File size: 8,437 Bytes
8e72e9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import requests
import sys

# AzureML libraries
import azureml.core
from azureml.core import Dataset, Environment, Experiment, ScriptRunConfig, Workspace
from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException
from azureml.core.runconfig import PyTorchConfiguration
from azureml.core.environment import DockerBuildContext

# Check core SDK version number
print("SDK version:", azureml.core.VERSION)

# For setting up a workspace, refer to: https://github.com/Azure/azureml-examples/tree/main/python-sdk#set-up
ws = Workspace.from_config()
print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n')

#-------------------------------------------------------------------------------
# Prepare Compute Cluster
#-------------------------------------------------------------------------------
cluster_name = "a100-80gb"

# Verify that the cluster doesn't exist already
try:
    compute_target = ComputeTarget(workspace=ws, name=cluster_name)
    print('Found existing compute target.')
except ComputeTargetException:
    print('Creating a new compute target...')
    compute_config = AmlCompute.provisioning_configuration(vm_size='Standard_ND96amsr_A100_v4', min_nodes=32, max_nodes=32)
    
    # create the cluster
    compute_target = ComputeTarget.create(ws, cluster_name, compute_config)
    compute_target.wait_for_completion(show_output=True)

#-------------------------------------------------------------------------------
# Prepare Data
# Megatron-DeepSpeed takes in data_path, vocab_file, and merge_file.
# For AML, we are adding a parameter aml_data_download_path which specifies how to deliver the dataset to a compute target.
# In the submitted run, files in the datasets will be either mounted or downloaded to local path on the compute target.
# 
# data_path for this example is path to the .bin and .idx file, excluding extension.
# e.g. for data/BookCorpusDataset_text_document.bin and data/BookCorpusDataset_text_document.idx,
# data_path = "data/BookCorpusDataset_text_document"
#
# Once the folder is downloaded to the compute target, it will use aml_data_download_path to locate the folder
# and data_path to locate .bin and .idx files
#
# vocab_file and merge_file would also be passed in a similar way.
#-------------------------------------------------------------------------------
datastore = ws.get_default_datastore()
blobstore_datadir = "bookcorpus_data"
data_path = f"BookCorpusDataset_text_document"
# Load data folder which contains bookcorpus .bin and .idx files
train_dataset = Dataset.File.from_files(path=[(datastore, blobstore_datadir)])
aml_data_download_path = train_dataset.as_download(blobstore_datadir)

vocab_file_dataset = Dataset.File.from_files("https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json")
merge_file_dataset = Dataset.File.from_files("https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt")
vocab_file = vocab_file_dataset.as_download()
merge_file = merge_file_dataset.as_download()


#-------------------------------------------------------------------------------
# Setup training environment
#-------------------------------------------------------------------------------

megatron_ds_env = Environment.from_docker_build_context(name='megatron-ds-curated-acpt', docker_build_context=DockerBuildContext.from_local_directory(workspace = ws, path = '.', dockerfile_path='Dockerfile.dockerfile'))
megatron_ds_env.register(ws).build(ws).wait_for_completion()  # Comment this out if environment already exists

#-------------------------------------------------------------------------------
# Training Settings and Arguments
#-------------------------------------------------------------------------------
node_count = 2
total_processes_count = 16
micro_batch_size = 1
global_batch_size = micro_batch_size * total_processes_count
tensorboard_dir = '/tmp/outputs/tensorboard'

