import abc import ast import logging import random import re from collections.abc import Callable from copy import deepcopy from dataclasses import asdict, dataclass from inspect import getsource from typing import ( Any, Dict, Iterable, Iterator, List, Literal, Mapping, Optional, Tuple, Union, ) import datasets import numpy as np from tqdm import tqdm from lm_eval import utils from lm_eval.api import samplers from lm_eval.api.instance import Instance, OutputType from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity from lm_eval.api.registry import ( AGGREGATION_REGISTRY, DEFAULT_METRIC_REGISTRY, get_aggregation, get_metric, get_metric_aggregation, is_higher_better, ) from lm_eval.caching.cache import load_from_cache, save_to_cache from lm_eval.filters import build_filter_ensemble from lm_eval.prompts import get_prompt ALL_OUTPUT_TYPES = [ "loglikelihood", "multiple_choice", "loglikelihood_rolling", "generate_until", ] eval_logger = logging.getLogger("lm-eval") @dataclass class TaskConfig(dict): # task naming/registry task: Optional[str] = None task_alias: Optional[str] = None group: Optional[Union[str, list]] = None group_alias: Optional[Union[str, list]] = None # HF dataset options. # which dataset to use, # and what splits for what purpose dataset_path: Optional[str] = None dataset_name: Optional[str] = None dataset_kwargs: Optional[dict] = None training_split: Optional[str] = None validation_split: Optional[str] = None test_split: Optional[str] = None fewshot_split: Optional[ str ] = None # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?) # formatting / prompting options. # see docs/advanced_task_guide.md for more info process_docs: Optional[Callable] = None doc_to_text: Optional[Union[Callable, str]] = None doc_to_target: Optional[Union[Callable, str]] = None doc_to_choice: Optional[Union[Callable, str, dict, list]] = None process_results: Optional[Union[Callable, str]] = None use_prompt: Optional[str] = None description: str = "" target_delimiter: str = " " fewshot_delimiter: str = "\n\n" fewshot_config: Optional[dict] = None # runtime configuration options num_fewshot: Optional[int] = None # scoring options metric_list: Optional[list] = None output_type: OutputType = "generate_until" generation_kwargs: Optional[dict] = None repeats: int = 1 filter_list: Optional[Union[str, list]] = None should_decontaminate: bool = False doc_to_decontamination_query: Optional[str] = None metadata: Optional[ dict ] = None # by default, not used in the code. allows for users to pass arbitrary info to tasks def __post_init__(self) -> None: if self.generation_kwargs is not None: if self.output_type != "generate_until": raise ValueError( f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!" ) if "temperature" in self.generation_kwargs: self.generation_kwargs["temperature"] = float( self.generation_kwargs["temperature"] ) if "until" not in self.generation_kwargs: self.generation_kwargs["until"] = [self.fewshot_delimiter] else: if self.output_type == "generate_until": # ensure that we greedily generate in absence of explicit arguments otherwise self.generation_kwargs = { "until": ( None if self.fewshot_delimiter is None else [self.fewshot_delimiter] ), "do_sample": False, } def __getitem__(self, item): return getattr(self, item) def __setitem__(self, item, value): return setattr(self, item, value) def to_dict(self, keep_callable: bool = False) -> dict: """dumps the current config as a dictionary object, as a printable format. null fields will not be printed. Used for dumping results alongside full task configuration :return: dict A printable dictionary version of the TaskConfig object. # TODO: should any default value in the TaskConfig not be printed? """ cfg_dict = asdict(self) # remove values that are `None` for k, v in list(cfg_dict.items()): if v is None: cfg_dict.pop(k) elif k == "metric_list": for metric_dict in v: for metric_key, metric_value in metric_dict.items(): if callable(metric_value): metric_dict[metric_key] = self.serialize_function( metric_value, keep_callable=keep_callable ) cfg_dict[k] = v elif callable(v): cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable) return cfg_dict def serialize_function( self, value: Union[Callable, str], keep_callable=False ) -> Union[Callable, str]: """Serializes a given function or string. If 'keep_callable' is True, the original callable is returned. Otherwise, attempts to return the source code of the callable using 'getsource'. """ if keep_callable: return value else: try: return getsource(value) except (TypeError, OSError): return str(value) class Task(abc.ABC): """A task represents an entire benchmark including its dataset, problems, answers, and evaluation methods. See BoolQ for a simple example implementation A `doc` can be any python object which represents one instance of evaluation. This is usually a dictionary e.g. {"question": ..., "answer": ...