import copy import os from collections import defaultdict from importlib.util import find_spec from typing import List, Literal, Optional, Tuple from tqdm import tqdm import lm_eval.models.utils from lm_eval import utils from lm_eval.api.model import LM, TemplateLM from lm_eval.api.registry import register_model from lm_eval.models.utils import retry_on_specific_exceptions from lm_eval.utils import eval_logger def get_result(response, ctxlen: int) -> Tuple[float, bool]: """Process results from OpenAI API response. :param response: dict OpenAI API Response :param ctxlen: int Length of context (so we can slice them away and only keep the predictions) :return: continuation_logprobs: np.array Log probabilities of continuation tokens is_greedy: bool whether argmax matches given continuation exactly """ is_greedy = True logprobs = response.logprobs.token_logprobs continuation_logprobs = sum(logprobs[ctxlen:]) for i in range(ctxlen, len(response.logprobs.token_logprobs)): token = response.logprobs.token_logprobs[i] top_tokens = response.logprobs.top_logprobs[i] top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x]) if top_token != token: is_greedy = False break return continuation_logprobs, is_greedy def oa_completion(client, chat: bool = False, **kwargs): """Query OpenAI API for completion. Retry with back-off until they respond """ if not find_spec("openai") or not find_spec("tiktoken"): raise Exception( "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. " "Please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`" ) else: import openai def _exception_callback(e: Exception, sleep_time: float) -> None: import traceback traceback.print_exc() @retry_on_specific_exceptions( on_exceptions=[openai.OpenAIError], max_retries=None, # retry forever, consider changing on_exception_callback=_exception_callback, ) def completion(): if chat: return client.chat.completions.create(**kwargs) else: return client.completions.create(**kwargs) return completion() @register_model("openai-completions", "local-completions") class OpenaiCompletionsLM(TemplateLM): _DEFAULT_MAX_LENGTH = 2048 def __init__( self, model: str, base_url: str = None, tokenizer: Optional[str] = None, tokenizer_backend: Literal["tiktoken", "huggingface"] = "tiktoken", truncate: bool = False, max_gen_toks: int = 256, batch_size: int = 1, seed: int = 1234, max_length: Optional[int] = None, ) -> None: """ :param engine: str OpenAI API engine (e.g. gpt-3.5-turbo-instruct) :param truncate: bool Truncate input if too long (if False and input is too long, throw error) """ super().__init__() self.seed = seed try: import openai # noqa: E401 import tiktoken except ModuleNotFoundError: raise Exception( "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \ please install these via `pip install lm-eval[openai]` or `pip install -e .\"[openai]\"`", ) self.model = model self.base_url = base_url self.tokenizer_backend = tokenizer_backend self.truncate = truncate self._batch_size = int(batch_size) self._max_gen_toks = max_gen_toks self._max_length = max_length # if we have a local model, use HF tokenizer over tiktoken if self.tokenizer_backend == "huggingface": import transformers # noqa: E401 self.tokenizer = transformers.AutoTokenizer.from_pretrained( tokenizer if tokenizer else self.model ) self.vocab_size = self.tokenizer.vocab self.end_of_text_token_id = self.tokenizer.eos_token elif self.tokenizer_backend == "tiktoken": if self.base_url: eval_logger.warning( f"Passed `base_url={self.base_url}` but using Tiktoken tokenizer backend. " "Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken." ) self.tokenizer = tiktoken.encoding_for_model(self.model) self.vocab_size = self.tokenizer.n_vocab self.end_of_text_token_id = self.tokenizer.eot_token else: raise ValueError( f"Expected tokenizer_backend to be one of ['tiktoken', 'huggingface'] but got {self.tokenizer_backend}" ) # Read from environment variable OPENAI_API_KEY # Set to EMPTY for local openai.api_key = os.environ["OPENAI_API_KEY"] if self.base_url: self.client = openai.OpenAI(base_url=self.base_url) else: self.client = openai.OpenAI() @property def eot_token_id(self): return