File size: 8,195 Bytes
d0afae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
from typing import Dict
import torch 

ZERO_FILE_PREFIX = 'zero_pp_rank_'
LAYER_FILE_PREFIX = 'layer_'
MP_RANK_FILE_PREFIX = 'mp_rank_'
EMBEDDING_LAYER_INDEX = 0
FINAL_LAYER_NORM_INDEX = -1
ARGS_KEY = 'args'
ITERATION_KEY = 'iteration'
SEQUENTIAL_LAYERS = [
    'input_layernorm.weight', 'input_layernorm.bias',
    'self_attention.dense.bias',
    'post_attention_layernorm.weight', 'post_attention_layernorm.bias',
    'mlp.dense_4h_to_h.bias',
    'position_embeddings.weight'
]

LAYER_CONCAT_DIM = {
    'self_attention.dense.weight': 1,
    'mlp.dense_4h_to_h.weight': 1
}

class DeepSpeedCheckpoint(object):
    def __init__(self, dir, tp_degree=None, pp_degree=None, no_pp=False):
        self.dir = dir
        self.no_pp = no_pp
        self.file_list = self._get_files(dir)
        self.zero_files = self._get_files_with_prefix(self.file_list, ZERO_FILE_PREFIX)
        self.layer_files = self._get_files_with_prefix(self.file_list, LAYER_FILE_PREFIX)
        self.mp_rank_files = self._get_files_with_prefix(self.file_list, MP_RANK_FILE_PREFIX)
        self.layer_keys = self._get_layer_keys()
        self.layer_count = len(self.layer_keys)
        if not self.no_pp:
            self.original_tp_degree = len(self._get_files_with_prefix(self.layer_files, f'{LAYER_FILE_PREFIX}01'))
            self.original_pp_degree = len(self.mp_rank_files) // self.original_tp_degree
        else:
            self.original_tp_degree = len(self.mp_rank_files)
            self.original_pp_degree = 1
        self.dp_degree = len(self.zero_files) // (self.original_pp_degree * self.original_tp_degree)
        self.tp_degree = self.original_tp_degree if tp_degree is None else tp_degree
        self.pp_degree = self.original_pp_degree if pp_degree is None else pp_degree
        self.global_state = {}
    
        self._sanity_check()
        self.pp_to_transformer_map = self._build_pp_transformer_map()
        self.transformer_file_map = self._build_transformer_file_map()
        if not self.no_pp:
            self.tp_to_embedding_map = self._build_tp_other_layer_map(EMBEDDING_LAYER_INDEX)
            self.tp_to_final_norm_map = self._build_tp_other_layer_map(FINAL_LAYER_NORM_INDEX)
        self._build_global_state()



    def show_tp_embedding_map(self):
        self._dump_mapping(self.tp_to_embedding_map, 'tp_to_embedding_layers')

    def show_tp_final_norm_map(self):
        self._dump_mapping(self.tp_to_final_norm_map, 'tp_to_final_norm_layers')

    def show_pp_tranformer_map(self):
        self._dump_mapping(self.pp_to_transformer_map, 'pp_to_tranformer_layers')

    def show_transformer_file_map(self):
        self._dump_mapping(self.transformer_file_map, 'rank_to_tranformer_files')

    def _build_global_state(self):
        sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
        self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0)
        self.global_state[ARGS_KEY] = sd.get(ARGS_KEY, None)

    def get_iteration(self):
        if not ITERATION_KEY in self.global_state:
            sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
            self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0)

        return self.global_state[ITERATION_KEY]

    def get_embedding_state(self, tp_index: int) -> Dict:
        assert tp_index in self.tp_to_embedding_map.keys()
        sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in self.tp_to_embedding_map[tp_index]]
        sd = self._merge_state_dicts(sd_list)
        return sd

    def get_args(self):
        if not ARGS_KEY in self.global_state:
            sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
            self.global_state[ARGS_KEY] = sd.get(ARGS_KEY, None)

        return self.global_state[ARGS_KEY]
    