} or {"question": ..., question, answer) """ VERSION: Optional[Union[int, str]] = None # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub # or a path to a custom `datasets` loading script. DATASET_PATH: Optional[str] = None # The name of a subset within `DATASET_PATH`. DATASET_NAME: Optional[str] = None OUTPUT_TYPE: Optional[OutputType] = None def __init__( self, data_dir: Optional[str] = None, cache_dir: Optional[str] = None, download_mode: Optional[datasets.DownloadMode] = None, config: Optional[Mapping] = None, # Union[dict, TaskConfig] ) -> None: """ :param data_dir: str Stores the path to a local folder containing the `Task`'s data files. Use this to specify the path to manually downloaded data (usually when the dataset is not publicly accessible). :param cache_dir: str The directory to read/write the `Task` dataset. This follows the HuggingFace `datasets` API with the default cache directory located at: `~/.cache/huggingface/datasets` NOTE: You can change the cache location globally for a given process to another directory: `export HF_DATASETS_CACHE="/path/to/another/directory"` :param download_mode: datasets.DownloadMode How to treat pre-existing `Task` downloads and data. - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS` Reuse download and reuse dataset. - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS` Reuse download with fresh dataset. - `datasets.DownloadMode.FORCE_REDOWNLOAD` Fresh download and fresh dataset. """ self.download(data_dir, cache_dir, download_mode) self._training_docs: Optional[list] = None self._fewshot_docs: Optional[list] = None self._instances: Optional[List[Instance]] = None self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig() self._filters = [build_filter_ensemble("none", [["take_first", None]])] def download( self, data_dir: Optional[str] = None, cache_dir: Optional[str] = None, download_mode=None, ) -> None: """Downloads and returns the task dataset. Override this method to download the dataset from a custom API. :param data_dir: str Stores the path to a local folder containing the `Task`'s data files. Use this to specify the path to manually downloaded data (usually when the dataset is not publicly accessible). :param cache_dir: str The directory to read/write the `Task` dataset. This follows the HuggingFace `datasets` API with the default cache directory located at: `~/.cache/huggingface/datasets` NOTE: You can change the cache location globally for a given process by setting the shell environment variable, `HF_DATASETS_CACHE`, to another directory: `export HF_DATASETS_CACHE="/path/to/another/directory"` :param download_mode: datasets.DownloadMode How to treat pre-existing `Task` downloads and data. - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS` Reuse download and reuse dataset. - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS` Reuse download with fresh dataset. - `datasets.DownloadMode.FORCE_REDOWNLOAD` Fresh download and fresh dataset. """ self.dataset = datasets.load_dataset( path=self.DATASET_PATH, name=self.DATASET_NAME, data_dir=data_dir, cache_dir=cache_dir, download_mode=download_mode, ) @property def config(self) -> TaskConfig: """Returns the TaskConfig associated with this class.""" return self._config @abc.abstractmethod def has_training_docs(self): """Whether the task has a training set""" pass @abc.abstractmethod def has_validation_docs(self): """Whether the task has a validation set""" pass @abc.abstractmethod def has_test_docs(self): """Whether the task has a test set""" pass def training_docs(self) -> Iterable: """ :return: Iterable[obj] A iterable of any object, that doc_to_text can handle """ return [] def validation_docs(self) -> Iterable: """ :return: Iterable[obj] A iterable of any object, that doc_to_text can handle """ return [] def test_docs(self) -> Iterable: """ :return: Iterable[obj] A iterable of any object, that doc_to_text can handle """ return [] def fewshot_docs(self) -> Iterable: """ :return: Iterable[obj] A iterable of any object, that doc_to_text can handle """ if self.has_training_docs(): return self.training_docs() elif self.has_validation_docs(): return self.validation_docs() else: eval_logger.warning( f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False" ", using test_docs as fewshot_docs but this is not recommended." ) return self.test_docs() def _process_doc(self, doc: dict) -> dict: """ Override this to process (detokenize, strip, replace, etc.) individual documents. This can be used in a map over documents of a data split. E.g. `map(self._process_doc, self.dataset["validation"])` :return: dict The processed version of the specified `doc`. """ return doc @property def instances(self) -> List[Instance]: """After calling `task.build_all_requests()`, tasks maintain a list of the dataset instances which will be evaluated. """ return self._instances def fewshot_examples(self, k, rnd): if self._training_docs is None: self._training_docs = list(self.training_docs()) return rnd.sample(self._training_docs, k) def doc_to_decontamination_query(self, doc): raise NotImplementedError( "Override doc_to_decontamination_query with document specific decontamination query." ) @abc.abstractmethod def doc_to_text(self, doc): pass @abc.abstractmethod def