import collections import fnmatch import gc import itertools import time from functools import wraps from typing import ( Any, Callable, Dict, Iterable, Iterator, List, Literal, Optional, Tuple, Type, Union, ) import torch import transformers from lm_eval.utils import eval_logger def chunks(iter, n: int = 0, fn=None): """ Divides an iterable into chunks of specified size or based on a given function. Useful for batching Parameters: - iter: The input iterable to be divided into chunks. - n: An integer representing the size of each chunk. Default is 0. - fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None. Returns: An iterator that yields chunks of the input iterable. Example usage: ``` data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for chunk in chunks(data, 3): print(chunk) ``` Output: ``` [1, 2, 3] [4, 5, 6] [7, 8, 9] [10] ``` """ arr = [] for i, x in enumerate(iter): arr.append(x) if len(arr) == (fn(i, iter) if fn else n): yield arr arr = [] if arr: yield arr class MultiChoice: def __init__(self, choices) -> None: self.choices = choices # Simple wildcard support (linux filename patterns) def __contains__(self, values) -> bool: for value in values.split(","): if len(fnmatch.filter(self.choices, value)) == 0: eval_logger.info("Available tasks to choose:") for choice in self.choices: eval_logger.info(f" - {choice}") raise ValueError("'{}' is not in task list".format(value)) return True def __iter__(self) -> Iterator: for choice in self.choices: yield choice class Grouper: """ takes an array `arr` and function `fn` and returns a dictionary with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all objects in `arr` satisfying `key == fn(ob)`. """ def __init__(self, arr, fn) -> None: # self.orig_arr = arr self.size = len(arr) arr = list(enumerate(arr)) def group_return_dict(arr, fn): res = collections.defaultdict(list) for ob in arr: res[fn(ob)].append(ob) return res arr = group_return_dict(arr, lambda x: fn(x[1])) # self.arr has format Dict[Tuple[int, ]] self.arr = arr self._grouped = None def get_grouped(self): # return the contents but not indices for our grouped dict. if self._grouped: return self._grouped grouped = {} for key in self.arr.keys(): # drop the index from each element of self.arr grouped[key] = [y[1] for y in self.arr[key]] self._grouped = grouped return grouped def get_original(self, grouped_dict): # take in a grouped dictionary with e.g. results for each key listed # in the same order as the instances in `self.arr`, and # return the results in the same (single list) order as `self.orig_arr`. res = [None] * self.size cov = [False] * self.size # orig = [None] * self.size assert grouped_dict.keys() == self.arr.keys() for key in grouped_dict.keys(): for (ind, _), v in zip(self.arr[key], grouped_dict[key]): res[ind] = v cov[ind] = True # orig[ind] = _ assert all(cov) # assert orig == self.orig_arr return res def pad_and_concat( max_length: int, tensors: List[torch.Tensor], padding_side: Literal["right", "left"] = "right", ): """ Method for padding a list of tensors given the maximum tensor length in the batch. Used for batching inputs and continuations in seq2seq models. """ assert ( padding_side == "left" or padding_side == "right" ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'" for i, tensor in enumerate(tensors): if len(tensor.shape) == 2: tensor = tensor.squeeze(0) # squeeze, in case passed [1, seq] size tensor_len = tensor.shape[0] if tensor_len < max_length: if padding_side == "right": # right-pad tensors[i] = torch.cat( [ tensor, # [seq] torch.zeros( max_length - tensor_len, dtype=torch.long, device=tensor.device, ), # [padding_length - seq] ], dim=0, ).unsqueeze(0) else: # left-pad tensors[i] = torch.cat( [ torch.zeros( max_length - tensor_len, dtype=torch.long, device=tensor.device, ), # [padding_length - seq] tensor, # [seq] ], dim=0, ).unsqueeze(0) else: tensors[i] = tensor.unsqueeze(0) return torch.cat(tensors, dim=0) def clear_torch_cache() -> None: gc.collect() torch.cuda.empty_cache() def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype: """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig""" if