File size: 2,120 Bytes
bbc9069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/bin/bash

#########################
# Evaluate the F1 scores.
#########################

WORLD_SIZE=1
DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \
                  --nnodes 1 \
                  --node_rank 0 \
                  --master_addr localhost \
                  --master_port 6000"
                  
MODEL_GEN_PATH=<PATH_OF_THE_RESPONSE_GENERATION> \ 
        (e.g., /testseen_response_generations.txt)
GROUND_TRUTH_PATH=<PATH_OF_THE_GROUND_TRUTH_RESPONSE> \ 
        (e.g., /testseen_response_reference.txt)

python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/msdp/main.py \
        --num-layers 24 \
        --hidden-size 1024 \
        --num-attention-heads 16 \
        --seq-length 2048 \
        --max-position-embeddings 2048 \
        --micro-batch-size 4 \
        --task MSDP-EVAL-F1 \
        --guess-file ${MODEL_GEN_PATH} \
        --answer-file ${GROUND_TRUTH_PATH}


##########################
# Evaluate the KF1 scores.
##########################
                  
MODEL_GEN_PATH=<PATH_OF_THE_RESPONSE_GENERATION> \ 
        (e.g., /testseen_response_generations.txt)
GROUND_TRUTH_PATH=<PATH_OF_THE_GROUND_TRUTH_KNOWLEDGE> \ 
        (e.g., /testseen_knowledge_reference.txt)

python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/msdp/main.py \
        --num-layers 24 \
        --hidden-size 1024 \
        --num-attention-heads 16 \
        --seq-length 2048 \
        --max-position-embeddings 2048 \
        --micro-batch-size 4 \
        --task MSDP-EVAL-F1 \
        --guess-file ${MODEL_GEN_PATH} \
        --answer-file ${GROUND_TRUTH_PATH}


############################################
# Evaluate BLEU, METEOR, and ROUGE-L scores.
############################################

# We follow the nlg-eval (https://github.com/Maluuba/nlg-eval) to 
# evaluate the BLEU, METEOR, and ROUGE-L scores. 

# To evaluate on these metrics, please setup the environments based on 
# the nlg-eval github, and run the corresponding evaluation commands.

nlg-eval \
    --hypothesis=<PATH_OF_THE_RESPONSE_GENERATION> \
    --references=<PATH_OF_THE_GROUND_TRUTH_RESPONSE>