File size: 31,679 Bytes
4573dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

"""Transformer based language model."""

import torch
import torch.nn.functional as F

from megatron import get_args
from megatron.core import mpu, tensor_parallel
from megatron.core.enums import ModelType

from .enums import AttnMaskType, LayerType
from .module import MegatronModule
from .rotary_pos_embedding import apply_rotary_pos_emb, RotaryEmbedding
from .transformer import ParallelTransformer
from .utils import get_linear_layer
from .utils import init_method_normal, scaled_init_method_normal, gather_and_init


def parallel_lm_logits(input_, word_embeddings_weight, parallel_output,
                       bias=None):
    """LM logits using word embedding weights."""
    args = get_args()
    # Parallel logits.
    if args.async_tensor_model_parallel_allreduce or\
            args.sequence_parallel:
        input_parallel = input_
        model_parallel = mpu.get_tensor_model_parallel_world_size() > 1
        async_grad_allreduce = args.async_tensor_model_parallel_allreduce and \
            model_parallel and not args.sequence_parallel
    else:
        input_parallel = tensor_parallel.copy_to_tensor_model_parallel_region(input_)
        async_grad_allreduce = False

    # Matrix multiply.
    logits_parallel = tensor_parallel.linear_with_grad_accumulation_and_async_allreduce(
        input=input_parallel,
        weight=word_embeddings_weight,
        bias=bias,
        gradient_accumulation_fusion=args.gradient_accumulation_fusion,
        async_grad_allreduce=async_grad_allreduce,
        sequence_parallel=args.sequence_parallel)
    # Gather if needed.

    if parallel_output:
        return logits_parallel

    return tensor_parallel.gather_from_tensor_model_parallel_region(logits_parallel)


def get_language_model(config, num_tokentypes, add_pooler,
                       encoder_attn_mask_type,
                       add_encoder=True,
                       add_decoder=False,
                       decoder_attn_mask_type=AttnMaskType.causal,
                       pre_process=True, post_process=True, num_experts=[1]):
    """Build language model and return along with the key to save."""
    args = get_args()
    if config.init_method is None:
        config.init_method = init_method_normal(config.init_method_std)

    if config.output_layer_init_method is None:
        config.output_layer_init_method = scaled_init_method_normal(config.init_method_std,
                                                                    config.num_layers)

    # Language model.
    language_model = TransformerLanguageModel(
        config,
        encoder_attn_mask_type,
        num_tokentypes=num_tokentypes,
        add_encoder=add_encoder,
        add_decoder=add_decoder,
        decoder_attn_mask_type=decoder_attn_mask_type,
        add_pooler=add_pooler,
        pre_process=pre_process,
        post_process=post_process,
        num_experts=num_experts)
    # key used for checkpoints.
    language_model_key = 'language_model'

    return language_model, language_model_key


class Pooler(MegatronModule):
    """Pooler layer.

    Pool hidden states of a specific token (for example start of the
    sequence) and add a linear transformation followed by a tanh.

    Arguments:
        hidden_size: hidden size
        init_method: weight initialization method for the linear layer.
            bias is set to zero.
    """

    def __init__(self, hidden_size, init_method):
        super(Pooler, self).__init__()
        args = get_args()
        self.dense = get_linear_layer(hidden_size, hidden_size, init_method, gather_params_on_init=args.zero_stage == 3)
        self.sequence_parallel = args.sequence_parallel


    def forward(self, hidden_states, sequence_index=0):
        # hidden_states: [s, b, h]
        # sequence_index: index of the token to pool.

        # gather data along sequence dimensions
        # same pooler is run on all tensor parallel nodes
        if self.sequence_parallel:
            hidden_states = tensor_parallel.gather_from_sequence_parallel_region(
                hidden_states,
                tensor_parallel_output_grad=False)

        pooled = hidden_states[sequence_index, :, :]
        pooled = self.dense(pooled)
        pooled = torch.tanh(pooled)
        return pooled


class Embedding(MegatronModule):
    """Language model embeddings.

