import abc import hashlib import json import logging import os from typing import List, Optional, Tuple, Type, TypeVar import transformers from sqlitedict import SqliteDict from tqdm import tqdm from lm_eval import utils eval_logger = logging.getLogger("lm-eval") T = TypeVar("T", bound="LM") class LM(abc.ABC): def __init__(self) -> None: """Defines the interface that should be implemented by all LM subclasses. LMs are assumed to take text (strings) as input and yield strings as output (inputs/outputs should be tokenization-agnostic.) """ # set rank and world size to a single process, by default. self._rank = 0 self._world_size = 1 self.cache_hook = CacheHook(None) @abc.abstractmethod def loglikelihood(self, requests) -> List[Tuple[float, bool]]: """Compute log-likelihood of generating a continuation from a context. Downstream tasks should attempt to use loglikelihood instead of other LM calls whenever possible. :param requests: list[Instance] A list of Instance objects, with property `args` which returns a tuple (context, continuation). `context: str` Context string. Implementations of LM must be able to handle an empty context string. `continuation: str` The continuation over which log likelihood will be calculated. If there is a word boundary, the space should be in the continuation. For example, context="hello" continuation=" world" is correct. :return: list[tuple[float, bool]] A list of pairs (logprob, isgreedy) `logprob: float` The log probability of `continuation`. `isgreedy`: Whether `continuation` would be generated by greedy sampling from `context`. """ pass @abc.abstractmethod def loglikelihood_rolling(self, requests) -> List[Tuple[float]]: """Compute full log-likelihood of a string, with no truncation, for perplexity computation - We will use the full max context length of the model. - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to the max context length. - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations which may simply concatenate multiple documents together. - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into multiple chunks, the last input will still a full-sized context. Example: Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ] Prefix: BOS/EOS Max context length: 4 Resulting input/prediction pairs: INPUT: BOS 0 1 2 PRED: 0 1 2 3 INPUT: 3 4 5 6 PRED: 4 5 6 7 INPUT: 5 6 7 8 PRED: 8 9 Observe that: 1. Each token is predicted exactly once 2. For the last pair, we provide the full context, but only score the last two tokens :param requests: list[Instance] A list of Instance objects with property `args` which returns a tuple (context,). string: str String for which we are computing overall loglikelihood :return: list[tuple[float]] A list of tuples (logprob,) logprob: float The log probability of `context` conditioned on the BOS/EOS token. Can also be overridden for custom cases by `prefix_token_id`. """ pass # TODO: Add an optional max length @abc.abstractmethod def generate_until(self, requests) -> List[str]: """Generate greedily until a stopping sequence :param requests: list[Instance] A list of Instance objects with property `args` which returns a tuple (context, until). context: str Context string until: [str] The string sequences to generate until. These string sequences may each span across multiple tokens, or may be part of one token. :return: list[str] A list of strings continuation continuation: str The generated continuation. """ pass @classmethod def create_from_arg_string( cls: Type[T], arg_string: str, additional_config: Optional[dict] = None ) -> T: """ Creates an instance of the LM class using the given argument string and additional config. Parameters: - arg_string: A string containing arguments in the format key1=value1,key2=value2. - additional_config: Optional dictionary containing additional configuration parameters. Returns: - Instance of the LM class. """ additional_config = {} if additional_config is None else additional_config args = utils.simple_parse_args_string(arg_string) args2 = {k: v for k, v in additional_config.items() if v is not None} return cls(**args, **args2) @classmethod def create_from_arg_obj( cls: Type[T], arg_dict: dict, additional_config: Optional[dict] = None ) -> T: """ Creates an instance of the LM class using the given arg_obj Parameters: - arg_obj: A dict containing arguments in the format key1=value1,key2=value2. - additional_config: Optional dictionary containing additional configuration parameters. Returns: - Instance of the LM class. """ additional_config = {} if additional_config is None else additional_config additional_config = { k: v for k, v in additional_config.items() if v is not None } return cls(**arg_dict, **additional_config) @property def