File size: 6,751 Bytes
d0afae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.

from collections import defaultdict
import glob
import numpy as np
import os
import torch
from tqdm import tqdm

from megatron import print_rank_0
from megatron.core import parallel_state

from .external_libs import h5py


def save_data(data_map, *args):
    '''Save map of numpy arrays to hdf5 file.'''

    # Parse args.
    if len(args) == 1:
        path = args[0]
    elif len(args) == 2:
        dir_path, file_name = args
        path = os.path.join(dir_path, file_name)
    else:
        raise Exception("specialize for len(args) == %d." % len(args))

    # Save data.
    if not os.path.isfile(path):
        f = h5py.File(path, "w")
        for k, v in data_map.items():
            f.create_dataset(k, data=v)
        f.close()

    return path


def load_data(paths):
    '''Load multiple hdf5 files to single numpy array.'''

    # Read data shapes.
    shape_map = defaultdict(lambda : (0, None))
    for p in paths:
        f = h5py.File(p, "r")
        for k in f.keys():
            shape = tuple(f[k].shape)
            shape_map[k] = (shape_map[k][0] + shape[0], shape[1])
        f.close()

    # Allocate output array.
    data_map = { k : np.empty(s, dtype="f4") for k, s in shape_map.items() }
    start_map = { k : 0 for k in shape_map }

    # Load files.
    for pi, p in enumerate(tqdm(paths, "load data")):
        f = h5py.File(p, "r")
        for k in f.keys():
            i0 = start_map[k]
            i1 = i0 + len(f[k])
            data_map[k][i0:i1] = f[k]
            start_map[k] += len(f[k])
        f.close()

    return data_map


def get_missing_blocks(workdir, n_samples, block_size,
                       validate=lambda f : None):
    '''Divide range [0, num_samples) to sequence of block ranges.

    This is a core method within the concept of block processing. The idea
    is to divide a range (size n_samples) into a sequence of blocks. Each
    block corresponds to a file within 'workdir' with name
    '{start_idx}-{end_idx}.hdf5'. This method checks for the existence of
    these files, and returns a list of the ones that are missing.
    '''

    # Block ranges.
    block_start_idxs = list(range(0, n_samples, block_size))
    block_end_idxs = [ min(n_samples, i + block_size) for i in block_start_idxs ]
    block_ranges = list(zip(block_start_idxs, block_end_idxs))

    # All block files (existing + missing).
    n_digits = int(np.ceil(np.log(n_samples) / np.log(10)) + 1)
    all_blocks = [{
        "range" : r,
        "path" : os.path.join(
            workdir,
            "%s-%s.hdf5" % tuple([ str(i).zfill(n_digits) for i in r ]),
        )
    } for r in block_ranges]
    all_block_path_set = set(block["path"] for block in all_blocks)

    # Delete corrupt files.
    if torch.distributed.get_rank() == 0:
        existing_block_paths = [block["path"]
                                for block in all_blocks
                                if os.path.exists(block["path"])]
        for index, path in enumerate(
                tqdm(existing_block_paths, "validating block.")):

            assert path in all_block_path_set, "unexpected filename, '%s'." % path

            try:
                f = h5py.File(path, "r")
            except:
                # raise Exception("unable to open/validate '%s'." % path)
                os.remove(path)
                continue

            try:
                validate(f)
            except:
                # raise Exception("delete block file '%s'." % path)
                os.remove(path)
            finally:
                f.close()

    # Wait for files to be deleted.
    torch.distributed.barrier()

    # Filter missing files.
    missing_blocks = [block
                      for block in all_blocks
                      if not os.path.exists(block["path"])]

    return missing_blocks


def get_missing_blocks_by_rank(workdir, n_samples, block_size,
                               validate=lambda f : None):
    '''Divide missing blocks evenly across all ranks.

    See 'get_missing_blocks()' above for description. The returned list of
    missing blocks is split evenly across ranks via interleaving. This way,
    each rank has a roughly equal number of blocks to process for a
    downstream operation.
    '''

    missing_blocks = get_missing_blocks(workdir, n_samples, block_size,
                                        validate)

    # This rank's missing files.
    data_parallel_rank = parallel_state.get_data_parallel_rank()
    data_parallel_world_size = parallel_state.get_data_parallel_world_size()
    rank_missing_blocks = missing_blocks[data_parallel_rank:len(missing_blocks):data_parallel_world_size]

    # Extend rank's missing blocks (with None) such that all ranks have equal
    # length lists. This allows for easier tracking of global progress.
    n_missing_tensor = torch.cuda.LongTensor([len(rank_missing_blocks)])
    torch.distributed.all_reduce(n_missing_tensor,
                                 op=torch.distributed.ReduceOp.MAX)
    max_n_missing = n_missing_tensor.item()
    rank_missing_blocks += [None] * (max_n_missing - len(rank_missing_blocks))

    return len(missing_blocks), rank_missing_blocks


class BlockPathMap:
    '''Map an index to its containing block path.

    The common use for this class is to have a directory of files containing
    blocks of processed data, of uniform block size (e.g., 100k samples per
    file). Each file must follow a naming convention of 'startIdx-endIdx.[ext]',
    where 'endIdx' minus 'startIdx' must equal the block size, with the possible
    exception of the final block. Given an input index, this class maps the
    index to the containing block file.
    '''

    @classmethod
    def from_dir(cls, _dir, block_size, ext="hdf5"):
        '''Get list of block files, and create map.'''
        assert os.path.isdir(_dir), f"directory not found, '{_dir}'."
        return cls(sorted(glob.glob(_dir + f"/*.{ext}")), block_size)

    def __init__(self, block_paths, block_size):
        self.max_idx = 0
        self.block_path_map = {}
        for block_path in block_paths:
            name = os.path.splitext(os.path.basename(block_path))[0]
            start_idx, end_idx = [ int(i) for i in name.split("-") ]
            self.block_path_map[start_idx] = block_path
            self.max_idx = max(self.max_idx, end_idx)
        self.block_size = block_size

    def __str__(self):
        return "%d paths" % len(self.block_path_map)

    def __getitem__(self, idx):
        '''Get block path from index.'''
        block_start_idx = self.block_size * (idx // self.block_size)
        block_path = self.block_path_map[block_start_idx]
        return block_path