    Arguments:
        hidden_size: hidden size
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        init_method: weight initialization method
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
        embedding_weights_in_fp32: casts word embedding weights to
                                   fp32 before sampling. Required to
                                   maintain reproducibility when
                                   training in bf16.
    """

    def __init__(self,
                 hidden_size,
                 vocab_size,
                 max_sequence_length,
                 embedding_dropout_prob,
                 config,
                 add_position_embedding=True,
                 num_tokentypes=0,
                 embedding_weights_in_fp32=False):
        super(Embedding, self).__init__()

        self.hidden_size = hidden_size
        self.init_method = config.init_method
        self.num_tokentypes = num_tokentypes

        args = get_args()

        # Word embeddings (parallel).
        self.embedding_weights_in_fp32 = embedding_weights_in_fp32
        self.params_dtype = args.params_dtype
        self.word_embeddings = tensor_parallel.VocabParallelEmbedding(
            vocab_size, self.hidden_size, config=config, init_method=config.init_method)
        self._word_embeddings_key = 'word_embeddings'

        # Position embedding (serial).
        self.add_position_embedding = add_position_embedding
        if self.add_position_embedding:
            self._position_embeddings_key = 'position_embeddings'
            if args.sequence_parallel:
                self.position_embeddings = tensor_parallel.layers.SequenceParallelPositionEmbedding(
                    max_sequence_length, self.hidden_size)
                # Initialize the position embeddings.
                self.init_method(self.position_embeddings.local_embeddings.weight)
            else:
                self.position_embeddings = torch.nn.Embedding(
                    max_sequence_length, self.hidden_size)
                # Initialize the position embeddings.
                if args.perform_initialization:
                    if args.zero_stage == 3:
                        gather_and_init(self.position_embeddings.weight, self.init_method)
                    else:
                        self.init_method(self.position_embeddings.weight)

        # Token type embedding.
        # Add this as an optional field that can be added through
        # method call so we can load a pretrain model without
        # token types and add them as needed.
        self._tokentype_embeddings_key = 'tokentype_embeddings'
        if self.num_tokentypes > 0:
            self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
                                                           self.hidden_size)
            # Initialize the token-type embeddings.
            if args.perform_initialization:
                if args.zero_stage == 3:
                    gather_and_init(self.tokentype_embeddings.weight, self.init_method)
                else:
                    self.init_method(self.tokentype_embeddings.weight)
        else:
            self.tokentype_embeddings = None

        self.fp32_residual_connection = args.fp32_residual_connection
        self.sequence_parallel = args.sequence_parallel
        # Embeddings dropout
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)

    def zero_parameters(self):
        """Zero out all parameters in embedding."""
        self.word_embeddings.weight.data.fill_(0)
        self.word_embeddings.weight.shared = True
        if self.add_position_embedding:
            self.position_embeddings.weight.data.fill_(0)
            self.position_embeddings.weight.shared = True
        if self.num_tokentypes > 0:
            self.tokentype_embeddings.weight.data.fill_(0)
            self.tokentype_embeddings.weight.shared = True

    def add_tokentype_embeddings(self, num_tokentypes):
        """Add token-type embedding. This function is provided so we can add
        token-type embeddings in case the pretrained model does not have it.
        This allows us to load the model normally and then add this embedding.
        """
        if self.tokentype_embeddings is not None:
            raise Exception('tokentype embeddings is already initialized')
        if torch.distributed.get_rank() == 0:
            print('adding embedding for {} tokentypes'.format(num_tokentypes),
                  flush=True)
        self.num_tokentypes = num_tokentypes
        self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
                                                       self.hidden_size)
        # Initialize the token-type embeddings.
        args = get_args()
        self.init_method(self.tokentype_embeddings.weight)

    def forward(self, input_ids, position_ids, tokentype_ids=None):
        # Embeddings.
        if self.embedding_weights_in_fp32:
            self.word_embeddings = self.word_embeddings.to(torch.float32)
        words_embeddings = self.word_embeddings(input_ids)
        if self.embedding_weights_in_fp32:
            words_embeddings = words_embeddings.to(self.params_dtype)
            self.word_embeddings = self.word_embeddings.to(self.params_dtype)
        if self.add_position_embedding:
            position_embeddings = self.position_embeddings(position_ids)
            embeddings = words_embeddings + position_embeddings
        else:
            embeddings = words_embeddings

        if tokentype_ids is not None:
            assert self.tokentype_embeddings is not None
            embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
        else:
            assert self.tokentype_embeddings is None

        # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
        embeddings = embeddings.transpose(0, 1).contiguous()

        # If the input flag for fp32 residual connection is set, convert for float.
        if self.fp32_residual_connection:
            embeddings = embeddings.float()

        # Dropout.
        if self.sequence_parallel:
            # already partition sequence, do not need scatter_to_sequence_parallel_region ?
            embeddings = tensor_parallel.scatter_to_sequence_parallel_region(embeddings)
            with tensor_parallel.get_cuda_rng_tracker().fork():
                embeddings = self.embedding_dropout(embeddings)
        else:
            embeddings = self.embedding_dropout(embeddings)

        return embeddings

    def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
        """For easy load."""

        state_dict_ = {}
        state_dict_[self._word_embeddings_key] \
            = self.word_embeddings.state_dict(prefix=prefix,
                                              keep_vars=keep_vars)
        if self.add_position_embedding:
            state_dict_[self._position_embeddings_key] \
                = self.position_embeddings.state_dict(prefix=prefix,
                                                  keep_vars=keep_vars)
        if self.num_tokentypes > 0:
            state_dict_[self._tokentype_embeddings_key] \
                = self.tokentype_embeddings.state_dict(prefix=prefix,
                                                       keep_vars=keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Word embedding.
        if self._word_embeddings_key in state_dict:
            state_dict_ = state_dict[self._word_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'word_embeddings' in key:
                    state_dict_[key.split('word_embeddings.')[1]] \
                        = state_dict[key]
        self.word_embeddings.load_state_dict(state_dict_, strict=strict)

        # Position embedding.
        if self.add_position_embedding:
            if self._position_embeddings_key in state_dict:
                state_dict_ = state_dict[self._position_embeddings_key]
            else:
                # for backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if 'position_embeddings' in key:
                        state_dict_[key.split('position_embeddings.')[1]] \
                            = state_dict[key]
            self.position_embeddings.load_state_dict(state_dict_, strict=strict)

        # Tokentype embedding.
        if self.num_tokentypes > 0:
            state_dict_ = {}
            if self._tokentype_embeddings_key in state_dict:
                state_dict_ = state_dict[self._tokentype_embeddings_key]
            else:
                # for backward compatibility.
                for key in state_dict.keys():
                    if 'tokentype_embeddings' in key:
                        state_dict_[key.split('tokentype_embeddings.')[1]] \
                            = state_dict[key]
            if len(state_dict_.keys()) > 0:
                self.tokentype_embeddings.load_state_dict(state_dict_,
                                                          strict=strict)
            else:
                print('***WARNING*** expected tokentype embeddings in the '
                      'checkpoint but could not find it', flush=True)


class EmbeddingPipe(Embedding):

    def forward(self, inputs, **kwargs):
        if not hasattr(self, '_args'):
            self._args = get_args()

        input_ids = inputs[0]
        position_ids = inputs[1]
        if hasattr(self._args, 'attn_mask'):
            attention_mask = None
        else:
            attention_mask = inputs[2]

        if len(inputs) == 4:
            tokentype_ids = inputs[3]
        else:
            tokentype_ids = None
        
        embeddings = super().forward(input_ids, position_ids, tokentype_ids=tokentype_ids)

        # If cmd args has attn_mask, we don't forward it as an activation.
        if hasattr(self._args, 'attn_mask'):
            return embeddings
        else:
            assert False
            return embeddings, attention_mask


    @property
    def word_embeddings_weight(self):
        """Easy accessory for the DeepSpeed pipeline engine to tie embeddings across stages."""
        return self.word_embeddings.weight


class TransformerLanguageModel(MegatronModule):
    """Transformer language model.

