File size: 30,014 Bytes
f0e5081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""GPT style dataset."""

import hashlib
import os
import time

import numpy as np
import torch
from deepspeed.accelerator import get_accelerator
from megatron import print_rank_0, is_rank_0, get_args
from megatron.core import mpu
from megatron.data.blendable_dataset import BlendableDataset
from megatron.data.dataset_utils import get_datasets_weights_and_num_samples
from megatron.data.dataset_utils import get_train_valid_test_split_
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset


def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                    train_valid_test_num_samples,
                                    seq_length, seed, skip_warmup,
                                    train_data_prefix=None,
                                    valid_data_prefix=None,
                                    test_data_prefix=None,
                                    return_doc_ids=False, *,
                                    data_cache_path=None,
                                    use_seq_len_plus_one_tokens=True):
    """Build train, valid, and test datasets."""

    if data_prefix:
        print_rank_0("Single data path provided for train, valid & test")

        # Single dataset.
        if len(data_prefix) == 1:
            return _build_train_valid_test_datasets(data_prefix[0],
                                                    data_impl, splits_string,
                                                    train_valid_test_num_samples,
                                                    seq_length, seed, skip_warmup,
                                                    data_cache_path=data_cache_path,
                                                    use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens)

        # Blending dataset.
        # Parse the values.
        output = get_datasets_weights_and_num_samples(data_prefix,
                                                      train_valid_test_num_samples)
        prefixes, weights, datasets_train_valid_test_num_samples = output
        train_num_samples, valid_num_samples, test_num_samples = map(
            sum,
            zip(*datasets_train_valid_test_num_samples)
        )

        # Build individual datasets.
        train_datasets = []
        valid_datasets = []
        test_datasets = []
        for i in range(len(prefixes)):
            train_ds, valid_ds, test_ds = _build_train_valid_test_datasets(
                prefixes[i], data_impl, splits_string,
                datasets_train_valid_test_num_samples[i],
                seq_length, seed, skip_warmup,
                return_doc_ids,
                data_cache_path=data_cache_path,
                use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens)
            if train_ds:
                train_datasets.append(train_ds)
            if valid_ds:
                valid_datasets.append(valid_ds)
            if test_ds:
                test_datasets.append(test_ds)

        # Blend.
        blending_train_dataset = None
        if train_datasets:
            blending_train_dataset = BlendableDataset(train_datasets, weights, train_num_samples,
                                                      data_cache_path=data_cache_path)
        blending_valid_dataset = None
        if valid_datasets:
            blending_valid_dataset = BlendableDataset(valid_datasets, weights, valid_num_samples,
                                                      data_cache_path=data_cache_path)
        blending_test_dataset = None
        if test_datasets:
            blending_test_dataset = BlendableDataset(test_datasets, weights, test_num_samples,
                                                     data_cache_path=data_cache_path)

        return (blending_train_dataset, blending_valid_dataset,
                blending_test_dataset)

    else:
        print_rank_0("Separate data paths provided for train, valid & test. Split string will be ignored.")

        train_dataset, valid_dataset, test_dataset = None, None, None
        # Single dataset.
        if train_data_prefix is not None:
            train_dataset = build_dataset("train", train_data_prefix, data_impl,
                                          splits_string,
                                          train_valid_test_num_samples[0],
                                          seq_length, seed, skip_warmup,
                                          data_cache_path=data_cache_path,
                                          use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens)

        if valid_data_prefix is not None:
            valid_dataset = build_dataset("valid", valid_data_prefix, data_impl,
                                          splits_string,
                                          train_valid_test_num_samples[1],
                                          seq_length, seed, False,
                                          data_cache_path=data_cache_path,
                                          use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens)


        if test_data_prefix is not None:
            test_dataset = build_dataset("test", test_data_prefix, data_impl,
                                         splits_string,
                                         train_valid_test_num_samples[2],
                                         seq_length, seed, False,
                                         data_cache_path=data_cache_path,
                                         use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens)

        return (train_dataset, valid_dataset, test_dataset)


def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                     train_valid_test_num_samples,
                                     seq_length, seed, skip_warmup,
                                     return_doc_ids=False, *,
                                     data_cache_path=None,
                                     use_seq_len_plus_one_tokens):
    """Build train, valid, and test datasets."""