run_args = ['--tensor-model-parallel-size', 1, 
            '--pipeline-model-parallel-size', 1, 
            '--num-layers', 20,
            '--hidden-size', 12288,
            '--num-attention-heads', 96,
            '--seq-length', 1024,
            '--loss-scale', 15, 
            '--max-position-embeddings', 1024, 
            '--micro-batch-size', micro_batch_size,
            '--global-batch-size', global_batch_size,
            '--train-iters', 100,
            '--lr', 6.0e-5,
            '--min-lr', 6.0e-6, 
            '--lr-decay-style', 'cosine',
            '--log-interval', 1, 
            '--eval-iters', 40, 
            '--eval-interval', 1000,
            '--aml-data-download-path', aml_data_download_path,
            '--data-path', data_path,
            '--vocab-file', vocab_file,
            '--merge-file', merge_file,
            '--save-interval', 1000, 
            '--split', '98,2,0',
            '--clip-grad', 1.0, 
            '--weight-decay', 0.1,
            '--adam-beta1', 0.9,
            '--adam-beta2', 0.95,
            '--init-method-std', 0.006,
            '--fp16',
            '--data-impl', 'mmap',
            '--checkpoint-activations',
            '--tensorboard-dir', tensorboard_dir,
            #'--cpu-optimizer',
            '--deepspeed',
            '--no-pipeline-parallel',
            '--deepspeed_config', 'ds_config.json',
            '--zero-stage', 3,
            '--deepspeed-activation-checkpointing',
            '--exit-interval', 5000,
]

#-------------------------------------------------------------------------------
# DeepSpeed ds_config.json
#-------------------------------------------------------------------------------
import json
ds_config = {
    "train_batch_size" : global_batch_size,
    "train_micro_batch_size_per_gpu": micro_batch_size,
    "steps_per_print": 1,
    "gradient_accumulation_steps": 1,
    "zero_optimization": {
      "stage": 3,
      "stage3_max_live_parameters": 3e9,
      "stage3_max_reuse_distance": 3e9,
      "stage3_param_persistence_threshold": 1e5,
      "stage3_prefetch_bucket_size": 5e7,
      "contiguous_gradients": True,
      "overlap_comm": True,
      "reduce_bucket_size": 90000000,
      "sub_group_size": 1e9,
      "offload_optimizer": {
        "device": "none",
        "buffer_count": 4,
        "pipeline_read": False,
        "pipeline_write": False,
        "pin_memory": True
      }
    },
    "gradient_clipping": 1.0,
    "fp16": {
      "enabled": True,
      "initial_scale_power" : 15,
      "loss_scale_window": 1000,
      "hysteresis": 2,
      "min_loss_scale": 1
    },
    "wall_clock_breakdown": True,
    "zero_allow_untested_optimizer": False,
    "aio": {
      "block_size": 1048576,
      "queue_depth": 16,
      "single_submit": False,
      "overlap_events": True,
      "thread_count": 2
    }
  }

# Place ds_config.json in the same folder as pretrain_gpt.py (script to run)
ds_config_path = '../../ds_config.json'
with open(ds_config_path, 'w') as fp:
    json.dump(ds_config, fp, indent=4)

#-------------------------------------------------------------------------------
# Create ScriptRunConfig
#-------------------------------------------------------------------------------
distr_config = PyTorchConfiguration(process_count=total_processes_count, node_count=node_count)

megatron_ds_src = ScriptRunConfig(source_directory='../../',
                      script='pretrain_gpt.py',
                      arguments=run_args,
                      compute_target=compute_target,
                      environment=megatron_ds_env,
                      distributed_job_config=distr_config)

megatron_ds_src.run_config.environment_variables['NCCL_DEBUG'] = 'WARN'
megatron_ds_src.run_config.environment_variables['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
megatron_ds_src.run_config.environment_variables['NCCL_SOCKET_IFNAME'] = 'eth0'
megatron_ds_src.run_config.environment_variables['NCCL_IB_PCI_RELAXED_ORDERING']='1'
megatron_ds_src.run_config.environment_variables['UCX_TLS']='tcp'
megatron_ds_src.run_config.environment_variables['UCX_NET_DEVICES']='eth0'

#-------------------------------------------------------------------------------
# Submit experiment
#-------------------------------------------------------------------------------
experiment_name = 'megatron-ds'
experiment = Experiment(ws, name=experiment_name)

run = experiment.submit(megatron_ds_src, tags={'bs':micro_batch_size, 'gpus':total_processes_count})