isinstance(dtype, str) and dtype != "auto": # Convert `str` args torch dtype: `float16` -> `torch.float16` _torch_dtype = getattr(torch, dtype) else: _torch_dtype = dtype return _torch_dtype class MultiTokenEOSCriteria(transformers.StoppingCriteria): """Criteria to stop on the specified multi-token sequence.""" def __init__( self, sequence: str, tokenizer: transformers.PreTrainedTokenizer, initial_decoder_input_length: int, batch_size: int, ) -> None: self.initial_decoder_input_length = initial_decoder_input_length self.done_tracker = [False] * batch_size self.sequence = sequence self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False) # print(sequence, self.sequence_ids) # we look back for 2 more tokens than it takes to encode our stop sequence # because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']` # and we don't want to mistakenly not stop a generation because our # (string) stop sequence was output in a different tokenization # NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model, # and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized # Additionally, in lookback_ids_batch we should prevent ever looking back into the inputs as described. self.sequence_id_len = len(self.sequence_ids) + 2 self.tokenizer = tokenizer def __call__(self, input_ids, scores, **kwargs) -> bool: # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :] lookback_ids_batch = lookback_ids_batch[:, -self.sequence_id_len :] lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch) for i, done in enumerate(self.done_tracker): if not done: self.done_tracker[i] = self.sequence in lookback_tokens_batch[i] return False not in self.done_tracker def stop_sequences_criteria( tokenizer: transformers.PreTrainedTokenizer, stop_sequences: List[str], initial_decoder_input_length: int, batch_size: int, ) -> transformers.StoppingCriteriaList: return transformers.StoppingCriteriaList( [ *[ MultiTokenEOSCriteria( sequence, tokenizer, initial_decoder_input_length, batch_size ) for sequence in stop_sequences ], ] ) def undistribute(iterable): """ Undoes https://more-itertools.readthedocs.io/en/stable/api.html#more_itertools.distribute . Re-interleaves results that have been split using more_itertools.distribute: >>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6]) >>> list(group_1) [1, 3, 5] >>> list(group_2) [2, 4, 6] >>> undistribute([group_1, group_2]) [1, 2, 3, 4, 5, 6] Handles non-uniform component lengths: >>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7]) >>> [list(c) for c in children] [[1, 4, 7], [2, 5], [3, 6]] >>> undistribute(children) [1, 2, 3, 4, 5, 6, 7] Also handles when some iterables are empty: >>> children = distribute(5, [1, 2, 3]) >>> [list(c) for c in children] [[1], [2], [3], [], []] >>> undistribute(children) [1, 2, 3] """ return [ x for x in itertools.chain.from_iterable( itertools.zip_longest(*[list(x) for x in iterable]) ) if x is not None ] def retry_on_specific_exceptions( on_exceptions: List[Type[Exception]], max_retries: Optional[int] = None, backoff_time: float = 3.0, backoff_multiplier: float = 1.5, on_exception_callback: Optional[Callable[[Exception, float], Any]] = None, ): """Retry on an LLM Provider's rate limit error with exponential backoff For example, to use for OpenAI, do the following: ``` from openai import RateLimitError # Recommend specifying max_retries to avoid infinite loops! @retry_on_specific_exceptions([RateLimitError], max_retries=3) def completion(...): # Wrap OpenAI completion function here ... ``` """ def decorator(func: Callable): @wraps(func) def wrapper(*args, **kwargs): sleep_time = backoff_time attempt = 0 while max_retries is None or attempt < max_retries: try: return func(*args, **kwargs) except tuple(on_exceptions) as e: if on_exception_callback is not None: on_exception_callback(e, sleep_time) time.sleep(sleep_time) sleep_time *= backoff_multiplier attempt += 1 return wrapper return decorator class Collator: """ A class for reordering and batching elements of an array. This class allows for sorting an array based on a provided sorting