): return self.tokenizer.decode(tokens) @wrap_constant_batch_size def _model_call(self, input_ids: torch.Tensor): """ get logits for the entire sequence :param input_ids: torch.Tensor A torch tensor of shape [batch, sequence_cont] the size of sequence may vary from call to call :return A torch tensor of shape [batch, sequence, vocab] with the logits returned from the model's decoder-lm head """ _, sequence_length = input_ids.shape with torch.inference_mode(): cache_ids = torch.arange(0, sequence_length, dtype=torch.int32).split(1) input_ids_split = input_ids.split(1, dim=1) return torch.concat( [ self.model.forward( input_ids=input_id, cache_ids=cache_id, return_dict=False )[0] for input_id, cache_id in zip(input_ids_split, cache_ids) ], dim=1, ) def _model_generate(self, context, max_length, stop, **generation_kwargs): # we require users to pass do_sample=True explicitly # for non-greedy gen. This should be reevaluated when considering beam search. with torch.inference_mode(): if "do_sample" not in generation_kwargs.keys(): generation_kwargs["do_sample"] = False stopping_criteria = stop_sequences_criteria( self.tokenizer, stop + [self.tokenizer.decode([self.config.eos_token_id])], 1, context.shape[0], ) return self.model.generate( input_ids=context, max_length=max_length, stopping_criteria=stopping_criteria, pad_token_id=self.eot_token_id, use_cache=True, **generation_kwargs, ) def _select_cont_toks(self, logits, contlen=None, inplen=None): assert ( contlen and inplen ), "Must pass input len and cont. len to select scored logits for causal LM" # discard right-padding. # also discard the input/context tokens. we'll only score continuations. logits = logits[inplen - contlen : inplen] return logits def loglikelihood_rolling(self, requests, disable_tqdm: bool = False): loglikelihoods = [] adaptive_batch_size = None for (string,) in tqdm( [req.args for req in requests], disable=(disable_tqdm or (self.rank != 0)) ): rolling_token_windows = list( map( utils.make_disjoint_window, utils.get_rolling_token_windows( token_list=self.tok_encode(string), prefix_token=self.prefix_token_id, max_seq_len=self.max_length, context_len=1, ), ) ) # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case rolling_token_windows = [(None,) + x for x in rolling_token_windows] pad_amnt = 0 if self.world_size > 1: # We pad out the external document-level iterator so the inner iterator doesn't hang mytensor = torch.tensor(len(rolling_token_windows), device=self.device) gathered = ( self.accelerator.gather(mytensor).cpu().detach().numpy().tolist() ) pad_amnt = max(gathered) - gathered[self.rank] if pad_amnt > 0: rolling_token_windows += pad_amnt * [rolling_token_windows[0]] string_nll = self._loglikelihood_tokens( rolling_token_windows, disable_tqdm=True, override_bs=adaptive_batch_size, ) if (self.world_size > 1) and (pad_amnt > 0): string_nll = [x[0] for x in string_nll[:-pad_amnt]] else: # discard is_greedy string_nll = [x[0] for x in string_nll] string_nll = sum(string_nll) loglikelihoods.append(string_nll) return loglikelihoods def _loglikelihood_tokens( self, requests, disable_tqdm: bool = False, override_bs=None ): # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context res = [] def _collate(x): # the negative sign on len(toks) sorts descending - this has a few advantages: # - time estimates will always be over not underestimates, which is more useful for planning # - to know the size of a batch when going through the list, you know the first one is always the batch # padded context length. this is useful to simplify the batching logic and more importantly to make # automatic adaptive batches much much easier to implement # - any OOMs will happen right away rather than near the end toks = x[1] + x[2] return -len(toks), tuple(toks) re_ord = utils.Reorderer(requests, _collate) n_reordered_requests = len(re_ord.get_reordered()) # noqa # automatic (variable) batch size detection for vectorization # pull longest context sample from request chunks = lm_eval.models.utils.chunks( re_ord.get_reordered(), n=self.batch_size, fn=None, ) for chunk in tqdm(chunks, disable=(disable_tqdm or (self.rank != 0))): inps = [] cont_toks_list = [] inplens = [] conts = [] # noqa encoder_attns = [] # noqa padding_len_inp = None padding_len_cont = None # noqa # because vectorizing is annoying, we first convert each (context, continuation) pair to padded # tensors, then we pack them together into a batch, call the model, and then pick it all apart # again because vectorizing is annoying for _, context_enc, continuation_enc in chunk: # sanity check assert len(context_enc) > 0 assert len(continuation_enc) > 0 assert len(continuation_enc) <= self.max_length # how this all works (illustrated on a causal decoder-only setup): # CTX CONT # inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1] # model \ \ # logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the # cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice # when too long to fit in context, truncate from the left inp = torch.tensor( (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1], dtype=torch.long, device=self.device, ) (inplen,) = inp.shape padding_len_inp = ( max(padding_len_inp, inplen) if