from itertools import zip_longest import transformers.data.metrics.squad_metrics as squad_metrics def doc_to_text(doc): # Given a passage p, the conversation history {q1, a1, . . . qi−1, ai−1} # and a question qi, the task is to predict the answer ai doc_text = doc["story"] + "\n\n" for q, a in zip_longest( doc["questions"]["input_text"], doc["answers"]["input_text"][:-1] ): # omit target answer ai question = f"Q: {q}\n\n" answer = f"A: {a}\n\n" if a is not None else "A:" doc_text += question + answer return doc_text def doc_to_target(doc): turn_id = len(doc["questions"]["input_text"]) # Returns unique answers and valid alternatives (Some questions in CoQA have multiple valid answers). answers = [] answer_forturn = doc["answers"]["input_text"][turn_id - 1] answers.append(answer_forturn) additional_answers = doc.get("additional_answers") if additional_answers: for key in additional_answers: additional_answer_for_turn = additional_answers[key]["input_text"][ turn_id - 1 ] if additional_answer_for_turn.lower() not in map(str.lower, answers): answers.append(additional_answer_for_turn) return answers def em(gold_list, pred): # tests for exact match and on the normalised answer (compute_exact) em_sum = 0.0 if len(gold_list) > 1: for i in range(len(gold_list)): gold_answers = gold_list[0:i] + gold_list[i + 1 :] # predictions compared against (n) golds and take maximum em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_answers) else: em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_list) return em_sum / max(1, len(gold_list)) def compute_scores(gold_list, pred): # tests for exact match and on the normalised answer (compute_exact) # test for overlap (compute_f1) f1_sum = 0.0 em_sum = 0.0 if len(gold_list) > 1: for i in range(len(gold_list)): gold_answers = gold_list[0:i] + gold_list[i + 1 :] # predictions compared against (n) golds and take maximum em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_answers) f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_answers) else: em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_list) f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_list) return { "em": em_sum / max(1, len(gold_list)), "f1": f1_sum / max(1, len(gold_list)), } def process_results(doc, results): gold_list = doc_to_target(doc) pred = results[0].strip().split("\n")[0] scores = compute_scores(gold_list, pred) return scores