self.end_of_text_token_id @property def max_length(self) -> int: if self._max_length: return self._max_length else: return self._DEFAULT_MAX_LENGTH @property def max_gen_toks(self) -> int: return self._max_gen_toks @property def batch_size(self) -> int: return self._batch_size @property def device(self): # Isn't used because we override _loglikelihood_tokens raise NotImplementedError() def tok_encode(self, string: str, **kwargs) -> List[int]: return self.tokenizer.encode(string) def tok_decode(self, tokens: List[int]) -> str: return self.tokenizer.decode(tokens) def _loglikelihood_tokens( self, requests, disable_tqdm: bool = False ) -> List[Tuple[float, bool]]: res = [] def _collate(x): # this doesn't efficiently handle last-token differences yet, but those are kinda annoying because # it's not guaranteed that the 100 or so logprobs we get to see actually contain all the continuations # we care about, and so we need some kind of backup for when it isn't toks = x[1] + x[2] return -len(toks), tuple(toks) re_ord = utils.Reorderer(requests, _collate) for chunk in tqdm( list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)), disable=disable_tqdm, ): inps = [] ctxlens = [] for cache_key, context_enc, continuation_enc in chunk: # max_length+1 because the API takes up to 2049 tokens, including the first context token inp = (context_enc + continuation_enc)[-(self.max_length + 1) :] # TODO: the logic is much simpler if we just look at the length of continuation tokens ctxlen = len(context_enc) - max( 0, len(context_enc) + len(continuation_enc) - (self.max_length + 1) ) inps.append(inp) ctxlens.append(ctxlen) response = oa_completion( client=self.client, model=self.model, prompt=inps, echo=True, max_tokens=0, temperature=0.0, logprobs=10, seed=self.seed, ) for resp, ctxlen, (cache_key, context_enc, continuation_enc) in zip( response.choices, ctxlens, chunk ): answer = get_result(resp, ctxlen) res.append(answer) # partial caching if cache_key is not None: self.cache_hook.add_partial("loglikelihood", cache_key, answer) return re_ord.get_original(res) def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]: if not requests: return [] res = [] requests = [req.args for req in requests] def _collate(x): toks = self.tok_encode(x[0]) return len(toks), x[0] re_ord = utils.Reorderer(requests, _collate) def sameuntil_chunks(xs, size): ret = [] lastuntil = xs[0][1] for x in xs: if len(ret) >= size or x[1] != lastuntil: yield ret, lastuntil ret = [] lastuntil = x[1] ret.append(x) if ret: yield ret, lastuntil # todo: more intelligent batching for heterogeneous `until` for chunk, request_args in tqdm( list(sameuntil_chunks(re_ord.get_reordered(), self.batch_size)), disable=disable_tqdm, ): inps = [] self._max_gen_toks = request_args.get("max_gen_toks", self.max_gen_toks) for context, _ in chunk: context_enc = self.tok_encode(context) inp = context_enc[-(self.max_length - self.max_gen_toks) :] inps.append(inp) until = request_args.get("until", ["<|endoftext|>"]) request_args["temperature"] = request_args.get("temperature", 0) response = oa_completion( client=self.client, model=self.model, prompt=inps, max_tokens=self.max_gen_toks, stop=until, seed=self.seed, **{ k: v for k, v in request_args.items() if k not in {"do_sample", "max_gen_toks", "until"} }, ) for resp, (context, args_) in zip(response.choices, chunk): s = getattr(resp, "text") until_ = until for term in until_: if len(term) > 0: s = s.split(term)[0] # partial caching self.cache_hook.add_partial( "generate_until", (context, {"until": until_}), s ) res.append(s) return re_ord.get_original(res) def _model_call(self, inps): # Isn't used because we override _loglikelihood_tokens raise NotImplementedError() def _model_generate(self, context, max_length, eos_token_id): # Isn't used because we override generate_until raise NotImplementedError() def loglikelihood_rolling( self, requests, disable_tqdm: bool = False ) -> List[float]: loglikelihoods = [] for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm): rolling_token_windows = list( map( utils.make_disjoint_window, utils.get_rolling_token_windows( token_list=self.tok_encode(string), prefix_token=self.eot_token_id, max_seq_len=self.max_length, context_len=1, ), ) ) # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case