File size: 18,321 Bytes
f0e5081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

"""GPT-2 model."""

import torch

from megatron import get_args
from megatron.core import mpu, tensor_parallel, sequence_parallel
from .module import MegatronModule, fp32_to_float16, float16_to_fp32

from .enums import AttnMaskType
from .language_model import parallel_lm_logits
from .language_model import get_language_model
from .utils import init_method_normal
from .utils import scaled_init_method_normal

from megatron.model import LayerNorm
from .language_model import EmbeddingPipe
from .rmsnorm import RMSNorm
from .transformer import ParallelTransformerLayerPipe, LMHeadPipe
from deepspeed.pipe import PipelineModule, LayerSpec, TiedLayerSpec

try:
    from apex.normalization import MixedFusedRMSNorm
except ImportError:
    MixedFusedRMSNorm = RMSNorm

try:         
    from deepspeed.checkpoint import (
        VOCABULARY_PARAMETER_PATTERNS,
        PIPELINE_REPLICATED_PARAMETER_PATTERNS,
        TP_REPLICATED_PARAMETER_PATTERNS,
        PARAMETER_WITH_ROW_PARALLELISM_PATTERNS,
        PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0,
    )
    DS_UNIVERSAL_CHECKPOINT_INFO = True 
except ImportError:
    DS_UNIVERSAL_CHECKPOINT_INFO = False  


def post_language_model_processing(lm_output, labels, logit_weights,
                                   parallel_output,
                                   fp16_lm_cross_entropy):

    # Output. Format [s b h]
    output = parallel_lm_logits(
        lm_output,
        logit_weights,
        parallel_output)

    if labels is None:
        # [s b h] => [b s h]
        return output.transpose(0,1).contiguous()
    else:
        # [b s] => [s b]
        labels = labels.transpose(0,1).contiguous()
        cross_entropy = sequence_parallel.vocab_sequence_parallel_cross_entropy if mpu.get_sequence_parallel_world_size() > 1 \
            else tensor_parallel.vocab_parallel_cross_entropy
        if fp16_lm_cross_entropy:
            assert output.dtype == torch.half
            loss = cross_entropy(output, labels)
        else:
            loss = cross_entropy(output.float(), labels)

        # [s b] => [b, s]
        loss = loss.transpose(0,1).contiguous()
        return loss


class GPTModel(MegatronModule):
    """GPT-2 Language model."""

    def __init__(self,
                 config,
                 num_tokentypes=0,
                 parallel_output=True,
                 pre_process=True,
                 post_process=True,
                 return_moe_loss=True):
        args = get_args()
        super().__init__(config=config, share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights)

        self.parallel_output = parallel_output
        self.pre_process = pre_process
        self.post_process = post_process
        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
        self.return_moe_loss = return_moe_loss
        self.untie_embeddings_and_output_weights = args.untie_embeddings_and_output_weights

        self.language_model, self._language_model_key = get_language_model(
            config=config,
            num_tokentypes=num_tokentypes,
            add_pooler=False,
            encoder_attn_mask_type=AttnMaskType.causal,
            pre_process=self.pre_process,
            post_process=self.post_process,
            num_experts=args.num_experts)

        if not args.untie_embeddings_and_output_weights:
            self.initialize_word_embeddings()

    def set_input_tensor(self, input_tensor):
        """See megatron.model.transformer.set_input_tensor()"""
        self.language_model.set_input_tensor(input_tensor)

    def forward(self, input_ids, position_ids, attention_mask,
                retriever_input_ids=None,
                retriever_position_ids=None,
                retriever_attn_mask=None,
                labels=None, tokentype_ids=None, inference_params=None,
                curriculum_seqlen=None):
        args = get_args()
        if curriculum_seqlen is not None:
            args.curriculum_seqlen = curriculum_seqlen
            if curriculum_seqlen < input_ids.size()[1]:
                # seqlen-based curriculum learning
                # input_ids, position_ids, labels have size [batch size, seqlen]
                input_ids = input_ids[:, :curriculum_seqlen].contiguous()
                position_ids = position_ids[:, :curriculum_seqlen].contiguous()
                if labels is not None:
                    labels = labels[:, :curriculum_seqlen].contiguous()