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')

    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
        dataset = None
        if splits[index + 1] > splits[index]:
            documents = np.arange(start=splits[index], stop=splits[index + 1],
                                  step=1, dtype=np.int32)
            dataset = GPTDataset(name, data_prefix, documents, indexed_dataset,
                                 splits_string,
                                 train_valid_test_num_samples[index],
                                 seq_length, seed,
                                 return_doc_ids,
                                 data_cache_path=data_cache_path,
                                 use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens)
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

    return (train_dataset, valid_dataset, test_dataset)


def build_dataset(dataset_name, data_prefix, data_impl,
                  splits_string, num_samples,
                  seq_length, seed, skip_warmup,
                  *,
                  data_cache_path=None,
                  use_seq_len_plus_one_tokens=True):
    dataset = None
    if len(data_prefix) == 1:
        dataset = _build_dataset(dataset_name, data_prefix[0], data_impl,
                                 splits_string, num_samples, seq_length,
                                 seed, skip_warmup,
                                 data_cache_path=data_cache_path,
                                 use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens)
    else:
        # Blending dataset.
        # Parse the values.
        output = get_datasets_weights_and_num_samples(data_prefix, num_samples)
        prefixes, weights, dataset_num_samples = output
        num_samples = sum(dataset_num_samples)

        # Build individual datasets.
        datasets = []
        for i in range(len(prefixes)):
            ds = _build_dataset(dataset_name, prefixes[i], data_impl,
                                splits_string, dataset_num_samples[i],
                                seq_length, seed, skip_warmup,
                                data_cache_path=data_cache_path,
                                use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens)
            if ds:
                datasets.append(ds)

        if datasets:
            dataset = BlendableDataset(datasets, weights, num_samples,
                                       data_cache_path=data_cache_path)

    return dataset


def _build_dataset(dataset_name, data_prefix, data_impl, splits_string,
                   num_samples, seq_length, seed, skip_warmup,
                   *,
                   data_cache_path=None,
                   use_seq_len_plus_one_tokens=True):
    """
    Build dataset. This method is called when individual
    train, valid, test datasets are provided
    """

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]

    print_rank_0('    {}:'.format(dataset_name))
    print_rank_0('     document indices in [0, {}) total of {} '
                 'documents'.format(total_num_of_documents, total_num_of_documents))

    documents = np.arange(start=0, stop=total_num_of_documents,
                        step=1, dtype=np.int32)

    dataset = GPTDataset(dataset_name, data_prefix, documents, indexed_dataset,
                         splits_string, num_samples, seq_length, seed,
                         data_cache_path=data_cache_path, use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens)

    return dataset


def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
    """Build indexed dataset."""
    print_rank_0(' > building dataset index ...')

    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.sizes.shape[0]))

    return indexed_dataset


class GPTDataset(torch.utils.data.Dataset):

    def __init__(self, name, data_prefix, documents, indexed_dataset,
                 splits_string, num_samples, seq_length, seed,
                 return_doc_ids=False, *,
                 data_cache_path=None,
                 use_seq_len_plus_one_tokens):

        self.name = name
        self.indexed_dataset = indexed_dataset
        self.return_doc_ids = return_doc_ids
        self.seq_length = seq_length
        self.add_extra_token = 0
        if use_seq_len_plus_one_tokens:
            self.add_extra_token = 1

