File size: 6,926 Bytes
4573dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.


import torch
import torch.nn as nn
from megatron.model.enums import AttnMaskType


class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function):
    """
    Fused operation which performs following three operations in sequence
    1. Scale the tensor.
    2. Apply upper triangular mask (typically used in gpt models).
    3. Perform softmax.
    """

    @staticmethod
    def forward(ctx, inputs, scale):
        import scaled_upper_triang_masked_softmax_cuda

        scale_t = torch.tensor([scale])
        softmax_results = scaled_upper_triang_masked_softmax_cuda.forward(
            inputs, scale_t[0]
        )

        ctx.save_for_backward(softmax_results, scale_t)
        return softmax_results

    @staticmethod
    def backward(ctx, output_grads):
        import scaled_upper_triang_masked_softmax_cuda

        softmax_results, scale_t = ctx.saved_tensors
        input_grads = scaled_upper_triang_masked_softmax_cuda.backward(
            output_grads, softmax_results, scale_t[0]
        )

        return input_grads, None


class ScaledMaskedSoftmax(torch.autograd.Function):
    """
    Fused operation which performs following three operations in sequence
    1. Scale the tensor.
    2. Apply the mask.
    3. Perform softmax.
    """

    @staticmethod
    def forward(ctx, inputs, mask, scale):
        import scaled_masked_softmax_cuda

        scale_t = torch.tensor([scale])

        softmax_results = scaled_masked_softmax_cuda.forward(inputs, mask, scale_t[0])
        ctx.save_for_backward(softmax_results, scale_t)
        return softmax_results

    @staticmethod
    def backward(ctx, output_grads):
        import scaled_masked_softmax_cuda

        softmax_results, scale_t = ctx.saved_tensors

        input_grads = scaled_masked_softmax_cuda.backward(
            output_grads, softmax_results, scale_t[0]
        )
        return input_grads, None, None


class ScaledSoftmax(torch.autograd.Function):
    """
    Fused operation which performs following two operations in sequence
    1. Scale the tensor.
    2. Perform softmax.
    """

    @staticmethod
    def forward(ctx, inputs, scale):
        import scaled_softmax_cuda

        scale_t = torch.tensor([scale])

        softmax_results = scaled_softmax_cuda.forward(
            inputs, scale_t[0]
        )
        ctx.save_for_backward(softmax_results, scale_t)
        return softmax_results

    @staticmethod
    def backward(ctx, output_grads):
        import scaled_softmax_cuda

        softmax_results, scale_t = ctx.saved_tensors

        input_grads = scaled_softmax_cuda.backward(
            output_grads, softmax_results, scale_t[0]
        )
        return input_grads, None, None


class FusedScaleMaskSoftmax(nn.Module):
    """
    fused operation: scaling + mask + softmax

    Arguments:
        input_in_fp16: flag to indicate if input in fp16 data format.
        input_in_bf16: flag to indicate if input in bf16 data format.
        attn_mask_type: attention mask type (pad or causal)
        scaled_masked_softmax_fusion: flag to indicate user want to use softmax fusion
        mask_func: mask function to be applied.
        softmax_in_fp32: if true, softmax in performed at fp32 precision.
        scale: scaling factor used in input tensor scaling.
    """

    def __init__(
        self,
        input_in_fp16,
        input_in_bf16,
        attn_mask_type,
        scaled_masked_softmax_fusion,
        mask_func,
        softmax_in_fp32,
        scale,
    ):
        super(FusedScaleMaskSoftmax, self).__init__()
        self.input_in_fp16 = input_in_fp16
        self.input_in_bf16 = input_in_bf16
        assert not (
            self.input_in_fp16 and self.input_in_bf16
        ), "both fp16 and bf16 flags cannot be active at the same time."
        self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16
        self.attn_mask_type = attn_mask_type
        self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion
        self.mask_func = mask_func
        self.softmax_in_fp32 = softmax_in_fp32
        self.scale = scale

        assert (
            self.scale is None or softmax_in_fp32
        ), "softmax should be in fp32 when scaled"

    def forward(self, input, mask):
        # [b, np, sq, sk]
        assert input.dim() == 4

        if self.is_kernel_available(mask, *input.size()):
            return self.forward_fused_softmax(input, mask)
        else:
            return self.forward_torch_softmax(input, mask)

    def is_kernel_available(self, mask, b, np, sq, sk):
        attn_batches = b * np

        if (
            self.scaled_masked_softmax_fusion  # user want to fuse
            and self.input_in_float16  # input must be fp16
            and 16 < sk <= 4096  # sk must be 16 ~ 2048
            and sq % 4 == 0  # sq must be divisor of 4
            and sk % 4 == 0  # sk must be divisor of 4 
            and attn_batches % 4 == 0  # np * b must be divisor of 4
        ):
            if 0 <= sk <= 4096:
                batch_per_block = self.get_batch_per_block(sq, sk, b, np)

                if self.attn_mask_type.value == AttnMaskType.causal.value:
                    if attn_batches % batch_per_block == 0:
                        return True
                else:
                    if sq % batch_per_block == 0:
                        return True
        return False

    def forward_fused_softmax(self, input, mask):
        b, np, sq, sk = input.size()
        scale = self.scale if self.scale is not None else 1.0

        if self.attn_mask_type.value == AttnMaskType.causal.value:
            assert sq == sk, "causal mask is only for self attention"

            # input is 3D tensor (attn_batches, sq, sk)
            input = input.view(-1, sq, sk)
            probs = ScaledUpperTriangMaskedSoftmax.apply(input, scale)
            return probs.view(b, np, sq, sk)
        else:
            # input is 4D tensor (b, np, sq, sk)
            if mask is not None:
                return ScaledMaskedSoftmax.apply(input, mask, scale)
            else:
                return ScaledSoftmax.apply(input, scale)

    def forward_torch_softmax(self, input, mask):
        if self.input_in_float16 and self.softmax_in_fp32:
            input = input.float()

        if self.scale is not None:
            input = input * self.scale
        mask_output = self.mask_func(input, mask) if mask is not None else input
        probs = torch.nn.Softmax(dim=-1)(mask_output)

        if self.input_in_float16 and self.softmax_in_fp32:
            if self.input_in_fp16:
                probs = probs.half()
            else:
                probs = probs.bfloat16()

        return probs

    @staticmethod
    def get_batch_per_block(sq, sk, b, np):
        import scaled_masked_softmax_cuda

        return scaled_masked_softmax_cuda.get_batch_per_block(sq, sk, b, np)