                # attention_mask has size [1, 1, seqlen, seqlen]
                attention_mask = attention_mask[:, :, :curriculum_seqlen, :curriculum_seqlen].contiguous()
        else:
            if args.curriculum_learning_legacy:
                # If got a None input, need to reset curriculum_seqlen on user side
                args.curriculum_seqlen = args.seq_length

        lm_output, moe_losses = self.language_model(
            input_ids,
            position_ids,
            attention_mask,
            retriever_input_ids=retriever_input_ids,
            retriever_position_ids=retriever_position_ids,
            retriever_attn_mask=retriever_attn_mask,
            inference_params=inference_params)

        if self.post_process:
            lm_output = post_language_model_processing(
                lm_output, labels,
                self.language_model.output_layer.weight if self.untie_embeddings_and_output_weights else self.shared_embedding_or_output_weight(),
                self.parallel_output,
                self.fp16_lm_cross_entropy)

        return lm_output, moe_losses if self.return_moe_loss else lm_output

    def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):

        state_dict_ = {}
        language_model_state_dict = self.language_model.state_dict_for_save_checkpoint(
                prefix=prefix, keep_vars=keep_vars)
        # MoE states need to be handled separately by DeepSpeed engine, thus
        # moving them to the top level dictionary
        if "moe_state_dict" in language_model_state_dict:
            for key in list(language_model_state_dict["moe_state_dict"].keys()):
                state_dict_[key] = language_model_state_dict["moe_state_dict"].pop(key)
            del language_model_state_dict["moe_state_dict"]
        state_dict_[self._language_model_key] = language_model_state_dict
        # Save word_embeddings.
        if self.post_process and not self.pre_process and not self.untie_embeddings_and_output_weights:
            state_dict_[self._word_embeddings_for_head_key] \
                = self.word_embeddings.state_dict(prefix=prefix,
                                                  keep_vars=keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Load word_embeddings.
        if self.post_process and not self.pre_process and not self.untie_embeddings_and_output_weights:
            self.word_embeddings.load_state_dict(
                state_dict[self._word_embeddings_for_head_key], strict=strict)
        # Gather MoE states and move under language model
        moe_state_dict = {}
        for key in list(state_dict.keys()):
            if 'expert' in key and 'moe.gate.wg.weight' not in key:
                moe_state_dict[key] = state_dict.pop(key)
        if self._language_model_key in state_dict:
            state_dict = state_dict[self._language_model_key]
        if len(moe_state_dict) > 0:
            state_dict["moe_state_dict"] = moe_state_dict
        self.language_model.load_state_dict(state_dict, strict=strict)

    def universal_checkpoint_info(self):
        info = dict()
        if DS_UNIVERSAL_CHECKPOINT_INFO:
            # Vocabulary parameters (embeddings) that require special handling due to padding.
            info[VOCABULARY_PARAMETER_PATTERNS] = [
                r"tied_modules.embed.word_embeddings.weight"
            ]

            # Parameter slices that should be averaged not concatenated.
            info[TP_REPLICATED_PARAMETER_PATTERNS] = [
                r"tied_modules.embed.position_embeddings.weight",
                r"\d+.input_layernorm.weight",
                r"\d+.input_layernorm.bias",
                r"\d+.post_attention_layernorm.weight",
                r"\d+.post_attention_layernorm.bias",
                r"\d+.self_attention.dense.bias",
                r"\d+.mlp.dense_4h_to_h.bias",
                r"\d+.weight",
                r"\d+.bias",
            ]

            # Parameter that are sliced on the row dimension
            info[PARAMETER_WITH_ROW_PARALLELISM_PATTERNS] = [
                r"\d+.mlp.dense_4h_to_h.weight",
                r"\d+.self_attention.dense.weight",
            ]

        return info
    
def CrossEntropy(output, labels):
    labels, loss_mask = labels[0], labels[1]

    args = get_args()