    Arguments:
        transformer_hparams: transformer hyperparameters
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """

    def __init__(self,
                 config,
                 encoder_attn_mask_type,
                 num_tokentypes=0,
                 add_encoder=True,
                 add_decoder=False,
                 decoder_attn_mask_type=AttnMaskType.causal,
                 add_pooler=False,
                 pre_process=True,
                 post_process=True,
                 num_experts=[1]):
        args = get_args()
        # TODO: passing share_embeddings_and_output_weights=False will not work correctly for T5 and embeddings will not be synced. Fix later for T5.
        if args.untie_embeddings_and_output_weights: assert not add_decoder
        super(TransformerLanguageModel, self).__init__(share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights)

        self.pre_process = pre_process
        self.post_process = post_process
        self.hidden_size = config.hidden_size
        self.num_tokentypes = num_tokentypes
        self.init_method = config.init_method
        self.add_encoder = add_encoder
        self.encoder_attn_mask_type = encoder_attn_mask_type
        self.add_decoder = add_decoder
        self.decoder_attn_mask_type = decoder_attn_mask_type
        self.add_pooler = add_pooler
        self.encoder_hidden_state = None
        self.add_retriever = args.retro_add_retriever
        self.untie_embeddings_and_output_weights = args.untie_embeddings_and_output_weights
        self.num_experts = num_experts

        # Embeddings.
        if self.pre_process:
            self.embedding = Embedding(self.hidden_size,
                                       args.padded_vocab_size,
                                       args.max_position_embeddings,
                                       args.hidden_dropout,
                                       config,
                                       args.add_position_embedding,
                                       self.num_tokentypes,
                                       args.embedding_weights_in_fp32)
            self._embedding_key = 'embedding'

        # Rotary positional embeddings
        self.use_rotary_position_embeddings = \
            args.use_rotary_position_embeddings
        if args.use_rotary_position_embeddings:
            self.seq_length = args.seq_length
            rotary_dim = args.hidden_size // args.num_attention_heads \
                if args.kv_channels is None else args.kv_channels

            if args.rotary_percent < 1.0:
                rotary_dim = int(rotary_dim * args.rotary_percent)

            # partial rotary embeddings, which is better than full rotary
            # Wang and Komatsuzaki et al
            # https://github.com/kingoflolz/mesh-transformer-jax/
            self.rotary_pos_emb = RotaryEmbedding(rotary_dim)

        # Encoder (usually set to True, False if part of an encoder-decoder
        # architecture and in encoder-only stage).
        if self.add_encoder:
            self.encoder = ParallelTransformer(
                config,
                model_type=args.model_type if not args.retro_add_retriever \
                    else ModelType.retro_decoder,
                self_attn_mask_type=self.encoder_attn_mask_type,
                pre_process=self.pre_process,
                post_process=self.post_process,
                num_experts=self.num_experts
            )
            self._encoder_key = 'encoder'
        else:
            self.encoder = None

        # Decoder (usually set to False, True if part of an encoder-decoder
        # architecture and in decoder-only stage).
        if self.add_decoder:
            self.decoder = ParallelTransformer(
                config,
                model_type=args.model_type,
                layer_type=LayerType.decoder,
                self_attn_mask_type=self.decoder_attn_mask_type,
                pre_process=self.pre_process,
                post_process=self.post_process,
                num_experts=self.num_experts)
            self._decoder_key = 'decoder'
        else:
            self.decoder = None

        if self.post_process:
            # Pooler.
            if self.add_pooler:
                self.pooler = Pooler(self.hidden_size, self.init_method)
                self._pooler_key = 'pooler'

            if self.untie_embeddings_and_output_weights:
                self.output_layer = tensor_parallel.ColumnParallelLinear(
                    args.hidden_size,
                    args.padded_vocab_size,
                    config=config,
                    init_method=self.init_method,
                    bias=False) # Setting bias to False always to keep it consistent with embedding tying that also does not have a bias.
                self._output_layer_key = 'output_layer'

    def set_input_tensor(self, input_tensor):
        """ See megatron.model.transformer.set_input_tensor()"""

