File size: 7,860 Bytes
45361be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.


"""Sample Generate GPT"""
import json
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir, os.path.pardir)))
import torch
from megatron import get_args
from megatron import get_tokenizer
from megatron import print_rank_0
from megatron.checkpointing import load_checkpoint
from megatron.core import mpu
from megatron.initialize import initialize_megatron
from megatron.model import GPTModel
from megatron.training import get_model
from megatron.arguments import core_transformer_config_from_args
from megatron.text_generation import generate_and_post_process


def model_provider(pre_process=True, post_process=True):
    """Build the model."""

    config = core_transformer_config_from_args(args)

    print_rank_0('building GPT model ...')
    model = GPTModel(config=config, num_tokentypes=0, parallel_output=False,
                     pre_process=pre_process, post_process=post_process)

    return model

def add_text_generate_args(parser):
    """Text generation arguments."""
    group = parser.add_argument_group(title='text generation')

    group.add_argument("--temperature", type=float, default=1.0,
                       help='Sampling temperature.')
    group.add_argument("--greedy", action='store_true', default=False,
                       help='Use greedy sampling.')
    group.add_argument("--top_p", type=float, default=0.0,
                       help='Top p sampling.')
    group.add_argument("--top_k", type=int, default=0,
                       help='Top k sampling.')
    group.add_argument("--out-seq-length", type=int, default=1024,
                       help='Size of the output generated text.')
    group.add_argument("--sample-input-file", type=str, default=None,
                       help='Get input from file instead of interactive mode, '
                       'each line is an input.')
    group.add_argument("--sample-output-file", type=str, default=None,
                       help='Output file got from --sample-input-file')
    group.add_argument("--num-samples", type=int, default=0,
                       help='Number of samples to generate unconditionally, '
                       'defaults to 0 and interactive conditional sampling')
    group.add_argument("--genfile", type=str,
                       help='Output file when generating unconditionally')
    return parser

def generate_samples_unconditional(model):
    args = get_args()

    if torch.distributed.get_rank() == 0:
        cnt = 0
        num_samples = args.num_samples
        from tqdm import tqdm
        pbar = tqdm(total=num_samples)

    while True:
        if torch.distributed.get_rank() == 0:
            sentences = [''] * args.global_batch_size
            print("global batch size", args.global_batch_size)
            max_len = args.out_seq_length
            resp_sentences, resp_sentences_seg, output_logits, \
            tokens = generate_and_post_process(model, prompts=sentences,
                                               tokens_to_generate=max_len,
                                               return_output_log_probs=False,
                                               top_k_sampling=args.top_k,
                                               top_p_sampling=args.top_p,
                                               add_BOS=True,
                                               temperature=1.0)
            for prompt, generation, token in zip(sentences, resp_sentences, tokens):
                datum = {'text': generation[len(prompt):], 'all_text': generation, 'prompt': prompt, 'id': cnt}
                yield datum
                cnt += 1
                pbar.update()
                if cnt >= num_samples:
                    break

            if cnt >= num_samples:
                pbar.close()
                break
        else:
            generate_and_post_process(model)


def generate_samples_conditional(model):
    args = get_args()

    if torch.distributed.get_rank() == 0:
        num_samples = args.num_samples
        cnt = 0
        from tqdm import tqdm
        pbar = tqdm(total=num_samples)

        fname = open(args.sample_input_file, "r")
        lines = fname.readlines()
        all_raw_text = [json.loads(line)['prompt']['text'] for line in lines]
        input_count = len(all_raw_text)
        input_pos = 0

    while True:
        torch.distributed.barrier()
        if torch.distributed.get_rank() == 0:
            sentences = []
            print("global batch size", args.global_batch_size)
            for _ in range(args.global_batch_size):
                if input_pos >= input_count:
                    print(f"input pos: {input_pos}, input count: {input_count}")
                    raw_text = "EMPTY TEXT"
                else:
                    raw_text = all_raw_text[input_pos]
                input_pos += 1
                sentences.append(raw_text)

            max_len = args.out_seq_length
            resp_sentences, resp_sentences_seg, output_logits, \
            tokens = generate_and_post_process(model, prompts=sentences,
                                               tokens_to_generate=max_len,
                                               return_output_log_probs=False,
                                               top_k_sampling=args.top_k,
                                               top_p_sampling=args.top_p,
                                               add_BOS=False,
                                               temperature=1.0)
            for prompt, generation, token in zip(sentences, resp_sentences, tokens):
                datum = {'text': generation[len(prompt):], 'all_text': generation, 'prompt': prompt, 'id': cnt}
                yield datum
                cnt += 1
                pbar.update()
                if cnt >= num_samples:
                    break

            if cnt >= num_samples:
                pbar.close()
                break
        else:
            generate_and_post_process(model)


def generate_and_write_samples_unconditional(model):
    args = get_args()
    assert args.genfile is not None
    with open(args.genfile, 'w') as f:
        for datum in generate_samples_unconditional(model):
            if torch.distributed.get_rank() == 0:
                f.write(json.dumps(datum) + '\n')


def generate_and_write_samples_conditional(model):
    args = get_args()
    if args.sample_output_file is None:
        sample_output_file = args.sample_input_file + ".out"
        print('`sample-output-file` not specified, setting '
              'it to {}'.format(sample_output_file))
    else:
        sample_output_file = args.sample_output_file
    with open(sample_output_file, 'w') as f:
        for datum in generate_samples_conditional(model):
            if torch.distributed.get_rank() == 0:
                f.write(json.dumps(datum) + '\n')


def main():
    """Main program."""

    initialize_megatron(extra_args_provider=add_text_generate_args,
                        args_defaults={'tokenizer_type': 'GPT2BPETokenizer',
                                       'no_load_rng': True,
                                       'no_load_optim': True,
                                       'seq_length': 2048})

    # Set up model and load checkpoint
    model = get_model(model_provider, wrap_with_ddp=False)

    args = get_args()

    if args.load is not None:
        _ = load_checkpoint(model, None, None)
    model = model[0]

    # Generate samples.
    if args.sample_input_file != None:
        print(f"{args.sample_input_file}")
        generate_and_write_samples_conditional(model)
    else:
        generate_and_write_samples_unconditional(model)


if __name__ == "__main__":

    main()