File size: 5,711 Bytes
d0afae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/env python

import argparse
import os
import torch
from collections import OrderedDict
from .deepspeed_checkpoint import ARGS_KEY, DeepSpeedCheckpoint

MODEL_KEY = 'model'
ARGS_KEY = 'args'
LANGUGAGE_MODEL_KEY = 'language_model'
EMBEDDING_KEY = 'embedding'
ENCODER_KEY = 'encoder'
WORD_EMBEDDINGS_FOR_HEAD_KEY = 'word_embeddings_for_head'
WORD_EMBEDDINGS_KEY = 'word_embeddings'
FINAL_LAYER_NORM_KEY ='final_layernorm'
CHECKPOINT_VERSION_KEY = 'checkpoint_version'
CHECKPOINT_VERSION_VALUE = 3.0
ITERATION_KEY = 'iteration'

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--input_folder', default=None, type=str, help='Input DeepSpeed Checkpoint folder')
    parser.add_argument('--output_folder', default=None, type=str, help='Output Megatron checkpoint folder')
    parser.add_argument('--target_tp', default=1, type=int, help='Target TP degree')
    parser.add_argument('--target_pp', default=1, type=int, help='Target PP degree')
    parser.add_argument('--for_release', action='store_true', help='Convert for release purpose, reset some (progress) counters.')
    args = parser.parse_args()
    print(f'args = {args}')
    return args


def _convert_ds_transformer_state(sd_list):
    new_sd = OrderedDict()
    for i, sd in enumerate(sd_list):
        for key, value in sd.items():
            new_key = f'layers.{i}.{key}'
            new_sd[new_key] = value

    return new_sd

def _create_checkpoint_paths(base_folder, iteration, tp_degree, pp_degree):
    path_list = []
    iter_folder = f'iter_{iteration:07d}'
    for i in range(0, tp_degree):
        path_list.append([])
        for j in range(0, pp_degree):
            rank_folder = f'mp_rank_{i:02d}' if pp_degree == 1 else f'mp_rank_{i:02d}_{j:03d}'
            ckpt_path = os.path.join(rank_folder, 'model_optim_rng.pt')
            path_list[i].append(os.path.join(base_folder, iter_folder, ckpt_path))

    return path_list


def _create_megatron_dict():
    language_model_dict = {
        EMBEDDING_KEY: {},
        ENCODER_KEY: {}
    }
    megatron_dict = {
        MODEL_KEY: {LANGUGAGE_MODEL_KEY: language_model_dict},
        CHECKPOINT_VERSION_KEY: CHECKPOINT_VERSION_VALUE
    }
    return megatron_dict


def _save_checkpoint(file_path, chkpt_sd):
    dir, _ = os.path.split(file_path)
    os.makedirs(dir, exist_ok=True)
    torch.save(chkpt_sd, file_path)


def _renest_sd(sd):
    new_sd = OrderedDict()
    for key, value in sd.items():
        a, b = key.split('.')
        new_sd[a] = {b: value}
    return new_sd


def _create_rank_checkpoint(ds_checkpoint, tp_index, pp_index, for_release=False):
    meg_encoder_sd = OrderedDict()
    meg_embedding_sd = OrderedDict()
    meg_embedding_for_head_sd = OrderedDict()

    transformer_sd = ds_checkpoint.get_transformer_state(tp_index, pp_index)
    meg_encoder_sd.update(_convert_ds_transformer_state(transformer_sd))

    if pp_index in [0, ds_checkpoint.pp_degree - 1]:
        embedding_sd = ds_checkpoint.get_embedding_state(tp_index)
        nested_embedding_sd = _renest_sd(embedding_sd)
        if pp_index == 0:
            meg_embedding_sd.update(nested_embedding_sd)

        if pp_index == ds_checkpoint.pp_degree -1:
            for key, value in embedding_sd.items():
                if key.startswith(WORD_EMBEDDINGS_KEY):
                    fields = key.split('.')
                    new_fields = fields[1:]
                    new_key = '.'.join(new_fields)
                    meg_embedding_for_head_sd[new_key] = value

            final_norm_sd = ds_checkpoint.get_final_norm_state(tp_index)
            new_final_norm_sd = {f'{FINAL_LAYER_NORM_KEY}.{key}': value for key, value in final_norm_sd.items()}
            meg_encoder_sd.update(new_final_norm_sd)

    checkpoint_sd = _create_megatron_dict()

    iteration = ds_checkpoint.get_iteration()
    checkpoint_sd[ITERATION_KEY] = iteration
    if pp_index == 0:
        checkpoint_sd[MODEL_KEY][LANGUGAGE_MODEL_KEY][EMBEDDING_KEY] = meg_embedding_sd
    checkpoint_sd[MODEL_KEY][LANGUGAGE_MODEL_KEY][ENCODER_KEY] = meg_encoder_sd
    if pp_index == ds_checkpoint.pp_degree -1:
        checkpoint_sd[MODEL_KEY][WORD_EMBEDDINGS_FOR_HEAD_KEY] = meg_embedding_for_head_sd

    checkpoint_sd[ARGS_KEY] = ds_checkpoint.get_args()
    # Adjust specific fields
    checkpoint_sd[ARGS_KEY].tensor_model_parallel_size = ds_checkpoint.tp_degree
    checkpoint_sd[ARGS_KEY].pipeline_model_parallel_size = ds_checkpoint.pp_degree
    if for_release:
        checkpoint_sd[ARGS_KEY].consumed_train_samples = 0
        checkpoint_sd[ARGS_KEY].consumed_valid_samples = 0

    return checkpoint_sd


def _create_latest_file(base_folder, iteration):
    file_path = os.path.join(base_folder, 'latest_checkpointed_iteration.txt')
    os.makedirs(base_folder, exist_ok=True)
    with open(file_path, 'w') as f:
        f.write(str(iteration))

def main():
    print(f'Convert DeepSpeed Checkpoint to Megatron Checkpoint')

    args = parse_arguments()
    print(f'Converting DeepSpeed checkpoint in {args.input_folder} to Megatron checkpoint in {args.output_folder}')

    ds_checkpoint = DeepSpeedCheckpoint(args.input_folder, args.target_tp, args.target_pp)
    iteration = ds_checkpoint.get_iteration()
    _create_latest_file(args.output_folder, iteration)
    checkpoint_paths = _create_checkpoint_paths(args.output_folder, iteration, ds_checkpoint.tp_degree, ds_checkpoint.pp_degree)
    for i in range(0, ds_checkpoint.tp_degree):
        for j in range(0, ds_checkpoint.pp_degree):
            sd = _create_rank_checkpoint(ds_checkpoint, i, j, args.for_release)
            _save_checkpoint(checkpoint_paths[i][j], sd)

if __name__ == "__main__":
    main()