        # Checks
        assert np.min(documents) >= 0
        assert np.max(documents) < indexed_dataset.sizes.shape[0]

        # Build index mappings.
        self.doc_idx, self.sample_idx, self.shuffle_idx, self.desc, self.desc_hash = \
            _build_index_mappings(self.name, data_prefix,
                                  documents, self.indexed_dataset.sizes,
                                  splits_string, num_samples, seq_length, seed,
                                  data_cache_path=data_cache_path, add_extra_token=self.add_extra_token)


    def __len__(self):
        # -1 is due to data structure used to retieve the index:
        #    sample i --> [sample_idx[i], sample_idx[i+1])
        return self.sample_idx.shape[0] - 1

    def __getitem__(self, idx):
        args = get_args()
        dummy_sample = idx < 0
        idx = np.abs(idx)
        orig_idx = idx
        # Get the shuffled index.
        idx = self.shuffle_idx[idx]
        # Start and end documents and offsets.
        doc_index_f = self.sample_idx[idx][0]
        doc_index_l = self.sample_idx[idx + 1][0]
        offset_f = self.sample_idx[idx][1]
        offset_l = self.sample_idx[idx + 1][1]
        # If we are within the same document, just extract the chunk.
        doc_ids = []
        if doc_index_f == doc_index_l:
            doc_ids.append(self.doc_idx[doc_index_f])
            sample = self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                              offset=offset_f,
                                              length=offset_l - offset_f + self.add_extra_token)
        else:
            # Otherwise, get the rest of the initial document.
            doc_ids.append(self.doc_idx[doc_index_f])
            sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                                    offset=offset_f)]
            # Loop over all in between documents and add the entire document.
            for i in range(doc_index_f + 1, doc_index_l):
                doc_ids.append(self.doc_idx[i])
                sample_list.append(self.indexed_dataset.get(self.doc_idx[i]))
            # And finally add the relevant portion of last document.
            doc_ids.append(self.doc_idx[doc_index_l])
            sample_list.append(self.indexed_dataset.get(
                self.doc_idx[doc_index_l],
                length=offset_l + self.add_extra_token))
            sample = np.concatenate(sample_list)

        text_name = 'text'
        if args.use_dataset_only:
            text_name = 'input_ids'
        sample_dict = {text_name: np.array(sample, dtype=np.int64)}
        if args.return_data_index:
            sample_dict.update({'index': np.array([orig_idx], dtype=np.int64)})

        if self.return_doc_ids: # for retro preprocessing
            sample_dict.update({'doc_ids': np.array(doc_ids, dtype=np.int64)})

        if args.use_dataset_only:
            sample_dict.update({'labels': np.array(sample, dtype=np.int64)})

        if len(sample) != (self.seq_length + self.add_extra_token):
            sample = np.array(sample, dtype=np.int64)
            sample = np.pad(sample, (0, self.seq_length + self.add_extra_token - len(sample)), mode='constant', constant_values=-1)

        if args.return_data_index:
            return {'text': np.array(sample, dtype=np.int64),
                    'index': np.array([orig_idx], dtype=np.int64)}
        elif self.return_doc_ids: # for retro preprocessing
            return {'text': np.array(sample, dtype=np.int64),
                    'doc_ids': np.array(doc_ids, dtype=np.int64)}
        else:
            return {'text': np.array(sample, dtype=np.int64),
                    'dummy_sample': np.array(int(dummy_sample), dtype=np.int64)}

        return sample_dict

def _build_index_mappings(name, data_prefix, documents, sizes,
                          splits_string, num_samples, seq_length, seed,
                          *,
                          data_cache_path, add_extra_token):
    """Build doc-idx, sample-idx, and shuffle-idx.
    doc-idx: is an array (ordered) of documents to be used in training.
    sample-idx: is the start document index and document offset for each
       training sample.
    shuffle-idx: maps the sample index into a random index into sample-idx.
    """
    args = get_args()
    # Number of tokens in each epoch and number of required epochs.
    tokens_per_epoch = _num_tokens(documents, sizes)
    num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples, add_extra_token)
    if num_samples < 0:
        print_num_samples = tokens_per_epoch // seq_length
    else:
        print_num_samples = num_samples
    if args.train_data_exact_num_epochs is not None and name == 'train':
        num_epochs = args.train_data_exact_num_epochs

