""" TextSynth API Implementation provided by Fabrice Bellard: https://github.com/EleutherAI/lm-evaluation-harness/issues/295 In order to use the API, you must have a valid TextSynth account and enough credits. Example usage: python main.py --model textsynth --model_args engine=gptj_6B --no_cache --tasks piqa Homepage: https://textsynth.com/index.html """ import logging import os import requests as _requests from tqdm import tqdm from lm_eval.api.model import LM from lm_eval.api.registry import register_model from lm_eval.models.utils import retry_on_specific_exceptions logger = logging.getLogger(__name__) def textsynth_completion(**kwargs): """Query TextSynth API for completion. Retry with back-off until they respond. """ def _exception_callback(e: Exception, sleep_time: float) -> None: import traceback traceback.print_exc() @retry_on_specific_exceptions( on_exceptions=[_requests.exceptions.RequestException], max_retries=None, # retry forever, consider changing on_exception_callback=_exception_callback, ) def completion(): return _requests.post(**kwargs) return completion() @register_model("textsynth") class TextSynthLM(LM): def __init__(self, engine, truncate: bool = False, **kwargs) -> None: """ :param engine: str TextSynth API engine (e.g. `gptj_6B`) :param truncate: bool Truncate input if too long (if False and input is too long, throw error) """ super().__init__() self.engine = engine self.truncate = truncate self.api_url = "https://api.textsynth.com" # Read from environment variable TEXTSYNTH_API_SECRET_KEY self.api_key = os.environ["TEXTSYNTH_API_SECRET_KEY"] @property def eot_token_id(self): # Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until raise NotImplementedError() @property def max_length(self) -> int: # NOTE: Turn on truncation to avoid errors on long inputs. return 2048 @property def max_gen_toks(self) -> int: return 256 @property def batch_size(self): # Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until raise NotImplementedError() @property def device(self): # Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until raise NotImplementedError() def tok_encode(self, string: str): # Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until raise NotImplementedError() def tok_decode(self, tokens): # Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until raise NotImplementedError() def loglikelihood(self, requests, disable_tqdm: bool = False): res = [] for context, continuation in tqdm(requests, disable=disable_tqdm): response = textsynth_completion( url=self.api_url + "/v1/engines/" + self.engine + "/logprob", headers={"Authorization": "Bearer " + self.api_key}, json={"context": context, "continuation": continuation}, ) resp = response.json() if "logprob" in resp: logprob = resp["logprob"] is_greedy = resp["is_greedy"] res.append((logprob, is_greedy)) self.cache_hook.add_partial( "loglikelihood", (context, continuation), (logprob, is_greedy) ) else: logger.error( f"The following response does not contain `logprobs`. Got:\n{resp}" ) assert False return res def loglikelihood_rolling(self, requests, disable_tqdm: bool = False): # TODO: The TextSynth API does not support tokenized inputs so we cannot # manually partition long contexts into smaller rolling windows as # done for other models derived from `BaseLM`. Override this method # with a windowing scheme that works for direct string inputs. raise NotImplementedError( "`loglikelihood_rolling` is currently not supported due to lack of " "input tokenization support from TextSynth." ) def generate_until(self, requests, disable_tqdm: bool = False): if not requests: return [] res = [] for request in tqdm(requests, disable=disable_tqdm): inp = request[0] request_args = request[1] until = request_args["until"] response = textsynth_completion( url=self.api_url + "/v1/engines/" + self.engine + "/completions", headers={"Authorization": "Bearer " + self.api_key}, json={ "prompt": inp, "max_tokens": self.max_gen_toks, "top_k": 1, "stop": until, }, ) resp = response.json() if "text" in resp: s = resp["text"] res.append(s) self.cache_hook.add_partial("generate_until", (inp, request_args), s) else: logger.error( "The following response does not contain generated `text`. " "Got:\n{resp}" ) assert False return res def _model_call(self, inps): # Isn't used because we override _loglikelihood_tokens raise NotImplementedError() def _model_generate(self, context, max_length, eos_token_id): # Isn't used because we override generate_until raise NotImplementedError()