from datasets import Dataset from sklearn.metrics import f1_score def copa_doc_to_text(doc: dict) -> str: connector = {"원인": " 왜냐하면", "결과": " 그래서"}[doc["question"].strip()] return f"""{doc["premise"]} {connector}""" def copa_doc_to_target(doc: dict) -> str: correct_choice = doc["alternative_1"] if doc["label"] == 0 else doc["alternative_2"] return f"""{correct_choice}""" def copa_doc_to_choice(doc: dict) -> list: return [f"""{doc["alternative_1"]}""", f"""{doc["alternative_2"]}"""] def sentineg_doc_to_text(doc: dict): return f"""문장: {doc["sentence"]} 긍부정:""" def wic_doc_to_text(doc: dict) -> str: return f"""문장1: {doc["context_1"]} 문장2: {doc["context_2"]} 두 문장에서 {doc["word"]}가 같은 뜻으로 쓰였나?""" def hellaswag_process_doc(doc: Dataset) -> Dataset: def preprocessor(dataset): return { "query": f"""문장: {dataset["context"]}""", "choices": [ dataset["ending_1"], dataset["ending_2"], dataset["ending_3"], dataset["ending_4"], ], "gold": int(dataset["label"]), } return doc.map(preprocessor) def macro_f1_score(items): unzipped_list = list(zip(*items)) golds = unzipped_list[0] preds = unzipped_list[1] fscore = f1_score(golds, preds, average="macro") return fscore