rank(self): # used in the case of parallelism. Hardcoded to # ensure no errors arise using API models which do # not support multi-device parallelism nor expect it. return self._rank @property def world_size(self): # used in the case of parallelism. Hardcoded to # ensure no errors arise using API models which do # not support multi-device parallelism nor expect it. return self._world_size def set_cache_hook(self, cache_hook) -> None: self.cache_hook = cache_hook ### SQLite-based caching of LM responses def hash_args(attr, args): dat = json.dumps([attr] + list(args)) return hashlib.sha256(dat.encode("utf-8")).hexdigest() class CacheHook: def __init__(self, cachinglm) -> None: if cachinglm is None: self.dbdict = None return self.dbdict = cachinglm.dbdict def add_partial(self, attr, req, res) -> None: if self.dbdict is None: return hsh = hash_args(attr, req) self.dbdict[hsh] = res class CachingLM: def __init__(self, lm, cache_db) -> None: """LM wrapper that returns cached results if they exist, and uses the underlying LM if not. :param lm: LM Underlying LM :param cache_db: str Path to cache db """ self.lm = lm self.cache_db = cache_db if os.path.dirname(cache_db): os.makedirs(os.path.dirname(cache_db), exist_ok=True) self.dbdict = SqliteDict(cache_db, autocommit=True) # add hook to lm lm.set_cache_hook(self.get_cache_hook()) def __getattr__(self, attr): lm_attr = getattr(self.lm, attr) if not callable(lm_attr): return lm_attr def fn(requests): res = [] remaining_reqs = [] warned = False # figure out which ones are cached and which ones are new eval_logger.info( f"Loading '{attr}' responses from cache '{self.cache_db}' where possible..." ) for req in tqdm(requests, desc="Checking cached requests"): hsh = hash_args(attr, req.args) if attr == "generate_until" and req.args[1].get("do_sample", False): # when we are doing non-greedy generation, don't use the cache # (else every "randomly sampled" generation would be identical for repeats > 1). if not warned: eval_logger.warning( f"Arguments to lm.generate_until() '{req.args[1]}' include non-deterministic sampling. Caching will not be performed for such requests." ) warned = True res.append(None) remaining_reqs.append(req) elif hsh in self.dbdict: ob = self.dbdict[hsh] assert ob is not None res.append(ob) else: res.append(None) remaining_reqs.append(req) eval_logger.info( f"Cached requests: {len(requests) - len(remaining_reqs)}, Requests remaining: {len(remaining_reqs)}" ) # actually run the LM on the requests that do not have cached results rem_res = getattr(self.lm, attr)(remaining_reqs) # stick the new ones back into the list and also cache any of the new ones resptr = 0 for req, r in zip(remaining_reqs, rem_res): while res[resptr] is not None: resptr += 1 res[resptr] = r # caching hsh = hash_args(attr, req.args) self.dbdict[hsh] = r self.dbdict.commit() return res return fn def get_cache_hook(self): return CacheHook(self) class TemplateLM(LM): """ A class acting as intermediary between the LM base class and boilerplate often included in other LM subclasses. """ @property @abc.abstractmethod def eot_token_id(self): pass @property def prefix_token_id(self): # it is used as prefix for loglikelihood return self.eot_token_id @abc.abstractmethod def tok_encode(self, string: str, **kwargs): pass @abc.abstractmethod def _loglikelihood_tokens(self, requests, **kwargs): pass def _encode_pair(self, context, continuation): n_spaces = len(context) - len(context.rstrip()) if n_spaces > 0: continuation = context[-n_spaces:] + continuation context = context[:-n_spaces] model_class = getattr(self, "AUTO_MODEL_CLASS", None) if model_class == transformers.AutoModelForSeq2SeqLM: context_enc = self.tok_encode(context) continuation_enc = self.tok_encode(continuation, add_special_tokens=False) else: whole_enc = self.tok_encode(context + continuation) context_enc = self.tok_encode(context) context_enc_len = len(context_enc) continuation_enc = whole_enc[context_enc_len:] return context_enc, continuation_enc def loglikelihood( self, requests, disable_tqdm: bool = False ) -> List[Tuple[float, bool]]: new_reqs = [] for context, continuation in [req.args for req in requests]: if context == "": # BOS or EOS as context context_enc, continuation_enc = ( [self.prefix_token_id], self.tok_encode(continuation), ) else: context_enc, continuation_enc = self._encode_pair(context, continuation) new_reqs.append(((context, continuation), context_enc, continuation_enc)) return self._loglikelihood_tokens(new_reqs, disable_tqdm=disable_tqdm) @abc.abstractmethod def loglikelihood_rolling( self, requests, disable_tqdm: bool = False ) -> List[Tuple[float, bool]]: pass @abc.abstractmethod def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]: pass