function, grouping elements based on a grouping function, and generating batches from the sorted and grouped data. Objects of this class have the group_by attribute which determines the method for grouping the data while batching it. Three options include "gen_kwargs", "contexts", or None: If group_by == "gen_kwargs" then requests will be grouped by gen_kwargs If group_by == "contexts" then requests will be grouped by context + cont[:-1] If None then requests will just be reordered by length descending. """ def __init__( self, arr: List, sort_fn: Callable = lambda x: x, group_fn: Callable = lambda x: x[1], group_by: Union[Literal["gen_kwargs", "contexts"], None] = None, ) -> None: self._group_by = group_by # 0 indices are enumerated indices. Apply functions to original arr. self._sort_fn = lambda x: sort_fn(x[1]) self._group_fn = lambda x: group_fn(x[1]) self._reorder_indices: List = [] self._size = len(arr) self._arr_with_indices: Union[Dict, Tuple[Tuple[int, Any], ...]] = tuple( enumerate(arr) ) # [indices, (arr)] if self._group_by == "contexts": self._group_by_context() elif self._group_by == "gen_kwargs": self._group_by_index() def _group_by_index(self) -> None: """Group the elements of a list based on their indices.""" self._arr_with_indices = self.group( self._arr_with_indices, fn=self._group_fn, group_by="gen_kwargs" ) def _group_by_context(self) -> None: """Group the array with indices by context.""" self._arr_with_indices = self.group( self._arr_with_indices, fn=self._group_fn, group_by="contexts" ) def get_batched(self, n: int = 1, batch_fn: Optional[Callable] = None) -> Iterator: """ Generates and yields batches from the reordered array. The method of grouping and batching depends on the parameter `group_by`. If `group_by` is set to "gen_kwargs", it will batch the re-ordered values with same gen_kwargs for each batch. If `group_by` is "contexts", it caches the requests by context before batching. If `group_by` is neither "gen_kwargs" nor "contexts", it yields the reordered array Parameters: - n (int): The size of each batch. Defaults to 1. - batch_fn ([Callable[[int, Iterable], int]] | None): A function to determine the size of each batch. Optional, defaults to None. Returns: Iterator: An iterator over batches of reordered elements grouped as per the `group_by` attribute. Yields: List of batched elements according to the `group_by` attribute. """ if self._group_by == "gen_kwargs": for ( key, values, ) in self._arr_with_indices.items(): # type: ignore values = self._reorder(values) batch = self.get_chunks(values, n=n, fn=batch_fn) yield from batch elif self._group_by == "contexts": # Get one sample from each key values = self._reorder( [value[0] for value in self._arr_with_indices.values()] ) batch = self.get_chunks(values, n=n, fn=batch_fn) yield from batch else: values = self._reorder(self._arr_with_indices) # type: ignore batch = self.get_chunks(values, n=n, fn=batch_fn) yield from batch def get_cache( self, req_str: Tuple[str, str] = None, cxt_toks: List[int] = None, cont_toks: List[int] = None, logits: torch.Tensor = None, ) -> Iterator[Tuple[Tuple[str, str], List[int], torch.Tensor]]: """ Retrieves cached single-token continuations and their associated arguments, updating indices as necessary. The behavior of this function varies depending on how the `group_by` attribute is set: - When `group_by` is "contexts": The function identifies single-token continuations by checking for keys that equate to [context+continuation][-1] and logs the indices for re-ordering. In this mode, this function can work in two scenarios: 1. Cache Hit - Single Match: If a single matching context-continuation pair is found in the cache, the function yields the original arguments. 