from typing import List import pytest import torch import lm_eval.tasks as tasks from lm_eval.api.instance import Instance task_manager = tasks.TaskManager() @pytest.mark.skip(reason="requires CUDA") class TEST_VLLM: vllm = pytest.importorskip("vllm") try: from lm_eval.models.vllm_causallms import VLLM LM = VLLM(pretrained="EleutherAI/pythia-70m") except ModuleNotFoundError: pass torch.use_deterministic_algorithms(True) task_list = task_manager.load_task_or_group(["arc_easy", "gsm8k", "wikitext"]) multiple_choice_task = task_list["arc_easy"] # type: ignore multiple_choice_task.build_all_requests(limit=10, rank=0, world_size=1) MULTIPLE_CH: List[Instance] = multiple_choice_task.instances generate_until_task = task_list["gsm8k"] # type: ignore generate_until_task._config.generation_kwargs["max_gen_toks"] = 10 generate_until_task.build_all_requests(limit=10, rank=0, world_size=1) generate_until: List[Instance] = generate_until_task.instances rolling_task = task_list["wikitext"] # type: ignore rolling_task.build_all_requests(limit=10, rank=0, world_size=1) ROLLING: List[Instance] = rolling_task.instances # TODO: make proper tests def test_logliklihood(self) -> None: res = self.LM.loglikelihood(self.MULTIPLE_CH) assert len(res) == len(self.MULTIPLE_CH) for x in res: assert isinstance(x[0], float) def test_generate_until(self) -> None: res = self.LM.generate_until(self.generate_until) assert len(res) == len(self.generate_until) for x in res: assert isinstance(x, str) def test_logliklihood_rolling(self) -> None: res = self.LM.loglikelihood_rolling(self.ROLLING) for x in res: assert isinstance(x, float)