    def get_transformer_state(self, tp_index: int, pp_index: int) -> list:
        assert tp_index < self.tp_degree
        assert pp_index < self.pp_degree
        t_list = []
        for fname_list in self.transformer_file_map[(tp_index, pp_index)]:
            sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list]
            sd = self._merge_state_dicts(sd_list)
            t_list.append(sd)
        return t_list   

    def get_final_norm_state(self, tp_index:int) -> Dict:
        assert tp_index in self.tp_to_final_norm_map.keys()
        sd = torch.load(self.tp_to_final_norm_map[tp_index][0], map_location=torch.device('cpu'))
        return sd

    def _build_tp_other_layer_map(self, layer_index:int):
        assert layer_index < len(self.layer_files)
        layer_files = self._get_files_with_prefix(self.layer_files, self.layer_keys[layer_index])
        layer_file_partitions = self._partition_data(layer_files, self.tp_degree)
        data_map = {i:flist for i, flist in enumerate(layer_file_partitions)}
        return data_map

    def _build_pp_transformer_map(self):
        data_map = {}
        transformer_layers = self.layer_keys[1:-1]
        layers_per_pp = len(transformer_layers) // self.pp_degree
        data_map = {i:transformer_layers[i*layers_per_pp:(i+1)*layers_per_pp] for i in range(0, self.pp_degree)}
        return data_map

    def _dump_mapping(self, data_map, map_tag = None):
        if map_tag is not None:
            print(f'Dump mapping: {map_tag}')
        for k, v in data_map.items():
            print(f'{k} = {v}')

    def _build_transformer_file_map(self):
        transformer_layer_keys = self.layer_keys[1:-1]
        file_map = {}
        layers_per_pp = len(transformer_layer_keys) // self.pp_degree
        for key_index, layer_key in enumerate(transformer_layer_keys):
            pp_index = key_index // layers_per_pp
            layer_files = self._get_files_with_prefix(self.layer_files, layer_key)
            layer_file_partitions = self._partition_data(layer_files, self.tp_degree)
            for tp_index in range(self.tp_degree):
                map_key = (tp_index, pp_index)
                if not map_key in file_map.keys():
                    file_map[map_key] = []
                file_map[map_key].append(layer_file_partitions[tp_index])
        
        return file_map
        
    def _sanity_check(self):
        assert len(self.mp_rank_files) % self.tp_degree == 0
        assert len(self.zero_files) % (self.pp_degree * self.tp_degree) == 0
        if not self.no_pp:
            assert len(self.layer_keys) > 2
            assert (len(self.layer_keys) - 2) % self.pp_degree == 0
     
    def _get_files_with_prefix(self, all_files, prefix):
        file_list = []
        for file_path in all_files:
            _, fname = os.path.split(file_path)
            if fname.startswith(prefix):
                file_list.append(file_path)
        
        return sorted(file_list)

    def validate_files(self):
        for file in self.file_list:
            if not os.path.isfile(file):
                print(f'Error: {file} is not existent')
        
    def _get_files(self, dir):
        file_list = []
        for root, dirs, files in os.walk(dir):
            for file in files:
                file_list.append(os.path.join(root, file))
        return file_list

    def _get_layer_keys(self):
        key_set = set()
        key_len = len(LAYER_FILE_PREFIX) + 2 
        for file_path in self.layer_files:
            _, fname = os.path.split(file_path)
            key_set.add(fname[:key_len])
        return sorted(list(key_set))

    def _partition_data(self, data_list, num_partitions):
        num_elems = len(data_list)
        assert num_elems % num_partitions == 0
        partition_size = num_elems // num_partitions
        partitions_list = [data_list[i:i+partition_size] for i in range(0, num_elems, partition_size)]
        return partitions_list

    def _merge_state_dicts(self, sd_list):
        merged_sd = {}
        for key in sd_list[0].keys():
            if not key in SEQUENTIAL_LAYERS:
                cat_dim = LAYER_CONCAT_DIM.get(key, 0)
                merged_sd[key] = torch.cat([sd[key] for sd in sd_list], dim=cat_dim)
            else:
                merged_sd[key] = sd_list[0][key]
        return merged_sd