doc_to_target(self, doc): pass def build_all_requests( self, *, limit=None, rank=None, world_size=None, cache_requests=False, rewrite_requests_cache=False, ) -> None: """Build a set of Instances for a task, and store them in task.instances""" # used with caching og_limit = limit cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}" cached_instances = load_from_cache(file_name=cache_key) if cache_requests and cached_instances and not rewrite_requests_cache: cached_instances = cached_instances[:limit] flattened_instances = [ instance for instance_group in cached_instances for instance in instance_group ] self._instances = flattened_instances return eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...") instances = [] # process all documents when caching is specified for simplicity if ( cache_requests and (not cached_instances or rewrite_requests_cache) and limit is not None ): limit = None doc_id_docs = list( self.doc_iterator(rank=rank, limit=limit, world_size=world_size) ) num_docs = len(doc_id_docs) for doc_id, doc in tqdm( doc_id_docs, total=num_docs, ): # sample fewshot context #TODO: need to offset doc_id by rank now! fewshot_ctx = self.fewshot_context( doc, 0 if self.config.num_fewshot is None else self.config.num_fewshot, ) # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute inst = self.construct_requests( doc=doc, ctx=fewshot_ctx, metadata=(self.config["task"], doc_id, self.config.repeats), ) if not isinstance(inst, list): inst = [inst] instances.append(inst) # now flatten, this is to allow slicing to work with pickles sliced_instances = instances[:og_limit] flattened_instances = [ instance for instance_group in sliced_instances for instance in instance_group ] self._instances = flattened_instances if len(self._instances) == 0: raise ValueError("task.build_requests() did not find any docs!") if cache_requests and (not cached_instances or rewrite_requests_cache): save_to_cache(file_name=cache_key, obj=instances) @abc.abstractmethod def construct_requests(self, doc, ctx, **kwargs): """Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. :param doc_idx: int The index of a document within `self.test_docs()` or `self.validation_docs()`, whichever is the main split used. :param repeats: int TODO: update this docstring The number of times each instance in a dataset is inferred on. Defaults to 1, can be increased for techniques like majority voting. """ pass @abc.abstractmethod def process_results(self, doc, results): """Take a single document and the LM results and evaluates, returning a dict where keys are the names of submetrics and values are the values of the metric for that one document :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param results: The results of the requests created in construct_requests. """ pass @abc.abstractmethod def aggregation(self): """ :returns: {str: [metric_score] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metric scores """ pass @abc.abstractmethod def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ pass def get_config(self, key: str) -> Any: return getattr(self._config, key, None) @classmethod def count_bytes(cls, doc): """Used for byte-level perplexity metrics in rolling loglikelihood""" return len(doc.encode("utf-8")) @classmethod def count_words(cls, doc): """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!""" return len(re.split(r"\s+", doc)) @utils.positional_deprecated def fewshot_context( self, doc, num_fewshot, rnd=random.Random(1234), description=None, ): """Returns a fewshot context string that is made up of a prepended description (if provided), the `num_fewshot` number of examples, and an appended prompt example. :param doc: str The document as returned from training_docs, validation_docs, or test_docs. :param num_fewshot: int The number of fewshot examples to provide in the returned context string. :param rnd: random.Random The pseudo-random number generator used to randomly sample examples. WARNING: This is currently a required arg although it's optionalized with a default `None`. :param description: str The task's description that will be prepended to the fewshot examples. :returns: str The fewshot context. """ if rnd is None: raise ValueError( "A `random.Random` generator argument must be provided to `rnd`" ) description = description if description else "" if num_fewshot == 0: labeled_examples = "" else: # for sets with no training docs, draw from other set *but ensure no overlap with current doc* if self.has_training_docs(): fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd) else: if self._fewshot_docs is None: self._fewshot_docs = list( self.validation_docs() if self.has_validation_docs() else self.test_docs() ) fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1) # get rid of the doc that's the one we're evaluating, if it's in the fewshot fewshotex = [x for x in fewshotex if x != doc][:num_fewshot] labeled_examples = ( "\n\n".join( [ self.doc_to_text(doc) + self.doc_to_target(doc) for doc in fewshotex ] ) + "\n\n" ) example = self.doc_to_text(doc) return description + labeled_examples + example def