padding_len_inp is not None else inplen ) inps.append(inp) # [1, inp_length] cont_toks_list.append(continuation_enc) inplens.append(inplen) # create encoder attn mask and batched conts, if seq2seq call_kwargs = {} batched_inps = lm_eval.models.utils.pad_and_concat( padding_len_inp, inps, padding_side="right" ) # [batch, padding_len_inp] multi_logits = F.log_softmax( self._model_call(batched_inps, **call_kwargs), dim=-1 ) # [batch, padding_length (inp or cont), vocab] for (cache_key, _, _), logits, inplen, cont_toks in zip( chunk, multi_logits, inplens, cont_toks_list ): # Slice to original seq length contlen = len(cont_toks) # take only logits in the continuation # (discard context toks if decoder-only ; discard right-padding) # also discards + checks for "virtual tokens" in the causal LM's input window # from prompt/prefix tuning tokens, if applicable ctx_len = inplen + (logits.shape[0] - padding_len_inp) logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len) logits = logits.unsqueeze(0) # [1, seq, vocab] # Check if per-token argmax is exactly equal to continuation greedy_tokens = logits.argmax(dim=-1) cont_toks = torch.tensor( cont_toks, dtype=torch.long, device=self.device ).unsqueeze(0) # [1, seq] max_equal = (greedy_tokens == cont_toks).all() # Obtain log-probs at the corresponding continuation token indices # last_token_slice = logits[:, -1, :].squeeze(0).tolist() logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze( -1 ) # [1, seq] # Answer: (log prob, is-exact-match) answer = (float(logits.sum()), bool(max_equal)) res.append(answer) self.cache_hook.add_partial("loglikelihood", cache_key, answer) return re_ord.get_original(res) def generate_until(self, requests, disable_tqdm: bool = False): res = defaultdict(list) re_ords = {} def _collate(x): # the negative sign on len(toks) sorts descending - this has a few advantages: # - time estimates will always be over not underestimates, which is more useful for planning # - to know the size of a batch when going through the list, you know the first one is always the batch # padded context length. this is useful to simplify the batching logic and more importantly to make # automatic adaptive batches much much easier to implement # - any OOMs will happen right away rather than near the end toks = self.tok_encode(x[0]) return -len(toks), x[0] # we group requests by their generation_kwargs, # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling # in the same batch. grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1])) for key, reqs in grouper.get_grouped().items(): # within each set of reqs for given kwargs, we reorder by token length, descending. re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate) pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0))) # for each different set of kwargs, we execute all requests, by batch. for key, re_ord in re_ords.items(): chunks = lm_eval.models.utils.chunks( re_ord.get_reordered(), n=self.batch_size ) for chunk in tqdm(chunks, disable=self.rank != 0): contexts, all_gen_kwargs = zip(*chunk) # we assume all gen kwargs in the batch are the same # this is safe to assume because the `grouper` object ensures it. gen_kwargs = all_gen_kwargs[0] # unpack our keyword arguments. until = None if isinstance(gen_kwargs, dict): kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1 if "until" in kwargs.keys(): until = kwargs.pop("until") if isinstance(until, str): until = [until] elif not isinstance(until, list): raise ValueError( f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}" ) else: raise ValueError( f"Expected `kwargs` to be of type `dict` but got {kwargs}" ) # add EOS token to stop sequences eos = self.tok_decode(self.eot_token_id) if not until: until = [eos] else: until.append(eos) if "max_gen_toks" in kwargs.keys(): max_gen_toks = kwargs.pop("max_gen_toks") else: max_gen_toks = self.max_gen_toks # first stop sequence is used to halt generation upon encountering primary_until = [until[0]] max_ctx_len = self.max_length - max_gen_toks # encode, pad, and truncate contexts for this batch context_enc, attn_masks = self.tok_batch_encode( contexts, left_truncate_len=max_ctx_len, truncation=self.truncation, ) context_enc = context_enc.to(self.device) attn_masks = attn_masks.to(self.device) if "max_length" not in kwargs: kwargs["max_length"] = context_enc.shape[1] + max_gen_toks # perform batched generation cont = self._model_generate( context=context_enc, attention_mask=attn_masks, stop=primary_until, **kwargs, ) cont_toks_list = cont.tolist() for cont_toks, context in zip(cont_toks_list, contexts): # discard context + left-padding toks if using causal decoder-only LM cont_toks = cont_toks[context_enc.shape[1] :] s = self.tok_decode(cont_toks) # use secondary stop seqs to cut off should-have-been-stopped content post-hoc for term in until: if len(term) > 0: # ignore '' separator, # for seq2seq case where self.tok_decode(self.eot_token_id) = '' s = s.split(term)[0] res[key].append(s) self.cache_hook.add_partial( "generate_until", (context, gen_kwargs), s ) pbar.update(1) # reorder this group of results back to original unsorted form res[key] = re_ord.get_original(res[key]) pbar.close() return grouper.get_original(res)