File size: 7,825 Bytes
7894dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
from tests.test_utilities import Utils
from megatron.core import ModelParallelConfig
import megatron.core.pipeline_parallel.schedules as schedule
from pytest_mock import mocker 
import pytest

rank = Utils.rank
 
def test_get_forward_backward_func():
    Utils.initialize_model_parallel(tensor_model_parallel_size=2, pipeline_model_parallel_size=1)
    assert(schedule.get_forward_backward_func() == schedule.forward_backward_no_pipelining)
    Utils.destroy_model_parallel()
    Utils.initialize_model_parallel(tensor_model_parallel_size=2, pipeline_model_parallel_size=4)
    assert(schedule.get_forward_backward_func() == schedule.forward_backward_pipelining_without_interleaving)
    Utils.destroy_model_parallel()
    Utils.initialize_model_parallel(tensor_model_parallel_size=2, pipeline_model_parallel_size=4, virtual_pipeline_model_parallel_size=2)
    assert(schedule.get_forward_backward_func() == schedule.forward_backward_pipelining_with_interleaving)
    Utils.destroy_model_parallel()

def test_deallocate_output_tensor():
    out = torch.tensor([[1, 2, 3], [4, 5, 6]])
    schedule.deallocate_output_tensor(out)
    assert(out.nelement() == 1) 

def test_forward_backward_func_without_pipeline_parallel(mocker):
    from megatron.core.pipeline_parallel import get_forward_backward_func

    Utils.initialize_model_parallel(tensor_model_parallel_size=2, pipeline_model_parallel_size=1)

    def forward_step_func(data_iterator, model):
        import os
        rank = int(os.environ['LOCAL_RANK'])
        dummy_data = torch.ones(1,4)
        def loss_func(output_tensor):
            return rank, {'loss_reduced':rank}
        return model(dummy_data), loss_func

    model = torch.nn.Linear(4,1)
    model.model_type = 'unit-test'
    def set_input_tensor(input_tensor):
        return None
    model.set_input_tensor = set_input_tensor

    forward_backward_func = get_forward_backward_func()
    assert(schedule.get_forward_backward_func() == schedule.forward_backward_no_pipelining)

    mocker.patch("megatron.core.pipeline_parallel.schedules.custom_backward", return_value=2)
    config = ModelParallelConfig(
        pipeline_model_parallel_size = 1
    )
    model.config = config

    losses_reduced = forward_backward_func(
        forward_step_func=forward_step_func,
        data_iterator=None,
        model=[model],
        num_microbatches=4,
        seq_length=None,
        micro_batch_size=None,
        forward_only=False) 
    
    loss_reduced_expected = [{'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}]
    for i,j in zip(losses_reduced, loss_reduced_expected):
        print(losses_reduced)
        assert(i['loss_reduced'] == j['loss_reduced'])
    Utils.destroy_model_parallel() 

def test_forward_backward_func_with_pipeline_parallel(mocker):
    from megatron.core.pipeline_parallel import get_forward_backward_func

    Utils.initialize_model_parallel(tensor_model_parallel_size=1, pipeline_model_parallel_size=4)

    def forward_step_func(data_iterator, model):
        import os
        rank = int(os.environ['LOCAL_RANK'])
        def loss_func(output_tensor):
            return rank, {'loss_reduced':rank}
        return torch.rand(512,8,256).cuda(), loss_func

    model = torch.nn.Linear(4,1)
    model.model_type = 'unit-test'
    def set_input_tensor(input_tensor):
        return None
    model.set_input_tensor = set_input_tensor

    forward_backward_func = get_forward_backward_func()
    assert(schedule.get_forward_backward_func() == schedule.forward_backward_pipelining_without_interleaving)

    sequence_length = 512
    micro_batch_size = 8
    hidden_size = 256

    config = ModelParallelConfig(
        pipeline_model_parallel_size = 4,
        sequence_parallel = False
    )
    model.config = config
    
    losses_reduced = forward_backward_func(
        forward_step_func=forward_step_func,
        data_iterator=None,
        dtype=torch.float32,
        model=[model],
        num_microbatches= micro_batch_size,
        seq_length=sequence_length,
        micro_batch_size=micro_batch_size,
        forward_only=True) 
    
    loss_reduced_expected = [{'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}]
    for i,j in zip(losses_reduced, loss_reduced_expected):
        print(losses_reduced)
        assert(i['loss_reduced'] == j['loss_reduced'])
    Utils.destroy_model_parallel()  

""" 
def test_forward_backward_func_with_interleaving(mocker):
    from megatron.core.pipeline_parallel import get_forward_backward_func
    from megatron.core.enums import ModelType

    Utils.initialize_model_parallel(tensor_model_parallel_size=1, pipeline_model_parallel_size=4, virtual_pipeline_model_parallel_size=2)

    def forward_step_func(data_iterator, model):
        import os
        rank = int(os.environ['LOCAL_RANK'])
        def loss_func(output_tensor):
            return rank, {'loss_reduced':rank}
        return torch.rand(512,8,256).cuda(), loss_func

    model = torch.nn.Linear(4,1)
    def set_input_tensor(input_tensor):
        return None
    model.set_input_tensor = set_input_tensor

    forward_backward_func = get_forward_backward_func()
    assert(schedule.get_forward_backward_func() == schedule.forward_backward_pipelining_with_interleaving)

    sequence_length = 512
    micro_batch_size = 8
    hidden_size = 256

    mocker.patch("megatron.core.pipeline_parallel.schedules.custom_backward", return_value=2)

    with pytest.raises(RuntimeError):
        model.model_type = ModelType.encoder_and_decoder
        forward_backward_func(
            forward_step_func=forward_step_func,
            data_iterator=range(0,100),
            dtype=torch.float32,
            model=[model, model],
            num_microbatches= micro_batch_size,
            tensor_shape=[sequence_length, micro_batch_size, hidden_size],
            decoder_seq_length=sequence_length,
            sequence_parallel=False,
            forward_only=True)
        
    with pytest.raises(RuntimeError):
        model.model_type = ModelType.encoder_or_decoder
        forward_backward_func(
            forward_step_func=forward_step_func,
            data_iterator=range(0,100),
            dtype=torch.float32,
            model=[model, model],
            num_microbatches= micro_batch_size,
            tensor_shape=[sequence_length, micro_batch_size, hidden_size],
            decoder_seq_length=256,
            sequence_parallel=False,
            forward_only=True)

    with pytest.raises(RuntimeError):
        model.model_type = ModelType.encoder_or_decoder
        forward_backward_func(
            forward_step_func=forward_step_func,
            data_iterator=range(0,100),
            dtype=torch.float32,
            model=[model, model],
            num_microbatches= 7,
            tensor_shape=[sequence_length, micro_batch_size, hidden_size],
            decoder_seq_length=512,
            sequence_parallel=False,
            forward_only=True)    

    model.model_type = ModelType.encoder_or_decoder
    losses_reduced = forward_backward_func(
        forward_step_func=forward_step_func,
        data_iterator=range(0,100),
        dtype=torch.float32,
        model=[model, model],
        num_microbatches= micro_batch_size,
        tensor_shape=[sequence_length, micro_batch_size, hidden_size],
        decoder_seq_length=sequence_length,
        sequence_parallel=True,
        forward_only=True) 
    
    loss_reduced_expected = [{'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}, {'loss_reduced': rank}]
    for i,j in zip(losses_reduced, loss_reduced_expected):
        print(losses_reduced)
        assert(i['loss_reduced'] == j['loss_reduced'])

    Utils.destroy_model_parallel()  
"""