apply_filters(self) -> Optional[List[Instance]]: """Iterates over FilterEnsembles and applies them to instances""" if hasattr(self, "_filters"): for f in self._filters: f.apply(self._instances) else: eval_logger.warning("No filter defined, passing through instances") return self._instances def dump_config(self) -> dict: """Returns the config as a dictionary.""" # TODO: this should only return the overrides applied to a non-YAML task's configuration. # (num_fewshot) return self.config.to_dict() def set_config(self, key: str, value: Any, update: bool = False) -> None: """Set or update the configuration for a given key.""" if key is None: raise ValueError("Key must be provided.") if update: current_value = getattr(self._config, key, {}) if not isinstance(current_value, dict): raise TypeError( f"Expected a dict for key '{key}', got {type(current_value).__name__} instead." ) current_value.update(value) else: setattr(self._config, key, value) def override_metric(self, metric_name: str) -> None: """ Override the default metrics used for evaluation with custom metrics. Parameters: - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics. """ ( self._metric_fn_list, self._aggregation_list, self._metric_fn_kwargs, self._higher_is_better, ) = ({}, {}, {}, {}) self._metric_fn_list[metric_name] = get_metric(metric_name) self._aggregation_list[metric_name] = get_metric_aggregation(metric_name) self._higher_is_better[metric_name] = is_higher_better(metric_name) self._metric_fn_kwargs[metric_name] = {} if not isinstance(self, ConfigurableTask): self.process_results = lambda x, y: {metric_name: get_metric(metric_name)} self.aggregation = lambda: { metric_name: get_metric_aggregation(metric_name) } setattr(self._config, "metric_list", [{"metric": metric_name}]) setattr(self._config, "process_results", None) @property def eval_docs(self) -> Union[datasets.Dataset, List[dict]]: if self.has_test_docs(): return self.test_docs() elif self.has_validation_docs(): return self.validation_docs() else: raise ValueError( f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!" ) def doc_iterator( self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1 ) -> Iterator[Tuple[int, Any]]: limit = int(limit) if limit else None doc_iterator = utils.create_iterator( enumerate(self.eval_docs), rank=int(rank), limit=limit, world_size=int(world_size), ) return doc_iterator class ConfigurableTask(Task): VERSION = "Yaml" OUTPUT_TYPE = None CONFIG = None def __init__( self, data_dir=None, cache_dir=None, download_mode=None, config: Optional[dict] = None, ) -> None: # TODO no super() call here # Get pre-configured attributes self._config = self.CONFIG # Use new configurations if there was no preconfiguration if self.config is None: self._config = TaskConfig(**config) # Overwrite configs else: if config is not None: self._config.__dict__.update(config) if self.config is None: raise ValueError( "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg" ) if isinstance(self.config.metadata, dict): if "version" in self.config.metadata: self.VERSION = self.config.metadata["version"] if self.config.output_type is not None: if self.config.output_type not in ALL_OUTPUT_TYPES: raise ValueError( f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'" ) self.OUTPUT_TYPE = self.config.output_type if self.config.dataset_path is not None: self.DATASET_PATH = self.config.dataset_path if self.config.dataset_name is not None: self.DATASET_NAME = self.config.dataset_name self._metric_fn_list = {} self._metric_fn_kwargs = {} self._aggregation_list = {} self._higher_is_better = {} if self.config.metric_list is None: # TODO: handle this in TaskConfig.__post_init__ ? _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type] for metric_name in _metric_list: self._metric_fn_list[metric_name] = get_metric(metric_name) self._metric_fn_kwargs[metric_name] = {} self._aggregation_list[metric_name] = get_metric_aggregation( metric_name ) self._higher_is_better[metric_name] = is_higher_better(metric_name) else: for metric_config in self.config.metric_list: if "metric" not in metric_config: raise ValueError( "'metric' key not provided for an entry in 'metric_list', must be specified!" ) metric_name = metric_config["metric"] kwargs = { key: metric_config[key] for key in metric_config if key not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"] } hf_evaluate_metric = ( "hf_evaluate" in metric_config and metric_config["hf_evaluate"] is True ) if self.config.process_results is not None: self._metric_fn_list[metric_name] = None self._metric_fn_kwargs[metric_name] = {} elif callable(metric_name): metric_fn = metric_name.__call__ metric_name = metric_name.