from importlib.util import find_spec from pathlib import Path from lm_eval.api.registry import register_model from lm_eval.models.huggingface import HFLM @register_model("openvino") class OptimumLM(HFLM): """ Optimum Intel provides a simple interface to optimize Transformer models and convert them to \ OpenVINO™ Intermediate Representation (IR) format to accelerate end-to-end pipelines on \ Intel® architectures using OpenVINO™ runtime. """ def __init__( self, device="cpu", **kwargs, ) -> None: if "backend" in kwargs: # optimum currently only supports causal models assert ( kwargs["backend"] == "causal" ), "Currently, only OVModelForCausalLM is supported." self.openvino_device = device super().__init__( device=self.openvino_device, backend=kwargs.pop("backend", "causal"), **kwargs, ) def _create_model( self, pretrained: str, revision="main", dtype="auto", trust_remote_code=False, **kwargs, ) -> None: if not find_spec("optimum"): raise Exception( "package `optimum` is not installed. Please install it via `pip install optimum[openvino]`" ) else: from optimum.intel.openvino import OVModelForCausalLM model_kwargs = kwargs if kwargs else {} model_file = Path(pretrained) / "openvino_model.xml" if model_file.exists(): export = False else: export = True kwargs["ov_config"] = { "PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": "", } self._model = OVModelForCausalLM.from_pretrained( pretrained, revision=revision, trust_remote_code=trust_remote_code, export=export, device=self.openvino_device.upper(), **model_kwargs, )