File size: 6,305 Bytes
8e72e9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.

import numpy as np
import os
import torch

from megatron import get_args, get_retro_args
from tools.bert_embedding.utils import BlockPathMap
from tools.retro.db.utils import get_merged_train_dataset as get_db_dataset
from tools.retro.external_libs import h5py

from .chunk_dataset import get_chunk_dataset_map
from .utils import get_neighbor_dirname


class RetroDataset(torch.utils.data.Dataset):
    '''Dataset of retro samples.

    Each sample contains the original GPT sample, along with the token IDs
    of each neighbor of each chunk within the sequence. Neighbor array has
    shape (num_chunks_per_sample, num_neighbors, num_retrieved_tokens).
    '''

    def __init__(self,
                 num_neighbors,
                 num_retrieved_chunks,
                 block_size,
                 db_dataset,
                 chunk_dataset,
                 neighbor_path_map):
        '''Note: chunk dataset wraps original GPT dataset (see
        chunk_dataset.py).'''

        super().__init__()

        self.num_neighbors = num_neighbors
        self.num_retrieved_chunks = num_retrieved_chunks
        self.block_size = block_size
        self.db_dataset = db_dataset
        self.chunk_dataset = chunk_dataset
        self.neighbor_path_map = neighbor_path_map

    def __len__(self):
        return len(self.chunk_dataset.sample_dataset)

    def __getitem__(self, sample_idx):

        n_chunks_per_sample = self.chunk_dataset.n_chunks_per_sample

        # Get standard sample.
        sample = self.chunk_dataset.sample_dataset[sample_idx]

        # Sample idx to chunk idxs.
        chunk_idxs = list(range(
            sample_idx * n_chunks_per_sample,
            (sample_idx + 1) * n_chunks_per_sample,
        ))

        # Collect retrieved tokens.
        all_retrieved_chunk_ids = []
        all_retrieved_token_ids = []
        for chunk_idx in chunk_idxs:

            # Neighbor chunk ids.
            neighbor_path = self.neighbor_path_map[chunk_idx]
            with h5py.File(neighbor_path, "r") as f:
                neighbor_chunk_ids = f["neighbors"] \
                    [chunk_idx % self.block_size, :self.num_neighbors].tolist()

            # Retrieved (neighbor + continuation) token ids.
            retrieved_chunk_ids = []
            retrieved_token_ids = []
            for neighbor_chunk_id in neighbor_chunk_ids:
                current_chunk_ids = [
                    i % len(self.db_dataset)
                    for i in range(
                            neighbor_chunk_id,
                            neighbor_chunk_id + self.num_retrieved_chunks)]
                current_token_ids = [self.db_dataset[ci]["text"]
                                     for ci in current_chunk_ids]
                retrieved_chunk_ids.append(current_chunk_ids)
                retrieved_token_ids.append(current_token_ids)

            # Collect retrieved tokens.
            all_retrieved_chunk_ids.append(retrieved_chunk_ids)
            all_retrieved_token_ids.append(retrieved_token_ids)

        # Reshape retrieved tokens.
        all_retrieved_chunk_ids = np.array(all_retrieved_chunk_ids) \
            .reshape((n_chunks_per_sample, self.num_neighbors, -1))
        all_retrieved_token_ids = np.array(all_retrieved_token_ids) \
            .reshape((n_chunks_per_sample, self.num_neighbors, -1))

        # Sample.
        sample = {
            **sample,
            "neighbor_chunks" : all_retrieved_chunk_ids,
            "neighbor_tokens" : all_retrieved_token_ids,
        }

        return sample


def get_retro_datasets(verify_sizes=True):
    '''Get train, valid, test retro datasets.'''

    args = get_args()
    retro_args = get_retro_args()

    # DB dataset.
    db_dataset = get_db_dataset()

    # Retro datasets.
    chunk_ds_info_map = get_chunk_dataset_map()
    retro_dataset_map = {}
    for data_key, chunk_ds_info in chunk_ds_info_map.items():

        chunk_dataset = chunk_ds_info["data"]
        neighbor_dir = chunk_ds_info["neighbor_dir"]
        neighbor_path_map = BlockPathMap.from_dir(neighbor_dir,
                                                  retro_args.retro_block_size)

        # Verify dataset prefixes.
        expected_dir = get_neighbor_dirname(data_key, chunk_dataset.sample_dataset)
        assert expected_dir == neighbor_dir, \
            "inconsistent dataset source; '%s' vs. '%s'." % \
            (expected_dir, neighbor_dir)

        # Verify num chunks.
        n_sample_chunks = len(chunk_dataset)
        n_neighbor_chunks = neighbor_path_map.max_idx

        if not os.path.isdir(neighbor_dir):
            if torch.distributed.get_rank() == 0:
                raise Exception("neighbor directory '%s' not found; please "
                                "compare --train-samples, --seq-length, --seed, "
                                "--eval-iters, and --eval-interval, with "
                                "retro preprocessing args." %
                                neighbor_dir)
            torch.distributed.barrier()
            exit()

        if verify_sizes and n_sample_chunks != n_neighbor_chunks:
            if torch.distributed.get_rank() == 0:
                print("neighbor_dir : %s" % neighbor_dir)
                print("neighbor_path_map : %s" % neighbor_path_map)
                raise Exception("num sampled chunks (%d) != num neighbor chunks "
                                "(%d); did you complete querying the entire "
                                "pretraining dataset?"
                                % (n_sample_chunks, n_neighbor_chunks))
            torch.distributed.barrier()
            exit()

        # Retro dataset.
        retro_dataset_map[data_key] = RetroDataset(
            num_neighbors=args.retro_num_neighbors,
            num_retrieved_chunks=args.retro_num_retrieved_chunks,
            block_size=retro_args.retro_block_size,
            db_dataset=db_dataset,
            chunk_dataset=chunk_dataset,
            neighbor_path_map=neighbor_path_map,
        )

    # Extract datasets.
    train_ds = retro_dataset_map.get("train", None)
    valid_ds = retro_dataset_map.get("valid", None)
    test_ds = retro_dataset_map.get("test", None)

    return train_ds, valid_ds, test_ds