__name__ self._metric_fn_list[metric_name] = metric_fn self._metric_fn_kwargs[metric_name] = kwargs else: self._metric_fn_list[metric_name] = get_metric( metric_name, hf_evaluate_metric ) self._metric_fn_kwargs[metric_name] = kwargs if "aggregation" in metric_config: agg_name = metric_config["aggregation"] if isinstance(agg_name, str): self._aggregation_list[metric_name] = get_aggregation(agg_name) elif callable(agg_name): # noqa: E721 self._aggregation_list[metric_name] = metric_config[ "aggregation" ] else: INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()} metric_agg = get_metric_aggregation(metric_name) eval_logger.warning( f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. " f"using default " f"aggregation={INV_AGG_REGISTRY[metric_agg]}" ) self._aggregation_list[metric_name] = metric_agg if "higher_is_better" in metric_config: self._higher_is_better[metric_name] = metric_config[ "higher_is_better" ] else: eval_logger.warning( f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. " f"using default " f"higher_is_better={is_higher_better(metric_name)}" ) self._higher_is_better[metric_name] = is_higher_better(metric_name) self.download(self.config.dataset_kwargs) self._training_docs = None self._fewshot_docs = None if self.config.filter_list is not None: self._filters = [] for filter_config in self.config.filter_list: filter_name = filter_config["name"] filter_functions = filter_config["filter"] components = [] for function in filter_functions: kwargs = { key: function[key] for key in function if key != "function" } components.append([function["function"], kwargs]) filter_pipeline = build_filter_ensemble(filter_name, components) self._filters.append(filter_pipeline) else: self._filters = [build_filter_ensemble("none", [["take_first", None]])] if self.config.use_prompt is not None: eval_logger.info(f"loading prompt {self.config.use_prompt}") self.prompt = get_prompt( self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME ) else: self.prompt = None if self.fewshot_docs() is not None: self.sampler = samplers.get_sampler( self.config.fewshot_config.get("sampler", "default") if self.config.fewshot_config else "default" )(list(self.fewshot_docs()), self, rnd=random.Random(1234)) self.task_docs = self.eval_docs # Test One Doc self.features = list(self.task_docs.features.keys()) self.multiple_input = 0 self.multiple_target = 0 test_doc = self.task_docs[0] test_text = self.doc_to_text(test_doc) test_target = self.doc_to_target(test_doc) if self.config.doc_to_choice is not None: test_choice = self.doc_to_choice(test_doc) if not isinstance(test_choice, list): eval_logger.error("doc_to_choice must return list") else: num_choice = len(test_choice) if isinstance(test_text, int): self.multiple_input = num_choice else: test_choice = None if isinstance(test_target, list): self.multiple_target = len(test_target) else: if (isinstance(test_target, int)) and (test_choice is not None): test_target = test_choice[test_target] else: test_target = str(test_target) if test_choice is not None: check_choices = test_choice else: check_choices = [test_target] if self.config.doc_to_choice is not None: for choice in check_choices: choice_has_whitespace = True if choice[0].isspace() else False delimiter_has_whitespace = ( True if self.config.target_delimiter.rstrip() != self.config.target_delimiter else False ) if delimiter_has_whitespace and choice_has_whitespace: eval_logger.debug( f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace' ) elif (not delimiter_has_whitespace) and (not choice_has_whitespace): eval_logger.debug( f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace' ) def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None: self.dataset = datasets.load_dataset( path=self.DATASET_PATH, name=self.DATASET_NAME, **dataset_kwargs if dataset_kwargs is not None else {}, ) def has_training_docs(self) -> bool: if self.config.training_split is not None: return True else: return False def has_validation_docs(self) -> bool: if self.config.validation_split is not None: return True else: return False def has_test_docs(self) -> bool: if self.config.test_split is not None: return True else: return False def training_docs(self) -> datasets.Dataset: if self.has_training_docs(): if self.config.process_docs is not None: return self.config.process_docs( self.dataset[self.config.training_split] ) return self.dataset[self.config.training_split] def validation_docs(self) -> datasets.Dataset: if self.has_validation_docs(): if self.config.process_docs is not None: return self.config.process_docs( self.dataset[self.config.validation_split] ) return self.dataset[self.config.validation_split] def test_docs(self) -> datasets.Dataset: if self.has_test_docs(): if self.config.process_docs is not None: return self.config.process_docs(self.dataset[self.config.test_split]) return self.dataset[self.config.test_split] def fewshot_docs(self): if self.config.fewshot_split is not None: if self.config.process_docs is not None: return self.config.process_docs(self.dataset[self.config.fewshot_split]) return self.dataset[self.config.fewshot_split] else: if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0): eval_logger.warning( f"Task '{self.config.task}': " "num_fewshot > 0 but fewshot_split is None. " "using preconfigured rule." ) return super().fewshot_docs() @utils.positional_deprecated def fewshot_context(self, doc: str, num_fewshot: int) -> str: """Returns a fewshot context string that is made up of a prepended description (if provided), the `num_fewshot` number of examples, and an appended prompt example. :param doc: str The document as returned from training_docs, validation_docs, or test_docs. :param num_fewshot: int The number of fewshot examples to provide in the returned context string. :returns: str The fewshot context. """ if description := self.config.description: description = utils.apply_template(self.config.description, doc) if num_fewshot == 0: # always prepend the (possibly empty) task description labeled_examples = description else: labeled_examples = description + self.sampler.get_context(doc, num_fewshot) example = self.doc_to_text(doc) if self.multiple_input: return labeled_examples else: if isinstance(example, str): return labeled_examples + example elif isinstance(example, list): return [labeled_examples + ex for ex in example] elif isinstance(example, int): if self.config.doc_to_choice is not None: choices = self.doc_to_choice(doc) return labeled_examples + choices[example] else: return labeled_examples + str(example) def apply_filters(self): """Iterates over FilterEnsembles and applies them to instances""" if hasattr(self, "_filters"): for f in self._filters: f.apply(self._instances) else: eval_logger.warning("No filter defined, passing through instances") return self._instances def should_decontaminate(self): return self.config.should_decontaminate def doc_to_decontamination_query(self, doc): if self.config.should_decontaminate: if self.config.doc_to_decontamination_query is None: return self.doc_to_text(doc) else: doc_to_decontamination_query = self.config.doc_to_decontamination_query if doc_to_decontamination_query in self.features: return doc[doc_to_decontamination_query] elif callable(doc_to_decontamination_query): return doc_to_decontamination_query(doc) else: return ast.literal_eval( utils.apply_template( self.config.doc_to_decontamination_query, doc ) ) def _process_doc(self, doc: dict) -> dict: """ Override this to process (detokenize, strip, replace, etc.) individual documents. This can be used in a map over documents of a data split. E.g. `map(self._process_doc, self.dataset["validation"])` :return: dict The processed version of the specified `doc`. """ return doc def doc_to_text(self, doc): if self.prompt is not None: doc_to_text = self.prompt else: doc_to_text = self.config.doc_to_text if isinstance(doc_to_text, int): return doc_to_text elif isinstance(doc_to_text, str): if doc_to_text in self.features: # if self.config.doc_to_choice is not None: # return self.doc_to_choice(doc)[doc[doc_to_text]] # else: return doc[doc_to_text] else: text_string = utils.apply_template(doc_to_text, doc) if text_string.isdigit() and self._config.doc_to_choice is not None: return ast.literal_eval(text_string) else: return text_string elif callable(doc_to_text): return doc_to_text(doc) # Used when applying a Promptsource template elif hasattr(doc_to_text, "apply"): applied_prompt = doc_to_text.apply(doc) if len(applied_prompt) == 2: return applied_prompt[0] else: eval_logger.warning("Applied prompt returns empty string") return self.config.fewshot_delimiter else: print(type(doc_to_text)) raise TypeError def doc_to_target(self, doc: Mapping) -> Union[int, str, list]: if self.prompt is not None: doc_to_target = self.prompt else: doc_to_target = self.config.doc_to_target if isinstance(doc_to_target, int): return doc_to_target elif isinstance(doc_to_target, str): if doc_to_target in self.features: # if self.config.doc_to_choice is not None: # return self.doc_to_choice(doc)[doc[doc_to_target]] # else: return doc[doc_to_target] else: target_string = utils.apply_template(doc_to_target, doc) if target_string.isdigit() and self._config.doc_to_choice is not None: return ast.literal_eval(target_string) elif ( len(target_string) >= 2 and (target_string[0] == "[") and (target_string[-1] == "]") ): try: return ast.literal_eval(target_string) except (SyntaxError, ValueError): return target_string else: return target_string elif isinstance(doc_to_target, list): return doc_to_target elif callable(doc_to_target): return doc_to_target(doc) # Used when applying a Promptsource template elif hasattr(doc_to_target, "apply"): applied_prompt = doc_to_target.apply(doc) if len(applied_prompt) == 2: return applied_prompt[1] else: eval_logger.warning("Applied prompt returns empty string") return self.config.fewshot_delimiter else: raise TypeError def doc_to_choice(self, doc: Any) -> List[str]: if self.prompt is not None: doc_to_choice = self.prompt elif self.config.doc_to_choice is None: eval_logger.error("doc_to_choice was called but not set in config") else: doc_to_choice = self.config.doc_to_choice if isinstance(doc_to_choice, str): if doc_to_choice in self.features: return doc[doc_to_choice] else: return ast.literal_eval(utils.apply_template(doc_to_choice, doc)) elif isinstance(doc_to_choice, list): return doc_to_choice elif isinstance(doc_to_choice, dict): return list(doc_to_choice.values()) elif callable(doc_to_choice): return doc_to_choice(doc) elif hasattr(doc_to_choice, "get_answer_choices_list"): return