File size: 1,744 Bytes
bbc9069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/bin/bash

# Stage-2: Prompt a pretrained language model to generate the corresponding response
# The input contains prompts, current dialogue context, and generated knowledge in Stage-1
# The output is the corresponding response.
# The size of the pretrained language model is 357M

WORLD_SIZE=8

DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \
                  --nnodes 1 \
                  --node_rank 0 \
                  --master_addr localhost \
                  --master_port 6000"

CHECKPOINT_PATH=<PATH_OF_LANGUAGE_MODEL> (e.g., /357m)
VOCAB_PATH=<PATH_OF_VOCAB_FILE> (e.g., /gpt2-vocab.json)
MERGE_PATH=<PATH_OF_MERGE_FILE> (e.g., /gpt2-merges.txt)
INPUT_PATH=<PATH_OF_INPUT_TEST_DATA_FILE> (e.g., /testseen_processed.txt)
PROMPT_PATH=<PATH_OF_RESPONSE_GENERATION_PROMPTS> \
        (e.g., /response_prompts.txt)
OUTPUT_PATH=<PATH_OF_OUTPUT_GENERATION_FILE> \
        (e.g., /output_testseen_response_generations.txt)

python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/msdp/main.py \
        --num-layers 24 \
        --hidden-size 1024 \
        --num-attention-heads 16 \
        --seq-length 2048 \
        --max-position-embeddings 2048 \
        --micro-batch-size 1 \
        --vocab-file ${VOCAB_PATH} \
        --merge-file ${MERGE_PATH} \
        --load ${CHECKPOINT_PATH} \
        --fp16 \
        --DDP-impl torch \
        --tokenizer-type GPT2BPETokenizer \
        --sample-input-file ${INPUT_PATH} \
        --sample-output-file ${OUTPUT_PATH} \
        --prompt-file ${PROMPT_PATH} \
        --prompt-type response \
        --num-prompt-examples 20 \
        --task MSDP-PROMPT 

# NOTE: If you use api for the model generation, please use 
# the "--api-prompt" flag (setting this value as True).