import hashlib import os import dill from lm_eval.utils import eval_logger MODULE_DIR = os.path.dirname(os.path.realpath(__file__)) OVERRIDE_PATH = os.getenv("LM_HARNESS_CACHE_PATH") PATH = OVERRIDE_PATH if OVERRIDE_PATH else f"{MODULE_DIR}/.cache" # This should be sufficient for uniqueness HASH_INPUT = "EleutherAI-lm-evaluation-harness" HASH_PREFIX = hashlib.sha256(HASH_INPUT.encode("utf-8")).hexdigest() FILE_SUFFIX = f".{HASH_PREFIX}.pickle" def load_from_cache(file_name): try: path = f"{PATH}/{file_name}{FILE_SUFFIX}" with open(path, "rb") as file: cached_task_dict = dill.loads(file.read()) return cached_task_dict except Exception: eval_logger.debug(f"{file_name} is not cached, generating...") pass def save_to_cache(file_name, obj): if not os.path.exists(PATH): os.mkdir(PATH) file_path = f"{PATH}/{file_name}{FILE_SUFFIX}" eval_logger.debug(f"Saving {file_path} to cache...") with open(file_path, "wb") as file: file.write(dill.dumps(obj)) # NOTE the "key" param is to allow for flexibility def delete_cache(key: str = ""): files = os.listdir(PATH) for file in files: if file.startswith(key) and file.endswith(FILE_SUFFIX): file_path = f"{PATH}/{file}" os.unlink(file_path)