import collections import re import string import datasets import evaluate def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r"\b(un|une|des|le|la|les)\b", re.UNICODE) return re.sub(regex, " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def get_tokens(s): if not s: return [] return normalize_answer(s).split() # Exact match (the normalized answer exactly match the gold answer) def exact(predictions, references): return int(normalize_answer(references[0]) == normalize_answer(predictions[0])) # The F-score of predicted tokens versus the gold answer def f1(predictions, references): gold_toks = get_tokens(references[0]) pred_toks = get_tokens(predictions[0]) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def rouge1(items): """ # passthrough for efficiency """ return items def rouge1_agg(items): """ Higher is better """ refs = list(zip(*items))[0] preds = list(zip(*items))[1] rouge_scorer = evaluate.load("rouge") return rouge_scorer.compute(predictions=preds, references=refs)["rouge1"] def is_included(items): """ # passthrough for efficiency """ if items[0] in items[1]: return True return False def preprocess(text): text = text.strip() # NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag. text = text.replace(" [title]", ". ") text = re.sub("\\[.*?\\]", "", text) text = text.replace(" ", " ") return text def process_docs(dataset: datasets.Dataset) -> datasets.Dataset: def _process_doc(doc): ctx = doc["ctx_a"] + " " + doc["ctx_b"].capitalize() out_doc = { "query": preprocess(doc["activity_label"] + ": " + ctx), "choices": [preprocess(ending) for ending in doc["endings"]], "gold": int(doc["label"]), } return out_doc return dataset.map(_process_doc)