File size: 9,276 Bytes
4573dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Dataloaders."""


from itertools import chain
import random
import torch
import numpy as np
from torch.utils.data import Dataset
from megatron import get_args, get_num_microbatches_by_mode
from megatron.core import mpu


def build_pretraining_data_loader(dataset, consumed_samples, is_train, use_all_samples=False):
    """Buld dataloader given an input dataset."""

    if dataset is None:
        return None
    args = get_args()
    assert not use_all_samples or args.dataloader_type == 'single', \
        'consuming whole dataset supported only for "single" dataloader type'

    if is_train:
        micro_batch_size=args.micro_batch_size
    else:
        micro_batch_size=args.eval_micro_batch_size

    # Megatron sampler
    if args.dataloader_type == 'single':
        batch_sampler = MegatronPretrainingSampler(
            total_samples=len(dataset),
            consumed_samples=consumed_samples,
            micro_batch_size=micro_batch_size,
            data_parallel_rank=mpu.get_data_parallel_rank(),
            data_parallel_size=mpu.get_data_parallel_world_size(),
            is_train=is_train,
            drop_last=not use_all_samples,
            pad_negative_indices=use_all_samples)
    elif args.dataloader_type == 'cyclic':
        batch_sampler = MegatronPretrainingRandomSampler(
            dataset,
            total_samples=len(dataset),
            consumed_samples=consumed_samples,
            micro_batch_size=micro_batch_size,
            data_parallel_rank=mpu.get_data_parallel_rank(),
            data_parallel_size=mpu.get_data_parallel_world_size(),
            data_sharding=args.data_sharding)
    else:
        raise Exception('{} dataloader type is not supported.'.format(
                args.dataloader_type))

    # Torch dataloader.
    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=args.num_workers,
                                       pin_memory=True)

class MegatronPretrainingSampler:

    def __init__(self, total_samples, consumed_samples, micro_batch_size,
                 data_parallel_rank, data_parallel_size, is_train, drop_last=True,
                 pad_negative_indices=False):
        # Keep a copy of input params for later use.
        self.total_samples = total_samples
        self.consumed_samples = consumed_samples
        self.micro_batch_size = micro_batch_size
        self.data_parallel_rank = data_parallel_rank
        self.micro_batch_times_data_parallel_size = \
            self.micro_batch_size * data_parallel_size
        self.drop_last = drop_last
        self.global_batch_size = (self.micro_batch_times_data_parallel_size
                                * get_num_microbatches_by_mode(is_train))
        self.pad_negative_indices = pad_negative_indices
        self.is_train = is_train

        # Sanity checks.
        assert self.total_samples > 0, \
            'no sample to consume: {}'.format(self.total_samples)
        assert self.consumed_samples < self.total_samples, \
            'no samples left to consume: {}, {}'.format(self.consumed_samples,
                                                        self.total_samples)
        assert self.micro_batch_size > 0
        assert data_parallel_size > 0
        assert self.data_parallel_rank < data_parallel_size, \
            'data_parallel_rank should be smaller than data size: {}, ' \
            '{}'.format(self.data_parallel_rank, data_parallel_size)

    def __len__(self):
        return self.total_samples

    def get_start_end_idx(self):
        start_idx = self.data_parallel_rank * self.micro_batch_size
        end_idx = start_idx + self.micro_batch_size
        return start_idx, end_idx

    def __iter__(self):
        batch = []
        # Last batch will be dropped if drop_last is not set False
        indices = range(self.consumed_samples, self.total_samples)
        if (not self.drop_last) and self.pad_negative_indices:
            # TODO: this approach (padding to global_batch_size) is not optimal
            #  since many batches could by empty (only padding) on all devices.
            #  This should be fixed by creating a microbatches calculator
            #  than can be instructed (e.g. with `update_num_microbatches`) to
            #  use less num_microbatches in last valid iteration.
            #  The code here will not change except from replacing
            #  `self.global_batch_size` with
            #  `self.micro_batch_times_data_parallel_size` Done for Eval.
            remainder = self.global_batch_size if self.is_train else self.micro_batch_times_data_parallel_size
            pad_samples_num = -len(indices) % remainder
            pad_indices = range(-1, -pad_samples_num - 1, -1)
            indices = chain(indices, pad_indices)

        for idx in indices:
            batch.append(idx)
            if len(batch) == self.micro_batch_times_data_parallel_size:
                start_idx, end_idx = self.get_start_end_idx()
                yield batch[start_idx:end_idx]
                batch = []