doc_to_choice.get_answer_choices_list(doc) else: raise TypeError def construct_requests( self, doc: dict, ctx: str, **kwargs ) -> Union[List[Instance], Instance]: if self.OUTPUT_TYPE == "loglikelihood": arguments = (ctx, self.doc_to_target(doc)) elif self.OUTPUT_TYPE == "loglikelihood_rolling": arguments = (self.doc_to_target(doc),) elif self.OUTPUT_TYPE == "multiple_choice": choices = self.doc_to_choice(doc) target_delimiter = self.config.target_delimiter if self.multiple_input: # If there are multiple inputs, choices are placed in the ctx cont = self.doc_to_target(doc) arguments = [ (ctx + choice, f"{target_delimiter}{cont}") for choice in choices ] else: # Otherwise they are placed in the continuation arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices] request_list = [ Instance( request_type="loglikelihood", doc=doc, arguments=arg, idx=i, **kwargs, ) for i, arg in enumerate(arguments) ] # TODO: we should raise a warning telling users this will at most ~2x runtime. if "acc_mutual_info" in self._metric_fn_list.keys(): # if we are calculating multiple choice accuracy # using mutual information instead of raw loglikelihood as metric, need unconditional lls. # here mutual info refers to calculating # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice)) # in other words normalizing by subtracting the unconditional logprob of each choice. request_list.extend( [ Instance( request_type="loglikelihood", doc=doc, arguments=("", "{}".format(choice)), idx=i, **kwargs, ) for i, choice in enumerate(choices) ] ) return request_list elif self.OUTPUT_TYPE == "generate_until": arguments = (ctx, deepcopy(self.config.generation_kwargs)) return Instance( request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs ) def process_results(self, doc, results): if callable(self.config.process_results): return self.config.process_results(doc, results) result_dict = {} use_metric = list(self._metric_fn_list.keys()) if self.OUTPUT_TYPE == "loglikelihood": results = results[0] ll, is_greedy = results return { **({"perplexity": ll} if "perplexity" in use_metric else {}), **({"acc": int(is_greedy)} if "acc" in use_metric else {}), } elif self.OUTPUT_TYPE == "loglikelihood_rolling": (loglikelihood,) = results _words = self.count_words(self.doc_to_target(doc)) _bytes = self.count_bytes(self.doc_to_target(doc)) return { **( {"word_perplexity": (loglikelihood, _words)} if "word_perplexity" in use_metric else {} ), **( {"byte_perplexity": (loglikelihood, _bytes)} if "byte_perplexity" in use_metric else {} ), **( {"bits_per_byte": (loglikelihood, _bytes)} if "bits_per_byte" in use_metric else {} ), } elif self.OUTPUT_TYPE == "multiple_choice": lls, is_greedy = zip(*results) # retrieve choices in List[str] form, to compute choice lengths, etc. choices = self.doc_to_choice(doc) completion_len = np.array([float(len(i)) for i in choices]) if ( 2 * len(choices) == len(lls) and "acc_mutual_info" in self._metric_fn_list.keys() ): # then we are doing mutual info. # this stores the "dryrun" / unconditional answer loglikelihoods lls_unconditional = lls[1::2] if len(lls_unconditional) != len(choices): raise ValueError # and this stores our "regular" conditional loglikelihoods lls = lls[::2] pred = np.argmax(lls) pred_norm = np.argmax(lls / completion_len) if self.multiple_input: gold = self.doc_to_text(doc) else: gold = self.doc_to_target(doc) gold_index_error = False if isinstance(gold, list): gold = [i if i < len(choices) else -100 for i in gold] if -100 in gold: gold_index_error = True else: if isinstance(gold, int): gold = gold if gold < len(choices) else -100 elif isinstance(gold, str): gold = choices.index(gold) if gold in choices else -100 if gold == -100: gold_index_error = True if gold_index_error: eval_logger.warning( f"Label index was not in within range of available choices," f"Sample:\n\n{doc}\n\n" ) if self.multiple_target: acc = 1.0 if pred in gold else 0.0 acc_norm = 1.0 if pred_norm in gold else 0.0 exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold])) else: acc = 1.0 if pred == gold else 0.0 acc_norm = 1.0 if pred_norm == gold else 0.0 # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly exact_match = int(is_greedy[gold]) if gold != -100 else 0 prob_norm = utils.softmax(lls) # TODO use keyword arguments to the metric? # gold, pred, norm stuff, the original lls, result_dict = { **({"acc": acc} if "acc" in use_metric else {}), **({"f1": (gold, pred)} if "f1" in use_metric else {}), **({"mcc": (gold, pred)} if "mcc" in use_metric else {}), **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}), **({"exact_match": exact_match} if "exact_match" in use_metric else {}), **( {"brier_score": (gold, prob_norm)} if "brier_score" in use_metric else {} ), } if "acc_mutual_info" in use_metric: lls_mutual_info = [ ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional) ] acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0 result_dict["acc_mutual_info"] = acc_mutual_info elif self.OUTPUT_TYPE == "generate_until": gold = self.doc_to_target(doc) result = results[0] if self.config.doc_to_choice is not None: # If