    # rng state
    np_rng = np.random.RandomState(seed=seed)

    # Filename of the index mappings.
    desc = "GPT Dataset\n\n"
    desc += f"Data prefix {data_prefix}\n"
    desc += f"Dataset name {name}\n"
    desc += f"Number of samples {print_num_samples}\n"
    desc += f"Number of epochs {num_epochs}\n"
    desc += f"Sequence length {seq_length}\n"
    desc += f"Random seed {seed}\n"
    desc += f"Split {splits_string}\n"
    desc_hash = hashlib.md5(desc.encode('utf-8')).hexdigest()
    desc_filename = desc_hash + ".dsc"
    doc_idx_filename = desc_hash + '_doc_idx.npy'
    sample_idx_filename = desc_hash + '_sample_idx.npy'
    shuffle_idx_filename = desc_hash + '_shuffle_idx.npy'

    if name == 'train':
        # force to use certain index files
        if args.train_desc_path is not None:
            desc_filename = args.train_desc_path
        if args.train_doc_idx_path is not None:
            doc_idx_filename = args.train_doc_idx_path
        if args.train_sample_idx_path is not None:
            sample_idx_filename = args.train_sample_idx_path
        if args.train_shuffle_idx_path is not None:
            shuffle_idx_filename = args.train_shuffle_idx_path

    # Look for cache in main data dir first to avoid unnecessary
    # duplication, then look in data-cache-path if specified,
    # If nothing is found, use the last path looked in
    build_indices = True
    prefixes = [os.path.join(os.path.dirname(data_prefix), 'index-cache')]
    if data_cache_path is not None:
        prefixes.append(data_cache_path)
    for prefix in prefixes:
        idx_path = {
            'desc': os.path.join(prefix, desc_filename),
            'doc': os.path.join(prefix, doc_idx_filename),
            'sample': os.path.join(prefix, sample_idx_filename),
            'shuffle': os.path.join(prefix, shuffle_idx_filename)
        }
        for f in idx_path.values():
            if not os.path.isfile(f):
                break
        else:
            # Found our files!
            build_indices = False
            break
    data_cache_dir = os.path.dirname(idx_path['desc'])
    data_cache_success = True

    # Build the indexed mapping if not exist.
    if build_indices and is_rank_0():
        print_rank_0(' > WARNING: could not find index map files, building '
                     'the indices on rank 0 ...')

        # For the last epoch, decide whether include the entire epoch
        # in the global shuffle or not.

        # If we need only one epoch, then separating last epoch  does
        # not mean anything.
        if num_epochs == 1:
            separate_last_epoch = False
            print(' > only one epoch required, setting '
                  'separate_last_epoch to False', flush=True)

        else:
            # Get the number of samples for the last epoch
            assert num_samples >= 0, 'number of samples should be non-negative'
            num_samples_from_epochs_minus_one = (
                (num_epochs - 1) * tokens_per_epoch - add_extra_token) // seq_length
            last_epoch_num_samples = num_samples - \
                                     num_samples_from_epochs_minus_one
            assert last_epoch_num_samples >= 0, \
                'last epoch number of samples should be non-negative.'
            num_samples_per_epoch = (tokens_per_epoch - add_extra_token) // seq_length
            assert last_epoch_num_samples <= (num_samples_per_epoch + 1), \
                'last epoch number of samples exceeded max value.'
            # If we have less than 80% of the samples for the last epoch,
            # seperate out the epoch and treat it differently.
            # Note: the 80% number is just based on common sense and can
            # be adjusted if needed.
            separate_last_epoch = (last_epoch_num_samples <
                                   int(0.80 * num_samples_per_epoch))
            if separate_last_epoch:
                string = ' > last epoch number of samples ({}) is smaller '\
                         'than 80% of number of samples per epoch ({}), '\
                         'setting separate_last_epoch to True'
            else:
                string = ' > last epoch number of samples ({}) is larger '\
                         'than 80% of number of samples per epoch ({}), '\
                         'setting separate_last_epoch to False'
            print(string.format(last_epoch_num_samples,
                                num_samples_per_epoch), flush=True)


        try:
            os.makedirs(data_cache_dir, exist_ok=True)