        # This is usually handled in schedules.py but some inference code still
        # gives us non-lists or None
        if not isinstance(input_tensor, list):
            input_tensor = [input_tensor]

        if self.add_encoder and self.add_decoder:
            assert len(input_tensor) == 1, \
                'input_tensor should only be length 1 for stage with both encoder and decoder'
            self.encoder.set_input_tensor(input_tensor[0])
        elif self.add_encoder:
            assert len(input_tensor) == 1, \
                'input_tensor should only be length 1 for stage with only encoder'
            self.encoder.set_input_tensor(input_tensor[0])
        elif self.add_decoder:
            if len(input_tensor) == 2:
                self.decoder.set_input_tensor(input_tensor[0])
                self.encoder_hidden_state = input_tensor[1]
            elif len(input_tensor) == 1:
                self.decoder.set_input_tensor(None)
                self.encoder_hidden_state = input_tensor[0]
            else:
                raise Exception('input_tensor must have either length 1 or 2')
        else:
            raise Exception('Stage must have at least either encoder or decoder')

    def forward(self, enc_input_ids, enc_position_ids, enc_attn_mask,
                dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None,
                retriever_input_ids=None,
                retriever_position_ids=None,
                retriever_attn_mask=None,
                enc_dec_attn_mask=None, tokentype_ids=None,
                inference_params=None,
                pooling_sequence_index=0,
                enc_hidden_states=None, output_enc_hidden=False):
        args = get_args()
        # Encoder embedding.
        if self.pre_process:
            encoder_input = self.embedding(enc_input_ids, enc_position_ids,
                                           tokentype_ids=tokentype_ids)
        else:
            encoder_input = None

        # Retriever embedding.
        if self.add_retriever and self.pre_process:
            retriever_input = self.embedding(retriever_input_ids,
                                             retriever_position_ids,
                                             tokentype_ids=tokentype_ids)
        else:
            retriever_input = None

        # Rotary positional embeddings
        rotary_pos_emb = None
        if self.use_rotary_position_embeddings:
            if inference_params is not None:
                rotary_pos_emb = \
                    self.rotary_pos_emb(inference_params.max_sequence_len)
            else:
                if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning:
                    rotary_pos_emb = self.rotary_pos_emb(args.curriculum_seqlen)
                else:
                    rotary_pos_emb = self.rotary_pos_emb(self.seq_length)

        # Run encoder.
        if enc_hidden_states is None:
            if self.encoder is not None:
                encoder_output, *encoder_moe_losses = self.encoder(
                    encoder_input,
                    enc_attn_mask,
                    retriever_input=retriever_input,
                    retriever_attn_mask=retriever_attn_mask,
                    inference_params=inference_params,
                    rotary_pos_emb=rotary_pos_emb)
            else:
                encoder_output = self.encoder_hidden_state
        else:
            encoder_output, encoder_moe_losses = enc_hidden_states.to(encoder_input.dtype), []

        if self.post_process:
            if self.add_pooler:
                pooled_output = self.pooler(encoder_output,
                                            pooling_sequence_index)

        # output_enc_hidden refers to when we just need the encoder's
        # output. For example, it is helpful to compute
        # similarity between two sequences by average pooling
        if not self.add_decoder or output_enc_hidden:
            if self.add_pooler and self.post_process:
                return encoder_output, pooled_output, encoder_moe_losses
            else:
                return encoder_output, encoder_moe_losses

        # Decoder embedding.
        if self.pre_process:
            decoder_input = self.embedding(dec_input_ids,
                                           dec_position_ids)
        else:
            decoder_input = None

        # Run decoder.
        decoder_output, *decoder_moe_losses = self.decoder(
            decoder_input,
            dec_attn_mask,
            encoder_output=encoder_output,
            enc_dec_attn_mask=enc_dec_attn_mask,
            inference_params=inference_params,
            rotary_pos_emb=rotary_pos_emb)

        if self.add_pooler and self.post_process:
            return decoder_output, encoder_output, pooled_output, decoder_moe_losses, encoder_moe_losses
        else:
            return decoder_output, encoder_output, decoder_moe_losses, encoder_moe_losses