rolling_token_windows = [(None,) + x for x in rolling_token_windows] string_nll = self._loglikelihood_tokens( rolling_token_windows, disable_tqdm=True, ) # discard is_greedy string_nll = [x[0] for x in string_nll] string_nll = sum(string_nll) loglikelihoods.append(string_nll) return loglikelihoods @register_model("openai-chat-completions", "local-chat-completions") class OpenaiChatCompletionsLM(LM): def __init__( self, model: str = "gpt-3.5-turbo", # GPT model or Local model using HuggingFace model paths base_url: str = None, truncate: bool = False, **kwargs, ) -> None: """ :param model: str Implements an OpenAI-style chat completion API for accessing both OpenAI OR locally-hosted models using HuggingFace Tokenizer OpenAI API model (e.g. gpt-3.5-turbo) using the **gen_kwargs passed on init :param truncate: bool Truncate input if too long (if False and input is too long, throw error) """ super().__init__() try: import openai # noqa: E401 except ModuleNotFoundError: raise Exception( "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \ please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`", ) self.model = model self.base_url = base_url self.truncate = truncate # Read from environment variable OPENAI_API_KEY # Set to EMPTY for local if self.base_url: self.client = openai.OpenAI(base_url=self.base_url) else: self.client = openai.OpenAI() # openai.AsyncOpenAI() @property def max_length(self) -> int: # Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token return 2048 @property def max_gen_toks(self) -> int: return 256 @property def batch_size(self): # Isn't used because we override _loglikelihood_tokens raise NotImplementedError() @property def device(self): # Isn't used because we override _loglikelihood_tokens raise NotImplementedError() def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]: res = defaultdict(list) re_ords = {} # we group requests by their generation_kwargs, # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling # in the same batch. grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1])) for key, reqs in grouper.get_grouped().items(): # within each set of reqs for given kwargs, we reorder by token length, descending. re_ords[key] = utils.Reorderer( [req.args for req in reqs], lambda x: (-len(x[0]), x[0]) ) pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0))) for key, re_ord in re_ords.items(): # n needs to be 1 because messages in # chat completion are not batch but # is regarded as a single conversation. chunks = lm_eval.models.utils.chunks(re_ord.get_reordered(), n=1) for chunk in chunks: contexts, all_gen_kwargs = zip(*chunk) inps = [{"role": "user", "content": context} for context in contexts] gen_kwargs = all_gen_kwargs[0] until = None if isinstance(kwargs := copy.deepcopy(gen_kwargs), dict): if "do_sample" in kwargs.keys(): kwargs.pop("do_sample") if "until" in kwargs.keys(): until = kwargs.pop("until") if isinstance(until, str): until = [kwargs] elif not isinstance(until, list): raise ValueError( f"Expected repr(kwargs['until']) to be of type Union[str, list] but got {until}" ) kwargs["stop"] = until kwargs["max_tokens"] = kwargs.pop("max_gen_toks", self.max_gen_toks) else: raise ValueError( f"Expected repr(kwargs) to be of type repr(dict) but got {kwargs}" ) response = oa_completion( client=self.client, chat=True, messages=inps, model=self.model, **kwargs, ) for resp, (context, args_) in zip(response.choices, chunk): s = resp.message.content if until is not None: for term in until: if len(term) > 0: s = s.split(term)[0] res[key].append(s) self.cache_hook.add_partial( "generate_until", (context, {"until": until}), s ) pbar.update(1) # reorder this group of results back to original unsorted form res[key] = re_ord.get_original(res[key]) pbar.close() return grouper.get_original(res) def loglikelihood(self, requests, disable_tqdm: bool = False): raise NotImplementedError("No support for logits.") def loglikelihood_rolling(self, requests, disable_tqdm: bool = False): raise NotImplementedError("No support for logits.")