            # description
            with open(idx_path['desc'], 'wt') as fd:
                fd.write(desc)

            # doc-idx.
            start_time = time.time()
            doc_idx = _build_doc_idx(documents, num_epochs, np_rng,
                                     separate_last_epoch)
            np.save(idx_path['doc'], doc_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save doc-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # sample-idx.
            start_time = time.time()
            # Use C++ implementation for speed.
            # First compile and then import.
            from megatron.data import helpers
            assert doc_idx.dtype == np.int32
            assert sizes.dtype == np.int32
            sample_idx = helpers.build_sample_idx(sizes, doc_idx, seq_length,
                                                  num_epochs, tokens_per_epoch,
                                                  num_samples < 0, add_extra_token)
            np.save(idx_path['sample'], sample_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save sample-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # shuffle-idx.
            start_time = time.time()
            # -1 is due to data structure used to retieve the index:
            #    sample i --> [sample_idx[i], sample_idx[i+1])
            if separate_last_epoch:
                num_samples_ = num_samples_from_epochs_minus_one
            else:
                num_samples_ = sample_idx.shape[0] - 1
            shuffle_idx = _build_shuffle_idx(num_samples_,
                                             sample_idx.shape[0] - 1, np_rng)
            np.save(idx_path['shuffle'], shuffle_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save shuffle-idx mapping'
                         ' (seconds): {:4f}'.format(time.time() - start_time))
        except OSError:
            print(f'There was an error trying to create the data cache directory ({data_cache_dir})')
            print('or a file in it. This defaults to a directory "index-cache" within the directory')
            print('the data files are in and can be set with the --data-cache-path argument. Please')
            print('ensure you have write access to this directory or specify one that you do have')
            print('write access to.')
            data_cache_success = False

    counts = get_accelerator().LongTensor([data_cache_success])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
    if counts[0].item() != (
        torch.distributed.get_world_size() //
        torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()) //
        torch.distributed.get_world_size(group=mpu.get_sequence_parallel_group())):
        print_rank_0("Data index creation unsuccessful, exiting.")
        exit()

    # Load mappings.
    start_time = time.time()
    print_rank_0(f" > loading doc-idx mapping from {idx_path['doc']}")
    doc_idx = np.load(idx_path['doc'], allow_pickle=True, mmap_mode='r')

    print_rank_0(f" > loading sample-idx mapping from {idx_path['sample']}")
    sample_idx = np.load(idx_path['sample'], allow_pickle=True, mmap_mode='r')

    print_rank_0(f" > loading shuffle-idx mapping from {idx_path['shuffle']}")
    shuffle_idx = np.load(idx_path['shuffle'], allow_pickle=True, mmap_mode='r')

    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        sample_idx.shape[0]))
    print_rank_0('    total number of epochs: {}'.format(num_epochs))

    return doc_idx, sample_idx, shuffle_idx, desc, desc_hash


def _num_tokens(documents, sizes):
    """Total number of tokens in the dataset."""
    return np.sum(sizes[documents])


def _num_epochs(tokens_per_epoch, seq_length, num_samples, add_extra_token):
    """Based on number of samples and sequence lenght, calculate how many
    epochs will be needed."""
    num_epochs = 0
    total_tokens = 0
    while True:
        num_epochs += 1
        total_tokens += tokens_per_epoch
        # -1 is because we need to retrieve seq_length + 1 token each time
        # but the last token will overlap with the first token of the next
        # sample except for the last sample.
        if ((total_tokens - add_extra_token) // seq_length) >= num_samples:
            return num_epochs