2. Cache Hit - Multiple Matches: If multiple matching context-continuation pairs are found in the cache, the function expands the logits batch dimension to match the number of cache hits. It updates the original requests and continuation tokens. - When `group_by` is not set to "contexts": This method yields the original arguments, logits and continuation tokens, without checking for one-token continuations. Parameters: - req_str (tuple[str, str]): Original strings used for CachingLM. - cxt_toks (list[int]): Full context tokens used for lookup. - cont_toks (list[int]): Continuation tokens for which logits were generated. - logits (torch.Tensor [1, seq_length, vocab_size]): Logits generated by the model given context and continuation keys. Yields: - Iterator: - req_str (tuple[str, str]): strings used for CachingLM. - cont_toks (list[int]) : continuation tokens. - logits (torch.Tensor [1, seq_length, vocab_size]): The original logits (repeated cache hit times) """ if self._group_by == "contexts": cache_hit: List[ Tuple[int, Tuple[Tuple[str, str], List[int], List[int]]] ] = self._arr_with_indices.pop(tuple(cxt_toks + cont_toks[:-1])) if (cache_size := len(cache_hit)) == 1: self._reorder_indices.extend(x[0] for x in cache_hit) yield req_str, cont_toks, logits else: # If we have matching requests then expand the batch dimension (no-op) and # yield each along with its corresponding args. multilogits = logits.expand(cache_size, -1, -1).chunk(cache_size) indices, req_str, cont_toks = zip( *[(x[0], x[1][0], x[-1][-1]) for x in cache_hit] ) self._reorder_indices.extend(indices) for c_key, cont_tok, logit in zip(req_str, cont_toks, multilogits): yield c_key, cont_tok, logit else: yield req_str, cont_toks, logits def _reorder(self, arr: Union[List, Tuple[Tuple[int, Any], ...]]) -> Iterator: """ Reorders the elements in the array based on the sorting function. Parameters: - arr (list | tuple[tuple[int, Any], ...]]): The array or iterable to be reordered. Yields: Iterator """ arr = sorted(arr, key=self._sort_fn) if not self._group_by == "contexts": # If grouped by contexts then indices will be set in get_cache() self._reorder_indices.extend([x[0] for x in arr]) yield from [x[1] for x in arr] def get_original(self, newarr: List) -> List: """ Restores the original order of elements from the reordered list. Parameters: - newarr (list): The reordered array. Returns: list: The array with elements restored to their original order. """ res = [None] * self._size cov = [False] * self._size for ind, v in zip(self._reorder_indices, newarr): res[ind] = v cov[ind] = True assert all(cov) return res def __len__(self): return self._size @staticmethod def group( arr: Iterable, fn: Callable, group_by: Literal["gen_kwargs", "contexts"] = "gen_kwargs", ) -> dict: """ Groups elements of an iterable based on a provided function. The `group_by` parameter determines the method of grouping. If `group_by` is "contexts", the elements are grouped by [context + cont][:-1]. If `group_by` is "gen_kwargs", the elements are grouped based on the gen_kwargs dict. Parameters: - arr (Iterable): The iterable to be grouped. - fn (Callable): The function to determine the grouping. - values (bool): If True, returns the values of the group. Defaults to False. Returns: Iterator: An iterable of grouped elements. """ res = collections.defaultdict(list) for ob in arr: # where ob == [context + cont] if group_by == "contexts": res[tuple(fn(ob))].append(ob) else: try: hashable_dict = tuple( ( key, tuple(value) if isinstance(value, collections.abc.Iterable) else value, ) for key, value in sorted(fn(ob).items()) ) res[hashable_dict].append(ob) except (TypeError, AttributeError): res[tuple(fn(ob))].append(ob) return res @staticmethod def get_chunks(_iter, n: int = 0, fn=None): """ Divides an iterable into chunks of specified size or based on a given function. Useful for batching Parameters: - iter: The input iterable to be divided into chunks. - n: An integer representing the size of each chunk. Default is 0. - fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None. Returns: An iterator that yields chunks of the input iterable. Example usage: ``` data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for chunk in chunks(data, 3): print(chunk) ``` Output: ``` [1, 2, 3] [4, 5, 6] [7, 8, 9] [10] ``` """ arr = [] _iter = tuple(_iter) for i, x in enumerate(_iter): arr.append(x) if len(arr) == (fn(i, _iter) if fn else n): yield arr arr = [] if arr: yield arr