        # Check the last partial batch and see drop_last is set
        if len(batch) > 0 and not self.drop_last:
            assert not self.pad_negative_indices, \
                'with pad_negative_indices all batches should be complete'
            start_idx, end_idx = self.get_start_end_idx()
            yield batch[start_idx:end_idx]


class RandomSeedDataset(Dataset):

    def __init__(self, dataset):
        args = get_args()
        self.base_seed = args.seed
        self.curr_seed = args.seed
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)

    def set_epoch(self, epoch):
        self.curr_seed = self.base_seed + epoch

    def __getitem__(self, idx):
        seed = idx + self.curr_seed
        torch.manual_seed(seed)
        random.seed(seed)
        np.random.seed(seed)
        return self.dataset[idx]


class MegatronPretrainingRandomSampler:

    def __init__(self, dataset, total_samples, consumed_samples, micro_batch_size,
                 data_parallel_rank, data_parallel_size, data_sharding):
        # Keep a copy of input params for later use.
        self.dataset = dataset
        self.total_samples = total_samples
        self.consumed_samples = consumed_samples
        self.micro_batch_size = micro_batch_size
        self.data_parallel_rank = data_parallel_rank
        self.data_parallel_size = data_parallel_size
        self.data_sharding = data_sharding
        self.micro_batch_times_data_parallel_size = \
            self.micro_batch_size * data_parallel_size
        self.last_batch_size = \
            self.total_samples % self.micro_batch_times_data_parallel_size

        # Sanity checks.
        assert self.total_samples > 0, \
            'no sample to consume: {}'.format(self.total_samples)
        assert self.micro_batch_size > 0
        assert data_parallel_size > 0
        assert self.data_parallel_rank < data_parallel_size, \
            'data_parallel_rank should be smaller than data size: {}, ' \
            '{}'.format(self.data_parallel_rank, data_parallel_size)

    def __len__(self):
        return self.total_samples

    def __iter__(self):
        active_total_samples = self.total_samples - self.last_batch_size
        self.epoch = self.consumed_samples // active_total_samples
        current_epoch_samples = self.consumed_samples % active_total_samples
        assert current_epoch_samples % self.micro_batch_times_data_parallel_size == 0

        if isinstance(self.dataset, RandomSeedDataset):
            self.dataset.set_epoch(self.epoch)

        # data sharding and random sampling
        if self.data_sharding:
            bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) \
                           * self.micro_batch_size
            bucket_offset = current_epoch_samples // self.data_parallel_size
            start_idx = self.data_parallel_rank * bucket_size
            
            g = torch.Generator()
            g.manual_seed(self.epoch)
            random_idx = torch.randperm(bucket_size, generator=g).tolist()
            idx_range = [start_idx + x for x in random_idx[bucket_offset:]]
        else:
            full_bucket_size = (self.total_samples // self.micro_batch_size) \
                                * self.micro_batch_size
            full_bucket_offset = current_epoch_samples
            g = torch.Generator()
            g.manual_seed(self.epoch)
            idx_range_total = \
                torch.randperm(full_bucket_size, generator=g).tolist()
            idx_range_active = idx_range_total[full_bucket_offset:]
            idx_range = idx_range_active[self.data_parallel_rank::self.data_parallel_size]

        batch = []
        # Last batch if not complete will be dropped.
        for idx in idx_range:
            batch.append(idx)
            if len(batch) == self.micro_batch_size:
                self.consumed_samples += self.micro_batch_times_data_parallel_size
                yield batch
                batch = []