File size: 7,273 Bytes
144d5a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""
 Data Loader for Google NQ dataset
"""

from abc import ABC
import csv
from collections import OrderedDict
import numpy as np

import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset, BatchSampler

from megatron import print_rank_0, get_args, get_tokenizer
from megatron.data.biencoder_dataset_utils import make_attention_mask
from deepspeed.accelerator import get_accelerator

def get_nq_dataset(qa_data, split):
    args = get_args()
    tokenizer = get_tokenizer()

    dataset = NQDataset('Google NQ {} Split'.format(split),
                        'Google Natural Questions',
                        qa_data,
                        tokenizer,
                        args.retriever_seq_length)
    return dataset


def process_nq_batch(batch):
    query_tokens = batch['token_ids'].long().to(get_accelerator().device_name())
    query_mask = (batch['token_mask'] < 0.5).to(get_accelerator().device_name())
    query_types = batch['token_types'].long().to(get_accelerator().device_name())
    query_len = batch['seq_len'].long().to(get_accelerator().device_name())
    reference = batch['reference']

    return query_tokens, query_mask, query_types, query_len, reference


class CustomDataLoader(DataLoader):
    def __init__(self, dataset, eval=False, **kwargs):
        if kwargs.get('collate_fn', None) is None:
            kwargs['collate_fn'] = self._collate_fn
        self.eval = eval
        super().__init__(dataset, **kwargs)

    def _collate_fn(self, batch_data):
        # generate batch
        batch_size = len(batch_data)
        tensorized = OrderedDict()
        for d in batch_data:
            for k, v in d.items():
                tensorized.setdefault(k, []).append(v)
        assert len(tensorized) == 5

        tensorized['token_ids'] = torch.LongTensor(tensorized['token_ids'])
        tensorized['token_mask'] = torch.LongTensor(tensorized['token_mask'])
        tensorized['token_types'] = torch.LongTensor(tensorized['token_types'])
        tensorized['seq_len'] = torch.LongTensor(tensorized['seq_len'])
        return tensorized


def get_one_epoch_nq_dataloader(dataset, micro_batch_size=None):
    """Data loader. Note that batch-size is the local (per GPU) batch-size.
       NOTE: This dataloader is not distributed !!!
    """

    args = get_args()
    if micro_batch_size is None:
        micro_batch_size = args.micro_batch_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    # importantly, drop_last must be False to get all the data.
    batch_sampler = BatchSampler(sampler,
                                 batch_size=micro_batch_size,
                                 drop_last=False)

    # Data loader. Note that batch size is the per GPU batch size.
    data_loader = CustomDataLoader(dataset,
                                   batch_sampler=batch_sampler,
                                   num_workers=num_workers,
                                   pin_memory=True)
    return data_loader


def build_tokens_types_paddings_from_text(src_text, tokenizer, max_seq_length):
    """Build token types and paddings, trim if needed, and pad if needed."""

    src_text_ids = tokenizer.tokenize(src_text)

    return build_tokens_types_paddings_from_ids(src_text_ids,
                                                max_seq_length,
                                                tokenizer.cls,
                                                tokenizer.sep,
                                                tokenizer.pad)


def build_tokens_types_paddings_from_ids(src_ids, max_seq_length, cls_id, \
    sep_id, pad_id):
    """
    Build token types and paddings, trim if needed, and pad if needed.

    TODO: Design modular interface to reuse this function. This is getting
    repeated multiple times in different tasks
    """

    enc_ids = []
    tokentypes_enc = []

    # [CLS].
    enc_ids.append(cls_id)
    tokentypes_enc.append(0)

    # A.
    len_src = len(src_ids)
    enc_ids.extend(src_ids)
    tokentypes_enc.extend([0] * len_src)

    # Cap the size.
    if len(enc_ids) > max_seq_length - 1:
        enc_ids = enc_ids[0: max_seq_length - 1]
        tokentypes_enc = tokentypes_enc[0: max_seq_length - 1]

    # [SEP].
    enc_ids.append(sep_id)
    tokentypes_enc.append(0)

    num_tokens_enc = len(enc_ids)
    # Padding.
    padding_length = max_seq_length - len(enc_ids)
    if padding_length > 0:
        enc_ids.extend([pad_id] * padding_length)
        tokentypes_enc.extend([pad_id] * padding_length)

    return enc_ids, tokentypes_enc, num_tokens_enc


def build_sample(token_ids, token_types, num_tokens, reference):
    """
    Convert to numpy and return a sample consumed by the
    batch producer.
    """

    token_ids = np.array(token_ids, dtype=np.int64)
    token_types = np.array(token_types, dtype=np.int64)
    token_mask = make_attention_mask(token_ids, token_ids)

    sample = ({
        'token_ids': token_ids,
        'token_mask': token_mask,
        'token_types': token_types,
        'seq_len': num_tokens,
        'reference': reference
    })
    return sample


class NQDataset(ABC, Dataset):
    """
    Open Retrieval Question Answering evaluation using Google NQ dataset.
    """

    def __init__(self, task_name, dataset_name, datapath,
                 tokenizer, max_seq_length):
        # Store inputs.
        self.task_name = task_name
        self.dataset_name = dataset_name
        self.tokenizer = tokenizer
        self.max_seq_length = max_seq_length
        print_rank_0(' > building {} dataset for {}:'.format(self.task_name,
                                                             self.dataset_name))
        print_rank_0(datapath)
        self.samples = self.process_samples_from_single_path(datapath)
        print_rank_0('  >> total number of samples: {}'.format(\
                                                        len(self.samples)))

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        raw_sample = self.samples[idx]

        ques_tokens, tokentypes_enc, num_tokens_ques = \
            build_tokens_types_paddings_from_text(raw_sample['question'],
                self.tokenizer, self.max_seq_length)

        sample = build_sample(ques_tokens,
                              tokentypes_enc,
                              num_tokens_ques,
                              raw_sample['answers'])
        return sample

    @staticmethod
    def process_samples_from_single_path(filename):
        print_rank_0(' > Processing {} ...'.format(filename))
        samples = []
        total = 0

        with open(filename, 'r') as ifile:
            reader = csv.reader(ifile, delimiter='\t')
            for row in reader:
                question = row[0]
                answers = eval(row[1])

                sample = {'question': question, 'answers': answers}
                total += 1
                samples.append(sample)

                if total % 1000 == 0:
                    print_rank_0('  > processed {} so far ...'.format(total))

        print_rank_0(' >> processed {} samples.'.format(len(samples)))
        return samples