# import lm_eval.base as base from typing import List import pytest # import lm_eval.models as models import lm_eval.api as api import lm_eval.evaluator as evaluator from lm_eval import tasks # TODO: more fine grained unit tests rather than this big honking integration # test once we break evaluator into smaller, more manageable pieces @pytest.mark.parametrize( "task_name,limit,model,model_args", [ ( ["arc_easy"], 10, "hf", "pretrained=EleutherAI/pythia-160m,dtype=float32,device=cpu", ) ], ) def test_evaluator(task_name: List[str], limit: int, model: str, model_args: str): task_name = task_name limit = 10 e1 = evaluator.simple_evaluate( model=model, tasks=task_name, limit=limit, model_args=model_args, ) assert e1 is not None lm = api.registry.get_model(model).create_from_arg_string( model_args, { "batch_size": None, "max_batch_size": None, "device": None, }, ) task_manager = tasks.TaskManager() task_dict = tasks.get_task_dict(task_name, task_manager) e2 = evaluator.evaluate( lm=lm, task_dict=task_dict, limit=limit, ) assert e2 is not None # check that caching is working def r(x): return x["results"]["arc_easy"] assert all( x == y for x, y in zip([y for _, y in r(e1).items()], [y for _, y in r(e2).items()]) )