    def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
        """For easy load."""
        args = get_args()
        state_dict_ = {}
        moe_state_dict = {}
        if self.pre_process:
            state_dict_[self._embedding_key] \
                = self.embedding.state_dict_for_save_checkpoint(prefix=prefix,
                                                                keep_vars=keep_vars)
        if self.add_encoder:
            encoder_state_dict = self.encoder.state_dict_for_save_checkpoint(
                prefix=prefix, keep_vars=keep_vars)
            if args.random_ltd:
                # When using random-LTD, it is required to call remove_random_ltd_state_dict
                # during model checkpoint saving to transfer the random-LTD-wrapped
                # layers back to original layers. This will help to remove the dependency
                # to random-LTD inside the checkpoint, so that during evaluation or
                # finetuning of the checkpoint there is no need to depend on random-LTD
                # again.
                from deepspeed.runtime.data_pipeline.data_routing.helper import remove_random_ltd_state_dict
                encoder_state_dict = remove_random_ltd_state_dict(encoder_state_dict)
            # MoE states need to be handled separately by DeepSpeed engine, thus
            # moving them to the top level dictionary
            # If components other than encoder may contain MoE states, need to add
            # the same logic
            for key in list(encoder_state_dict.keys()):
                if 'expert' in key and 'moe.gate.wg.weight' not in key:
                    moe_state_dict[self._encoder_key+key] = encoder_state_dict.pop(key)
            state_dict_[self._encoder_key] = encoder_state_dict

        if self.post_process:
            if self.add_pooler:
                state_dict_[self._pooler_key] \
                    = self.pooler.state_dict_for_save_checkpoint(prefix=prefix,
                                                                 keep_vars=keep_vars)
            if self.untie_embeddings_and_output_weights:
                state_dict_[self._output_layer_key] \
                    = self.output_layer.state_dict(prefix=prefix, keep_vars=keep_vars)

        if self.add_decoder:
            state_dict_[self._decoder_key] \
                = self.decoder.state_dict_for_save_checkpoint(prefix=prefix,
                                                              keep_vars=keep_vars)

        state_dict_["moe_state_dict"] = moe_state_dict
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Embedding.
        if self.pre_process:
            if self._embedding_key in state_dict:
                state_dict_ = state_dict[self._embedding_key]
            else:
                # for backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if '_embeddings' in key:
                        state_dict_[key] = state_dict[key]
            self.embedding.load_state_dict(state_dict_, strict=strict)

        # Encoder.
        if self.add_encoder:
            if self._encoder_key in state_dict:
                state_dict_ = state_dict[self._encoder_key]
            # For backward compatibility.
            elif 'transformer' in state_dict:
                state_dict_ = state_dict['transformer']
            else:
                # For backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if 'transformer.' in key:
                        state_dict_[key.split('transformer.')[1]] = state_dict[key]

            # For backward compatibility.
            # Somehow this backward compatibility could be wrong: sometimes
            # '.attention.' is the actual key used so should not be replaced. Thus
            # added another logic to only replace if the key does not match
            state_dict_self_attention = {}
            encoder_state_dict_keys = list(self.encoder.state_dict().keys())
            for key in state_dict_.keys():
                if '.attention.' in key and key not in encoder_state_dict_keys:
                    state_dict_self_attention[key.replace(".attention.",
                        ".self_attention.")] = state_dict_[key]
                else:
                    state_dict_self_attention[key] = state_dict_[key]
            state_dict_ = state_dict_self_attention

            # Gather encoder MoE states
            if "moe_state_dict" in state_dict:
                for key in list(state_dict["moe_state_dict"].keys()):
                    if self._encoder_key in key:
                        key_list = key.split('.')
                        while key_list[0] != 'encoder':
                            key_list.pop(0)
                        key_list.pop(0)
                        actual_key = '.'.join(key_list)
                        state_dict_[actual_key] = state_dict["moe_state_dict"].pop(key)
                if len(state_dict["moe_state_dict"]) == 0:
                    del state_dict["moe_state_dict"]
            self.encoder.load_state_dict(state_dict_, strict=strict)

        # Pooler.
        if self.post_process:
            if self.add_pooler:
                assert 'pooler' in state_dict, \
                    'could not find data for pooler in the checkpoint'
                self.pooler.load_state_dict(state_dict[self._pooler_key],
                                            strict=strict)
            if self.untie_embeddings_and_output_weights:
                assert 'output_layer' in state_dict, \
                    'could not find data for output_layer in the checkpoint'
                self.output_layer.load_state_dict(state_dict[self._output_layer_key],
                                                  strict=strict)
        # Decoder.
        if self.add_decoder:
            assert 'decoder' in state_dict, \
                'could not find data for pooler in the checkpoint'
            self.decoder.load_state_dict(state_dict[self._decoder_key],
                                         strict=strict)