you set doc_to_choice, # it assumes that doc_to_target returns a number. choices = self.doc_to_choice(doc) gold = choices[gold] # we expect multiple_targets to be a list. elif self.multiple_target: gold = list(gold) elif type(gold) != type(result): # cast gold to the same type as result gold = type(result)(gold) for metric in self._metric_fn_list.keys(): if self.multiple_target: # in the case where we have multiple targets, # return true if any are true # TODO: this may break for multipLe_target, non zero-or-1 metrics scores = [] if not isinstance(gold, list): # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer # print(gold) gold = [gold] if metric == "exact_match": result = [result for _ in range(len(gold))] scores = self._metric_fn_list[metric]( references=gold, predictions=result, **self._metric_fn_kwargs[metric], )[metric] result_score = 1.0 if scores > 0.0 else 0.0 else: for gold_option in gold: try: result_score = self._metric_fn_list[metric]( references=[gold_option], predictions=[result], **self._metric_fn_kwargs[metric], ) except ( TypeError ): # TODO: this is hacky and I don't want to do it result_score = self._metric_fn_list[metric]( [gold_option, result] ) if isinstance(result_score, dict): # TODO: this handles the case where HF evaluate returns a dict. result_score = result_score[metric] scores.append(result_score) if any(scores): result_score = 1.0 else: result_score = 0.0 else: try: result_score = self._metric_fn_list[metric]( references=[gold], predictions=[result], **self._metric_fn_kwargs[metric], ) except TypeError: # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics result_score = self._metric_fn_list[metric]([gold, result]) if isinstance(result_score, dict): # TODO: this handles the case where HF evaluate returns a dict. result_score = result_score[metric] result_dict[metric] = result_score else: raise ValueError( f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ", "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'", ) return result_dict def aggregation(self) -> dict: return self._aggregation_list def higher_is_better(self) -> dict: return self._higher_is_better def get_config(self, key: str) -> Any: return getattr(self._config, key, None) def __repr__(self): return ( f"ConfigurableTask(task_name={getattr(self.config, 'task', None)}," f"group_name={getattr(self.config, 'group', None)}," f"output_type={self.OUTPUT_TYPE}," f"num_fewshot={getattr(self.config, 'num_fewshot', None)}," f"num_samples={len(self.eval_docs)})" ) class MultipleChoiceTask(Task): OUTPUT_TYPE = "loglikelihood" def doc_to_target(self, doc: dict) -> str: return " " + doc["choices"][doc["gold"]] def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]: # TODO: add mutual info here? return [ Instance( request_type="loglikelihood", doc=doc, arguments=(ctx, " {}".format(choice)), idx=i, **kwargs, ) for i, choice in enumerate(doc["choices"]) ] def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict: results = [ res[0] for res in results ] # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere? gold = doc["gold"] acc = 1.0 if np.argmax(results) == gold else 0.0 completion_len = np.array([float(len(i)) for i in doc["choices"]]) acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0 return { "acc": acc, "acc_norm": acc_norm, } def higher_is_better(self) -> dict: return { "acc": True, "acc_norm": True, } def aggregation(self) -> dict: return { "acc": mean, "acc_norm": mean, } class PerplexityTask(Task): OUTPUT_TYPE = "loglikelihood_rolling" def has_training_docs(self) -> bool: return False def fewshot_examples(self, k: int, rnd) -> List: if k != 0: raise ValueError( "The number of fewshot examples must be 0 for perplexity tasks." ) return [] def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]: if num_fewshot != 0: raise ValueError( "The number of fewshot examples must be 0 for perplexity tasks." ) return "" def higher_is_better(self) -> dict: return { "word_perplexity": False, "byte_perplexity": False, "bits_per_byte": False, } def doc_to_decontamination_query(self, doc): return doc def doc_to_text(self, doc) -> str: return "" def doc_to_target(self, doc): return doc def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs): if bool(ctx): raise ValueError return Instance( request_type=self.OUTPUT_TYPE, doc=doc, arguments=(self.doc_to_target(doc),), idx=0, **kwargs, ) def process_results(self, doc: dict, results: Tuple[float]) -> dict: (loglikelihood,) = results words = self.count_words(self.doc_to_target(doc)) bytes_ = self.count_bytes(self.doc_to_target(doc)) return { "word_perplexity": (loglikelihood, words), "byte_perplexity": (loglikelihood, bytes_), "bits_per_byte": (loglikelihood, bytes_), } def aggregation(self) -> dict: return { "word_perplexity": weighted_perplexity, "byte_perplexity": weighted_perplexity, "bits_per_byte": bits_per_byte, } @classmethod def count_bytes(cls, doc) -> int: return len(doc.encode("utf-8")) @classmethod def count_words(cls, doc) -> int: """Downstream tasks with custom word boundaries should override this!""" return len(re.split(r"\s+", doc))