    # [b s] => [s b]
    labels = labels.transpose(0, 1).contiguous()
    losses = tensor_parallel.vocab_parallel_cross_entropy(output.contiguous().float(), labels)
    # [s b] => [b, s]
    losses = losses.transpose(0, 1).contiguous()
    loss_mask = loss_mask.view(-1)
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
    return loss


class GPTModelPipe(PipelineModule,MegatronModule):
    """GPT-2 Language model."""

    def __init__(self,
                 config,
                 num_tokentypes=0,
                 parallel_output=True):
        args = get_args()
        self.parallel_output = parallel_output

        if config.init_method is None:
            config.init_method = init_method_normal(config.init_method_std)

        if config.output_layer_init_method is None:
            config.output_layer_init_method = scaled_init_method_normal(config.init_method_std,
                                                                        config.num_layers)

        self.specs = []

        def _to_float16(inputs):
            if args.fp16:
                return fp32_to_float16(inputs, lambda v: v.half())
            elif args.bf16:
                return fp32_to_float16(inputs, lambda v: v.bfloat16())
            else:
                return inputs

        self.specs.append(_to_float16)

        # Embedding layer
        if args.untie_embeddings_and_output_weights:
            self.specs.append(LayerSpec(EmbeddingPipe,
                                        args.hidden_size,
                                        args.padded_vocab_size,
                                        args.max_position_embeddings,
                                        args.hidden_dropout,
                                        config,
                                        add_position_embedding=args.add_position_embedding,
                                        num_tokentypes=num_tokentypes,
                                        embedding_weights_in_fp32=args.embedding_weights_in_fp32,))
        else:
            self.specs.append(TiedLayerSpec('embed',
                                            EmbeddingPipe,
                                            args.hidden_size,
                                            args.padded_vocab_size,
                                            args.max_position_embeddings,
                                            args.hidden_dropout,
                                            config,
                                            add_position_embedding=args.add_position_embedding,
                                            num_tokentypes=num_tokentypes,
                                            embedding_weights_in_fp32=args.embedding_weights_in_fp32,
                                            tied_weight_attr='word_embeddings_weight'))

        for layer_idx in range(args.num_layers):
            self.specs.append(
                LayerSpec(ParallelTransformerLayerPipe,
                    config,
                    layer_number=layer_idx,
                    self_attn_mask_type=AttnMaskType.causal))

        # Final layernorm after transformer layers
        if args.normalization == 'layernorm':
            self.specs.append(LayerSpec(LayerNorm,
                          args.hidden_size,
                          eps=args.layernorm_epsilon,
                          sequence_parallel=args.sequence_parallel))
        else:
            self.specs.append(LayerSpec(MixedFusedRMSNorm, args.hidden_size,
                                        args.layernorm_epsilon,
                                        sequence_parallel=args.sequence_parallel))

        def _logits_helper(embedding, lm_output):
            """A wrapper to massage inputs/outputs from pipeline. """
            return parallel_lm_logits(
                lm_output,
                embedding.word_embeddings_weight,
                self.parallel_output)
        if args.untie_embeddings_and_output_weights:
            self.specs.append(
                LayerSpec(LMHeadPipe, args.hidden_size, args.padded_vocab_size, config)
            )
        else:
            self.specs.append(
                TiedLayerSpec('embed',
                              EmbeddingPipe,
                              args.hidden_size,
                              args.padded_vocab_size,
                              args.max_position_embeddings,
                              args.hidden_dropout,
                              config,
                              add_position_embedding=(args.add_position_embedding and (not args.fix_position_emb_redundant_alloc)),
                              num_tokentypes=num_tokentypes,
                              embedding_weights_in_fp32=args.embedding_weights_in_fp32,
                              forward_fn=_logits_helper,
                              tied_weight_attr='word_embeddings_weight')
            )