def _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch):
    """Build an array with length = number-of-epochs * number-of-dcuments.
    Each index is mapped to a corresponding document."""
    if not separate_last_epoch or num_epochs == 1:
        doc_idx = np.mgrid[0:num_epochs, 0:len(documents)][1]
        doc_idx[:] = documents
        doc_idx = doc_idx.reshape(-1)
        doc_idx = doc_idx.astype(np.int32)
        np_rng.shuffle(doc_idx)
        return doc_idx

    doc_idx_first = _build_doc_idx(documents, num_epochs-1, np_rng, False)
    doc_idx_last = _build_doc_idx(documents, 1, np_rng, False)
    return np.concatenate((doc_idx_first, doc_idx_last))


def _build_sample_idx(sizes, doc_idx, seq_length,
                      num_epochs, tokens_per_epoch,
                      keep_last_sequence, add_extra_token):
    """Sample index mapping is a 2D array with sizes
    [number-of-samples + 1, 2] where [..., 0] contains
    the index into `doc_idx` and [..., 1] is the
    starting offset in that document."""

    # Total number of samples. For -1 see comments in `_num_epochs`.
    if keep_last_sequence:
        import math
        num_samples = math.ceil((num_epochs * tokens_per_epoch - add_extra_token) / seq_length)
    else:
        num_samples = (num_epochs * tokens_per_epoch - add_extra_token) // seq_length
    sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32)

    # Index into sample_idx.
    sample_index = 0
    # Index into doc_idx.
    doc_idx_index = 0
    # Begining offset for each document.
    doc_offset = 0
    # Start with first document and no offset.
    sample_idx[sample_index][0] = doc_idx_index
    sample_idx[sample_index][1] = doc_offset
    sample_index += 1
    while sample_index <= num_samples:
        # Start with a fresh sequence.
        remaining_seq_length = seq_length + add_extra_token
        while remaining_seq_length != 0:
            # Get the document length.
            doc_id = doc_idx[doc_idx_index]
            doc_length = sizes[doc_id] - doc_offset
            # And add it to the current sequence.
            remaining_seq_length -= doc_length
            # If we have more than a full sequence, adjust offset and set
            # remaining length to zero so we return from the while loop.
            # Note that -1 here is for the same reason we have -1 in
            # `_num_epochs` calculations.
            if remaining_seq_length <= 0:
                doc_offset += (remaining_seq_length + doc_length - add_extra_token)
                remaining_seq_length = 0
            else:
                # Otherwise, start from the begining of the next document.
                if doc_idx_index == (len(doc_idx) - 1):
                    assert sample_index == num_samples, F"sample_index={sample_index} and num_samples={num_samples} should be the same"
                    doc_offset = sizes[doc_idx[doc_idx_index]] - add_extra_token
                    break
                doc_idx_index += 1
                doc_offset = 0
        # Record the sequence.
        sample_idx[sample_index][0] = doc_idx_index
        sample_idx[sample_index][1] = doc_offset
        sample_index += 1

    return sample_idx


def _build_shuffle_idx(num_samples, total_size, np_rng):
    """Build the range [0, size) and shuffle."""
    print(' > building shuffle index with split [0, {}) and [{}, {}) '
          '...'.format(num_samples, num_samples, total_size), flush=True)

    dtype_ = np.uint32
    if total_size >= (np.iinfo(np.uint32).max - 1):
        dtype_ = np.int64

    shuffle_idx_first = np.arange(start=0, stop=num_samples,
                                  step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx_first)
    if num_samples == total_size:
        return shuffle_idx_first

    shuffle_idx_last = np.arange(start=num_samples, stop=total_size,
                                 step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx_last)

    return np.concatenate((shuffle_idx_first, shuffle_idx_last))