        # Convert to fp32 if needed
        if args.fp16 or args.bf16:
            self.specs.append(float16_to_fp32)

        # for selective, use --recompute-activations or --recompute-granularity='selective'
        # for full, use --recompute-granularity='full' --recompute-method='uniform' or
        # --checkpoint-activations
        if args.checkpoint_activations:
            interval = args.checkpoint_num_layers
        elif args.recompute_granularity == "full" and args.recompute_method == 'uniform':
            # deepspeed's pipeline doesn't support the block recompute method
            interval = args.recompute_num_layers
        else:
            interval = 0

        from deepspeed.runtime.pipe.topology import PipeModelDataParallelTopology
        topo = PipeModelDataParallelTopology(num_pp=mpu.get_pipeline_model_parallel_world_size(),
                                             num_mp=mpu.get_tensor_model_parallel_world_size(),
                                             num_dp=mpu.get_data_parallel_world_size())

        super().__init__(layers=self.specs,
                         loss_fn=CrossEntropy,
                         topology=topo,
                         activation_checkpoint_interval=interval,
                         partition_method='type:transformer')

    @staticmethod
    def _get_vocab_param_patterns():
        args = get_args()
        if args.untie_embeddings_and_output_weights:
            patterns = [
                r"\d+.word_embeddings.weight",
                r"\d+.lm_head.weight"
            ]
        else:
            patterns = [
                r"tied_modules.embed.word_embeddings.weight"
            ]
        return patterns

    def _get_pp_replicated_param_patterns(self):
        args = get_args()
        if args.untie_embeddings_and_output_weights:
            return []
        patterns = self._get_vocab_param_patterns()
        if args.add_position_embedding:
            patterns.append(r"tied_modules.embed.position_embeddings.weight")
        return patterns

    @staticmethod
    def _get_tp_replicated_param_patterns():
        args = get_args()
        patterns = [
            r"\d+.input_layernorm.weight",
            r"\d+.post_attention_layernorm.weight",
            r"\d+.weight",
        ]
        if args.add_position_embedding:
            patterns.append(r"tied_modules.embed.position_embeddings.weight")
        if args.add_bias_linear:
            patterns.extend([
                r"\d+.self_attention.dense.bias",
                r"\d+.mlp.dense_4h_to_h.bias",
            ])
        if args.normalization == 'layernorm':
            patterns.extend([
                r"\d+.input_layernorm.bias",
                r"\d+.post_attention_layernorm.bias",
                r"\d+.bias",
            ])
        return patterns

    @staticmethod
    def _get_row_parallel_param_patterns():
        return [
            r"\d+.mlp.dense_4h_to_h.weight",
            r"\d+.self_attention.dense.weight",
        ]

    @staticmethod
    def _get_swiglu_col_parallel_param_patterns():
        args = get_args()
        if not args.swiglu:
            return []
        patterns = [
            r"\d+.mlp.dense_h_to_4h.weight",
        ]
        if args.add_bias_linear:
            patterns.append(r"\d+.mlp.dense_h_to_4h.bias")
        return patterns


    def universal_checkpoint_info(self):
        info = dict()
        if DS_UNIVERSAL_CHECKPOINT_INFO:
            # Vocabulary parameters (embeddings) that require special handling due to padding.
            info[VOCABULARY_PARAMETER_PATTERNS] = self._get_vocab_param_patterns()

            # Replicated (shared) parameters on the pipeline dimension
            info[PIPELINE_REPLICATED_PARAMETER_PATTERNS] = self._get_pp_replicated_param_patterns()

            # Parameter slices that should be averaged not concatenated.
            info[TP_REPLICATED_PARAMETER_PATTERNS] = self._get_tp_replicated_param_patterns()

            # Parameter that are sliced on the row dimension
            info[PARAMETER_WITH_ROW_PARALLELISM_PATTERNS] = self._get_row_parallel_param_patterns()

            # SWIGLU parameters are first sliced on dim=0 to tp slices
            # Then, each tp slice is chunked into 2 to create the linear layers L1, L2 used for silu(L1(x)) * L2(x))
            info[PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0] = self._get_swiglu_col_parallel_param_patterns()
        return info